Grosen, Kasper; Vase, Lene; Pilegaard, Hans K.; Pfeiffer-Jensen, Mogens; Drewes, Asbjørn M.
2014-01-01
Background Variability in patients' postoperative pain experience and response to treatment challenges effective pain management. Variability in pain reflects individual differences in inhibitory pain modulation and psychological sensitivity, which in turn may be clinically relevant for the disposition to acquire pain. The aim of this study was to investigate the effects of conditioned pain modulation and situational pain catastrophizing on postoperative pain and pain persistency. Methods Preoperatively, 42 healthy males undergoing funnel chest surgery completed the Spielberger's State-Trait Anxiety Inventory and Beck's Depression Inventory before undergoing a sequential conditioned pain modulation paradigm. Subsequently, the Pain Catastrophizing Scale was introduced and patients were instructed to reference the conditioning pain while answering. Ratings of movement-evoked pain and consumption of morphine equivalents were obtained during postoperative days 2–5. Pain was reevaluated at six months postoperatively. Results Patients reporting persistent pain at six months follow-up (n = 15) were not significantly different from pain-free patients (n = 16) concerning preoperative conditioned pain modulation response (Z = 1.0, P = 0.3) or level of catastrophizing (Z = 0.4, P = 1.0). In the acute postoperative phase, situational pain catastrophizing predicted movement-evoked pain, independently of anxiety and depression (β = 1.0, P = 0.007) whereas conditioned pain modulation predicted morphine consumption (β = −0.005, P = 0.001). Conclusions Preoperative conditioned pain modulation and situational pain catastrophizing were not associated with the development of persistent postoperative pain following funnel chest repair. Secondary outcome analyses indicated that conditioned pain modulation predicted morphine consumption and situational pain catastrophizing predicted movement-evoked pain intensity in the acute postoperative phase. These findings may have important implications for developing strategies to treat or prevent acute postoperative pain in selected patients. Pain may be predicted and the malfunctioning pain inhibition mechanism as tested with CPM may be treated with suitable drugs augmenting descending inhibition. PMID:24587268
Pain perception and hypnosis: findings from recent functional neuroimaging studies.
Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo
2015-01-01
Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions.
Sex differences and hormonal modulation of deep tissue pain
Traub, Richard J.; Ji, Yaping
2013-01-01
Women disproportionately suffer from many deep tissue pain conditions. Experimental studies show that women have lower pain thresholds, higher pain ratings and less tolerance to a range of painful stimuli. Most clinical and epidemiological reports suggest female gonadal hormones modulate pain for some, but not all, conditions. Similarly, animal studies support greater nociceptive sensitivity in females in many deep tissue pain models. Gonadal hormones modulate responses in primary afferents, dorsal horn neurons and supraspinal sites, but the direction of modulation is variable. This review will examine sex differences in deep tissue pain in humans and animals focusing on the role of gonadal hormones (mainly estradiol) as an underlying component of the modulation of pain sensitivity. PMID:23872333
Goodin, Burel; Kindler, Lindsay L.; Caudle, Robert M.; Edwards, Robert R.; Gravenstein, Nikolaus; Riley, Joseph L.; Fillingim, Roger B.
2013-01-01
The current study tested the hypothesis that conditioned pain modulation is mediated by the release of endogenous opioids with a placebo-controlled (sugar pill) study of naltrexone (50 mg) in 33 healthy volunteers over two counter-balanced sessions. Pain modulation consisted of rating of heat pain (palm) during concurrent cold water immersion (foot). Compared to baseline heat pain ratings, concurrent foot immersion lowered pain intensity ratings, which suggests an inhibitory effect, was reduced with naltrexone, suggesting at least partial dependence of inhibition on endogenous opioids. An exploratory analysis revealed that individual differences in catastrophizing moderated the effects of naltrexone; endogenous opioid blockade abolished modulation in subjects lower in catastrophizing while modulation was unaffected by naltrexone among high catastrophizers. The results suggest a role of endogenous opioids in endogenous analgesia, but hint that multiple systems might contribute to conditioned pain modulation, and that these systems might be differentially activated as a function of individual differences in responses to pain. PMID:22534819
Conditioned pain modulation in women with irritable bowel syndrome
USDA-ARS?s Scientific Manuscript database
Evidence suggests that patients with irritable bowel syndrome (IBS) are more vigilant to pain-associated stimuli. The aims of this study were to compare women with IBS (n = 20) to healthy control (HC, n = 20) women on pain sensitivity, conditioned pain modulation (CPM) efficiency, and salivary corti...
Conditioned pain modulation: a predictor for development and treatment of neuropathic pain.
Granovsky, Yelena
2013-09-01
Psychophysical evaluation of endogenous pain inhibition via conditioned pain modulation (CPM) represents a new generation of laboratory tests for pain assessment. In this review we discuss recent findings on CPM in neuropathic pain and refer to psychophysical, neurophysiological, and methodological aspects of its clinical implications. Typically, chronic neuropathic pain patients express less efficient CPM, to the extent that incidence of acquiring neuropathic pain (e.g. post-surgery) and its intensity can be predicted by a pre-surgery CPM assessment. Moreover, pre-treatment CPM evaluation may assist in the correct choice of serotonin-noradrenalin reuptake inhibitor analgesic agents for individual patients. Evaluation of pain modulation capabilities can serve as a step forward in individualizing pain medicine.
Gerhardt, Andreas; Eich, Wolfgang; Treede, Rolf-Detlef; Tesarz, Jonas
2017-03-01
Findings considering conditioned pain modulation (CPM) in chronic back pain (CBP) are contradictory. This might be because many patients with CBP report pain in further areas of the body, and altered CPM might influence spatial extent of pain rather than CBP per se. Therefore, we compared CPM in patients with CBP with different pain extent. Patients with fibromyalgia syndrome (FMS), for whom CPM impairment is reported most consistently, were measured for comparison. Based on clinical evaluation and pain drawings, patients were categorized into chronic local back pain (CLP; n = 53), chronic widespread back pain (CWP; n = 32), and FMS (n = 92). Conditioned pain modulation was measured by the difference in pressure pain threshold (test stimuli) at the lower back before and after tonic heat pain (conditioning stimulus). We also measured psychosocial variables. Pressure pain threshold was significantly increased in CLP patients after tonic heat pain (P < 0.001) indicating induction of CPM. Conditioned pain modulation in CLP was significantly higher than that in CWP and FMS (P < 0.001), but CPM in CWP and FMS did not differ. Interestingly, a higher number of painful areas (0-10) were associated with lower CPM (r = 0.346, P = 0.001) in CBP but not in FMS (r = -0.013, P = 0.903). Anxiety and depression were more pronounced in FMS than in CLP or CWP (P values <0.01). Our findings suggest that CPM dysfunction is associated with CWP and not with FMS as suggested previously. FMS seems to differ from CWP without FMS by higher psychosocial burden. Moreover, patients with CBP should be stratified into CLP and CWP, and centrally acting treatments targeting endogenous pain inhibition seem to be more indicated the higher the pain extent.
Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean
2017-01-01
The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267
Efficient conditioned pain modulation despite pain persistence in painful diabetic neuropathy.
Granovsky, Yelena; Nahman-Averbuch, Hadas; Khamaisi, Mogher; Granot, Michal
2017-05-01
Alleviation of pain, by either medical or surgical therapy, is accompanied by transition from less efficient, or pro-nociceptive, to efficient conditioned pain modulation (CPM). Spontaneous decrease or resolution of pain with disease progression is reported for some patients with painful diabetic neuropathy (PDN). To explore whether CPM changes similarly in parallel to spontaneous resolution of pain in PDN patients. In this cross-sectional study, thirty-three patients with PDN underwent psychophysical assessment of pain modulation on the forearm, remote from the clinical pain. Pain duration was not correlated with neuropathic pain intensity, yet, it correlated with CPM efficiency; patients with longer pain duration had same pain level, but more efficient CPM than those with short-pain duration (ρ = -0.417; P = 0.025, Spearman correlation). Patients with pain more than 2 years (median split) expressed efficient CPM that was not different from that of healthy controls. These patients also had lower temporal summation of pain than the short-pain duration patients group ( P < 0.05). The 2 patient groups did not differ in clinical pain characteristics or use of analgesics. Pro-nociception, expressed by less efficient CPM and high temporal summation that usually accompanies clinical painful conditions, seems to "normalize" with chronicity of the pain syndrome. This is despite continuing pain, suggesting that pro-nociceptivity in pain syndromes is multifactorial. Because the pain modulation profile affects success of therapy, this suggests that different drugs might express different efficacy pending on duration of the pain in patients with PDN.
Impaired conditioned pain modulation in youth with functional abdominal pain
Morris, Matthew C.; Walker, Lynn S.; Bruehl, Stephen; Stone, Amanda L.; Mielock, Alyssa S.; Rao, Uma
2016-01-01
Functional abdominal pain (FAP) is associated with enhanced pain responsiveness. Although impaired conditioned pain modulation (CPM) characterizes adults with a variety of chronic pain conditions, relatively little is known about CPM in youth with FAP. The present study assessed CPM to evoked thermal pain in 140 youth (ages 10 to 17), 63 of whom had FAP and 77 of whom were healthy controls. Multilevel models demonstrated weaker CPM effects in FAP than healthy youth, as evident in slower within-person decreases in pain ratings during the conditioning phase. Weaker CPM effects were associated with greater somatic symptom severity and functional disability. Pain responses in FAP youth were heterogeneous, with 43% of youth showing an unexpected increase in pain ratings during the conditioning phase, suggesting sensitization rather than CPM-related pain inhibition. These findings highlight directions for future research on the emergence and maintenance of FAP in youth. PMID:27389918
Impaired conditioned pain modulation in youth with functional abdominal pain.
Morris, Matthew C; Walker, Lynn S; Bruehl, Stephen; Stone, Amanda L; Mielock, Alyssa S; Rao, Uma
2016-10-01
Functional abdominal pain (FAP) is associated with enhanced pain responsiveness. Although impaired conditioned pain modulation (CPM) characterizes adults with a variety of chronic pain conditions, relatively little is known about CPM in youth with FAP. This study assessed CPM to evoked thermal pain in 140 youth (ages 10-17), 63 of whom had FAP and 77 of whom were healthy controls. Multilevel models demonstrated weaker CPM effects in youth with FAP than in healthy youth, as evident in slower within-person decreases in pain ratings during the conditioning phase. Weaker CPM effects were associated with greater somatic symptom severity and functional disability. Pain responses in youth with FAP were heterogeneous, with 43% of youth showing an unexpected increase in pain ratings during the conditioning phase, suggesting sensitization rather than CPM-related pain inhibition. These findings highlight directions for future research on the emergence and maintenance of FAP in youth.
Recommendations on practice of conditioned pain modulation (CPM) testing.
Yarnitsky, D; Bouhassira, D; Drewes, A M; Fillingim, R B; Granot, M; Hansson, P; Landau, R; Marchand, S; Matre, D; Nilsen, K B; Stubhaug, A; Treede, R D; Wilder-Smith, O H G
2015-07-01
Protocols for testing conditioned pain modulation (CPM) vary between different labs/clinics. In order to promote research and clinical application of this tool, we summarize the recommendations of interested researchers consensus meeting regarding the practice of CPM and report of its results. © 2014 European Pain Federation - EFIC®
Arendt-Nielsen, Lars; Egsgaard, Line Lindhardt; Petersen, Kristian Kjær
2016-08-01
The COX-2 inhibitor etoricoxib modulates the peripheral and central nociceptive mechanisms in animals. This interaction has not been studied in patients with pain. This randomized, double-blind, placebo-controlled, 2-way crossover, 4-week treatment study investigated the pain mechanisms modulated by etoricoxib in patients with painful knee osteoarthritis. Patients were randomized to group A (60 mg/d etoricoxib followed by placebo) or B (placebo followed by 60 mg/d etoricoxib). The quantitative, mechanistic pain biomarkers were pressure pain thresholds, temporal summation (TS), and conditioning pain modulation. Clinical readouts were Brief Pain Inventory, WOMAC, painDETECT questionnaire (PD-Q), and time and pain intensity during walking and stair climbing. Etoricoxib as compared with placebo significantly modulated the pressure pain thresholds (P = 0.012, localized sensitization) at the knee and leg (control site) (P = 0.025, spreading sensitization) and TS assessed from the knee (P = 0.038) and leg (P = 0.045). Conditioning pain modulation was not modulated. The Brief Pain Inventory (pain scores), PD-Q, WOMAC, and walking and stair climbing tests were all significantly improved by etoricoxib. Based on a minimum of 30% or 50% pain alleviation (day 0-day 28), responders and nonresponders were defined. The nonresponders showed a significant association between increased facilitation of TS and increased pain alleviation. None of the other parameters predicted the degree of pain alleviation. Generally, a responder to etoricoxib has the most facilitated TS. In conclusion, etoricoxib (1) modulated central pain modulatory mechanisms and (2) improved pain and function in painful osteoarthritis. Stronger facilitation of TS may indicate a better response to etoricoxib, supporting the central mode-of-action of the drug.
Efficient conditioned pain modulation despite pain persistence in painful diabetic neuropathy
Granovsky, Yelena; Nahman-Averbuch, Hadas; Khamaisi, Mogher; Granot, Michal
2017-01-01
Abstract Introduction: Alleviation of pain, by either medical or surgical therapy, is accompanied by transition from less efficient, or pro-nociceptive, to efficient conditioned pain modulation (CPM). Spontaneous decrease or resolution of pain with disease progression is reported for some patients with painful diabetic neuropathy (PDN). Objectives: To explore whether CPM changes similarly in parallel to spontaneous resolution of pain in PDN patients. Methods: In this cross-sectional study, thirty-three patients with PDN underwent psychophysical assessment of pain modulation on the forearm, remote from the clinical pain. Results: Pain duration was not correlated with neuropathic pain intensity, yet, it correlated with CPM efficiency; patients with longer pain duration had same pain level, but more efficient CPM than those with short-pain duration (ρ = −0.417; P = 0.025, Spearman correlation). Patients with pain more than 2 years (median split) expressed efficient CPM that was not different from that of healthy controls. These patients also had lower temporal summation of pain than the short-pain duration patients group (P < 0.05). The 2 patient groups did not differ in clinical pain characteristics or use of analgesics. Conclusion: Pro-nociception, expressed by less efficient CPM and high temporal summation that usually accompanies clinical painful conditions, seems to “normalize” with chronicity of the pain syndrome. This is despite continuing pain, suggesting that pro-nociceptivity in pain syndromes is multifactorial. Because the pain modulation profile affects success of therapy, this suggests that different drugs might express different efficacy pending on duration of the pain in patients with PDN. PMID:29392208
Racial Bias in Neural Response for Pain Is Modulated by Minimal Group
Shen, Fengtao; Hu, Yang; Fan, Mingxia; Wang, Huimin; Wang, Zhaoxin
2018-01-01
Whether empathic racial bias could be modulated is a subject of intense interest. The present study was carried out to explore whether empathic racial bias for pain is modulated by minimal group. Chinese/Western faces with neutral expressions receiving painful (needle penetration) or non-painful (Q-tip touch) stimulation were presented. Participants were asked to rate the pain intensity felt by Chinese/Western models of ingroup/outgroup members. Their implicit racial bias were also measured. Two lines of evidence indicated that the anterior cingulate cortex (ACC) was modulated by racial bias: (1) Chinese models elicited stronger activity than Western did in the ACC, and (2) activity in the ACC was modulated by implicit racial bias. Whereas the right anterior insula (rAI) were modulated by ingroup bias, in which ingroup member elicited stronger activity than outgroup member did. Furthermore, activity in the ACC was modulated by activity of rAI (i.e., ingroup bias) in the pain condition, while activity in the rAI was modulated by activity of ACC (i.e., racial bias) in the nopain condition. Our results provide evidence that there are different neural correlates for racial bias and ingroup bias, and neural racial bias for pain can be modulated by minimal group. PMID:29379429
Racial Bias in Neural Response for Pain Is Modulated by Minimal Group.
Shen, Fengtao; Hu, Yang; Fan, Mingxia; Wang, Huimin; Wang, Zhaoxin
2017-01-01
Whether empathic racial bias could be modulated is a subject of intense interest. The present study was carried out to explore whether empathic racial bias for pain is modulated by minimal group. Chinese/Western faces with neutral expressions receiving painful (needle penetration) or non-painful (Q-tip touch) stimulation were presented. Participants were asked to rate the pain intensity felt by Chinese/Western models of ingroup/outgroup members. Their implicit racial bias were also measured. Two lines of evidence indicated that the anterior cingulate cortex (ACC) was modulated by racial bias: (1) Chinese models elicited stronger activity than Western did in the ACC, and (2) activity in the ACC was modulated by implicit racial bias. Whereas the right anterior insula (rAI) were modulated by ingroup bias, in which ingroup member elicited stronger activity than outgroup member did. Furthermore, activity in the ACC was modulated by activity of rAI (i.e., ingroup bias) in the pain condition, while activity in the rAI was modulated by activity of ACC (i.e., racial bias) in the nopain condition. Our results provide evidence that there are different neural correlates for racial bias and ingroup bias, and neural racial bias for pain can be modulated by minimal group.
Nonpainful wide-area compression inhibits experimental pain.
Honigman, Liat; Bar-Bachar, Ofrit; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena
2016-09-01
Compression therapy, a well-recognized treatment for lymphoedema and venous disorders, pressurizes limbs and generates massive non-noxious afferent sensory barrages. The aim of this study was to study whether such afferent activity has an analgesic effect when applied on the lower limbs, hypothesizing that larger compression areas will induce stronger analgesic effects, and whether this effect correlates with conditioned pain modulation (CPM). Thirty young healthy subjects received painful heat and pressure stimuli (47°C for 30 seconds, forearm; 300 kPa for 15 seconds, wrist) before and during 3 compression protocols of either SMALL (up to ankles), MEDIUM (up to knees), or LARGE (up to hips) compression areas. Conditioned pain modulation (heat pain conditioned by noxious cold water) was tested before and after each compression protocol. The LARGE protocol induced more analgesia for heat than the SMALL protocol (P < 0.001). The analgesic effect interacted with gender (P = 0.015). The LARGE protocol was more efficient for females, whereas the MEDIUM protocol was more efficient for males. Pressure pain was reduced by all protocols (P < 0.001) with no differences between protocols and no gender effect. Conditioned pain modulation was more efficient than the compression-induced analgesia. For the LARGE protocol, precompression CPM efficiency positively correlated with compression-induced analgesia. Large body area compression exerts an area-dependent analgesic effect on experimental pain stimuli. The observed correlation with pain inhibition in response to robust non-noxious sensory stimulation may suggest that compression therapy shares similar mechanisms with inhibitory pain modulation assessed through CPM.
Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph
2017-08-29
Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p < 0.001). In the 10 °C-condition changes of subjective pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.
Descending pain modulation in irritable bowel syndrome (IBS): a systematic review and meta-analysis.
Chakiath, Rosemary J; Siddall, Philip J; Kellow, John E; Hush, Julia M; Jones, Mike P; Marcuzzi, Anna; Wrigley, Paul J
2015-12-10
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. While abdominal pain is a dominant symptom of IBS, many sufferers also report widespread hypersensitivity and present with other chronic pain conditions. The presence of widespread hypersensitivity and extra-intestinal pain conditions suggests central nervous dysfunction. While central nervous system dysfunction may involve the spinal cord (central sensitisation) and brain, this review will focus on one brain mechanism, descending pain modulation. We will conduct a comprehensive search for the articles indexed in the databases Ovid MEDLINE, Ovid Embase, Ovid PsycINFO and Cochrane Central Register of Controlled Trial (CENTRAL) from their inception to August 2015, that report on any aspect of descending pain modulation in irritable bowel syndrome. Two independent reviewers will screen studies for eligibility, assess risk of bias and extract relevant data. Results will be tabulated and, if possible, a meta-analysis will be carried out. The systematic review outlined in this protocol aims to summarise current knowledge regarding descending pain modulation in IBS. PROSPERO CRD42015024284.
Expectancy Effects on Conditioned Pain Modulation Are Not Influenced by Naloxone or Morphine.
France, Christopher R; Burns, John W; Gupta, Rajnish K; Buvanendran, Asokumar; Chont, Melissa; Schuster, Erik; Orlowska, Daria; Bruehl, Stephen
2016-08-01
Recent studies suggest that participant expectations influence pain ratings during conditioned pain modulation testing. The present study extends this work by examining expectancy effects among individuals with and without chronic back pain after administration of placebo, naloxone, or morphine. This study aims to identify the influence of individual differences in expectancy on changes in heat pain ratings obtained before, during, and after a forearm ischemic pain stimulus. Participants with chronic low back pain (n = 88) and healthy controls (n = 100) rated heat pain experience (i.e., "test stimulus") before, during, and after exposure to ischemic pain (i.e., "conditioning stimulus"). Prior to testing, participants indicated whether they anticipated that their heat pain would increase, decrease, or remain unchanged during ischemic pain. Analysis of the effects of expectancy (pain increase, decrease, or no change), drug (placebo, naloxone, or morphine), and group (back pain, healthy) on changes in heat pain revealed a significant main effect of expectancy (p = 0.001), but no other significant main effects or interactions. Follow-up analyses revealed that individuals who expected lower pain during ischemia reported significantly larger decreases in heat pain as compared with those who expected either no change (p = 0.004) or increased pain (p = 0.001). The present findings confirm that expectancy is an important contributor to conditioned pain modulation effects, and therefore significant caution is needed when interpreting findings that do not account for this individual difference. Opioid mechanisms do not appear to be involved in these expectancy effects.
Endogenous pain modulation in chronic orofacial pain: a systematic review and meta-analysis.
Moana-Filho, Estephan J; Herrero Babiloni, Alberto; Theis-Mahon, Nicole R
2018-06-15
Abnormal endogenous pain modulation was suggested as a potential mechanism for chronic pain, ie, increased pain facilitation and/or impaired pain inhibition underlying symptoms manifestation. Endogenous pain modulation function can be tested using psychophysical methods such as temporal summation of pain (TSP) and conditioned pain modulation (CPM), which assess pain facilitation and inhibition, respectively. Several studies have investigated endogenous pain modulation function in patients with nonparoxysmal orofacial pain (OFP) and reported mixed results. This study aimed to provide, through a qualitative and quantitative synthesis of the available literature, overall estimates for TSP/CPM responses in patients with OFP relative to controls. MEDLINE, Embase, and the Cochrane databases were searched, and references were screened independently by 2 raters. Twenty-six studies were included for qualitative review, and 22 studies were included for meta-analysis. Traditional meta-analysis and robust variance estimation were used to synthesize overall estimates for standardized mean difference. The overall standardized estimate for TSP was 0.30 (95% confidence interval: 0.11-0.49; P = 0.002), with moderate between-study heterogeneity (Q [df = 17] = 41.8, P = 0.001; I = 70.2%). Conditioned pain modulation's estimated overall effect size was large but above the significance threshold (estimate = 1.36; 95% confidence interval: -0.09 to 2.81; P = 0.066), with very large heterogeneity (Q [df = 8] = 108.3, P < 0.001; I = 98.0%). Sensitivity analyses did not affect the overall estimate for TSP; for CPM, the overall estimate became significant if specific random-effect models were used or if the most influential study was removed. Publication bias was not present for TSP studies, whereas it substantially influenced CPM's overall estimate. These results suggest increased pain facilitation and trend for pain inhibition impairment in patients with nonparoxysmal OFP.
Nonpainful wide-area compression inhibits experimental pain
Honigman, Liat; Bar-Bachar, Ofrit; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena
2016-01-01
Abstract Compression therapy, a well-recognized treatment for lymphoedema and venous disorders, pressurizes limbs and generates massive non-noxious afferent sensory barrages. The aim of this study was to study whether such afferent activity has an analgesic effect when applied on the lower limbs, hypothesizing that larger compression areas will induce stronger analgesic effects, and whether this effect correlates with conditioned pain modulation (CPM). Thirty young healthy subjects received painful heat and pressure stimuli (47°C for 30 seconds, forearm; 300 kPa for 15 seconds, wrist) before and during 3 compression protocols of either SMALL (up to ankles), MEDIUM (up to knees), or LARGE (up to hips) compression areas. Conditioned pain modulation (heat pain conditioned by noxious cold water) was tested before and after each compression protocol. The LARGE protocol induced more analgesia for heat than the SMALL protocol (P < 0.001). The analgesic effect interacted with gender (P = 0.015). The LARGE protocol was more efficient for females, whereas the MEDIUM protocol was more efficient for males. Pressure pain was reduced by all protocols (P < 0.001) with no differences between protocols and no gender effect. Conditioned pain modulation was more efficient than the compression-induced analgesia. For the LARGE protocol, precompression CPM efficiency positively correlated with compression-induced analgesia. Large body area compression exerts an area-dependent analgesic effect on experimental pain stimuli. The observed correlation with pain inhibition in response to robust non-noxious sensory stimulation may suggest that compression therapy shares similar mechanisms with inhibitory pain modulation assessed through CPM. PMID:27152691
Triathletes Lose Their Advantageous Pain Modulation under Acute Psychosocial Stress.
Geva, Nirit; Pruessner, Jens; Defrin, Ruth
2017-02-01
Triathletes, who constantly engage in intensely stressful sport, were recently found to exhibit greater pain tolerance and more efficient pain inhibition capabilities than nonathletes. However, pain inhibition correlated negatively with retrospective reports of mental stress during training and competition. The aim of the current study was to test pain inhibition capabilities of triathletes under acute, controlled psychological stress manipulation. Participants were 25 triathletes and ironman triathletes who underwent the measurement of pain threshold, pain intolerance, tonic suprathreshold pain, and conditioned pain modulation before and during exposure to the Montreal Imaging Stress Task (MIST). Perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol levels were obtained as indices of stress. The MIST induced a significant stress reaction manifested in the subjective and objective indices. Overall, a significant reduction in pain threshold and in conditioned pain modulation efficacy was observed after the MIST, which reached the baseline levels observed previously in nonathletes. Paradoxically, the magnitude of this stress-induced hyperalgesia (SIH) correlated negatively with the magnitude of the stress response; low-stress responders exhibited greater SIH than high-stress responders. The results suggest that under acute psychological stress, triathletes not only react with SIH and a reduction in pain modulation but also lose their advantageous pain modulation over nonathletes. The stronger the stress response recorded, the weaker the SIH. It appears that triathletes are not resilient to stress, responding with an increase in the sensitivity to pain as well as a decrease in pain inhibition. The possible effects of athletes' baseline pain profile and stress reactivity on SIH are discussed.
Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy.
Yarnitsky, David; Granot, Michal; Nahman-Averbuch, Hadas; Khamaisi, Mogher; Granovsky, Yelena
2012-06-01
This study aims to individualize the selection of drugs for neuropathic pain by examining the potential coupling of a given drug's mechanism of action with the patient's pain modulation pattern. The latter is assessed by the conditioned pain modulation (CPM) and temporal summation (TS) protocols. We hypothesized that patients with a malfunctioning pain modulation pattern, such as less efficient CPM, would benefit more from drugs augmenting descending inhibitory pain control than would patients with a normal modulation pattern of efficient CPM. Thirty patients with painful diabetic neuropathy received 1 week of placebo, 1 week of 30 mg/d duloxetine, and 4 weeks of 60 mg/d duloxetine. Pain modulation was assessed psychophysically, both before and at the end of treatment. Patient assessment of drug efficacy, assessed weekly, was the study's primary outcome. Baseline CPM was found to be correlated with duloxetine efficacy (r=0.628, P<.001, efficient CPM is marked negative), such that less efficient CPM predicted efficacious use of duloxetine. Regression analysis (R(2)=0.673; P=.012) showed that drug efficacy was predicted only by CPM (P=.001) and not by pretreatment pain levels, neuropathy severity, depression level, or patient assessment of improvement by placebo. Furthermore, beyond its predictive value, the treatment-induced improvement in CPM was correlated with drug efficacy (r=-0.411, P=.033). However, this improvement occurred only in patients with less efficient CPM (16.8±16.0 to -1.1±15.5, P<.050). No predictive role was found for TS. In conclusion, the coupling of CPM and duloxetine efficacy highlights the importance of pain pathophysiology in the clinical decision-making process. This evaluative approach promotes personalized pain therapy. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Granovsky, Yelena; Yarnitsky, David
2013-01-01
Experimental pain stimuli can be used to simulate patients’ pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests—conditioned pain modulation (CPM) and temporal summation (TS). Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine. PMID:24228167
Granovsky, Yelena; Yarnitsky, David
2013-01-01
Experimental pain stimuli can be used to simulate patients' pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests-conditioned pain modulation (CPM) and temporal summation (TS). Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine.
Paungmali, Aatit; Joseph, Leonard H; Sitilertpisan, Patraporn; Pirunsan, Ubon; Uthaikhup, Sureeporn
2017-11-01
Lumbopelvic stabilization training (LPST) may provide therapeutic benefits on pain modulation in chronic nonspecific low back pain conditions. This study aimed to examine the effects of LPST on pain threshold and pain intensity in comparison with the passive automated cycling intervention and control intervention among patients with chronic nonspecific low back pain. A within-subject, repeated-measures, crossover randomized controlled design was conducted among 25 participants (7 males and 18 females) with chronic nonspecific low back pain. All the participants received 3 different types of experimental interventions, which included LPST, the passive automated cycling intervention, and the control intervention randomly, with 48 hours between the sessions. The pressure pain threshold (PPT), hot-cold pain threshold, and pain intensity were estimated before and after the interventions. Repeated-measures analysis of variance showed that LPST provided therapeutic effects as it improved the PPT beyond the placebo and control interventions (P < 0.01). The pain intensity under the LPST condition was significantly better than that under the passive automated cycling intervention and controlled intervention (P < 0.001). Heat pain threshold under the LPST condition also showed a significant trend of improvement beyond the control (P < 0.05), but no significant effects on cold pain threshold were evident. Lumbopelvic stabilization training may provide therapeutic effects by inducing pain modulation through an improvement in the pain threshold and reduction in pain intensity. LPST may be considered as part of the management programs for treatment of chronic low back pain. © 2017 World Institute of Pain.
Nir, Rony-Reuven; Granovsky, Yelena; Yarnitsky, David; Sprecher, Elliot; Granot, Michal
2011-05-01
Endogenous analgesia (EA) can be examined experimentally using a conditioned pain modulation (CPM) paradigm. While noxious conditioning stimulation intensities (CSIs) are mainly used, it has not been fully investigated in the same experimental design whether the experienced conditioning pain level affects CPM responses. The principal goal of the present study was to characterize CPM induction and magnitudes evoked by various conditioning pain levels. Furthermore, we explored associations between conditioning pain reports and CPM responses across various CSIs. Thirty healthy, young, right-handed males were tested with a parallel CPM paradigm. Three different CSIs (hand water-immersion) induced mild, moderate and intense pain levels, rated 12.41 ± 7.85, 31.57 ± 9.56 and 58.1 ± 11.43, respectively (0-100 numerical pain scale) (P < 0.0001). Contact-heat 'test-stimulus' levels were compared before and during conditioning. Within the group, (i) CPM was induced only by the moderate and intense CSIs (Ps ≤ 0.001); (ii) no difference was demonstrated between the magnitudes of these CPM responses. Regression analysis revealed that CPM induction was independent of the perceived conditioning pain level, but associated with the absolute CSI (P < 0.0001). Conditioning pain levels were correlated across all CSIs, as were CPM magnitudes (Ps ≤ 0.01). We conclude that among males, (i) once a CPM response is evoked by a required conditioning pain experience, its magnitude is not further affected by increasing conditioning pain and (ii) CPM magnitudes are inter-correlated, but unrelated to conditioning pain reports. These observations may suggest that CPM responses represent an intrinsic element of an individual's EA processes, which are not significantly affected by the experienced conditioning pain. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Rosen, Marc I; Becker, William C; Black, Anne C; Martino, Steve; Edens, Ellen L; Kerns, Robert D
2018-05-22
High proportions of post-9/11 veterans have musculoskeletal disorders (MSDs), but engaging them in care early in their course of illness has been challenging. The service connection application is an ideal point of contact for referring veterans to early interventions for their conditions. Among MSD claimants who reported risky substance use, we pilot-tested a counseling intervention targeting pain and risky substance use called Screening Brief Intervention and Referral to Treatment-Pain Module (SBIRT-PM). Veterans were randomly assigned in a 2:1:1 ratio to SBIRT-PM, Pain Module counseling only, or treatment as usual (TAU). Participants assigned to either counseling arm were offered a single meeting with a study therapist with two follow-up telephone calls as needed. Participants completed outcome assessments at four and 12 weeks after randomization. Of 257 veterans evaluated, 101 reported risky substance use and were randomized. Counseling was attended by 75% of veterans offered it and was well received. VA pain-related services were used by 51% of participants in either of the pain-focused conditions but only by 27% in TAU (P < 0.04). Starting with average pain severity ratings of 5.1/10 at baseline, only minimal changes in mean pain severity were noted regardless of condition. Self-reported risky substance use was significantly lower over time in the SBIRT-PM condition relative to the two other conditions (P < 0.02). At week 12, proportions of veterans reporting risky substance use were 0.39, 0.69, and 0.71 for the SBIRT-PM, Pain Module counseling, and TAU conditions, respectively. SBIRT-PM shows promise as a way to engage veterans in pain treatment and reduce substance use.
Increased conditioned pain modulation in athletes.
Flood, Andrew; Waddington, Gordon; Thompson, Kevin; Cathcart, Stuart
2017-06-01
The potential relationship between physical activity and endogenous pain modulatory capacity remains unclear. Therefore, the aim of the current study was to compare the pain modulatory responses of athletes and non-athletes. Conditioned pain modulation (CPM) was assessed in 15 athletes and 15 non-athletes at rest. Participation was restricted to pain-free males between 18 and 40 years of age. To measure CPM capacity, a sequential CPM testing protocol was implemented, whereby a test stimulus (pressure pain threshold [PPT]) was presented before and immediately after a conditioning stimulus (4-min cold-pressor test). Pain intensity ratings were obtained at 15-s intervals throughout the cold-pressor task using a numerical rating scale. Athletes demonstrated higher baseline PPTs compared to non-athletes (P = .03). Athletes also gave lower mean (P < .001) and maximum (P < .001) pain intensity ratings in response to the conditioning stimulus. The conditioning stimulus had a stronger inhibitory effect on the test stimulus in athletes, showing enhanced CPM in athletes compared to non-athletes (P < .05). This finding of enhanced CPM in athletes helps clarify previous mixed findings. Potential implications for exercise performance and injury are discussed.
Madaus, Stacy M; Lim, Lionel S
2016-10-01
Chronic pain is an international healthcare crisis that affects an estimated 1.5 billion individuals worldwide, but pain management is not emphasized in the medical school curriculum, and thus supplemental education is essential. The Portal of Geriatric Online Education (POGOe) is a free repository of teaching modules for use by geriatric educators and learners. This article highlights three teaching modules available on this site: It's My Old Back Again: An Approach to Diagnosing and Managing Back Pain in the Older Adult (POGOe ID: 21670), Computer Based Learning Workbook, Third Edition module on Pain Management (POGOe ID: 21036), and Aging Q3 Curriculum on Pain Management of Older Adult Patients (POGOe ID: 21187). These modules were chosen based on their ability to address the major topics that the International Association for the Study of Pain proposes should be included in medical school curricula: mulitdimensional nature of pain, pain assessment and measurement, management of pain, and clinical conditions resulting in pain in older adults. They were also selected for their ability to be adapted for interprofessional education and how well they integrate basic science and clinical principles. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Fixed or adapted conditioning intensity for repeated conditioned pain modulation.
Hoegh, M; Petersen, K K; Graven-Nielsen, T
2017-12-29
Aims Conditioned pain modulation (CPM) is used to assess descending pain modulation through a test stimulation (TS) and a conditioning stimulation (CS). Due to potential carry-over effects, sequential CPM paradigms might alter the intensity of the CS, which potentially can alter the CPM-effect. This study aimed to investigate the difference between a fixed and adaptive CS intensity on CPM-effect. Methods On the dominant leg of 20 healthy subjects the cuff pressure detection threshold (PDT) was recorded as TS and the pain tolerance threshold (PTT) was assessed on the non-dominant leg for estimating the CS. The difference in PDT before and during CS defined the CPM-effect. The CPM-effect was assessed four times using a CS with intensities of 70% of baseline PTT (fixed) or 70% of PTT measured throughout the session (adaptive). Pain intensity of the conditioning stimulus was assessed on a numeric rating scale (NRS). Data were analyzed with repeated-measures ANOVA. Results No difference was found comparing the four PDTs assessed before CSs for the fixed and the adaptive paradigms. The CS pressure intensity for the adaptive paradigm was increasing during the four repeated assessments (P < 0.01). The pain intensity was similar during the fixed (NRS: 5.8±0.5) and the adjusted paradigm (NRS: 6.0±0.4). The CPM-effect was higher using the fixed condition compared with the adaptive condition (P < 0.05). Conclusions The current study found that sequential CPM paradigms using a fixed conditioning stimulus produced an increased CPM-effect compared with adaptive and increasing conditioning intensities.
Flood, Andrew; Waddington, Gordon; Cathcart, Stuart
2017-01-01
The aim of the current study was to examine the relationship between pain modulatory capacity and endurance exercise performance. Twenty-seven recreationally active males between 18 and 35 years of age participated in the study. Pain modulation was assessed by examining the inhibitory effect of a noxious conditioning stimulus (cuff occlusion) on the perceived intensity of a second noxious stimulus (pressure pain threshold). Participants completed two, maximal voluntary contractions followed by a submaximal endurance time task. Both performance tasks involved an isometric contraction of the non-dominant leg. The main analysis uncovered a correlation between pain modulatory capacity and performance on the endurance time task (r = -.425, p = .027), such that those with elevated pain modulation produced longer endurance times. These findings are the first to demonstrate the relationship between pain modulation responses and endurance exercise performance.
Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer
Elmholdt, Else-Marie; Skewes, Joshua; Dietz, Martin; Møller, Arne; Jensen, Martin S.; Roepstorff, Andreas; Wiech, Katja; Jensen, Troels S.
2017-01-01
Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping. Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70–89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during religious prayer in a large parietofrontal network relative to the secular condition. Naloxone had no significant effect on ratings or neural activity. Our results thus indicate that, under these conditions, pain modulation by prayer is not opioid-dependent. Further studies should employ an optimized design to explore whether reduced engagement of the frontoparietal system could indicate that prayer may attenuate pain through a reduction in processing of pain stimulus saliency and prefrontal control rather than through known descending pain inhibitory systems. PMID:28701940
Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer.
Elmholdt, Else-Marie; Skewes, Joshua; Dietz, Martin; Møller, Arne; Jensen, Martin S; Roepstorff, Andreas; Wiech, Katja; Jensen, Troels S
2017-01-01
Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping. Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70-89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during religious prayer in a large parietofrontal network relative to the secular condition. Naloxone had no significant effect on ratings or neural activity. Our results thus indicate that, under these conditions, pain modulation by prayer is not opioid-dependent. Further studies should employ an optimized design to explore whether reduced engagement of the frontoparietal system could indicate that prayer may attenuate pain through a reduction in processing of pain stimulus saliency and prefrontal control rather than through known descending pain inhibitory systems.
Jenkins, M Sue; Bean, W Geinor; Luke, Karl
2014-02-01
Chronic pain is a long-term condition, which has a major impact on patients, carers and the health service. Despite the Chief Medical Officer setting chronic pain and its management as a national priority in 2008, the utilisation of health services by patients with long-term conditions is increasing, people with pain-related problems are not seen early enough and pain-related attendances to accident and emergency departments is increasing. Early assessment with appropriate evidence-based intervention and early recognition of when to refer to specialist and specialised services is key to addressing the growing numbers suffering with chronic pain. Pain education is recommended in many guidelines, as part of the process to address pain in these issues. Cardiff University validated an e-learning, master's level pain management module for healthcare professionals working in primary and community care. The learning outcomes revolve around robust early assessment and management of chronic pain in primary and community care and the knowledge when to refer on. The module focuses on the biopsychosocial aspects of pain and its management, using a blog as an online case study assessment for learners to demonstrate their knowledge, understanding and application to practice. The module has resulted in learners developing evidence-based recommendations, for pain management in clinical practice.
Involvement of α2-adrenoceptors in inhibitory and facilitatory pain modulation processes.
Vo, L; Drummond, P D
2016-03-01
In healthy humans, high-frequency electrical stimulation (HFS) of the forearm not only produces hyperalgesia at the site of stimulation but also reduces sensitivity to pressure-pain on the ipsilateral side of the forehead. In addition, HFS augments the ipsilateral trigeminal nociceptive blink reflex and intensifies the ipsilateral component of conditioned pain modulation. The aim of this study was to determine whether α2-adrenoceptors mediate these ipsilateral nociceptive influences. The α2-adrenoceptor antagonist yohimbine was administered to 22 participants in a double-blind, placebo-controlled crossover study. In each session, thermal and mechanical sensitivity in the forearms and forehead was assessed before and after HFS. In addition, the combined effect of HFS and yohimbine on the nociceptive blink reflex and on conditioned pain modulation was explored. In this paradigm, the conditioning stimulus was cold pain in the ipsilateral or contralateral temple, and the test stimulus was electrically evoked pain in the forearm. Blood pressure and electrodermal activity increased for several hours after yohimbine administration, consistent with blockade of central α2-adrenoceptors. Yohimbine not only augmented the nociceptive blink reflex ipsilateral to HFS but also intensified the inhibitory influence of ipsilateral temple cooling on electrically evoked pain at the HFS-treated site in the forearm. Yohimbine had no consistent effect on primary or secondary hyperalgesia in the forearm or on pressure-pain in the ipsilateral forehead. These findings imply involvement of α2-adrenoceptors both in ipsilateral antinociceptive and pronociceptive pain modulation processes. However, a mechanism not involving α2-adrenoceptors appears to mediate analgesia in the ipsilateral forehead after HFS. © 2015 European Pain Federation - EFIC®
Differential pain modulation in patients with peripheral neuropathic pain and fibromyalgia.
Gormsen, Lise; Bach, Flemming W; Rosenberg, Raben; Jensen, Troels S
2017-12-29
Background The definition of neuropathic pain has recently been changed by the International Association for the Study of Pain. This means that conditions such as fibromyalgia cannot, as sometimes discussed, be included in the neuropathic pain conditions. However, fibromyalgia and peripheral neuropathic pain share common clinical features such as spontaneous pain and hypersensitivity to external stimuli. Therefore, it is of interest to directly compare the conditions. Material and methods In this study we directly compared the pain modulation in neuropathic pain versus fibromyalgia by recording responses to a cold pressor test in 30 patients with peripheral neuropathic pain, 28 patients with fibromyalgia, and 26 pain-free age-and gender-matched healthy controls. Patients were asked to rate their spontaneous pain on a visual analog scale (VAS (0-100 mm) immediately before and immediately after the cold pressor test. Furthermore the duration (s) of extremity immersion in cold water was used as a measure of the pain tolerance threshold, and the perceived pain intensity at pain tolerance on the VAS was recorded on the extremity in the water after the cold pressor test. In addition, thermal (thermo tester) and mechanical stimuli (pressure algometer) were used to determine sensory detection, pain detection, and pain tolerance thresholds in different body parts. All sensory tests were done by the same examiner, in the same room, and with each subject in a supine position. The sequence of examinations was the following: (1) reaction time, (2) pressure thresholds, (3) thermal thresholds, and (4) cold pressor test. Reaction time was measured to ensure that psychomotoric inhibitions did not influence pain thresholds. Results Pain modulation induced by a cold pressor test reduced spontaneous pain by 40% on average in neuropathic pain patients, but increased spontaneous pain by 2.6% in fibromyalgia patients. This difference between fibromyalgia and neuropathic pain patients was significant (P < 0.002). Fibromyalgia patients withdrew their extremity from the cold water significantly earlier than neuropathic pain patients and healthy controls; however, they had a higher perceived pain intensity on the VAS than neuropathic pain patients and control subjects. Furthermore, neuropathic pain patients had a localized hypersensitivity to mechanical and thermal stimuli in the affected area of the body. In contrast, fibromyalgia patients displayed a general hypersensitivity to mechanical and thermal stimuli when the stimuli were rated by the VAS, and hypersensitivity to some of the sensory stimuli. Conclusions These findings are the first to suggest that a conditioning stimulus evoked by a cold pressor test reduced spontaneous ongoing pain in patients with peripheral neuropathic pain, but not in fibromyalgia patients when directly compared. The current study supports the notion that fibromyalgia and neuropathic pain are distinct pain conditions with separate sensory patterns and dysfunctions in pain-modulating networks. Fibromyalgia should therefore not, as sometimes discussed, be included in NP conditions. Implications On the basis of the findings, it is of interest to speculate on the underlying mechanisms. The results are consistent with the idea that peripheral neuropathic pain is primarily driven from damaged nerve endings in the periphery, while chronic fibromyalgia pain may be a central disorder with increased activity in pain-facilitating systems.
Waning of "conditioned pain modulation": a novel expression of subtle pronociception in migraine.
Nahman-Averbuch, Hadas; Granovsky, Yelena; Coghill, Robert C; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-01-01
To assess the decay of the conditioned pain modulation (CPM) response along repeated applications as a possible expression of subtle pronociception in migraine. One of the most explored mechanisms underlying the pain modulation system is "diffuse noxious inhibitory controls," which is measured psychophysically in the lab by the CPM paradigm. There are contradicting reports on CPM response in migraine, questioning whether migraineurs express pronociceptive pain modulation. Migraineurs (n = 26) and healthy controls (n = 35), all females, underwent 3 stimulation series, consisting of repeated (1) "test-stimulus" (Ts) alone that was given first followed by (2) parallel CPM application (CPM-parallel), and (3) sequential CPM application (CPM-sequential), in which the Ts is delivered during or following the conditioning-stimulus, respectively. In all series, the Ts repeated 4 times (0-3). In the CPM series, repetition "0" consisted of the Ts-alone that was followed by 3 repetitions of the Ts with a conditioning-stimulus application. Although there was no difference between migraineurs and controls for the first CPM response in each series, we found waning of CPM-parallel efficiency along the series for migraineurs (P = .005 for third vs first CPM), but not for controls. Further, greater CPM waning in the CPM-sequential series was correlated with less reported extent of pain reduction by episodic medication (r = 0.493, P = .028). Migraineurs have subtle deficits in endogenous pain modulation which requires a more challenging test protocol than the commonly used single CPM. Waning of CPM response seems to reveal this pronociceptive state. The clinical relevance of the CPM waning effect is highlighted by its association with clinical parameters of migraine. © 2013 American Headache Society.
Current methodological approaches in conditioned pain modulation assessment in pediatrics
Hwang, Philippe S; Ma, My-Linh; Spiegelberg, Nora; Ferland, Catherine E
2017-01-01
Conditioned pain modulation (CPM) paradigms have been used in various studies with healthy and non-healthy adult populations in an attempt to elucidate the mechanisms of pain processing. However, only a few studies so far have applied CPM in pediatric populations. Studies finding associations with chronic pain conditions suggest that deficiencies in underlying descending pain pathways may play an important role in the development and persistence of pain early in life. Twelve studies were identified using a PubMed search which examine solely pediatric populations, and these are reviewed with regard to demographics studied, methodological approaches, and conclusions reached. This review aimed to provide both clinicians and researchers with a brief overview of the current state of research regarding the use of CPM in children and adolescents, both healthy and clinical patients. The implications of CPM in experimental and clinical settings and its potential to aid in refining considerations to individualize treatment of pediatric pain syndromes will be discussed. PMID:29263694
Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L
2007-10-01
To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.
Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.
Geva, Nirit; Defrin, Ruth
2018-04-01
The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Vo, L; Drummond, P D
2013-03-01
In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.
Disrupted functional connectivity of the periaqueductal gray in chronic low back pain
Yu, Rongjun; Gollub, Randy L.; Spaeth, Rosa; Napadow, Vitaly; Wasan, Ajay; Kong, Jian
2014-01-01
Chronic low back pain is a common neurological disorder. The periaqueductal gray (PAG) plays a key role in the descending modulation of pain. In this study, we investigated brain resting state PAG functional connectivity (FC) differences between patients with chronic low back pain (cLBP) in low pain or high pain condition and matched healthy controls (HCs). PAG seed based functional connectivity (FC) analysis of the functional MR imaging data was performed to investigate the difference among the connectivity maps in the cLBP in the low or high pain condition and HC groups as well as within the cLBP at differing endogenous back pain intensities. Results showed that FC between the PAG and the ventral medial prefrontal cortex (vmPFC)/rostral anterior cingulate cortex (rACC) increased in cLBP patients compared to matched controls. In addition, we also found significant negative correlations between pain ratings and PAG–vmPFC/rACC FC in cLBP patients after pain-inducing maneuver. The duration of cLBP was negatively correlated with PAG–insula and PAG–amygdala FC before pain-inducing maneuver in the patient group. These findings are in line with the impairments of the descending pain modulation reported in patients with cLBP. Our results provide evidence showing that cLBP patients have abnormal FC in PAG centered pain modulation network during rest. PMID:25379421
Endogenous inhibition of pain and spinal nociception in women with premenstrual dysphoric disorder
Palit, Shreela; Bartley, Emily J; Kuhn, Bethany L; Kerr, Kara L; DelVentura, Jennifer L; Terry, Ellen L; Rhudy, Jamie L
2016-01-01
Purpose Premenstrual dysphoric disorder (PMDD) is characterized by severe affective and physical symptoms, such as increased pain, during the late-luteal phase of the menstrual cycle. The mechanisms underlying hyperalgesia in women with PMDD have yet to be identified, and supraspinal pain modulation has yet to be examined in this population. The present study assessed endogenous pain inhibitory processing by examining conditioned pain modulation (CPM, a painful conditioning stimulus inhibiting pain evoked by a test stimulus at a distal body site) of pain and the nociceptive flexion reflex (NFR, a spinally-mediated withdrawal reflex) during the mid-follicular, ovulatory, and late-luteal phases of the menstrual cycle. Methods Participants were regularly-cycling women (14 without PMDD; 14 with PMDD). CPM was assessed by delivering electrocutaneous test stimuli to the sural nerve before, during, and after a painful conditioning ischemia task. Participants rated their pain to electrocutaneous stimuli, and NFR magnitudes were measured. A linear mixed model analysis was used to assess the influence of group and menstrual phase on CPM. Results Compared with controls, women with PMDD experienced greater pain during the late-luteal phase and enhanced spinal nociception during the ovulation phase, both of which were independent of CPM. Both groups showed CPM inhibition of pain that did not differ by menstrual phase. Only women with PMDD evidenced CPM inhibition of NFR. Conclusion Endogenous modulation of pain and spinal nociception is not disrupted in women with PMDD. Additionally, greater NFR magnitudes during ovulation in PMDD may be due to tonically-engaged descending mechanisms that facilitate spinal nociception, leading to enhanced pain during the premenstrual phase. PMID:26929663
Conditioned pain modulation (CPM) in children and adolescents: Effects of sex and age
Tsao, Jennie C. I.; Seidman, Laura C.; Evans, Subhadra; Lung, Kirsten C.; Zeltzer, Lonnie K.; Naliboff, Bruce D.
2013-01-01
Conditioned pain modulation (CPM) refers to the diminution of perceived pain intensity for a test stimulus following application of a conditioning stimulus to a remote area of the body, and is thought to reflect the descending inhibition of nociceptive signals. Studying CPM in children may inform interventions to enhance central pain inhibition within a developmental framework. We assessed CPM in 133 healthy children (mean age = 13 years; 52.6% girls) and tested the effects of sex and age. Participants were exposed to four trials of a pressure test stimulus before, during, and after the application of a cold water conditioning stimulus. CPM was documented by a reduction in pressure pain ratings during cold water administration. Older children (12–17 years) exhibited greater CPM than younger (8–11 years) children. No sex differences in CPM were found. Lower heart rate variability (HRV) at baseline and after pain induction was associated with less CPM controlling for child age. The findings of greater CPM in the older age cohort suggest a developmental improvement in central pain inhibitory mechanisms. The results highlight the need to examine developmental and contributory factors in central pain inhibitory mechanisms in children to guide effective, age appropriate, pain interventions. PMID:23541066
Central Mechanisms in the Maintenance of Chronic Widespread Noninflammatory Muscle Pain
DeSantana, Josimari M.; Sluka, Kathleen A.
2009-01-01
Chronic widespread pain (CWP) conditions such as fibromyalgia and myofascial syndromes are characterized by generalized pain, tenderness, morning stiffness, disturbed sleep, and pronounced fatigue. However, CWP pathophysiology is still unclear. A number of hypotheses have been proposed as the underlying pathophysiology of CWP: muscular dysfunction/ischemia, central sensitization, and a deficit in endogenous pain-modulating systems. This article reviews the current and emerging literature about the pathophysiology and neurobiology of chronic widespread musculoskeletal pain. Widespread musculoskeletal pain results in changes in the central nervous system in human subjects and animal models. These changes likely reflect alterations in supraspinal modulation of nociception, and include increases in excitatory and decreases in inhibitory modulation pathways. These alterations in excitation and inhibition likely drive changes observed in the spinal cord to result in central sensitization, and the consequent pain and hyperalgesia. PMID:18765138
Bessaguet, Flavien; Magy, Laurent; Desmoulière, Alexis; Demiot, Claire
2016-01-01
The prevalence rate of chronic pain is 15% to 25% in adults while the therapeutic arsenal is still insufficient, especially in relieving neuropathic pain. Peripheral pain transmission is conducted by the small Aδ and C sensory nerve fibres. They express elements from the renin-angiotensin-aldosterone system (RAAS), a well-known blood pressure regulator. Recently, studies have demonstrated the role of angiotensin II, its derivatives and aldosterone in the modulation of pain perception, by interacting with receptors expressed by sensory nerve fibres or through the central nervous system. Here, we assess the effects of RAAS modulators in the conduction of pain with molecular, preclinical and clinical approaches, in normal or pathological conditions. Currently, some clinical studies have been carried out on the pain-relieving effect of RAAS modulators and suggest their potential in the management of chronic, inflammatory or neuropathic pain.
Bernaba, Mario; Johnson, Kevin A; Kong, Jiang-Ti; Mackey, Sean
2014-01-01
Purpose Conditioned pain modulation (CPM) is an experimental approach for probing endogenous analgesia by which one painful stimulus (the conditioning stimulus) may inhibit the perceived pain of a subsequent stimulus (the test stimulus). Animal studies suggest that CPM is mediated by a spino–bulbo–spinal loop using objective measures such as neuronal firing. In humans, pain ratings are often used as the end point. Because pain self-reports are subject to cognitive influences, we tested whether cognitive factors would impact on CPM results in healthy humans. Methods We conducted a within-subject, crossover study of healthy adults to determine the extent to which CPM is affected by 1) threatening and reassuring evaluation and 2) imagery alone of a cold conditioning stimulus. We used a heat stimulus individualized to 5/10 on a visual analog scale as the testing stimulus and computed the magnitude of CPM by subtracting the postconditioning rating from the baseline pain rating of the heat stimulus. Results We found that although evaluation can increase the pain rating of the conditioning stimulus, it did not significantly alter the magnitude of CPM. We also found that imagery of cold pain alone did not result in statistically significant CPM effect. Conclusion Our results suggest that CPM is primarily dependent on sensory input, and that the cortical processes of evaluation and imagery have little impact on CPM. These findings lend support for CPM as a useful tool for probing endogenous analgesia through subcortical mechanisms. PMID:25473310
Mehta, V; Snidvongs, S; Ghai, B; Langford, R; Wodehouse, T
2017-06-01
Quantitative sensory testing (QST) has been used to predict the outcome of epidural steroid injections in lumbosacral radicular pain and has the potential to be an important tool in the selection of appropriate treatment (such as epidural steroid injections vs surgery) for patients with chronic radicular pain. In addition, QST assists in identification of the pain pathways of peripheral and central sensitization in selected groups of patients. Twenty-three patients were given dorsal root ganglion (DRG) infiltration with local anaesthesia and steroid ('DRG block'), and those who demonstrated at least 50% pain relief were offered pulsed radiofrequency (PRF) to the DRG. Questionnaires and QST scores were measured before the DRG blocks and at 1 week and 3 months after their procedure. Those who received PRF also answered questionnaires and underwent QST measurements at 1 week and 3 months after their procedure. There was a significant increase in pressure pain threshold scores after DRG blocks. A reduced conditioned pain modulation response was seen before DRG, which increased after the procedure. Ten out of 23 patients underwent PRF to the DRG, and an increase in pressure pain threshold scores after PRF was observed. The conditioned pain modulation response was maintained in this group and increased after PRF. The study demonstrates that patients with unilateral radicular low back pain who receive dorsal root ganglion interventions show changes in pressure pain thresholds and conditioned pain modulation that are consistent with a 'normalization' of peripheral and central sensitization. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com
FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network
Qin, Wei; Tian, Jie; Bai, Lijun; Pan, Xiaohong; Yang, Lin; Chen, Peng; Dai, Jianping; Ai, Lin; Zhao, Baixiao; Gong, Qiyong; Wang, Wei; von Deneen, Karen M; Liu, Yijun
2008-01-01
Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation. PMID:19014532
Acute psychosocial stress reduces pain modulation capabilities in healthy men.
Geva, Nirit; Pruessner, Jens; Defrin, Ruth
2014-11-01
Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Pronociceptive pain modulation in patients with painful chemotherapy-induced polyneuropathy.
Nahman-Averbuch, Hadas; Yarnitsky, David; Granovsky, Yelena; Sprecher, Elliot; Steiner, Mariana; Tzuk-Shina, Tzahala; Pud, Dorit
2011-08-01
Several chemotherapy agents induce polyneuropathy that is painful for some patients, but not for others. We assumed that these differences might be attributable to varying patterns of pain modulation. The aim of the present study was to evaluate pain modulation in such patients. Twenty-seven patients with chemotherapy-induced polyneuropathy were tested for detection thresholds (cold, warm, and mechanical) in both the forearm and foot, as well as for heat pain threshold, mechanical temporal summation (TS), and conditioned pain modulation (CPM; also known as the diffuse noxious inhibitory control-like effect), which were tested in the upper limbs. Positive correlations were found between clinical pain levels and both TS (r=0.52, P=0.005) and CPM (r=0.40, P=0.050) for all patients. In addition, higher TS was associated with less efficient CPM (r=0.56, P=0.004). The group of patients with painful polyneuropathy (n=12) showed a significantly higher warm detection threshold in the foot (P=0.03), higher TS (P<0.01), and less efficient CPM (P=0.03) in comparison to the group with nonpainful polyneuropathy. The painfulness of polyneuropathy is associated with a "pronociceptive" modulation pattern, which may be primary to the development of pain. The higher warm sensory thresholds in the painful polyneuropathy group suggest that the severity of polyneuropathy may be another factor in determining its painfulness. Copyright © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.
Zheng, Zhen; Wang, Kelun; Yao, Dongyuan; Xue, Charlie C L; Arendt-Nielsen, Lars
2014-05-01
This study investigated the relationship between pain sensitivity, adaptability, and potency of endogenous pain inhibition, including conditioned pain modulation (CPM) and local pain inhibition. Forty-one healthy volunteers (20 male, 21 female) received conditioning stimulation (CS) over 2 sessions in a random order: tonic heat pain (46 °C) on the right leg for 7 minutes and cold pressor pain (1 °C to 4 °C) on the left hand for 5 minutes. Participants rated the intensity of pain continuously using a 0 to 10 electronic visual analogue scale. The primary outcome measures were pressure pain thresholds (PPT) measured at the heterotopic and homotopic location to the CS sites before, during, and 20 minutes after CS. Two groups of participants, pain adaptive and pain nonadaptive, were identified based on their response to pain in the cold pressor test. Pain-adaptive participants showed a pain reduction between peak pain and pain at end of the test by at least 2 of 10 (n=16); whereas the pain-nonadaptive participants reported unchanged peak pain during 5-minute CS (n=25). Heterotopic PPTs during the CS did not differ between the 2 groups. However, increased homotopic PPTs measured 20 minutes after CS correlated with the amount of pain reduction during CS. These results suggest that individual sensitivity and adaptability to pain does not correlate with the potency of CPM. Adaptability to pain is associated with longer-lasting local pain inhibition. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Frequency-dependent changes in sensorimotor and pain affective systems induced by empathy for pain.
Motoyama, Yoshimasa; Ogata, Katsuya; Hoka, Sumio; Tobimatsu, Shozo
2017-01-01
Empathy for pain helps us to understand the pain of others indirectly. To better comprehend the processing of empathic pain, we report the frequency-dependent modulation of cortical oscillations induced by watching movies depicting pain using high-density electroencephalography (EEG), magnetoencephalography (MEG), and motor evoked potentials (MEP). Event-related desynchronization of EEG and MEG was assessed while participants viewed videos of painful (needle) or neutral (cotton swab) situations. The amplitudes of MEPs were also compared between the needle and cotton swab conditions. The degree of suppression in α/β band power was significantly increased, whereas that of γ band power was significantly decreased, in the needle condition compared with the cotton swab condition. EEG revealed that significant differences in α/β band were distributed in the right frontocentral and left parietooccipital regions, whereas significant γ band differences were distributed predominantly over the right hemisphere, which were confirmed by source estimation using MEG. There was a significant positive correlation between the difference in γ power of the two conditions and the visual analog scale subjective rating of aversion, but not in the α/β band. The amplitude of MEPs decreased in the needle condition, which confirmed the inhibition of the primary motor cortex. MEP suppression supports that modulation of cortical oscillations by viewing movies depicting pain involves sensorimotor processing. Our results suggest that α/β oscillations underlie the sensory qualities of others' pain, whereas the γ band reflects the cognitive aspect. Therefore, α/β and γ band oscillations are differentially involved in empathic pain processing under the condition of motor cortical suppression.
Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.
Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R
2004-06-07
This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins
Ion channel blockers for the treatment of neuropathic pain.
Colombo, Elena; Francisconi, Simona; Faravelli, Laura; Izzo, Emanuela; Pevarello, Paolo
2010-05-01
Neuropathic pain, a severe chronic pain condition characterized by a complex pathophysiology, is a largely unmet medical need. Ion channels, which underlie cell excitability, are heavily implicated in the biological mechanisms that generate and sustain neuropathic pain. This review highlights the biological evidence supporting the involvement of voltage-, proton- and ligand-gated ion channels in the neuropathic pain setting. Ion channel modulators at different research or development stages are reviewed and referenced. Ion channel modulation is one of the main avenues to achieve novel, improved neuropathic pain treatments. Voltage-gated sodium and calcium channel and glutamate receptor modulators are likely to produce new, improved agents in the future. Rationally targeting subtypes of known ion channels, tackling recently discovered ion channel targets or combining drugs with different mechanism of action will be primary sources of new drugs in the longer term.
Dysfunctional pain modulation in somatoform pain disorder patients.
Klug, Stefanie; Stefanie, Klug; Anderer, Peter; Peter, Anderer; Saletu-Zyhlarz, Gerda; Gerda, Saletu-Zyhlarz; Freidl, Marion; Marion, Freidl; Saletu, Bernd; Bernd, Saletu; Prause, Wolfgang; Wolfgang, Prause; Aigner, Martin; Martin, Aigner
2011-06-01
To date, pain perception is thought to be a creative process of modulation carried out by an interplay of pro- and anti-nociceptive mechanisms. Recent research demonstrates that pain experience constitutes the result of top-down processes represented in cortical descending pain modulation. Cortical, mainly medial and frontal areas, as well as subcortical structures such as the brain stem, medulla and thalamus seem to be key players in pain modulation. An imbalance of pro- and anti-nociceptive mechanisms are assumed to cause chronic pain disorders, which are associated with spontaneous pain perception without physiologic scaffolding or exaggerated cortical activation in response to pain exposure. In contrast to recent investigations, the aim of the present study was to elucidate cortical activation of somatoform pain disorder patients during baseline condition. Scalp EEG, quantitative Fourier-spectral analyses and LORETA were employed to compare patient group (N = 15) to age- and sex-matched controls (N = 15) at rest. SI, SII, ACC, SMA, PFC, PPC, insular, amygdale and hippocampus displayed significant spectral power reductions within the beta band range (12-30 Hz). These results suggest decreased cortical baseline arousal in somatoform pain disorder patients. We finally conclude that obtained results may point to an altered baseline activity, maybe characteristic for chronic somatoform pain disorder.
Triggering Descending Pain Inhibition by Observing Ourselves or a Loved-One in Pain.
Gougeon, Véronique; Gaumond, Isabelle; Goffaux, Philippe; Potvin, Stéphane; Marchand, Serge
2016-03-01
Recent studies demonstrate that empathy-evoked brain responses include the activation of brainstem structures responsible for triggering descending pain inhibition. Unfortunately, direct evidence linking empathy for pain and descending inhibitory controls (conditioned pain modulation) is lacking. This study, therefore, aimed to determine if the observation of ourselves or a loved-one in pain could activate descending pain inhibition without exposure to a noxious stimulation; which is otherwise required. Descending pain inhibition was triggered by immersing the right arm of participants (15 heterosexual couples; mean age±SE: 28.89±2.14) in a bath of cold water. The effects of empathy on descending pain inhibition were observed by immersing the right arm of participants in a bath of lukewarm water while having them watch a video of either themselves or their spouse during a previous nociceptive immersion. Immersion of the arm in a bath of lukewarm water without empathic (video) observation was also included as a control condition. A strong inhibitory response activated by the mere observation of the video of themselves or their spouse in pain without a nociceptive conditioning stimulus. Associative statistics also showed that strong pain catastrophizing responses while watching the video resulted in stronger pain inhibition. Moreover, high levels of empathy were associated with stronger pain inhibition, but only for women. This study showed that observing someone in pain triggers descending pain inhibition. Results also demonstrate how empathy and gender are affecting pain modulation mechanisms.
2013-01-01
Background Several chronic pain populations have demonstrated decreased conditioned pain modulation (CPM). However there is still a need to investigate the stability of CPM paradigms before the measure can be recommended for implementation. The purpose of the present study was to assess whether shoulder pain intensity and gender influence CPM stability within and between sessions. Methods This study examined two different musculoskeletal pain models, clinical shoulder pain and an experimental model of shoulder pain induced with eccentric exercise in healthy participants. Patients in the clinical cohort (N = 134) were tested before surgery and reassessed 3 months post-surgery. The healthy cohort (N = 190) was examined before inducing pain at the shoulder, and 48 and 96 hours later. Results Our results provide evidence that 1) stability of inhibition is not related to changes in pain intensity, and 2) there are sex differences for CPM stability within and between days. Conclusions Fluctuation of pain intensity did not significantly influence CPM stability. Overall, the more stable situations for CPM were females from the clinical cohort and males from the healthy cohort. PMID:23758907
Smith, A; Pedler, A
2018-01-01
Various conditioned pain modulation (CPM) methodologies have been used to investigate diffuse noxious inhibitory control pain mechanisms in healthy and clinical populations. Occlusion cuff parameters have been poorly studied. We aimed to investigate whether occlusion cuff intensity and/or duration influenced CPM magnitudes. We also investigated the role of physical activity levels on CPM magnitude. Two studies were performed to investigate the role of intensity and duration of occlusion cuff conditioning stimulus on test stimulus (tibialis anterior pressure pain thresholds). In Study 1, conditioning stimulus intensity of 2/10 or 5/10 (duration <20 s) was evaluated using a paired-samples t-test. In Study 2, duration of 2/10 conditioning stimulus was 3 min. One-way repeated-measures ANOVA was used to investigate the effect of time (0, 1, 2 and 3 min) on CPM magnitude. In Study 1, 27 healthy volunteers (mean ± SD: 24.9 years (±4.5); eight female) demonstrated that an occlusion cuff applied to the upper arm eliciting 5/10 local pain resulted in a significant (mean ± SD: 17% ± 46%) increase in CPM magnitude, when compared to 2/10 intensity (-3% ± 38%, p = 0.026), whereas in Study 2, 25 healthy volunteers (22.5 years (±2.7); 13 female) demonstrated that 3 min of 2/10 CS intensity did not result in a significant change in CPM (p = 0.21). There was no significant relationship between physical activity levels and CPM in either study (p > 0.22). This study demonstrated that an occlusion cuff of 5/10 conditioning stimulus intensity, when compared to 2/10, significantly increased CPM magnitude. Maintaining 2/10 conditioning stimulus for 3 min did not increase CPM magnitude. Dysfunctional conditioned pain modulation (CPM) has been associated with poor health outcomes. Various factors can influence CPM outcomes. The role of occlusion cuff conditioning stimulus intensity and duration has not been previously investigated. Intensity (5/10), but not duration of lower intensity (2/10) conditioning stimulus, affects CPM magnitude. © 2017 European Pain Federation - EFIC®.
Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W
2014-10-01
The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia.
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning ( P =0.007 and P =0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect ( P >0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation ( P =0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus ( P =0.269). The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Introduction Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Methods Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. Results In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning (P=0.007 and P=0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect (P>0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation (P=0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus (P=0.269). Conclusion The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls. PMID:27713648
Frequency-dependent changes in sensorimotor and pain affective systems induced by empathy for pain
Motoyama, Yoshimasa; Ogata, Katsuya; Hoka, Sumio; Tobimatsu, Shozo
2017-01-01
Background Empathy for pain helps us to understand the pain of others indirectly. To better comprehend the processing of empathic pain, we report the frequency-dependent modulation of cortical oscillations induced by watching movies depicting pain using high-density electroencephalography (EEG), magnetoencephalography (MEG), and motor evoked potentials (MEP). Methods Event-related desynchronization of EEG and MEG was assessed while participants viewed videos of painful (needle) or neutral (cotton swab) situations. The amplitudes of MEPs were also compared between the needle and cotton swab conditions. Results The degree of suppression in α/β band power was significantly increased, whereas that of γ band power was significantly decreased, in the needle condition compared with the cotton swab condition. EEG revealed that significant differences in α/β band were distributed in the right frontocentral and left parietooccipital regions, whereas significant γ band differences were distributed predominantly over the right hemisphere, which were confirmed by source estimation using MEG. There was a significant positive correlation between the difference in γ power of the two conditions and the visual analog scale subjective rating of aversion, but not in the α/β band. The amplitude of MEPs decreased in the needle condition, which confirmed the inhibition of the primary motor cortex. Conclusion MEP suppression supports that modulation of cortical oscillations by viewing movies depicting pain involves sensorimotor processing. Our results suggest that α/β oscillations underlie the sensory qualities of others’ pain, whereas the γ band reflects the cognitive aspect. Therefore, α/β and γ band oscillations are differentially involved in empathic pain processing under the condition of motor cortical suppression. PMID:28615963
Courtney, Carol A; Steffen, Alana D; Fernández-de-Las-Peñas, César; Kim, John; Chmell, Samuel J
2016-03-01
An experimental laboratory study with a repeated-measures crossover design. Treatment effects of joint mobilization may occur in part by decreasing excitability of central nociceptive pathways. Impaired conditioned pain modulation (CPM) has been found experimentally in persons with knee and hip osteoarthritis, indicating impaired inhibition of central nociceptive pathways. We hypothesized increased effectiveness of CPM following application of joint mobilization, determined via measures of deep tissue hyperalgesia. To examine the effect of joint mobilization on impaired CPM. An examination of 40 individuals with moderate/severe knee osteoarthritis identified 29 (73%) with impaired CPM. The subjects were randomized to receive 6 minutes of knee joint mobilization (intervention) or manual cutaneous input only, 1 week apart. Deep tissue hyperalgesia was examined via pressure pain thresholds bilaterally at the knee medial joint line and the hand at baseline, postintervention, and post-CPM testing. Further, vibration perception threshold was measured at the medial knee epicondyle at baseline and post-CPM testing. Joint mobilization, but not cutaneous input intervention, resulted in a global increase in pressure pain threshold, indicated by diminished hyperalgesic responses to pressure stimulus. Further, CPM was significantly enhanced following joint mobilization. Diminished baseline vibration perception threshold acuity was enhanced following joint mobilization at the knee that received intervention, but not at the contralateral knee. Resting pain was also significantly lower following the joint intervention. Conditioned pain modulation was enhanced following joint mobilization, demonstrated by a global decrease in deep tissue pressure sensitivity. Joint mobilization may act via enhancement of descending pain mechanisms in patients with painful knee osteoarthritis.
King, Christopher D.; Wong, Fong; Currie, Tom; Mauderli, Andre P.; Fillingim, Roger B.; Riley, Joseph L.
2013-01-01
Females with Irritable Bowel Syndrome (IBS) and Temporomandibular Disorder (TMD) are characterized by enhanced sensitivity to experimental pain. One possible explanation for this observation is deficiencies in pain modulation systems like Diffuse Noxious Inhibitory Control (DNIC). In a few studies that used brief stimuli, chronic pain patients demonstrate reduced DNIC. The purpose of this study was to compare sensitivity to prolonged heat pain and the efficacy of DNIC in controls to IBS and TMD patients. Heat pain (experimental stimulus; 44.0-49.0°C), which was applied to left palm, was continuously rated during three 30-second trials across three separate testing sessions under the following conditions: without a conditioning stimulus; during concurrent immersion of the right foot in a 23.0°C (control); and during noxious cold immersion in a (DNIC; 8.0-16.0°C) water bath. Compared to controls, IBS and TMD patients reported increased sensitivity to heat pain and failed to demonstrate pain inhibition due to DNIC. Controls showed a significant reduction in pain during the DNIC session. These findings support the idea that chronic pain patients are not only more pain sensitive and demonstrate reduced pain inhibition by pain, possibly because of dysfunction of endogenous pain inhibition systems. PMID:19278784
Moont, Ruth; Crispel, Yonatan; Lev, Rina; Pud, Dorit; Yarnitsky, David
2012-01-30
Methods to cognitively distract subjects from pain and experimental paradigms to induce conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls or DNIC) have each highlighted activity changes in closely overlapping cortical areas. This is the first study, to our knowledge, to compare cortical activation changes during these 2 manipulations in the same experimental set-up. Our study sample included thirty healthy young right handed males capable of expressing CPM. We investigated brief consecutive time windows using 32-channel EEG-based sLORETA, to determine dynamic changes in localized cortical potentials evoked by phasic noxious heat stimuli to the left volar forearm. This was performed under visual cognitive distraction tasks and conditioning hot-water pain to the right hand (CPM), both individually and simultaneously. Previously we have shown that for CPM, there is increased activity in frontal cortical regions followed by reduced activation of the somatosensory areas, suggesting a pain inhibitory role for these frontal regions. We now observed that distraction caused a different extent of cortical activation; greater early activation of frontal areas (DLPFC, OFC and caudal ACC at 250-350 ms post-stimulus), yet lesser reduction in the somatosensory cortices, ACC, PCC and SMA after 350 ms post-stimulus, compared to CPM. Both CPM and distraction reduced subjective pain scores to a similar extent. Combining CPM and distraction further reduced pain ratings compared to CPM and distraction alone, supporting the dissimilarity of the mechanisms of pain modulation under these 2 manipulations. The results are discussed in terms of the differential functional roles of the prefrontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.
Gibson, William; Moss, Penny; Cheng, Tak Ho; Garnier, Alexandre; Wright, Anthony; Wand, Benedict M
2018-03-01
Many factors interact to influence threat perception and the subsequent experience of pain. This study investigated the effect of observing pain (extrinsic threat) and intrinsic threat of pain to oneself on pressure pain threshold (PPT). Forty socially connected pairs of healthy volunteers were threat-primed and randomly allocated to experimental or control roles. An experimental pain modulation paradigm was applied, with non-nociceptive threat cues used as conditioning stimuli. In substudy 1, the extrinsic threat to the experimental participant was observation of the control partner in pain. The control participant underwent hand immersion in noxious and non-noxious water baths in randomized order. Change in the observing participant's PPT from baseline to mid- and postimmersion was calculated. A significant interaction was found for PPT between conditions and test time (F 2,78 = 24.9, P < .005). PPT increased by 23.6% ± 19.3% between baseline and during hand immersion (F 1,39 = 43.7, P < .005). Substudy 2 investigated threat of imminent pain to self. After a 15-minute break, the experimental participant's PPT was retested ("baseline 2"). Threat was primed by suggestion of whole arm immersion in an icier, larger water bath. PPT was tested immediately before anticipated arm immersion, after which the experiment ended. A significant increase in PPT between "baseline 2" and "pre-immersion" was seen (t = -7.6, P = .005), a pain modulatory effect of 25.8 ± 20.7%. Extrinsic and intrinsic threat of pain, in the absence of any afferent input therefore influences pain modulation. This may need to be considered in studies that use noxious afferent input with populations who show dysfunctional pain modulation. The effect on endogenous analgesia of observing another's pain and of threat of pain to oneself was investigated. Extrinsic as well as intrinsic threat cues, in the absence of any afferent input, increased pain thresholds, suggesting that mere threat of pain may initiate analgesic effects in traditional noxious experimental paradigms. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Effects of music engagement on responses to painful stimulation.
Bradshaw, David H; Chapman, C Richard; Jacobson, Robert C; Donaldson, Gary W
2012-06-01
We propose a theoretical framework for the behavioral modulation of pain based on constructivism, positing that task engagement, such as listening for errors in a musical passage, can establish a construction of reality that effectively replaces pain as a competing construction. Graded engagement produces graded reductions in pain as indicated by reduced psychophysiological arousal and subjective pain report. Fifty-three healthy volunteers having normal hearing participated in 4 music listening conditions consisting of passive listening (no task) or performing an error detection task varying in signal complexity and task difficulty. During all conditions, participants received normally painful fingertip shocks varying in intensity while stimulus-evoked potentials (SEP), pupil dilation responses (PDR), and retrospective pain reports were obtained. SEP and PDR increased with increasing stimulus intensity. Task performance decreased with increasing task difficulty. Mixed model analyses, adjusted for habituation/sensitization and repeated measures within person, revealed significant quadratic trends for SEP and pain report (Pchange<0.001) with large reductions from no task to easy task and smaller graded reductions corresponding to increasing task difficulty/complexity. PDR decreased linearly (Pchange<0.001) with graded task condition. We infer that these graded reductions in indicators of central and peripheral arousal and in reported pain correspond to graded increases in engagement in the music listening task. Engaging activities may prevent pain by creating competing constructions of reality that draw on the same processing resources as pain. Better understanding of these processes will advance the development of more effective pain modulation through improved manipulation of engagement strategies.
User-independent assessment of conditioning pain modulation by cuff pressure algometry.
Graven-Nielsen, T; Izumi, M; Petersen, K K; Arendt-Nielsen, L
2017-03-01
The use of conditioning pain modulation (CPM) is hampered by poor reproducibility and lack of user-independent paradigms. This study refined the CPM paradigm by applying user-independent cuff algometry. In 20 subjects, the CPM effect of conditioning with cuff stimulation on the arm was investigated by pain test stimuli on the contralateral leg before and in parallel with different cuff conditionings (10, 30, 60 kPa/60 s; 30, 60 kPa/10 s). As test stimulus, another cuff was inflated (1 kPa/s) until the subjects detected the pain tolerance threshold (PTT) during which the pain detection threshold (PDT) and the pressure at a pain intensity of 6 cm on a 10-cm visual analogue scale (PVAS6) were extracted. For comparison, pressure pain thresholds (PPTs) as test stimuli were recorded by the user-dependent handheld pressure algometry. Combinations of cuff locations for conditioning (pain intensity standardized) and contralateral test stimuli were additionally evaluated (leg-arm, leg-leg, arm-thigh). The test-retest reliability in two sessions 1 month apart was assessed in five CPM protocols. In all protocols, the PDT, PVAS6 and PTT increased during conditioning compared with baseline (p < 0.05). The CPM effect (i.e. conditioning minus baseline) for PVAS6, PTT and PPT increased for increasing conditioning intensities (p < 0.05). The CPM effects were not significantly different for changes in conditioning durations or conditioning/test stimulus locations. In two sessions, the CPM effects for PVAS6 and PTT assessed after 60 s of conditioning on the leg/thigh showed the highest intra-class correlations (0.47-0.73), where they were 0.04-0.6 for PPTs. The user-independent cuff algometry is reliable for CPM assessment and for supra-pain threshold test stimuli better than the user-dependent technology. A user-independent CPM technique where the conditioning is controlled by one cuff stimulation, and the test-stimulus is provided by another cuff stimulation. This study shows that cuff algometry is reliable for CPM assessment. © 2016 European Pain Federation - EFIC®.
Conditioned Pain Modulation in Women with Irritable Bowel Syndrome
Jarrett, Monica E.; Shulman, Robert J.; Cain, Kevin C.; Deechakawan, Wimon; Smith, Lynne T.; Richebé, Philippe; Eugenio, Margaret; Heitkemper, Margaret M.
2013-01-01
Evidence suggests that patients with irritable bowel syndrome (IBS) are more vigilant to pain-associated stimuli. The aims of this study were to compare women with IBS (n = 20) to healthy control (HC, n = 20) women on pain sensitivity, conditioned pain modulation (CPM) efficiency and salivary cortisol levels before and after the CPM test; and examine the relationship of CPM efficiency with gastrointestinal, somatic pain, and psychological distress symptoms in each group. Women, ages 20–42, gave consent, completed questionnaires and kept a symptom diary for 2 weeks. CPM efficiency was tested with a heat test stimulus and cold water condition stimulus in a laboratory between 8 and 10 a.m. on a follicular phase day. Salivary cortisol samples were collected just before and after the experimental testing. Compared to the HC group, women with IBS reported more days with gastrointestinal and somatic pain/discomfort, psychological distress, fatigue, and feeling stressed. During the CPM baseline testing women with IBS reported greater pain sensitivity compared to the HC group. In the IBS group, CPM efficiency was associated with the pain impact (PROMIS) measure, daily abdominal pain/discomfort, psychological distress, in particular anxiety. There was no group difference in salivary cortisol levels. Overall, women with IBS exhibit an increased sensitivity to thermal stimuli. Impaired CPM was present in a subset of women with IBS. PMID:24463504
Lorås, H; Østerås, B; Torstensen, T A; Østerås, H
2015-09-01
The purpose of this narrative review is to present an overview and theoretical rationale of medical exercise therapy (MET) as a physiotherapeutic rehabilitation treatment for musculoskeletal pain conditions. Results from randomized controlled trials (RCTs) conducted on MET are also presented. Computerized searches for any RCTs were conducted on the MET concept in the databases PubMed, Medline, Embase and ISI Web of science up to 2013. Overall findings from five included MET RCTs are long-term (≥1 year) reductions in pain and improved physical and functional capabilities. These results are interpreted in the context of the biopsychosocial model, advancing the view of a dynamic interaction among physiologic, psychological and social factors that influence pain modulation. MET is a biopsychosocial treatment that reduces pain and improves activities of daily living in patients with a musculoskeletal pain condition. Pain modulation is a key feature of MET, and an important area for further research is to elucidate the specific mechanisms behind the treatment effects. Copyright © 2015 John Wiley & Sons, Ltd.
Lean mass predicts conditioned pain modulation in adolescents across weight status.
Stolzman, S; Hoeger Bement, M
2016-07-01
There is a wide continuum of conditioned pain modulation (CPM) in adults with older adults experiencing an attenuated CPM response compared with younger adults. Less is known for adolescents and the role of anthropometrics. Fifty-six adolescents (15.1 ± 1.8 years; 32 normal weight and 24 overweight/obese; 27 boys) completed in a CPM session that included anthropometric testing. Pressure pain thresholds were measured at the nailbed and deltoid muscle (test stimuli) with the foot submerged in a cool or ice water bath (conditioning stimulus). Weight status, body composition (Dual-energy X-ray absorptiometry scan), physical activity levels and clinical pain were also evaluated. The CPM response in adolescents was similar across sites (nailbed vs. deltoid), weight status (normal vs. overweight/obese) and sex. CPM measured at the deltoid muscle was positively associated with left arm lean mass but not fat mass; lean mass of the arm uniquely predicted 10% of the CPM magnitude. CPM measured at the nailbed was positively correlated with physical activity levels. These results suggest that lean mass and physical activity levels may contribute to endogenous pain inhibition in adolescents across weight status. © 2016 European Pain Federation - EFIC®
Activity of masticatory muscles in subjects with different orofacial pain conditions.
Bodéré, Céline; Téa, Say Hack; Giroux-Metges, Marie Agnes; Woda, Alain
2005-07-01
The existence of a pathophysiological link between tonic muscle activity and chronic muscle pain is still being debated. The purpose of this retrospective, controlled study was to evaluate the electromyographic (EMG) activity of masticatory muscles in subjects with different orofacial pain conditions. The temporal and masseter EMG activity at rest and the masseteric reflex were recorded in two groups of patients with either myofascial pain (n=33) or neuropathic pain (n=20), one group of non-pain patients with disc derangement disorders (n=27) and one control group of healthy, asymptomatic subjects (n=32). The EMG activities of both muscles at rest were significantly higher in the pain patient groups compared to the asymptomatic control group. There was no significant difference between the disc derangement disorder group and the control group. The masseteric reflex amplitude was reduced in all patient groups when compared with the control group. In pain patient groups, the increased EMG activity at rest and the reduction of the masseteric reflex amplitude were equally distributed in the pain and non-pain sides. In addition, subjects presenting with bilateral pain showed higher EMG activity at rest than those with unilateral pain. These results suggested that the modulation of muscle activity was not the direct consequence of a peripheral nociceptive mechanism and seemed to indicate that a central mechanism was at work. The contrast between the increased EMG activity at rest and the reduction of the masseteric reflex amplitude may reflect modulations of motoneurones that differed in tonic versus phasic conditions in chronic pain patients.
Grinberg, Keren; Granot, Michal; Lowenstein, Lior; Abramov, Liora; Weissman-Fogel, Irit
2018-05-25
A patient's personal interpretations of a health threat or "illness perceptions" (IPs) are associated with their clinical outcomes. This study explored whether IPs are associated with pain severity and ability to modulate pain in women with chronic pelvic pain syndrome (CPPS), as well as the predictive value of IPs on Myofascial Physical Therapy (MPT) success. Illness Perceptions Questionnaire - Revised (IPQ-R), mechanical and heat pain thresholds, mechanical temporal summation (mTS), and conditioned pain modulation (CPM) were evaluated in CPPS patients (n=39) before, and 3 months after MPT. CPPS severity was obtained by the Brief Pain Inventory (BPI). Stronger perceptions of illness chronicity were correlated with less efficient CPM (r=0.488, P=0.002) and increased mechanical pain intensity (r=0.405, P=0.02). Lower perceptions of control over illness were associated with enhanced mTS (r=0.399, P=0.01). Higher BPI scores were correlated with emotional representations ("negative emotional representations") and severe consequences due to CPPS. Regression analyses revealed that negative IPs predict less efficient MPT. Cognitive representations play a unique role in CPPS expression and MPT outcomes. The interplay between negative IPs and a pro-nociceptive modulation profile, mediated by enhanced facilitatory and reduced inhibitory processes, may be involved in the manifestation of CPPS.
Ge, Hong-You; Vangsgaard, Steffen; Omland, Øyvind; Madeleine, Pascal; Arendt-Nielsen, Lars
2014-12-06
Musculoskeletal pain from the upper extremity and shoulder region is commonly reported by computer users. However, the functional status of central pain mechanisms, i.e., central sensitization and conditioned pain modulation (CPM), has not been investigated in this population. The aim was to evaluate sensitization and CPM in computer users with and without chronic musculoskeletal pain. Pressure pain threshold (PPT) mapping in the neck-shoulder (15 points) and the elbow (12 points) was assessed together with PPT measurement at mid-point in the tibialis anterior (TA) muscle among 47 computer users with chronic pain in the upper extremity and/or neck-shoulder pain (pain group) and 17 pain-free computer users (control group). Induced pain intensities and profiles over time were recorded using a 0-10 cm electronic visual analogue scale (VAS) in response to different levels of pressure stimuli on the forearm with a new technique of dynamic pressure algometry. The efficiency of CPM was assessed using cuff-induced pain as conditioning pain stimulus and PPT at TA as test stimulus. The demographics, job seniority and number of working hours/week using a computer were similar between groups. The PPTs measured at all 15 points in the neck-shoulder region were not significantly different between groups. There were no significant differences between groups neither in PPTs nor pain intensity induced by dynamic pressure algometry. No significant difference in PPT was observed in TA between groups. During CPM, a significant increase in PPT at TA was observed in both groups (P < 0.05) without significant differences between groups. For the chronic pain group, higher clinical pain intensity, lower PPT values from the neck-shoulder and higher pain intensity evoked by the roller were all correlated with less efficient descending pain modulation (P < 0.05). This suggests that the excitability of the central pain system is normal in a large group of computer users with low pain intensity chronic upper extremity and/or neck-shoulder pain and that increased excitability of the pain system cannot explain the reported pain. However, computer users with higher pain intensity and lower PPTs were found to have decreased efficiency in descending pain modulation.
Influence of Dopaminergic Medication on Conditioned Pain Modulation in Parkinson's Disease Patients
Buhmann, Carsten; Forkmann, Katarina; Diedrich, Sabrina; Wesemann, Katharina; Bingel, Ulrike
2015-01-01
Background Pain is highly prevalent in patients with Parkinson’s disease (PD), but little is known about the underlying pathophysiological mechanisms. The susceptibility to pain is known to depend on ascending and descending pathways. Because parts of the descending pain inhibitory system involve dopaminergic pathways, dysregulations in dopaminergic transmission might contribute to altered pain processing in PD. Deficits in endogenous pain inhibition can be assessed using conditioned pain modulation (CPM) paradigms. Methods Applying such a paradigm, we investigated i) whether CPM responses differ between PD patients and healthy controls, ii) whether they are influenced by dopaminergic medication and iii) whether there are effects of disease-specific factors. 25 patients with idiopathic PD and 30 healthy age- and gender-matched controls underwent an established CPM paradigm combining heat pain test stimuli at the forearm and the cold pressor task on the contralateral foot as the conditioning stimulus. PD patients were tested under dopaminergic medication and after at least 12 hours of medication withdrawal. Results No significant differences between CPM responses of PD patients and healthy controls or between PD patients “on” and “off” medication were found. These findings suggest (i) that CPM is insensitive to dopaminergic modulations and (ii) that PD is not related to general deficits in descending pain inhibition beyond the known age-related decline. However, at a trend level, we found differences between PD subtypes (akinetic-rigid, tremor-dominant, mixed) with the strongest impairment of pain inhibition in the akinetic-rigid subtype. Conclusions There were no significant differences between CPM responses of patients compared to healthy controls or between patients “on” and “off” medication. Differences between PD subtypes at a trend level point towards different pathophysiological mechanisms underlying the three PD subtypes which warrant further investigation and potentially differential therapeutic strategies in the future. PMID:26270817
Coppieters, Iris; Cagnie, Barbara; Nijs, Jo; van Oosterwijck, Jessica; Danneels, Lieven; De Pauw, Robby; Meeus, Mira
2016-03-01
Compelling evidence has demonstrated that impaired central pain modulation contributes to persistent pain in patients with chronic whiplash associated disorders (WAD) and fibromyalgia (FM). However, there is limited research concerning the influence of stress and relaxation on central pain modulation in patients with chronic WAD and FM. The present study aims to investigate the effects of acute cognitive stress and relaxation on central pain modulation in chronic WAD and FM patients compared to healthy individuals. A randomized crossover design was employed. The present study took place at the University of Brussels, the University Hospital Brussels, and the University of Antwerp. Fifty-nine participants (16 chronic WAD patients, 21 FM, 22 pain-free controls) were enrolled and subjected to various pain measurements. Temporal summation (TS) of pain and conditioned pain modulation (CPM) were evaluated. Subsequently, participants were randomly allocated to either a group that received progressive relaxation therapy or a group that performed a battery of cognitive tests (= cognitive stressor). Afterwards, all pain measurements were repeated. One week later participant groups were switched. A significant difference was found between the groups in the change in TS in response to relaxation (P = 0.008) and cognitive stress (P = 0.003). TS decreased in response to relaxation and cognitive stress in chronic WAD patients and controls. In contrast, TS increased after both interventions in FM patients. CPM efficacy decreased in all 3 groups in response to relaxation (P = 0.002) and cognitive stress (P = 0.001). The obtained results only apply for a single session of muscle relaxation therapy and cognitive stress, whereby no conclusions can be made for effects on pain perception and modulation of chronic cognitive stress and long-term relaxation therapies. A single relaxation session as well as cognitive stress may have negative acute effects on pain modulation in patients with FM, while cognitive stress and relaxation did not worsen bottom-up sensitization in chronic WAD patients and healthy persons. However, endogenous pain inhibition, assessed using a CPM paradigm, worsened in chronic WAD and FM patients, as well as in healthy people following both interventions.
Lindstedt, Fredrik; Berrebi, Jonathan; Greayer, Erik; Lonsdorf, Tina B.; Schalling, Martin; Ingvar, Martin; Kosek, Eva
2011-01-01
Background Variation in the serotonin transporter (5-HTT) gene (SLC6A4) has been shown to influence a wide range of affective processes. Low 5-HTT gene-expression has also been suggested to increase the risk of chronic pain. Conditioned pain modulation (CPM) - i.e. ‘pain inhibits pain’ - is impaired in chronic pain states and, reciprocally, aberrations of CPM may predict the development of chronic pain. Therefore we hypothesized that a common variation in the SLC6A4 is associated with inter-individual variation in CPM. Forty-five healthy subjects recruited on the basis of tri-allelic 5-HTTLPR genotype, with inferred high or low 5-HTT-expression, were included in a double-blind study. A submaximal-effort tourniquet test was used to provide a standardized degree of conditioning ischemic pain. Individualized noxious heat and pressure pain thresholds (PPTs) were used as subjective test-modalities and the nociceptive flexion reflex (NFR) was used to provide an objective neurophysiological window into spinal processing. Results The low, as compared to the high, 5-HTT-expressing group exhibited significantly reduced CPM-mediated pain inhibition for PPTs (p = 0.02) and heat-pain (p = 0.02). The CPM-mediated inhibition of the NFR, gauged by increases in NFR-threshold, did not differ significantly between groups (p = 0.75). Inhibition of PPTs and heat-pain were correlated (Spearman’s rho = 0.35, p = 0.02), whereas the NFR-threshold increase was not significantly correlated with degree of inhibition of these subjectively reported modalities. Conclusions Our results demonstrate the involvement of the tri-allelic 5-HTTLPR genotype in explaining clinically relevant inter-individual differences in pain perception and regulation. Our results also illustrate that shifts in NFR-thresholds do not necessarily correlate to the modulation of experienced pain. We discuss various possible mechanisms underlying these findings and suggest a role of regulation of 5-HT receptors along the neuraxis as a function of differential 5-HTT-expression. PMID:21464942
Zeidan, F.; Grant, J.A.; Brown, C.A.; McHaffie, J.G.; Coghill, R.C.
2013-01-01
The cognitive modulation of pain is influenced by a number of factors ranging from attention, beliefs, conditioning, expectations, mood, and the regulation of emotional responses to noxious sensory events. Recently, mindfulness meditation has been found attenuate pain through some of these mechanisms including enhanced cognitive and emotional control, as well as altering the contextual evaluation of sensory events. This review discusses the brain mechanisms involved in mindfulness meditation-related pain relief across different meditative techniques, expertise and training levels, experimental procedures, and neuroimaging methodologies. Converging lines of neuroimaging evidence reveal that mindfulness meditation-related pain relief is associated with unique appraisal cognitive processes depending on expertise level and meditation tradition. Moreover, it is postulated that mindfulness meditation-related pain relief may share a common final pathway with other cognitive techniques in the modulation of pain. PMID:22487846
Bouwense, Stefan A W; Olesen, Søren S; Drewes, Asbjørn M; Frøkjær, Jens B; van Goor, Harry; Wilder-Smith, Oliver H G
2013-01-01
The most dominant feature in chronic pancreatitis is intense abdominal pain. Changes in spinal and/or supraspinal central nervous system pain processing due to visceral nociceptive input play an important role in this pain. How altered pain processing is related to disease stage still needs study. Sixty chronic pancreatitis patients were compared to 15 healthy controls. Two subgroups of pancreatitis patients were defined based on the M-ANNHEIM severity index of chronic pancreatitis; i.e. moderate and severe. Pain detection and tolerance thresholds for pressure and electric stimuli were measured in six selected dermatomes (C5, T4, T10, L1, L4 and T10BACK). In addition, the conditioned pain modulation response to cold pressor task was determined. These measures were compared between the healthy controls and chronic pancreatitis patients. Severe pancreatitis patients showed lower pain thresholds than moderate pancreatitis patients or healthy volunteers. Healthy controls showed a significantly larger conditioned pain modulation response compared to all chronic pancreatitis patients taken together. The present study confirms that chronic pancreatitis patients show signs of altered central processing of nociception compared to healthy controls. The study further suggests that these changes, i.e. central sensitization, may be influenced by disease stage. These findings underline the need to take altered central pain processing into account when managing the pain of chronic pancreatitis.
Jarrett, M E; Han, C J; Cain, K C; Burr, R L; Shulman, R J; Barney, P G; Naliboff, B D; Zia, J; Heitkemper, M M
2016-07-01
Irritable bowel syndrome (IBS) is a heterogeneous condition with a number of pathophysiological mechanisms that appear to contribute to symptom chronicity. One of these is altered pain sensitivity. Women between ages 18-45 were recruited the community. Of those enrolled, 56 had IBS and 36 were healthy control (HC) women. Participants completed questionnaires, kept a 4-week symptom diary and had a 12-h Holter placed to assess nighttime heart rate variability including high frequency power (HF), low frequency power (LF), and total power (TP). At mid-follicular phase approximately 80% of women completed a thermal pain sensitivity test with conditioned pain modulation and visceral pain sensitivity using a water load symptom provocation (WLSP) test. As expected, daily abdominal pain was significantly higher in the IBS compared to HC group. There were no differences between the bowel pattern subgroups (IBS-diarrhea [IBS-D], IBS-constipation plus mixed [IBS-CM]). Thermal pain sensitivity did not differ between the IBS and the HC groups, but was significantly higher in the IBS-CM group than the IBS-D group. In the WLSP test, the IBS group experienced significantly more symptom distress than HCs and the IBS-CM group was higher than the IBS-D group. Heart rate variability indicators did not differ between the groups or IBS subgroups. Daily abdominal pain was positively correlated with LF and TP in the IBS group. Despite similar levels of abdominal pain in IBS, the IBS-CM group demonstrated greater sensitivity to both thermal and visceral testing procedures. © 2016 John Wiley & Sons Ltd.
Suzan, Erica; Treister, Roi; Pud, Dorit; Haddad, May; Eisenberg, Elon
2015-01-01
Conditioned pain modulation (CPM) and offset analgesia (OA) are considered to represent paradigms of descending inhibitory pain modulation in humans. This study tested the effects of hydromorphone therapy on descending inhibitory pain modulation, as measured by changes from baseline in the magnitudes of CPM and OA. Prospective evaluation. Institute of Pain Medicine, Rambam Health Care Campus. Patients with chronic radicular pain. Thirty patients received 4 weeks of oral hydromorphone treatment at an individually titrated dose (mean ± standard deviation dose of 11.6 ± 4.8 mg/day). CPM and OA were assessed before and after hydromorphone treatment. CPM was assessed by subtracting the response to a painful phasic heat stimulus administered simultaneously with a conditioning cold pain stimulus, from the response to the same heat stimulus administered alone. The OA paradigm consisted of a three-temperature stimuli train (T1 = 49°C [5 seconds], T2 = 50°C [5 seconds], and T3 = 49°C [20 seconds]). The magnitude of OA was quantified by subtracting minimal pain scores obtained during T3 from the maximal pain scores obtained during T2. CPM scores changed from a baseline of 17.7 ± 20.6 to 21 ± 20.4 following treatment, and OA scores changed from 7.8 ± 20.5 to 9.7 ± 14.6. Wilcoxon signed rank test indicated that these changes were not significant (CPM: P = 0.22; OA: P = 0.44). McNemar test revealed that the percentage of patients who exhibited a change in the direction of CPM or OA in response to hydromorphone treatment was not significant (CPM: P = 0.37; OA: P = 0.48). These results suggest that the descending inhibitory pain modulation, as manifested in humans by CPM and OA, is unlikely to be mediated by hydromorphone therapy. Wiley Periodicals, Inc.
Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study.
Moont, Ruth; Crispel, Yonatan; Lev, Rina; Pud, Dorit; Yarnitsky, David
2011-07-01
For most healthy subjects, both subjective pain ratings and pain-evoked potentials are attenuated under conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls, or DNIC). Although essentially spinal-bulbar, this inhibition is under cortical control. This is the first study to observe temporal as well as spatial changes in cortical activations under CPM. Specifically, we aimed to investigate the interplay of areas involved in the perception and processing of pain and those involved in controlling descending inhibition. We examined brief consecutive poststimulus time windows of 50 ms using a method of source-localization from pain evoked potentials, sLORETA. This enabled determination of dynamic changes in localized cortical generators evoked by phasic noxious heat stimuli to the left volar forearm in healthy young males, with and without conditioning hot-water pain to the right hand. We found a CPM effect characterized by an initial increased activation in the orbitofrontal cortex (OFC) and amygdala at 250-300 ms poststimulus, which was correlated with the extent of psychophysical pain reduction. This was followed by reduced activations in the primary and secondary somatosensory cortices, supplementary motor area, posterior insula, and anterior cingulate cortex from 400 ms poststimulus. Our findings show that the prefrontal pain-controlling areas of OFC and amygdala increase their activity in parallel with subjective pain reduction under CPM, and that this increased activity occurs prior to reductions in activations of the pain sensory areas. In conclusion, achieving pain inhibition by the CPM process seems to be under control of the OFC and the amygdala. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Sex differences in the relationships between parasympathetic activity and pain modulation.
Nahman-Averbuch, Hadas; Dayan, Lior; Sprecher, Elliot; Hochberg, Uri; Brill, Silviu; Yarnitsky, David; Jacob, Giris
2016-02-01
Higher parasympathetic activity is related to lower pain perception in healthy subjects and pain patients. We aimed to examine whether this relationship depends on sex, in healthy subjects. Parasympathetic activity was assessed using time- and frequency-domain heart rate variability indices and deep breathing ratio. Pain perception parameters, consisting of heat pain thresholds and pain ratings of supra-thresholds stimuli, as well as pain modulation parameters of mechanical temporal summation, pain adaptation, offset analgesia and conditioned pain modulation (CPM) response were examined. Forty healthy subjects were examined (20 men). Women demonstrated higher parasympathetic activity compared to men (high frequency power of 0.55±0.2 and 0.40±0.2, respectively, p=0.02) and less pain reduction in the offset analgesia paradigm (-35.4±29.1 and -55.0±31.2, respectively, p=0.046). Separate slopes models analyses revealed sex differences such that a significant negative correlation was observed between higher rMSSD (the root mean square of successive differences) and higher pain adaptation in men (r=-0.649, p=0.003) but not in women (r=0.382, p=0.106). Similarly, a significant negative correlation was found between higher rMSSD and higher efficiency of the CPM response in men (r=-0.510, p=0.026) but not in women (r=0.406, p=0.085). Sex hormones levels, psychological factors or baseline autonomic activity can be possible explanations for these sex differences. Future autonomic interventions destined to change pain modulation should consider sex as an important intervening factor. Copyright © 2015 Elsevier Inc. All rights reserved.
Wan, Dawn Wong Lit; Arendt-Nielsen, Lars; Wang, Kelun; Xue, Charlie Changli; Wang, Yanyi; Zheng, Zhen
2018-03-27
Healthy humans can be divided into the pain adaptive (PA) and the pain nonadaptive (PNA) groups; PA showed a greater decrease in pain rating to a cold pressor test (CPT) than PNA. This study examined if the dichotomy of pain adaptability existed in individuals with chronic musculoskeletal pain. CPTs at 2°C and 7°C were used to assess the status of pain adaptability in participants with either chronic nonspecific low back pain or knee osteoarthritis. The participants' potency of conditioned pain modulation (CPM) and local inhibition were measured. The strengths of pain adaptability at both CPTs were highly correlated. PA and PNA did not differ in their demographic characteristics, pain thresholds from thermal and pressure stimuli, or potency of local inhibition or CPM. PA reached their maximum pain faster than PNA (t 41 = -2.76, P < .01), and had a gradual reduction of pain unpleasantness over 7 days whereas PNA did not (F 6,246 = 3.01, P = .01). The dichotomy of pain adaptability exists in musculoskeletal pain patients. Consistent with the healthy human study, the strength of pain adaptability and potency of CPM are not related. Pain adaptability could be another form of endogenous pain inhibition of which clinical implication is yet to be understood. The dichotomy of pain adaptability was identified in healthy humans. The current study confirms that this dichotomy also exists in individuals with chronic musculoskeletal pain, and could be reliably assessed with CPTs at 2°C and 7°C. Similar to the healthy human study, pain adaptability is not associated with CPM, and may reflect the temporal aspect of pain inhibition. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Dissociable influences of opiates and expectations on pain
Atlas, Lauren Y.; Whittington, Robert A.; Lindquist, Martin A.; Wielgosz, Joe; Sonty, Nomita; Wager, Tor D.
2012-01-01
Placebo treatments and opiate drugs are thought to have common effects on the opioid system and pain-related brain processes. This has created excitement about the potential for expectations to modulate drug effects themselves. If drug effects differ as a function of belief, this would challenge the assumptions underlying the standard clinical trial. We conducted two studies to directly examine the relationship between expectations and opioid analgesia. We administered the opioid agonist remifentanil to human subjects during experimental thermal pain and manipulated participants’ knowledge of drug delivery using an open-hidden design. This allowed us to test drug effects, expectancy (knowledge) effects, and their interactions on pain reports and pain-related responses in the brain. Remifentanil and expectancy both reduced pain, but drug effects on pain reports and fMRI activity did not interact with expectancy. Regions associated with pain processing showed drug-induced modulation during both Open and Hidden conditions, with no differences in drug effects as a function of expectation. Instead, expectancy modulated activity in frontal cortex, with a separable time course from drug effects. These findings reveal that opiates and placebo treatments both influence clinically relevant outcomes and operate without mutual interference. PMID:22674280
Kent, Michael L.; Tighe, Patrick J.; Belfer, Inna; Brennan, Timothy J.; Bruehl, Stephen; Brummett, Chad M.; Buckenmaier, Chester C.; Buvanendran, Asokumar; Cohen, Robert I.; Desjardins, Paul; Edwards, David; Fillingim, Roger; Gewandter, Jennifer; Gordon, Debra B.; Hurley, Robert W.; Kehlet, Henrik; Loeser, John D.; Mackey, Sean; McLean, Samuel A.; Polomano, Rosemary; Rahman, Siamak; Raja, Srinivasa; Rowbotham, Michael; Suresh, Santhanam; Schachtel, Bernard; Schreiber, Kristin; Schumacher, Mark; Stacey, Brett; Stanos, Steven; Todd, Knox; Turk, Dennis C.; Weisman, Steven J.; Wu, Christopher; Carr, Daniel B.; Dworkin, Robert H.; Terman, Gregory
2017-01-01
Objective. With the increasing societal awareness of the prevalence and impact of acute pain, there is a need to develop an acute pain classification system that both reflects contemporary mechanistic insights and helps guide future research and treatment. Existing classifications of acute pain conditions are limiting, with a predominant focus on the sensory experience (e.g., pain intensity) and pharmacologic consumption. Consequently, there is a need to more broadly characterize and classify the multidimensional experience of acute pain. Setting. Consensus report following expert panel involving the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM). Methods. As a complement to a taxonomy recently developed for chronic pain, the ACTTION public-private partnership with the US Food and Drug Administration, the APS, and the AAPM convened a consensus meeting of experts to develop an acute pain taxonomy using prevailing evidence. Key issues pertaining to the distinct nature of acute pain are presented followed by the agreed-upon taxonomy. The ACTTION-APS-AAPM Acute Pain Taxonomy will include the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Future efforts will consist of working groups utilizing this taxonomy to develop diagnostic criteria for a comprehensive set of acute pain conditions. Perspective. The ACTTION-APS-AAPM Acute Pain Taxonomy (AAAPT) is a multidimensional acute pain classification system designed to classify acute pain along the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Conclusions. Significant numbers of patients still suffer from significant acute pain, despite the advent of modern multimodal analgesic strategies. Mismanaged acute pain has a broad societal impact as significant numbers of patients may progress to suffer from chronic pain. An acute pain taxonomy provides a much-needed standardization of clinical diagnostic criteria, which benefits clinical care, research, education, and public policy. For the purposes of the present taxonomy, acute pain is considered to last up to seven days, with prolongation to 30 days being common. The current understanding of acute pain mechanisms poorly differentiates between acute and chronic pain and is often insufficient to distinguish among many types of acute pain conditions. Given the usefulness of the AAPT multidimensional framework, the AAAPT undertook a similar approach to organizing various acute pain conditions. PMID:28482098
Kent, Michael L; Tighe, Patrick J; Belfer, Inna; Brennan, Timothy J; Bruehl, Stephen; Brummett, Chad M; Buckenmaier, Chester C; Buvanendran, Asokumar; Cohen, Robert I; Desjardins, Paul; Edwards, David; Fillingim, Roger; Gewandter, Jennifer; Gordon, Debra B; Hurley, Robert W; Kehlet, Henrik; Loeser, John D; Mackey, Sean; McLean, Samuel A; Polomano, Rosemary; Rahman, Siamak; Raja, Srinivasa; Rowbotham, Michael; Suresh, Santhanam; Schachtel, Bernard; Schreiber, Kristin; Schumacher, Mark; Stacey, Brett; Stanos, Steven; Todd, Knox; Turk, Dennis C; Weisman, Steven J; Wu, Christopher; Carr, Daniel B; Dworkin, Robert H; Terman, Gregory
2017-05-01
With the increasing societal awareness of the prevalence and impact of acute pain, there is a need to develop an acute pain classification system that both reflects contemporary mechanistic insights and helps guide future research and treatment. Existing classifications of acute pain conditions are limiting, with a predominant focus on the sensory experience (eg, pain intensity) and pharmacologic consumption. Consequently, there is a need to more broadly characterize and classify the multidimensional experience of acute pain. Consensus report following expert panel involving the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM). As a complement to a taxonomy recently developed for chronic pain, the ACTTION public-private partnership with the US Food and Drug Administration, the APS, and the AAPM convened a consensus meeting of experts to develop an acute pain taxonomy using prevailing evidence. Key issues pertaining to the distinct nature of acute pain are presented followed by the agreed-upon taxonomy. The ACTTION-APS-AAPM Acute Pain Taxonomy will include the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Future efforts will consist of working groups utilizing this taxonomy to develop diagnostic criteria for a comprehensive set of acute pain conditions. The ACTTION-APS-AAPM Acute Pain Taxonomy (AAAPT) is a multidimensional acute pain classification system designed to classify acute pain along the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Significant numbers of patients still suffer from significant acute pain, despite the advent of modern multimodal analgesic strategies. Mismanaged acute pain has a broad societal impact as significant numbers of patients may progress to suffer from chronic pain. An acute pain taxonomy provides a much-needed standardization of clinical diagnostic criteria, which benefits clinical care, research, education, and public policy. For the purposes of the present taxonomy, acute pain is considered to last up to seven days, with prolongation to 30 days being common. The current understanding of acute pain mechanisms poorly differentiates between acute and chronic pain and is often insufficient to distinguish among many types of acute pain conditions. Given the usefulness of the AAPT multidimensional framework, the AAAPT undertook a similar approach to organizing various acute pain conditions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Grinberg, Keren; Granot, Michal; Lowenstein, Lior; Abramov, Liora; Weissman-Fogel, Irit
2017-06-01
Provoked vestibulodynia (PVD) and painful bladder syndrome (PBS), subgroups of chronic pelvic pain syndromes (CPPS), are considered to share common biophysiological peripheral mechanisms. In addition, indications of a pronociceptive pain profile coexisting with psychological vulnerability suggest common dysfunctional pain processing and pain modulation in these 2 subgroups of CPPS. We therefore aimed at comparing the pain profile and psychological traits of patients with PVD and PBS to see whether the pain profile contributes to intersubject variability of clinical pain symptoms. Patients with PVD (n = 18) and PBS (n = 21) were compared with healthy controls (n = 20) in their responses to (1) pain psychophysical tests applied to both referred (suprapubis) and remote (hand) body areas and (2) pain-related psychological factors (pain catastrophizing, depression, anxiety, and somatization). We found a similar pronociceptive pain profile in the 2 subgroups of CPPS-enhanced facilitation (ie, hyperalgesia in the referred body area [P < 0.001]) and inefficient inhibition (ie, reduced conditioned pain modulation [P < 0.001] that were associated with both enhanced pain ratings evoked during trigger point examination [P < 0.037]) and higher Brief Pain Inventory ratings (P = 0.002). The latter was also correlated with pain catastrophizing (r = 0.504, P = 0.001) and depression symptoms (r = 0.361, P = 0.024). The findings suggest common mechanisms underlying a dysfunctional nociceptive system in both PVD and PBS. The intersubject variability in the level of dysfunction and its association with disease severity recommends a personalized pain treatment that may alleviate daily pain and dysfunction in patients with CPPS.
Tiwari, Vinod; Guan, Yun; Raja, Srinivasa N.
2014-01-01
During neuropathic pain, glial cells (mainly astrocytes and microglia) become activated and initiate a series of signaling cascades that modulate pain processing at both spinal and supraspinal levels. It has been generally accepted that glial cell activation contributes to neuropathic pain because glia release proinflammatory cytokines, chemokines, and factors such as calcitonin gene-related peptide, substance P, and glutamate, which are known to facilitate pain signaling. However, recent research has shown that activation of glia also leads to some beneficial outcomes. Glia release anti-inflammatory factors that protect against neurotoxicity and restore normal pain. Accordingly, use of glial inhibitors might compromise the protective functions of glia in addition to suppressing their detrimental effects. With a better understanding of how different conditions affect glial cell activation, we may be able to promote the protective function of glia and pave the way for future development of novel, safe, and effective treatments of neuropathic pain. PMID:24820245
Unimpaired endogenous pain inhibition in the early phase of complex regional pain syndrome.
Kumowski, N; Hegelmaier, T; Kolbenschlag, J; Maier, C; Mainka, T; Vollert, J; Enax-Krumova, E
2017-05-01
The complex regional pain syndrome (CRPS) is characterized by distal generalisation of pain beyond the initial trauma. This might be the result of impaired endogenous pain inhibition. We compared Conditioned Pain Modulation (CPM) between patients with CRPS (n = 24; pain: 4.5 ± 2.2, NRS 0-10; disease duration <1 year), neuralgia (n = 17; pain: 5.5 ± 1.1) and healthy subjects (n = 23) and its correlation with loss and gain of function as assessed by Quantitative Sensory Testing (QST). CPM was assessed with heat as test stimulus (TS) and cold water as conditioning stimulus (CS). The early CPM-effect was calculated as difference between heat pain during and before conditioning, the late CPM-effect, 5 minutes after and before conditioning, respectively. Heat pain decreased comparably after CS in all groups, resulting in a significant CPM-effect (healthy: -12.5 ± 12.4, NRS 0-100; CRPS: -14.7 ± 15.7; neuralgia: -7.9 ± 9.8; p < 0.001). When compared to healthy subjects, heat pain declined significantly steeper in CRPS patients (healthy: -2.0 ± 5.5, NRS 0-100/10 s; CRPS: -6.3 ± 8.1; p < 0.05). Only CRPS patients demonstrated a late CPM effect (-6.0 ± 9.0, p < 0.005). Neither spontaneous pain nor any QST parameter correlated with CPM, with the exception of a decreased cold pain threshold, which correlated with an enhanced CPM in CRPS patients only (r = -0.456, p < 0.05). An impairment of endogenous pain inhibition does not explain the extent of pain in the early stage of CRPS or in neuralgia. The unexpectedly high CPM in CRPS patients might result from activation of the intact descending pathways in response to central sensitization, as cold hyperalgesia correlated with the CPM-effect. Conditioned pain modulation (CPM) is not impaired in the early phase of complex regional pain syndrome (CRPS) and neuralgia. Only in CRPS higher CPM was associated with lower cold pain thresholds. © 2017 European Pain Federation - EFIC®.
Harper, Daniel E; Ichesco, Eric; Schrepf, Andrew; Hampson, Johnson P; Clauw, Daniel J; Schmidt-Wilcke, Tobias; Harris, Richard E; Harte, Steven E
2018-06-01
Conditioned pain modulation (CPM), a psychophysical paradigm that is commonly used to infer the integrity of endogenous pain-altering systems by observation of the effect of one noxious stimulus on another, has previously identified deficient endogenous analgesia in fibromyalgia (FM) and other chronic pain conditions. The mechanisms underlying this deficiency, be they insufficient inhibition and/or active facilitation, are largely unknown. The present cross-sectional study used a combination of behavioral CPM testing, voxel-based morphometry, and resting state functional connectivity to identify neural correlates of CPM in healthy controls (HC; n = 14) and FM patients (n = 15), and to probe for differences that could explain the pain-facilitative CPM that was observed in our patient sample. Voxel-based morphometry identified a cluster encompassing the periaqueductal gray (PAG) that contained significantly less gray matter volume in FM patients. Higher resting connectivity between this cluster and cortical pain processing regions was associated with more efficient inhibitory CPM in both groups, whereas PAG connectivity with the dorsal pons was associated with greater CPM inhibition only in HC. Greater PAG connectivity to the caudal pons/rostral medulla, which was pain-inhibitory in HC, was associated with pain facilitation in FM patients. These findings indicate that variation in the strength of the PAG resting functional connectivity can explain some of the normal variability in CPM. In addition, pain-facilitative CPM observed in FM patients likely involves attenuation of pain inhibitory as well as amplification of pain facilitative processes in the central nervous system. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide
2015-01-01
Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the descending pain system may be involved in TMD. PMID:25905862
Individual modulation of pain sensitivity under stress.
Reinhardt, Tatyana; Kleindienst, Nikolaus; Treede, Rolf-Detlef; Bohus, Martin; Schmahl, Christian
2013-05-01
Stress has a strong influence on pain sensitivity. However, the direction of this influence is unclear. Recent studies reported both decreased and increased pain sensitivities under stress, and one hypothesis is that interindividual differences account for these differences. The aim of our study was to investigate the effect of stress on individual pain sensitivity in a relatively large female sample. Eighty female participants were included. Pain thresholds and temporal summation of pain were tested before and after stress, which was induced by the Mannheim Multicomponent Stress Test. In an independent sample of 20 women, correlation coefficients between 0.45 and 0.89 indicated relatively high test-retest reliability for pain measurements. On average, there were significant differences between pain thresholds under non-stress and stress conditions, indicating an increased sensitivity to pain under stress. No significant differences between non-stress and stress conditions were found for temporal summation of pain. On an individual basis, both decreased and increased pain sensitivities under stress conditions based on Jacobson's criteria for reliable change were observed. Furthermore, we found significant negative associations between pain sensitivity under non-stress conditions and individual change of pain sensitivity under stress. Participants with relatively high pain sensitivity under non-stress conditions became less sensitive under stress and vice versa. These findings support the view that pain sensitivity under stress shows large interindividual variability, and point to a possible dichotomy of altered pain sensitivity under stress. Wiley Periodicals, Inc.
Lack of predictive power of trait fear and anxiety for conditioned pain modulation (CPM).
Horn-Hofmann, Claudia; Priebe, Janosch A; Schaller, Jörg; Görlitz, Rüdiger; Lautenbacher, Stefan
2016-12-01
In recent years the association of conditioned pain modulation (CPM) with trait fear and anxiety has become a hot topic in pain research due to the assumption that such variables may explain the low CPM efficiency in some individuals. However, empirical evidence concerning this association is still equivocal. Our study is the first to investigate the predictive power of fear and anxiety for CPM by using a well-established psycho-physiological measure of trait fear, i.e. startle potentiation, in addition to two self-report measures of pain-related trait anxiety. Forty healthy, pain-free participants (female: N = 20; age: M = 23.62 years) underwent two experimental blocks in counter-balanced order: (1) a startle paradigm with affective picture presentation and (2) a CPM procedure with hot water as conditioning stimulus (CS) and contact heat as test stimulus (TS). At the end of the experimental session, pain catastrophizing (PCS) and pain anxiety (PASS) were assessed. PCS score, PASS score and startle potentiation to threatening pictures were entered as predictors in a linear regression model with CPM magnitude as criterion. We were able to show an inhibitory CPM effect in our sample: pain ratings of the heat stimuli were significantly reduced during hot water immersion. However, CPM was neither predicted by self-report of pain-related anxiety nor by startle potentiation as psycho-physiological measure of trait fear. These results corroborate previous negative findings concerning the association between trait fear/anxiety and CPM efficiency and suggest that shifting the focus from trait to state measures might be promising.
Clinical presentation and manual therapy for upper quadrant musculoskeletal conditions
Isabel de-la-Llave-Rincón, Ana; Puentedura, Emilio J; Fernández-de-las-Peñas, César
2011-01-01
In recent years, increased knowledge of the pathogenesis of upper quadrant pain syndromes has translated to better management strategies. Recent studies have demonstrated evidence of peripheral and central sensitization mechanisms in different local pain syndromes of the upper quadrant such as idiopathic neck pain, lateral epicondylalgia, whiplash-associated disorders, shoulder impingement, and carpal tunnel syndrome. Therefore, a treatment-based classification approach where subjects receive matched interventions has been developed and, it has been found that these patients experience better outcomes than those receiving non-matched interventions. There is evidence suggesting that the cervical and thoracic spine is involved in upper quadrant pain. Spinal manipulation has been found to be effective for patients with elbow pain, neck pain, or cervicobrachial pain. Additionally, it is known that spinal manipulative therapy exerts neurophysiological effects that can activate pain modulation mechanisms. This paper exposes some manual therapies for upper quadrant pain syndromes, based on a nociceptive pain rationale for modulating central nervous system including trigger point therapy, dry needling, mobilization or manipulation, and cognitive pain approaches. PMID:23115473
Reward Circuitry Plasticity in Pain Perception and Modulation
DosSantos, Marcos F.; Moura, Brenda de Souza; DaSilva, Alexandre F.
2017-01-01
Although pain is a widely known phenomenon and an important clinical symptom that occurs in numerous diseases, its mechanisms are still barely understood. Owing to the scarce information concerning its pathophysiology, particularly what is involved in the transition from an acute state to a chronic condition, pain treatment is frequently unsatisfactory, therefore contributing to the amplification of the chronic pain burden. In fact, pain is an extremely complex experience that demands the recruitment of an intricate set of central nervous system components. This includes cortical and subcortical areas involved in interpretation of the general characteristics of noxious stimuli. It also comprises neural circuits that process the motivational-affective dimension of pain. Hence, the reward circuitry represents a vital element for pain experience and modulation. This review article focuses on the interpretation of the extensive data available connecting the major components of the reward circuitry to pain suffering, including the nucleus accumbens, ventral tegmental area, and the medial prefrontal cortex; with especial attention dedicated to the evaluation of neuroplastic changes affecting these structures found in chronic pain syndromes, such as migraine, trigeminal neuropathic pain, chronic back pain, and fibromyalgia. PMID:29209204
The role of psychosocial processes in the development and maintenance of chronic pain disorders
Edwards, Robert R.; Dworkin, Robert H.; Sullivan, Mark D.; Turk, Dennis; Wasan, Ajay D.
2016-01-01
The recently-proposed ACTTION-APS Pain Taxonomy provides an evidence-based, multidimensional, chronic pain classification system. Psychosocial factors play a crucial role within several dimensions of the Taxonomy. In this paper, we discuss the evaluation of psychosocial factors that influence the diagnosis and trajectory of chronic pain disorders. We review studies in individuals with a variety of persistent pain conditions, and describe evidence that psychosocial variables play key roles in conferring risk for the development of pain, in shaping long-term pain-related adjustment, and in modulating pain treatment outcomes. We consider both “general” psychosocial variables such as negative affect, childhood trauma, and social support, as well as “pain-specific” psychosocial variables that include pain-related catastrophizing, self-efficacy for managing pain, and pain-related coping. Collectively, the complexity and profound variability in chronic pain highlights the need to better understand the multidimensional array of interacting forces that determine the trajectory of chronic pain conditions. PMID:27586832
Yu, Rongjun; Gollub, Randy L; Vangel, Mark; Kaptchuk, Ted; Smoller, Jordan W; Kong, Jian
2014-09-01
Our expectations about an event can strongly shape our subjective evaluation and actual experience of events. This ability, applied to the modulation of pain, has the potential to affect therapeutic analgesia substantially and constitutes a foundation for non-pharmacological pain relief. A typical example of such modulation is the placebo effect. Studies indicate that placebo may be regarded as a reward, and brain activity in the reward system is involved in this modulation process. In the present study, we combined resting-state functional magnetic resonance imaging (rs-fMRI) measures, genotype at a functional COMT polymorphism (Val158Met), and personality measures in a model to predict the magnitude of placebo conditioning effect indicated by subjective pain rating reduction to calibrated noxious stimuli. We found that the regional homogeneity (ReHo), an index of local neural coherence, in the ventral striatum, was significantly associated with conditioning effects on pain rating changes. We also found that the number of Met alleles at the COMT polymorphism was linearly correlated to the suppression of pain. In a fitted regression model, we found the ReHo in the ventral striatum, COMT genotype, and Openness scores accounted for 59% of the variance in the change in pain ratings. The model was further tested using a separate data set from the same study. Our findings demonstrate the potential of combining resting-state connectivity, genetic information, and personality to predict placebo effect. Copyright © 2014 Wiley Periodicals, Inc.
Vassal, François; Créac'h, C; Convers, Ph; Laurent, B; Garcia-Larrea, L; Peyron, R
2013-09-01
To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on brain nociceptive responses (laser-evoked potentials, LEPs) and pain perception. Twenty healthy subjects were included. Nociceptive CO(2)-laser pulses were sequentially delivered to the dorsum of both feet. The amplitude of LEPs and nociceptive thresholds were collected in three consecutive conditions: T1: "sham" TENS (2 Hz/low-intensity) positioned heterotopically, over the left thigh; T2: "active" TENS (120 Hz/low-intensity) applied homotopically, over the left common peroneal nerve; and T3: "sham" TENS (replication of condition T1). Compared with "sham" TENS, "active" TENS significantly decreased the LEPs amplitude. This effect was observed exclusively when "active" TENS was applied ipsilaterally to the painful stimulus. Nociceptive thresholds increased with sessions in both limbs, but the increase observed during the "active" condition of TENS (T2) exceeded significantly that observed during the condition T3 only on the foot ipsilateral to TENS. Compared with a credible placebo TENS, high-frequency TENS induced a significant attenuation of both the acute pain and LEPs induced by noxious stimuli applied on the same dermatome. This modulation of subjective and objective concomitants of pain processing reflects a real neurophysiological TENS-related effect on nociceptive transmission. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Pain modulation during drives through cold and hot virtual environments.
Mühlberger, Andreas; Wieser, Matthias J; Kenntner-Mabiala, Ramona; Pauli, Paul; Wiederhold, Brenda K
2007-08-01
Evidence exists that virtual worlds reduce pain perception by providing distraction. However, there is no experimental study to show that the type of world used in virtual reality (VR) distraction influences pain perception. Therefore, we investigated whether pain triggered by heat or cold stimuli is modulated by "warm "or "cold " virtual environments and whether virtual worlds reduce pain perception more than does static picture presentation. We expected that cold worlds would reduce pain perception from heat stimuli, while warm environments would reduce pain perception from cold stimuli. Additionally, both virtual worlds should reduce pain perception in general. Heat and cold pain stimuli thresholds were assessed outside VR in 48 volunteers in a balanced crossover design. Participants completed three 4-minute assessment periods: virtual "walks " through (1) a winter and (2) an autumn landscape and static exposure to (3) a neutral landscape. During each period, five heat stimuli or three cold stimuli were delivered via a thermode on the participant's arm, and affective and sensory pain perceptions were rated. Then the thermode was changed to the other arm, and the procedure was repeated with the opposite pain stimuli (heat or cold). We found that both warm and cold virtual environments reduced pain intensity and unpleasantness for heat and cold pain stimuli when compared to the control condition. Since participants wore a head-mounted display (HMD) in both the control condition and VR, we concluded that the distracting value of virtual environments is not explained solely by excluding perception of the real world. Although VR reduced pain unpleasantness, we found no difference in efficacy between the types of virtual world used for each pain stimulus.
Age-Dependent Decline of Endogenous Pain Control: Exploring the Effect of Expectation and Depression
Grashorn, Wiebke; Sprenger, Christian; Forkmann, Katarina; Wrobel, Nathalie; Bingel, Ulrike
2013-01-01
Although chronic pain affects all age ranges, it is particularly common in the elderly. One potential explanation for the high prevalence of chronic pain in the older population is impaired functioning of the descending pain inhibitory system which can be studied in humans using conditioned pain modulation (CPM) paradigms. In this study we investigated (i) the influence of age on CPM and (ii) the role of expectations, depression and gender as potential modulating variables of an age-related change in CPM. 64 healthy volunteers of three different age groups (young = 20–40 years, middle-aged = 41–60 years, old = 61–80 years) were studied using a classical CPM paradigm that combined moderate heat pain stimuli to the right forearm as test stimuli (TS) and immersion of the contralateral foot into ice water as the conditioning stimulus (CS). The CPM response showed an age-dependent decline with strong CPM responses in young adults but no significant CPM responses in middle-aged and older adults. These age-related changes in CPM responses could not be explained by expectations of pain relief or depression. Furthermore, changes in CPM responses did not differ between men and women. Our results strongly support the notion of a genuine deterioration of descending pain inhibitory mechanisms with age. PMID:24086595
Goodin, Burel R.; Glover, Toni L.; Sotolongo, Adriana; King, Christopher D.; Sibille, Kimberly T.; Herbert, Matthew S.; Cruz-Almeida, Yenisel; Sanden, Shelley H.; Staud, Roland; Redden, David T.; Bradley, Laurence A.; Fillingim, Roger B.
2012-01-01
Dispositional optimism has been shown to beneficially influence various experimental and clinical pain experiences. One possibility that may account for decreased pain sensitivity among individuals who report greater dispositional optimism is less use of maladaptive coping strategies like pain catastrophizing, a negative cognitive/affective response to pain. An association between dispositional optimism and conditioned pain modulation (CPM), a measure of endogenous pain inhibition, has previously been reported. However, it remains to be determined whether dispositional optimism is also associated with temporal summation (TS), a measure of endogenous pain facilitation. The current study examined whether pain catastrophizing mediated the association between dispositional optimism and TS among 140 older, community-dwelling adults with symptomatic knee osteoarthritis. Individuals completed measures of dispositional optimism and pain catastrophizing. TS was then assessed using a tailored heat pain stimulus on the forearm. Greater dispositional optimism was significantly related to lower levels of pain catastrophizing and TS. Bootstrapped confidence intervals revealed that less pain catastrophizing was a significant mediator of the relation between greater dispositional optimism and diminished TS. These findings support the primary role of personality characteristics such as dispositional optimism in the modulation of pain outcomes by abatement of endogenous pain facilitation and less use of catastrophizing. PMID:23218934
Weiner, Debra K; Morone, Natalia E; Spallek, Heiko; Karp, Jordan F; Schneider, Michael; Washburn, Carol; Dziabiak, Michael P; Hennon, John G; Elnicki, D Michael
2014-06-01
The Institute of Medicine has highlighted the urgent need to close undergraduate and graduate educational gaps in treating pain. Chronic low back pain (CLBP) is one of the most common pain conditions, and older adults are particularly vulnerable to potential morbidities associated with misinformed treatment. An e-learning case-based interactive module was developed at the University of Pittsburgh Center of Excellence in Pain Education, one of 12 National Institutes of Health-designated centers, to teach students important principles for evaluating and managing CLBP in older adults. A team of six experts in education, information technology, pain management, and geriatrics developed the module. Teaching focused on common errors, interactivity, and expert modeling and feedback. The module mimicked a patient encounter using a standardized patient (the older adult with CLBP) and a pain expert (the patient provider). Twenty-eight medical students were not exposed to the module (Group 1) and 27 were exposed (Group 2). Their clinical skills in evaluating CLBP were assessed using an objective structured clinical examination (OSCE). Mean scores were 62.0 ± 8.6 for Group 1 and 79.5 ± 10.4 for Group 2 (P < .001). Using an OSCE pass-fail cutoff score of 60%, 17 of 28 Group 1 students (60.7%) and 26 of 27 Group 2 students (96.3%) passed. The CLBP OSCE was one of 10 OSCE stations in which students were tested at the end of a Combined Ambulatory Medicine and Pediatrics Clerkship. There were no between-group differences in performance on eight of the other nine OSCE stations. This module significantly improved medical student clinical skills in evaluating CLBP. Additional research is needed to ascertain the effect of e-learning modules on more-advanced learners and on improving the care of older adults with CLBP. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Weiner, Debra K.; Morone, Natalia E.; Spallek, Heiko; Karp, Jordan F.; Schneider, Michael; Washburn, Carol; Dziabiak, Michael P.; Hennon, John G.; Elnicki, D. Michael
2015-01-01
The Institute of Medicine has highlighted the urgent need to close undergraduate and graduate educational gaps in treating pain. Chronic low back pain (CLBP) is one of the most common pain conditions, and older adults are particularly vulnerable to potential morbidities associated with misinformed treatment. An e-learning case-based interactive module was developed at the University of Pittsburgh Center of Excellence in Pain Education, one of 12 National Institutes of Health–designated centers, to teach students important principles for evaluating and managing CLBP in older adults. A team of six experts in education, information technology, pain management, and geriatrics developed the module. Teaching focused on common errors, interactivity, and expert modeling and feedback. The module mimicked a patient encounter using a standardized patient (the older adult with CLBP) and a pain expert (the patient provider). Twenty-eight medical students were not exposed to the module (Group 1) and 27 were exposed (Group 2). Their clinical skills in evaluating CLBP were assessed using an objective structured clinical examination (OSCE). Mean scores were 62.0 ± 8.6 for Group 1 and 79.5 ± 10.4 for Group 2 (P < .001). Using an OSCE pass–fail cutoff score of 60%, 17 of 28 Group 1 students (60.7%) and 26 of 27 Group 2 students (96.3%) passed. The CLBP OSCE was one of 10 OSCE stations in which students were tested at the end of a Combined Ambulatory Medicine and Pediatrics Clerkship. There were no between-group differences in performance on eight of the other nine OSCE stations. This module significantly improved medical student clinical skills in evaluating CLBP. Additional research is needed to ascertain the effect of e-learning modules on more-advanced learners and on improving the care of older adults with CLBP. PMID:24833496
Working memory load modulates the neural response to other's pain: Evidence from an ERP study.
Cui, Fang; Zhu, Xiangru; Luo, Yuejia; Cheng, Jiaping
2017-03-22
The present study investigated the time course of processing other's pain under different conditions of working memory (WM) load. Event-related potentials (ERPs) were recorded while the participants held two digits (low WM load) or six digits (high WM load) in WM and viewed pictures that showed others who were in painful or non-painful situations. Robust WM-load×Picture interactions were found for the N2 and LPP components. In the high WM-load condition, painful pictures elicited significantly larger amplitudes than non-painful pictures. In the low WM load condition, the difference between the painful and non-painful pictures was not significant. These ERP results indicate that WM load can influence both the early automatic N2 component and late cognitive LPP component. Compared with high WM load, low WM load reduced affective arousal and emotional sharing in response to other's pain and weakened the cognitive evaluation of task irrelevant stimuli. These findings are explained from the load theory perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Learned control over spinal nociception in patients with chronic back pain.
Krafft, S; Göhmann, H-D; Sommer, J; Straube, A; Ruscheweyh, R
2017-10-01
Descending pain inhibition suppresses spinal nociception, reducing nociceptive input to the brain. It is modulated by cognitive and emotional processes. In subjects with chronic pain, it is impaired, possibly contributing to pain persistence. A previously developed feedback method trains subjects to activate their descending inhibition. Participants are trained to use cognitive-emotional strategies to reduce their spinal nociception, as quantified by the nociceptive flexor reflex (RIII reflex), under visual feedback about their RIII reflex size. The aim of the present study was to test whether also subjects with chronic back pain can achieve a modulation of their descending pain inhibition under RIII feedback. In total, 33 subjects with chronic back pain received either true (n = 18) or sham RIII feedback (n = 15), 15 healthy control subjects received true RIII feedback. All three groups achieved significant RIII suppression, largest in controls (to 76 ± 26% of baseline), intermediate in chronic back pain subjects receiving true feedback (to 82 ± 13%) and smallest in chronic back pain subjects receiving sham feedback (to 89 ± 14%, all p < 0.05). However, only chronic pain subjects receiving true feedback significantly improved their descending inhibition over the feedback training, quantified by the conditioned pain modulation effect (test pain reduction of baseline before training: to 98 ± 26%, after: to 80 ± 21%, p < 0.01). Our results show that subjects with chronic back pain can achieve a reduction of their spinal nociception and improve their descending pain inhibition under RIII feedback training. Subjects with chronic back pain can learn to control their spinal nociception, quantified by the RIII reflex, when they receive feedback about the RIII reflex. © 2017 European Pain Federation - EFIC®.
Hermans, Linda; Van Oosterwijck, Jessica; Goubert, Dorien; Goudman, Lisa; Crombez, Geert; Calders, Patrick; Meeus, Mira
2016-07-01
Conditioned pain modulation (CPM) is believed to play an important role in the development and exacerbation of chronic pain, because dysfunction of CPM is associated with a shift in balance between pain facilitation and pain inhibition. In many patients with central sensitization, CPM is less efficacious. Besides that, efficacy of CPM is highly variable in healthy people. Consequently, it seems that several individual variables may influence CPM. A systematic review examining personal factors influencing CPM was conducted. This systematic review follows the PRISMA guidelines. "Pubmed" and "Web of Science" were searched using different synonyms of CPM. Full-text clinical reports addressing the influence of personal factors on CPM in healthy adults were included. Checklists for RCTs and case-control studies provided by the Dutch Institute for Healthcare Improvement (CBO) and the Dutch Cochrane Centre were utilized to assess methodological quality. Levels of evidence and strength of conclusion were assigned using the CBO guidelines. Forty-six articles were identified that reported the influence of personal factors on CPM. Quality assessment revealed 10 studies with a methodological quality less than 50% wherefore they were excluded (21.8%), resulting in a general total methodological quality score of 72.5%. Overall younger adult age, male gender, ovulatory phase, positive expectations, attention to the conditioning stimulus, and carrier of the 5-HTTLPR long allele result in better CPM. It is advised for future studies to take these factors into account. Further research regarding the influence of oral contraceptives, catastrophizing, information about conditioning stimulation, distraction, physical activity, and genetics on CPM magnitude is required. © 2015 World Institute of Pain.
Potvin, Stéphane; Marchand, Serge
2016-08-01
Although fibromyalgia (FM) is associated with a deficit in inhibitory conditioned pain modulation (CPM), the discriminative power of CPM procedures is unknown. Moreover, the high intersubject heterogeneity in CPM responses in FM raises the possibility that a sizeable subgroup of these patients may experience pain facilitation during CPM, but the phenomenon has not been explicitly studied. To address these issues, 96 patients with FM and 71 healthy controls were recruited. Thermal stimuli were used to measure pain thresholds. Pain inhibition was elicited using a tonic thermal test (Peltier thermode) administered before and after activation of CPM mechanisms using a cold pressor test. Thermal pain thresholds were lower in patients with FM than in healthy controls. Pain ratings during the cold pressor test were higher in patients with FM, relative to controls. The CPM inhibitory efficacy was lower in patients with FM than in controls. The CPM procedure had good specificity (78.9%) but low sensitivity (45.7%), whereas a composite pain index had good sensitivity (75.0%) and specificity (78.9%). Finally, the rate of patients with FM who reported pain facilitation during the CPM procedure was found to be significantly increased compared with that of controls (41.7% vs 21.2%). The good discriminative power of the composite pain index highlights the need for further validation studies using mechanistically relevant psychophysical procedures in FM. The low sensitivity of the CPM procedure, combined with the large proportion of patients with FM experiencing pain facilitation during CPM, strongly suggests that endogenous pain inhibition mechanisms are deeply impaired in patients with FM, but only in a subgroup of them.
Decreased Pain Perception by Unconscious Emotional Pictures
Peláez, Irene; Martínez-Iñigo, David; Barjola, Paloma; Cardoso, Susana; Mercado, Francisco
2016-01-01
Pain perception arises from a complex interaction between a nociceptive stimulus and different emotional and cognitive factors, which appear to be mediated by both automatic and controlled systems. Previous evidence has shown that whereas conscious processing of unpleasant stimuli enhances pain perception, emotional influences on pain under unaware conditions are much less known. The aim of the present study was to investigate the modulation of pain perception by unconscious emotional pictures through an emotional masking paradigm. Two kinds of both somatosensory (painful and non-painful) and emotional stimulation (negative and neutral pictures) were employed. Fifty pain-free participants were asked to rate the perception of pain they were feeling in response to laser-induced somatosensory stimuli as faster as they can. Data from pain intensity and reaction times were measured. Statistical analyses revealed a significant effect for the interaction between pain and emotional stimulation, but surprisingly this relationship was opposite to expected. In particular, lower pain intensity scores and longer reaction times were found in response to negative images being strengthened this effect for painful stimulation. Present findings suggest a clear pain perception modulation by unconscious emotional contexts. Attentional capture mechanisms triggered by unaware negative stimulation could explain this phenomenon leading to a withdrawal of processing resources from pain. PMID:27818642
Decreased Pain Perception by Unconscious Emotional Pictures.
Peláez, Irene; Martínez-Iñigo, David; Barjola, Paloma; Cardoso, Susana; Mercado, Francisco
2016-01-01
Pain perception arises from a complex interaction between a nociceptive stimulus and different emotional and cognitive factors, which appear to be mediated by both automatic and controlled systems. Previous evidence has shown that whereas conscious processing of unpleasant stimuli enhances pain perception, emotional influences on pain under unaware conditions are much less known. The aim of the present study was to investigate the modulation of pain perception by unconscious emotional pictures through an emotional masking paradigm. Two kinds of both somatosensory (painful and non-painful) and emotional stimulation (negative and neutral pictures) were employed. Fifty pain-free participants were asked to rate the perception of pain they were feeling in response to laser-induced somatosensory stimuli as faster as they can. Data from pain intensity and reaction times were measured. Statistical analyses revealed a significant effect for the interaction between pain and emotional stimulation, but surprisingly this relationship was opposite to expected. In particular, lower pain intensity scores and longer reaction times were found in response to negative images being strengthened this effect for painful stimulation. Present findings suggest a clear pain perception modulation by unconscious emotional contexts. Attentional capture mechanisms triggered by unaware negative stimulation could explain this phenomenon leading to a withdrawal of processing resources from pain.
Reliability of conditioned pain modulation: a systematic review
Kennedy, Donna L.; Kemp, Harriet I.; Ridout, Deborah; Yarnitsky, David; Rice, Andrew S.C.
2016-01-01
Abstract A systematic literature review was undertaken to determine if conditioned pain modulation (CPM) is reliable. Longitudinal, English language observational studies of the repeatability of a CPM test paradigm in adult humans were included. Two independent reviewers assessed the risk of bias in 6 domains; study participation; study attrition; prognostic factor measurement; outcome measurement; confounding and analysis using the Quality in Prognosis Studies (QUIPS) critical assessment tool. Intraclass correlation coefficients (ICCs) less than 0.4 were considered to be poor; 0.4 and 0.59 to be fair; 0.6 and 0.75 good and greater than 0.75 excellent. Ten studies were included in the final review. Meta-analysis was not appropriate because of differences between studies. The intersession reliability of the CPM effect was investigated in 8 studies and reported as good (ICC = 0.6-0.75) in 3 studies and excellent (ICC > 0.75) in subgroups in 2 of those 3. The assessment of risk of bias demonstrated that reporting is not comprehensive for the description of sample demographics, recruitment strategy, and study attrition. The absence of blinding, a lack of control for confounding factors, and lack of standardisation in statistical analysis are common. Conditioned pain modulation is a reliable measure; however, the degree of reliability is heavily dependent on stimulation parameters and study methodology and this warrants consideration for investigators. The validation of CPM as a robust prognostic factor in experimental and clinical pain studies may be facilitated by improvements in the reporting of CPM reliability studies. PMID:27559835
Hopes for the Future of Pain Control.
Bannister, Kirsty; Kucharczyk, Mateusz; Dickenson, Anthony H
2017-12-01
Here we aim to present an accessible review of the pharmacological targets for pain management, and succinctly discuss the newest trends in pain therapy. A key task for current pain pharmacotherapy is the identification of receptors and channels orchestrating nociception. Notwithstanding peripheral alterations in the receptors and channels following pathophysiological events, the modulatory mechanisms in the central nervous system are also fundamental to the regulation of pain perception. Bridging preclinical and clinical studies of peripheral and central components of pain modulation, we present the different types of pain and relate these to pharmacological interventions. We firstly highlight the roles of several peripheral nociceptors, such as NGF, CGRP, sodium channels, and TRP-family channels that may become novel targets for therapies. In the central nervous system, the roles of calcium channels and gabapentinoids as well as NMDA receptors in generating excitability are covered including ideas on central sensitization. We then turn to central modulatory systems and discuss opioids and monoamines. We aim to explain the importance of central sensitization and the dialogue of the spinal circuits with the brain descending modulatory controls before discussing a mechanism-based effectiveness of antidepressants in pain therapy and their potential to modulate the descending controls. Emphasizing the roles of conditioned pain modulation and its animal's equivalent, diffuse noxious inhibitory controls, we discuss these unique descending modulations as a potential tool for understanding mechanisms in patients suffering from pain. Mechanism-based therapy is the key to picking the correct treatments and recent clinical studies using sensory symptoms of patients as surrogates for underlying mechanisms can be used to subgroup patients and reveal actions of drugs that may be lost when studying heterogenous groups of patients. Key advances in the understanding of basic pain principles will impact our thinking about therapy targets. The complexity of pain syndromes will require tailored pharmacological drugs, often in combination or through drugs with more than one action, and often psychotherapy, to fully control pain.
Defrin, Ruth; Riabinin, Miri; Feingold, Yelena; Schreiber, Shaul; Pick, Chaim G
2015-01-01
Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed.
Riabinin, Miri; Feingold, Yelena; Schreiber, Shaul; Pick, Chaim G.
2015-01-01
Abstract Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed. PMID:25068510
Flood, Andrew; Waddington, Gordon; Cathcart, Stuart
2016-05-01
Transcranial direct current stimulation (tDCS) is a form of brain stimulation that allows for the selective increase or decrease in the cortical excitability of a targeted region. When applied over the motor cortex it has been shown to induce changes in cortical and subcortical brain regions involved in descending pain inhibition or conditioned pain modulation (CPM). The aim of the current study was to assess whether activation of pain inhibitory pathways via tDCS of the motor cortex facilitates the CPM response. Elevated CPM after active tDCS of the motor cortex was hypothesized. Thirty healthy male volunteers attended 2 experimental sessions separated by 7 days. Both sessions consisted of CPM assessment after 20 minutes of either active or sham (placebo) tDCS over the motor cortex. CPM capacity was assessed via the pain-inhibits-pain protocol; CPM responses were shown to be elevated after active compared with sham tDCS. This report concludes that tDCS of the motor cortex enhances the CPM response in healthy men. This finding supports the potential utility of tDCS interventions in clinical pain treatment. The use of noninvasive brain stimulation over the motor cortex was shown to enhance the CPM effect. This finding supports the use of tDCS in the treatment of chronic pain, particularly in sufferers exhibiting maladaptive CPM. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Kent, Michael L; Tighe, Patrick J; Belfer, Inna; Brennan, Timothy J; Bruehl, Stephen; Brummett, Chad M; Buckenmaier, Chester C; Buvanendran, Asokumar; Cohen, Robert I; Desjardins, Paul; Edwards, David; Fillingim, Roger; Gewandter, Jennifer; Gordon, Debra B; Hurley, Robert W; Kehlet, Henrik; Loeser, John D; Mackey, Sean; McLean, Samuel A; Polomano, Rosemary; Rahman, Siamak; Raja, Srinivasa; Rowbotham, Michael; Suresh, Santhanam; Schachtel, Bernard; Schreiber, Kristin; Schumacher, Mark; Stacey, Brett; Stanos, Steven; Todd, Knox; Turk, Dennis C; Weisman, Steven J; Wu, Christopher; Carr, Daniel B; Dworkin, Robert H; Terman, Gregory
2017-05-01
With the increasing societal awareness of the prevalence and impact of acute pain, there is a need to develop an acute pain classification system that both reflects contemporary mechanistic insights and helps guide future research and treatment. Existing classifications of acute pain conditions are limiting, with a predominant focus on the sensory experience (e.g., pain intensity) and pharmacologic consumption. Consequently, there is a need to more broadly characterize and classify the multidimensional experience of acute pain. Consensus report following expert panel involving the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM). As a complement to a taxonomy recently developed for chronic pain, the ACTTION public-private partnership with the US Food and Drug Administration, the APS, and the AAPM convened a consensus meeting of experts to develop an acute pain taxonomy using prevailing evidence. Key issues pertaining to the distinct nature of acute pain are presented followed by the agreed-upon taxonomy. The ACTTION-APS-AAPM Acute Pain Taxonomy will include the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Future efforts will consist of working groups utilizing this taxonomy to develop diagnostic criteria for a comprehensive set of acute pain conditions. The ACTTION-APS-AAPM Acute Pain Taxonomy (AAAPT) is a multidimensional acute pain classification system designed to classify acute pain along the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Significant numbers of patients still suffer from significant acute pain, despite the advent of modern multimodal analgesic strategies. Mismanaged acute pain has a broad societal impact as significant numbers of patients may progress to suffer from chronic pain. An acute pain taxonomy provides a much-needed standardization of clinical diagnostic criteria, which benefits clinical care, research, education, and public policy. For the purposes of the present taxonomy, acute pain is considered to last up to seven days, with prolongation to 30 days being common. The current understanding of acute pain mechanisms poorly differentiates between acute and chronic pain and is often insufficient to distinguish among many types of acute pain conditions. Given the usefulness of the AAPT multidimensional framework, the AAAPT undertook a similar approach to organizing various acute pain conditions. © 2017 American Academy of Pain Medicine. This article has been co-published in Pain Medicine and The Journal of Pain. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.
Ickmans, Kelly; Malfliet, Anneleen; De Kooning, Margot; Goudman, Lisa; Hubloue, Ives; Schmitz, Tom; Goubert, Dorien; Aguilar-Ferrandiz, Maria Encarnacion
2017-09-01
Individuals with chronic whiplash associated disorders (WAD) present persistent pain in the absence of structural pathology. In these people, altered central pain processing and central sensitization are observed. The role of personal factors, such as gender and age, on pain processing mechanisms in chronic WAD, however, is still unclear. This study investigated possible gender- and age-related differences in self-reported and experimental pain measurements in people with chronic WAD. Besides the exercise-induced response on pain measurements between gender and age subgroups was recorded. Case-control study. University Hospital, Brussels. Self-reported pain and experimental pain measurements (pressure pain thresholds [PPT], occlusion cuff pressure, temporal summation, and conditioned pain modulation) were performed in 52 individuals (26 chronic WAD patients and 26 healthy controls), before and after a submaximal cycle exercise. Lower PPTs and occlusion cuff pressures were shown in chronic WAD in comparison with healthy controls. No gender and age differences regarding PPTs, occlusion cuff pressures and conditioned pain modulation were found in chronic WAD. Within the chronic WAD group, men showed higher self-reported pain compared to women and younger adults showed enhanced generalized pain facilitation compared to older adults. In addition, chronic WAD patients are able to inhibit exercise-induced hyperalgesia, but no gender and age differences in pain response following exercise were found. This study was sufficiently powered to detect differences between the chronic WAD and control group. However, a sufficient power was not reached when patients were divided in age and gender groups. Furthermore, only mechanical stimuli were included in the experimental pain measurements. Besides, psychosocial factors were not taken into account. Some alterations of altered pain processing are present in chronic WAD patients, however not in response to exercise. No gender and age differences in pain measurements were observed in people with chronic WAD.Key words: Neck pain, whiplash associated disorders, chronic pain, personal factors, age, gender, central sensitization, exercise induced hyperalgesia, pressure pain thresholds, self reported pain.
Okkerse, Pieter; van Amerongen, Guido; de Kam, Marieke L.; Stevens, Jasper; Butt, Richard P.; Gurrell, Rachel; Dahan, Albert; van Gerven, Joop M.; Hay, Justin L.
2017-01-01
Aim The aim was to investigate the ability of a battery of pain models to detect analgesic properties of commonly used analgesics in healthy subjects. Methods The battery consisted of tests eliciting electrical, mechanical and thermal (contact heat and cold pressor)‐pain and included a UVB model, the thermal grill illusion and a paradigm of conditioned pain modulation. Subjects were administered fentanyl 3 μg kg–1, phenytoin 300 mg, (S)‐ketamine 10 mg and placebo (part I), or imipramine 100 mg, pregabalin 300 mg, ibuprofen 600 mg and placebo (part II). Pain measurements were performed at baseline and up to 10 h post‐dose. Endpoints were analysed using a mixed model analysis of variance. Results Sixteen subjects (8 female) completed each part. The pain tolerance threshold (PTT) for electrical stimulation was increased (all P < 0.05) compared to placebo for (S)‐ketamine (+10.1%), phenytoin (+8.5%) and pregabalin (+10.8%). The PTT for mechanical pain was increased by pregabalin (+14.1%). The cold pressor PTT was increased by fentanyl (+17.1%) and pregabalin (+46.4%). Normal skin heat pain detection threshold was increased by (S)‐ketamine (+3.3%), fentanyl (+2.8%) and pregabalin (+4.1%). UVB treated skin pain detection threshold was increased by fentanyl (+2.6%) and ibuprofen (+4.0%). No differences in conditioned pain modulation were observed. Conclusion This study shows that these pain models are able to detect changes in pain thresholds after administration of different classes of analgesics in healthy subjects. The analgesic compounds all showed a unique profile in their effects on the pain tasks administered. PMID:27862179
Okkerse, Pieter; van Amerongen, Guido; de Kam, Marieke L; Stevens, Jasper; Butt, Richard P; Gurrell, Rachel; Dahan, Albert; van Gerven, Joop M; Hay, Justin L; Groeneveld, Geert Jan
2017-05-01
The aim was to investigate the ability of a battery of pain models to detect analgesic properties of commonly used analgesics in healthy subjects. The battery consisted of tests eliciting electrical, mechanical and thermal (contact heat and cold pressor)-pain and included a UVB model, the thermal grill illusion and a paradigm of conditioned pain modulation. Subjects were administered fentanyl 3 μg kg -1 , phenytoin 300 mg, (S)-ketamine 10 mg and placebo (part I), or imipramine 100 mg, pregabalin 300 mg, ibuprofen 600 mg and placebo (part II). Pain measurements were performed at baseline and up to 10 h post-dose. Endpoints were analysed using a mixed model analysis of variance. Sixteen subjects (8 female) completed each part. The pain tolerance threshold (PTT) for electrical stimulation was increased (all P < 0.05) compared to placebo for (S)-ketamine (+10.1%), phenytoin (+8.5%) and pregabalin (+10.8%). The PTT for mechanical pain was increased by pregabalin (+14.1%). The cold pressor PTT was increased by fentanyl (+17.1%) and pregabalin (+46.4%). Normal skin heat pain detection threshold was increased by (S)-ketamine (+3.3%), fentanyl (+2.8%) and pregabalin (+4.1%). UVB treated skin pain detection threshold was increased by fentanyl (+2.6%) and ibuprofen (+4.0%). No differences in conditioned pain modulation were observed. This study shows that these pain models are able to detect changes in pain thresholds after administration of different classes of analgesics in healthy subjects. The analgesic compounds all showed a unique profile in their effects on the pain tasks administered. © 2016 The British Pharmacological Society.
Changes of spontaneous oscillatory activity to tonic heat pain.
Peng, Weiwei; Hu, Li; Zhang, Zhiguo; Hu, Yong
2014-01-01
Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.
Changes of Spontaneous Oscillatory Activity to Tonic Heat Pain
Zhang, Zhiguo; Hu, Yong
2014-01-01
Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes. PMID:24603703
Assessment and manifestation of central sensitisation across different chronic pain conditions.
Arendt-Nielsen, L; Morlion, B; Perrot, S; Dahan, A; Dickenson, A; Kress, H G; Wells, C; Bouhassira, D; Mohr Drewes, A
2018-02-01
Different neuroplastic processes can occur along the nociceptive pathways and may be important in the transition from acute to chronic pain and for diagnosis and development of optimal management strategies. The neuroplastic processes may result in gain (sensitisation) or loss (desensitisation) of function in relation to the incoming nociceptive signals. Such processes play important roles in chronic pain, and although the clinical manifestations differ across condition processes, they share some common mechanistic features. The fundamental understanding and quantitative assessment of particularly some of the central sensitisation mechanisms can be translated from preclinical studies into the clinic. The clinical perspectives are implementation of such novel information into diagnostics, mechanistic phenotyping, prevention, personalised treatment, and drug development. The aims of this paper are to introduce and discuss (1) some common fundamental central pain mechanisms, (2) how they may translate into the clinical signs and symptoms across different chronic pain conditions, (3) how to evaluate gain and loss of function using quantitative pain assessment tools, and (4) the implications for optimising prevention and management of pain. The chronic pain conditions selected for the paper are neuropathic pain in general, musculoskeletal pain (chronic low back pain and osteoarthritic pain in particular), and visceral pain (irritable bowel syndrome in particular). The translational mechanisms addressed are local and widespread sensitisation, central summation, and descending pain modulation. Central sensitisation is an important manifestation involved in many different chronic pain conditions. Central sensitisation can be different to assess and evaluate as the manifestations vary from pain condition to pain condition. Understanding central sensitisation may promote better profiling and diagnosis of pain patients and development of new regimes for mechanism based therapy. Some of the mechanisms underlying central sensitisation can be translated from animals to humans providing new options in development of therapies and profiling drugs under development. © 2017 European Pain Federation - EFIC®.
Zeidan, Fadel; Emerson, Nichole M; Farris, Suzan R; Ray, Jenna N; Jung, Youngkyoo; McHaffie, John G; Coghill, Robert C
2015-11-18
Mindfulness meditation reduces pain in experimental and clinical settings. However, it remains unknown whether mindfulness meditation engages pain-relieving mechanisms other than those associated with the placebo effect (e.g., conditioning, psychosocial context, beliefs). To determine whether the analgesic mechanisms of mindfulness meditation are different from placebo, we randomly assigned 75 healthy, human volunteers to 4 d of the following: (1) mindfulness meditation, (2) placebo conditioning, (3) sham mindfulness meditation, or (4) book-listening control intervention. We assessed intervention efficacy using psychophysical evaluation of experimental pain and functional neuroimaging. Importantly, all cognitive manipulations (i.e., mindfulness meditation, placebo conditioning, sham mindfulness meditation) significantly attenuated pain intensity and unpleasantness ratings when compared to rest and the control condition (p < 0.05). Mindfulness meditation reduced pain intensity (p = 0.032) and pain unpleasantness (p < 0.001) ratings more than placebo analgesia. Mindfulness meditation also reduced pain intensity (p = 0.030) and pain unpleasantness (p = 0.043) ratings more than sham mindfulness meditation. Mindfulness-meditation-related pain relief was associated with greater activation in brain regions associated with the cognitive modulation of pain, including the orbitofrontal, subgenual anterior cingulate, and anterior insular cortex. In contrast, placebo analgesia was associated with activation of the dorsolateral prefrontal cortex and deactivation of sensory processing regions (secondary somatosensory cortex). Sham mindfulness meditation-induced analgesia was not correlated with significant neural activity, but rather by greater reductions in respiration rate. This study is the first to demonstrate that mindfulness-related pain relief is mechanistically distinct from placebo analgesia. The elucidation of this distinction confirms the existence of multiple, cognitively driven, supraspinal mechanisms for pain modulation. Recent findings have demonstrated that mindfulness meditation significantly reduces pain. Given that the "gold standard" for evaluating the efficacy of behavioral interventions is based on appropriate placebo comparisons, it is imperative that we establish whether there is an effect supporting meditation-related pain relief above and beyond the effects of placebo. Here, we provide novel evidence demonstrating that mindfulness meditation produces greater pain relief and employs distinct neural mechanisms than placebo cream and sham mindfulness meditation. Specifically, mindfulness meditation-induced pain relief activated higher-order brain regions, including the orbitofrontal and cingulate cortices. In contrast, placebo analgesia was associated with decreased pain-related brain activation. These findings demonstrate that mindfulness meditation reduces pain through unique mechanisms and may foster greater acceptance of meditation as an adjunct pain therapy. Copyright © 2015 the authors 0270-6474/15/3515308-19$15.00/0.
Emerson, Nichole M.; Farris, Suzan R.; Ray, Jenna N.; Jung, Youngkyoo; McHaffie, John G.; Coghill, Robert C.
2015-01-01
Mindfulness meditation reduces pain in experimental and clinical settings. However, it remains unknown whether mindfulness meditation engages pain-relieving mechanisms other than those associated with the placebo effect (e.g., conditioning, psychosocial context, beliefs). To determine whether the analgesic mechanisms of mindfulness meditation are different from placebo, we randomly assigned 75 healthy, human volunteers to 4 d of the following: (1) mindfulness meditation, (2) placebo conditioning, (3) sham mindfulness meditation, or (4) book-listening control intervention. We assessed intervention efficacy using psychophysical evaluation of experimental pain and functional neuroimaging. Importantly, all cognitive manipulations (i.e., mindfulness meditation, placebo conditioning, sham mindfulness meditation) significantly attenuated pain intensity and unpleasantness ratings when compared to rest and the control condition (p < 0.05). Mindfulness meditation reduced pain intensity (p = 0.032) and pain unpleasantness (p < 0.001) ratings more than placebo analgesia. Mindfulness meditation also reduced pain intensity (p = 0.030) and pain unpleasantness (p = 0.043) ratings more than sham mindfulness meditation. Mindfulness-meditation-related pain relief was associated with greater activation in brain regions associated with the cognitive modulation of pain, including the orbitofrontal, subgenual anterior cingulate, and anterior insular cortex. In contrast, placebo analgesia was associated with activation of the dorsolateral prefrontal cortex and deactivation of sensory processing regions (secondary somatosensory cortex). Sham mindfulness meditation-induced analgesia was not correlated with significant neural activity, but rather by greater reductions in respiration rate. This study is the first to demonstrate that mindfulness-related pain relief is mechanistically distinct from placebo analgesia. The elucidation of this distinction confirms the existence of multiple, cognitively driven, supraspinal mechanisms for pain modulation. SIGNIFICANCE STATEMENT Recent findings have demonstrated that mindfulness meditation significantly reduces pain. Given that the “gold standard” for evaluating the efficacy of behavioral interventions is based on appropriate placebo comparisons, it is imperative that we establish whether there is an effect supporting meditation-related pain relief above and beyond the effects of placebo. Here, we provide novel evidence demonstrating that mindfulness meditation produces greater pain relief and employs distinct neural mechanisms than placebo cream and sham mindfulness meditation. Specifically, mindfulness meditation-induced pain relief activated higher-order brain regions, including the orbitofrontal and cingulate cortices. In contrast, placebo analgesia was associated with decreased pain-related brain activation. These findings demonstrate that mindfulness meditation reduces pain through unique mechanisms and may foster greater acceptance of meditation as an adjunct pain therapy. PMID:26586819
Meeus, Mira; Hermans, Linda; Ickmans, Kelly; Struyf, Filip; Van Cauwenbergh, Deborah; Bronckaerts, Laura; De Clerck, Luc S; Moorken, Greta; Hans, Guy; Grosemans, Sofie; Nijs, Jo
2015-02-01
Temporal summation (TS) of pain, conditioned pain modulation (CPM), and exercise-induced analgesia (EIA) are often investigated in chronic pain populations as an indicator for enhanced pain facilitation and impaired endogenous pain inhibition, respectively, but interactions are not yet clear both in healthy controls and in chronic pain patients. Therefore, the present double-blind randomized placebo-controlled study evaluates pains cores, TS, and CPM in response to exercise in healthy controls, patients with chronic fatigue syndrome and comorbid fibromyalgia (CFS/FM), and patients with rheumatoid arthritis (RA), both under placebo and paracetamol condition. Fifty-three female volunteers - of which 19 patients with CFS/FM, 16 patients with RA, and 18 healthy controls - underwent a submaximal exercise test on a bicycle ergometer on 2 different occasions (paracetamol vs. placebo), with an interval of 7 days. Before and after exercise, participants rated pain intensity during TS and CPM. Patients with rheumatoid arthritis showed decreased TS after exercise, both after paracetamol and placebo (P < 0.05). In patients with CFS/FM, results were less univocal. A nonsignificant decrease in TS was only observed after taking paracetamol. CPM responses to exercise are inconclusive, but seem to worsen after exercise. No adverse effects were seen. This study evaluates pain scores, TS, and CPM in response to submaximal exercise in 2 different chronic pain populations and healthy controls. In patients with RA, exercise had positive effects on TS, suggesting normal EIA. In patients with CFS/FM, these positive effects were only observed after paracetamol and results were inconsistent. © 2014 World Institute of Pain.
Granot, Michal; Weissman-Fogel, Irit; Crispel, Yonathan; Pud, Dorit; Granovsky, Yelena; Sprecher, Elliot; Yarnitsky, David
2008-05-01
Descending modulation of pain can be demonstrated psychophysically by dual pain stimulation. This study evaluates in 31 healthy subjects the association between parameters of the conditioning stimulus, gender and personality, and the endogenous analgesia (EA) extent assessed by diffuse noxious inhibitory control (DNIC) paradigm. Contact heat pain was applied as the test stimulus to the non-dominant forearm, with stimulation temperature at a psychophysical intensity score of 60 on a 0-100 numerical pain scale. The conditioning stimulus was a 60s immersion of the dominant hand in cold (12, 15, 18 degrees C), hot (44 and 46.5 degrees C), or skin temperature (33 degrees C) water. The test stimulus was repeated on the non-dominant hand during the last 30s of the conditioning immersion. EA extent was calculated as the difference between pain scores of the two test stimuli. State and trait anxiety and pain catastrophizing scores were assessed prior to stimulation. EA was induced only for the pain-generating conditioning stimuli at 46.5 degrees C (p=0.011) and 12 degrees C (p=0.003). EA was independent of conditioning pain modality, or personality, but a significant gender effect was found, with greater EA response in males. Importantly, pain scores of the conditioning stimuli were not correlated with EA extent. The latter is based on both our study population, and on additional 82 patients, who participated in another study, in which EA was induced by immersion at 46.5 degrees C. DNIC testing, thus, seems to be relatively independent of the stimulation conditions, making it an easy to apply tool, suitable for wide range applications in pain psychophysics.
Modulating nitric oxide levels in dorsal root ganglion neurons of rat with low-level laser therapy
NASA Astrophysics Data System (ADS)
Zheng, Li-qin; Wang, Yu-hua; He, Yi-peng; Zhou, Jie; Yang, Hong-qin; Zhang, Yan-ding; Xie, Shu-sen
2015-05-01
Nitric oxide (NO) and nitric oxide synthase (NOS) have an important role in pain signaling transmission in animal models. Low-level laser therapy (LLLT) is known to have an analgesic effect, but the mechanism is unclear. The aim of the study is to investigate the influence of LLLT on NO release and NOS synthesis in dorsal root ganglion (DRG) neurons, in order to find whether LLLI can ameliorate pain through modulating NO production at the cellular level. The results show that in stress conditions, the laser irradiation at 658 nm can modulate NO production in DRG neurons with soma diameter of about 20 μm in a short time after illumination, and affect NOS synthesis in a dose-dependent manner. It is demonstrated that LLLT might treat pain by altering NO release directly and indirectly in DRG neurons.
Rosenberger, Christina; Thürling, Markus; Forsting, Michael; Elsenbruch, Sigrid; Timmann, Dagmar; Gizewski, Elke R
2013-04-01
There is evidence to support that the cerebellum contributes to the neural processing of both emotions and painful stimuli. This could be particularly relevant in conditions associated with chronic abdominal pain, such as the irritable bowel syndrome (IBS), which are often also characterized by affective disturbances. We aimed to test the hypothesis that in IBS, symptoms of anxiety and depression modulate brain activation during visceral stimulation within the cerebellum. We reanalyzed a previous data set from N = 15 female IBS patients and N = 12 healthy women with a specific focus on the cerebellum using advanced normalization methods. Rectal distension-induced brain activation was measured with functional magnetic resonance imaging using non-painful and painful rectal distensions. Symptoms of anxiety and depression, assessed with the Hospital Anxiety and Depression scale, were correlated with cerebellar activation within IBS patients. Within IBS, depression scores were associated with non-painful distension-induced activation in the right cerebellum primarily in Crus II and lobule VIIIb, and additionally in Crus I. Depression scores were also associated with painful distension-induced activation predominantly in vermal lobule V with some extension to the intermediate cerebellum. Anxiety scores correlated significantly with non-painful induced activation in Crus II. Symptoms of anxiety and depression, which are frequently found in chronic pain conditions like IBS, modulate activation during visceral sensory signals not only in cortical and subcortical brain areas but also in the cerebellum.
Association Between Genetic Polymorphisms and Pain Sensitivity in Patients with Hip Osteoarthritis.
Olesen, Anne E; Nielsen, Lecia M; Feddersen, Søren; Erlenwein, Joachim; Petzke, Frank; Przemeck, Michael; Christrup, Lona L; Drewes, Asbjørn M
2018-06-01
Factors such as age, gender, and genetic polymorphisms may explain individual differences in pain phenotype. Genetic associations with pain sensitivity have previously been investigated in osteoarthritis patients, with a focus on the P2X7, TRPV1, and TACR1 genes. However, other genes may play a role as well. Osteoarthritis is a common joint disease, and many patients suffering from this disease are thought to have increased sensitivity to noxious stimuli resulting from sensitization in the nociceptive system. The aim of this study was to investigate if genetic variants of mu, kappa, and delta opioid receptor genes (OPRM1, OPRK1, and OPRD1) and the catechol-O-methyltransferase gene (COMT) influenced the pain phenotype in patients with osteoarthritis. The frequencies of 17 polymorphisms were examined. Pain sensitivity was assessed preoperatively by (1) hip rotation, (2) contact heat stimulation, (3) conditioned pain modulation effect, and (4) pressure stimulation at the tibia in both the affected and the unaffected leg. Ninety-two patients (mean age 66 years) with unilateral hip osteoarthritis were included in the study. Carriage of the OPRM1 rs589046T allele was found to be associated with increased pain ratings during hip rotation (P = 0.04) and increased conditioned pain modulation (P = 0.049). Carriage of the OPRD1 rs2234918C allele was found to be associated with an increased pain detection threshold to contact heat stimulation (P = 0.001). No other associations were found (all P > 0.05). Results from the present study suggest that, in patients with hip osteoarthritis, genetic variants in OPRM1 and OPRD1 may contribute to the pain phenotype. © 2017 World Institute of Pain.
Malchow, Randall J; Black, Ian H
2008-07-01
The evolution of military medical care to manage polytrauma, critically ill-wounded warriors from the greater war on terrorism has been accompanied by significant changes in the diagnosis, management, and modulation of acute and chronic trauma-related pain. A paradigm shift in pain management includes early treatment of pain at the point of injury and throughout the continuum of care with a combination of standard and novel therapeutic interventions. These concepts are important for all critical care providers because they translate to most critically ill patients, including those resulting from natural disasters. Previous authors have reported a high incidence of moderate to severe pain and poor analgesia in intensive care units associated with sleep disturbances, tachycardia, pulmonary complications, increased stress response with thromboembolic incidents, and immunosuppression, increased intensive care unit and hospital stays, and needless suffering. Although opioids have traditionally been the cornerstone of acute pain management, they have potential negative effects ranging from sedation, confusion, respiratory depression, nausea, ileus, constipation, tolerance, opioid-induced hyperalgesia as well as potential for immunosuppression. Alternatively, multimodal therapy is increasingly recognized as a critical pain management approach, especially when combined with early nutrition and ambulation, designed to improve functional recovery and decrease chronic pain conditions. Multimodal therapy encompasses a wide range of procedures and medications, including regional analgesia with continuous epidural or peripheral nerve block infusions, judicious opioids, acetaminophen, anti-inflammatory agents, anticonvulsants, ketamine, clonidine, mexiletine, antidepressants, and anxiolytics as options to treat or modulate pain at various sites of action. With a more aggressive acute pain management strategy, the military has decreased acute and chronic pain conditions, which may have application in the civilian sector as well.
Kindgen-Milles, D; Holthusen, H
1997-06-05
To test the hypothesis that vascular pain depends on sympathetic drive under physiological conditions we studied the effects of both alpha-adrenoceptor stimulation by noradrenaline and alpha-adrenoceptor blockade by phentolamine on the intensity of physicochemically evoked pain from veins in humans. In seven healthy volunteers, a vascularly isolated hand vein segment was perfused continuously with noradrenaline (6 x 10(-9)-6 x 10(-6) M), or phentolamine (1.24 x 10(-4) M). Pain was evoked by intraluminal electrostimulation or by injection of hyperosmolar saline during control perfusion of isoosmolar saline and after each noradrenaline concentration, as well as after perfusion of phentolamine. Subjects rated pain intensity continuously on an electronically controlled visual analogue scale (VAS) between 0% VAS (no pain) and 100% VAS (tolerance maximum). Intravenous electrostimulation as well as hyperosmolar solutions evoked pain in each subject. The intensity of pain was neither influenced by noradrenaline, nor by phentolamine, so that nociception from blood vessels is unlikely to be modulated by the sympathetic nervous system under physiological conditions in humans.
Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain.
Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H; Porreca, Frank
2017-12-01
Gabapentin (GBP) is a first-line therapy for neuropathic pain, but its mechanisms and sites of action remain uncertain. We investigated GBP-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal GBP reversed evoked mechanical hypersensitivity and produced conditioned place preference (CPP) and dopamine (DA) release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal GBP also significantly inhibited dorsal horn wide-dynamic-range neuronal responses to a range of evoked stimuli in SNL rats. By contrast, GBP microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP, and elicited NAc DA release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on wide-dynamic-range neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous GBP-induced CPP and NAc DA release but failed to block its inhibition of tactile allodynia. Gabapentin, therefore, can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity, and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from nonopioid analgesics, GBP requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain-motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of GBP's analgesic effects in patients.
Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain
Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H.; Porreca, Frank
2017-01-01
Gabapentin is a first-line therapy for neuropathic pain but its mechanisms and sites of action remain uncertain. We investigated gabapentin-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal gabapentin reversed evoked mechanical hypersensitivity, produced conditioned place preference (CPP) and dopamine release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal gabapentin also significantly inhibited dorsal horn wide dynamic range (WDR) neuronal responses to a range of evoked stimuli in SNL rats. In contrast, gabapentin microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP and elicited NAc dopamine release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on WDR neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous gabapentin-induced CPP and NAc dopamine release but failed to block its inhibition of tactile allodynia. Gabapentin therefore can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from non-opioid analgesics, gabapentin requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of gabapentin’s analgesic effects in patients. PMID:28832395
Martel, Marc O; Wasan, Ajay D; Edwards, Robert R
2013-11-01
To examine the temporal stability of conditioned pain modulation (CPM), formerly termed diffuse noxious inhibitory controls, among a sample of patients with chronic pain. The study also examined the factors that might be responsible for the stability of CPM. In this test-retest study, patients underwent a series of standardized psychophysical pain-testing procedures designed to assess CPM on two separate occasions (i.e., baseline and follow up). Patients also completed self-report measures of catastrophizing (Pain Catastrophizing Scale [PCS] and negative affect [NA]). Overall, results provided evidence for the stability of CPM among patients with chronic pain. Results, however, revealed considerable sex differences in the stability of CPM. For women, results revealed a significant test-retest correlation between baseline and follow-up CPM scores. For men, however, the test-retest correlation between baseline and follow-up CPM scores was not significant. Results of a Fisher's Z-test revealed that the stability of CPM was significantly greater for women than for men. Follow-up analyses revealed that the difference between men and women in the stability of CPM could not be accounted for by any demographic (e.g., age) and/or psychological factors (PCS and NA). Our findings suggest that CPM paradigms possess sufficient reliability to be incorporated into bedside clinical evaluation of patients with chronic pain, but only among women. The lack of CPM reproducibility/stability observed among men places limits on the potential use of CPM paradigms in clinical settings for the assessment of men's endogenous pain-inhibitory function. Wiley Periodicals, Inc.
Bayesian prediction of placebo analgesia in an instrumental learning model
Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung
2017-01-01
Placebo analgesia can be primarily explained by the Pavlovian conditioning paradigm in which a passively applied cue becomes associated with less pain. In contrast, instrumental conditioning employs an active paradigm that might be more similar to clinical settings. In the present study, an instrumental conditioning paradigm involving a modified trust game in a simulated clinical situation was used to induce placebo analgesia. Additionally, Bayesian modeling was applied to predict the placebo responses of individuals based on their choices. Twenty-four participants engaged in a medical trust game in which decisions to receive treatment from either a doctor (more effective with high cost) or a pharmacy (less effective with low cost) were made after receiving a reference pain stimulus. In the conditioning session, the participants received lower levels of pain following both choices, while high pain stimuli were administered in the test session even after making the decision. The choice-dependent pain in the conditioning session was modulated in terms of both intensity and uncertainty. Participants reported significantly less pain when they chose the doctor or the pharmacy for treatment compared to the control trials. The predicted pain ratings based on Bayesian modeling showed significant correlations with the actual reports from participants for both of the choice categories. The instrumental conditioning paradigm allowed for the active choice of optional cues and was able to induce the placebo analgesia effect. Additionally, Bayesian modeling successfully predicted pain ratings in a simulated clinical situation that fits well with placebo analgesia induced by instrumental conditioning. PMID:28225816
Fingleton, Caitríona; Smart, Keith M; Doody, Catherine M
2017-05-01
Normal efficiency of exercise-induced hypoalgesia (EIH) has been demonstrated in people with knee osteoarthritis (OA), while recent evidence suggests that EIH may be associated with features of pain sensitization such as abnormal conditioned pain modulation (CPM). The aim of this study was to investigate whether people with knee OA with abnormal CPM have dysfunctional EIH compared with those with normal CPM and pain-free controls. Forty peoples with knee OA were subdivided into groups with abnormal and normal CPM, as determined by a decrease/increase in pressure pain thresholds (PPTs) following the cold pressor test. Abnormal CPM (n=19), normal CPM (n=21), and control participants (n=20) underwent PPT testing before, during, and after aerobic and isometric exercise protocols. Between-group differences were analyzed using repeated-measures analysis of variance and within-group differences were analyzed using Wilcoxon signed-rank tests. Significant differences were demonstrated between groups for changes in PPTs postaerobic (F2,55=4.860; P=0.011) and isometric (F2,57=4.727; P=0.013) exercise, with significant decreases in PPTs demonstrated during and postexercise in the abnormal CPM group (P<0.05), and significant increases in PPTs shown during and postexercise in the normal CPM and control groups (P<0.05). Results are suggestive of dysfunctional EIH in response to aerobic and isometric exercise in knee OA patients with abnormal CPM, and normal function of EIH in knee OA patients with an efficient CPM response. Identification of people with knee OA with inefficient endogenous pain modulation may allow for a more individualized and graded approach to exercises in these individuals.
Optimizing the early phase development of new analgesics by human pain biomarkers.
Arendt-Nielsen, Lars; Hoeck, Hans Christian
2011-11-01
Human pain biomarkers are based on standardized acute activation of pain pathways/mechanisms and quantitative assessment of the evoked responses. This approach can be applied to healthy volunteers, to pain patients, and before and after pharmacological interventions to help understanding and profile the mode of action (proof-of-concept) of new and existing analgesic compounds. Standardized stimuli of different modalities can be applied to different tissues (multimodal and multi-tissue) for profiling analgesic compounds with respect to modulation of pain transduction, transmission, specific mechanisms and processing. This approach substantiates which specific compounds may work in particular clinical pain conditions. Human pain biomarkers can be translational and may bridge animal findings in clinical pain conditions, which in turn can provide new possibilities for designing more successful clinical trials. Biomarker based proof-of-concept drug studies in either volunteers or selected patient populations provide inexpensive, fast and reliable mechanism-based information about dose-efficacy relationships. This is important information in the early drug development phase and for designing large expensive clinical trials.
Scioli-Salter, Erica R; Forman, Daniel E; Otis, John D; Gregor, Kristin; Valovski, Ivan; Rasmusson, Ann M
2015-04-01
Chronic pain and posttraumatic stress disorder (PTSD) are disabling conditions that affect biological, psychological, and social domains of functioning. Clinical research demonstrates that patients who are affected by chronic pain and PTSD in combination experience greater pain, affective distress, and disability than patients with either condition alone. Additional research is needed to delineate the interrelated pathophysiology of chronic pain and PTSD, with the goal of facilitating more effective therapies to treat both conditions more effectively; current treatment strategies for chronic pain associated with PTSD have limited efficacy and place a heavy burden on patients, who must visit various specialists to manage these conditions separately. This article focuses on neurobiological factors that may contribute to the coprevalence and synergistic interactions of chronic pain and PTSD. First, we outline how circuits that mediate emotional distress and physiological threat, including pain, converge. Secondly, we discuss specific neurobiological mediators and modulators of these circuits that may contribute to chronic pain and PTSD symptoms. For example, neuropeptide Y, and the neuroactive steroids allopregnanolone and pregnanolone (together termed ALLO) have antistress and antinociceptive properties. Reduced levels of neuropeptide Y and ALLO have been implicated in the pathophysiology of both chronic pain and PTSD. The potential contribution of opioid and cannabinoid system factors also will be discussed. Finally, we address potential novel methods to restore the normal function of these systems. Such novel perspectives regarding disease and disease management are vital to the pursuit of relief for the many individuals who struggle with these disabling conditions.
[Immunologic aspects of pathologic pain].
Evseev, V A; Igon'kina, S I; Vetrilé, L A
2003-01-01
The scientific review is devoted to an analysis of neuro-immune aspects of the pathological pain and to the role of disregulation between the central nervous system (CNS) and the immune system in triggering the mechanisms of such pain. The importance of anti-inflammatory cytokines (interleukins, and tumor necrosis factor) as well as of autoantibodies to neuro-mediators in the pathogenesis of different forms of hyperalgetic conditions is evaluated. New data are discussed, which are related with the possibility of modulating the antibodies to neuro-transmitters (serotonin and catecholamines) of experimental neuropathic pain syndromes.
Honigman, Liat; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-08-01
The endogenous analgesia (EA) system is psychophysically evaluated using various paradigms, including conditioned pain modulation (CPM) and offset analgesia (OA) testing, respectively, the spatial and temporal filtering processes of noxious information. Though both paradigms assess the function of the EA system, it is still unknown whether they reflect the same aspects of EA and consequently whether they provide additive or equivalent data. Twenty-nine healthy volunteers (15 males) underwent 5 trials of different stimulation conditions in random order including: (1) the classic OA three-temperature stimulus train ('OA'); (2) a three-temperature stimulus train as control for the OA ('OAcon'); (3) a constant temperature stimulus ('constant'); (4) the classic parallel CPM ('CPM'); and (5) a combination of OA and CPM ('OA + CPM'). We found that in males, the pain reduction during the OA + CPM condition was greater than during the OA (P = 0.003) and CPM (P = 0.07) conditions. Furthermore, a correlation was found between OA and CPM (r = 0.62, P = 0.01) at the time of maximum OA effect. The additive effect found suggests that the two paradigms represent at least partially different aspects of EA. The moderate association between the CPM and OA magnitudes indicates, on the other hand, some commonality of their underlying mechanisms.
Khan, Junad; Korczeniewska, Olga; Benoliel, Rafael; Kalladka, Mythili; Eliav, Eli; Nasri-Heir, Cibelle
2018-04-13
The aim of this study was to investigate intraoral temporal summation (TS) and conditioned pain modulation (CPM) and compare the outcome with TS and CPM induced in the forearm. In addition, we aimed to study the effect of age and gender on intraoral and forearm TS and CPM. Mechanical stimulation was induced with # 5.46 von Frey filament applying 26 grams of force. A single stimulus, followed by a train of 30 successive stimuli, was applied intraorally and to the dominant forearm. CPM was assessed with the TS test as the painful stimulus and with immersion of the nondominant hand in a hot water bath as the conditioning stimulus. Gender was significantly associated with TS but not with CPM measures. Females had significantly lower mean TS measured in the face and in the dominant forearm compared with males. Age was significantly associated with CPM, but not with TS measures. In both sites examined, older patients had significantly lower mean CPM compared with younger patients. Mechanical TM elicited in the oral cavity can be used as test stimulus for CPM testing. Intraoral modulation, both TS and CPM, has an extent similar to that of the standard cutaneous extremity. TS was lower in females, and CPM was reduced with age. Copyright © 2018 Elsevier Inc. All rights reserved.
Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; De Rossi, Pietro; Angeletti, Gloria; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo
2015-12-01
Several studies reported that hypnosis can modulate pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. We conducted an Activation Likelihood Estimation (ALE) meta-analysis on functional neuroimaging studies of pain perception under hypnosis to identify brain activation-deactivation patterns occurring during hypnotic suggestions aiming at pain reduction, including hypnotic analgesic, pleasant, or depersonalization suggestions (HASs). We searched the PubMed, Embase and PsycInfo databases; we included papers published in peer-reviewed journals dealing with functional neuroimaging and hypnosis-modulated pain perception. The ALE meta-analysis encompassed data from 75 healthy volunteers reported in 8 functional neuroimaging studies. HASs during experimentally-induced pain compared to control conditions correlated with significant activations of the right anterior cingulate cortex (Brodmann's Area [BA] 32), left superior frontal gyrus (BA 6), and right insula, and deactivation of right midline nuclei of the thalamus. HASs during experimental pain impact both cortical and subcortical brain activity. The anterior cingulate, left superior frontal, and right insular cortices activation increases could induce a thalamic deactivation (top-down inhibition), which may correlate with reductions in pain intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dailey, Dana L; Rakel, Barbara A; Vance, Carol G T; Liebano, Richard E; Amrit, Anand S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A
2013-11-01
Because transcutaneous electrical nerve stimulation (TENS) works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo-controlled cross-over design to test the effects of a single treatment of TENS with people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS and no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and in movement; pressure pain thresholds, 6-m walk test, range of motion; 5-time sit-to-stand test, and single-leg stance. Conditioned pain modulation was completed at the end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. Pressure pain thresholds increased at the site of TENS (spine) and outside the site of TENS (leg) when compared to placebo TENS or no TENS. During active TENS, conditioned pain modulation was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to the way in which TENS is used clinically on pain, fatigue, function, and quality of life in individuals with fibromyalgia. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Asymmetric pain processing in Parkinson's disease.
Granovsky, Y; Schlesinger, I; Fadel, S; Erikh, I; Sprecher, E; Yarnitsky, D
2013-10-01
Reduced endogenous pain inhibition, as part of the degenerative process, is presumed to be the mechanism underlying the common presence of pain in patients with Parkinson's disease (PD). The present study aimed to assess an endogenous pain inhibitory system in PD using the conditioned pain modulation paradigm. Twenty-six predominantly unilateral PD patients and 19 controls underwent psychophysical pain assessment before and after patients' morning dopaminergic medication. An unexpected increase in several parameters of pain perception for PD patients was found after dopaminergic medication (e.g. for 49°C noxious heat stimulation an increase from 70.6 ± 4.0 to 77.6 ± 4.0 on the numerical pain scale, P < 0.001). This increase was seen in patients with predominantly left-sided PD, regardless of the stimulated side (for 49°C noxious heat stimulation, predominantly left-sided PD patients, pain perception increased from 73.5 ± 6.8 to 85.0 ± 6.8, P < 0.001, whereas predominantly right-sided PD patients did not show a significant increase, 68.3 ± 6.8 to 70.4 ± 6.5, P = 0.777). Baseline efficiency of conditioned pain modulation inversely correlated with age at disease onset (r = -0.522; P = 0.009) and disease severity (Unified PD Rating Scale, r = 0.447; P = 0.032) but did not differ between patients and controls. Increased sensory response causing hyperalgesia occurs after dopaminergic medication in patients with predominantly left-sided PD. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.
Gopalakrishnan, Raghavan; Burgess, Richard C; Malone, Donald A; Lempka, Scott F; Gale, John T; Floden, Darlene P; Baker, Kenneth B; Machado, Andre G
2018-06-01
Poststroke pain syndrome (PSPS) is an often intractable disorder characterized by hemiparesis associated with unrelenting chronic pain. Although traditional analgesics have largely failed, integrative approaches targeting affective-cognitive spheres have started to show promise. Recently, we demonstrated that deep brain stimulation (DBS) of the ventral striatal area significantly improved the affective sphere of pain in patients with PSPS. In the present study, we examined whether electrophysiological correlates of pain anticipation were modulated by DBS that could serve as signatures of treatment effects. We recorded event-related fields (ERFs) of pain anticipation using magnetoencephalography (MEG) in 10 patients with PSPS preoperatively and postoperatively in DBS OFF and ON states. Simple visual cues evoked anticipation as patients awaited a painful (PS) or nonpainful stimulus (NPS) to the nonaffected or affected extremity. Preoperatively, ERFs showed no difference between PS and NPS anticipation to the affected extremity, possibly due to loss of salience in a network saturated by pain experience. DBS significantly modulated the early N1, consistent with improvements in affective networks involving restoration of salience and discrimination capacity. Additionally, DBS suppressed the posterior P2 (aberrant anticipatory anxiety) while enhancing the anterior N1 (cognitive and emotional regulation) in responders. DBS-induced changes in ERFs could potentially serve as signatures for clinical outcomes. NEW & NOTEWORTHY We examined the electrophysiological correlates of pain affect in poststroke pain patients who underwent deep brain stimulation (DBS) targeting the ventral striatal area under a randomized, controlled trial. DBS significantly modulated early event-related components, particularly N1 and P2, measured with magnetoencephalography during a pain anticipatory task, compared with baseline and the DBS-OFF condition, pointing to possible mechanisms of action. DBS-induced changes in event-related fields could potentially serve as biomarkers for clinical outcomes.
Cerebral somatic pain modulation during autogenic training in fMRI.
Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R
2012-10-01
Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.
Combined electric and pressure cuff pain stimuli for assessing conditioning pain modulation (CPM).
Tsukamoto, M; Petersen, K K; Mørch, C D; Arendt-Nielsen, L
2017-12-29
Aims Traditionally, conditioning pain modulation (CPM) can be assessed by applying a test stimulus (TS) before and after application of a conditioning stimulus (CS), which is normally applied extra-segmental. Currently, no studies have attempted to apply the TS and CS to the same site using different stimuli modalities. The aim of this study was to evaluate electrical TS and cuff pressure CS applied to the same experimental site for studying CPM. Methods 20 male volunteers participated in this study, which consisted of stimulations applied by a cuff-algometer (NociTech and Aalborg University, Denmark) and current stimulator (Digitimer DS5, UK), through two Ag/AgCl electrodes (Ambu® Neuroline 700, Denmark). The cuff was wrapped around the lower leg and stimulation electrodes were placed under the cuff and to the same location on the contralateral leg. Electrical TS were applied to the non-dominant leg with or without cuff pressure CS on the dominant (CS1) or the same (non-dominant) leg (CS2, electrode under cuff). The subjects were instructed to rate the electrical evoked pain intensity on a 10-cm continuous visual analog scale (VAS, "0" represented "no pain", and "10" represented "maximal pain"). The pain detection threshold (PDT) was defined as "1" on the VAS scale. Results There was no significant deference in PDT for neither CS1 nor CS2. A median split subanalysis on CPM-responders versus CPM-nonresponders to the TS + CS1 combination. Using this grouping, there was significant increase in PDT when comparing TS to TS + CS1 or TS + CS2 (4.0 mA vs 5.6 mA; P < 0.05, 4.0 mA vs 5.1 mA; P < 0.05). Conclusions The study indicates that CPM can be evoked in a subgroup of subjects by applying the electrical test stimulus and cuff pressure conditioning stimuli to the same experimental site.
Martel, MO; Wasan, AD; Edwards, RR
2013-01-01
Objectives To examine the temporal stability of conditioned pain modulation (CPM), formerly termed diffuse noxious inhibitory controls (DNIC), among a sample of patients with chronic pain. The study also examined the factors that might be responsible for the stability of CPM. Design & subjects, and methods In this test-retest study, patients underwent a series of standardized psychophysical pain testing procedures designed to assess CPM on two separate occasions (i.e., baseline, follow-up). Patients also completed self-report measures of catastrophizing (PCS) and negative affect (NA). Results Overall, results provided evidence for the stability of CPM among patients with chronic pain. Results, however, revealed considerable sex differences in the stability of CPM. For women, results revealed a significant test-retest correlation between baseline and follow-up CPM scores. For men, however, the test-retest correlation between baseline and follow-up CPM scores was not significant. Results of a Fisher’s Z-test revealed that the stability of CPM was significantly greater for women than for men. Follow-up analyses revealed that the difference between men and women in the stability of CPM could not be accounted for by any demographic (e.g., age) and/or psychologic factors (PCS, NA). Conclusions Our findings suggest that CPM paradigms possess sufficient reliability to be incorporated into bedside clinical evaluation of patients with chronic pain, but only among women. The lack of CPM reproducibility/stability observed among men places limits on the potential use of CPM paradigms in clinical settings for the assessment of men’s endogenous pain-inhibitory function. PMID:23924369
Distinct neural representations of placebo and nocebo effect
Freeman, Sonya; Yu, Rongjun; Egorova, Natalia; Chen, Xiaoyan; Kirsch, Irving; Claggett, Brian; Kaptchuk, Ted J.; Gollub, Randy L.; Kong, Jian
2015-01-01
Expectations shape the way we experience the world. In this study, we used fMRI to investigate how positive and negative expectation can changes pain experiences in the same cohort of subjects. We first manipulated subjects’ treatment expectation of the effectiveness of three inert creams, with one cream labeled “Lidocaine” (positive expectancy), one labeled “Capsaicin” (negative expectancy) and one labeled “Neutral” by surreptitiously decreasing, increasing, or not changing respectively, the intensity of the noxious stimuli administered following cream application. We then used fMRI to investigate the signal changes associated with administration of identical pain stimuli before and after the treatment and control creams. Twenty-four healthy adults completed the study. Results showed expectancy significantly modulated subjective pain ratings. After controlling for changes in the neutral condition, the subjective pain rating changes evoked by positive and negative expectancy were significantly associated. fMRI results showed that the expectation of an increase in pain induced significant fMRI signal changes in the insula, orbitofrontal cortex, and periaqueductal gray, whereas the expectation of pain relief evoked significant fMRI signal changes in the striatum. No brain regions were identified as common to both “Capsaicin” and “Lidocaine” conditioning. There was also no significant association between the brain response to identical noxious stimuli in the pain matrix evoked by positive and negative expectancy. Our findings suggest that positive and negative expectancy engage different brain networks to modulate our pain experiences, but, overall, these distinct patterns of neural activation result in a correlated placebo and nocebo behavioral response. PMID:25776211
Psychological Factors and Conditioned Pain Modulation: A Meta-Analysis.
Nahman-Averbuch, Hadas; Nir, Rony-Reuven; Sprecher, Elliot; Yarnitsky, David
2016-06-01
Conditioned pain modulation (CPM) responses may be affected by psychological factors such as anxiety, depression, and pain catastrophizing; however, most studies on CPM do not address these relations as their primary outcome. The aim of this meta-analysis was to analyze the findings regarding the associations between CPM responses and psychological factors in both pain-free individuals and pain patients. After a comprehensive PubMed search, 37 articles were found to be suitable for inclusion. Analyses used DerSimonian and Laird's random-effects model on Fisher's z-transforms of correlations; potential publication bias was tested using funnel plots and Egger's regression test for funnel plot asymmetry. Six meta-analyses were performed examining the correlations between anxiety, depression, and pain catastrophizing, and CPM responses in healthy individuals and pain patients. No significant correlations between CPM responses and any of the examined psychological factors were found. However, a secondary analysis, comparing modality-specific CPM responses and psychological factors in healthy individuals, revealed the following: (1) pressure-based CPM responses were correlated with anxiety (grand mean correlation in original units r=-0.1087; 95% confidence limits, -0.1752 to -0.0411); (2) heat-based CPM was correlated with depression (r=0.2443; 95% confidence limits, 0.0150 to 0.4492); and (3) electrical-based CPM was correlated with pain catastrophizing levels (r=-0.1501; 95% confidence limits, -0.2403 to -0.0574). Certain psychological factors seem to be associated with modality-specific CPM responses in healthy individuals. This potentially supports the notion that CPM paradigms evoked by different stimulation modalities represent different underlying mechanisms.
Goudet, Cyril; Chapuy, Eric; Alloui, Abdelkrim; Acher, Francine; Pin, Jean-Philippe; Eschalier, Alain
2008-07-01
Glutamate plays a key role in modulation of nociceptive processing. This excitatory amino acid exerts its action through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluRs). Eight mGluRs have been identified and divided in three groups based on their sequence similarity, pharmacology and G-protein coupling. While the role of group I and II mGluRs is now well established, little is known about the part played by group III mGluRs in pain. In this work, we studied comparatively the involvement of spinal group III mGluR in modulation of acute, inflammatory and neuropathic pain. While intrathecal injection of ACPT-I, a selective group III mGluR agonist, failed to induce any change in vocalization thresholds of healthy animals submitted to mechanical or thermal stimuli, it dose-dependently inhibited the nociceptive behavior of rats submitted to the formalin test and the mechanical hyperalgesia associated with different animal models of inflammatory (carrageenan-treated and monoarthritic rats) or neuropathic pain (mononeuropathic and vincristine-treated rats). Similar effects were also observed following intrathecal injection of PHCCC, a positive allosteric modulator of mGlu4. Antihyperalgesia induced by ACPT-I was blocked either by LY341495, a nonselective antagonist of mGluR, by MAP4, a selective group III antagonist. This study provide new evidences supporting the role of spinal group III mGluRs in the modulation of pain perception in different pathological pain states of various etiologies but not in normal conditions. It more particularly highlights the specific involvement of mGlu4 in this process and may be a useful therapeutic approach to chronic pain treatment.
Briggs, Emma V; Battelli, Daniele; Gordon, David; Kopf, Andreas; Ribeiro, Sofia; Puig, Margarita M; Kress, Hans G
2015-08-10
Unrelieved pain is a substantial public health concern necessitating improvements in medical education. The Advancing the Provision of Pain Education and Learning (APPEAL) study aimed to determine current levels and methods of undergraduate pain medicine education in Europe. Using a cross-sectional design, publicly available curriculum information was sought from all medical schools in 15 representative European countries in 2012-2013. Descriptive analyses were performed on: the provision of pain teaching in dedicated pain modules, other modules or within the broader curriculum; whether pain teaching was compulsory or elective; the number of hours/credits spent teaching pain; pain topics; and teaching and assessment methods. Curriculum elements were publicly available from 242 of 249 identified schools (97%). In 55% (133/242) of schools, pain was taught only within compulsory non-pain-specific modules. The next most common approaches were for pain teaching to be provided wholly or in part via a dedicated pain module (74/242; 31%) or via a vertical or integrated approach to teaching through the broader curriculum, rather than within any specific module (17/242; 7%). The curricula of 17/242 schools (7%) showed no evidence of any pain teaching. Dedicated pain modules were most common in France (27/31 schools; 87%). Excluding France, only 22% (47/211 schools) provided a dedicated pain module and in only 9% (18/211) was this compulsory. Overall, the median number of hours spent teaching pain was 12.0 (range 4-56.0 h; IQR: 12.0) for compulsory dedicated pain modules and 9.0 (range 1.0-60.0 h; IQR: 10.5) for other compulsory (non-pain specific) modules. Pain medicine was principally taught in classrooms and assessed by conventional examinations. There was substantial international variation throughout. Documented pain teaching in many European medical schools falls far short of what might be expected given the prevalence and public health burden of pain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Physical activity behavior predicts endogenous pain modulation in older adults.
Naugle, Kelly M; Ohlman, Thomas; Naugle, Keith E; Riley, Zachary A; Keith, NiCole R
2017-03-01
Older adults compared with younger adults are characterized by greater endogenous pain facilitation and a reduced capacity to endogenously inhibit pain, potentially placing them at a greater risk for chronic pain. Previous research suggests that higher levels of self-reported physical activity are associated with more effective pain inhibition and less pain facilitation on quantitative sensory tests in healthy adults. However, no studies have directly tested the relationship between physical activity behavior and pain modulatory function in older adults. This study examined whether objective measures of physical activity behavior cross-sectionally predicted pain inhibitory function on the conditioned pain modulation (CPM) test and pain facilitation on the temporal summation (TS) test in healthy older adults. Fifty-one older adults wore an accelerometer on the hip for 7 days and completed the CPM and TS tests. Measures of sedentary time, light physical activity (LPA), and moderate to vigorous physical activity (MVPA) were obtained from the accelerometer. Hierarchical linear regressions were conducted to determine the relationship of TS and CPM with levels of physical activity, while controlling for demographic, psychological, and test variables. The results indicated that sedentary time and LPA significantly predicted pain inhibitory function on the CPM test, with less sedentary time and greater LPA per day associated with greater pain inhibitory capacity. Additionally, MVPA predicted pain facilitation on the TS test, with greater MVPA associated with less TS of pain. These results suggest that different types of physical activity behavior may differentially impact pain inhibitory and facilitatory processes in older adults.
Clinical presentation and manual therapy for lower quadrant musculoskeletal conditions.
Courtney, Carol A; Clark, Jeffrey D; Duncombe, Alison M; O'Hearn, Michael A
2011-11-01
Chronic lower quadrant injuries constitute a significant percentage of the musculoskeletal cases seen by clinicians. While impairments may vary, pain is often the factor that compels the patient to seek medical attention. Traumatic injury from sport is one cause of progressive chronic joint pain, particularly in the lower quarter. Recent studies have demonstrated the presence of peripheral and central sensitization mechanisms in different lower quadrant pain syndromes, such as lumbar spine related leg pain, osteoarthritis of the knee, and following acute injuries such as lateral ankle sprain and anterior cruciate ligament rupture. Proper management of lower quarter conditions should include assessment of balance and gait as increasing pain and chronicity may lead to altered gait patterns and falls. In addition, quantitative sensory testing may provide insight into pain mechanisms which affect management and prognosis of musculoskeletal conditions. Studies have demonstrated analgesic effects and modulation of spinal excitability with use of manual therapy techniques, with clinical outcomes of improved gait and functional ability. This paper will discuss the evidence which supports the use of manual therapy for lower quarter musculoskeletal dysfunction.
Clark, Jacqui; Nijs, Jo; Yeowell, Gillian; Goodwin, Peter Charles
2017-09-01
Altered central pain modulation is the predominant pain mechanism in a proportion of chronic musculoskeletal pain disorders and is associated with poor outcomes. Although existing studies predict poor outcomes such as persistent pain and disability, to date there is little consensus on what factors specifically predict altered central pain modulation. To review the existing literature on the predictive factors specifically for altered central pain modulation in musculoskeletal pain populations. This is a systematic review in accordance with supplemented PRISMA guidelines. A systematic search was performed by 2 mutually blinded reviewers. Relevant articles were screened by title and abstract from Medline, Embase, PubMed, CINAHL, and Web of Science electronic databases. Alternative sources were also sought to locate missed potential articles. Eligibility included studies published in English, adults aged 18 to 65, musculoskeletal pain, baseline measurements taken at the pre-morbid or acute stage, > 3-month follow-up time after pain onset, and primary outcome measures specific to altered central pain modulation. Studies were excluded where there were concurrent diseases or they were non-predictive studies. Risk of bias was assessed using the quality in prognostic studies (QUIPS) tool. Study design, demographics, musculoskeletal region, inclusion/exclusion criteria, measurement timelines, predictor and primary outcome measures, and results were extracted. Data were synthesized qualitatively and strength of evidence was scored using the grading of recommendations, assessment, development, and evaluations (GRADE) scoring system. Nine eligible articles were located, in various musculoskeletal populations (whiplash, n = 2; widespread pain, n = 5; temporomandibular disorder, n = 2). Moderate evidence was found for 2 predictive factors of altered central pain modulation: 1) high sensory sensitivity (using genetic testing or quantitative sensory tests), and 2) psychological factors (somatization and poor self-expectation of recovery), at a pre-morbid or acute stage baseline. At the times of the article publications, the current definitions and clinical guidelines for identifying altered central pain modulation were not yet available. Careful interpretation of the information provided using current knowledge and published guidelines was necessary to extract information specific to altered central pain modulation in some of the studies, avoiding unwarranted assumptions. Premorbid and acute stage high sensory sensitivity and/or somatization are the strongest predictors of altered central pain modulation in chronic musculoskeletal pain to date. This is the first systematic review specifically targeting altered central pain modulation as the primary outcome in musculoskeletal pain populations. Early identification of people at risk of developing chronic pain with altered central pain modulation may guide clinicians in appropriate management, diminishing the burden of persistent pain on patients and heath care providers alike. Systematic Review Registration no.: PROSPERO 2015:CRD42015032394.Key words: Predictive factors, pre-morbid and acute stage baselines, altered central pain modulation, chronic musculoskeletal pain, sensory processing, somatization.
The therapeutic potential of Na+ and Ca2+ channel blockers in pain management.
Sabido-David, Cibele; Faravelli, Laura; Salvati, Patricia
2004-10-01
Chronic pain affects a large percentage of the population, representing a socio-economic burden. Current treatments are characterised by suboptimal efficacy and/or side effects that limit their use. Among several approaches to treating chronic pain, voltage-sensitive Ca(2+) and Na(+) channels are promising targets. This review evaluates the preclinical evidence that supports the involvement of these targets, with specific attention to those subtypes that appear more strictly correlated with pain generation and sustainment, as well as those compounds that modulate the activity of Ca(2+) and/or Na(+) channels that are currently in clinical development for chronic pain conditions.
Holley, Amy Lewandowski; Wilson, Anna C.; Palermo, Tonya M.
2016-01-01
Strategies directed at the prevention of disabling pain have been suggested as a public health priority, making early identification of youth at risk for poor outcomes critical. At present limited information is available to predict which youth presenting with acute pain are at risk for persistence. The aims of this prospective longitudinal study were to identify biopsychosocial factors in the acute period that predict the transition to persistent pain in youth with new-onset musculoskeletal (MSK) pain complaints. Participants were 88 children and adolescents (age 10–17 years) presenting to the emergency department (n=47) or orthopedic clinic (n=41) for evaluation of a new MSK pain complaint (< 1 month duration). Youth presented for two study visits (T1 = <1 month post pain onset; T2 = 4 month follow-up) during which they completed questionnaires (assessing pain characteristics, psychological factors, sleep quality) and participated in a lab task assessing conditioned pain modulation (CPM). Regression analyses tested T1 predictors of longitudinal pain outcomes (pain persistence, pain-related disability, quality of life). Results revealed approximately 35% of youth had persistent pain at 4-month follow-up, with persistent pain predicted by poorer CPM and female sex. Higher depressive symptoms at T1 were associated with higher pain-related disability and poorer quality of life at T2. Findings highlight the roles of depressive symptoms and pain modulation in longitudinally predicting pain persistence in treatment-seeking youth with acute MSK pain, and suggest potential mechanisms in the transition from acute to chronic MSK pain in children and adolescents. PMID:28151835
Threatening social context facilitates pain-related fear learning.
Karos, Kai; Meulders, Ann; Vlaeyen, Johan W S
2015-03-01
This study investigated the effects of a threatening and a safe social context on learning pain-related fear, a key factor in the development and maintenance of chronic pain. We measured self-reported pain intensity, pain expectancy, pain-related fear (verbal ratings and eyeblink startle responses), and behavioral measures of avoidance (movement-onset latency and duration) using an established differential voluntary movement fear conditioning paradigm. Participants (N = 42) performed different movements with a joystick: during fear acquisition, movement in one direction (CS+) was followed by a painful stimulus (pain-US) whereas movement in another direction (CS-) was not. For participants in the threat group, an angry face was continuously presented in the background during the task, whereas in the safe group, a happy face was presented. During the extinction phase the pain-US was omitted. As compared to the safe social context, a threatening social context led to increased contextual fear and facilitated differentiation between CS+ and CS- movements regarding self-reported pain expectancy, fear of pain, eyeblink startle responses, and movement-onset latency. In contrast, self-reported pain intensity was not affected by social context. These data support the modulation of pain-related fear by social context. A threatening social context leads to stronger acquisition of (pain-related) fear and simultaneous contextual fear but does not affect pain intensity ratings. This knowledge may aid in the prevention of chronic pain and anxiety disorders and shows that social context might modulate pain-related fear without immediately affecting pain intensity itself. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Li, Zheng-Wei; Wu, Bin; Ye, Pin; Tan, Zhi-Yong; Ji, Yong-Hua
2016-12-01
A previous study found that brain natriuretic peptide (BNP) inhibited inflammatory pain via activating its receptor natriuretic peptide receptor A (NPRA) in nociceptive sensory neurons. A recent study found that functional NPRA is expressed in almost all the trigeminal ganglion (TG) neurons at membrane level suggesting a potentially important role for BNP in migraine pathophysiology. An inflammatory pain model was produced by subcutaneous injection of BmK I, a sodium channel-specific modulator from venom of Chinese scorpion Buthus martensi Karsch. Quantitative PCR, Western Blot, and immunohistochemistry were used to detect mRNA and protein expression of BNP and NPRA in dorsal root ganglion (DRG) and dorsal horn of spinal cord. Whole-cell patch clamping experiments were conducted to record large-conductance Ca 2+ -activated K + (BK Ca ) currents of membrane excitability of DRG neurons. Spontaneous and evoked pain behaviors were examined. The mRNA and protein expression of BNP and NPRA was up-regulated in DRG and dorsal horn of spinal cord after BmK I injection. The BNP and NPRA was preferentially expressed in small-sized DRG neurons among which BNP was expressed in both CGRP-positive and IB4-positive neurons while NPRA was preferentially expressed in CGRP-positive neurons. BNP increased the open probability of BK Ca channels and suppressed the membrane excitability of small-sized DRG neurons. Intrathecal injection of BNP significantly inhibited BmK-induced pain behaviors including both spontaneous and evoked pain behaviors. These results suggested that BNP might play an important role as an endogenous pain reliever in BmK I-induced inflammatory pain condition. It is also suggested that BNP might play a similar role in other pathophysiological pain conditions including migraine.
Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans.
Youssef, Andrew M; Macefield, Vaughan G; Henderson, Luke A
2016-07-01
Conditioned pain modulation (CPM) is a powerful endogenous analgesic mechanism which can completely inhibit incoming nociceptor signals at the primary synapse. The circuitry responsible for CPM lies within the brainstem and involves the subnucleus reticularis dorsalis (SRD). While the brainstem is critical for CPM, the cortex can significantly modulate its expression, likely via the brainstem circuitry critical for CPM. Since higher cortical regions such as the anterior, mid-cingulate, and dorsolateral prefrontal cortices are activated by noxious stimuli and show reduced activations during other analgesic responses, we hypothesized that these regions would display reduced responses during CPM analgesia. Furthermore, we hypothesized that functional connectivity strength between these cortical regions and the SRD would be stronger in those that express CPM analgesia compared with those that do not. We used functional magnetic resonance imaging to determine sites recruited during CPM expression and their influence on the SRD. A lack of CPM analgesia was associated with greater signal intensity increases during each test stimulus in the presence of the conditioning stimulus compared to test stimuli alone in the mid-cingulate and dorsolateral prefrontal cortices and increased functional connectivity with the SRD. In contrast, those subjects exhibiting CPM analgesia showed no change in the magnitude of signal intensity increases in these cortical regions or strength of functional connectivity with the SRD. These data suggest that during multiple or widespread painful stimuli, engagement of the prefrontal and cingulate cortices prevents the generation of CPM analgesia, raising the possibility altered responsiveness in these cortical regions underlie the reduced CPM observed in individuals with chronic pain. Hum Brain Mapp 37:2630-2644, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Roller massage decreases spinal excitability to the soleus.
Young, James D; Spence, Alyssa-Joy; Behm, David G
2018-04-01
Roller massage (RM) interventions have shown acute increases in range of motion (ROM) and pain pressure threshold (PPT). It is unclear whether the RM-induced increases can be attributed to changes in neural or muscle responses. The purpose of this study was to evaluate the effect of altered afferent input via application of RM on spinal excitability, as measured with the Hoffmann (H-) reflex. A randomized within-subjects design was used. Three 30-s bouts of RM were implemented on a rested, nonexercised, injury-free muscle with 30 s of rest between bouts. The researcher applied RM to the plantar flexors at three intensities of pain: high, moderate, and sham. Measures included normalized M-wave and H-reflex peak-to-peak amplitudes before, during, and up to 3 min postintervention. M-wave and H-reflex measures were highly reliable. RM resulted in significant decreases in soleus H-reflex amplitudes. High-intensity, moderate-intensity, and sham conditions decreased soleus H-reflex amplitudes by 58%, 43%, and 19%, respectively. H-reflexes induced with high-intensity rolling discomfort or pain were significantly lower than moderate and sham conditions. The effects were transient in nature, with an immediate return to baseline following RM. This is the first evidence of RM-induced modulation of spinal excitability. The intensity-dependent response observed indicates that rolling pressure or pain perception may play a role in modulation of the inhibition. Roller massage-induced neural modulation of spinal excitability may explain previously reported increases in ROM and PPT. NEW & NOTEWORTHY Recent evidence indicates that the benefits of foam rolling and roller massage are primarily accrued through neural mechanisms. The present study attempts to determine the neuromuscular response to roller massage interventions. We provide strong evidence of roller massage-induced neural modulation of spinal excitability to the soleus. It is plausible that reflex inhibition may explain subsequent increases in pain pressure threshold.
Riggs, M M; Bennetts, M; van der Graaf, P H; Martin, S W
2012-01-01
Endometriosis is a gynecological condition resulting from proliferation of endometrial-like tissue outside the endometrial cavity. Estrogen suppression therapies, mediated through gonadotropin-releasing hormone (GnRH) modulation, decrease endometriotic implants and diminish associated pain albeit at the expense of bone mineral density (BMD) loss. Our goal was to provide model-based guidance for GnRH-modulating clinical programs intended for endometriosis management. This included developing an estrogen suppression target expected to provide symptomatic relief with minimal BMD loss and to evaluate end points and study durations supportive of efficient development decisions. An existing multiscale model of calcium and bone was adapted to include systematic estrogen pharmacologic effects to describe estrogen concentration-related effects on BMD. A logistic regression fit to patient-level data from three clinical GnRH agonist (nafarelin) studies described the relationship of estrogen with endometrial-related pain. Targeting estradiol between 20 and 40 pg/ml was predicted to provide efficacious endometrial pain response while minimizing BMD effects. PMID:23887363
Breaking barriers to novel analgesic drug development.
Yekkirala, Ajay S; Roberson, David P; Bean, Bruce P; Woolf, Clifford J
2017-08-01
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Breaking barriers to novel analgesic drug development
Yekkirala, Ajay S; Roberson, David P; Bean, Bruce P.; Woolf, Clifford J.
2017-01-01
Acute and chronic pain complaints, while very common, are generally poorly served by existing therapies. The unmet clinical need reflects the failure in developing novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms coupled with the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities to develop new therapeutic strategies and revisit existing targets, including modulating ion channels, enzymes and GPCRs. PMID:28596533
Valencia, Carolina; Kindler, Lindsay L.; Fillingim, Roger B.; George, Steven Z.
2011-01-01
Recent reports suggest deficits in conditioned pain modulation (CPM) and enhanced suprathreshold heat pain response (SHPR) potentially play a role in the development of chronic pain. The purpose of this study was to investigate whether central pain processing was altered in 2 musculoskeletal shoulder pain models. The goals of this study were to determine whether central pain processing: 1) differs between healthy subjects and patients with clinical shoulder pain, 2) changes with induction of exercise induced muscle pain (EIMP), and 3) changes 3 months after shoulder surgery. Fifty eight patients with clinical shoulder pain and 56 age and sex matched healthy subjects were included in these analyses. The healthy cohort was examined before inducing EIMP, and 48 and 96 hours later. The clinical cohort was examined before shoulder surgery and 3 months later. CPM did not differ between the cohorts, however; SHPR was elevated for patients with shoulder pain compared to healthy controls. Induction of acute shoulder pain with EIMP resulted in increased shoulder pain intensity but did not change CPM or SHPR. Three months following shoulder surgery clinical pain intensity decreased but CPM was unchanged from pre-operative assessment. In contrast SHPR was decreased and showed values comparable with healthy controls at 3 months. Therefore, the present study suggests that: 1) clinical shoulder pain is associated with measurable changes in central pain processing, 2) exercise-induced shoulder pain did not affect measures of central pain processing, and 3) elevated SHPR was normalized with shoulder surgery. Collectively our findings support neuroplastic changes in pain modulation were associated with decreases in clinical pain intensity only, and could be detected more readily with thermal stimuli. PMID:22208804
Goodin, Burel R; Glover, Toni L; Sotolongo, Adriana; King, Christopher D; Sibille, Kimberly T; Herbert, Matthew S; Cruz-Almeida, Yenisel; Sanden, Shelley H; Staud, Roland; Redden, David T; Bradley, Laurence A; Fillingim, Roger B
2013-02-01
Dispositional optimism has been shown to beneficially influence various experimental and clinical pain experiences. One possibility that may account for decreased pain sensitivity among individuals who report greater dispositional optimism is less use of maladaptive coping strategies such as pain catastrophizing, a negative cognitive/affective response to pain. An association between dispositional optimism and conditioned pain modulation, a measure of endogenous pain inhibition, has previously been reported. However, it remains to be determined whether dispositional optimism is also associated with temporal summation (TS), a measure of endogenous pain facilitation. The current study examined whether pain catastrophizing mediated the association between dispositional optimism and TS among 140 older, community-dwelling adults with symptomatic knee osteoarthritis. Individuals completed measures of dispositional optimism and pain catastrophizing. TS was then assessed using a tailored heat pain stimulus on the forearm. Greater dispositional optimism was significantly related to lower levels of pain catastrophizing and TS. Bootstrapped confidence intervals revealed that less pain catastrophizing was a significant mediator of the relation between greater dispositional optimism and diminished TS. These findings support the primary role of personality characteristics such as dispositional optimism in the modulation of pain outcomes by abatement of endogenous pain facilitation and less use of catastrophizing. Results from this study further support the body of evidence that attests to the beneficial effects of positive personality traits on pain sensitivity and pain processing. Further, this study identified diminished pain catastrophizing as an important mechanism explaining the inverse relation between dispositional optimism and endogenous pain facilitation. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Mindfulness Meditation Modulates Pain Through Endogenous Opioids.
Sharon, Haggai; Maron-Katz, Adi; Ben Simon, Eti; Flusser, Yuval; Hendler, Talma; Tarrasch, Ricardo; Brill, Silviu
2016-07-01
Recent evidence supports the beneficial effects of mindfulness meditation on pain. However, the neural mechanisms underlying this effect remain poorly understood. We used an opioid blocker to examine whether mindfulness meditation-induced analgesia involves endogenous opioids. Fifteen healthy experienced mindfulness meditation practitioners participated in a double-blind, randomized, placebo-controlled, crossover study. Participants rated the pain and unpleasantness of a cold stimulus prior to and after a mindfulness meditation session. Participants were then randomized to receive either intravenous naloxone or saline, after which they meditated again, and rated the same stimulus. A (3) × (2) repeated-measurements analysis of variance revealed a significant time effect for pain and unpleasantness scores (both P <.001) as well as a significant condition effect for pain and unpleasantness (both P <.2). Post hoc comparisons revealed that pain and unpleasantness scores were significantly reduced after natural mindfulness meditation and after placebo, but not after naloxone. Furthermore, there was a positive correlation between the pain scores following naloxone vs placebo and participants' mindfulness meditation experience. These findings show, for the first time, that meditation involves endogenous opioid pathways, mediating its analgesic effect and growing resilient with increasing practice to external suggestion. This finding could hold promising therapeutic implications and further elucidate the fine mechanisms involved in human pain modulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Do pain-associated contexts increase pain sensitivity? An investigation using virtual reality.
Harvie, Daniel S; Sterling, Michele; Smith, Ashley D
2018-04-30
Pain is not a linear result of nociception, but is dependent on multisensory inputs, psychological factors, and prior experience. Since nociceptive models appear insufficient to explain chronic pain, understanding non-nociceptive contributors is imperative. Several recent models propose that cues associatively linked to painful events might acquire the capacity to augment, or even cause, pain. This experiment aimed to determine whether contexts associated with pain, could modulate mechanical pain thresholds and pain intensity. Forty-eight healthy participants underwent a contextual conditioning procedure, where three neutral virtual reality contexts were paired with either unpredictable noxious stimulation, unpredictable vibrotactile stimulation, or no stimulation. Following the conditioning procedure, mechanical pain thresholds and pain evoked by a test stimulus were examined in each context. In the test phase, the effect of expectancy was equalised across conditions by informing participants when thresholds and painful stimuli would be presented. Contrary to our hypothesis, scenes that were associated with noxious stimulation did not increase mechanical sensitivity (p=0.08), or increase pain intensity (p=0.46). However, an interaction with sex highlighted the possibility that pain-associated contexts may alter pain sensitivity in females but not males (p=0.03). Overall, our data does not support the idea that pain-associated contexts can alter pain sensitivity in healthy asymptomatic individuals. That an effect was shown in females highlights the possibility that some subgroups may be susceptible to such an effect, although the magnitude of the effect may lack real-world significance. If pain-associated cues prove to have a relevant pain augmenting effect, in some subgroups, procedures aimed at extinguishing pain-related associations may have therapeutic potential.
Mood influences supraspinal pain processing separately from attention.
Villemure, Chantal; Bushnell, M Catherine
2009-01-21
Studies show that inducing a positive mood or diverting attention from pain decreases pain perception. Nevertheless, induction manipulations, such as viewing interesting movies or performing mathematical tasks, often influence both emotional and attentional states. Imaging studies have examined the neural basis of psychological pain modulation, but none has explicitly separated the effects of emotion and attention. Using odors to modulate mood and shift attention from pain, we previously showed that the perceptual consequences of changing mood differed from those of altering attention, with mood primarily altering pain unpleasantness and attention preferentially altering pain intensity. These findings suggest that brain circuits involved in pain modulation provoked by mood or attention are partially separable. Here we used functional magnetic resonance imaging to directly compare the neurocircuitry involved in mood- and attention-related pain modulation. We manipulated independently mood state and attention direction, using tasks involving heat pain and pleasant and unpleasant odors. Pleasant odors, independent of attentional focus, induced positive mood changes and decreased pain unpleasantness and pain-related activity within the anterior cingulate (ACC), medial thalamus, and primary and secondary somatosensory cortices. The effects of attentional state were less robust, with only the activity in anterior insular cortex (aIC) showing possible attentional modulation. Lateral inferior frontal cortex [LinfF; Brodmann's area (BA) 45/47] activity correlated with mood-related modulation, whereas superior posterior parietal (SPP; BA7) and entorhinal activity correlated with attention-related modulation. ACC activity covaried with LinfF and periacqueductal gray activity, whereas aIC activity covaried with SPP activity. These findings suggest that separate neuromodulatory circuits underlie emotional and attentional modulation of pain.
Influence of exercise on visceral pain: an explorative study in healthy volunteers
van Weerdenburg, Laura JGM; Brock, Christina; Drewes, Asbjørn Mohr; van Goor, Harry; de Vries, Marjan; Wilder-Smith, Oliver HG
2017-01-01
Background and objectives Contradictory results have been found about the effect of different exercise modalities on pain. The aim of this study was to investigate the early effects of aerobic and isometric exercise on different types of experimental pain, including visceral pain, compared to an active control condition. Methods Fifteen healthy subjects (6 women, mean [standard deviation] age 25 [6.5] years) completed 3 interventions consisting of 20 minutes of aerobic cycling, 12 minutes of isometric knee extension and a deep breathing procedure as active control. At baseline and after each intervention, psychophysical tests were performed, including electrical stimulation of the esophagus, pressure pain thresholds and the cold pressor test as a measure for conditioned pain modulation. Participants completed the Medical Outcome Study Short-Form 36 and State-Trait Anxiety Inventory prior to the experiments. Data were analyzed using two-way repeated measures analysis of variance. Results No significant differences were found for the psychophysical tests after the interventions, compared to baseline pain tests and the control condition. Conclusion No hypoalgesic effect of aerobic and isometric exercise was found. The evidence for exercise-induced hypoalgesia appears to be not as consistent as initially thought, and caution is recommended when interpreting the effects of exercise on pain. PMID:28096689
Corrêa, Juliana Barbosa; Costa, Leonardo Oliveira Pena; de Oliveira, Naiane Teixeira Bastos; Sluka, Kathleen A; Liebano, Richard Eloin
2013-06-27
Low back pain is an important public health problem that is associated with poor quality of life and disability. Among the electrophysical treatments, interferential current (IFC) has not been studied in patients with low back pain in a high-quality randomised controlled trial examining not only pain, but pain mechanisms and function. A three-arm randomised controlled trial with patient and assessor blinded to the group allocation. One hundred fifty patients with chronic, nonspecific low back pain from outpatient physical therapy clinics in Brazil. The patients will be randomly allocated into 3 groups (IFC 1 kHz, IFC 4 kHz or Placebo IFC). The interferential current will be applied three days per week (30 minutes per session) over four weeks. Pain intensity. The pressure pain threshold, global impression of recovery, disability, function, conditioned pain modulation and temporal summation of pain, discomfort caused by the current. All outcomes will be measured at 4 weeks and 4 months after randomisation. The between-group differences will be calculated by using linear mixed models and Tukey's post-hoc tests. The use of a placebo group and double-blinding assessor and patients strengthen this study. The present study is the first to compare different IFC carrier frequencies in patients with chronic low back pain. Brazilian Registry of Clinical Trials: http://RBR-8n4hg2.
Emotional modulation of pain and spinal nociception in fibromyalgia.
Rhudy, Jamie L; DelVentura, Jennifer L; Terry, Ellen L; Bartley, Emily J; Olech, Ewa; Palit, Shreela; Kerr, Kara L
2013-07-01
Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (eg, depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in 4 blocks; 2 blocks assessed only physiological-emotional reactions (ie, pleasure/arousal ratings, corrugator electromyography, startle modulation, skin conductance) in the absence of pain, and 2 blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (eg, reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all 3 groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Emotional modulation of pain and spinal nociception in fibromyalgia
Rhudy, Jamie L.; DelVentura, Jennifer L.; Terry, Ellen L.; Bartley, Emily J.; Olech, Ewa; Palit, Shreela; Kerr, Kara L.
2013-01-01
Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (e.g., depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in four blocks; two blocks assessed only physiological-emotional reactions (i.e., pleasure/arousal ratings, corrugator EMG, startle modulation, skin conductance) in the absence of pain and two blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (e.g., reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all three groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. PMID:23622762
The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress.
Corcoran, Louise; Roche, Michelle; Finn, David P
2015-01-01
Stress has a complex, bidirectional modulatory influence on pain. Stress may either reduce (stress-induced analgesia) or exacerbate (stress-induced hyperalgesia) pain depending on the nature, duration, and intensity of the stressor. The endogenous cannabinoid (endocannabinoid) system is present throughout the neuroanatomical pathways that mediate and modulate responses to painful stimuli. The specific role of the endocannabinoid system in the brain in pain and the modulation of pain by stress is reviewed herein. We first provide a brief overview of the endocannabinoid system, followed by a review of the evidence that the brain's endocannabinoid system modulates pain. We provide a comprehensive evaluation of the role of the endocannabinoid system supraspinally, and particularly in the rostral ventromedial medulla, periaqueductal gray, amygdala, and prefrontal cortex, in pain, stress-induced analgesia, and stress-induced hyperalgesia. Increased understanding of endocannabinoid-mediated regulation of pain and its modulation by stress will inform the development of novel therapeutic approaches for pain and its comorbidity with stress-related disorders. © 2015 Elsevier Inc. All rights reserved.
Kisler, Lee-Bareket; Gurion, Ilan; Granovsky, Yelena; Sinai, Alon; Sprecher, Elliot; Shamay-Tsoory, Simone
2018-01-01
The modulatory role of the primary motor cortex (M1), reflected by an inhibitory effect of M1-stimulation on clinical pain, motivated us to deepen our understanding of M1’s role in pain modulation. We used Transcranial Magnetic Stimulation (TMS)-induced virtual lesion (VL) to interrupt with M1 activity during noxious heat pain. We hypothesized that TMS-VL will effect experimental pain ratings. Three VL protocols were applied consisting of single-pulse TMS to transiently interfere with right M1 activity: (1) VLM1- TMS applied to 11 subjects, 20 msec before the individual’s first pain-related M1 peak activation, as determined by source analysis (sLORETA), (2) VL-50 (N = 16; TMS applied 50 ms prior to noxious stimulus onset), and (3) VL+150 (N = 16; TMS applied 150 ms after noxious stimulus onset). Each protocol included 3 conditions ('pain-alone', ' TMS-VL', and ‘SHAM-VL’), each consisted of 30 noxious heat stimuli. Pain ratings were compared, in each protocol, for TMS-VL vs. SHAM-VL and vs. pain-alone conditions. Repeated measures analysis of variance, corrected for multiple comparisons revealed no significant differences in the pain ratings between the different conditions within each protocol. Therefore, our results from this exploratory study suggest that a single pulse TMS-induced VL that is targeted to M1 failed to interrupt experimental pain processing in the specific three stimulation timing examined here. PMID:29630681
Kisler, Lee-Bareket; Gurion, Ilan; Granovsky, Yelena; Sinai, Alon; Sprecher, Elliot; Shamay-Tsoory, Simone; Weissman-Fogel, Irit
2018-01-01
The modulatory role of the primary motor cortex (M1), reflected by an inhibitory effect of M1-stimulation on clinical pain, motivated us to deepen our understanding of M1's role in pain modulation. We used Transcranial Magnetic Stimulation (TMS)-induced virtual lesion (VL) to interrupt with M1 activity during noxious heat pain. We hypothesized that TMS-VL will effect experimental pain ratings. Three VL protocols were applied consisting of single-pulse TMS to transiently interfere with right M1 activity: (1) VLM1- TMS applied to 11 subjects, 20 msec before the individual's first pain-related M1 peak activation, as determined by source analysis (sLORETA), (2) VL-50 (N = 16; TMS applied 50 ms prior to noxious stimulus onset), and (3) VL+150 (N = 16; TMS applied 150 ms after noxious stimulus onset). Each protocol included 3 conditions ('pain-alone', ' TMS-VL', and 'SHAM-VL'), each consisted of 30 noxious heat stimuli. Pain ratings were compared, in each protocol, for TMS-VL vs. SHAM-VL and vs. pain-alone conditions. Repeated measures analysis of variance, corrected for multiple comparisons revealed no significant differences in the pain ratings between the different conditions within each protocol. Therefore, our results from this exploratory study suggest that a single pulse TMS-induced VL that is targeted to M1 failed to interrupt experimental pain processing in the specific three stimulation timing examined here.
Birnie, Kathryn A; Caes, Line; Wilson, Anna C; Williams, Sara E; Chambers, Christine T
2014-01-01
SUMMARY Use of experimental pain is vital for addressing research questions that would otherwise be impossible to examine in the real world. Experimental induction of pain in children is highly scrutinized given the potential for harm and lack of direct benefit to a vulnerable population. However, its use has critically advanced our understanding of the mechanisms, assessment and treatment of pain in both healthy and chronically ill children. This article introduces various experimental pain modalities, including the cold pressor task, the water load symptom provocation test, thermal pain, pressure pain and conditioned pain modulation, and discusses their application for use with children and adolescents. It addresses practical implementation and ethical issues, as well as the advantages and disadvantages offered by each task. The incredible potential for future research is discussed given the array of experimental pain modalities now available to pediatric researchers. PMID:24641434
Breaking down the barriers: fMRI applications in pain, analgesia and analgesics
Borsook, David; Becerra, Lino R
2006-01-01
This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain. PMID:16982005
Randomized Controlled Trial of Online Acceptance and Commitment Therapy for Fibromyalgia.
Simister, Heather D; Tkachuk, Gregg A; Shay, Barbara L; Vincent, Norah; Pear, Joseph J; Skrabek, Ryan Q
2018-03-02
In this study, 67 participants (95% female) with fibromyalgia (FM) were randomly assigned to an online acceptance and commitment therapy (online ACT) and treatment as usual (TAU; ACT + TAU) protocol or a TAU control condition. Online ACT + TAU participants were asked to complete 7 modules over an 8-week period. Assessments were completed at pre-treatment, post-treatment, and 3-month follow-up periods and included measures of FM impact (primary outcome), depression, pain, sleep, 6-minute walk, sit to stand, pain acceptance (primary process variable), mindfulness, cognitive fusion, valued living, kinesiophobia, and pain catastrophizing. The results indicated that online ACT + TAU participants significantly improved in FM impact, relative to TAU (P <.001), with large between condition effect sizes at post-treatment (1.26) and follow-up (1.59). Increases in pain acceptance significantly mediated these improvements (P = .005). Significant improvements in favor of online ACT + TAU were also found on measures of depression (P = .02), pain (P = .01), and kinesiophobia (P = .001). Although preliminary, this study highlights the potential for online ACT to be an efficacious, accessible, and cost-effective treatment for people with FM and other chronic pain conditions. Online ACT reduced FM impact relative to a TAU control condition in this randomized controlled trial. Reductions in FM impact were mediated by improvements in pain acceptance. Online ACT appears to be a promising intervention for FM. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Coppieters, Iris; Ickmans, Kelly; Cagnie, Barbara; Nijs, Jo; De Pauw, Robby; Noten, Suzie; Meeus, Mira
2015-01-01
A growing body of research has demonstrated that impaired central pain modulation or central sensitization (CS) is a crucial mechanism for the development of persistent pain in chronic whiplash-associated disorders (WAD) and fibromyalgia (FM) patients. Furthermore, there is increasing evidence for cognitive dysfunctions among these patients. In addition, chronic WAD and FM patients often report problems with health-related quality of life (QoL). Yet, there is limited research concerning the interrelations between cognitive performance, indices of CS, and health-related QoL in these patients. (1) Examining the presence of cognitive impairment, CS, and limitations on health-related QoL in patients with chronic WAD and FM compared to healthy controls. (2) Examining interrelations between performance-based cognitive functioning, CS, and self-reported health-related QoL in these 3 study groups. A case-control study was conducted. The present study took place at the University Hospital Brussels, the University of Brussels, and the University of Antwerp. Fifty-nine patients (16 chronic WAD patients, 21 FM patients, and 22 pain-free volunteers) filled out the Short Form 36 item Health Survey (SF-36), a self-reported psychosocial questionnaire, to assess health-related QoL. Next, they were subjected to various pain measurements (pressure hyperalgesia, deep-tissue hyperalgesia, temporal summation [TS], and conditioned pain modulation [CPM]). Finally, participants completed a battery of performance-based cognitive tests (Stroop task, psychomotor vigilance task [PVT], and operation span task [OSPAN]). Significant cognitive impairment, bottom-up sensitization, and decreased health-related QoL were demonstrated in patients with chronic WAD and FM compared to healthy controls (P < 0.017). CPM was comparable between the 3 groups. Cognitive performance was significantly related to central pain modulation (deep-tissue hyperalgesia, TS, CPM) as well as to self-reported health-related QoL (P < 0.05). Decreased cognitive performance was related to deficient central pain modulation in healthy controls. Further, significant correlations between decreased cognitive performance and reduced health-related QoL were revealed among all study groups. Additionally, FM patients showed correlations between cognitive impairment and increased health-related QoL. Remarkably, impaired selective attention and working memory were related to less TS, whereas impaired sustained attention was correlated with dysfunctional CPM in FM patients. Based on the current cross-sectional study no firm conclusions can be drawn on the causality of the relations. In conclusion, this paper has demonstrated significant cognitive deficits, signs of CS, and reduced health-related QoL in chronic WAD and FM patients compared to healthy individuals. Significant relations between cognitive performance and CS as well as health-related QoL were demonstrated. These results provide preliminary evidence for the clinical importance of objectively measured cognitive deficits in patients with chronic WAD and FM. Chronic pain, fibromyalgia, whiplash, central sensitization, conditioned pain modulation, temporal summation, cognition, quality of life.
Facchini, Giancarlo; Spinnato, Paolo; Guglielmi, Giuseppe; Bazzocchi, Alberto
2017-01-01
Objective: The objective of this review was to evaluate the efficacy of pulsed radiofrequency (PRF) treatment of pain associated with different spinal conditions. The mechanisms of action and biological effects are shortly discussed to provide the scientific basis for this radiofrequency modality. Methods: We systematically searched for clinical studies on spinal clinical conditions using PRF. We searched the MEDLINE (PubMed) database. We classified the information in one table focusing on randomized controlled trials (RCTs) and other types of studies. Date of last electronic search was October 2016. Results: We found four RCTs that evaluated the efficacy of PRF on cervical radicular pain and five observational studies. Two trials and three observational studies were conducted in patients with facet pain. For disc-related pathology, we found one RCT with PRF applied intradiscally and three RCTs for dorsal root ganglia PRF modulation lumbosacral radicular pain. For sacroiliac joint pain, spondylolisthesis, malignancies and other minor spinal pathology, limited studies were conducted. Conclusion: From the available evidence, the use of PRF to the dorsal root ganglion in cervical radicular pain is compelling. With regard to its lumbosacral counterpart, the use of PRF cannot be similarly advocated in view of the absence of standardization of PRF parameters, enrolment criteria and different methods in reporting results; but, the evidence is interesting. The use of PRF in lumbar facet pain was found to be less effective than conventional RF techniques. For the other different spinal conditions, we need further studies to assess the effectiveness of PRF. Advances in knowledge: The use of PRF in lumbar facet pain was found to be less effective than conventional RF techniques. For the other different spinal conditions, we need further studies to assess the effectiveness of PRF. PMID:28186832
[Cannabinoids in pain medicine].
Karst, M
2018-06-07
The endocannabinoid system (ECS) controls a large number of vital functions. Suboptimal tone of the ECS in certain regions of the nervous system may be associated with disorders that are also associated with pain. Pain and inflammation processes can be modulated by the exogenous supply of cannabinoids. Low-to-moderate pain-relieving effects and in individual cases large pain-relieving effects were observed in randomized, controlled studies of various types of chronic pain. People with chronic neuropathic pain and stress symptoms seem to particularly benefit. The therapeutic range of cannabinoids is small; often small doses are sufficient for clinically significant effects. The "Cannabis-als-Medizin-Gesetz" (cannabis as medicine law) allows the prescription of cannabis preparations under certain conditions. Available data indicate good long-term efficacy and tolerability. However, there is little systematic long-term experience from clinical studies.
Vaegter, Henrik B; Graven-Nielsen, Thomas
2016-07-01
Pain biomarkers are warranted for individualized pain management. Based on different pain modulatory phenotypes, the objectives of this study were to explore the existence of subgroups within patients with nonmalignant chronic pain and to investigate differences in clinical pain and pain hypersensitivity between subgroups. Cuff algometry was performed on lower legs in 400 patients with chronic pain to assess pressure pain threshold, pressure pain tolerance, temporal summation of pain (TSP: increase in pain scores to 10 repeated stimulations), and conditioned pain modulation (CPM: increase in cuff pressure pain threshold during cuff pain conditioning on the contralateral leg). Heat detection and heat pain thresholds at clinical painful and nonpainful body areas were assessed. Based on TSP and CPM, 4 distinct groups were formed: group 1 (n = 85) had impaired CPM and facilitated TSP; group 2 (n = 148) had impaired CPM and normal TSP; group 3 (n = 45) had normal CPM and facilitated TSP; and group 4 (n = 122) had normal CPM and normal TSP. Group 1 showed more pain regions than the other 3 groups (P < 0.001), indicating that impaired CPM and facilitated TSP play an important role in widespread pain. Groups 1 and 2 compared with group 4 had lower heat pain threshold at nonpainful areas and lower cuff pressure pain tolerance (P < 0.02), indicating that CPM plays a role for widespread hyperalgesia. Moreover, group 1 demonstrated higher clinical pain scores than group 4 (P < 0.05). Although not different between subgroups, patients were profiled on demographics, disability, pain catastrophizing, and fear of movement. Future research should investigate interventions tailored towards these subgroups.
Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines?
Freitag, Caroline M.; Miller, Richard J.
2014-01-01
Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain. PMID:25191225
Neurophysiology of pruritus: interaction of itch and pain.
Ikoma, Akihiko; Rukwied, Roman; Ständer, Sonja; Steinhoff, Martin; Miyachi, Yoshiki; Schmelz, Martin
2003-11-01
The discovery of an itch-specific neuronal pathway, which is distinct from the pain-processing pathway, has clarified the neuronal basis for the itch sensation. Albeit being distinct, there are complex interactions between pain and itch. The inhibition of itch by pain is well known and can explain the antipruritic effect of scratching. However, the opposite effect also exists and has major clinical implications: inhibition of pain processing (eg, by spinal opioids) can generate itch. Conversely, blockade of spinal opioid receptors can be used as an antipruritic therapy. Moreover, the spinal processing of pain and itch can be modulated, resulting in a hypersensitivity or hyposensitivity to pain or itch: similar to chronic painful conditions, ongoing activity of pruriceptors can induce a spinal hypersensitivity for itch in patients with chronic pruritus. Therapeutic antipruritic approaches therefore should target both local inflammation and spinal sensitization of itch processing.
Redox modulation of A-type K+ currents in pain-sensing dorsal root ganglion neurons.
Hsieh, Chi-Pan
2008-06-06
Redox modulation of fast inactivation has been described in certain cloned A-type voltage-gated K(+) (Kv) channels in expressing systems, but the effects remain to be demonstrated in native neurons. In this study, we examined the effects of cysteine-specific redox agents on the A-type K(+) currents in acutely dissociated small diameter dorsal root ganglion (DRG) neurons from rats. The fast inactivation of most A-type currents was markedly removed or slowed by the oxidizing agents 2,2'-dithio-bis(5-nitropyridine) (DTBNP) and chloramine-T. Dithiothreitol, a reducing agent for the disulfide bond, restored the inactivation. These results demonstrated that native A-type K(+) channels, probably Kv1.4, could switch the roles between inactivating and non-inactivating K(+) channels via redox regulation in pain-sensing DRG neurons. The A-type channels may play a role in adjusting pain sensitivity in response to peripheral redox conditions.
Nyberg, André; Hedlund, Mattias; Häger, Charlotte K.; McDonough, Suzanne; Björklund, Martin
2018-01-01
Aim Establishing the effects of low intensity cycling (LC), moderate intensity cycling (MC), and standing at a simulated office workstation on pain modulation, work performance, and metabolic expenditure. Methods 36 healthy adults (21 females), mean age 26.8 (SD 7.6) years, partook in this randomized 3 × 3 crossover trial with 75 minutes of LC on 20% of maximum aerobic power (MAP) output, 30 minutes of MC on 50% of MAP, and standing 30 minutes with 48-hour wash-out periods. Outcome measures were pain modulation (pressure pain threshold (PPT) and thermal pain threshold)), work performance (transcription, mouse pointing, and cognitive performance), and metabolic expenditure. Results PPTs increased in all conditions. PPT trapezius showed the highest increase after LC, 39.3 kilopascals (kPa) (15.6; 78.6), compared to MC, 17.0 kPa (2.8; 49.9), and standing, 16.8 kPa (−5.6; 39.4), p = 0.015. Transcription was reduced during LC and MC. Mouse pointing precision was best during standing and worst and slowest during MC. Cognitive performance did not differ between conditions. Metabolic expenditure rates were 1.4 (1.3; 1.7), 3.3 (2.3; 3.7), and 7.5 (5.8; 8.7) kcal/minute during standing, LC, and MC, respectively (p < 0.001). Conclusions LC seems to be the preferred option; it raised PPTs, more than doubled metabolic expenditure, whilst minimally influencing work performance. PMID:29607323
Sadness enhances the experience of pain and affects pain-evoked cortical activities: an MEG study.
Yoshino, Atsuo; Okamoto, Yasumasa; Onoda, Keiichi; Shishida, Kazuhiro; Yoshimura, Shinpei; Kunisato, Yoshihiko; Demoto, Yoshihiko; Okada, Go; Toki, Shigeru; Yamashita, Hidehisa; Yamawaki, Shigeto
2012-07-01
Pain is a multidimensional phenomenon. Previous psychological studies have shown that a person's subjective pain threshold can change when certain emotions are recognized. We examined this association with magnetoencephalography. Magnetic field strength was recorded with a 306-channel neuromagnetometer while 19 healthy subjects (7 female, 12 male; age range = 20-30 years) experienced pain stimuli in different emotional contexts induced by the presentation of sad, happy, or neutral facial stimuli. Subjects also rated their subjective pain intensity. We hypothesized that pain stimuli were affected by sadness induced by facial recognition. We found: 1) the intensity of subjective pain ratings increased in the sad emotional context compared to the happy and the neutral contexts, and 2) event-related desynchronization of lower beta bands in the right hemisphere after pain stimuli was larger in the sad emotional condition than in the happy emotional condition. Previous studies have shown that event-related desynchronization in these bands could be consistently observed over the primary somatosensory cortex. These findings suggest that sadness can modulate neural responses to pain stimuli, and that brain processing of pain stimuli had already been affected, at the level of the primary somatosensory cortex, which is critical for sensory processing of pain. We found that subjective pain ratings and cortical beta rhythms after pain stimuli are influenced by the sad emotional context. These results may contribute to understanding the broader relationship between pain and negative emotion. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.
Review of overlap between thermoregulation and pain modulation in fibromyalgia
Larson, Alice A.; Pardo, José V.; Pasley, Jeffrey D.
2013-01-01
Fibromyalgia syndrome is characterized by widespread pain that is exacerbated by cold and stress but relieved by warmth. We review the points along thermal and pain pathways where temperature may influence pain. We also present evidence addressing the possibility that brown adipose tissue activity is linked to the pain of fibromyalgia given that cold initiates thermogenesis in brown adipose tissue via adrenergic activity, while warmth suspends thermogenesis. Although females have a higher incidence of fibromyalgia as well as more resting thermogenesis, they are less able to recruit brown adipose tissue in response to chronic stress than males. In addition, conditions that are frequently comorbid with fibromyalgia compromise brown adipose activity making it less responsive to sympathetic stimulation. This results in lower body temperatures, lower metabolic rates, and lower circulating cortisol/corticosterone in response to stress - characteristics of fibromyalgia. In the periphery, sympathetic nerves to brown adipose also project to surrounding tissues, including tender points characterizing fibromyalgia. As a result, the musculoskeletal hyperalgesia associated with conditions like fibromyalgia may result from referred pain in the adjacent muscle and skin. PMID:23887348
Visceral Pain: The Neurophysiological Mechanism
Sengupta, Jyoti N.
2011-01-01
The mechanism of visceral pain is still less understood compared with that of somatic pain. This is primarily due to the diverse nature of visceral pain compounded by multiple factors such as sexual dimorphism, psychological stress, genetic trait, and the nature of predisposed disease. Due to multiple contributing factors there is an enormous challenge to develop animal models that ideally mimic the exact disease condition. In spite of that, it is well recognized that visceral hypersensitivity can occur due to (1) sensitization of primary sensory afferents innervating the viscera, (2) hyperexcitability of spinal ascending neurons (central sensitization) receiving synaptic input from the viscera, and (3) dysregulation of descending pathways that modulate spinal nociceptive transmission. Depending on the type of stimulus condition, different neural pathways are involved in chronic pain. In early-life psychological stress such as maternal separation, chronic pain occurs later in life due to dysregulation of the hypothalamic–pituitary–adrenal axis and significant increase in corticotrophin releasing factor (CRF) secretion. In contrast, in early-life inflammatory conditions such as colitis and cystitis, there is dysregulation of the descending opioidergic system that results excessive pain perception (i.e., visceral hyperalgesia). Functional bowel disorders and chronic pelvic pain represent unexplained pain that is not associated with identifiable organic diseases. Often pain overlaps between two organs and approximately 35% of patients with chronic pelvic pain showed significant improvement when treated for functional bowel disorders. Animal studies have documented that two main components such as (1) dichotomy of primary afferent fibers innervating two pelvic organs and (2) common convergence of two afferent fibers onto a spinal dorsal horn are contributing factors for organ-to-organ pain overlap. With reports emerging about the varieties of peptide molecules involved in the pathological conditions of visceral pain, it is expected that better therapy will be achieved relatively soon to manage chronic visceral pain. PMID:19655104
De Pascalis, Vilfredo; Varriale, Vincenzo; Cacace, Immacolata
2015-01-01
Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs) whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs) during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA) method revealed significant activations of the bilateral primary somatosensory (BA3), middle frontal gyrus (BA6) and anterior cingulate cortices (BA24). Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32), while for the P200 wave, activity was increased in the superior (BA22), middle (BA37), inferior temporal (BA19) gyri and superior parietal lobule (BA7). Hypnotic hypoalgesia in HHs, for N140 wave, showed reduced activity within medial and superior frontal gyri (BA9,8), paraippocampal gyrus (BA34), and postcentral gyrus (BA1), while for the P200, activity was reduced within middle and superior frontal gyri (BA9 and BA10), anterior cingulate (BA33), cuneus (BA19) and sub-lobar insula (BA13). These findings demonstrate that hypnotic suggestions can exert a top-down modulatory effect on attention/preconscious brain processes involved in pain perception. PMID:26030417
Gehling, Julia; Mainka, Tina; Vollert, Jan; Pogatzki-Zahn, Esther M; Maier, Christoph; Enax-Krumova, Elena K
2016-08-05
Conditioned Pain Modulation (CPM) is often used to assess human descending pain inhibition. Nine different studies on the test-retest-reliability of different CPM paradigms have been published, but none of them has investigated the commonly used heat-cold-pain method. The results vary widely and therefore, reliability measures cannot be extrapolated from one CPM paradigm to another. Aim of the present study was to analyse the test-retest-reliability of the common heat-cold-pain method and its correlation to pain thresholds. We tested the short-term test-retest-reliability within 40 ± 19.9 h using a cold-water immersion (10 °C, left hand) as conditioning stimulus (CS) and heat pain (43-49 °C, pain intensity 60 ± 5 on the 101-point numeric rating scale, right forearm) as test stimulus (TS) in 25 healthy right-handed subjects (12females, 31.6 ± 14.1 years). The TS was applied 30s before (TSbefore), during (TSduring) and after (TSafter) the 60s CS. The difference between the pain ratings for TSbefore and TSduring represents the early CPM-effect, between TSbefore and TSafter the late CPM-effect. Quantitative sensory testing (QST, DFNS protocol) was performed on both sessions before the CPM assessment. paired t-tests, Intraclass correlation coefficient (ICC), standard error of measurement (SEM), smallest real difference (SRD), Pearson's correlation, Bland-Altman analysis, significance level p < 0.05 with Bonferroni correction for multiple comparisons, when necessary. Pain ratings during CPM correlated significantly (ICC: 0.411…0.962) between both days, though ratings for TSafter were lower on day 2 (p < 0.005). The early (day 1: 16.7 ± 11.7; day 2: 19.5 ± 11.9; ICC: 0.618, SRD: 20.2) and late (day 1: 1.7 ± 9.2; day 2: 7.6 ± 11.5; ICC: 0.178, SRD: 27.0) CPM effect did not differ significantly between both days. Both early and late CPM-effects did not correlate with the pain thresholds. The short-term test-retest-reliability of the early CPM-effect using the heat-cold-pain method in healthy subjects achieved satisfying results in terms of the ICC. The SRD of the early CPM effect showed that an individual change of > 20 NRS can be attributed to a real change rather than chance. The late CPM-effect was weaker and not reliable.
2014-01-01
Background Central disinhibition is a mechanism involved in the physiopathology of fibromyalgia. Melatonin can improve sleep quality, pain and pain threshold. We hypothesized that treatment with melatonin alone or in combination with amitriptyline would be superior to amitriptyline alone in modifying the endogenous pain-modulating system (PMS) as quantified by conditional pain modulation (CPM), and this change in CPM could be associated with serum brain-derived neurotrophic factor (BDNF). We also tested whether melatonin improves the clinical symptoms of pain, pain threshold and sleep quality. Methods Sixty-three females, aged 18 to 65, were randomized to receive bedtime amitriptyline (25 mg) (n = 21), melatonin (10 mg) (n = 21) or melatonin (10 mg) + amitriptyline (25 mg) (n = 21) for a period of six weeks. The descending PMS was assessed with the CPM-TASK. It was assessed the pain score on the Visual Analog Scale (VAS 0-100 mm), the score on Fibromyalgia Impact Questionnaire (FIQ), heat pain threshold (HPT), sleep quality and BDNF serum. Delta values (post- minus pre-treatment) were used to compare the treatment effect. The outcomes variables were collected before, one and six weeks after initiating treatment. Results Melatonin alone or in combination with amitriptyline reduced significantly pain on the VAS compared with amitriptyline alone (P < 0.01). The delta values on the VAS scores were-12.85 (19.93),-17.37 (18.69) and-20.93 (12.23) in the amitriptyline, melatonin and melatonin+amitriptyline groups, respectively. Melatonin alone and in combination increased the inhibitory PMS as assessed by the Numerical Pain Scale [NPS(0-10)] reduction during the CPM-TASK:-2.4 (2.04) melatonin + amitriptyline,-2.65 (1.68) melatonin, and-1.04 (2.06) amitriptyline, (P < 0.05). Melatonin + amitriptyline treated displayed better results than melatonin and amitriptyline alone in terms of FIQ and PPT improvement (P < 0.05, fort both). Conclusion Melatonin increased the inhibitory endogenous pain-modulating system as assessed by the reduction on NPS(0-10) during the CPM-TASK. Melatonin alone or associated with amitriptyline was better than amitriptyline alone in improving pain on the VAS, whereas its association with amitriptyline produced only marginal additional clinical effects on FIQ and PPT. Trial registration Current controlled trail is registered at clinical trials.gov upon under number NCT02041455. Registered January 16, 2014. PMID:25052847
Insights into the mechanisms and the emergence of sex-differences in pain.
Melchior, Meggane; Poisbeau, Pierrick; Gaumond, Isabelle; Marchand, Serge
2016-12-03
Recent studies describe sex and gender as critical factors conditioning the experience of pain and the strategies to respond to it. It is now clear that men and women have different physiological and behavioral responses to pain. Some pathological pain states are also highly sex-specific. This clinical observation has been often verified with animal studies which helped to decipher the mechanisms underlying the observed female hyper-reactivity and hyper-sensitivity to pain states. The role of gonadal hormones in the modulation of pain responses has been a straightforward hypothesis but, if pertinent in many cases, cannot fully account for this complex sensation, which includes an important cognitive component. Clinical and fundamental data are reviewed here with a special emphasis on possible developmental processes giving rise to sex-differences in pain processing. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Sex differences in brain response to anticipated and experienced visceral pain in healthy subjects.
Kano, Michiko; Farmer, Adam D; Aziz, Qasim; Giampietro, Vincent P; Brammer, Michael J; Williams, Steven C R; Fukudo, Shin; Coen, Steven J
2013-04-15
Women demonstrate higher pain sensitivity and prevalence of chronic visceral pain conditions such as functional gastrointestinal disorders than men. The role of sex differences in the brain processing of visceral pain is still unclear. In 16 male and 16 female healthy subjects we compared personality, anxiety levels, skin conductance response (SCR), and brain processing using functional MRI during anticipation and pain induced by esophageal distension at pain toleration level. There was no significant difference in personality scores, anxiety levels, SCR, and subjective ratings of pain between sexes. In group analysis, both men and women demonstrated a similar pattern of brain activation and deactivation during anticipation and pain consistent with previous reports. However, during anticipation women showed significantly greater activation in the cuneus, precuneus, and supplementary motor area (SMA) and stronger deactivation in the right amygdala and left parahippocampal gyrus, whereas men demonstrated greater activation in the cerebellum. During pain, women demonstrated greater activation in the midcingulate cortex, anterior insula, premotor cortex, and cerebellum and stronger deactivation in the caudate, whereas men showed increased activity in the SMA. The pattern of brain activity suggests that, during anticipation, women may demonstrate stronger limbic inhibition, which is considered to be a cognitive modulation strategy for impending painful stimulation. During pain, women significantly activate brain areas associated with the affective and motivation components of pain. These responses may underlie the sex differences that exist in pain conditions, whereby women may attribute more emotional importance to painful stimuli compared with men.
Costa, Y M; Morita-Neto, O; de Araújo-Júnior, E N S; Sampaio, F A; Conti, P C R; Bonjardim, L R
2017-03-01
Assessing the reliability of medical measurements is a crucial step towards the elaboration of an applicable clinical instrument. There are few studies that evaluate the reliability of somatosensory assessment and pain modulation of masticatory structures. This study estimated the test-retest reliability, that is over time, of the mechanical somatosensory assessment of anterior temporalis, masseter and temporomandibular joint (TMJ) and the conditioned pain modulation (CPM) using the anterior temporalis as the test site. Twenty healthy women were evaluated in two sessions (1 week apart) by the same examiner. Mechanical detection threshold (MDT), mechanical pain threshold (MPT), wind-up ratio (WUR) and pressure pain threshold (PPT) were assessed on the skin overlying the anterior temporalis, masseter and TMJ of the dominant side. CPM was tested by comparing PPT before and during the hand immersion in a hot water bath. anova and intra-class correlation coefficients (ICCs) were applied to the data (α = 5%). The overall ICCs showed acceptable values for the test-retest reliability of mechanical somatosensory assessment of masticatory structures. The ICC values of 75% of all quantitative sensory measurements were considered fair to excellent (fair = 8·4%, good = 33·3% and excellent = 33·3%). However, the CPM paradigm presented poor reliability (ICC = 0·25). The mechanical somatosensory assessment of the masticatory structures, but not the proposed CPM protocol, can be considered sufficiently reliable over time to evaluate the trigeminal sensory function. © 2016 John Wiley & Sons Ltd.
Chronic pain induces generalized enhancement of aversion
Zhang, Qiaosheng; Manders, Toby; Tong, Ai Phuong; Yang, Runtao; Garg, Arpan; Martinez, Erik; Zhou, Haocheng; Dale, Jahrane; Goyal, Abhinav; Urien, Louise; Yang, Guang; Chen, Zhe; Wang, Jing
2017-01-01
A hallmark feature of chronic pain is its ability to impact other sensory and affective experiences. It is notably associated with hypersensitivity at the site of tissue injury. It is less clear, however, if chronic pain can also induce a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs. Here, we showed that chronic pain in one limb in rats increased the aversive response to acute pain stimuli in the opposite limb, as assessed by conditioned place aversion. Interestingly, neural activities in the anterior cingulate cortex (ACC) correlated with noxious intensities, and optogenetic modulation of ACC neurons showed bidirectional control of the aversive response to acute pain. Chronic pain, however, altered acute pain intensity representation in the ACC to increase the aversive response to noxious stimuli at anatomically unrelated sites. Thus, chronic pain can disrupt cortical circuitry to enhance the aversive experience in a generalized anatomically nonspecific manner. DOI: http://dx.doi.org/10.7554/eLife.25302.001 PMID:28524819
Expectancy-induced placebo analgesia in children and the role of magical thinking.
Krummenacher, Peter; Kossowsky, Joe; Schwarz, Caroline; Brugger, Peter; Kelley, John M; Meyer, Andrea; Gaab, Jens
2014-12-01
Expectations and beliefs shape the experience of pain. This is most evident in context-induced, placebo analgesia, which has recently been shown to interact with the trait of magical thinking (MT) in adults. In children, placebo analgesia and the possible roles that MT and gender might play as modulators of placebo analgesia have remained unexplored. Using a paradigm in which heat pain stimuli were applied to both forearms, we investigated whether MT and gender can influence the magnitude of placebo analgesia in children. Participants were 49 right-handed children (aged 6-9 years) who were randomly assigned-stratified for MT and gender-to either an analgesia-expectation or a control-expectation condition. For both conditions, the placebo was a blue-colored hand disinfectant that was applied to the children's forearms. Independent of MT, the placebo treatment significantly increased both heat pain threshold and tolerance. The threshold placebo effect was more pronounced for girls than boys. In addition, independent of the expectation treatment, low-MT boys showed a lower tolerance increase on the left compared to the right side. Finally, MT specifically modulated tolerance on the right forearm side: Low-MT boys showed an increase, whereas high-MT boys showed a decrease in heat pain tolerance. This study documented a substantial expectation-induced placebo analgesia response in children (girls > boys) and demonstrated MT and gender-dependent laterality effects in pain perception. The findings may help improve individualized pain management for children. The study documents the first experimental evidence for a substantial expectancy-induced placebo analgesia response in healthy children aged 6 to 9 years (girls > boys). Moreover, the effect was substantially higher than the placebo response typically found in adults. The findings may help improve individualized pain management for children. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
Emotional modulation of pain: is it the sensation or what we recall?
Godinho, Fabio; Magnin, Michel; Frot, Maud; Perchet, Caroline; Garcia-Larrea, Luis
2006-11-01
Emotions modulate pain perception, although the mechanisms underlying this phenomenon remain unclear. In this study, we show that intensity reports significantly increased when painful stimuli were concomitant to images showing human pain, whereas pictures with identical emotional values but without somatic content failed to modulate pain. Early somatosensory responses (<200 ms) remained unmodified by emotions. Conversely, late responses showed a significant enhancement associated with increased pain ratings, localized to the right prefrontal, right temporo-occipital junction, and right temporal pole. In contrast to selective attention, which enhances pain ratings by increasing sensory gain, emotions triggered by seeing other people's pain did not alter processing in SI-SII (primary and second somatosensory areas), but may have biased the transfer to, and the representation of pain in short-term memory buffers (prefrontal), as well as the affective assignment to this representation (temporal pole). Memory encoding and recall, rather than sensory processing, appear to be modulated by empathy with others' physical suffering.
Alsouhibani, Ali; Vaegter, Henrik Bjarke; Hoeger Bement, Marie
2018-04-03
Physically active individuals show greater conditioned pain modulation (CPM) compared with less active individuals. Understanding the effects of acute exercise on CPM may allow for a more targeted use of exercise in the management of pain. This study investigated the effects of acute isometric exercise on CPM. In addition, the between-session and within-session reliability of CPM was investigated. Experimental, randomized crossover study. Laboratory at Marquette University. Thirty healthy adults (19.3±1.5 years, 15 males). Subjects underwent CPM testing before and after isometric exercise (knee extension, 30% maximum voluntary contraction for three minutes) and quiet rest in two separate experimental sessions. Pressure pain thresholds (PPTs) at the quadriceps and upper trapezius muscles were assessed before, during, and after ice water immersions. PPTs increased during ice water immersion (i.e., CPM), and quadriceps PPT increased after exercise (P < 0.05). CPM decreased similarly following exercise and quiet rest (P > 0.05). CPM within-session reliability was fair to good (intraclass correlation coefficient [ICC] = 0.43-0.70), and the between-session reliability was poor (ICC = 0.20-0.35). Due to the variability in the systemic exercise-induced hypoalgesia (EIH) response, participants were divided into systemic EIH responders (N = 9) and nonresponders (N = 21). EIH responders experienced attenuated CPM following exercise (P = 0.03), whereas the nonresponders showed no significant change (P > 0.05). Isometric exercise decreased CPM in individuals who reported systemic EIH, suggesting activation of shared mechanisms between CPM and systemic EIH responses. These results may improve the understanding of increased pain after exercise in patients with chronic pain and potentially attenuated CPM.
Endogenous Opioid Antagonism in Physiological Experimental Pain Models: A Systematic Review
Werner, Mads U.; Pereira, Manuel P.; Andersen, Lars Peter H.; Dahl, Jørgen B.
2015-01-01
Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double-blind studies using ʻinhibitoryʼ or ʻsensitizingʼ, physiological test paradigms in healthy human subjects. The databases PubMed and Embase were searched according to predefined criteria. Out of a total of 2,142 records, 63 studies (1,477 subjects [male/female ratio = 1.5]) were considered relevant. Twenty-five studies utilized ʻinhibitoryʼ test paradigms (ITP) and 38 studies utilized ʻsensitizingʼ test paradigms (STP). The ITP-studies were characterized as conditioning modulation models (22 studies) and repetitive transcranial magnetic stimulation models (rTMS; 3 studies), and, the STP-studies as secondary hyperalgesia models (6 studies), ʻpainʼ models (25 studies), summation models (2 studies), nociceptive reflex models (3 studies) and miscellaneous models (2 studies). A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and rTMS. In the remaining 14 conditioning modulation studies either absence of effects or ambiguous effects by MOR-antagonists, were observed. In the STP-studies, no effect of the opioid-blockade could be demonstrated in 5 out of 6 secondary hyperalgesia studies. The direction of MOR-antagonist dependent effects upon pain ratings, threshold assessments and somatosensory evoked potentials (SSEP), did not appear consistent in 28 out of 32 ʻpainʼ model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect, presumably mediated by an EOS-dependent mechanisms of analgesia and hyperalgesia. PMID:26029906
Relationship between Personality Traits and Endogenous Analgesia: The Role of Harm Avoidance.
Nahman-Averbuch, Hadas; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena; Granot, Michal
2016-01-01
Whether psychological factors such as anxiety and pain catastrophizing levels influence the expression of endogenous analgesia in general and, more specifically, the conditioned pain modulation (CPM) response is still under debate. It may be assumed that other psychological characteristics also play a role in the CPM response. The neurotransmitters serotonin, dopamine, and norepinephrine are involved both in CPM, as well as personality traits such as harm avoidance (HA), novelty seeking (NS), and reward dependence (RD), which can be obtained by the Tridimensional Personality Questionnaire (TPQ). However, the associations between these traits (HA, NS, and RD) with endogenous analgesia revealed by CPM have not yet been explored. Healthy middle-age subjects (n = 28) completed the TPQ, Spielberger's State Anxiety Inventory, and the Pain Catastrophizing Scale and were assessed for CPM paradigms using thermal phasic temporal summation as the "test stimulus" and hand immersion into hot water bath (CPM water) or contact heat (CPM contact) for "conditioning stimulus." Higher levels of HA were associated with less-efficient CPM responses obtained by both paradigms: CPM water (r = 0.418, P = 0.027) and CPM contact (r = 0.374, P = 0.050). However, NS and RD were not associated with the other measurements. No significant relationship was observed between state anxiety and pain catastrophizing levels and the CPM responses. The relationship between the capacity of endogenous analgesia and the tendency to avoid aversive experience can be explained by mutual mechanisms involving similar neurotransmitters or brain areas. These findings illuminate the key role of harm avoidance obtained by the TPQ in determining the characteristics of pain modulation profile. © 2014 World Institute of Pain.
Torta, D M; Legrain, V; Mouraux, A; Valentini, E
2017-04-01
Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Halasa, Salaheldin; Dickinson, Eva
2014-02-01
From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.
Nir, Rony-Reuven; Sinai, Alon; Raz, Einat; Sprecher, Elliot; Yarnitsky, David
2010-07-16
Recordings of neurophysiological brain responses to noxious stimuli have been traditionally based on short stimuli, in the order of milliseconds, which induce distinct event-related potentials (ERPs). However, using such stimuli in the experimental setting is disadvantageous as they are too brief to faithfully simulate clinical pain. We aimed at utilizing continuous EEG to investigate the properties of peak alpha frequency (PAF) as an objective cortical measure associated with subjective perception of tonic pain. Five minute long continuous EEG was recorded in 18 healthy volunteers under: (i) resting-state; (ii) innocuous temperature; and (iii) psychophysically-anchored noxious temperature. Numerical pain scores (NPSs) collected during the application of tonic noxious stimuli were tested for correlation with peak frequencies of alpha power-curves derived from central, temporal and frontal electrodes. NPSs and PAFs remained stable throughout the recording conditions (RM-ANOVAs; Ps>0.51). In the noxious condition, PAFs obtained at the bilateral temporal scalp were correlated with NPSs (Ps<0.001). Moreover, resting-state PAFs recorded at the bilateral temporal scalp were correlated with NPSs reported during the noxious condition (Ps<0.01). These psychophysical-neurophysiological relations attest to the properties of PAF as a novel cortical objective measure of subjective perception of tonic pain. Moreover, resting-state PAFs might hold inherent pain modulation attributes, possibly enabling the prediction of individual responsiveness to prolonged pain. The relevance of PAF to the neural processing of tonic pain may indicate its potential to advance pain research as well as clinical pain characterization. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Bagdas, Deniz; Targowska-Duda, Katarzyna M.; López, Jhon J.; Perez, Edwin G.; Arias, Hugo R.; Damaj, M. Imad
2016-01-01
BACKGROUND Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. METHODS We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant induced inflammatory pain, and the chronic constriction injury–induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid–induced aversion by using the conditioned place aversion test. RESULTS We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed antiinflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and antiinflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid induced aversion in the conditioned place aversion assay. CONCLUSIONS These findings suggest that the administration of PAM-2, a new α7-selective type II PAM, reduces the neuropathic and inflammatory pain sensory and affective behaviors in the mouse. Thus, this drug may have therapeutic applications in the treatment and management of chronic pain. PMID:26280585
Vervoort, Tine; Caes, Line; Trost, Zina; Sullivan, Michael; Vangronsveld, Karoline; Goubert, Liesbet
2011-07-01
The present study examined existing communal and operant accounts of children's pain behavior by looking at the impact of parental presence and parental attention upon children's pain expression as a function of child pain catastrophizing. Participants were 38 school children and 1 of their parents. Children completed a cold pressor pain task (CPT) twice, first when told that no one was observing (alone condition) and subsequently when told that they were being observed by their parent (parent-present condition). A 3-minute parent-child interaction occurred between the 2 CPT immersions, allowing measurement of parental attention to their child's pain (ie, parental pain-attending talk vs non-pain-attending talk). Findings showed that child pain catastrophizing moderated the impact of parental presence upon facial displays of pain. Specifically, low-catastrophizing children expressed more pain in the presence of their parent, whereas high-catastrophizing children showed equally pronounced pain expression when alone or in the presence of a parent. Furthermore, children's catastrophizing moderated the impact of parental attention upon facial displays and self-reports of pain; higher levels of parental nonpain talk were associated with increased facial expression and self-reports of pain among high-catastrophizing children; for low-catastrophizing children, facial and self-report of pain was independent of parental attention to pain. The findings are discussed in terms of possible mechanisms that may drive and maintain pain expression in high-catastrophizing children, as well as potential limitations of traditional theories in explaining pediatric pain expression. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Does thalidomide have an analgesic effect? Current status and future directions.
Goli, Veeraindar
2007-04-01
Dramatic relief of pain and life-altering changes in quality of life in some patients treated with immunomodulators such as thalidomide compel us to look more closely at unconventional mechanisms that may be involved in propagation of persistent pain. Tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, and IL-10 are the cytokines with the most evidence in pain modulation. TNF-alpha and IL-1beta seem to initiate neuropathic pain, IL-6 maintains such pain, and IL-10 inhibits this persistent pain. Thalidomide was found to be effective in animal models by inhibiting TNF-alpha production. Several case reports and case series in humans have demonstrated mixed results, with some patients having dramatic responses, especially in chronic intractable conditions such as complex regional pain syndrome. Thalidomide may be an alternative for some patients with intractable pain. However, use of thalidomide is limited by its neurotoxic and teratogenic effects. Newer analogues may significantly improve the risk/benefit of using such immunomodulators.
Hashmi, Javeria Ali; Kong, Jian; Spaeth, Rosa; Khan, Sheraz; Kaptchuk, Ted J; Gollub, Randy L
2014-03-12
Placebo analgesia is an indicator of how efficiently the brain translates psychological signals conveyed by a treatment procedure into pain relief. It has been demonstrated that functional connectivity between distributed brain regions predicts placebo analgesia in chronic back pain patients. Greater network efficiency in baseline brain networks may allow better information transfer and facilitate adaptive physiological responses to psychological aspects of treatment. Here, we theorized that topological network alignments in resting state scans predict psychologically conditioned analgesic responses to acupuncture treatment in chronic knee osteoarthritis pain patients (n = 45). Analgesia was induced by building positive expectations toward acupuncture treatment with verbal suggestion and heat pain conditioning on a test site of the arm. This procedure induced significantly more analgesia after sham or real acupuncture on the test site than in a control site. The psychologically conditioned analgesia was invariant to sham versus real treatment. Efficiency of information transfer within local networks calculated with graph-theoretic measures (local efficiency and clustering coefficients) significantly predicted conditioned analgesia. Clustering coefficients in regions associated with memory, motivation, and pain modulation were closely involved in predicting analgesia. Moreover, women showed higher clustering coefficients and marginally greater pain reduction than men. Overall, analgesic response to placebo cues can be predicted from a priori resting state data by observing local network topology. Such low-cost synchronizations may represent preparatory resources that facilitate subsequent performance of brain circuits in responding to adaptive environmental cues. This suggests a potential utility of network measures in predicting placebo response for clinical use.
Operant conditioning of enhanced pain sensitivity by heat-pain titration.
Becker, Susanne; Kleinböhl, Dieter; Klossika, Iris; Hölzl, Rupert
2008-11-15
Operant conditioning mechanisms have been demonstrated to be important in the development of chronic pain. Most experimental studies have investigated the operant modulation of verbal pain reports with extrinsic reinforcement, such as verbal reinforcement. Whether this reflects actual changes in the subjective experience of the nociceptive stimulus remained unclear. This study replicates and extends our previous demonstration that enhanced pain sensitivity to prolonged heat-pain stimulation could be learned in healthy participants through intrinsic reinforcement (contingent changes in nociceptive input) independent of verbal pain reports. In addition, we examine whether different magnitudes of reinforcement differentially enhance pain sensitivity using an operant heat-pain titration paradigm. It is based on the previously developed non-verbal behavioral discrimination task for the assessment of sensitization, which uses discriminative down- or up-regulation of stimulus temperatures in response to changes in subjective intensity. In operant heat-pain titration, this discriminative behavior and not verbal pain report was contingently reinforced or punished by acute decreases or increases in heat-pain intensity. The magnitude of reinforcement was varied between three groups: low (N1=13), medium (N2=11) and high reinforcement (N3=12). Continuous reinforcement was applied to acquire and train the operant behavior, followed by partial reinforcement to analyze the underlying learning mechanisms. Results demonstrated that sensitization to prolonged heat-pain stimulation was enhanced by operant learning within 1h. The extent of sensitization was directly dependent on the received magnitude of reinforcement. Thus, operant learning mechanisms based on intrinsic reinforcement may provide an explanation for the gradual development of sustained hypersensitivity during pain that is becoming chronic.
Shaikh, Sumaiya; Nagi, Saad S; McGlone, Francis; Mahns, David A
2015-01-01
We recently showed that C low-threshold mechanoreceptors (CLTMRs) contribute to touch-evoked pain (allodynia) during experimental muscle pain. Conversely, in absence of ongoing pain, the activation of CLTMRs has been shown to correlate with a diffuse sensation of pleasant touch. In this study, we evaluated (1) the primary afferent fibre types contributing to positive (pleasant) and negative (unpleasant) affective touch and (2) the effects of tactile stimuli on tonic muscle pain by varying affective attributes and frequency parameters. Psychophysical observations were made in 10 healthy participants. Two types of test stimuli were applied: stroking stimulus using velvet or sandpaper at speeds of 0.1, 1.0 and 10.0 cm/s; focal vibrotactile stimulus at low (20 Hz) or high (200 Hz) frequency. These stimuli were applied in the normal condition (i.e. no experimental pain) and following the induction of muscle pain by infusing hypertonic saline (5%) into the tibialis anterior muscle. These observations were repeated following the conduction block of myelinated fibres by compression of sciatic nerve. In absence of muscle pain, all participants reliably linked velvet-stroking to pleasantness and sandpaper-stroking to unpleasantness (no pain). Likewise, low-frequency vibration was linked to pleasantness and high-frequency vibration to unpleasantness. During muscle pain, the application of previously pleasant stimuli resulted in overall pain relief, whereas the application of previously unpleasant stimuli resulted in overall pain intensification. These effects were significant, reproducible and persisted following the blockade of myelinated fibres. Taken together, these findings suggest the role of low-threshold C fibres in affective and pain processing. Furthermore, these observations suggest that temporal coding need not be limited to discriminative aspects of tactile processing, but may contribute to affective attributes, which in turn predispose individual responses towards excitatory or inhibitory modulation of pain.
De Pascalis, Vilfredo; Scacchia, Paolo
2016-01-01
We evaluated the influence of hypnotizability, pain expectation, placebo analgesia in waking and hypnosis on tonic pain relief. We also investigated how placebo analgesia affects somatic responses (eye blink) and N100 and P200 waves of event-related potentials (ERPs) elicited by auditory startle probes. Although expectation plays an important role in placebo and hypnotic analgesia, the neural mechanisms underlying these treatments are still poorly understood. We used the cold cup test (CCT) to induce tonic pain in 53 healthy women. Placebo analgesia was initially produced by manipulation, in which the intensity of pain induced by the CCT was surreptitiously reduced after the administration of a sham analgesic cream. Participants were then tested in waking and hypnosis under three treatments: (1) resting (Baseline); (2) CCT-alone (Pain); and (3) CCT plus placebo cream for pain relief (Placebo). For each painful treatment, we assessed pain and distress ratings, eye blink responses, N100 and P200 amplitudes. We used LORETA analysis of N100 and P200 waves, as elicited by auditory startle, to identify cortical regions sensitive to pain reduction through placebo and hypnotic analgesia. Higher pain expectation was associated with higher pain reductions. In highly hypnotizable participants placebo treatment produced significant reductions of pain and distress perception in both waking and hypnosis condition. P200 wave, during placebo analgesia, was larger in the frontal left hemisphere while placebo analgesia, during hypnosis, involved the activity of the left hemisphere including the occipital region. These findings demonstrate that hypnosis and placebo analgesia are different processes of top-down regulation. Pain reduction was associated with larger EMG startle amplitudes, N100 and P200 responses, and enhanced activity within the frontal, parietal, and anterior and posterior cingulate gyres. LORETA results showed that placebo analgesia modulated pain-responsive areas known to reflect the ongoing pain experience.
De Pascalis, Vilfredo; Scacchia, Paolo
2016-01-01
We evaluated the influence of hypnotizability, pain expectation, placebo analgesia in waking and hypnosis on tonic pain relief. We also investigated how placebo analgesia affects somatic responses (eye blink) and N100 and P200 waves of event-related potentials (ERPs) elicited by auditory startle probes. Although expectation plays an important role in placebo and hypnotic analgesia, the neural mechanisms underlying these treatments are still poorly understood. We used the cold cup test (CCT) to induce tonic pain in 53 healthy women. Placebo analgesia was initially produced by manipulation, in which the intensity of pain induced by the CCT was surreptitiously reduced after the administration of a sham analgesic cream. Participants were then tested in waking and hypnosis under three treatments: (1) resting (Baseline); (2) CCT-alone (Pain); and (3) CCT plus placebo cream for pain relief (Placebo). For each painful treatment, we assessed pain and distress ratings, eye blink responses, N100 and P200 amplitudes. We used LORETA analysis of N100 and P200 waves, as elicited by auditory startle, to identify cortical regions sensitive to pain reduction through placebo and hypnotic analgesia. Higher pain expectation was associated with higher pain reductions. In highly hypnotizable participants placebo treatment produced significant reductions of pain and distress perception in both waking and hypnosis condition. P200 wave, during placebo analgesia, was larger in the frontal left hemisphere while placebo analgesia, during hypnosis, involved the activity of the left hemisphere including the occipital region. These findings demonstrate that hypnosis and placebo analgesia are different processes of top-down regulation. Pain reduction was associated with larger EMG startle amplitudes, N100 and P200 responses, and enhanced activity within the frontal, parietal, and anterior and posterior cingulate gyres. LORETA results showed that placebo analgesia modulated pain-responsive areas known to reflect the ongoing pain experience. PMID:27486748
µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential
Tosti, Elisabetta; Boni, Raffaele
2017-01-01
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions. PMID:28937587
Investigation of Central Pain Processing in Post-Operative Shoulder Pain and Disability
Valencia, Carolina; Fillingim, Roger B.; Bishop, Mark; Wu, Samuel S.; Wright, Thomas W.; Moser, Michael; Farmer, Kevin; George, Steven Z.
2014-01-01
Measures of central pain processing like conditioned pain modulation (CPM), and suprathreshold heat pain response (SHPR) have been described to assess different components of central pain modulatory mechanisms. Central pain processing potentially play a role in the development of postsurgical pain, however, the role of CPM and SHPR in explaining postoperative clinical pain and disability is still unclear. Seventy eight patients with clinical shoulder pain were included in this study. Patients were examined before shoulder surgery, at 3 months, and 6 months after surgery. The primary outcome measures were pain intensity and upper extremity disability. Analyses revealed that the change score (baseline – 3 months) of 5th pain rating of SHPR accounted for a significant amount of variance in 6 month postsurgical clinical pain intensity and disability after age, sex, preoperative pain intensity, and relevant psychological factors were considered. The present study suggests that baseline measures of central pain processing were not predictive of 6 month postoperative pain outcome. Instead, the 3 month change in SHPR might be a relevant factor in the transition to elevated 6-month postoperative pain and disability outcomes. In patients with shoulder pain, the 3 month change in a measure of central pain processing might be a relevant factor in the transition to elevated 6-month postoperative pain and disability scores. PMID:24042347
[Hypertension, cardiovascular reactivity to stress and sensibility to pain].
Conde-Guzón, P A; Bartolomé-Albistegui, M T; Quirós-Expósito, P; Grzib-Schlosky, G
To provide a review of empirical evidence of decreased pain perception in hypertensive persons or exaggerated cardiovascular reactivity to stress. To following article will briefly review the existing literature on the association between hypoalgesia and high blood pressure. In particular, evidence of hypoalgesia in normotensive individuals at increased risk for hypertension (exaggerated cardiovascular reactivity to stress) will be offered in support of the notion that high cardiovascular reactivity to stress and decreased pain perception may result from a common physiological dysfunction. Cardiovascular reactivity refers to changes in cardiovascular activity associated primarily with exposure to psychological stress. Different individuals show different amounts of reactivity under the same conditions. The greater cardiovascular reactivity to behavioral stressors may play some role in the development of sustained arterial hypertension. Central opioid hyposensitivity is hypothesized as a mechanism of both hypoalgesia and exaggerated autonomic and neuroendocrine responses to stress in individuals at risk for hypertension. The paraventricular nucleus of the hypothalamus (PVN) serves the crucial function of integrating cardiovascular and painful responses. The central opioid hyposensitivity model of hypoalgesia asserts that attenuation of inhibitory opioid input to the PVN may have important consequences for pain modulation. These consequences includes: 1) greater activation of baroreceptor reflex arcs, 2) enhanced release of endogenous opioids during stress, and 3) increased stimulation of descending pain modulation pathways. High elevated thresholds to painful thermal stressors might serve as a behavioral marker of risk for hypertension before the onset of high blood pressure levels.
Vanhaudenhuyse, A; Laureys, S; Faymonville, M-E
2014-10-01
We here review behavioral, neuroimaging and electrophysiological studies of hypnosis as a state, as well as hypnosis as a tool to modulate brain responses to painful stimulations. Studies have shown that hypnotic processes modify internal (self awareness) as well as external (environmental awareness) brain networks. Brain mechanisms underlying the modulation of pain perception under hypnotic conditions involve cortical as well as subcortical areas including anterior cingulate and prefrontal cortices, basal ganglia and thalami. Combined with local anesthesia and conscious sedation in patients undergoing surgery, hypnosis is associated with improved peri- and postoperative comfort of patients and surgeons. Finally, hypnosis can be considered as a useful analogue for simulating conversion and dissociation symptoms in healthy subjects, permitting better characterization of these challenging disorders by producing clinically similar experiences. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Falk, Sarah; Bannister, Kirsty
2014-01-01
Mechanisms of inflammatory and neuropathic pains have been elucidated and translated to patient care by the use of animal models of these pain states. Cancer pain has lagged behind since early animal models of cancer-induced bone pain were based on the systemic injection of carcinoma cells. This precluded systematic investigation of specific neuronal and pharmacological alterations that occur in cancer-induced bone pain. In 1999, Schwei et al. described a murine model of cancer-induced bone pain that paralleled the clinical condition in terms of pain development and bone destruction, confined to the mouse femur. This model prompted related approaches, and we can now state that cancer pain may include elements of inflammatory and neuropathic pains but also unique changes in sensory processing. Cancer-induced bone pain results in progressive bone destruction, elevated osteoclast activity and distinctive nocifensive behaviours (indicating the triad of ongoing, spontaneous and movement-induced hyperalgesia). In addition, cancer cells induce an inflammatory infiltrate and release growth factors, cytokines, interleukins, chemokines, prostanoids and endothelins, resulting in a reduction of pH to below 5 and direct deformation of primary afferents within bone. These peripheral changes, in turn, drive hypersensitivity of spinal cord sensory neurons, many of which project to the parts of the brain involved in the emotional response to pain. Within the spinal cord, a unique neuronal function reorganization within segments of the dorsal horn of the spinal cord receiving nociceptive input from the bone are discussed. Changes in certain neurotransmitters implicated in brain modulation of spinal function are also altered with implications for the affective components of cancer pain. Treatments are described in terms of mechanistic insights and in the case of opioids, which modulate pain transmission at spinal and supraspinal sites, their use can be compromised by opioid-induced hyperalgesia. We discuss evidence for how this comes about and how it may be treated. PMID:26516549
Quantitative Sensory Testing Predicts Pregabalin Efficacy in Painful Chronic Pancreatitis
Olesen, Søren S.; Graversen, Carina; Bouwense, Stefan A. W.; van Goor, Harry; Wilder-Smith, Oliver H. G.; Drewes, Asbjørn M.
2013-01-01
Background A major problem in pain medicine is the lack of knowledge about which treatment suits a specific patient. We tested the ability of quantitative sensory testing to predict the analgesic effect of pregabalin and placebo in patients with chronic pancreatitis. Methods Sixty-four patients with painful chronic pancreatitis received pregabalin (150–300 mg BID) or matching placebo for three consecutive weeks. Analgesic effect was documented in a pain diary based on a visual analogue scale. Responders were defined as patients with a reduction in clinical pain score of 30% or more after three weeks of study treatment compared to baseline recordings. Prior to study medication, pain thresholds to electric skin and pressure stimulation were measured in dermatomes T10 (pancreatic area) and C5 (control area). To eliminate inter-subject differences in absolute pain thresholds an index of sensitivity between stimulation areas was determined (ratio of pain detection thresholds in pancreatic versus control area, ePDT ratio). Pain modulation was recorded by a conditioned pain modulation paradigm. A support vector machine was used to screen sensory parameters for their predictive power of pregabalin efficacy. Results The pregabalin responders group was hypersensitive to electric tetanic stimulation of the pancreatic area (ePDT ratio 1.2 (0.9–1.3)) compared to non-responders group (ePDT ratio: 1.6 (1.5–2.0)) (P = 0.001). The electrical pain detection ratio was predictive for pregabalin effect with a classification accuracy of 83.9% (P = 0.007). The corresponding sensitivity was 87.5% and specificity was 80.0%. No other parameters were predictive of pregabalin or placebo efficacy. Conclusions The present study provides first evidence that quantitative sensory testing predicts the analgesic effect of pregabalin in patients with painful chronic pancreatitis. The method can be used to tailor pain medication based on patient’s individual sensory profile and thus comprises a significant step towards personalized pain medicine. PMID:23469256
Gerhardt, Andreas; Hartmann, Mechthild; Tesarz, Jonas; Janke, Susanne; Leisner, Sabine; Seidler, Günter; Eich, Wolfgang
2012-08-03
Pain conditions of the musculoskeletal system are very common and have tremendous socioeconomic impact. Despite its high prevalence, musculoskeletal pain remains poorly understood and predominantly non-specifically and insufficiently treated.The group of chronic musculoskeletal pain patients is supposed to be heterogeneous, due to a multitude of mechanisms involved in chronic pain. Psychological variables, psychophysiological processes, and neuroendocrine alterations are expected to be involved. Thus far, studies on musculoskeletal pain have predominantly focused on the general aspects of pain processing, thus neglecting the heterogeneity of patients with musculoskeletal pain. Consequently, there is a need for studies that comprise a multitude of mechanisms that are potentially involved in the chronicity and spread of pain. This need might foster research and facilitate a better pathophysiological understanding of the condition, thereby promoting the development of specific mechanism-based treatments for chronic pain. Therefore, the objectives of this study are as follows: 1) identify and describe subgroups of patients with musculoskeletal pain with regard to clinical manifestations (including mental co-morbidity) and 2) investigate whether distinct sensory profiles or 3) distinct plasma levels of pain-related parameters due to different underlying mechanisms can be distinguished in various subgroups of pain patients. We will examine a population-based chronic pain sample (n = 100), a clinical tertiary care sample (n = 100) and pain-free patients with depression or post-traumatic stress disorder and pain-free healthy controls (each n = 30, respectively). The samples will be pain localisation matched by sex and age to the population-based sample. Patients will undergo physical examination and thorough assessments of mental co-morbidity (including psychological trauma), perceptual and central sensitisation (quantitative sensory testing), descending inhibition (conditioned pain modulation, the diffuse noxious inhibitory control-like effect), as well as measurement of the plasma levels of nerve growth factor and endocannabinoids. The identification of the underlying pathophysiologic mechanisms in different subgroups of chronic musculoskeletal pain patients will contribute to a mechanism-based subgroup classification. This will foster the development of mechanism-based treatments and holds promise to treat patients more sufficient.
The cerebral signature for pain perception and its modulation.
Tracey, Irene; Mantyh, Patrick W
2007-08-02
Our understanding of the neural correlates of pain perception in humans has increased significantly since the advent of neuroimaging. Relating neural activity changes to the varied pain experiences has led to an increased awareness of how factors (e.g., cognition, emotion, context, injury) can separately influence pain perception. Tying this body of knowledge in humans to work in animal models of pain provides an opportunity to determine common features that reliably contribute to pain perception and its modulation. One key system that underpins the ability to change pain intensity is the brainstem's descending modulatory network with its pro- and antinociceptive components. We discuss not only the latest data describing the cerebral signature of pain and its modulation in humans, but also suggest that the brainstem plays a pivotal role in gating the degree of nociceptive transmission so that the resultant pain experienced is appropriate for the particular situation of the individual.
Goodin, Burel R.; Quinn, Noel B.; Kronfli, Tarek; King, Christopher D.; Page, Gayle G.; Haythornthwaite, Jennifer A.; Edwards, Robert R.; Stapleton, Laura M.; McGuire, Lynanne
2011-01-01
Objective Current evidence supports the efficacy of hypnosis for reducing the pain associated with experimental stimulation and various acute and chronic conditions; however, the mechanisms explaining how hypnosis exerts its effects remain less clear. The hypothalamic-pituitary-adrenal (HPA) axis and pro-inflammatory cytokines represent potential targets for investigation given their purported roles in the perpetuation of painful conditions; yet, no clinical trials have thus far examined the influence of hypnosis on these mechanisms. Design Healthy participants, highly susceptible to the effects of hypnosis, were randomized to either a hypnosis intervention or a no-intervention control. Using a cold pressor task, assessments of pain intensity and pain unpleasantness were collected prior to the intervention (Pre) and following the intervention (Post) along with pain-provoked changes in salivary cortisol and the soluble receptor of tumor necrosis factor-α (sTNFαRII). Results Compared to the no-intervention control, data analyses revealed that hypnosis significantly reduced pain intensity and pain unpleasantness. Hypnosis was not significantly associated with suppression of cortisol or sTNFαRII reactivity to acute pain from Pre to Post; however, the effect sizes for these associations were medium-sized. Conclusions Overall, the findings from this randomized controlled pilot study support the importance of a future large-scale study on the effects of hypnosis for modulating pain-related changes of the HPA axis and pro-inflammatory cytokines. PMID:22233394
Hay, Justin L; Okkerse, Pieter; van Amerongen, Guido; Groeneveld, Geert Jan
2016-04-14
Human pain models are useful in the assessing the analgesic effect of drugs, providing information about a drug's pharmacology and identify potentially suitable therapeutic populations. The need to use a comprehensive battery of pain models is highlighted by studies whereby only a single pain model, thought to relate to the clinical situation, demonstrates lack of efficacy. No single experimental model can mimic the complex nature of clinical pain. The integrated, multi-modal pain task battery presented here encompasses the electrical stimulation task, pressure stimulation task, cold pressor task, the UVB inflammatory model which includes a thermal task and a paradigm for inhibitory conditioned pain modulation. These human pain models have been tested for predicative validity and reliability both in their own right and in combination, and can be used repeatedly, quickly, in short succession, with minimum burden for the subject and with a modest quantity of equipment. This allows a drug to be fully characterized and profiled for analgesic effect which is especially useful for drugs with a novel or untested mechanism of action.
Evaluating an Innovative eLearning Pain Education Interprofessional Resource: A Pre-Post Study.
Watt-Watson, Judy; McGillion, Michael; Lax, Leila; Oskarsson, Jon; Hunter, Judith; MacLennan, Cameron; Knickle, Kerry; Victor, J Charles
2018-06-20
The challenges of moving the pain education agenda forward are significant worldwide, and resources, including online, are needed to help educators in curriculum development. Online resources are available but with insufficient evaluation in the context of prelicensure pain education. Therefore, this pre-post study examined the impact of an innovative eLearning model: the Pain Education Interprofessional Resource (PEIR) on usability, pain knowledge, beliefs, and understanding of pain assessment skills including empathy. Participants were students (N = 96) recruited from seven prelicensure health sciences programs at the University of Toronto. They worked through three multifaceted modules, developed by an interprofessional team, that followed a patient with acute to persistent postsurgical pain up to one year. Module objectives, content, and assessment were based on International Association for the Study of Pain Pain Curricula domains and related pain core competencies. Multimedia interactive components focused on pain mechanisms and key pain care issues. Outcome measures included previously validated tools; data were analyzed in SPSS. Online exercises provided concurrent individual feedback throughout all modules. The completion rate for modules and online assessments was 100%. Overall usability scores (SD) were strong 4.27/5 (0.56). On average, pain knowledge scores increased 20% (P < 0.001). The Pain Assessment Skills Tool was sensitive to differences in student and expert pain assessment evaluation ratings and was useful as a tool to deliver formative feedback while engaged in interactive eLearning about pain assessment. PEIR is an effective eLearning program with high student ratings for educational design and usability that significantly improved pain knowledge and understanding of collaborative care.
de Tommaso, Marina; Ricci, Katia; Laneve, Luigi; Savino, Nicola; Antonaci, Vincenzo; Livrea, Paolo
2013-01-01
Environmental context has an important impact on health and well being. We aimed to test the effects of a visual distraction induced by classical hospital waiting room (RH) versus an ideal room with a sea view (IH), both represented in virtual reality (VR), on subjective sensation and cortical responses induced by painful laser stimuli (LEPs) in healthy volunteers and patients with chronic migraine (CM). Sixteen CM and 16 controls underwent 62 channels LEPs from the right hand, during a fully immersive VR experience, where two types of waiting rooms were simulated. The RH simulated a classical hospital waiting room while the IH represented a room with sea viewing. CM patients showed a reduction of laser pain rating and vertex LEPs during the IH vision. The sLORETA analysis confirmed that in CM patients the two VR simulations induced a different modulation of bilateral parietal cortical areas (precuneus and superior parietal lobe), and superior frontal and cingulate girus, in respect to controls. The architectural context may interfere with pain perception, depending upon the status of subject. Many variables may change patients' outcome and support the use of VR technology to test the best conditions for their management.
Resting blood pressure differentially predicts time course in a tonic pain experiment.
Horing, Bjoern; McCubbin, James A; Moore, Dewayne; Muth, Eric R
2016-10-01
Resting blood pressure (BP) shows a negative relationship with pain sensitivity (BP-related hypoalgesia). In chronic pain conditions, this relationship is inverted. The precise mechanisms responsible for the inversion are unknown. Using a tonic pain protocol, we report findings closely resembling this inversion in healthy participants. Resting BP and state measures of anxiety and mood were assessed from 33 participants (21 female). Participants then immersed their dominant hand in painfully hot water (47 °C) for five trials of 1-min duration, with 30-s intertrial intervals. Throughout the trials, participants continually registered their pain. After a 35-min intermission, the trial sequence was repeated. A disassociation of the negative relationship of resting systolic BP (as per Trial 1) was found using hierarchical linear modeling (p < .001, R(2) = .07). The disassociation unfolds over each consecutive trial, with an increasingly positive relationship. In Sequence 2, the initially negative relationship is almost completely absent. Furthermore, the association of BP and pain was found to be moderated by anxiety, such that only persons with low anxiety exhibited BP hypoalgesia. Our findings expand the existing literature by incorporating anxiety as a moderator of BP hypoalgesia. Furthermore, the protocol emulates the changing relationship between BP and pain observed in chronic pain patients. The protocol has potential as a model for chronic pain; however, future research should determine if similar physiological systems are involved. The finding holds potential diagnostic or prognostic relevance for certain clinical pain conditions, especially those involving dysfunction of the descending modulation of pain. © 2016 Society for Psychophysiological Research.
Emotion self-regulation and empathy depend upon longer stimulus exposure.
Ikezawa, Satoru; Corbera, Silvia; Wexler, Bruce E
2014-10-01
Observation of others in pain induces positive elevation (pain effect) in late event-related potentials (ERP). This effect is associated with top-down attention regulating processes. It has previously been shown that stimulus exposure duration can affect top-down attentional modulation of response to threat-related stimuli. We investigated the effect of exposure duration on ERP response to others in pain. Two late ERP components, P3 and late positive potentials (LPP), from 18 healthy people were measured while they viewed pictures of hands in painful or neutral situations for either 200 or 500 ms, during two task conditions (pain judgment and counting hands). P3 and LPP pain effects during the pain judgment condition were significantly greater with 500 ms than 200 ms stimulus presentation. Ours is the first study to suggest that engagement of empathy-related self-regulatory processes reflected in late potentials requires longer exposure to the pain-related stimulus. Although this is important information about the relationship between early sensory and subsequent brain processing, and about engagement of self-regulatory processes, the neural basis of this time-dependence remains unclear. It might be important to investigate the relationship between stimulus duration and empathic response in clinical populations where issues of self-regulation, empathic response and speed of information processing exist. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
CPM Test-Retest Reliability: "Standard" vs "Single Test-Stimulus" Protocols.
Granovsky, Yelena; Miller-Barmak, Adi; Goldstein, Oren; Sprecher, Elliot; Yarnitsky, David
2016-03-01
Assessment of pain inhibitory mechanisms using conditioned pain modulation (CPM) is relevant clinically in prediction of pain and analgesic efficacy. Our objective is to provide necessary estimates of intersession CPM reliability, to enable transformation of the CPM paradigm into a clinical tool. Two cohorts of young healthy subjects (N = 65) participated in two dual-session studies. In Study I, a Bath-Thermode CPM protocol was used, with hot water immersion and contact heat as conditioning- and test-stimuli, respectively, in a classical parallel CPM design introducing test-stimulus first, and then the conditioning- and repeated test-stimuli in parallel. Study II consisted of two CPM protocols: 1) Two-Thermodes, one for each of the stimuli, in the same parallel design as above, and 2) single test-stimulus (STS) protocol with a single administration of a contact heat test-stimulus, partially overlapped in time by a remote shorter contact heat as conditioning stimulus. Test-retest reliability was assessed within 3-7 days. The STS-CPM had superior reliability intraclass correlation (ICC 2 ,: 1 = 0.59) over Bath-Thermode (ICC 2 ,: 1 = 0.34) or Two-Thermodes (ICC 2 ,: 1 = 0.21) protocols. The hand immersion conditioning pain had higher reliability than thermode pain (ICC 2 ,: 1 = 0.76 vs ICC 2 ,: 1 = 0.16). Conditioned test-stimulus pain scores were of good (ICC 2 ,: 1 = 0.62) or fair (ICC 2 ,: 1 = 0.43) reliability for the Bath-Thermode and the STS, respectively, but not for the Two-Thermodes protocol (ICC 2 ,: 1 = 0.20). The newly developed STS-CPM paradigm was more reliable than other CPM protocols tested here, and should be further investigated for its clinical relevance. It appears that large contact size of the conditioning-stimulus and use of single rather than dual test-stimulus pain contribute to augmentation of CPM reliability. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Muscle pain perception and sympathetic nerve activity to exercise during opioid modulation
NASA Technical Reports Server (NTRS)
Cook, D. B.; O'Connor, P. J.; Ray, C. A.
2000-01-01
The purpose of this experiment was to examine the effects of the endogenous opioid system on forearm muscle pain and muscle sympathetic nerve activity (MSNA) during dynamic fatiguing exercise. Twelve college-age men (24 +/- 4 yr) performed graded (1-min stages; 30 contractions/min) handgrip to fatigue 1 h after the ingestion of either 60 mg codeine, 50 mg naltrexone, or placebo. Pain (0-10 scale) and exertion (0-10 and 6-20 scales) intensities were measured during the last 15 s of each minute of exercise and every 15 s during recovery. MSNA was measured continuously from the peroneal nerve in the left leg. Pain threshold occurred earlier [1.8 +/- 1, 2. 2 +/- 1, 2.2 +/- 1 J: codeine, naltrexone, and placebo, respectively] and was associated with a lower rating of perceived exertion (RPE) (2.7 +/- 2, 3.6 +/- 2, 3.8 +/- 2: codeine, naltrexone, and placebo, respectively) in the codeine condition compared with either the naltrexone or placebo conditions. There were no main effects (i.e., drugs) or interaction (i.e., drugs x time) for either forearm muscle pain or RPE during exercise [pain: F (2, 22) = 0.69, P = 0.51]. There was no effect of drug on MSNA, heart rate, or blood pressure during baseline, exercise, or recovery. Peak exercise MSNA responses were 21 +/- 1, 21 +/- 2.0, and 21 +/- 2.0 bursts/30 s for codeine, naltrexone, and placebo conditions, respectively. Peak mean arterial pressure responses were 135 +/- 4, 131 +/- 3, and 132 +/- 4 mmHg for codeine, naltrexone, and placebo conditions, respectively. It is concluded that neither 60 mg codeine nor 50 mg naltrexone has an effect on forearm muscle pain, exertion, or MSNA during high- intensity handgrip to fatigue.
Strigo, Irina A; Simmons, Alan N; Matthews, Scott C; Craig, Arthur D Bud; Paulus, Martin P
2008-11-01
Chronic pain and depression are highly comorbid conditions, yet little is known about the neurobiological basis of pain processing in major depressive disorder (MDD). To examine the neural substrates underlying anticipation and processing of heat pain in a group of unmedicated young adults with current MDD. Functional magnetic resonance neuroimaging data were collected during an event-related factorial experimental pain paradigm. Painful and nonpainful heat stimuli were applied to the left volar forearm while different color shapes explicitly signaled the intensity of the upcoming stimulus. University brain imaging center. Patients Fifteen (12 female) young adults with current MDD and 15 (10 female) healthy subjects with no history of MDD were recruited and matched for age and level of education. The Structured Clinical Interview for DSM-IV was administered to all participants by a board-certified psychiatrist. Main Outcome Measure Between-group differences in blood oxygen level-dependent functional magnetic resonance neuroimaging signal change to anticipation and processing of painful vs nonpainful temperature stimuli. Subjects with MDD compared with healthy controls showed (1) increased activation in the right anterior insular region, dorsal anterior cingulate, and right amygdala during anticipation of painful relative to nonpainful stimuli, (2) increased activation in the right amygdala and decreased activation in periaqueductal gray matter and the rostral anterior cingulate and prefrontal cortices during painful stimulation relative to nonpainful stimulation, and (3) greater activation in the right amygdala during anticipation of pain, which was associated with greater levels of perceived helplessness. These findings suggest that increased emotional reactivity during the anticipation of heat pain may lead to an impaired ability to modulate pain experience in MDD. Future studies should examine the degree to which altered functional brain response during anticipatory processing affects the ability to modulate negative affective states in MDD, which is a core characteristic of this disorder.
Vuilleumier, Pascal H; Besson, Marie; Desmeules, Jules; Arendt-Nielsen, Lars; Curatolo, Michele
2013-01-01
Compounds that act on GABA-receptors produce anti-hyperalgesia in animal models, but little is known on their effects in humans. The aim of this study was to explore the potential usefulness of GABA-agonism for the control of pain in humans. Two agonists at the benzodiazepine-binding site of GABAA-receptors (clobazam and clonazepam) were studied using multiple experimental pain tests. Positive results would support further investigation of GABA agonism for the control of clinical pain. In a randomized double-blind crossover design, 16 healthy male volunteers received clobazam 20 mg, clonazepam 1 mg and tolterodine 1 mg (active placebo). The area of static hyperalgesia after intradermal capsaicin injection was the primary endpoint. Secondary endpoints were: area of dynamic hyperalgesia, response to von Frey hair stimulation, pressure pain thresholds, conditioned pain modulation, cutaneous and intramuscular electrical pain thresholds (1, 5 and 20 repeated stimulation), and pain during cuff algometry. For the primary endpoint, an increase in the area of static hyperalgesia was observed after administration of placebo (p<0.001), but not after clobazam and clonazepam. Results suggestive for an anti-hyperalgesic effect of the benzodiazepines were obtained with all three intramuscular pain models and with cuff algometry. No effect could be detected with the other pain models employed. Collectively, the results are suggestive for a possible anti-hyperalgesic effect of drugs acting at the GABAA-receptors in humans, particularly in models of secondary hyperalgesia and deep pain. The findings are not conclusive, but support further clinical research on pain modulation by GABAergic drugs. Because of the partial results, future research should focus on compounds acting selectively on subunits of the GABA complex, which may allow the achievement of higher receptor occupancy than unselective drugs. Our data also provide information on the most suitable experimental models for future investigation of GABAergic compounds. ClinicalTrials.gov NCT01011036.
Vuilleumier, Pascal H.; Besson, Marie; Desmeules, Jules; Arendt-Nielsen, Lars; Curatolo, Michele
2013-01-01
Background and Aims Compounds that act on GABA-receptors produce anti-hyperalgesia in animal models, but little is known on their effects in humans. The aim of this study was to explore the potential usefulness of GABA-agonism for the control of pain in humans. Two agonists at the benzodiazepine-binding site of GABAA-receptors (clobazam and clonazepam) were studied using multiple experimental pain tests. Positive results would support further investigation of GABA agonism for the control of clinical pain. Methods In a randomized double-blind crossover design, 16 healthy male volunteers received clobazam 20 mg, clonazepam 1 mg and tolterodine 1 mg (active placebo). The area of static hyperalgesia after intradermal capsaicin injection was the primary endpoint. Secondary endpoints were: area of dynamic hyperalgesia, response to von Frey hair stimulation, pressure pain thresholds, conditioned pain modulation, cutaneous and intramuscular electrical pain thresholds (1, 5 and 20 repeated stimulation), and pain during cuff algometry. Results For the primary endpoint, an increase in the area of static hyperalgesia was observed after administration of placebo (p<0.001), but not after clobazam and clonazepam. Results suggestive for an anti-hyperalgesic effect of the benzodiazepines were obtained with all three intramuscular pain models and with cuff algometry. No effect could be detected with the other pain models employed. Conclusions Collectively, the results are suggestive for a possible anti-hyperalgesic effect of drugs acting at the GABAA-receptors in humans, particularly in models of secondary hyperalgesia and deep pain. The findings are not conclusive, but support further clinical research on pain modulation by GABAergic drugs. Because of the partial results, future research should focus on compounds acting selectively on subunits of the GABA complex, which may allow the achievement of higher receptor occupancy than unselective drugs. Our data also provide information on the most suitable experimental models for future investigation of GABAergic compounds. Trial Registration ClinicalTrials.gov NCT01011036 PMID:23554851
Rhudy, Jamie L; Martin, Satin L; Terry, Ellen L; Delventura, Jennifer L; Kerr, Kara L; Palit, Shreela
2012-11-01
Emotion can modulate pain and spinal nociception, and correlational data suggest that cognitive-emotional processes can facilitate wind-up-like phenomena (ie, temporal summation of pain). However, there have been no experimental studies that manipulated emotion to determine whether within-subject changes in emotion influence temporal summation of pain (TS-pain) and the nociceptive flexion reflex (TS-NFR, a physiological measure of spinal nociception). The present study presented a series of emotionally charged pictures (mutilation, neutral, erotic) during which electric stimuli at 2 Hz were delivered to the sural nerve to evoke TS-pain and TS-NFR. Participants (n=46 healthy; 32 female) were asked to rate their emotional reactions to pictures as a manipulation check. Pain outcomes were analyzed using statistically powerful multilevel growth curve models. Results indicated that emotional state was effectively manipulated. Further, emotion modulated the overall level of pain and NFR; pain and NFR were highest during mutilation and lowest during erotic pictures. Although pain and NFR both summated in response to the 2-Hz stimulation series, the magnitude of pain summation (TS-pain) and NFR summation (TS-NFR) was not modulated by picture-viewing. These results imply that, at least in healthy humans, within-subject changes in emotions do not promote central sensitization via amplification of temporal summation. However, future studies are needed to determine whether these findings generalize to clinical populations (eg, chronic pain). Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Somatoform Pain: A developmental theory and translational research review
Landa, Alla; Peterson, Bradley S.; Fallon, Brian A.
2013-01-01
Somatoform pain is a highly prevalent, debilitating condition and a tremendous public health problem. Effective treatments for somatoform pain are urgently needed. The etiology of this condition is, however, still unknown. On the basis of a review of recent basic and clinical research, we propose one potential mechanisms of symptom formation in somatoform pain and a developmental theory of its pathogenesis. The emerging evidence from animal and human studies in developmental neurobiology, cognitive-affective neuroscience, psychoneuroimmunology, genetics, epigenetics, and clinical and treatment studies of somatoform pain all point to the existence of a shared physical and social pain neural system. Research findings also show that non-optimal early experiences interact with genetic predispositions to influence the development of this shared system and ability to regulate it in an effective way. Interpersonal affect regulation between infant and caregiver is crucial for the optimal development of these brain circuits. The aberrant development of this shared neural system during infancy, childhood and adolescence, therefore, may ultimately lead to an increased sensitivity to physical and social pain and to problems with their regulation in adulthood. The authors critically review translational research findings that support this theory and discuss its clinical and research implications. Specifically, the proposed theory and reviewed research suggest that psychotherapeutic and/or pharmacologic interventions that foster the development of affect regulation capacities in an interpersonal context will also serve to more effectively modulate aberrantly activated neural pain circuits and thus be of particular benefit in the treatment of somatoform pain. PMID:22929064
Effects of Acute Alcohol Intoxication on Empathic Neural Responses for Pain
Hu, Yang; Cui, Zhuoya; Fan, Mingxia; Pei, Yilai; Wang, Zhaoxin
2018-01-01
The questions whether and how empathy for pain can be modulated by acute alcohol intoxication in the non-dependent population remain unanswered. To address these questions, a double-blind, placebo-controlled, within-subject study design was adopted in this study, in which healthy social drinkers were asked to complete a pain-judgment task using pictures depicting others' body parts in painful or non-painful situations during fMRI scanning, either under the influence of alcohol intoxication or placebo conditions. Empathic neural activity for pain was reduced by alcohol intoxication only in the dorsal anterior cingulate cortex (dACC). More interestingly, we observed that empathic neural activity for pain in the right anterior insula (rAI) was significantly correlated with trait empathy only after alcohol intoxication, along with impaired functional connectivity between the rAI and the fronto-parietal attention network. Our results reveal that alcohol intoxication not only inhibits empathic neural responses for pain but also leads to trait empathy inflation, possibly via impaired top-down attentional control. These findings help to explain the neural mechanism underlying alcohol-related social problems. PMID:29354044
Effects of Acute Alcohol Intoxication on Empathic Neural Responses for Pain.
Hu, Yang; Cui, Zhuoya; Fan, Mingxia; Pei, Yilai; Wang, Zhaoxin
2017-01-01
The questions whether and how empathy for pain can be modulated by acute alcohol intoxication in the non-dependent population remain unanswered. To address these questions, a double-blind, placebo-controlled, within-subject study design was adopted in this study, in which healthy social drinkers were asked to complete a pain-judgment task using pictures depicting others' body parts in painful or non-painful situations during fMRI scanning, either under the influence of alcohol intoxication or placebo conditions. Empathic neural activity for pain was reduced by alcohol intoxication only in the dorsal anterior cingulate cortex (dACC). More interestingly, we observed that empathic neural activity for pain in the right anterior insula (rAI) was significantly correlated with trait empathy only after alcohol intoxication, along with impaired functional connectivity between the rAI and the fronto-parietal attention network. Our results reveal that alcohol intoxication not only inhibits empathic neural responses for pain but also leads to trait empathy inflation, possibly via impaired top-down attentional control. These findings help to explain the neural mechanism underlying alcohol-related social problems.
The interfaces between vitamin D, sleep and pain.
de Oliveira, Daniela Leite; Hirotsu, Camila; Tufik, Sergio; Andersen, Monica Levy
2017-07-01
The role of vitamin D in osteomineral metabolism is well known. Several studies have suggested its action on different biological mechanisms, such as nociceptive sensitivity and sleep-wake cycle modulation. Sleep is an important biological process regulated by different regions of the central nervous system, mainly the hypothalamus, in combination with several neurotransmitters. Pain, which can be classified as nociceptive, neuropathic and psychological, is regulated by both the central and peripheral nervous systems. In the peripheral nervous system, the immune system participates in the inflammatory process that contributes to hyperalgesia. Sleep deprivation is an important condition related to hyperalgesia, and recently it has also been associated with vitamin D. Poor sleep efficiency and sleep disorders have been shown to have an important role in hyperalgesia, and be associated with different vitamin D values. Vitamin D has been inversely correlated with painful manifestations, such as fibromyalgia and rheumatic diseases. Studies have demonstrated a possible action of vitamin D in the regulatory mechanisms of both sleep and pain. The supplementation of vitamin D associated with good sleep hygiene may have a therapeutic role, not only in sleep disorders but also in the prevention and treatment of chronic pain conditions. © 2017 Society for Endocrinology.
Campbell, Claudia M; Buenaver, Luis F; Raja, Srinivasa N; Kiley, Kasey B; Swedberg, Lauren J; Wacnik, Paul W; Cohen, Steven P; Erdek, Michael A; Williams, Kayode A; Christo, Paul J
2015-07-01
Spinal cord stimulation (SCS) has become a widely used treatment option for a variety of pain conditions. Substantial variability exists in the degree of benefit obtained from SCS and patient selection is a topic of expanding interest and importance. However, few studies have examined the potential benefits of dynamic quantitative sensory testing (QST) to develop objective measures of SCS outcomes or as a predictive tool to help patient selection. Psychological characteristics have been shown to play an important role in shaping individual differences in the pain experience and may aid in predicting responses to SCS. Static laboratory pain-induction measures have also been examined in their capacity for predicting SCS outcomes. The current study evaluated clinical, psychological and laboratory pain measures at baseline, during trial SCS lead placement, as well as 1 month and 3 months following permanent SCS implantation in chronic pain patients who received SCS treatment. Several QST measures were conducted, with specific focus on examination of dynamic models (central sensitization and conditioned pain modulation [CPM]) and their association with pain outcomes 3 months post SCS implantation. Results suggest few changes in QST over time. However, central sensitization and CPM at baseline were significantly associated with clinical pain at 3 months following SCS implantation, controlling for psycho/behavioral factors and pain at baseline. Specifically, enhanced central sensitization and reduced CPM were associated with less self-reported pain 3 months following SCS implantation. These findings suggest a potentially important role for dynamic pain assessment in individuals undergoing SCS, and hint at potential mechanisms through which SCS may impart its benefit. Wiley Periodicals, Inc.
Wei, F; Dubner, R; Ren, K
1999-03-01
Previous findings indicate that the brain stem descending system becomes more active in modulating spinal nociceptive processes during the development of persistent pain. The present study further identified the supraspinal sites that mediate enhanced descending modulation of behavior hyperalgesia and dorsal horn hyperexcitability (as measured by Fos-like immunoreactivity) produced by subcutaneous complete Freund's adjuvant (CFA). Selective chemical lesions were produced in the nucleus raphe magnus (NRM), the nuclei reticularis gigantocellularis (NGC), or the locus coeruleus/subcoeruleus (LC/SC). Compared to vehicle-injected animals with injection of vehicle alone, microinjection of a serotoninergic neurotoxin 5,7-dihydroxytryptamine into the NRM significantly increased thermal hyperalgesia and Fos protein expression in lumbar spinal cord after hindpaw inflammation. In contrast, the selective bilateral destruction of the NGC with a soma-selective excitotoxic neurotoxin, ibotenic acid, led to an attenuation of hyperalgesia and a reduction of inflammation-induced spinal Fos expression. Furthermore, if the NGC lesion was extended to involve the NRM, the behavioral hyperalgesia and CFA-induced Fos expression were similar to that in vehicle-injected rats. Bilateral LC/SC lesions were produced by microinjections of a noradrenergic neurotoxin, DSP-4. There was a significant increase in inflammation-induced spinal Fos expression, especially in the ipsilateral superficial dorsal horn following LC/SC lesions. These results demonstrated that multiple specific brain stem sites are involved in descending modulation of inflammatory hyperalgesia. Both NRM and LC/SC descending pathways are major sources of enhanced inhibitory modulation in inflamed animals. The persistent hyperalgesia and neuronal hyperexcitability may be mediated in part by a descending pain facilitatory system involving NGC. Thus, the intensity of perceived pain and hyperalgesia is fine-tuned by descending pathways. The imbalance of these modulating systems may be one mechanism underlying variability in acute and chronic pain conditions.
Wilkerson, Jenny L; Kulkarni, Abhijit; Toma, Wisam; AlSharari, Shakir; Gul, Zulfiye; Lichtman, Aron H; Papke, Roger L; Damaj, M Imad
2016-01-01
Background and Purpose Orthosteric agonists and positive allosteric modulators (PAMs) of the α7 nicotinic ACh receptor (nAChR) represent novel therapeutic approaches for pain modulation. Moreover, compounds with dual function as allosteric agonists and PAMs, known as ago‐PAMs, add further regulation of receptor function. Experimental Approach Initial studies examined the α7 ago‐PAM, GAT107, in the formalin, complete Freund's adjuvant (CFA), LPS inflammatory pain models, the chronic constriction injury neuropathic pain model and the tail flick and hot plate acute thermal nociceptive assays. Additional studies examined the locus of action of GAT107 and immunohistochemical markers in the dorsal horn of the spinal cord in the CFA model. Key Results Complementary pharmacological and genetic approaches confirmed that the dose‐dependent antinociceptive effects of GAT107 were mediated through α7 nAChR. However, GAT107 was inactive in the tail flick and hot plate assays. In addition, GAT107 blocked conditioned place aversion elicited by acetic acid injection. Furthermore, intrathecal, but not intraplantar, injections of GAT107 reversed nociception in the CFA model, suggesting a spinal component of action. Immunohistochemical evaluation revealed an increase in the expression of astrocyte‐specific glial fibrillary acidic protein and phosphorylated p38MAPK within the spinal cords of mice treated with CFA, which was attenuated by intrathecal GAT107 treatment. Importantly, GAT107 did not elicit motor impairment and continued to produce antinociceptive effects after subchronic administration in both phases of the formalin test. Conclusions and Implications Collectively, these results provide the first proof of principle that α7 ago‐PAMs represent an effective pharmacological strategy for treating inflammatory and neuropathic pain. PMID:27243753
Tamam, Sofina; Ahmad, Asma Hayati
2017-01-01
Pain is modulated by various factors, the most notable of which is emotions. Since love is an emotion, it can also modulate pain. The answer to the question of whether it enhances or reduces pain needs to be determined. A review was conducted of animal and human studies in which this enigmatic emotion and its interaction with pain was explored. Recent advances in neuroimaging have revealed similarities in brain activation relating to love and pain. At the simplest level, this interaction can be explained by the overlapping network structure in brain functional connectivity, although the explanation is considerably more complex. The effect of love can either result in increased or decreased pain perception. An explanation of the interaction between pain and love relates to the functional connectivity of the brain and to the psychological construct of the individual, as well as to his or her ability to engage resources relating to emotion regulation. In turn, this determines how a person relates to love and reacts to pain. PMID:28814928
Sigma-1 receptor and inflammatory pain.
Gris, Georgia; Cobos, Enrique José; Zamanillo, Daniel; Portillo-Salido, Enrique
2015-06-01
The sigma-1 receptor (Sig-1R) is a unique ligand-regulated molecular chaperone that interacts with several protein targets such as G protein-coupled receptors and ion channels to modulate their activity. Sig-1R is located in areas of the central and peripheral nervous system that are key to pain control. Previous preclinical studies have suggested a potential therapeutic use of Sig-1R antagonists for the management of neuropathic pain. Recent studies using pharmacological and genetic tools have explored the role of Sig-1R in inflammatory pain conditions. Mice lacking the Sig-1R have shown different patterns of phenotypic responses to inflammatory injury. Systemic or peripheral administration of several Sig-1R antagonists, including the selective Sig-1R antagonist S1RA, inhibited both mechanical and thermal hypersensitivity in several preclinical models of inflammatory pain. These recent studies are summarized in the present commentary. Central and peripheral pharmacological blockade of Sig-1R could be an effective option to treat inflammatory pain.
Kringel, Dario; Lippmann, Catharina; Parnham, Michael J; Kalso, Eija; Ultsch, Alfred; Lötsch, Jörn
2018-06-19
Human genetic research has implicated functional variants of more than one hundred genes in the modulation of persisting pain. Artificial intelligence and machine learning techniques may combine this knowledge with results of genetic research gathered in any context, which permits the identification of the key biological processes involved in chronic sensitization to pain. Based on published evidence, a set of 110 genes carrying variants reported to be associated with modulation of the clinical phenotype of persisting pain in eight different clinical settings was submitted to unsupervised machine-learning aimed at functional clustering. Subsequently, a mathematically supported subset of genes, comprising those most consistently involved in persisting pain, was analyzed by means of computational functional genomics in the Gene Ontology knowledgebase. Clustering of genes with evidence for a modulation of persisting pain elucidated a functionally heterogeneous set. The situation cleared when the focus was narrowed to a genetic modulation consistently observed throughout several clinical settings. On this basis, two groups of biological processes, the immune system and nitric oxide signaling, emerged as major players in sensitization to persisting pain, which is biologically highly plausible and in agreement with other lines of pain research. The present computational functional genomics-based approach provided a computational systems-biology perspective on chronic sensitization to pain. Human genetic control of persisting pain points to the immune system as a source of potential future targets for drugs directed against persisting pain. Contemporary machine-learned methods provide innovative approaches to knowledge discovery from previous evidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Altered attentional control over the salience network in complex regional pain syndrome.
Kim, Jungyoon; Kang, Ilhyang; Chung, Yong-An; Kim, Tae-Suk; Namgung, Eun; Lee, Suji; Oh, Jin Kyoung; Jeong, Hyeonseok S; Cho, Hanbyul; Kim, Myeong Ju; Kim, Tammy D; Choi, Soo Hyun; Lim, Soo Mee; Lyoo, In Kyoon; Yoon, Sujung
2018-05-10
The degree and salience of pain have been known to be constantly monitored and modulated by the brain. In the case of maladaptive neural responses as reported in centralized pain conditions such as complex regional pain syndrome (CRPS), the perception of pain is amplified and remains elevated even without sustained peripheral pain inputs. Given that the attentional state of the brain greatly influences the perception and interpretation of pain, we investigated the role of the attention network and its dynamic interactions with other pain-related networks of the brain in CRPS. We examined alterations in the intra- and inter-network functional connectivities in 21 individuals with CRPS and 49 controls. CRPS-related reduction in intra-network functional connectivity was found in the attention network. Individuals with CRPS had greater inter-network connectivities between the attention and salience networks as compared with healthy controls. Furthermore, individuals within the CRPS group with high levels of pain catastrophizing showed greater inter-network connectivities between the attention and salience networks. Taken together, the current findings suggest that these altered connectivities may be potentially associated with the maladaptive pain coping as found in CRPS patients.
Rathleff, Camilla Rams; Stephenson, Aoife; Mellor, Rebecca; Matthews, Mark; Crossley, Kay; Vicenzino, Bill
2017-01-01
Patellofemoral Pain (PFP) is highly prevalent among adults and adolescents. Localized mechanical hyperalgesia around the knee and tibialis anterior have been observed in people with PFP, but limited knowledge of potential manifestations of central sensitisation exists. The aims of this study were to study conditioned pain modulation (CPM) and wide-spread hyperalgesia in adults with PFP. This assessor-blinded cross-sectional study design compared CPM and mechanical pressure pain thresholds (PPT) between 33 adults (23 females) diagnosed with PFP and 32 age and sex matched pain-free controls. The investigator taking the PPT measurements was blinded to which participants had PFP. PPTs were reliably measured using a Somedic hand-held pressure algometer at three sites: 1) The centre of the patella, 2) the tibialis anterior muscle and 3) a remote site on the lateral epicondyle. For the assessment of CPM, experimental pain was induced to the contralateral hand by immersion into a cold water bath (conditioning stimulus), and assessment of PPTs (the test stimulus) was performed before and immediately after the conditioning stimulation. On average, the CPM paradigm induced a significant increase in PPTs across the three sites (6.3–13.5%, P<0.05), however there was no difference in CPM between young adults with PFP compared to the control group, (F(1,189) = 0.39, P = 0.89). There was no difference in mechanical PPTs between the two groups (F(1,189) = 0.03, P = 0.86). Contrary to our a-priori hypothesis, we found no difference in CPM or PPT between young adults with PFP and age and sex matched pain-free controls. PMID:29220355
Modelling brain activations and connectivity of pain modulated by having a loved one nearby
NASA Astrophysics Data System (ADS)
Tamam, Sofina; Ahmad, Asma Hayati; Kamil, Wan Ahmad
2018-06-01
This study is to model the connectivity between activated areas in the brain associated with pain responses in the presence and absence of a loved one. We used Th:YAG laser targeted onto the dorsum of the right hand of 17 Malay-female participants (mean age 20.59; SD 2.85 years) in two conditions: (1) in the absence of a loved one in the functional magnetic resonance imaging (fMRI) room (Alone condition), and (2) in the presence of a loved one (Support condition). The laser-induced pain stimuli were delivered according to an fMRI paradigm utilising blocked design comprising 15 blocks of activity and 15 blocks of rest. Brain activations and connectivity were analysed using statistical parametric mapping (SPM), dynamic causal modelling (DCM) and Bayesian model selection (BMS) analyses. Individual responses to pain were found to be divided into two categories: (1) Love Hurts (participants who reported more pain in the presence of a loved one) involved activations in thalamus (THA), parahippocampal gyrus (PHG) and hippocampus (HIP); and (2) Love Heals (participants who reported less pain in the presence of a loved one) involved activations in all parts of cingulate cortex. BMS showed that Love Heals could be represented by a cortical network involving the area of anterior cingulate cortex (ACC), middle cingulate cortex (MCC) and posterior cingulate cortex (PCC) in the intrinsic connectivity of ACC → PCC → MCC and ACC → MCC. There was no optimal model to explain the increase in pain threshold when accompanied by the loved one in Love Hurts. The present study reveals a new possible cortical network for the reduction of pain by having a loved one nearby.
Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia
Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J.
2015-01-01
The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated. PMID:26678391
Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.
Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J
2015-01-01
The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.
Bonacci, Jason; Hall, Michelle; Fox, Aaron; Saunders, Natalie; Shipsides, Tristan; Vicenzino, Bill
2018-06-01
To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain. Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence. Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2-4). Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (p<0.001) compared to the control condition. Running in a minimalist shoe at preferred cadence reduced patellofemoral joint stress by 15% and joint reaction force by 17% (p<0.001), compared to the control condition. Running in control shoes at an increased cadence reduced patellofemoral joint stress and joint reaction force by 16% and 19% (p<0.001), respectively, compared to the control condition. In individuals with patellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Liebano, Richard E.; Vance, Carol G.T.; Rakel, Barbara; Lee, Jennifer E.; Cooper, Nicholas A.; Marchand, Serge; Walsh, Deirdre M.; Sluka, Kathleen A.
2013-01-01
Background Research in animal models suggest that transcutaneous electrical nerve stimulation (TENS) and conditioned pain modulation (CPM) produce analgesia via two different supraspinal pathways. No known studies have examined whether TENS and CPM applied simultaneously in human subjects will enhance the analgesic effect of either treatment alone. The purpose of the current study was to investigate whether the simultaneous application of TENS and CPM will enhance the analgesic effect of that produced by either treatment alone. Methods Sixty healthy adults were randomly allocated into 2 groups: 1) CPM plus Active TENS; 2) CPM plus Placebo TENS. Pain threshold for heat (HPT) and pressure (PPT) was recorded from subject’s left forearm at baseline, during CPM, during Active or Placebo TENS, and during CPM plus Active or Placebo TENS. CPM was induced by placing the subjects’ contralateral arm in a hot water bath (46.5°C) for two minutes. TENS (100µs, 100Hz) was applied to the forearm for 20 minutes at a strong but comfortable intensity. Results Active TENS alone increased PPT (but not HPT) more than Placebo TENS alone (p=0.011). Combining CPM and Active TENS did not significantly increase PPT (p=0.232) or HPT (p=0.423) beyond CPM plus Placebo TENS. There was a significant positive association between PPT during CPM and during Active TENS (r2=0.46, p=0.003). Conclusions TENS application increases PPT, however combining CPM and TENS does not increase the CPM’s hypoalgesic response. CPM effect on PPT is associated with effects of TENS on PPT. PMID:23650092
Hormones in pain modulation and their clinical implications for pain control: a critical review.
Chen, Xueyin; Zhang, Jinyuan; Wang, Xiangrui
2016-07-01
Recently, more and more studies have found that pain generation, transmission and modulation are under hormonal regulation. Indeed, hormonal dysregulation is a common component of chronic pain syndromes. Studies have attempted to determine whether the relationship between the pain and its perception and hormones is a causative relationship and how these processes interrelate. This review summarizes and analyzes the current experimental data and provides an overview of the studies addressing these questions. The relationship between pain perception and endocrine effects suggests that hormones can be used as important biomarkers of chronic pain syndromes and/or be developed into therapeutic agents in the fight against pain.
Monetary reward suppresses anterior insula activity during social pain
Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François
2015-01-01
Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. PMID:25964499
Chen, Chih-Chung; Johnson, Mark I
2009-10-01
Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P < .001 and OR = 38.5, P < .001, respectively). Frequency-modulated TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.
Bannister, Kirsty; Patel, Ryan; Goncalves, Leonor; Townson, Louisa; Dickenson, Anthony H
2015-09-01
Diffuse noxious inhibitory controls (DNICs) utilize descending inhibitory controls through poorly understood brain stem pathways. The human counterpart, conditioned pain modulation, is reduced in patients with neuropathy aligned with animal data showing a loss of descending inhibitory noradrenaline controls together with a gain of 5-HT3 receptor-mediated facilitations after neuropathy. We investigated the pharmacological basis of DNIC and whether it can be restored after neuropathy. Deep dorsal horn neurons were activated by von Frey filaments applied to the hind paw, and DNIC was induced by a pinch applied to the ear in isoflurane-anaesthetized animals. Spinal nerve ligation was the model of neuropathy. Diffuse noxious inhibitory control was present in control rats but abolished after neuropathy. α2 adrenoceptor mechanisms underlie DNIC because the antagonists, yohimbine and atipamezole, markedly attenuated this descending inhibition. We restored DNIC in spinal nerve ligated animals by blocking 5-HT3 descending facilitations with the antagonist ondansetron or by enhancing norepinephrine modulation through the use of reboxetine (a norepinephrine reuptake inhibitor, NRI) or tapentadol (μ-opioid receptor agonist and NRI). Additionally, ondansetron enhanced DNIC in normal animals. Diffuse noxious inhibitory controls are reduced after peripheral nerve injury illustrating the central impact of neuropathy, leading to an imbalance in descending excitations and inhibitions. Underlying noradrenergic mechanisms explain the relationship between conditioned pain modulation and the use of tapentadol and duloxetine (a serotonin, NRI) in patients. We suggest that pharmacological strategies through manipulation of the monoamine system could be used to enhance DNIC in patients by blocking descending facilitations with ondansetron or enhancing norepinephrine inhibitions, so possibly reducing chronic pain.
Reticular Formation and Pain: The Past and the Future
Martins, Isabel; Tavares, Isaura
2017-01-01
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain. PMID:28725185
Reticular Formation and Pain: The Past and the Future.
Martins, Isabel; Tavares, Isaura
2017-01-01
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the "dynamic pain connectome" with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain.
Sapir, Shimon; Pud, Dorit
2008-01-01
To assess the effect of tonic pain stimulation on auditory processing of speech-relevant acoustic signals in healthy pain-free volunteers. Sixty university students, randomly assigned to either a thermal pain stimulation (46 degrees C/6 min) group (PS) or no pain stimulation group (NPS), performed a rate change detection task (RCDT) involving sinusoidally frequency-modulated vowel-like signals. Task difficulty was manipulated by changing the rate of the modulated signals (henceforth rate). Perceived pain intensity was evaluated using a visual analog scale (VAS) (0-100). Mean pain rating was approximately 33 in the PS group and approximately 3 in the NPS group. Pain stimulation was associated with poorer performance on the RCDT, but this trend was not statistically significant. Performance worsened with increasing rate of signal modulation in both groups (p < 0.0001), with no pain by rate interaction. The present findings indicate a trend whereby mild or moderate pain appears to affect auditory processing of speech-relevant acoustic signals. This trend, however, was not statistically significant. It is possible that more intense pain would yield more pronounced (deleterious) effects on auditory processing, but this needs to be verified empirically.
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases
2017-01-01
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity. PMID:28154473
Orbitofrontal cortex mediates pain inhibition by monetary reward.
Becker, Susanne; Gandhi, Wiebke; Pomares, Florence; Wager, Tor D; Schweinhardt, Petra
2017-04-01
Pleasurable stimuli, including reward, inhibit pain, but the level of the neuraxis at which they do so and the cerebral processes involved are unknown. Here, we characterized a brain circuitry mediating pain inhibition by reward. Twenty-four healthy participants underwent functional magnetic resonance imaging while playing a wheel of fortune game with simultaneous thermal pain stimuli and monetary wins or losses. As expected, winning decreased pain perception compared to losing. Inter-individual differences in pain modulation by monetary wins relative to losses correlated with activation in the medial orbitofrontal cortex (mOFC). When pain and reward occured simultaneously, mOFCs functional connectivity changed: the signal time course in the mOFC condition-dependent correlated negatively with the signal time courses in the rostral anterior insula, anterior-dorsal cingulate cortex and primary somatosensory cortex, which might signify moment-to-moment down-regulation of these regions by the mOFC. Monetary wins and losses did not change the magnitude of pain-related activation, including in regions that code perceived pain intensity when nociceptive input varies and/or receive direct nociceptive input. Pain inhibition by reward appears to involve brain regions not typically involved in nociceptive intensity coding but likely mediate changes in the significance and/or value of pain. © The Author (2017). Published by Oxford University Press.
Borsani, Elisa; Buffoli, Barbara; Bonazza, Veronica; Reiter, Russel J; Rezzani, Rita; Rodella, Luigi F
2017-10-14
Neuropathic pain is a severe condition with unsatisfactory treatments. Melatonin, an indolamine, seems to be a promising molecule suitable for this purpose due to its well-known anti-inflammatory, analgesic, and antioxidant effects, as well as its modulation of the nitroxidergic system. Nevertheless, the data on its mechanism of action and potentialities are currently insufficient in this pathology, especially at the peripheral level. Thus, this work evaluated the effect of a single administration of melatonin in an established mononeuropathy pain model that monitors the behaviour and the changes in the nitroxidergic system in dorsal root ganglia and skin, which are affected by nervous impairment. Experiments were carried out on Sprague Dawley rats subdivided into the sham operated (control) and the chronic constriction injured animals, a model of peripheral neuropathic pain on sciatic nerve. Single administrations of melatonin (5-10 mg/kg) or vehicle were injected intraperitoneally on the 14th day after surgery, when the mononeuropathy was established. The animals were behaviourally tested for thermal hyperalgesia. The dorsal root ganglia and the plantar skin of the hind-paws were removed and processed for the immunohistochemical detection of neuronal and inducible nitric oxide synthases. The behavioural results showed an increase of withdrawal latency during the plantar test as early as 30 min after melatonin administration. The immunohistochemical results indicated a modulation of the nitroxidergic system both at dorsal root ganglia and skin level, permitting speculate on a possible mechanism of action. We showed that melatonin may be a possible therapeutic strategy in neuropathic pain.
Cholinergic transmission in the dorsal hippocampus modulates trace but not delay fear conditioning.
Pang, Min-Hee; Kim, Nam-Soo; Kim, Il-Hwan; Kim, Hyun; Kim, Hyun-Taek; Choi, June-Seek
2010-09-01
Although cholinergic mechanisms have been widely implicated in learning and memory processes, few studies have investigated the specific contribution of hippocampal cholinergic transmission during trace fear conditioning, a form of associative learning involving a temporal gap between two stimuli. Microinfusions of scopolamine, a muscarinic receptor antagonist, into the dorsal hippocampus (DH) produced dose-dependent impairment in the acquisition and expression of a conditioned response (CR) following trace fear conditioning with a tone conditioned stimulus (CS) and a footshock unconditioned stimulus (US) in rats. The same infusions, however, had no effect on delay conditioning, general activity, pain sensitivity or attentional modulation. Moreover, scopolamine infusions attenuated phosphorylation of extracellular signal-regulated kinase (ERK) in the amygdala, indicating that cholinergic signals in the DH are important for trace fear conditioning. Taken together, the current study provides evidence that cholinergic neurotransmission in the DH is essential for the cellular processing of CS-US association in the amygdala when the two stimuli are temporally disconnected. Copyright 2010 Elsevier Inc. All rights reserved.
Claes, Nathalie; Vlaeyen, Johan W S; Crombez, Geert
2016-09-01
Previous research shows that goal-directed behavior might be modulated by cues that predict (dis)similar outcomes. However, the literature investigating this modulation with pain outcomes is scarce. Therefore, this experiment investigated whether environmental cues predicting pain or reward modulate defensive pain responding. Forty-eight healthy participants completed a joystick movement task with two different movement orientations. Performing one movement was associated with a painful stimulus, whereas performance of another movement was associated with reward, i.e. lottery tickets. In a subsequent task, participants learned to associate three different cues withpain, reward, or neither of the two. Next, these cues were integrated in the movement task. This study demonstrates that in general, aversive cues enhance and appetitive cues reduce pain-related fear. Furthermore, we found that incongruence between the outcomes predicted by the movement and the cue results in more oscillatory behavior, i.e., participants were more willing to perform a painful movement when a cue predicting reward was simultaneously presented, and vice versa. Similarly, when given a choice, participants preferred to perform the reward movement, unless there was an incongruence between the outcomes predicted by the movements and cues. Taken together, these results provide experimental evidence that environmental cues are capable of modulating pain-related fear and avoidance behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Brief Review of the Pharmacology of Amitriptyline and Clinical Outcomes in Treating Fibromyalgia
Lawson, Kim
2017-01-01
Fibromyalgia is a complex chronic condition characterized by pain, physical fatigue, sleep disorder and cognitive impairment. Evidence-based guidelines recommend antidepressants as treatments of fibromyalgia where tricyclics are often considered to have the greatest efficacy, with amitriptyline often being a first-line treatment. Amitriptyline evokes a preferential reduction in pain and fatigue of fibromyalgia, and in the Fibromyalgia Impact Questionnaire (FIQ) score, which is a quality of life assessment. The multimodal profile of the mechanisms of action of amitriptyline include monoamine reuptake inhibition, receptor modulation and ion channel modulation. Several of the actions of amitriptyline on multiple nociceptive and sensory processes at central and peripheral locations have the potential to act cumulatively to suppress the characteristic symptoms of fibromyalgia. Greater understanding of the role of these mechanisms of action of amitriptyline could provide further clues to the pathophysiology of fibromyalgia and to a preferable pharmacological profile for future drug development. PMID:28536367
Task modulations of racial bias in neural responses to others' suffering.
Sheng, Feng; Liu, Qiang; Li, Hong; Fang, Fang; Han, Shihui
2014-03-01
Recent event related brain potential research observed a greater frontal activity to pain expressions of racial in-group than out-group members and such racial bias in neural responses to others' suffering was modulated by task demands that emphasize race identity or painful feeling. However, as pain expressions activate multiple brain regions in the pain matrix, it remains unclear which part of the neural circuit in response to others' suffering undergoes modulations by task demands. We scanned Chinese adults, using functional MRI, while they categorized Asian and Caucasian faces with pain or neutral expressions in terms of race or identified painful feelings of each individual face. We found that pain vs. neutral expressions of Asian but not Caucasian faces activated the anterior cingulate (ACC) and anterior insular (AI) activity during race judgments. However, pain compared to race judgments increased ACC and AI activity to pain expressions of Caucasian but not Asian faces. Moreover, race judgments induced increased activity in the dorsal medial prefrontal cortex whereas pain judgments increased activity in the bilateral temporoparietal junction. The results suggest that task demands emphasizing an individual's painful feeling increase ACC/AI activities to pain expressions of racial out-group members and reduce the racial bias in empathic neural responses. © 2013.
Nociceptive transmission and modulation via P2X receptors in central pain syndrome.
Kuan, Yung-Hui; Shyu, Bai-Chuang
2016-05-26
Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.
Amir, Lisa H; Jones, Lester E; Buck, Miranda L
2015-03-01
New mothers frequently experience breastfeeding problems, in particular nipple pain. This is often attributed to compression, skin damage, infection or dermatitis. To outline an integrated approach to breastfeeding pain assessment that seeks to enhance current practice. Our clinical reasoning model resolves the complexity of pain into three categories: local stimulation, external influences and central modulation. Tissue pathology, damage or inflammation leads to local stimulation of nociceptors. External influences such as creams and breast pumps, as well as factors related to the mother, the infant and the maternal-infant interaction, may exacerbate the pain. Central nervous system modulation includes the enhancement of nociceptive transmission at the spinal cord and modification of the descending inhibitory influences. A broad range of factors can modulate pain through central mechanisms including maternal illness, exhaustion, lack of support, anxiety, depression or history of abuse. General practitioners (GPs) can use this model to explain nipple pain in complex settings, thus increasing management options for women.
Rab7-a novel redox target that modulates inflammatory pain processing.
Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim
2017-07-01
Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.
Massaly, Nicolas; Morón, Jose A; Al-Hasani, Ream
2016-01-01
Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.
Postoperative pain management techniques in hip and knee arthroplasty.
Parvizi, Javad; Porat, Manny; Gandhi, Kishor; Viscusi, Eugene R; Rothman, Richard H
2009-01-01
Adequate control of postoperative pain following hip and knee arthroplasty can be a challenging task fraught with potential complications. Postoperative pain is perceived by the patient via a complex network and a multitude of molecular messengers in both the peripheral and central nervous systems. This allows the physician to modulate pain via an array of medications that act on different sites within the body. Using both contemporary and traditional pain modulators, the delivery and timing of these medications can affect postoperative pain and, ultimately, rehabilitation of the arthroplasty patient. Current techniques for controlling pain use both multimodal and preemptive analgesia to improve the outcome of the surgery while minimizing the potential adverse effects of the medications given.
Endogenous analgesic effect of pregabalin: A double-blind and randomized controlled trial.
Sugimine, S; Saito, S; Araki, T; Yamamoto, K; Obata, H
2017-07-01
Conditioned pain modulation (CPM) is widely used to measure endogenous analgesia, and a recent study indicated that drugs that act on endogenous analgesia are more effective in individuals with lower CPM. Recent animal studies have indicated that pregabalin activates endogenous analgesia by stimulating the descending pain inhibitory system. The present study examined whether the analgesic effect of pregabalin is greater in individuals with lower original endogenous analgesia using CPM. Fifty-nine healthy subjects were randomly assigned to either a pregabalin group or a placebo group, and 50 of them completed the study. CPM was measured before and after pregabalin or placebo administration. The correlation of initial CPM to change in CPM was compared between the pregabalin and placebo groups. Initial CPM was significantly correlated with the change in CPM in the pregabalin group (r = -0.73, p < 0.0001) but not in the placebo group (p = 0.56) (difference in correlation coefficients between groups; p = 0.004). Furthermore, the initial CPM significantly affected the change in CPM in the pregabalin group but not in the placebo group (pregabalin group: adj R 2 = 0.51, p < 0.001, y = -0.54x + 2.98; placebo group: p = 0.56, significant difference in regression slopes; p = 0.015). These results indicate that pregabalin has a higher endogenous analgesic effect in individuals with lower original endogenous analgesia. The analgesic effect of pregabalin depends on the original endogenous analgesia status. Its effect on conditioned pain modulation (CPM) was stronger for subjects with lower original endogenous analgesia, suggesting that the mechanism of pregabalin involves the improvement of endogenous analgesia. © 2017 European Pain Federation - EFIC®.
Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping
2016-09-01
Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. Copyright © 2016 Elsevier B.V. All rights reserved.
Exercise does not produce hypoalgesia when performed immediately after a painful stimulus.
Gajsar, Hannah; Nahrwold, Katharina; Titze, Christina; Hasenbring, Monika I; Vaegter, Henrik B
2018-04-25
Exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM) are assumed to reflect descending pain inhibition. Potential interactions between EIH and CPM may be important in the therapy of chronic pain, as reduced CPM and increased pain after exercise are frequently observed. This study compared the EIH response after CPM was activated using a cold pressor task with the EIH response after a control condition. Thirty-one participants (age: 27.7±9.8; 15 female) completed two sessions: a cold pressor task (CPT) session, i.e. testing EIH with preceding CPM activation induced using a 2 min CPT at approximately 2°C, and a control session, i.e. testing EIH after a control condition (2 min of quiet rest). EIH was induced using a 15 min bicycling exercise at a target heart rate corresponding to 75% VO2 max. Repeated measures ANOVAs on pressure pain thresholds (PPTs) at the hand, back and leg were used to determine the effects of exercise after the cold pressor test and control condition. Furthermore, correlations between CPM and EIH, in the CPT session as well as control session, were calculated at each assessment site. A significant time x condition interaction (F(1, 30)=43.61, p<0.001, partial η2=0.59), with Bonferroni-corrected post-hoc t-tests showed that PPTs increased after exercise in the control session (p<0.001), but not in the CPT session (p=0.125). Furthermore, there was a small positive correlation of EIH in the control session and CPM at the hand (r=0.37, p=0.043). There was a moderate negative correlation of EIH in the CPT session and CPM at the hand (r=-0.50, p=0.004), and smaller negative correlations at the back (r=-0.37, p=0.036) and at the leg (r=-0.35, p=0.054). Attenuated EIH after the CPM activation in comparison to a control condition suggests that EIH and CPM may share underlying pain inhibitory mechanisms on a systemic level. This assumption is further supported by the finding of small to moderate significant correlations between EIH and CPM at the hand. The attenuated EIH response furthermore suggests that these mechanisms are exhaustible, i.e. that its effects decline after a certain amount of inhibition. In patients with chronic pain, assessing the current capacity of the descending pain inhibitory system - as indicated by the CPM response - may aid to make better predictions about how patients will respond to exercise with respect to acute pain reduction.
Abnormal Pain Modulation in Patients with Spatially Distributed Chronic Pain: Fibromyalgia
Staud, Roland
2009-01-01
Many chronic pain syndromes including fibromyalgia, irritable bowel syndrome, chronic fatigue syndrome, migraine headache, chronic back pain, and complex regional pain syndrome are associated with hypersensitivity to painful stimuli and with reduced endogenous pain inhibition. These findings suggest that modulation of pain-related information may be related to the onset and/or maintenance of chronic pain. Although pain sensitivity and pain inhibition are normally distributed in the general population, they are not useful as reliable predictors of future pain. The combination of heightened pain sensitivity and reduced pain-inhibition, however, appears to predispose individuals to greater risk for increased acute clinical pain (e.g., postoperative pain). It is unknown at this time whether such pain processing abnormalities may also place individuals at increased risk for chronic pain. Psychophysical methods, including heat sensory and pressure pain testing have become increasingly available and can be used for the evaluation of pain sensitivity and pain inhibition. However, long-term prospective studies in the general population are lacking which could yield insight into the role of heightened pain sensitivity and pain disinhibition for the development of chronic pain disorders like fibromyalgia. PMID:19647141
Role of Principal Ionotropic and Metabotropic Receptors in Visceral Pain
Kannampalli, Pradeep; Sengupta, Jyoti N
2015-01-01
Visceral pain is the most common form of pain caused by varied diseases and a major reason for patients to seek medical consultation. It also leads to a significant economic burden due to workdays lost and reduced productivity. Further, long-term use of non-specific medications is also associated with side effects affecting the quality of life. Despite years of extensive research and the availability of several therapeutic options, management of patients with chronic visceral pain is often inadequate, resulting in frustration for both patients and physicians. This is, most likely, because the mechanisms associated with chronic visceral pain are different from those of acute pain. Accumulating evidence from years of research implicates several receptors and ion channels in the induction and maintenance of central and peripheral sensitization during chronic pain states. Understanding the specific role of these receptors will facilitate to capitalize on their unique properties to augment the therapeutic efficacy while at the same time minimizing unwanted side effects. The aim of this review is to provide a concise review of the recent literature that reports on the role of principal ionotropic receptors and metabotropic receptors in the modulation visceral pain. We also include an overview of the possibility of these receptors as potential new targets for the treatment of chronic visceral pain conditions. PMID:25843070
Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan
2012-12-01
Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.
Effect of expectation on pain assessment of lower- and higher-intensity stimuli.
Ružić, Valentina; Ivanec, Dragutin; Modić Stanke, Koraljka
2017-01-01
Pain modulation via expectation is a well-documented phenomenon. So far it has been shown that expectations about effectiveness of a certain treatment enhance the effectiveness of different analgesics and of drug-free pain treatments. Also, studies demonstrate that people assess same-intensity stimuli differently, depending on the experimentally induced expectations regarding the characteristics of the stimuli. Prolonged effect of expectation on pain perception and possible symmetry in conditions of lower- and higher-intensity stimuli is yet to be studied. Aim of this study is to determine the effect of expectation on the perception of pain experimentally induced by the series of higher- and lower-intensity stimuli. 192 healthy participants were assigned to four experimental groups differing by expectations regarding the intensity of painful stimuli series. Expectations of two groups were congruent with actual stimuli; one group expected and received lower-intensity stimuli and the other expected and received higher-intensity stimuli. Expectations of the remaining two groups were not congruent with actual stimuli; one group expected higher-intensity stimuli, but actually received lower-intensity stimuli while the other group expected lower-intensity stimuli, but in fact received higher-intensity ones. Each group received a series of 24 varied-intensity electrical stimuli rated by the participants on a 30° intensity scale. Expectation manipulation had statistically significant effect on pain intensity assessment. When expecting lower-intensity stimuli, the participants underestimated pain intensity and when expecting higher-intensity stimuli, they overestimated pain intensity. The effect size of expectations upon pain intensity assessment was equal for both lower- and higher-intensity stimuli. The obtained results imply that expectation manipulation can achieve the desired effect of decreasing or increasing both slight and more severe pain for a longer period of time. Manipulation via expectation before the stimuli series was proven to be effective for pain modulation in the entire series of stimuli which lasted around 10min. The results suggest a potential benefit of manipulating expectations to alleviate emerging pain, since the obtained effects are moderate to large. It seems that expectation effect is strong enough to "overcome" even the direct effect of stimulus intensity (at least in the low to moderate intensity range), which suggests potential benefits of verbal instructions even in rather painful stimuli. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Parathyroid hormone-related peptide activates and modulates TRPV1 channel in human DRG neurons.
Shepherd, A J; Mickle, A D; McIlvried, L A; Gereau, R W; Mohapatra, D P
2018-05-24
Parathyroid hormone-related peptide (PTHrP) is associated with advanced tumor growth and metastasis, especially in breast, prostate and myeloma cancers that metastasize to bones, resulting in debilitating chronic pain conditions. Our recent studies revealed that the receptor for PTHrP, PTH1R, is expressed in mouse DRG sensory neurons, and its activation leads to flow-activation and modulation of TRPV1 channel function, resulting in peripheral heat and mechanical hypersensitivity. In order to verify the translatability of our findings in rodents to humans, we explored whether this signalling axis operates in primary human DRG sensory neurons. Analysis of gene expression data from recently reported RNA deep sequencing experiments performed on mouse and human DRGs reveals that PTH1R is expressed in DRG and tibial nerve. Furthermore, exposure of cultured human DRG neurons to PTHrP leads to slow-sustained activation of TRPV1 and modulation of capsaicin-induced channel activation. Both activation and modulation of TRPV1 by PTHrP were dependent on PKC activity. Our findings suggest that functional PTHrP/PTH1R-TRPV1 signalling exists in human DRG neurons, which could contribute to local nociceptor excitation in the vicinity of metastatic bone tumor microenvironment. © 2018 European Pain Federation - EFIC®.
Monetary reward suppresses anterior insula activity during social pain.
Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela
2015-12-01
Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Emerging drugs for neuropathic pain.
Gilron, Ian; Dickenson, Anthony H
2014-09-01
Neuropathic pain is a costly and disabling condition, which affects up to 8% of the population. Available therapies often provide incomplete pain relief and treatment-related side effects are common. Preclinical neuropathic pain models have facilitated identification of several promising targets, which have progressed to human clinical phases of evaluation. A systematic database search yielded 25 new molecular entities with specified pharmacological mechanisms that have reached Phase II or III clinical trials. These include calcium channel antagonists, vanilloid receptor antagonists, potassium channel agonists, NMDA antagonists, novel opioid receptor agonists, histamine H3 receptor antagonists, a novel sodium channel antagonist, serotonin modulators, a novel acetylcholine receptor agonist, α-2b adrenoreceptor agonist, cannabinoid CB2 receptor agonist, nitric oxide synthase inhibitor, orexin receptor antagonist, angiotensin II 2 antagonist, imidazoline I2 receptor agonist, apoptosis inhibitor and fatty acid amide hydrolase inhibitor. Although the diversity of pharmacological mechanisms of interest emphasise the complexity of neuropathic pain transmission, the considerable number of agents under development reflect a continued enthusiasm in drug development for neuropathic pain. Ongoing enhancements in methodology of both preclinical and clinical research and closer translation in both directions are expected to more efficiently identify new agents, which will improve the management of neuropathic pain.
Jürgens, Tim P; Reetz, Romy; May, Arne
2013-04-10
Nasal insufflation of CO2 has been shown to exert antinociceptive respectively antihyperalgesic effects in animal pain models using topical capsaicin with activation of TRPV1-receptor positive nociceptive neurons. Clinical benefit from CO2 inhalation in patients with craniofacial pain caused by a putative activation of TRPV1 receptor positive trigeminal neurons has also been reported. These effects are probably mediated via an activation of TRPV1 receptor - positive neurons in the nasal mucosa with subsequent central inhibitory effects (such as conditioned pain modulation). In this study, we aimed to examine the effects of intranasal CO2 on a human model of craniofacial pain elicited by nasal application of capsaicin. In a first experiment, 48 healthy volunteers without previous craniofacial pain received intranasal capsaicin to provoke trigeminal pain elicited by activation of TRVP1 positive nociceptive neurons. Then, CO2 or air was insufflated alternatingly into the nasal cavity at a flow rate of 1 l/min for 60 sec each. In the subsequent experiment, all participants were randomized into 2 groups of 24 each and received either continuous nasal insufflation of CO2 or placebo for 18:40 min after nociceptive stimulation with intranasal capsaicin. In both experiments, pain was rated on a numerical rating scale every 60 sec. Contrary to previous animal studies, the effects of CO2 on experimental trigeminal pain were only marginal. In the first experiment, CO2 reduced pain ratings only minimally by 5.3% compared to air if given alternatingly with significant results for the main factor GROUP (F1,47=4.438; p=0.041) and the interaction term TIME*GROUP (F2.6,121.2=3.3; p=0.029) in the repeated-measures ANOVA. However, these effects were abrogated after continuous insufflation of CO2 or placebo with no significant changes for the main factors or the interaction term. Although mild modulatory effects of low-flow intranasal CO2 could be seen in this human model of TRPV-1 mediated activation of nociceptive trigeminal neurons, utility is limited as observed changes in pain ratings are clinically non-significant.
Drug Management of Visceral Pain: Concepts from Basic Research
Davis, Mellar P.
2012-01-01
Visceral pain is experienced by 40% of the population, and 28% of cancer patients suffer from pain arising from intra- abdominal metastasis or from treatment. Neuroanatomy of visceral nociception and neurotransmitters, receptors, and ion channels that modulate visceral pain are qualitatively or quantitatively different from those that modulate somatic and neuropathic pain. Visceral pain should be recognized as distinct pain phenotype. TRPV1, Na 1.8, and ASIC3 ion channels and peripheral kappa opioid receptors are important mediators of visceral pain. Mu agonists, gabapentinoids, and GABAB agonists reduce pain by binding to central receptors and channels. Combinations of analgesics and adjuvants in animal models have supra-additive antinociception and should be considered in clinical trials. This paper will discuss the neuroanatomy, receptors, ion channels, and neurotransmitters important to visceral pain and provide a basic science rationale for analgesic trials and management. PMID:22619712
Modulation of pain by estrogens.
Craft, Rebecca M
2007-11-01
It has become increasingly apparent that women suffer a disproportionate amount of pain during their lifetime compared to men. Over the past 15 years, a growing number of studies have suggested a variety of causes for this sex difference, from cellular to psychosocial levels of analysis. From a biological perspective, sexual differentiation of pain appears to occur similarly to sexual differentiation of other phenomena: it results in large part from organizational and activational effects of gonadal steroid hormones. The focus of this review is the activational effects of a single group of ovarian hormones, the estrogens, on pain in humans and animals. The effects of estrogens (estradiol being the most commonly examined) on experimentally induced acute pain vs. clinical pain are summarized. For clinical pain, the review is limited to a few syndromes for which there is considerable evidence for estrogenic involvement: migraine, temporomandibular disorder (TMD) and arthritis. Because estrogens can modulate the function of the nervous, immune, skeletal, and cardiovascular systems, estrogenic modulation of pain is an exceedingly complex, multi-faceted phenomenon, with estrogens producing both pro- and antinociceptive effects that depend on the extent to which each of these systems of the body is involved in a particular type of pain. Forging a more complete understanding of the myriad ways that estrogens can ameliorate vs. facilitate pain will enable us to better prevent and treat pain in both women and men.
Optogenetic exploration and modulation of pain processing.
Xie, Yu-Feng; Wang, Jing; Bonin, Robert P
2018-08-01
Intractable pain is the single most common cause of disability, affecting more than 20% of the population world-wide. There is accordingly a global effort to decipher how changes in nociceptive processing in the peripheral and central nervous systems contribute to the onset and maintenance of chronic pain. The past several years have brought rapid progress in the adaptation of optogenetic approaches to study and manipulate the activity of sensory afferents and spinal cord neurons in freely behaving animals, and to investigate cortical processing and modulation of pain responses. This review discusses methodological advances that underlie this recent progress, and discusses practical considerations for the optogenetic modulation of nociceptive sensory processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Vistoli, Damien; Achim, Amélie M; Lavoie, Marie-Audrey; Jackson, Philip L
2016-05-01
Empathy refers to our capacity to share and understand the emotional states of others. It relies on two main processes according to existing models: an effortless affective sharing process based on neural resonance and a more effortful cognitive perspective-taking process enabling the ability to imagine and understand how others feel in specific situations. Until now, studies have focused on factors influencing the affective sharing process but little is known about those influencing the cognitive perspective-taking process and the related brain activations during vicarious pain. In the present fMRI study, we used the well-known physical pain observation task to examine whether the visual perspective can influence, in a bottom-up way, the brain regions involved in taking others' cognitive perspective to attribute their level of pain. We used a pseudo-dynamic version of this classic task which features hands in painful or neutral daily life situations while orthogonally manipulating: (1) the visual perspective with which hands were presented (first-person versus third-person conditions) and (2) the explicit instructions to imagine oneself or an unknown person in those situations (Self versus Other conditions). The cognitive perspective-taking process was investigated by comparing Other and Self conditions. When examined across both visual perspectives, this comparison showed no supra-threshold activation. Instead, the Other versus Self comparison led to a specific recruitment of the bilateral temporo-parietal junction when hands were presented according to a first-person (but not third-person) visual perspective. The present findings identify the visual perspective as a factor that modulates the neural activations related to cognitive perspective-taking during vicarious pain and show that this complex cognitive process can be influenced by perceptual stages of information processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Social context and perceived agency affects empathy for pain: an event-related fMRI investigation.
Akitsuki, Yuko; Decety, Jean
2009-08-15
Studying of the impact of social context on the perception of pain in others is important for understanding the role of intentionality in interpersonal sensitivity, empathy, and implicit moral reasoning. Here we used an event-related fMRI with pain and social context (i.e., the number of individuals in the stimuli) as the two factors to investigate how different social contexts and resulting perceived agency modulate the neural response to the perception of pain in others. Twenty-six healthy participants were scanned while presented with short dynamic visual stimuli depicting painful situations accidentally caused by or intentionally caused by another individual. The main effect of perception of pain was associated with signal increase in the aMCC, insula, somatosensory cortex, SMA and PAG. Importantly, perceiving the presence of another individual led to specific hemodynamic increase in regions involved in representing social interaction and emotion regulation including the temporoparietal junction, medial prefrontal cortex, inferior frontal gyrus, and orbitofrontal cortex. Furthermore, the functional connectivity pattern between the left amygdala and other brain areas was modulated by the perceived agency. Our study demonstrates that the social context in which pain occurs modulate the brain response to other's pain. This modulation may reflect successful adaptation to potential danger present in a social interaction. Our results contribute to a better understanding of the neural mechanisms underpinning implicit moral reasoning that concern actions that can harm other people.
Ibáñez, Agustín; Hurtado, Esteban; Lobos, Alejandro; Escobar, Josefina; Trujillo, Natalia; Baez, Sandra; Huepe, David; Manes, Facundo; Decety, Jean
2011-06-29
Current research on empathy for pain emphasizes the overlap in the neural response between the first-hand experience of pain and its perception in others. However, recent studies suggest that the perception of the pain of others may reflect the processing of a threat or negative arousal rather than an automatic pro-social response. It can thus be suggested that pain processing of other-related, but not self-related, information could imply danger rather than empathy, due to the possible threat represented in the expressions of others (especially if associated with pain stimuli). To test this hypothesis, two experiments considering subliminal stimuli were designed. In Experiment 1, neutral and semantic pain expressions previously primed with own or other faces were presented to participants. When other-face priming was used, only the detection of semantic pain expressions was facilitated. In Experiment 2, pictures with pain and neutral scenarios previously used in ERP and fMRI research were used in a categorization task. Those pictures were primed with own or other faces following the same procedure as in Experiment 1 while ERPs were recorded. Early (N1) and late (P3) cortical responses between pain and no-pain were modulated only in the other-face priming condition. These results support the threat value of pain hypothesis and suggest the necessity for the inclusion of own- versus other-related information in future empathy for pain research. Copyright © 2011 Elsevier B.V. All rights reserved.
Bungert, Melanie; Koppe, Georgia; Niedtfeld, Inga; Vollstädt-Klein, Sabine; Schmahl, Christian
2015-01-01
Objective There is a general agreement that physical pain serves as an alarm signal for the prevention of and reaction to physical harm. It has recently been hypothesized that “social pain,” as induced by social rejection or abandonment, may rely on comparable, phylogenetically old brain structures. As plausible as this theory may sound, scientific evidence for this idea is sparse. This study therefore attempts to link both types of pain directly. We studied patients with borderline personality disorder (BPD) because BPD is characterized by opposing alterations in physical and social pain; hyposensitivity to physical pain is associated with hypersensitivity to social pain, as indicated by an enhanced rejection sensitivity. Method Twenty unmedicated female BPD patients and 20 healthy participants (HC, matched for age and education) played a virtual ball-tossing game (cyberball), with the conditions for exclusion, inclusion, and a control condition with predefined game rules. Each cyberball block was followed by a temperature stimulus (with a subjective pain intensity of 60% in half the cases). The cerebral responses were measured by functional magnetic resonance imaging. The Adult Rejection Sensitivity Questionnaire was used to assess rejection sensitivity. Results Higher temperature heat stimuli had to be applied to BPD patients relative to HCs to reach a comparable subjective experience of painfulness in both groups, which suggested a general hyposensitivity to pain in BPD patients. Social exclusion led to a subjectively reported hypersensitivity to physical pain in both groups that was accompanied by an enhanced activation in the anterior insula and the thalamus. In BPD, physical pain processing after exclusion was additionally linked to enhanced posterior insula activation. After inclusion, BPD patients showed reduced amygdala activation during pain in comparison with HC. In BPD patients, higher rejection sensitivity was associated with lower activation differences during pain processing following social exclusion and inclusion in the insula and in the amygdala. Discussion Despite the similar behavioral effects in both groups, BPD patients differed from HC in their neural processing of physical pain depending on the preceding social situation. Rejection sensitivity further modulated the impact of social exclusion on neural pain processing in BPD, but not in healthy controls. PMID:26241850
Martini, Matteo; Kilteni, Konstantina; Maselli, Antonella; Sanchez-Vives, Maria V
2015-09-29
The feeling of "ownership" over an external dummy/virtual body (or body part) has been proven to have both physiological and behavioural consequences. For instance, the vision of an "embodied" dummy or virtual body can modulate pain perception. However, the impact of partial or total invisibility of the body on physiology and behaviour has been hardly explored since it presents obvious difficulties in the real world. In this study we explored how body transparency affects both body ownership and pain threshold. By means of virtual reality, we presented healthy participants with a virtual co-located body with four different levels of transparency, while participants were tested for pain threshold by increasing ramps of heat stimulation. We found that the strength of the body ownership illusion decreases when the body gets more transparent. Nevertheless, in the conditions where the body was semi-transparent, higher levels of ownership over a see-through body resulted in an increased pain sensitivity. Virtual body ownership can be used for the development of pain management interventions. However, we demonstrate that providing invisibility of the body does not increase pain threshold. Therefore, body transparency is not a good strategy to decrease pain in clinical contexts, yet this remains to be tested.
Martini, Matteo; Kilteni, Konstantina; Maselli, Antonella; Sanchez-Vives, Maria V.
2015-01-01
The feeling of “ownership” over an external dummy/virtual body (or body part) has been proven to have both physiological and behavioural consequences. For instance, the vision of an “embodied” dummy or virtual body can modulate pain perception. However, the impact of partial or total invisibility of the body on physiology and behaviour has been hardly explored since it presents obvious difficulties in the real world. In this study we explored how body transparency affects both body ownership and pain threshold. By means of virtual reality, we presented healthy participants with a virtual co-located body with four different levels of transparency, while participants were tested for pain threshold by increasing ramps of heat stimulation. We found that the strength of the body ownership illusion decreases when the body gets more transparent. Nevertheless, in the conditions where the body was semi-transparent, higher levels of ownership over a see-through body resulted in an increased pain sensitivity. Virtual body ownership can be used for the development of pain management interventions. However, we demonstrate that providing invisibility of the body does not increase pain threshold. Therefore, body transparency is not a good strategy to decrease pain in clinical contexts, yet this remains to be tested. PMID:26415748
Intergroup relationships do not reduce racial bias in empathic neural responses to pain.
Contreras-Huerta, Luis Sebastian; Hielscher, Emily; Sherwell, Chase S; Rens, Natalie; Cunnington, Ross
2014-11-01
Perceiving the pain of others activates similar neural structures to those involved in the direct experience of pain, including sensory and affective-motivational areas. Empathic responses can be modulated by race, such that stronger neural activation is elicited by the perception of pain in people of the same race compared with another race. In the present study, we aimed to identify when racial bias occurs in the time course of neural empathic responses to pain. We also investigated whether group affiliation could modulate the race effect. Using the minimal group paradigm, we assigned participants to one of two mixed-race teams. We examined event-related potentials from participants when viewing members of their own and the other team receiving painful or non-painful touch. We identified a significant racial bias in early ERP components at N1 over frontal electrodes, where Painful stimuli elicited a greater negative shift relative to Non-Painful stimuli in response to own race faces only. A long latency empathic response was also found at P3, where there was significant differentiation between Painful and Non-Painful stimuli regardless of Race or Group. There was no evidence that empathy-related brain activity was modulated by minimal group manipulation. These results support a model of empathy for pain that consists of early, automatic bias towards own-race empathic responses and a later top-down cognitive evaluation that does not differentiate between races and may ultimately lead to unbiased behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.
Contextual modulation of pain sensitivity utilising virtual environments
Smith, Ashley; Carlow, Klancy; Biddulph, Tara; Murray, Brooke; Paton, Melissa; Harvie, Daniel S
2017-01-01
Background: Investigating psychological mechanisms that modulate pain, such as those that might be accessed by manipulation of context, is of great interest to researchers seeking to better understand and treat pain. The aim of this study was to better understand the interaction between pain sensitivity, and contexts with inherent emotional and social salience – by exploiting modern immersive virtual reality (VR) technology. Methods: A within-subjects, randomised, double-blinded, repeated measures (RM) design was used. In total, 25 healthy participants were exposed to neutral, pleasant, threatening, socially positive and socially negative contexts, using an Oculus Rift DK2. Pressure pain thresholds (PPTs) were recorded in each context, as well as prior to and following the procedure. We also investigated whether trait anxiety and pain catastrophisation interacted with the relationship between the different contexts and pain. Results: Pressure pain sensitivity was not modulated by context (p = 0.48). Anxiety and pain catastrophisation were not significantly associated with PPTs, nor did they interact with the relationship between context and PPTs. Conclusion: Contrary to our hypothesis, socially and emotionally salient contexts did not influence pain thresholds. In light of other research, we suggest that pain outcomes might only be tenable to manipulation by contextual cues if they specifically manipulate the meaning of the pain-eliciting stimulus, rather than manipulate psychological state generally – as per the current study. Future research might exploit immersive VR technology to better explore the link between noxious stimuli and contexts that directly alter its threat value. PMID:28491299
Bifidobacteria modulate cognitive processes in an anxious mouse strain.
Savignac, H M; Tramullas, M; Kiely, B; Dinan, T G; Cryan, J F
2015-01-01
Increasing evidence suggests that a brain-gut-microbiome axis exists, which has the potential to play a major role in modulating behaviour. However, the role of this axis in cognition remains relatively unexplored. Probiotics, which are commensal bacteria offering potential health benefit, have been shown to decrease anxiety, depression and visceral pain-related behaviours. In this study, we investigate the potential of two Bifidobacteria strains to modulate cognitive processes and visceral pain sensitivity. Adult male BALB/c mice were fed daily for 11 weeks with B. longum 1714, B. breve 1205 or vehicle treatment. Starting at week 4, animals were behaviourally assessed in a battery of tests relevant to different aspects of cognition, as well as locomotor activity and visceral pain. In the object recognition test, B. longum 1714-fed mice discriminated between the two objects faster than all other groups and B. breve 1205-fed mice discriminated faster than vehicle animals. In the Barnes maze, B. longum 1714-treated mice made fewer errors than other groups, suggesting a better learning. In the fear conditioning, B. longum 1714-treated group also showed better learning and memory, yet presenting the same extinction learning profile as controls. None of the treatments affected visceral sensitivity. Altogether, these data suggest that B. longum 1714 had a positive impact on cognition and also that the effects of individual Bifidobacteria strains do not generalise across the species. Clinical validation of the effects of probiotics on cognition is now warranted. Copyright © 2015 Elsevier B.V. All rights reserved.
Filingeri, Davide; Morris, Nathan B; Jay, Ollie
2017-01-01
What is the central question of this study? Investigations on inhibitory/facilitatory modulation of vision, touch and pain show that conditioning stimuli outside the receptive field of testing stimuli modulate the central processing of visual, touch and painful stimuli. We asked whether contextual modulation also exists in human temperature integration. What is the main finding and its importance? Progressive decreases in whole-body mean skin temperature (the conditioning stimulus) significantly increased local thermosensitivity to skin warming but not cooling (the testing stimuli) in a dose-dependent fashion. In resembling the central mechanisms underlying endogenous analgesia, our findings point to the existence of an endogenous thermosensory system in humans that could modulate local skin thermal sensitivity to facilitate thermal behaviour. Although inhibitory/facilitatory central modulation of vision and pain has been investigated, contextual modulation of skin temperature integration has not been explored. Hence, we tested whether progressive decreases in whole-body mean skin temperature (T sk ; a large conditioning stimulus) alter the magnitude estimation of local warming and cooling stimuli applied to hairy and glabrous skin. On four separate occasions, eight men (27 ± 5 years old) underwent a 30 min whole-body cooling protocol (water-perfused suit; temperature, 5°C), during which a quantitative thermosensory test, consisting of reporting the perceived magnitude of warming and cooling stimuli (±8°C from 30°C baseline) applied to the hand (palm/dorsum) and foot (sole/dorsum), was performed before cooling and every 10 min thereafter. The cooling protocol resulted in large progressive reductions in T sk [10 min, -3.36°C (95% confidence interval -2.62 to -4.10); 20 min, -5.21°C (-4.47 to -5.95); and 30 min, -6.32°C (-5.58 to -7.05); P < 0.001], with minimal changes (∼0.08°C) in rectal temperature. While thermosensitivity to local skin cooling remained unchanged (P = 0.831), sensitivity to skin warming increased significantly at each level of T sk for all skin regions [10 min, +4.9% (-1.1 to +11.0); 20 min, +6.1% (+0.1-12.2); and 30 min, +7.9% (+1.9-13.9); P = 0.009]. Linear regression indicated a 1.2% °C -1 increase in warm thermosensitivity with whole-body skin cooling. Overall, large decreases in T sk significantly facilitated warm but not cold sensory processing of local thermal stimuli, in a dose-dependent fashion. In highlighting a novel feature of human temperature integration, these findings point to the existence of an endogenous thermosensory system that could modulate local skin thermal sensitivity in relationship to whole-body thermal states. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Effect of ketamine on endogenous pain modulation in healthy volunteers.
Niesters, Marieke; Dahan, Albert; Swartjes, Maarten; Noppers, Ingeborg; Fillingim, Roger B; Aarts, Leon; Sarton, Elise Y
2011-03-01
Inhibitory and facilitatory descending pathways, originating at higher central nervous system sites, modulate activity of dorsal horn nociceptive neurons, and thereby influence pain perception. Dysfunction of inhibitory pain pathways or a shift in the balance between pain facilitation and pain inhibition has been associated with the development of chronic pain. The N-methyl-d-aspartate receptor antagonist ketamine has a prolonged analgesic effect in chronic pain patients. This effect is due to desensitization of sensitized N-methyl-d-aspartate receptors. Additionally, ketamine may modulate or enhance endogenous inhibitory control of pain perception. Diffuse noxious inhibitory control (DNIC) and offset analgesia (OA) are 2 mechanisms involved in descending inhibition. The present study investigates the effect of a ketamine infusion on subsequent DNIC and OA responses to determine whether ketamine has an influence on descending pain control. Ten healthy subjects (4 men/6 women) received a 1-hour placebo or S(+)-ketamine (40mg per 70kg) infusion on 2 separate occasions in random order. Upon the termination of the infusion, DNIC and OA responses were obtained. After placebo treatment, significant descending inhibition of pain responses was present for DNIC and OA. In contrast, after ketamine infusion, no DNIC was observed, but rather a significant facilitatory pain response (P<0.01); the OA response remained unchanged. These findings suggest that the balance between pain inhibition and pain facilitation was shifted by ketamine towards pain facilitation. The absence of an effect of ketamine on OA indicates differences in the mechanisms and neurotransmitter influences between OA and DNIC. Diffuse noxious inhibitory control responses following a 1-hour low-dose ketamine treatment displayed facilitation of pain in response to experimental noxious thermal stimulation. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Reiner, Keren; Granot, Michal; Soffer, Eliran; Lipsitz, Joshua Dan
2016-04-01
Research shows that mindfulness meditation (MM) affects pain perception; however, studies have yet to measure patterns of change over time. We examined effects of MM on perception of experimental heat pain using multiple psychophysical indices, including pattern of change in response to tonic painful stimuli. We also tested the potential moderating role of baseline mindfulness. Forty participants were randomly assigned to a brief MM training or control group. We assessed: a) heat pain threshold (HPT), b) temperature which induces pain at a fixed, target intensity level, and c) response pattern over time to tonic heat pain. Compared to control group, the MM group showed increased HPT and more rapid attenuation of pain intensity for tonic pain stimuli. Moderation analyses indicated that baseline mindfulness moderated effects of MM on HPT. A brief MM intervention appears to affect perception of experimental pain both by increasing pain threshold and accelerating modulation of response. Findings may help elucidate mechanisms of MM for chronic pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hypnotic analgesia reduces brain responses to pain seen in others.
Braboszcz, Claire; Brandao-Farinelli, Edith; Vuilleumier, Patrik
2017-08-29
Brain responses to pain experienced by oneself or seen in other people show consistent overlap in the pain processing network, particularly anterior insula, supporting the view that pain empathy partly relies on neural processes engaged by self-nociception. However, it remains unresolved whether changes in one's own pain sensation may affect empathic responding to others' pain. Here we show that inducing analgesia through hypnosis leads to decreased responses to both self and vicarious experience of pain. Activations in the right anterior insula and amygdala were markedly reduced when participants received painful thermal stimuli following hypnotic analgesia on their own hand, but also when they viewed pictures of others' hand in pain. Functional connectivity analysis indicated that this hypnotic modulation of pain responses was associated with differential recruitment of right prefrontal regions implicated in selective attention and inhibitory control. Our results provide novel support to the view that self-nociception is involved during empathy for pain, and demonstrate the possibility to use hypnotic procedures to modulate higher-level emotional and social processes.
Can quantitative sensory testing predict responses to analgesic treatment?
Grosen, K; Fischer, I W D; Olesen, A E; Drewes, A M
2013-10-01
The role of quantitative sensory testing (QST) in prediction of analgesic effect in humans is scarcely investigated. This updated review assesses the effectiveness in predicting analgesic effects in healthy volunteers, surgical patients and patients with chronic pain. A systematic review of English written, peer-reviewed articles was conducted using PubMed and Embase (1980-2013). Additional studies were identified by chain searching. Search terms included 'quantitative sensory testing', 'sensory testing' and 'analgesics'. Studies on the relationship between QST and response to analgesic treatment in human adults were included. Appraisal of the methodological quality of the included studies was based on evaluative criteria for prognostic studies. Fourteen studies (including 720 individuals) met the inclusion criteria. Significant correlations were observed between responses to analgesics and several QST parameters including (1) heat pain threshold in experimental human pain, (2) electrical and heat pain thresholds, pressure pain tolerance and suprathreshold heat pain in surgical patients, and (3) electrical and heat pain threshold and conditioned pain modulation in patients with chronic pain. Heterogeneity among studies was observed especially with regard to application of QST and type and use of analgesics. Although promising, the current evidence is not sufficiently robust to recommend the use of any specific QST parameter in predicting analgesic response. Future studies should focus on a range of different experimental pain modalities rather than a single static pain stimulation paradigm. © 2013 European Federation of International Association for the Study of Pain Chapters.
Henchoz, Yves; Tétreau, Charles; Abboud, Jacques; Piché, Mathieu; Descarreaux, Martin
2013-10-01
Alterations of the neuromuscular control of the lumbar spine have been reported in patients with chronic low back pain (LBP). During trunk flexion and extension tasks, the reduced myoelectric activity of the low back extensor musculature observed during full trunk flexion is typically absent in patients with chronic LBP. To determine whether pain expectations could modulate neuromuscular responses to experimental LBP to a higher extent in patients with chronic LBP compared with controls. A cross-sectional, case-control study. Twenty-two patients with nonspecific chronic LBP and 22 age- and sex-matched control participants. Trunk flexion-extension tasks were performed under three experimental conditions: innocuous heat, noxious stimulation with low pain expectation, and noxious stimulation with high pain expectation. Noxious stimulations were delivered using a contact heat thermode applied on the skin of the lumbar region (L4-L5), whereas low or high pain expectations were induced by verbal and visual instructions. Surface electromyography of erector spinae at L2-L3 and L4-L5, as well as lumbopelvic kinematic variables were collected during the tasks. Pain was evaluated using a numerical rating scale. Pain catastrophizing, disability, anxiety, and fear-avoidance beliefs were measured using validated questionnaires. Two-way mixed analysis of variance revealed that pain was significantly different among the three experimental conditions (F2,84=317.5; p<.001). Increased myoelectric activity of the low back extensor musculature during full trunk flexion was observed in the high compared with low pain expectations condition at the L2-L3 level (F2,84=9.5; p<.001) and at the L4-L5 level (F2,84=3.7; p=.030). At the L4-L5 level, this effect was significantly more pronounced for the control participants compared with patients with chronic LBP (F2,84=3.4; p=.045). Pearson correlation analysis revealed that increased lumbar muscle activity in full flexion induced by expectations was associated with higher pain catastrophizing in patients with chronic LBP (r=0.54; p=.012). Repeated exposure to pain appears to generate rigid and less variable patterns of muscle activation in patients with chronic LBP, which attenuate their response to pain expectations. Patients with high levels of pain catastrophizing show higher myoelectric activity of lumbar muscles in full flexion and exhibit greater neuromechanical changes when expecting strong pain. Copyright © 2013 Elsevier Inc. All rights reserved.
TRPV1: A Potential Drug Target for Treating Various Diseases
Brito, Rafael; Sheth, Sandeep; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram
2014-01-01
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically. PMID:24861977
Emerging targets and therapeutic approaches for the treatment of osteoarthritis pain.
Rahman, Wahida; Dickenson, Anthony H
2015-06-01
Osteoarthritis is a complex and often painful disease that is inadequately controlled with current analgesics. This review discusses emerging targets and therapeutic approaches that may lead to the development of better analgesics. Aberrant excitability in peripheral and central pain pathways drives osteoarthritis pain, reversing this via modulation of nerve growth factor, voltage-gated sodium channel, voltage-gated calcium channel and transient receptor potential vanilloid one activity, and increasing inhibitory mechanisms through modulation of cannabinoid and descending modulatory systems hold promise for osteoarthritis pain therapy. Somatosensory phenotyping of chronic pain patients, as a surrogate of putative pain generating mechanisms, may predict patient response to treatment. Identification of new targets will inform and guide future research, aiding the development of more effective analgesics. Future clinical trial designs should implement sensory phenotyping of patients, as an inclusion or stratification criterion, in order to establish an individualized, mechanism-based treatment of osteoarthritis pain.
Loggia, Marco L; Berna, Chantal; Kim, Jieun; Cahalan, Christine M; Martel, Marc-Olivier; Gollub, Randy L; Wasan, Ajay D; Napadow, Vitaly; Edwards, Robert R
2015-08-01
Although high levels of negative affect and cognitions have been associated with greater pain sensitivity in chronic pain conditions, the neural mechanisms mediating the hyperalgesic effect of psychological factors in patients with pain disorders are largely unknown. In this cross-sectional study, we hypothesized that 1) catastrophizing modulates brain responses to pain anticipation and 2) anticipatory brain activity mediates the hyperalgesic effect of different levels of catastrophizing in fibromyalgia (FM) patients. Using functional magnetic resonance imaging, we scanned the brains of 31 FM patients exposed to visual cues anticipating the onset of moderately intense deep-tissue pain stimuli. Our results indicated the existence of a negative association between catastrophizing and pain-anticipatory brain activity, including in the right lateral prefrontal cortex. A bootstrapped mediation analysis revealed that pain-anticipatory activity in the lateral prefrontal cortex mediates the association between catastrophizing and pain sensitivity. These findings highlight the role of the lateral prefrontal cortex in the pathophysiology of FM-related hyperalgesia and suggest that deficits in the recruitment of pain-inhibitory brain circuitry during pain-anticipatory periods may play an important contributory role in the association between various degrees of widespread hyperalgesia in FM and levels of catastrophizing, a well-validated measure of negative cognitions and psychological distress. This article highlights the presence of alterations in pain-anticipatory brain activity in FM. These findings provide the rationale for the development of psychological or neurofeedback-based techniques aimed at modifying patients' negative affect and cognitions toward pain. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Beyond solicitousness: a comprehensive review on informal pain-related social support.
Bernardes, Sónia F; Forgeron, Paula; Fournier, Karine; Reszel, Jessica
2017-11-01
Adults with chronic pain cite social support (SS) as an important resource. Research has mostly focused on general SS or pain-specific solicitousness, resulting in a limited understanding of the role of SS in pain experiences. Drawing on SS theoretical models, this review aimed to understand how pain-related SS has been conceptualized and measured and how its relationship with pain experiences has been investigated. Arksey and O'Malley scoping review framework guided the study. A database search (2000-2015) was conducted in PsycINFO, CINAHL, MEDLINE, and EMBASE using a combination of subject headings/keywords on pain and SS; 3864 citations were screened; 101 full texts were assessed for eligibility; references of 52 papers were hand searched. Fifty-three studies were included. Most studies were either a-theoretical or drew upon the operant conditioning model. There are several self-report measures and observational systems to operationalize pain-related SS. However, the Multidimensional Pain Inventory remains the most often used, accounting for the centrality of the concept of solicitousness in the literature. Most studies focused on individuals with chronic pain self-report of spousal pain-related SS and investigated its main effects on pain outcomes. Only a minority investigated the role of pain SS within the stress and coping process (as a buffer or mediator). Little is known about mediating pathways, contextual modulation of the effectiveness of SS exchanges, and there are practically no SS-based intervention studies. Drawing on general SS models, the main gaps in pain-related SS research are discussed and research directions for moving this literature beyond solicitousness are proposed.
Wang, Fuzhou; Stefano, George B; Kream, Richard M
2014-06-25
DRG is of importance in relaying painful stimulation to the higher pain centers and therefore could be a crucial target for early intervention aimed at suppressing primary afferent stimulation. Complex regional pain syndrome (CRPS) is a common pain condition with an unknown etiology. Recently added new information enriches our understanding of CRPS pathophysiology. Researches on genetics, biogenic amines, neurotransmitters, and mechanisms of pain modulation, central sensitization, and autonomic functions in CRPS revealed various abnormalities indicating that multiple factors and mechanisms are involved in the pathogenesis of CRPS. Epigenetics refers to mitotically and meiotically heritable changes in gene expression that do not affect the DNA sequence. As epigenetic modifications potentially play an important role in inflammatory cytokine metabolism, neurotransmitter responsiveness, and analgesic sensitivity, they are likely key factors in the development of chronic pain. In this dyad review series, we systematically examine the nerve injury-related changes in the neurological system and their contribution to CRPS. In this part, we first reviewed and summarized the role of neural sensitization in DRG neurons in performing function in the context of pain processing. Particular emphasis is placed on the cellular and molecular changes after nerve injury as well as different models of inflammatory and neuropathic pain. These were considered as the potential molecular bases that underlie nerve injury-associated pathogenesis of CRPS.
Social hierarchy modulates neural responses of empathy for pain
Feng, Chunliang; Li, Zhihao; Feng, Xue; Wang, Lili; Tian, Tengxiang
2016-01-01
Recent evidence indicates that empathic responses to others’ pain are modulated by various situational and individual factors. However, few studies have examined how empathy and underlying brain functions are modulated by social hierarchies, which permeate human society with an enormous impact on social behavior and cognition. In this study, social hierarchies were established based on incidental skill in a perceptual task in which all participants were mediumly ranked. Afterwards, participants were scanned with functional magnetic resonance imaging while watching inferior-status or superior-status targets receiving painful or non-painful stimulation. The results revealed that painful stimulation applied to inferior-status targets induced higher activations in the anterior insula (AI) and anterior medial cingulate cortex (aMCC), whereas these empathic brain activations were significantly attenuated in response to superior-status targets’ pain. Further, this neural empathic bias to inferior-status targets was accompanied by stronger functional couplings of AI with brain regions important in emotional processing (i.e. thalamus) and cognitive control (i.e. middle frontal gyrus). Our findings indicate that emotional sharing with others’ pain is shaped by relative positions in a social hierarchy such that underlying empathic neural responses are biased toward inferior-status compared with superior-status individuals. PMID:26516169
NASA Astrophysics Data System (ADS)
Liebert, Ann D.; Bicknell, Brian
2017-02-01
Photobiomodulation (PBM) is an effective tool for the management of spinal pain including inflammation of facet joints. Apart from cervical and lumbar joint pain the upper cervical spine facet joint inflammation can result in the CGH (traumatic or atraumatic in origin). This condition affects children, adults and elders and is responsible for 19% of chronic headache and up to 33% of patients in pain clinics. The condition responds well to physiotherapy, facet joint injection, radiofrequency neurotomy and surgery at a rate of 75%. The other 25% being unresponsive to treatment with no identified features of unresponsiveness. In other conditions of chronic unresponsive cervical pain have responded to photobiomodulation at a level of 80% in the short and medium term. A clinical trial was therefore conducted on a cohort of atraumatic patients from the ages of 5-93 (predominantly Neurologist referred / familial sufferers 2/3 generations vertically and laterally) who had responded to a course of PBM and physiotherapy. The CGH sufferers and their non CGH suffering relatives over these generations were then compared for features that distinguish the two groups. Fifty parameters were tested (anthropmetric, movement and neural tension tests included) and there was a noted difference in tandem stance between the groups (.04 significance with repeated measures). As this impairment is common to benign ataxia and migrainous vertigo and in these conditions there is an ion channelopathy (especially potassium channelopathy). A postulated mechanism of action of PBM would involve modulation of ion channels and this is discussed in this presentation.
Patient evaluation and general treatment planning.
Fechtel, Scot Gerald
2006-05-01
Treating pain patients is difficult. The usual problems encountered in providing coherent and effective treatment for any chronic medical illness are compounded in painful conditions by time, society's choices, and the cultural role of the patient. Effective treatment of these patients depends on the persistence of the clinician. We must persist in requiring a complete history to understand the patient and his or her problem. We must persist in performing a thorough physical examination to uncover sufficient under-standing of the patient's physiology. We must persist in developing a comprehensive treatment plan to cover all of the intervening concerns. We must persist in following the patient in the clinic to make sure that the plan is completed and that complications that arise are dealt with efficiently. This can lead to considerable satisfaction and frustration. There remain many unanswered questions in the evaluation of pain patients and of pain itself. How accurate is physical examination in providing information about a given patient that is relevant to treating pain? Can physical examination reliably elicit a nociceptive focus for a specific individual's chronic pain experience? Is all long-term pain a smorgasbord of nociceptive, central sensitization, and neuromodulatory mechanisms? Can acute pain be more consistently aborted to minimize the development of chronic pain? Over the next few years, as our expanding knowledge of neuropharmacology, neurophysiology, and pain modulation in the CNS combines with better understanding of pain psychology and sociology, we clinicians will expect to have happier and more productive patients.
Sex, Gender, and Pain: A Review of Recent Clinical and Experimental Findings
Fillingim, Roger B.; King, Christopher D.; Ribeiro-Dasilva, Margarete C.; Rahim-Williams, Bridgett; Riley, Joseph L.
2009-01-01
Sex-related influences on pain and analgesia have become a topic of tremendous scientific and clinical interest, especially in the last 10 to 15 years. Members of our research group published reviews of this literature more than a decade ago, and the intervening time period has witnessed robust growth in research regarding sex, gender, and pain. Therefore, it seems timely to revisit this literature. Abundant evidence from recent epidemiologic studies clearly demonstrates that women are at substantially greater risk for many clinical pain conditions, and there is some suggestion that postoperative and procedural pain may be more severe among women than men. Consistent with our previous reviews, current human findings regarding sex differences in experimental pain indicate greater pain sensitivity among females compared with males for most pain modalities, including more recently implemented clinically relevant pain models such as temporal summation of pain and intramuscular injection of algesic substances. The evidence regarding sex differences in laboratory measures of endogenous pain modulation is mixed, as are findings from studies using functional brain imaging to ascertain sex differences in pain-related cerebral activation. Also inconsistent are findings regarding sex differences in responses to pharmacologic and non-pharmacologic pain treatments. The article concludes with a discussion of potential biopsychosocial mechanisms that may underlie sex differences in pain, and considerations for future research are discussed. Perspective This article reviews the recent literature regarding sex, gender, and pain. The growing body of evidence that has accumulated in the past 10 to 15 years continues to indicate substantial sex differences in clinical and experimental pain responses, and some evidence suggests that pain treatment responses may differ for women versus men. PMID:19411059
Fernández-Carvajal, Asia; Fernández-Ballester, Gregorio; Devesa, Isabel; González-Ros, José Manuel; Ferrer-Montiel, Antonio
2011-01-01
One approach to develop successful pain therapies is the modulation of dysfunctional ion channels that contribute to the detection of thermal, mechanical and chemical painful stimuli. These ion channels, known as thermoTRPs, promote the sensitization and activation of primary sensory neurons known as nociceptors. Pharmacological blockade and genetic deletion of thermoTRP have validated these channels as therapeutic targets for pain intervention. Several thermoTRP modulators have progressed towards clinical development, although most failed because of the appearance of unpredicted side effects. Thus, there is yet a need to develop novel channel modulators with improved therapeutic index. Here, we review the current state-of-the art and illustrate new pharmacological paradigms based on TRPV1 that include: (i) the identification of activity-dependent modulators of this thermoTRP channel; (ii) the design of allosteric modulators that interfere with protein-protein interaction involved in the functional coupling of stimulus sensing and gate opening; and (iii) the development of compounds that abrogate the inflammation-mediated increase of receptor expression in the neuronal surface. These new sites of action represent novel strategies to modulate pathologically active TRPV1, while minimizing an effect on the TRPV1 subpopulation involved in physiological and protective roles, thus increasing their potential therapeutic use. PMID:24288041
NASA Astrophysics Data System (ADS)
Pagnoni, Giuseppe; Porro, Carlo A.
2014-09-01
Pain is a phenomenologically complex experience whose sensory and psychological dimensions are deeply intertwined. In their perspective article, Fabbro and Crescentini [1] review the physiological and neural mechanisms underlying nociception and its cognitive modulation within the broader concept of suffering, which includes psychological pain [2] in its culturally mediated and existentially nuanced forms. The tight link between affective and cognitive processes, on the one hand, and pain, on the other, is illustrated by examining in turn the placebo effect, empathy for other people's afflictions, clinical depression, and the role that mindfulness-based practices may play in alleviating suffering.
Cross-modal and modality-specific expectancy effects between pain and disgust
Sharvit, Gil; Vuilleumier, Patrik; Delplanque, Sylvain; Corradi-Dell’ Acqua, Corrado
2015-01-01
Pain sensitivity increases when a noxious stimulus is preceded by cues predicting higher intensity. However, it is unclear whether the modulation of nociception by expectancy is sensory-specific (“modality based”) or reflects the aversive-affective consequence of the upcoming event (“unpleasantness”), potentially common with other negative events. Here we compared expectancy effects for pain and disgust by using different, but equally unpleasant, nociceptive (thermal) and olfactory stimulations. Indeed both pain and disgust are aversive, associated with threat to the organism, and processed in partly overlapping brain networks. Participants saw cues predicting the unpleasantness (high/low) and the modality (pain/disgust) of upcoming thermal or olfactory stimulations, and rated the associated unpleasantness after stimuli delivery. Results showed that identical thermal stimuli were perceived as more unpleasant when preceded by cues threatening about high (as opposed to low) pain. A similar expectancy effect was found for olfactory disgust. Critically, cross-modal expectancy effects were observed on inconsistent trials when thermal stimuli were preceded by high-disgust cues or olfactory stimuli preceded by high-pain cues. However, these effects were stronger in consistent than inconsistent conditions. Taken together, our results suggest that expectation of an unpleasant event elicits representations of both its modality-specific properties and its aversive consequences. PMID:26631975
Sakai, Daisuke; Dockery, Peter
2018-01-01
Painful intervertebral disc degeneration is mediated by inflammation that modulates glycosylation and induces hyperinnervation and sensory sensitization, which result in discogenic pain. Hyaluronic acid (HA) used as a therapeutic biomaterial can reduce inflammation and pain, but the effects of HA therapy on glycosylation and pain associated with disc degeneration have not been previously determined. We describe a novel rat model of pain induced by intervertebral disc injury, with validation of the pain phenotype by morphine treatment. Using this model, we assessed the efficacy of HA hydrogel for the alleviation of pain, demonstrating that it reduced nociceptive behavior, an effect associated with down-regulation of nociception markers and inhibition of hyperinnervation. Furthermore, HA hydrogel altered glycosylation and modulated key inflammatory and regulatory signaling pathways, resulting in attenuation of inflammation and regulation of matrix components. Our results suggest that HA hydrogel is a promising clinical candidate for the treatment of back pain caused by degenerated discs. PMID:29632893
Mariano, Timothy Y; Van't Wout, Mascha; Garnaat, Sarah L; Rasmussen, Steven A; Greenberg, Benjamin D
2016-04-01
Current chronic pain treatments target nociception rather than affective "suffering" and its associated functional and psychiatric comorbidities. The left dorsolateral prefrontal cortex (DLPFC) has been implicated in affective, cognitive, and attentional aspects of pain and is a primary target of neuromodulation for affective disorders. Transcranial direct current stimulation (tDCS) can non-invasively modulate cortical activity. The present study tests whether anodal tDCS targeting the left DLPFC will increase tolerability of acute painful stimuli vs cathodal tDCS. Forty tDCS-naive healthy volunteers received anodal and cathodal stimulation targeting the left DLPFC in two randomized and counterbalanced sessions. During stimulation, each participant performed cold pressor (CP) and breath holding (BH) tasks. We measured pain intensity with the Defense and Veterans Pain Rating Scale (DVPRS) before and after each task. Mixed ANOVA revealed no main effect of stimulation polarity for mean CP threshold, tolerance, or endurance, or mean BH time (allP > 0.27). However, DVPRS rise associated with CP was significantly smaller with anodal vs cathodal tDCS (P = 0.024). We further observed a significant tDCS polarity × stimulation order interaction (P = 0.042) on CP threshold, suggesting task sensitization. Although our results do not suggest that polarity of tDCS targeting the left DLPFC differentially modulates the tolerability of CP- and BH-related pain distress in healthy volunteers, there was a significant effect on DVPRS pain ratings. This contrasts with our previous findings that tDCS targeting the left dorsal anterior cingulate cortex showed a trend toward higher mean CP tolerance with cathodal vs anodal stimulation. The present results may suggest tDCS-related effects on nociception or DLPFC-mediated attention, or preferential modulation of the affective valence of pain as captured by the DVPRS. Sham-controlled clinical studies are needed. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Verma, Sneha K.; Liu, Brent J.; Chun, Sophia; Gridley, Daila S.
2014-03-01
Many US combat personnel have sustained nervous tissue trauma during service, which often causes Neuropathic pain as a side effect and is difficult to manage. However in select patients, synapse lesioning can provide significant pain control. Our goal is to determine the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning. The project is a joint collaboration of USC, Spinal Cord Institute VA Healthcare System, Long Beach, and Loma Linda University. This is first system of its kind that supports integration and standardization of imaging informatics data in DICOM format; clinical evaluation forms outcomes data and treatment planning data from the Treatment planning station (TPS) utilized to administer the proton therapy in DICOM-RT format. It also supports evaluation of SCI subjects for recruitment into the clinical study, which includes the development, and integration of digital forms and tools for automatic evaluation and classification of SCI pain. Last year, we presented the concept for the patient recruitment module based on the principle of Bayesian decision theory. This year we are presenting the fully developed patient recruitment module and its integration to other modules. In addition, the DICOM module for integrating DICOM and DICOM-RT-ION data is also developed and integrated. This allows researchers to upload animal/patient study data into the system. The patient recruitment module has been tested using 25 retrospective patient data and DICOM data module is tested using 5 sets of animal data.
Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe
2016-01-01
The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19–65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0–10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0–10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and MPS than in OA and healthy subjects. Likewise, the inter-hemispheric disinhibition as well as the dysfunction in the descending pain modulatory system is higher in chronic pain without tissue injury compared to a structural lesion. In addition, they suggest that a greater level of serum BDNF may be involved in the processes that mediate the disinhibition of motor cortex excitability, as well as the function of descending inhibitory pain modulation system, independently of the physiopathology mechanism of musculoskeletal pain syndromes. PMID:27471458
Mindful Yoga Pilot Study Shows Modulation of Abnormal Pain Processing in Fibromyalgia Patients.
Carson, James W; Carson, Kimberly M; Jones, Kim D; Lancaster, Lindsay; Mist, Scott D
2016-01-01
Published findings from a randomized controlled trial have shown that Mindful Yoga training improves symptoms, functional deficits, and coping abilities in individuals with fibromyalgia and that these benefits are replicable and can be maintained 3 months post-treatment. The aim of this study was to collect pilot data in female fibromyalgia patients (n = 7) to determine if initial evidence indicates that Mindful Yoga also modulates the abnormal pain processing that characterizes fibromyalgia. Pre- and post-treatment data were obtained on quantitative sensory tests and measures of symptoms, functional deficits, and coping abilities. Separation test analyses indicated significant improvements in heat pain tolerance, pressure pain threshold, and heat pain after-sensations at post-treatment. Fibromyalgia symptoms and functional deficits also improved significantly, including physical tests of strength and balance, and pain coping strategies. These findings indicate that further investigation is warranted into the effect of Mindful Yoga on neurobiological pain processing.
Future directions for the management of pain in osteoarthritis
Sofat, Nidhi; Kuttapitiya, Anasuya
2014-01-01
Osteoarthritis (OA) is the predominant form of arthritis worldwide, resulting in a high degree of functional impairment and reduced quality of life owing to chronic pain. To date, there are no treatments that are known to modify disease progression of OA in the long term. Current treatments are largely based on the modulation of pain, including NSAIDs, opiates and, more recently, centrally acting pharmacotherapies to avert pain. This review will focus on the rationale for new avenues in pain modulation, including inhibition with anti-NGF antibodies and centrally acting analgesics. The authors also consider the potential for structure modification in cartilage/bone using growth factors and stem cell therapies. The possible mismatch between structural change and pain perception will also be discussed, introducing recent techniques that may assist in improved patient phenotyping of pain subsets in OA. Such developments could help further stratify subgroups and treatments for people with OA in future. PMID:25018771
Future directions for the management of pain in osteoarthritis.
Sofat, Nidhi; Kuttapitiya, Anasuya
2014-04-01
Osteoarthritis (OA) is the predominant form of arthritis worldwide, resulting in a high degree of functional impairment and reduced quality of life owing to chronic pain. To date, there are no treatments that are known to modify disease progression of OA in the long term. Current treatments are largely based on the modulation of pain, including NSAIDs, opiates and, more recently, centrally acting pharmacotherapies to avert pain. This review will focus on the rationale for new avenues in pain modulation, including inhibition with anti-NGF antibodies and centrally acting analgesics. The authors also consider the potential for structure modification in cartilage/bone using growth factors and stem cell therapies. The possible mismatch between structural change and pain perception will also be discussed, introducing recent techniques that may assist in improved patient phenotyping of pain subsets in OA. Such developments could help further stratify subgroups and treatments for people with OA in future.
Human Mendelian pain disorders: a key to discovery and validation of novel analgesics.
Goldberg, Y P; Pimstone, S N; Namdari, R; Price, N; Cohen, C; Sherrington, R P; Hayden, M R
2012-10-01
We have utilized a novel application of human genetics, illuminating the important role that rare genetic disorders can play in the development of novel drugs that may be of relevance for the treatment of both rare and common diseases. By studying a very rare Mendelian disorder of absent pain perception, congenital indifference to pain, we have defined Nav1.7 (endocded by SCN9A) as a critical and novel target for analgesic development. Strong human validation has emerged with SCN9A gain-of-function mutations causing inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder, both Mendelian disorder of spontaneous or easily evoked pain. Furthermore, variations in the Nav1.7 channel also modulate pain perception in healthy subjects as well as in painful conditions such as osteoarthritis and Parkinson disease. On the basis of this, we have developed a novel compound (XEN402) that exhibits potent, voltage-dependent block of Nav1.7. In a small pilot study, we showed that XEN402 blocks Nav1.7 mediated pain associated with IEM thereby demonstrating the use of rare genetic disorders with mutant target channels as a novel approach to rapid proof-of-concept. Our approach underscores the critical role that human genetics can play by illuminating novel and critical pathways pertinent for drug discovery. © 2012 John Wiley & Sons A/S.
Liu, C C; Crone, N E; Franaszczuk, P J; Cheng, D T; Schretlen, D S; Lenz, F A
2011-08-25
The current model of fear conditioning suggests that it is mediated through modules involving the amygdala (AMY), hippocampus (HIP), and frontal lobe (FL). We now test the hypothesis that habituation and acquisition stages of a fear conditioning protocol are characterized by different event-related causal interactions (ERCs) within and between these modules. The protocol used the painful cutaneous laser as the unconditioned stimulus and ERC was estimated by analysis of local field potentials recorded through electrodes implanted for investigation of epilepsy. During the prestimulus interval of the habituation stage FL>AMY ERC interactions were common. For comparison, in the poststimulus interval of the habituation stage, only a subdivision of the FL (dorsolateral prefrontal cortex, dlPFC) still exerted the FL>AMY ERC interaction (dlFC>AMY). For a further comparison, during the poststimulus interval of the acquisition stage, the dlPFC>AMY interaction persisted and an AMY>FL interaction appeared. In addition to these ERC interactions between modules, the results also show ERC interactions within modules. During the poststimulus interval, HIP>HIP ERC interactions were more common during acquisition, and deep hippocampal contacts exerted causal interactions on superficial contacts, possibly explained by connectivity between the perihippocampal gyrus and the HIP. During the prestimulus interval of the habituation stage, AMY>AMY ERC interactions were commonly found, while interactions between the deep and superficial AMY (indirect pathway) were independent of intervals and stages. These results suggest that the network subserving fear includes distributed or widespread modules, some of which are themselves "local networks." ERC interactions between and within modules can be either static or change dynamically across intervals or stages of fear conditioning. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Analgesic effect of clobazam in chronic low-back pain but not in experimentally induced pain.
Schliessbach, J; Vuilleumier, P H; Siegenthaler, A; Bütikofer, L; Limacher, A; Juni, P; Zeilhofer, H U; Arendt-Nielsen, L; Curatolo, M
2017-09-01
Chronic pain is frequently associated with hypersensitivity of the nervous system, and drugs that increase central inhibition are therefore a potentially effective treatment. Benzodiazepines are potent modulators of GABAergic neurotransmission and are known to exert antihyperalgesic effects in rodents, but translation into patients are lacking. This study investigates the effect of the benzodiazepine clobazam in chronic low-back pain in humans. The aim of this study is to explore the effect of GABA modulation on chronic low-back pain and on quantitative sensory tests. In this double-blind cross-over study, 49 patients with chronic low-back pain received a single oral dose of clobazam 20 mg or active placebo tolterodine 1 mg. Pain intensity on the 0-10 numeric rating scale and quantitative sensory tests were assessed during 2 h after drug intake. Pain intensity in the supine position was significantly reduced by clobazam compared to active placebo (60 min: 2.9 vs. 3.5, p = 0.008; 90 min: 2.7 vs. 3.3, p = 0.024; 120 min: 2.4 vs. 3.1, p = 0.005). Pain intensity in the sitting position was not significantly different between groups. No effects on quantitative sensory tests were observed. This study suggests that clobazam has an analgesic effect in patients with chronic low-back pain. Muscle relaxation or sedation may have contributed to the effect. Development of substances devoid of these side effects would offer the potential to further investigate the antihyperalgesic action of GABAergic compounds. Modulation of GABAergic pain-inhibitory pathways may be a potential future therapeutic target. © 2017 European Pain Federation - EFIC®.
Cardoso-Cruz, H; Dourado, M; Monteiro, C; Galhardo, V
2018-05-01
Dopamine (DA) is thought to be important to local hippocampal networks integrity during spatial working memory (sWM) processing. Chronic pain may contribute to deficient dopaminergic signalling, which may in turn affect cognition. However, the neural mechanisms that determine this impairment are poorly understood. Here, we evaluated whether the sWM impairment characteristic of animal models of chronic pain is dependent on DA D2 receptor (D2r) activity. To address this issue, we implanted multichannel arrays of electrodes in the dorsal and ventral hippocampal CA1 field (dvCA1) of rats and recorded the neuronal activity during a classical delayed food-reinforced T-maze sWM task. Within-subject behavioural performance and patterns of dorsoventral neural activity were assessed before and after the onset of persistent neuropathic pain using the spared nerve injury (SNI) model. Our results show that the peripheral nerve lesion caused a disruption in sWM and hippocampus spike activity and that disruption was maximized by the systemic administration of the D2r antagonist raclopride. These deficits are strictly correlated with a selective disruption of hippocampal theta-oscillations. Particularly, we found a significant decrease in intrahippocampal CA1 field connectivity level. Together, these results suggest that disruption of the dopaminergic balance in the intrahippocampal networks may be important for the development of cognitive deficits experienced during painful conditions. This study provides new insights into the role of D2r in the manifestation of pain-related sWM deficits. Our findings support that selective blockade of D2r produces a significant decrease in intrahippocampal connectivity mediated by theta-oscillations, and amplifies pain-related sWM deficits. These results suggest that further characterization of intrahippocampal dopaminergic modulation may be clinically relevant for the understanding of cognitive impairments that accompanies nociceptive stressful conditions. © 2018 European Pain Federation - EFIC®.
Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.
Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui
2017-07-01
Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings indicated that the D3 receptor affects nociceptive behaviors in a sex-specific manner and that its absence induces more analgesic behavior in the female knockout mice. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Cannabinoid System and Pain
Woodhams, Stephen G.; Chapman, Victoria; Finn, David P.; Hohmann, Andrea G.; Neugebauer, Volker
2018-01-01
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1 receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. PMID:28625720
Social hierarchy modulates neural responses of empathy for pain.
Feng, Chunliang; Li, Zhihao; Feng, Xue; Wang, Lili; Tian, Tengxiang; Luo, Yue-Jia
2016-03-01
Recent evidence indicates that empathic responses to others' pain are modulated by various situational and individual factors. However, few studies have examined how empathy and underlying brain functions are modulated by social hierarchies, which permeate human society with an enormous impact on social behavior and cognition. In this study, social hierarchies were established based on incidental skill in a perceptual task in which all participants were mediumly ranked. Afterwards, participants were scanned with functional magnetic resonance imaging while watching inferior-status or superior-status targets receiving painful or non-painful stimulation. The results revealed that painful stimulation applied to inferior-status targets induced higher activations in the anterior insula (AI) and anterior medial cingulate cortex (aMCC), whereas these empathic brain activations were significantly attenuated in response to superior-status targets' pain. Further, this neural empathic bias to inferior-status targets was accompanied by stronger functional couplings of AI with brain regions important in emotional processing (i.e. thalamus) and cognitive control (i.e. middle frontal gyrus). Our findings indicate that emotional sharing with others' pain is shaped by relative positions in a social hierarchy such that underlying empathic neural responses are biased toward inferior-status compared with superior-status individuals. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Bishop, Mark D.
2014-01-01
Pain is a primary symptom driving patients to seek physical therapy, and its attenuation commonly defines a successful outcome. A large body of evidence is dedicated to elucidating the relationship between chronic stress and pain; however, stress is rarely addressed in pain rehabilitation. A physiologic stress response may be evoked by fear or perceived threat to safety, status, or well-being and elicits the secretion of sympathetic catecholamines (epinephrine and norepinepherine) and neuroendocrine hormones (cortisol) to promote survival and motivate success. Cortisol is a potent anti-inflammatory that functions to mobilize glucose reserves for energy and modulate inflammation. Cortisol also may facilitate the consolidation of fear-based memories for future survival and avoidance of danger. Although short-term stress may be adaptive, maladaptive responses (eg, magnification, rumination, helplessness) to pain or non–pain-related stressors may intensify cortisol secretion and condition a sensitized physiologic stress response that is readily recruited. Ultimately, a prolonged or exaggerated stress response may perpetuate cortisol dysfunction, widespread inflammation, and pain. Stress may be unavoidable in life, and challenges are inherent to success; however, humans have the capability to modify what they perceive as stressful and how they respond to it. Exaggerated psychological responses (eg, catastrophizing) following maladaptive cognitive appraisals of potential stressors as threatening may exacerbate cortisol secretion and facilitate the consolidation of fear-based memories of pain or non–pain-related stressors; however, coping, cognitive reappraisal, or confrontation of stressors may minimize cortisol secretion and prevent chronic, recurrent pain. Given the parallel mechanisms underlying the physiologic effects of a maladaptive response to pain and non–pain-related stressors, physical therapists should consider screening for non–pain-related stress to facilitate treatment, prevent chronic disability, and improve quality of life. PMID:25035267
Hannibal, Kara E; Bishop, Mark D
2014-12-01
Pain is a primary symptom driving patients to seek physical therapy, and its attenuation commonly defines a successful outcome. A large body of evidence is dedicated to elucidating the relationship between chronic stress and pain; however, stress is rarely addressed in pain rehabilitation. A physiologic stress response may be evoked by fear or perceived threat to safety, status, or well-being and elicits the secretion of sympathetic catecholamines (epinephrine and norepinepherine) and neuroendocrine hormones (cortisol) to promote survival and motivate success. Cortisol is a potent anti-inflammatory that functions to mobilize glucose reserves for energy and modulate inflammation. Cortisol also may facilitate the consolidation of fear-based memories for future survival and avoidance of danger. Although short-term stress may be adaptive, maladaptive responses (eg, magnification, rumination, helplessness) to pain or non-pain-related stressors may intensify cortisol secretion and condition a sensitized physiologic stress response that is readily recruited. Ultimately, a prolonged or exaggerated stress response may perpetuate cortisol dysfunction, widespread inflammation, and pain. Stress may be unavoidable in life, and challenges are inherent to success; however, humans have the capability to modify what they perceive as stressful and how they respond to it. Exaggerated psychological responses (eg, catastrophizing) following maladaptive cognitive appraisals of potential stressors as threatening may exacerbate cortisol secretion and facilitate the consolidation of fear-based memories of pain or non-pain-related stressors; however, coping, cognitive reappraisal, or confrontation of stressors may minimize cortisol secretion and prevent chronic, recurrent pain. Given the parallel mechanisms underlying the physiologic effects of a maladaptive response to pain and non-pain-related stressors, physical therapists should consider screening for non-pain-related stress to facilitate treatment, prevent chronic disability, and improve quality of life. © 2014 American Physical Therapy Association.
Ionotropic glutamate receptors contribute to pain transmission and chronic pain.
Zhuo, Min
2017-01-01
Investigation of the synaptic mechanisms for sensory transmission and modulation provide us with critical information about the transmission of painful sensation as well as the basic mechanisms of chronic pain. Recent studies consistently demonstrate that glutamatergic synapses not only play an important role in sensory transmission, including pain and itch transmission, but also contribute to nociceptive sensitization at different levels of the brain. Different subtypes of glutamate receptors play selective roles in synaptic transmission and long-term potentiation (LTP), as well as synaptic modulation. Understanding the contribution of each subtype of glutamate receptors, and related downstream signaling pathways may provide a new opportunity to design better medicine for the treatment of different forms of chronic pain. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of prior information on pain involves biased perceptual decision-making.
Wiech, Katja; Vandekerckhove, Joachim; Zaman, Jonas; Tuerlinckx, Francis; Vlaeyen, Johan W S; Tracey, Irene
2014-08-04
Prior information about features of a stimulus is a strong modulator of perception. For instance, the prospect of more intense pain leads to an increased perception of pain, whereas the expectation of analgesia reduces pain, as shown in placebo analgesia and expectancy modulations during drug administration. This influence is commonly assumed to be rooted in altered sensory processing and expectancy-related modulations in the spinal cord, are often taken as evidence for this notion. Contemporary models of perception, however, suggest that prior information can also modulate perception by biasing perceptual decision-making - the inferential process underlying perception in which prior information is used to interpret sensory information. In this type of bias, the information is already present in the system before the stimulus is observed. Computational models can distinguish between changes in sensory processing and altered decision-making as they result in different response times for incorrect choices in a perceptual decision-making task (Figure S1A,B). Using a drift-diffusion model, we investigated the influence of both processes in two independent experiments. The results of both experiments strongly suggest that these changes in pain perception are predominantly based on altered perceptual decision-making. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Johnston, V; Strong, J; Gargett, S; Jull, G; Ellis, N
2014-01-01
No self-management interventions have been developed to empower those chronically disabled by a musculoskeletal condition to find and/or remain at work. Developand evaluate the content of two self-management training modules to improve vocational outcomes for those with chronic musculoskeletal disorders. Stanford University's Chronic Disease Self-Management Program provided the framework for the new modules. Focus groups with the eightpersons with workdisabilities and concept-mapping sessions with the 12 experienced vocational rehabilitation professionals were conducted to identify factors and themes contributing to workers remaining/returning to work post-injury. Five experienced self-management trainers reviewed the modules for consistency with self-management principles. Two new self-management modules: 'Navigating the System' and 'Managing a Return to Work' were developed.The persons with work disabilitiesgenerated four themes: accepting and coping with injury; skills to manage pain and life; positive working relationships and, re-inventing self, whereas the rehabilitation professionals identified three themes:communication and support of others; the injured worker's abilities and resources, and knowledge and education. Anintervention developed to enhance self-management skills and facilitate positive vocational outcomes of those seeking to return to work post-injury was confirmed as relevant by persons with work disabilities, rehabilitation professionals and self-management trainers.
Moseley, G Lorimer; Gallace, Alberto; Iannetti, Gian Domenico
2012-12-01
Numerous clinical conditions, including complex regional pain syndrome, are characterized by autonomic dysfunctions (e.g. altered thermoregulation, sometimes confined to a single limb), and disrupted cortical representation of the body and the surrounding space. The presence, in patients with complex regional pain syndrome, of a disruption in spatial perception, bodily ownership and thermoregulation led us to hypothesize that impaired spatial perception might result in a spatial-dependent modulation of thermoregulation and bodily ownership over the affected limb. In five experiments involving a total of 23 patients with complex regional pain syndrome of one arm and 10 healthy control subjects, we measured skin temperature of the hand with infrared thermal imaging, before and after experimental periods of either 9 or 10 min each, during which the hand was held on one or the other side of the body midline. Tactile processing was assessed by temporal order judgements of pairs of vibrotactile stimuli, delivered one to each hand. Pain and sense of ownership over the hand were assessed by self-report scales. Across experiments, when kept on its usual side of the body midline, the affected hand was 0.5 ± 0.3°C cooler than the healthy hand (P < 0.02 for all, a common finding in cold-type complex regional pain syndrome), and tactile stimuli delivered to the healthy hand were prioritized over those delivered to the affected hand. Simply crossing both hands over the midline resulted in (i) warming of the affected hand (the affected hand became 0.4 ± 0.3°C warmer than when it was in the uncrossed position; P = 0.01); (ii) cooling of the healthy hand (by 0.3 ± 0.3°C; P = 0.02); and (iii) reversal of the prioritization of tactile processing. When only the affected hand was crossed over the midline, it became warmer (by 0.5 ± 0.3°C; P = 0.01). When only the healthy hand was crossed over the midline, it became cooler (by 0.3 ± 0.3°C; P = 0.01). The temperature change of either hand was positively related to its distance from the body midline (pooled data: r = 0.76, P < 0.001). Crossing the affected hand over the body midline had small but significant effects on both spontaneous pain (which was reduced) and the sense of ownership over the hand (which was increased) (P < 0.04 for both). We conclude that impaired spatial perception modulated temperature of the limbs, tactile processing, spontaneous pain and the sense of ownership over the hands. These results show that complex regional pain syndrome involves more complex neurological dysfunction than has previously been considered.
Rabey, Martin; Slater, Helen; OʼSullivan, Peter; Beales, Darren; Smith, Anne
2015-10-01
The objectives of this study were to explore the existence of subgroups in a cohort with chronic low back pain (n = 294) based on the results of multimodal sensory testing and profile subgroups on demographic, psychological, lifestyle, and general health factors. Bedside (2-point discrimination, brush, vibration and pinprick perception, temporal summation on repeated monofilament stimulation) and laboratory (mechanical detection threshold, pressure, heat and cold pain thresholds, conditioned pain modulation) sensory testing were examined at wrist and lumbar sites. Data were entered into principal component analysis, and 5 component scores were entered into latent class analysis. Three clusters, with different sensory characteristics, were derived. Cluster 1 (31.9%) was characterised by average to high temperature and pressure pain sensitivity. Cluster 2 (52.0%) was characterised by average to high pressure pain sensitivity. Cluster 3 (16.0%) was characterised by low temperature and pressure pain sensitivity. Temporal summation occurred significantly more frequently in cluster 1. Subgroups were profiled on pain intensity, disability, depression, anxiety, stress, life events, fear avoidance, catastrophizing, perception of the low back region, comorbidities, body mass index, multiple pain sites, sleep, and activity levels. Clusters 1 and 2 had a significantly greater proportion of female participants and higher depression and sleep disturbance scores than cluster 3. The proportion of participants undertaking <300 minutes per week of moderate activity was significantly greater in cluster 1 than in clusters 2 and 3. Low back pain, therefore, does not appear to be homogeneous. Pain mechanisms relating to presentations of each subgroup were postulated. Future research may investigate prognoses and interventions tailored towards these subgroups.
Crighton, Adam H; Wygant, Dustin B; Applegate, Kathryn C; Umlauf, Robert L; Granacher, Robert P
2014-09-01
Recent rise in fraudulent disability claims in the United States has resulted in psychologists being increasingly called upon to use psychological tests to determine whether disability claims based on psychological or somatic/pain complaints are legitimate. To examine two brief measures, Modified Somatic Perception Questionnaire (MSPQ) and the Pain Disability Index (PDI), and their ability to screen for malingering in relation to the Bianchini et al. criteria for malingered pain-related disability published in The Spine Journal (2005). Examined brief self-report measures between litigating and nonlitigating pain samples. We compared 144 disability litigants, predominantly presenting a history of musculoskeletal injuries with psychiatric overlay, with 167 nonlitigating pain patients who were predominantly in treatment for chronic back pain issues and other musculoskeletal conditions. Modified Somatic Perception Questionnaire, Pain Disability Index, Minnesota Multiphasic Personality Inventory-2 Restructured Form, Test of Memory Malingering, Letter Memory Test, Victoria Symptom Validity Test, Structured Interview of Reported Symptoms-second edition, Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders somatoform disorders module. We examined a sample of 144 individuals undergoing compensation-seeking evaluations in relation to 167 nonlitigating pain patients. Group differences on both the MSPQ and PDI were calculated, as well as sensitivities, specificities, and positive and negative predictive powers for both measures at selected cutoffs. The results suggest that both the MSPQ and PDI are useful to screen for pain malingering in forensic evaluations, especially the MSPQ, which performed the best in differentiating between the groups. Copyright © 2014 Elsevier Inc. All rights reserved.
Mariano, Timothy Y.; Wout, Mascha van't; Garnaat, Sarah L.; Rasmussen, Steven A.; Greenberg, Benjamin D.
2016-01-01
Objective Current chronic pain treatments target nociception rather than affective “suffering” and its associated functional and psychiatric comorbidities. Left dorsolateral prefrontal cortex (DLPFC) has been implicated in affective, cognitive, and attentional aspects of pain and is a primary target of neuromodulation for affective disorders. Transcranial direct current stimulation (tDCS) can noninvasively modulate cortical activity. The present study tests if anodal tDCS targeting left DLPFC will increase tolerability of acute painful stimuli versus cathodal tDCS. Methods Forty tDCS-naive healthy volunteers received anodal and cathodal stimulation targeting left DLPFC in two randomized and counterbalanced sessions. During stimulation, each participant performed cold pressor (CP) and breath holding (BH) tasks. We measured pain intensity with the Defense and Veterans Pain Rating Scale (DVPRS) before and after each task. Results Mixed ANOVA revealed no main effect of stimulation polarity for mean CP threshold, tolerance, or endurance, or mean BH time (all p > 0.27). However, DVPRS rise associated with CP was significantly smaller with anodal versus cathodal tDCS (p = 0.024). We further observed a significant tDCS polarity × stimulation order interaction (p = 0.042) on CP threshold suggesting task sensitization. Conclusions Although our results do not suggest that polarity of tDCS targeting left DLPFC differentially modulates tolerability of CP- and BH-related pain distress in healthy volunteers, there was a significant effect on DVPRS pain ratings. This contrasts with our previous findings that tDCS targeting left dorsal anterior cingulate cortex showed a trend towards higher mean CP tolerance with cathodal versus anodal stimulation. The present results may suggest tDCS-related effects on nociception or DLPFC-mediated attention, or preferential modulation of the affective valence of pain as captured by DVPRS. Sham-controlled clinical studies are needed. PMID:26814276
Partner Loss in Monogamous Rodents: Modulation of Pain and Emotional Behavior in Male Prairie Voles.
Osako, Yoji; Nobuhara, Reiko; Arai, Young-Chang P; Tanaka, Kenjiro; Young, Larry J; Nishihara, Makoto; Mitsui, Shinichi; Yuri, Kazunari
2018-01-01
Pain is modulated by psychosocial factors, and social stress-induced hyperalgesia is a common clinical symptom in pain disorders. To provide a new animal model for studying social modulation of pain, we examined pain behaviors in monogamous prairie voles experiencing partner loss. After cohabitation with novel females, males (n = 79) were divided into two groups on the basis of preference test scores. Half of the males of each group were separated from their partner (loss group), whereas the other half remained paired (paired group). Thus, males from both groups experienced social isolation. Open field tests, plantar tests, and formalin tests were then conducted on males to assess anxiety and pain-related behaviors. Loss males showing partner preferences (n = 20) displayed a significant increase in anxiety-related behavior in the open-field test (central area/total distance: 13.65% [1.58%] for paired versus 6.45% [0.87%] for loss; p < .001), a low threshold of thermal stimulus in the plantar test (withdrawal latencies: 9.69 [0.98] seconds for paired versus 6.15 [0.75] seconds for loss; p = .037), and exacerbated pain behaviors in the formalin test (total number of lifts: 40.33 [4.46] for paired versus 54.42 [1.91] for loss; p = .042) as compared with paired males (n = 20). Thermal thresholds in the plantar test significantly correlated with anxiety-related behavior in the open-field test (r = 0.64). No such differences were observed in the males that did not display partner preferences (r = 0.15). Results indicate that social bonds and their disruption, but not social housing without bonding followed by isolation, modulate pain and emotion in male prairie voles. The prairie vole is a useful model for exploring the neural mechanisms by which social relationships contribute to pain and nociceptive processing in humans.
Gibbons, Kathleen; DeMonbrun, Andrea; Beckman, Elizabeth J; Keefer, Patricia; Wagner, Deb; Stewart, Margaret; Saul, D'Anna; Hakel, Stephanie; Liu, My; Niedner, Matthew
2016-07-01
Research on the safety and efficacy of continuous lidocaine infusions (CLIs) for the treatment of pain in the pediatric setting is limited. This article describes a series of pediatric oncology patients who received lidocaine infusions for refractory, longstanding, cancer-related pain. This is a retrospective review of patients who underwent lidocaine infusions to manage severe, opioid-refractory, cancer-related pain. Four patients ranging in age from 8 to 18 years were admitted to a pediatric hospital for their medical conditions and/or pain management. Structured chart review established demographic and diagnosis information, infusion rates, side effects, and efficacy of infusions in providing pain relief. Lidocaine bolus doses, infusion rates, serum concentrations, and subjective pain scores were analyzed. Median pain scores prior to lidocaine infusions were 8/10, falling to 2/10 at the infusion termination (P < 0.003), and rising to 3/10 in the first 24 hr after lidocaine (P < 0.029 compared to preinfusion pain). The infusions were generally well tolerated, with few side effects noted. In most cases, the improvement in pain scores persisted beyond termination of the infusion. CLIs were a helpful adjuvant in the four cases presented and may be an effective therapy for a more diverse array of refractory cancer pain. The majority of patients experienced pain relief well beyond the metabolic elimination of the lidocaine, corroborating a modulation effect on pain windup. Additional research regarding infusion rates, serum concentrations, side effects, and outpatient follow-up in a larger group of patients will provide additional insight into the role and safety of this therapy in children. © 2016 Wiley Periodicals, Inc.
Campbell, Claudia M; Carroll, C Patrick; Kiley, Kasey; Han, Dingfen; Haywood, Carlton; Lanzkron, Sophie; Swedberg, Lauren; Edwards, Robert R; Page, Gayle G; Haythornthwaite, Jennifer A
2016-04-01
Sickle cell disease (SCD) is an inherited blood disorder associated with significant morbidity, which includes severe episodic pain, and, often, chronic pain. Compared to healthy individuals, patients with SCD report enhanced sensitivity to thermal detection and pain thresholds and have altered inflammatory profiles, yet no studies to date have examined biomarker reactivity after laboratory-induced pain. We sought to examine this relationship in patients with SCD compared to healthy control participants. We completed quantitative sensory testing in 83 patients with SCD and sequential blood sampling in 27 of them, whom we matched (sex, age, race, body mass index, and education) to 27 healthy controls. Surprisingly, few quantitative sensory testing differences emerged between groups. Heat pain tolerance, pressure pain threshold at the trapezius, thumb, and quadriceps, and thermal temporal summation at 45°C differed between groups in the expected direction, whereas conditioned pain modulation and pain ratings to hot water hand immersion were counterintuitive, possibly because of tailoring the water temperature to a perceptual level; patients with SCD received milder temperatures. In the matched subsample, group differences and group-by-time interactions were observed in biomarkers including tumor necrosis factor alpha, interleukin-1ß, interleukin-4, and neuropeptide Y. These findings highlight the utility of laboratory pain testing methods for understanding individual differences in inflammatory cytokines. Our findings suggest amplified pain-evoked proinflammatory cytokine reactivity among patients with SCD relative to carefully matched controls. Future research is warranted to evaluate the impact of enhanced pain-related cytokine response and whether it is predictive of clinical characteristics and the frequency/severity of pain crises in patients with SCD.
Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi
2017-09-26
Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.
Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi
2017-01-01
Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391
Up-regulation of neural indicators of empathic concern in an offender population.
Arbuckle, Nathan L; Shane, Matthew S
2017-08-01
Empathic concern has traditionally been conceived of as a spontaneous reaction to others experiencing pain or distress. As such, the potential role of more deliberate control over empathic responses has frequently been overlooked. The present fMRI study evaluated the role of such deliberate control in empathic concern by examining the extent to which a sample of offenders recruited through probation/parole could voluntarily modulate their neural activity to another person in pain. Offenders were asked to either passively view pictures of other people in painful or non-painful situations, or to actively modulate their level of concern for the person in pain. During passive viewing of painful versus non-painful pictures, offenders showed minimal neural activity in regions previously linked to empathy for pain (e.g., dorsal anterior cingulate cortex and bilateral insula). However, when instructed to try to increase their concern for the person in pain, offenders demonstrated significant increases within these regions. These findings are consistent with recent theories of empathy as motivational in nature, and suggest that limitations in empathic concern may include a motivational component.
Pollema-Mays, Sarah L; Centeno, Maria Virginia; Ashford, Crystle J; Apkarian, A Vania; Martina, Marco
2013-11-01
Neuropathic pain is associated with hyperexcitability of DRG neurons. Despite the importance of leakage potassium channels for neuronal excitability, little is known about their cell-specific expression in DRGs and possible modulation in neuropathic pain. Multiple leakage channels are expressed in DRG neurons, including TASK1, TASK3, TRESK, TRAAK, TWIK1, TREK1 and TREK2 but little is known about their distribution among different cell types. Our immunohistochemical studies show robust TWIK1 expression in large and medium size neurons, without overlap with TRPV1 or IB4 staining. TASK1 and TASK3, on the contrary, are selectively expressed in small cells; TASK1 expression closely overlaps TRPV1-positive cells, while TASK3 is expressed in TRPV1- and IB4-negative cells. We also studied mRNA expression of these channels in L4-L5 DRGs in control conditions and up to 4 weeks after spared nerve injury lesion. We found that TWIK1 expression is much higher than TASK1 and TASK3 and is strongly decreased 1, 2 and 4 weeks after neuropathic injury. TASK3 expression, on the other hand, decreases 1 week after surgery but reverts to baseline by 2weeks; TASK1 shows no significant change at any time point. These data suggest an involvement of TWIK1 in the maintenance of the pain condition. © 2013.
Sanders, Duncan; Krause, Kristina; O'Muircheartaigh, Jonathan; Thacker, Michael A; Huggins, John P; Vennart, William; Massat, Nathalie J; Choy, Ernest; Williams, Steven C R; Howard, Matthew A
2015-01-01
Objective In an attempt to shed light on management of chronic pain conditions, there has long been a desire to complement behavioral measures of pain perception with measures of underlying brain mechanisms. Using functional magnetic resonance imaging (fMRI), we undertook this study to investigate changes in brain activity following the administration of naproxen or placebo in patients with pain related to osteoarthritis (OA) of the carpometacarpal (CMC) joint. Methods A placebo-controlled, double-blind, 2-period crossover study was performed in 19 individuals with painful OA of the CMC joint of the right hand. Following placebo or naproxen treatment periods, a functionally relevant task was performed, and behavioral measures of the pain experience were collected in identical fMRI examinations. Voxelwise and a priori region of interest analyses were performed to detect between-period differences in brain activity. Results Significant reductions in brain activity following treatment with naproxen, compared to placebo, were observed in brain regions commonly associated with pain perception, including the bilateral primary somatosensory cortex, thalamus, and amygdala. Significant relationships between changes in perceived pain intensity and changes in brain activity were also observed in brain regions previously associated with pain intensity. Conclusion This study demonstrates the sensitivity of fMRI to detect the mechanisms underlying treatments of known efficacy. The data illustrate the enticing potential of fMRI as an adjunct to self-report for detecting early signals of efficacy of novel therapies, both pharmacologic and nonpharmacologic, in small numbers of individuals with persistent pain. PMID:25533872
Sensory Over-Responsiveness among Healthy Subjects is Associated with a Pronociceptive State.
Weissman-Fogel, Irit; Granovsky, Yelena; Bar-Shalita, Tami
2018-04-01
Chronic pain patients show hypersensitivity to sensory nonpainful stimuli. Sensory over-responsiveness (SOR) to innocuous daily stimuli, experienced as painful, is prevalent in 10% of the healthy population. This altered sensory processing may be an expression of overfacilitation, or a less efficient pain-inhibitory process in the pain pathways. We therefore aimed to investigate specifically the pain-inhibitory system of subjects with SOR who are otherwise healthy, not studied as of yet. Thirty healthy subjects, divided into an SOR group (n = 14) and a non-SOR group (n = 16) based on responses to the Sensory Responsiveness Questionnaire, were psychophysically tested in order to evaluate (1) hyperalgesic responses; (2) adaptation/sensitization to 14 phasic heat stimuli; (3) habituation; (4) 6-minute after-sensations; and (5) conditioned pain modulation (CPM) (ie, phasic heat stimuli applied with and without hand immersion in a hot water bath). The SOR group differed from the non-SOR group in (1) a steeper escalation in NPS ratings to temperature increase (P = 0.003), indicating hyperalgesia; (2) increased sensitization (P < 0.001); (3) habituation responses (P < 0.001); (4) enhanced pain ratings during the after-sensation (P = 0.006); and (5) no group difference was found in CPM. SOR is associated with a pronociceptive state, expressed by amplification of experimental pain, yet with sufficient inhibitory processes. Our results support previous findings of enhanced facilitation of pain-transmitting pathways but also reveal preserved inhibitory mechanisms, although they were slower to react. © 2017 World Institute of Pain.
Improved Learning Outcomes After Flipping a Therapeutics Module: Results of a Controlled Trial.
Lockman, Kashelle; Haines, Stuart T; McPherson, Mary Lynn
2017-12-01
To evaluate the impact on learning outcomes of flipping a pain management module in a doctor of pharmacy curriculum. In a required first-professional-year pharmacology and therapeutics course at the University of Maryland School of Pharmacy, the pain therapeutics content of the pain management module was flipped. This redesign transformed the module from a largely lecture-based, instructor-centered model to a learner-centered model that included a variety of preclass activities and in-class active learning exercises. In spring 2015, the module was taught using the traditional model; in spring 2016, it was taught using the flipped model. The same end-of-module objective structured clinical exam (OSCE) and multiple-choice exam were administered in 2015 to the traditional cohort (TC; n = 156) and in 2016 to the flipped cohort (FC; n = 162). Cohort performance was compared. Learning outcomes improved significantly in the FC: The mean OSCE score improved by 12.33/100 points (P < .0001; 95% CI 10.28-14.38; effect size 1.33), and performance on the multiple-choice exam's therapeutics content improved by 5.07 percentage points (P < .0001; 95% CI 2.56-7.59; effect size 0.45). Student performance on exam items assessing higher cognitive levels significantly improved under the flipped model. Grade distribution on both exams shifted, with significantly more FC students earning an A or B and significantly fewer earning a D or F compared with TC students. Student performance on knowledge- and skill-based assessments improved significantly after flipping the therapeutics content of a pain management module.
Nonpainful remote electrical stimulation alleviates episodic migraine pain.
Yarnitsky, David; Volokh, Lana; Ironi, Alon; Weller, Boaz; Shor, Merav; Shifrin, Alla; Granovsky, Yelena
2017-03-28
To evaluate the efficacy of remote nonpainful electrical upper arm skin stimulation in reducing migraine attack pain. This is a prospective, double-blinded, randomized, crossover, sham-controlled trial. Migraineurs applied skin electrodes to the upper arm soon after attack onset for 20 minutes, at various pulse widths, and refrained from medications for 2 hours. Patients were asked to use the device for up to 20 attacks. In 71 patients (299 treatments) with evaluable data, 50% pain reduction was obtained for 64% of participants based on best of 200-μs, 150-μs, and 100-μs pulse width stimuli per individual vs 26% for sham stimuli. Greater pain reduction was found for active stimulation vs placebo; for those starting at severe or moderate pain, reduction (1) to mild or no pain occurred in 58% (25/43) of participants (66/134 treatments) for the 200-μs stimulation protocol and 24% (4/17; 8/29 treatments) for placebo ( p = 0.02), and (2) to no pain occurred in 30% (13/43) of participants (37/134 treatments) and 6% (1/17; 5/29 treatments), respectively ( p = 0.004). Earlier application of the treatment, within 20 minutes of attack onset, yielded better results: 46.7% pain reduction as opposed to 24.9% reduction when started later ( p = 0.02). Nonpainful remote skin stimulation can significantly reduce migraine pain, especially when applied early in an attack. This is presumably by activating descending inhibition pathways via the conditioned pain modulation effect. This treatment may be proposed as an attractive nonpharmacologic, easy to use, adverse event free, and inexpensive tool to reduce migraine pain. NCT02453399. This study provides Class III evidence that for patients with an acute migraine headache, remote nonpainful electrical stimulation on the upper arm skin reduces migraine pain. © 2017 American Academy of Neurology.
Hathway, G J; Koch, S; Low, L; Fitzgerald, M
2009-01-01
Brainstem–spinal cord connections play an essential role in adult pain processing, and the modulation of spinal pain network excitability by brainstem nuclei is known to contribute to hyperalgesia and chronic pain. Less well understood is the role of descending brainstem pathways in young animals when pain networks are more excitable and exposure to injury and stress can lead to permanent modulation of pain processing. Here we show that up to postnatal day 21 (P21) in the rat, the rostroventral medulla of the brainstem (RVM) exclusively facilitates spinal pain transmission but that after this age (P28 to adult), the influence of the RVM shifts to biphasic facilitation and inhibition. Graded electrical microstimulation of the RVM at different postnatal ages revealed a robust shift in the balance of descending control of both spinal nociceptive flexion reflex EMG activity and individual dorsal horn neuron firing properties, from excitation to inhibition, beginning after P21. The shift in polarity of descending control was also observed following excitotoxic lesions of the RVM in adult and P21 rats. In adults, RVM lesions decreased behavioural mechanical sensory reflex thresholds, whereas the same lesion in P21 rats increased thresholds. These data demonstrate, for the first time, the changing postnatal influence of the RVM in spinal nociception and highlight the central role of descending brainstem control in the maturation of pain processing. PMID:19403624
Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.
Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C
2014-12-01
The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Wallen, Gwenyth R; Middleton, Kimberly R; Ames, Nancy; Brooks, Alyssa T; Handel, Daniel
2014-01-01
Sickle cell disease (SCD) is the most common genetic disease in African-Americans, characterized by recurrent painful vaso-occlusive crises. Medical therapies for controlling or preventing crises are limited because of efficacy and/or toxicity. This is a randomized, controlled, single-crossover protocol of hypnosis for managing pain in SCD patients. Participants receive hypnosis from a trained hypnosis therapist followed by six weeks of self-hypnosis using digital media. Those in the control arm receive SCD education followed by a six-week waiting period before crossing over to the hypnosis arm of the study. Outcome measures include assessments of pain (frequency, intensity and quality), anxiety, coping strategies, sleep, depression, and health care utilization. To date, there are no published randomized, controlled trials evaluating the efficacy of hypnosis on SCD pain modulation in adults. Self-hypnosis for pain management may be helpful in modulating chronic pain, improving sleep quality, and decreasing use of narcotics in patients with SCD. TRIAL REGISTRATION ClinicalTrials.gov: NCT00393250 PMID:25520557
HYPNOTIZABILITY AND PAIN MODULATION: A Body-Mind Perspective.
Varanini, Maurizio; Balocchi, Rita; Carli, Giancarlo; Paoletti, Giulia; Santarcangelo, Enrica L
2018-01-01
The study investigated whether the cardiac activity and cognitive-emotional traits sustained by the behavioral inhibition/activation system (BIS/BAS) may contribute to hypnotizability-related pain modulation. Nociceptive stimulation (cold-pressor test) was administered to healthy participants with high (highs) and low (lows) hypnotizability in the presence and absence of suggestions for analgesia. Results showed that heart rate increased abruptly at the beginning of nociceptive stimulation in all participants. Then, only in highs heart rate decreased for the entire duration of hand immersion. During stimulation with suggestions of analgesia, pain threshold negatively correlated with heart rate. BIS/BAS activity partially accounted for the observed hypnotizability-related differences in the relation between cardiac interoception and pain experience.
Experimental teeth clenching in man.
Christensen, L V
1989-01-01
The thesis develops an electromyographic (EMG) method to quantify maximum voluntary teeth clenching (MVC), studies the onset and endurance of jaw muscle fatigue and pain from MVC, and explores the prevention of the discomforts through pharmacological and physical means. MVC, or maximum voluntary static work efforts by the elevator muscles of the mandible, was quantified by continuous (integral) functions of variations in both time and recruitment/rate coding of motor units in the masseter muscle. Fatigue was felt in the masseter muscle after about 30 seconds of MVC; differential calculus suggested that the appearance and disappearance of fatigue was associated with primarily recruitment and decruitment of masseteric motor units, respectively. About 60 seconds of MVC elicited a mild pain in the masseter and temporalis muscles; about 120 seconds of MVC induced a moderate pain and complete exhaustion of the isometrically contracting muscles. Although pain releasing maximum static work efforts are stable variables they cannot predict the pain magnitude of brief and prolonged MVC, probably because of modulations (recruitment/decruitment/rate coding) of masseteric motor units. It is suggested that the modulations begin with the onset of fatigue, are practically complete with the onset of pain, and are absent or negligible with an experience of exhaustion. A single oral dose of 1000 mg of ibuprofen did not affect the onset, endurance, and magnitude of pain from MVC. By contrast, 30 minutes of cooling (ice) of the masseter muscle effectively prevented the onset of pain; it also increased the masseteric EMG, credibly because of modulations of myoelectrical signals and, possibly, increased MVC efforts in the absence of pain.
Pacinian Signals Determine the Direction and Magnitude of the Effect of Vibration on Pain.
Hollins, Mark; Corsi, Christopher; Sloan, Page
2017-08-01
Although the ability of vibration to reduce pain has been extensively documented, an occasional participant reports that vibration increases pain. For pain patients, such reports may reflect pathophysiology, but this is unlikely in studies of experimental pain in healthy participants. In the present series of experiments on 27 pain-free individuals, we manipulated both the frequency (12, 50, and 80 Hz) and amplitude of vibration to more fully characterize vibratory pain modulation. The noxious stimulus was pressure applied to a finger, and vibration was delivered to the fleshy palmar pad at the base of the same finger. Subjects continuously reported pain on a Visual Analog Scale. Intermittent vibration was used to minimize peripheral vibratory adaptation. Pain records at 12 and 50 Hz were similar; pooling them revealed significant hypoalgesia at the highest amplitude. At 80 Hz, in contrast, the middle amplitude produced hypoalgesia, but a significant shift toward hyperalgesia occurred at the highest amplitude. The strong correlation ( r = .81) between the Pacinian-weighted power of a vibration and the absolute value of the pain modulation it produces indicates that the Pacinian system plays a key role in vibratory hypoalgesia or hyperalgesia.
Cui, Fang; Zhu, Xiangru; Luo, Yuejia
2017-08-01
Two hypotheses have been proposed regarding the response that is triggered by observing others' pain: the "empathizing hypothesis" and the "threat value of pain hypothesis." The former suggests that observing others' pain triggers an empathic response. The latter suggests that it activates the threat-detection system. In the present study, participants were instructed to observe pictures that showed an anonymous hand or foot in a painful or non-painful situation in a threatening or friendly social context. Event-related potentials were recorded when the participants passively observed these pictures in different contexts. We observed an interaction between context and picture in the early automatic N1 component, in which the painful pictures elicited a larger amplitude than the non-painful pictures only in the threatening context and not in the friendly context. We also observed an interaction between context and picture in the late P3 component, in which the painful pictures elicited a larger amplitude than the non-painful pictures only in the friendly context and not in the threatening context. These results indicate that specific social contexts can modulate the neural responses to observing others' pain. The "empathic hypothesis" and "threat value of pain hypothesis" are not mutually exclusive and do not contradict each other but rather work in different temporal stages.
Ecological aspects of pain in sensory modulation disorder.
Bar-Shalita, T; Deutsch, L; Honigman, L; Weissman-Fogel, I
2015-01-01
Sensory Modulation Disorder (SMD) interferes with the daily life participation of otherwise healthy individuals and is characterized by over-, under- or seeking responsiveness to naturally occurring sensory stimuli. Previous laboratory findings indicate pain hyper-sensitivity in SMD individuals suggesting CNS alteration in pain processing and modulation. However, laboratory studies lack ecological validity, and warrant clinical completion in order to elicit a sound understanding of the phenomenon studied. Thus, this study explored the association between sensory modulation and pain in a daily life context in a general population sample. Daily life context of pain and sensations were measured in 250 adults (aged 23-40 years; 49.6% males) using 4 self-report questionnaires: Pain Sensitivity Questionnaire (PSQ) and Pain Catastrophizing Scale (PCS) to evaluate the sensory and cognitive aspects of pain; the Sensory Responsiveness Questionnaire (SRQ) to appraise SMD; and the Short Form - 36 Health Survey, version 2 (SF36) to assess health related Quality of Life (QoL). Thirty two individuals (12.8%) were found with over-responsiveness type of SMD, forming the SOR-SMD group. While no group differences (SOR-SMD vs. Non-SMD) were found, low-to-moderate total sample correlations were demonstrated between the SRQ-Aversive sub-scale and i) PSQ total (r=0.31, p<0.01) and sub-scales scores (r=0.27-0.28, p<0.01), as well as ii) PCS total and the sub-scales of Rumination and Helplessness scores (r=0.15, p<0.05). PSQ total and sub-scale scores were more highly correlated with SRQ-Aversive in the SOR-SMD group (r=0.57-0.68, p=0.03-<0.01) compared to Non-SMD group. The Physical Health - Total score (but not the Mental Health - Total) of the SF36 was lower for the SOR-SMD group (p=0.03), mainly due to the difference in the Body pain sub-scale (p=0.04). Results suggest that SOR-SMD is strongly associated with the sensory aspect of pain but weakly associated with the cognitive aspect. This indicates that SMD co-occurs with daily pain sensitivity, thus reducing QoL, but less with the cognitive-catastrophizing manifestation of pain perception. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reis, Michel Silva; Durigan, João Luiz Quagliotti; Arena, Ross; Rossi, Bruno Rafael Orsini; Mendes, Renata Gonçalves; Borghi-Silva, Audrey
2014-01-01
Fibromyalgia (FM) has been associated with cardiac autonomic abnormalities and pain. Heart rate variability (HRV) is reduced in FM with autonomic tone dominated by sympathetic activity. The purpose of this study was to evaluate the effects of one session of a posteroanterior glide technique on both autonomic modulation and pain in woman with FM. This was a controlled trial with immediate followup; twenty premenopausal women were allocated into 2 groups: (i) women diagnosed with FM (n = 10) and (ii) healthy women (n = 10). Both groups received one session of Maitland mobilization grade III posteroanterior central pressure glide, at 2 Hz for 60 s at each vertebral segment. Autonomic modulation was assessed by HRV and pain by a numeric pain scale before and after the intervention. For HRV analyses, heart rate and RR intervals were recorded for 10 minutes. FM subjects demonstrated reduced HRV compared to controls. Although the mobilization technique did not significantly reduce pain, it was able to improve HRV quantified by an increase in rMSSD and SD1 indices, reflecting an improved autonomic profile through increased vagal activity. In conclusion, women with FM presented with impaired cardiac autonomic modulation. One session of Maitland spine mobilization was able to acutely improve HRV. PMID:24991436
Blöchl, Maria; Franz, Marcel; Miltner, Wolfgang H R; Weiss, Thomas
2015-04-07
Attention has been shown to affect the neural processing of pain. However, the exact mechanisms underlying this modulation remain unknown. Here, we used a new method called pain steady-state evoked potentials (PSSEPs) to investigate whether selective spatial attention affects EEG responses to tonic painful stimuli. In general, steady-state evoked potentials reflect changes in the EEG spectrum at a certain frequency that correspond to the frequency of a train of applied stimuli. In this study, high intensity transcutaneous electrical stimulation was delivered to both hands simultaneously with 31 Hz and 37 Hz, respectively. Subject׳s attention was directed to one of the two trains of stimulation in order to detect a small gap that was occasionally interspersed into the stimulus trains. Thereby, they had to ignore the stimulation applied to the other hand. Results show that PSSEPs were induced at 31 Hz and 37 Hz at frontal and central electrodes. PSSEPs occurred contralaterally to the respective hand stimulated with that frequency. Surprisingly, the magnitude of PSSEPs was not modulated by spatial attention towards one of the two stimuli. Our results indicate that attention can hardly be shifted between two simultaneously applied tonic painful stimulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Koyama, Suguru; Xia, Jimmy; Leblanc, Brian W; Gu, Jianwen Wendy; Saab, Carl Y
2018-05-08
Paresthesia, a common feature of epidural spinal cord stimulation (SCS) for pain management, presents a challenge to the double-blind study design. Although sub-paresthesia SCS has been shown to be effective in alleviating pain, empirical criteria for sub-paresthesia SCS have not been established and its basic mechanisms of action at supraspinal levels are unknown. We tested our hypothesis that sub-paresthesia SCS attenuates behavioral signs of neuropathic pain in a rat model, and modulates pain-related theta (4-8 Hz) power of the electroencephalogram (EEG), a previously validated correlate of spontaneous pain in rodent models. Results show that sub-paresthesia SCS attenuates thermal hyperalgesia and power amplitude in the 3-4 Hz range, consistent with clinical data showing significant yet modest analgesic effects of sub-paresthesia SCS in humans. Therefore, we present evidence for anti-nociceptive effects of sub-paresthesia SCS in a rat model of neuropathic pain and further validate EEG theta power as a reliable 'biosignature' of spontaneous pain.
Trompetter, Hester R; Bohlmeijer, Ernst T; Lamers, Sanne M A; Schreurs, Karlein M G
2016-01-01
The web-based delivery of psychosocial interventions is a promising treatment modality for people suffering from chronic pain, and other forms of physical and mental illness. Despite the promising findings of first studies, patients may vary in the benefits they draw from self-managing a full-blown web-based psychosocial treatment. We lack knowledge on moderators and predictors of change during web-based interventions that explain for whom web-based interventions are especially (in)effective. In this study, we primarily explored for which chronic pain patients web-based Acceptance and Commitment Therapy (ACT) was (in)effective during a large three-armed randomized controlled trial. Besides standard demographic, physical and psychosocial factors we focused on positive mental health. Data from 238 heterogeneously diagnosed chronic pain sufferers from the general Dutch population following either web-based ACT (n = 82), or one of two control conditions [web-based Expressive Writing (EW; n = 79) and Waiting List (WL; n = 77)] were analysed. ACT and EW both consisted of nine modules and lasted nine to 12 weeks. Exploratory linear regression analyses were performed using the PROCESS macro in SPSS. Pain interference at 3-month follow-up was predicted from baseline moderator (characteristics that influence the outcome of specific treatments in comparison to other treatments) and predictor (characteristics that influence outcome regardless of treatment) variables. The results showed that none of the demographic or physical characteristics moderated ACT treatment changes compared to both control conditions. The only significant moderator of change compared to both EW and WL was baseline psychological wellbeing, and pain intensity was a moderator of change compared to EW. Furthermore, higher pain interference, depression and anxiety, and also lower levels of emotional well-being predicted higher pain interference in daily life 6 months later. These results suggest that web-based self-help ACT may not be allocated to chronic pain sufferers experiencing low levels of mental resilience resources such as self-acceptance, goals in life, and environmental mastery. Other subgroups are identified that potentially need specific tailoring of (web-based) ACT. Emotional and psychological wellbeing should receive much more attention in subsequent studies on chronic pain and illness.
Hartman, Nicholas D; Harper, Erin N; Leppert, Lauren M; Browning, Brittany M; Askew, Kim; Manthey, David E; Mahler, Simon A
We created and tested an educational intervention to support implementation of an institution wide QI project (the HEART Pathway) designed to improve care for patients with acute chest pain. Although online learning modules have been shown effective in imparting knowledge regarding QI projects, it is unknown whether these modules are effective across specialties and healthcare professions. Participants, including nurses, advanced practice clinicians, house staff and attending physicians (N = 486), were enrolled into an online, self-directed learning course exploring the key concepts of the HEART Pathway. The module was completed by 97% of enrollees (469/486) and 90% passed on the first attempt (422/469). Out of 469 learners, 323 completed the pretest, learning module and posttest in the correct order. Mean test scores across learners improved significantly from 74% to 89% from the pretest to the posttest. Following the intervention, the HEART Pathway was used for 88% of patients presenting to our institution with acute chest pain. Our data demonstrate that this online, self-directed learning module can improve knowledge of the HEART Pathway across specialties-paving the way for more efficient and informed care for acute chest pain patients.
Dissociable Neural Mechanisms Underlying the Modulation of Pain and Anxiety? An fMRI Pilot Study
Moseley, Graham Lorimer; Berna, Chantal; Ploner, Markus; Tracey, Irene
2014-01-01
The down-regulation of pain through beliefs is commonly discussed as a form of emotion regulation. In line with this interpretation, the analgesic effect has been shown to co-occur with reduced anxiety and increased activity in the ventrolateral prefrontal cortex (VLPFC), which is a key region of emotion regulation. This link between pain and anxiety modulation raises the question whether the two effects are rooted in the same neural mechanism. In this pilot fMRI study, we compared the neural basis of the analgesic and anxiolytic effect of two types of threat modulation: a “behavioral control” paradigm, which involves the ability to terminate a noxious stimulus, and a “safety signaling” paradigm, which involves visual cues that signal the threat (or absence of threat) that a subsequent noxious stimulus might be of unusually high intensity. Analgesia was paralleled by VLPFC activity during behavioral control. Safety signaling engaged elements of the descending pain control system, including the rostral anterior cingulate cortex that showed increased functional connectivity with the periaqueductal gray and VLPFC. Anxiety reduction, in contrast, scaled with dorsolateral prefrontal cortex activation during behavioral control but had no distinct neural signature during safety signaling. Our pilot data therefore suggest that analgesic and anxiolytic effects are instantiated in distinguishable neural mechanisms and differ between distinct stress- and pain-modulatory approaches, supporting the recent notion of multiple pathways subserving top-down modulation of the pain experience. Additional studies in larger cohorts are needed to follow up on these preliminary findings. PMID:25502237
Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H; Jay, Kenneth; Persson, Roger; Aagaard, Per; Andersen, Lars L
2014-01-01
Chronic pain and disability of the arm, shoulder, and hand severely affect labor market participation. Ergonomic training and education is the default strategy to reduce physical exposure and thereby prevent aggravation of pain. An alternative strategy could be to increase physical capacity of the worker by physical conditioning. To investigate the effect of 2 contrasting interventions, conventional ergonomic training (usual care) versus resistance training, on pain and disability in individuals with upper limb chronic pain exposed to highly repetitive and forceful manual work. Examiner-blinded, parallel-group randomized controlled trial with allocation concealment. Slaughterhouses located in Denmark, Europe. Sixty-six adults with chronic pain in the shoulder, elbow/forearm, or hand/wrist and work disability were randomly allocated to 10 weeks of specific resistance training for the shoulder, arm, and hand muscles for 3 x 10 minutes per week, or ergonomic training and education (usual care control group). Pain intensity (average of shoulder, arm, and hand, scale 0 - 10) was the primary outcome, and disability (Work module of DASH questionnaire) as well as isometric shoulder and wrist muscle strength were secondary outcomes. Pain intensity, disability, and muscle strength improved more following resistance training than usual care (P < 0.001, P = 0.05, P <0.0001, respectively [corrected]). Pain intensity decreased by 1.5 points (95% confidence interval -2.0 to -0.9) following resistance training compared with usual care, corresponding to an effect size of 0.91 (Cohen's d). Blinding of participants is not possible in behavioral interventions. However, at baseline outcome expectations of the 2 interventions were similar. Resistance training at the workplace results in clinical relevant improvements in pain, disability, and muscle strength in adults with upper limb chronic pain exposed to highly repetitive and forceful manual work. NCT01671267.
Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia.
Castillo Saavedra, Laura; Mendonca, Mariana; Fregni, Felipe
2014-09-01
Fibromyalgia is a highly prevalent, debilitating disease, characterized by chronic widespread pain. The mechanisms underlying pain are not completely understood, but it is believed to be associated with important neuroplastic changes in pain-related neural circuits. Although the involvement of the pain matrix in fibromyalgia is well established, another area that has been found to play a role in the maintenance and treatment of chronic pain is the primary motor cortex (M1). Maladaptive plasticity of M1 is a common finding in patients with chronic pain and many studies in animal models and in human subjects have shown that modulation of the activity of this cortical area induces significant analgesic effects. Furthermore, studies in other chronic pain syndromes have found alterations in baseline characteristics of M1, including an increase in cortical excitability and an abnormally enhanced response to incoming sensory stimuli. Given these findings, we hypothesize that M1 is a major modulator of pain in fibromyalgia and therefore its baseline activity reflects this strong feedback between M1 and pain-related neural areas. However, the feedback loop between M1 and the pain matrix is not enough to decrease pain in fibromyalgia per se, thus increasing its modulatory effect by engaging this network through different behavioral and modulatory techniques is a potentially beneficial treatment for pain in fibromyalgia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bilevicius, Elena; Sommer, Jordana L; Asmundson, Gordon J G; El-Gabalawy, Renée
2018-07-01
Chronic pain conditions and posttraumatic stress disorder (PTSD) commonly co-occur and are associated with opioid use disorder (OUD). The aims of this paper were to identify prevalence estimates of OUD among individuals with and without PTSD and assess independent and combined contributions of PTSD and chronic pain conditions on OUD in a nationally representative sample. Data were extracted from 36,309 individuals from the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions. Past-year PTSD and OUD were assessed using the Alcohol Use Disorder and Associated Disabilities Interview Schedule-DSM-5 edition. Respondents reported physician-confirmed, past-year chronic pain conditions, categorized into musculoskeletal pain (e.g., arthritis), digestive pain (e.g., pancreatitis), and nerve pain (e.g., reflex sympathetic dystrophy). We examined the weighted prevalence of OUD among those with and without PTSD. Multiple logistic regressions examined the association between PTSD and chronic pain conditions on OUD. The prevalence of OUD was higher among those with PTSD than those without. Comorbid PTSD/musculoskeletal pain and PTSD/nerve pain conditions were associated with increased odds of OUD, compared to those with neither PTSD nor chronic pain conditions. Digestive pain conditions were not associated with OUD. Comorbid PTSD/musculoskeletal pain conditions demonstrated an additive relationship on OUD compared to musculoskeletal pain conditions and PTSD alone. Results reveal that musculoskeletal pain and nerve pain conditions are associated with increased odds of OUD, but only musculoskeletal pain conditions display an additive relationship on OUD when combined with PTSD. These findings have implications for opioid management and screening among those with comorbid conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Rostral Ventral Medulla Cholinergic Mechanism in Pain-Induced Analgesia
Gear, Robert W.; Levine, Jon D.
2009-01-01
The ascending nociceptive control (ANC), a novel spinostriatal pain modulation pathway, mediates a form of pain-induced analgesia referred to as noxious stimulus-induced antinociception (NSIA). ANC includes specific spinal cord mechanisms as well as circuitry in nucleus accumbens, a major component of the ventral striatum. Here, using the trigeminal jaw-opening reflex (JOR) in the rat as a nociceptive assay, we show that microinjection of the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine into the rostral ventral medulla (RVM) blocks NSIA, implicating RVM as a potentially important link between ANC and the PAG – RVM – spinal descending pain modulation system. A circuit connecting nucleus accumbens to the RVM is proposed as a novel striato-RVM pathway. PMID:19699268
The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain.
Younger, Jarred; Parkitny, Luke; McLain, David
2014-04-01
Low-dose naltrexone (LDN) has been demonstrated to reduce symptom severity in conditions such as fibromyalgia, Crohn's disease, multiple sclerosis, and complex regional pain syndrome. We review the evidence that LDN may operate as a novel anti-inflammatory agent in the central nervous system, via action on microglial cells. These effects may be unique to low dosages of naltrexone and appear to be entirely independent from naltrexone's better-known activity on opioid receptors. As a daily oral therapy, LDN is inexpensive and well-tolerated. Despite initial promise of efficacy, the use of LDN for chronic disorders is still highly experimental. Published trials have low sample sizes, and few replications have been performed. We cover the typical usage of LDN in clinical trials, caveats to using the medication, and recommendations for future research and clinical work. LDN may represent one of the first glial cell modulators to be used for the management of chronic pain disorders.
Jacobs, Zachary G; Elnicki, D Michael; Perera, Subashan; Weiner, Debra K
2018-01-05
To determine 1) the feasibility of implementing an e-learning module on chronic low back pain (CLBP) in an older adult into an existing internal medicine residency curriculum and 2) the impact of this module on resident attitudes, confidence, knowledge, and clinical skills relating to CLBP. Participants were assigned to complete either the online module (N = 73) or the Yale Office-based curriculum on CLBP (N = 70). Attitudes, confidence, and knowledge were evaluated pre- and postintervention via survey. A retrospective blinded chart review of resident clinic encounters was conducted, wherein diagnosis codes and physical exam documentation were rated as basic or advanced. There was no improvement in overall knowledge scores in either group (60% average on both metrics). There were tendencies for greater improvements in the intervention group compared with controls for confidence in managing fibromyalgia (2.4 to 2.9 vs 2.5 to 2.5, P = 0.06) and leg length discrepancy (1.8 to 2.5 vs 1.5 to 1.9, P = 0.05). Those exposed to the online module also showed an increase in the percentage of physical exam documentation rated as advanced following the intervention (13% to 32%, P = 0.006), whereas the control group showed no change (14% to 12%, P = 0.68). An online module on CLBP in the older adult was a feasible addition to an existing curriculum for internal medicine residents. The module positively and substantively impacted resident clinical behaviors, as evidenced by enhanced sophistication in physical exam documentation; it also was associated with improved confidence in certain aspects of chronic pain management. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
MUMPS Based Integration of Disparate Computer-Assisted Medical Diagnosis Modules
1989-12-12
modules use a Bayesian approach, while the Opthalmology module uses a Rule Based approach. In the current effort, MUMPS is used to develop an...Abdominal and Chest Pain modules use a Bayesian approach, while the Opthalmology module uses a Rule Based approach. In the current effort, MUMPS is used
Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam
2016-04-01
It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.
2016-01-01
Background Low back pain (LBP) could be influenced by socio-cultural factors. Pain narratives are important to understand the influence of environment on patients with chronic LBP. There are few studies that have explored the experience of patients with chronic LBP in different socio-cultural environments. The aim of this study was to describe the experience of patients with chronic LBP in Spain and Brazil. Methods A qualitative phenomenology approach was implemented. Chronic LBP patients from the University Hospital of Salamanca (Spain), and/or Federal University of São Carlos (Brazil) were included, using purposeful sampling. Data were collected from 22 Spanish and 26 Brazilian patients during in-depth interviews and using researchers’ field notes and patients' personal diaries and letters. A thematic analysis was performed and the guidelines for reporting qualitative research were applied. Results Forty-eight patients with a mean age of 50.7 years (SD: ± 13.1 years) were included in the study. The themes identified included: a) ways of perceiving and expressing pain—the participants focused constantly on their pain and anything outside it was considered secondary; b) the socio-familial environment as a modulator of pain—most participants stated that no one was able to understand the pain they were experiencing; c) religion as a modulator of pain—all Brazilian patients stated that religious belief affected the experience of pain; and d) socio-economic and educational status as a modulator of pain—the study reported that economic factors influenced the experience of pain. Conclusions The influences of LBP can be determined based on the how a patient defines pain. Religion can be considered as a possible mechanism for patients to manage pain and as a form of solace. PMID:27434594
Palm, Ulrich; Chalah, Moussa A; Padberg, Frank; Al-Ani, Tarik; Abdellaoui, Mohamed; Sorel, Marc; Dimitri, Dalia; Créange, Alain; Lefaucheur, Jean-Pascal; Ayache, Samar S
2016-01-01
Pain and cognitive impairment are frequent symptoms in patients with multiple sclerosis (MS). Neglecting experimental pain and paying attention to demanding tasks is reported to decrease the pain intensity. Little is known about the interaction between chronic neuropathic pain and attention disorders in MS. Recently, transcranial direct current stimulation (tDCS) was used to modulate various cognitive and motor symptoms in MS. We aimed to study the effects of transcranial random noise stimulation (tRNS), a form of transcranial electric stimulation, over the left dorsolateral prefrontal cortex (DLPFC) on attention and neuropathic pain in MS patients. 16 MS patients were included in a randomized, sham-controlled, cross-over study. Each patient randomly received two tRNS blocks, separated by three weeks of washout interval. Each block consisted of three consecutive daily sessions of either active or sham tRNS. The patients were evaluated for pain, attention and mood and further underwent an electrophysiological evaluation. Compared to sham, tRNS showed a trend to decrease the N2-P2 amplitudes of pain related evoked potentials and improve pain ratings. Attention performance and mood scales did not change after stimulations. This study suggests the role of tRNS in pain modulation, which could have been more evident with longer stimulation protocols.
Rühle, Paul F; Wunderlich, Roland; Deloch, Lisa; Fournier, Claudia; Maier, Andreas; Klein, Gerhart; Fietkau, Rainer; Gaipl, Udo S; Frey, Benjamin
2017-03-01
The pain-relieving effects of low-dose radon therapies on patients suffering from chronic painful inflammatory diseases have been described for centuries. Even though it has been suggested that low doses of radiation may attenuate chronic inflammation, the underlying mechanisms remain elusive. Thus, the RAD-ON01 study was initiated to examine the effects of radon spa therapy and its low doses of alpha radiation on the human immune system. In addition to an evaluation of pain parameters, blood was drawn from 100 patients suffering from chronic painful degenerative musculoskeletal diseases before as well as 6, 12, 18, and 30 weeks after the start of therapy. We verified significant long-term pain reduction for the majority of patients which was accompanied by modulations of the peripheral immune cells. Detailed immune monitoring was performed using a multicolor flow cytometry-based whole blood assay. After therapy, the major immune cells were only marginally affected. Nevertheless, a small but long-lasting increase in T cells and monocytes was observed. Moreover, neutrophils, eosinophils and, in particular, dendritic cells were temporarily modulated after therapy. Regarding the immune cell subsets, cytotoxic T and NK cells, in particular, were altered. However, the most prominent effects were identified in a strong reduction of the activation marker CD69 on T, B, and NK cells. Simultaneously, the percentage of HLA-DR + T cells was elevated after therapy. The RAD-ON01 study showed for the first time a modulation of the peripheral immune cells following standard radon spa therapy. These modulations are in line with attenuation of inflammation.
Li, Linling; Huang, Gan; Lin, Qianqian; Liu, Jia; Zhang, Shengli; Zhang, Zhiguo
2018-01-01
The level of pain perception is correlated with the magnitude of pain-evoked brain responses, such as laser-evoked potentials (LEP), across trials. The positive LEP-pain relationship lays the foundation for pain prediction based on single-trial LEP, but cross-individual pain prediction does not have a good performance because the LEP-pain relationship exhibits substantial cross-individual difference. In this study, we aim to explain the cross-individual difference in the LEP-pain relationship using inter-stimulus EEG (isEEG) features. The isEEG features (root mean square as magnitude and mean square successive difference as temporal variability) were estimated from isEEG data (at full band and five frequency bands) recorded between painful stimuli. A linear model was fitted to investigate the relationship between pain ratings and LEP response for fast-pain trials on a trial-by-trial basis. Then the correlation between isEEG features and the parameters of LEP-pain model (slope and intercept) was evaluated. We found that the magnitude and temporal variability of isEEG could modulate the parameters of an individual's linear LEP-pain model for fast-pain trials. Based on this, we further developed a new individualized fast-pain prediction scheme, which only used training individuals with similar isEEG features as the test individual to train the fast-pain prediction model, and obtained improved accuracy in cross-individual fast-pain prediction. The findings could help elucidate the neural mechanism of cross-individual difference in pain experience and the proposed fast-pain prediction scheme could be potentially used as a practical and feasible pain prediction method in clinical practice. PMID:29904336
Jastrowski Mano, Kristen E; Khan, Kimberly Anderson; Ladwig, Renee J; Weisman, Steven J
2011-06-01
To evaluate the psychometric properties of the Family Impact Module (FIM), a parent self-report measure of health-related quality of life (HRQOL) and family functioning, among parents of youth with chronic pain. Parents (N = 458) completed the FIM (Total Impact, HRQOL, and Family Functioning scales); parents and youth (N = 332) completed measures of pain catastrophizing, pediatric quality of life, and emotional/behavioral functioning. The FIM demonstrated strong internal consistency and item-total correlations. All FIM scales were positively associated with pain catastrophizing, functional disability, and emotional/behavioral problems; and inversely related to pediatric quality of life. Mothers reported significantly worse HRQOL than fathers. Mothers and fathers did not differ on reports of Family Functioning. HRQOL and Family Functioning did not differ as a function of pain diagnosis. The FIM appears to be a suitable measure of parent self-reported HRQOL and family functioning in pediatric chronic pain.
Zhou, Fang; Wang, Jia-You; Tian, En-Qi; Zhang, Li-Cai
2015-12-25
The present study was aimed to investigate the role of cerebrospinal fluid-contacting nucleus (CSF-CN) neurons in modulation of inflammatory pain and underlying mechanism. The inflammatory pain model was made by subcutaneous injection of the complete Freund's adjuvant (CFA) into the left hind paw of rats. The phosphorylation level of PKC (p-PKC) was examined by Western blot. Thermal withdrawal latency (TWL) of the rats was measured to assess inflammatory pain. The results showed that, compared with the sham controls, the inflammatory pain model rats showed shortened TWL on day 1, 3, and 7 after CFA injection, as well as increased level of p-PKC in CSF-CN neurons at 24 h after CFA injection. The administration of GF109203X, a PKC inhibitor, into lateral ventricle decreased the level of p-PKC protein expression and increased TWL in the model rats. These results suggest that blocking the PKC pathway in CSF-CN neurons may be an effective way to reduce or eliminate the inflammatory pain.
Ji, Ru-Rong
2015-12-01
Itch and pain are closely related but also clearly distinct sensations. Pain is known to suppress itch, while analgesics such as morphine can provoke itch. However, in pathological and chronic conditions, pain and itch also have similarities. Dysfunction of the nervous system, as manifested by neural plastic changes in primary sensory neurons of the peripheral nervous system (peripheral sensitization) and spinal cord and brain stem neurons in the central nervous system (central sensitization) will result in chronic pain and itch. Importantly, these diseases also result from immune dysfunction, since inflammatory mediators can directly activate or sensitize nociceptive and pruriceptive neurons in the peripheral and central nervous system, leading to pain and itch hypersensitivity. In this mini-review, I discuss the roles of Toll-like receptors (TLRs), transient receptor potential ankyrin 1 (TRPA1) ion channel, and Nav1.7 sodium channel in regulating itch and inflammation, with special emphasis of neuronal TLR signaling and the interaction of TLR7 and TRPA1. Chronic pain and chronic itch are debilitating diseases and dramatically impact the life quality of patients. Targeting TLRs for the control of inflammation, neuroinflammation (inflammation restricted in the nervous system), and hyperexcitability of nociceptors and pruriceptors will lead to new therapeutics for the relief of chronic pain and chronic itch. Finally, given the shared mechanisms among chronic cough, chronic pain, and chronic itch and the demonstrated efficacy of the neuropathic pain drug gabapentin in treating chronic cough, novel therapeutics targeting TRPA1, Nav1.7, and TLRs may also help to alleviate refractory cough via modulating neuron-immune interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arthropod toxins and their antinociceptive properties: From venoms to painkillers.
Monge-Fuentes, Victoria; Arenas, Claudia; Galante, Priscilla; Gonçalves, Jacqueline Coimbra; Mortari, Márcia Renata; Schwartz, Elisabeth Ferroni
2018-03-29
The complex process of pain control commonly involves the use of systemic analgesics; however, in many cases, a more potent and effective polypharmacological approach is needed to promote clinically significant improvement. Additionally, considering side effects caused by current painkillers, drug discovery is once more turning to nature as a source of more efficient therapeutic alternatives. In this context, arthropod venoms contain a vast array of bioactive substances that have evolved to selectively bind to specific pharmacological targets involved in the pain signaling pathway, playing an important role as pain activators or modulators, the latter serving as promising analgesic agents. The current review explores how the pain pathway works and surveys neuroactive compounds obtained from arthropods' toxins, which function as pain modulators through their interaction with specific ion channels and membrane receptors, emerging as promising candidates for drug design and development. Copyright © 2018 Elsevier Inc. All rights reserved.
Warner, Emily; Krivitsky, Rebecca; Cone, Katherine; Atherton, Phillip; Pitre, Travis; Lanpher, Janell; Giuvelis, Denise; Bergquist, Ivy; King, Tamara; Bilsky, Edward J; Stevenson, Glenn W
2015-12-01
There has been recent interest in characterizing the effects of pain-like states on motivated behaviors in order to quantify how pain modulates goal-directed behavior and the persistence of that behavior. The current set of experiments assessed the effects of an incisional postoperative pain manipulation on food-maintained responding under a progressive-ratio (PR) operant schedule. Independent variables included injury state (plantar incision or anesthesia control) and reinforcer type (grain pellet or sugar pellet); dependent variables were tactile sensory thresholds and response breakpoint. Once responding stabilized on the PR schedule, separate groups of rats received a single ventral hind paw incision or anesthesia (control condition). Incision significantly reduced breakpoints in rats responding for grain, but not sugar. In rats responding for sugar, tactile hypersensitivity recovered within 24 hr, indicating a faster recovery of incision-induced tactile hypersensitivity compared to rats responding for grain, which demonstrated recovery at PD2. The NSAID analgesic, diclofenac (5.6 mg/kg) completely restored incision-depressed PR operant responding and tactile sensitivity at 3 hr following incision. The PR schedule differentiated between sucrose and grain, suggesting that relative reinforcing efficacy may be an important determinant in detecting pain-induced changes in motivated behavior. © 2015 Wiley Periodicals, Inc.
Effects of a water extract of Lepidium meyenii root in different models of persistent pain in rats.
Tenci, Barbara; Di Cesare Mannelli, Lorenzo; Maresca, Mario; Micheli, Laura; Pieraccini, Giuseppe; Mulinacci, Nadia; Ghelardini, Carla
2017-10-26
Lepidium meyenii (Walp.), commonly called maca, is an Andean crop belonging to the Brassicaceae family. Maca hypocotils are habitually consumed as customary food as well as traditional remedies for pathological conditions such as infertility. Moreover, the characterization of maca extracts revealed the presence of compounds that are able to modulate the nervous system. Aimed to evaluate the efficacy of L. meyenii in persistent pain, the present study analyzed the effects of a commercial root extract from maca in different animal models reproducing the most common causes of chronic painful pathologies. A qualitative characterization of this commercial extract by high performance liquid chromatography-mass spectrometry and tandem mass spectrometry analyses allowed us to confirm the presence of some macamides known as bioactive constituents of this root and the absence of the main aromatic glucosinolates. The acute oral administration of maca extract is able to reduce mechanical hypersensitivity and postural unbalance induced by the intra-articular injection of monoiodoacetate and the chronic-constriction injury of the sciatic nerve. Furthermore, L. meyenii extract reverts pain threshold alterations evoked by oxaliplatin and paclitaxel. A good safety profile in mice and rats was shown. In conclusion, the present maca extract could be considered as a therapeutic opportunity to relieve articular and neuropathic pain.
Warner, Emily; Krivitsky, Rebecca; Cone, Katherine; Atherton, Phillip; Pitre, Travis; Lanpher, Janell; Giuvelis, Denise; Bergquist, Ivy; King, Tamara; Bilsky, Edward J.; Stevenson, Glenn W.
2015-01-01
There has been recent interest in characterizing the effects of pain-like states on motivated behaviors in order to quantify how pain modulates goal-directed behavior and the persistence of that behavior. The current set of experiments assessed the effects of an incisional post-operative pain manipulation on food-maintained responding under a progressive-ratio (PR) operant schedule. Independent variables included injury state (plantar incision or anesthesia control) and reinforcer type (grain pellet or sugar pellet); dependent variables were tactile sensory thresholds and response breakpoint. Once responding stabilized on the PR schedule, separate groups of rats received a single ventral hind paw incision or anesthesia (control condition). Incision significantly reduced breakpoints in rats responding for grain, but not sugar. In rats responding for sugar, tactile hypersensitivity recovered within 24 hrs, indicating a faster recovery of incision-induced tactile hypersensitivity compared to rats responding for grain, which demonstrated recovery at PD2. The NSAID analgesic, diclofenac (5.6 mg/kg) completely restored incision-depressed PR operant responding and tactile sensitivity at 3 hr following incision. The PR schedule differentiated between sucrose and grain, suggesting that relative reinforcing efficacy may be an important determinant in detecting pain-induced changes in motivated behavior. PMID:26494422
The analgesic effects of oxytocin in the peripheral and central nervous system.
Xin, Qing; Bai, Bo; Liu, Wenyan
2017-02-01
Pain is a ubiquitously unpleasant feeling among humans as well as many animal species often caused by actual and potential tissue damage. However, it is absolutely crucial for our survival in many ways. Acute pain can signal the presence of danger or life-threatenting events, which help escape noxious stimuli. By contrast, when pain becomes chronic or persistent, it becomes an encumbrance and exerts deleterious effects to the body and mind, often co-occured with anxiety and depression. Additionaly, chronic pain is more or less an economic burden for the patients because it requires immediate medical treatments and seriously hinders pepople in their work. To date, there has been a lack of breakthrough progress in the pain field, despite huge gains in basic science knowledge obtained using animal models, it is still difficult to develop many new clinically effective analgesic drugs to control pain with long-term effectiveness. Opioids and nonsteroidal anti-inflammatory drugs were introduced for pain management more than a century ago. Those drugs do have proven efficacy in the treatment of pain but the use of them are also significantly limited due to the multiple serious adverse effects (e.g., drug resistance, addiction and gastrointestinal bleeding). In the field of pain relief and treatment, there is a strong impetus to develop and establish novel analgesics that must be safer and more effective to offer significant pain relief for a wide variety of painful conditions. Preliminary evidence suggests that oxytocin might be the ideal candidate as a target for reducing the severity of pain. In this review, we present a summary of the total literature related to the effects of oxytocin on pain modulation in both animals and humans. Better understanding the fundamental physiopharmacology of the actions of oxytocin in pain may highlight novel mechanisms associated with analgesia. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suraj S., S.; Kulkarni, Palash; Bokadia, Pratik; Ramanathan, Prabhu; Nageswaran, Sharmila
2018-04-01
Handwriting is a combination of fine motor perceptions and cognitive skills to produce words on paper. For writing, the most commonly used and recommended grip is the dynamic tripod grip. A child's handwriting starts developing during the times of pre-schooling and improves over time. While writing, children apply excessive force on the writing instrument. This force is exerted by their fingers and as per the law of reaction, the writing instruments tend to exert an equal and opposite force, that could damage the delicate soft tissue structures in their fingers and initiate cramps and pains. This condition is also prevalent in adults who tend to write for long hours under pressure. An example would be adolescence student during the exams. Clinically this condition is termed as `Writer's Cramp', which is usually characterized by muscle fatigue and pain in the fingers. By understanding and fixing the threshold of the force that should be exerted by the fingers while gripping the instrument, the pain can be controlled or avoided. This research aims in designing an electronic module which can help in understanding the threshold of pressure which is optimum enough to establish a better contact between the fingers and the instrument and should be capable of controlling or avoiding the pain. The design of FSR based electronic system is explained with its circuitry and results of initial testing is presented in this paper.
Studies of Properties of Pain Networks as Predictors of Targets of Stimulation for Treatment of Pain
2011-12-05
H. (1999). Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain 82, 159–171. Rasche, D., Rinaldi, P. C., Young, R...distribution, and reproduction in other forums, pro- vided the original authors and source are credited. Frontiers in Integrative Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 80 | 7
Chen, Lei; Liu, Jin-cheng; Zhang, Xiao-nan; Guo, Yan-yan; Xu, Zhao-hui; Cao, Wei; Sun, Xiao-li; Sun, Wen-ji; Zhao, Ming-Gao
2008-06-01
Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain.
Laterality of pain: modulation by placebo and participants' paranormal belief.
Klemenz, Caroline; Regard, Marianne; Brugger, Peter; Emch, Oliver
2009-09-01
To investigate the effects of placebo and paranormal belief on the laterality of pain perception. The right hemisphere is dominantly involved in both the mediation of pain sensation and the belief in paranormal phenomena. We set out to assess a possible influence of long-term belief systems on placebo analgesia in response to unilateral nociceptive stimuli. Forty healthy participants (20 high and 20 low believers as indexed by the Magical Ideation Scale) underwent a placebo analgesia study measuring stimulus detection, pain threshold, and pain tolerance by electrostimulation on the right and left hand. Placebo treatment consisted of the application of a sham cream on the hands. Placebo had a positive influence on pain perception in the 3 variables. Enhanced pain sensitivity for the left side was only found for the disbelievers. Placebo treatment resulted in a double dissociation: in believers, it increased tolerance exclusively on the left side, in disbelievers on the right side. Our results confirm laterality effects in pain perception. However, only disbelievers conformed to the expected higher left-sided sensitivity. Placebo effects were dissociated between believers and disbelievers suggesting that short-term reactions to a placebo are modulated by a person's long-term belief system.
Rehabilitation Medicine Approaches to Pain Management.
Cheville, Andrea L; Smith, Sean R; Basford, Jeffrey R
2018-06-01
Rehabilitation medicine offers strategies that reduce musculoskeletal pain, targeted approaches to alleviate movement-related pain, and interventions to optimize patients' function despite the persistence of pain. These approaches fall into four categories: modulating nociception, stabilizing and unloading painful structures, influencing pain perception, and alleviating soft tissue musculotendinous pain. Incorporating these interventions into individualized, comprehensive pain management programs offers the potential to empower patients and limit pain associated with mobility and required daily activities. Rehabilitative approach may be particularly helpful for patients with refractory movement-associated pain and functional vulnerability, and for those who do not wish for, or cannot, tolerate pharmacoanalgesia. Copyright © 2018 Elsevier Inc. All rights reserved.
Hauck, Michael; Metzner, Susanne; Rohlffs, Fiona; Lorenz, Jürgen; Engel, Andreas K
2013-04-01
Modern forms of music therapy are clinically established for various therapeutic or rehabilitative goals, especially in the treatment of chronic pain. However, little is known about the neuronal mechanisms that underlie pain modulation by music. Therefore, we attempted to characterize the effects of music therapy on pain perception by comparing the effects of 2 different therapeutic concepts, referred to as receptive and entrainment methods, on cortical activity recorded by magnetencephalography in combination with laser heat pain. Listening to preferred music within the receptive method yielded a significant reduction of pain ratings associated with a significant power reduction of delta-band activity in the cingulate gyrus, which suggests that participants displaced their focus of attention away from the pain stimulus. On the other hand, listening to self-composed "pain music" and "healing music" within the entrainment method exerted major effects on gamma-band activity in primary and secondary somatosensory cortices. Pain music, in contrast to healing music, increased pain ratings in parallel with an increase in gamma-band activity in somatosensory brain structures. In conclusion, our data suggest that the 2 music therapy approaches operationalized in this study seem to modulate pain perception through at least 2 different mechanisms, involving changes of activity in the delta and gamma bands at different stages of the pain processing system. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Centrally administered verapamil prevents the autonomic reaction to visceral pain in sheep.
Kania, B F; Brytan, M; Tomaszewska, D
2009-02-01
The significant role of voltage gated calcium channels (VGCC) L-type antagonists used concomitantly with opioids in attenuation of clinical pain has been confirmed. The aim of this study was to evaluate the effect of centrally administered verapamil on behavior and biochemical parameters in sheep that have undergone experimental duodenal distension (DD) and to determine whether verapamil exerts any anti-nociceptive effects under these conditions. The study was carried out using 24 mature crossbred ewes, each weighing 38-43 kg. Verapamil, a VGCC blocker, was administered through an intracerebroventricular cannula at the following doses: 0.25, 0.5, 1.0 and 2.0mg in toto. Ten minutes later experimental DD was conducted by insertion and the distension of rubber balloon (containing 40 ml of warm water) inserted into sheep duodenum. After 5 min of mechanical DD the following reactions were then observed: the significant increase in behavioral pain responses, i.e. tachycardia, hyperventilation, inhibition of reticulo-ruminal contractions (70% approximately, during 15 min), an increase of plasma catecholamine concentration (over 7-fold increase of epinephrine during 2h following DD, 2-times norepinephrine and +/-80% increase of dopamine). Verapamil infusion administered 10 min prior to DD decreased intensity of visceral pain responses, such as: behavioral changes, tachycardia, hyperventilation, inhibition of the reticulo-rumen motility and efficiently prevented the appearance of catecholamine release. These data demonstrated that the development and persistence of duodenal hyperalgesia depends on the activation of Ca(2+) ion flux leading to neurotransmitters release and modulation of membrane excitability. The observed antinociceptive action of VGCCs type-L blockers suggests that these channels play a crucial role in the modulation of acute visceral hyperalgesia in sheep.
Reduced Modulation of Pain in Older Adults After Isometric and Aerobic Exercise.
Naugle, Kelly M; Naugle, Keith E; Riley, Joseph L
2016-06-01
Laboratory-based studies show that acute aerobic and isometric exercise reduces sensitivity to painful stimuli in young healthy individuals, indicative of a hypoalgesic response. However, little is known regarding the effect of aging on exercise-induced hypoalgesia (EIH). The purpose of this study was to examine age differences in EIH after submaximal isometric exercise and moderate and vigorous aerobic exercise. Healthy older and younger adults completed 1 training session and 4 testing sessions consisting of a submaximal isometric handgrip exercise, vigorous or moderate intensity stationary cycling, or quiet rest (control). The following measures were taken before and after exercise/quiet rest: 1) pressure pain thresholds, 2) suprathreshold pressure pain ratings, 3) pain ratings during 30 seconds of prolonged noxious heat stimulation, and 4) temporal summation of heat pain. The results revealed age differences in EIH after isometric and aerobic exercise, with younger adults experiencing greater EIH compared with older adults. The age differences in EIH varied across pain induction techniques and exercise type. These results provide evidence for abnormal pain modulation after acute exercise in older adults. This article enhances our understanding of the influence of a single bout of exercise on pain sensitivity and perception in healthy older compared with younger adults. This knowledge could help clinicians optimize exercise as a method of pain management. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
de Carvalho, Eudislaine Fonseca; de Oliveira, Simone Kobe; Nardi, Viviane Koepp; Gelinski, Tathiana Carla; Bortoluzzi, Marcelo Carlos; Maraschin, Marcelo; Nardi, Geisson Marcos
2016-03-01
Drinking mate or chimarrão, a hot infusion of Ilex paraguariensis (ILEX) leaves, is a common habit in Southern South America that has a social and almost ritualistic role. It has been used as a stimulant beverage in South America and analgesic in regions of Argentina for treatment of headache and others painful inflammatory conditions such as arthritis and rheumatism. The aim of this study was to evaluate the pharmacological activity of I. paraguariensis infusion (ILEX) on orofacial nociception model induced by formalin, and study its mechanism of action. The analgesic effect of ILEX was assessed through writhing test, paw formalin test, paw edema induced by carrageenan, and orofacial pain induced by formalin. To study the action mechanism of ILEX, opioidergic, dopaminergic, nitrergic, and adrenergic pathways were investigated. The high-performance liquid chromatography analysis of ILEX infusion revealed caffeine and theobromine. The treatment with ILEX reduced the number of writhing. However, it was effective neither in the formalin paw test nor in the paw edema induced by carrageenan. Different from formalin paw test, ILEX was able to reduce the orofacial reactivity to formalin in 31.8% (70.4 ± 2.5 s; first phase), and 20% (127.3 ± 18.9 s; second phase). The analgesic effect of ILEX results from the modulation of noradrenergic pathways since prazosin (α1-adrenoceptor antagonist, 0.15 mg/kg; intraperitoneal) reversed the analgesic effect of ILEX. The present report demonstrates that analgesic effect of ILEX in orofacial formalin test is due mainly to modulation of noradrenergic pathways. Ilex paraguariensis (ILEX) has been used as a stimulant beverage in South America and analgesic in regions of Argentina for the treatment of headache and others painful inflammatory conditions such arthritis and rheumatism.The aim of this study was to evaluate the pharmacological activity of ILEX on orofacial nociception model induced by formalin, and study its mechanism of action.ILEX reduced the number of writhing and orofacial reactivity to formalin in mice. However, it was effective neither in the formalin paw test nor in the paw edema induced by carrageenan.The analgesic effect of ILEX results from the modulation of noradrenergic pathways. Abbreviation Used: ILEX: Infusion of Ilex paraguariensis, NSAIDs: Nonsteroidal anti-inflammatory drugs, L-NOARG: L-NG-nitro-arginine, UV: Ultraviolet, i.p.: Intraperitoneal, NOS: Nitric Oxide Synthase, Analysis of variance, S.E.M.: Standard error of mean, HPLC: High-performance liquid chromatography, NO: Nitric Oxide, v.o.: Oral route, DCQ: dicaffeoylquinic acid, BMS: Burning mouth syndrome, PBS: Phosphate-buffered saline.
Sullivan, Mark; Langford, Dale J; Davies, Pamela Stitzlein; Tran, Christine; Vilardaga, Roger; Cheung, Gifford; Yoo, Daisy; McReynolds, Justin; Lober, William B; Tauben, David; Vowles, Kevin E
2018-03-29
The objective of this study was to develop and pilot test a chronic pain empowerment and self-management platform, derived from acceptance and commitment therapy, in a pain specialty setting. A controlled, sequential, nonrandomized study design was used to accommodate intervention development and to test the efficacy of the PainTracker Self-Manager (PTSM) intervention (Web-based educational modules and outcome tracking combined with tailored patient coaching sessions and provider guidance). Generalized estimating equations evaluated changes over time (baseline, 3 months, 6 months) in pain self-efficacy (primary outcome), chronic pain acceptance (activity engagement and pain willingness), perceived efficacy in patient-provider interactions, pain intensity and interference, and overall satisfaction with pain treatment (secondary outcomes) between intervention (n = 48) and usual care control groups (n = 51). The full study sample (N = 99) showed greater improvements over time (significant Group × Time interactions) in pain self-efficacy and satisfaction with pain treatment. Among study completers (n = 82), greater improvement in activity engagement as well as pain intensity and interference were also observed. These preliminary findings support the efficacy of the PTSM intervention in a pain specialty setting. Further research is needed to refine and expand the PTSM intervention and to test it in a randomized trial in primary care settings. We developed a Web-based patient empowerment platform that combined acceptance and commitment therapy-based educational modules and tailored coaching sessions with longitudinal tracking of treatments and patient-reported outcomes, named PTSM. Pilot controlled trial results provide preliminary support for its efficacy in improving pain self-efficacy, activity engagement, pain intensity and interference, and satisfaction with pain treatment. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Weighing the stigma of weight: An fMRI study of neural reactivity to the pain of obese individuals.
Azevedo, R T; Macaluso, E; Viola, V; Sani, G; Aglioti, S M
2014-05-01
Explicit negative attitudes and blameful beliefs (e.g. poor diet, laziness) towards obese individuals are well documented and are pervasive even among health professionals. Here we sought to determine whether obesity stigma is reflected in a fundamental feature of intersubjectivity namely the automatic neural resonance with others' affective experiences. During fMRI, normal-weight female participants observed short clips depicting normal-weight (NW) and obese (Ob) models experiencing pain. Importantly, participants believed that half of the Ob were overweight due to a hormonal disorder (HormOb) and ignored the cause of obesity of the remaining models (Unknown obese models; UnkOb). Analyses of hemodynamic responses showed reduced activity to the pain of Ob compared to that of NW in areas associated with pain processing and early visual processing. The comparison between the two Ob conditions revealed a further decrease of activity to HormOb's pain compared to UnkOb's (and NW) pain in the right inferior frontal gyrus, an area associated with emotional resonance. Our study demonstrates that stigma for obese individuals can be observed at implicit levels, and that it is modulated by knowledge concerning the etiology of obesity, with the seemingly surprising result that obesity due to disease may result in greater stigmatization. Moreover, the perceived similarity with the models and the ambivalent emotion of pity may index biased brain responses to obese individuals' pain. The study highlights a possibly important neural link between resonance with the pain of others and obesity stigma. Copyright © 2013 Elsevier Inc. All rights reserved.
Lluch, Enrique; Dueñas, Lirios; Falla, Deborah; Baert, Isabel; Meeus, Mira; Sánchez-Frutos, José; Nijs, Jo
2018-01-01
This study aimed to first compare the effects of a preoperative treatment combining pain neuroscience education (PNE) with knee joint mobilization versus biomedical education with knee joint mobilization on central sensitization (CS) in patients with knee osteoarthritis, both before and after surgery. Second, we wanted to compare the effects of both interventions on knee pain, disability, and psychosocial variables. Forty-four patients with knee osteoarthritis were allocated to receive 4 sessions of either PNE combined with knee joint mobilization or biomedical education with knee joint mobilization before surgery. All participants completed self-administered questionnaires and quantitative sensory testing was performed at baseline, after treatment and at a 1 month follow-up (all before surgery), and at 3 months after surgery. Significant and clinically relevant differences before and after surgery were found after treatments for both knee pain and disability, and some measures of CS (ie, widespread hyperalgesia, CS inventory), with no significant between-group differences. Other indicators of CS (ie, conditioned pain modulation, temporal summation) did not change over time following either treatment, and in some occasions the observed changes were not in the expected direction. Patients receiving PNE with knee joint mobilization achieved greater improvements in psychosocial variables (pain catastrophizing, kinesiophobia) both before and after surgery. Preoperative PNE combined with knee joint mobilization did not produce any additional benefits over time for knee pain and disability, and CS measures compared with biomedical education with knee joint mobilization. Superior effects in the PNE with knee joint mobilization group were only observed for psychosocial variables related to pain catastrophizing and kinesiophobia.
Liu, Da-Lu; Wang, Xu; Chu, Wen-Guang; Lu, Na; Han, Wen-Juan; Du, Yi-Kang; Hu, San-Jue; Bai, Zhan-Tao; Wu, Sheng-Xi; Xie, Rou-Gang; Luo, Ceng
2017-01-01
Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these changes are yet to be known. With combination of patch-clamp recording, immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability. Quantitative analysis of hyperpolarization-activated cation current ( I h ) revealed that I h was greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic pain rats. This increased I h was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of I h with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.
Manzanares, J; Julian, Md; Carrascosa, A
2006-07-01
Cannabis extracts and synthetic cannabinoids are still widely considered illegal substances. Preclinical and clinical studies have suggested that they may result useful to treat diverse diseases, including those related with acute or chronic pain. The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated cannabinoid receptors, modulate nociceptive thresholds, inhibit release of pro-inflammatory molecules, and display synergistic effects with other systems that influence analgesia, especially the endogenous opioid system. Cannabinoid receptor agonists have shown therapeutic value against inflammatory and neuropathic pains, conditions that are often refractory to therapy. Although the psychoactive effects of these substances have limited clinical progress to study cannabinoid actions in pain mechanisms, preclinical research is progressing rapidly. For example, CB(1)mediated suppression of mast cell activation responses, CB(2)-mediated indirect stimulation of opioid receptors located in primary afferent pathways, and the discovery of inhibitors for either the transporters or the enzymes degrading endocannabinoids, are recent findings that suggest new therapeutic approaches to avoid central nervous system side effects. In this review, we will examine promising indications of cannabinoid receptor agonists to alleviate acute and chronic pain episodes. Recently, Cannabis sativa extracts, containing known doses of tetrahydrocannabinol and cannabidiol, have granted approval in Canada for the relief of neuropathic pain in multiple sclerosis. Further double-blind placebo-controlled clinical trials are needed to evaluate the potential therapeutic effectiveness of various cannabinoid agonists-based medications for controlling different types of pain.
The effects of elevated pain inhibition on endurance exercise performance.
Flood, Andrew; Waddington, Gordon; Keegan, Richard J; Thompson, Kevin G; Cathcart, Stuart
2017-01-01
The ergogenic effects of analgesic substances suggest that pain perception is an important regulator of work-rate during fatiguing exercise. Recent research has shown that endogenous inhibitory responses, which act to attenuate nociceptive input and reduce perceived pain, can be increased following transcranial direct current stimulation of the hand motor cortex. Using high-definition transcranial direct current stimulation (HD-tDCS; 2 mA, 20 min), the current study aimed to examine the effects of elevated pain inhibitory capacity on endurance exercise performance. It was hypothesised that HD-tDCS would enhance the efficiency of the endogenous pain inhibitory response and improve endurance exercise performance. Twelve healthy males between 18 and 40 years of age ( M = 24.42 ± 3.85) were recruited for participation. Endogenous pain inhibitory capacity and exercise performance were assessed before and after both active and sham (placebo) stimulation. The conditioned pain modulation protocol was used for the measurement of pain inhibition. Exercise performance assessment consisted of both maximal voluntary contraction (MVC) and submaximal muscular endurance performance trials using isometric contractions of the non-dominant leg extensors. Active HD-tDCS (pre-tDCS, -.32 ± 1.33 kg; post-tDCS, -1.23 ± 1.21 kg) significantly increased pain inhibitory responses relative to the effects of sham HD-tDCS (pre-tDCS, -.91 ± .92 kg; post-tDCS, -.26 ± .92 kg; p = .046). Irrespective of condition, peak MVC force and muscular endurance was reduced from pre- to post-stimulation. HD-tDCS did not significantly influence this reduction in maximal force (active: pre-tDCS, 264.89 ± 66.87 Nm; post-tDCS, 236.33 ± 66.51 Nm; sham: pre-tDCS, 249.25 ± 88.56 Nm; post-tDCS, 239.63 ± 67.53 Nm) or muscular endurance (active: pre-tDCS, 104.65 ± 42.36 s; post-tDCS, 93.07 ± 33.73 s; sham: pre-tDCS, 123.42 ± 72.48 s; post-tDCS, 100.27 ± 44.25 s). Despite increasing pain inhibitory capacity relative to sham stimulation, active HD-tDCS did not significantly elevate maximal force production or muscular endurance. These findings question the role of endogenous pain inhibitory networks in the regulation of exercise performance.
Chen, Zhi-Ye; Ma, Lin
2014-04-01
To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.
Martins, L B; Teixeira, A L; Domingues, R B
2017-01-01
Neurotrophins (NTs) have been implicated in generation and modulation of nociceptive pathways. Change in NTs levels is associated with painful conditions and neurological diseases such as migraine. Currently, it is generally recognized that migraine headaches result from the activation and sensitization of trigeminal sensory afferent fibers leading to neuropeptides release such as calcitonin gene-related peptide (CGRP) and substance P (SP). This triggers an inflammatory cascade causing a neurogenic inflammation. The agents responsible for trigeminal activation and release of neuropeptides are still unclear. It is known that the transient receptor potential vanilloid receptor-1 (TRPV1) is an important mediator of CGRP and SP release. TRPV1 is closely associated with tyrosine receptors kinases (Trk), which are NTs receptors. NTs can act on TRPV1 increasing its sensitivity to painful stimuli, therefore predisposing to hyperalgesia. Upregulation of ion channels and pain receptors in dorsal root ganglion neurons may be alternative mechanisms by which NTs contribute to pain development. Only a few studies have been performed to investigate the role of NTs in migraine. These studies have reported changes in NTs levels in migraine patients either during the migraine attack or in free-headache periods. © 2017 Elsevier Inc. All rights reserved.
Trunk Dynamics Are Impaired in Ballet Dancers with Back Pain but Improve with Imagery.
Gildea, Jan E; VAN DEN Hoorn, Wolbert; Hides, Julie A; Hodges, Paul W
2015-08-01
Trunk control is essential in ballet and may be compromised in dancers with a history of low back pain (LBP) by associated changes in motor control. This study aimed to compare trunk mechanical properties between professional ballet dancers with and without a history of LBP. As a secondary aim, we assessed whether asking dancers to use motor imagery to respond in a "fluid" manner could change the mechanical properties of the trunk and whether this was possible for both groups. Trunk mechanical properties of stiffness and damping were estimated with a linear second-order system, from trunk movement in response to perturbations, in professional ballet dancers with (n = 22) and without (n = 8) a history of LBP. The second-order model adequately described trunk movement in response to the perturbations. Trials were performed with and without motor imagery to respond in a fluid manner to the perturbation. Dancers with a history of LBP had lower damping than dancers without LBP during the standard condition (P = 0.002) but had greater damping during the "fluid" condition (P < 0.001), with values similar to dancers without LBP (P = 0.226). Damping in the dancers without LBP was similar between the conditions (P > 0.99). Stiffness was not different between the dancers with and those without a history of LBP (P = 0.252) but was less during the fluid condition than the standard condition (P < 0.001). Although dancers with a history of LBP have less trunk damping than those without LBP, they have the capacity to modulate the trunk's mechanical properties to match that of pain-free dancers by increasing damping with motor imagery. These observations have potential relevance for LBP recurrence and rehabilitation.
An fMRI study measuring analgesia enhanced by religion as a belief system.
Wiech, Katja; Farias, Miguel; Kahane, Guy; Shackel, Nicholas; Tiede, Wiebke; Tracey, Irene
2008-10-15
Although religious belief is often claimed to help with physical ailments including pain, it is unclear what psychological and neural mechanisms underlie the influence of religious belief on pain. By analogy to other top-down processes of pain modulation we hypothesized that religious belief helps believers reinterpret the emotional significance of pain, leading to emotional detachment from it. Recent findings on emotion regulation support a role for the right ventrolateral prefrontal cortex (VLPFC), a region also important for driving top-down pain inhibitory circuits. Using functional magnetic resonance imaging in practicing Catholics and avowed atheists and agnostics during painful stimulation, here we show the existence of a context-dependent form of analgesia that was triggered by the presentation of an image with a religious content but not by the presentation of a non-religious image. As confirmed by behavioral data, contemplation of the religious image enabled the religious group to detach themselves from the experience of pain. Critically, this context-dependent modulation of pain specifically engaged the right VLPFC, whereas group-specific preferential liking of one of the pictures was associated with activation in the ventral midbrain. We suggest that religious belief might provide a framework that allows individuals to engage known pain-regulatory brain processes.
Buruck, Gabriele; Wendsche, Johannes; Melzer, Marlen; Strobel, Alexander; Dörfel, Denise
2014-01-01
Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test (TSST), an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one's emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior. PMID:24910626
Altered neural responses to heat pain in drug-naive patients with Parkinson disease.
Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike
2017-08-01
Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.
Hassan, Muhammad Abul; Fraser, Matthew; Conway, Bernard A; Allan, David B; Vuckovic, Aleksandra
2015-10-13
Central neuropathic pain has a prevalence of 40% in patients with spinal cord injury. Electroencephalography (EEG) studies showed that this type of pain has identifiable signatures, that could potentially be targeted by a neuromodulation therapy. The aim of the study was to investigate the putative mechanism of neurofeedback training on central neuropathic pain and its underlying brain signatures in patients with chronic paraplegia. Patients' EEG activity was modulated from the sensory-motor cortex, electrode location C3/Cz/C4/P4 in up to 40 training sessions Results. Six out of seven patients reported immediate reduction of pain during neurofeedback training. Best results were achieved with suppressing Ɵ and higher β (20-30 Hz) power and reinforcing α power at C4. Four patients reported clinically significant long-term reduction of pain (>30%) which lasted at least a month beyond the therapy. EEG during neurofeedback revealed a wide spread modulation of power in all three frequency bands accompanied with changes in the coherence most notable in the beta band. The standardized low resolution electromagnetic tomography analysis of EEG before and after neurofeedback therapy showed the statistically significant reduction of power in beta frequency band in all tested patients. Areas with reduced power included the Dorsolateral Prefrontal Cortex, the Anterior Cingulate Cortex and the Insular Cortex. Neurofeedback training produces both immediate and longer term reduction of central neuropathic pain that is accompanied with a measurable short and long term modulation of cortical activity. Controlled trials are required to confirm the efficacy of this neurofeedback protocol on treatment of pain. The study is a registered UKCRN clinical trial Nr 9824.
Dimov, Luiz Fabio; Toniolo, Elaine Flamia; Alonso-Matielo, Heloísa; de Andrade, Daniel Ciampi; Garcia-Larrea, Luis; Ballester, Gerson; Teixeira, Manoel Jacobsen; Dale, Camila Squarzoni
2018-07-02
Cortical electrical stimulation (CES) has shown to be an effective therapeutic alternative for neuropathic pain refractory to pharmacological treatment. The primary motor cortex(M1) was the main cortical target used in the vast majority of both invasive and non-invasive studies. Despite positive results M1-based approaches still fail to relieve pain in a significant proportion of individuals. It has been advocated that the direct stimulation of cortical areas directly implicated in the central integration of pain could increase the efficacy of analgesic brain stimulation. Here, we evaluated the behavioral effects of electrical stimulation of the insular cortex (ESI) on pain sensitivity in an experimental rat model of peripheral neuropathy, and have described the pathways involved. Animals underwent chronic constriction of the sciatic nerve in the right hind limb and had concentric electrodes implanted in the posterior dysranular insular cortex. Mechanical nociception responses were evaluated before and at the end of a 15-min session of ESI (60Hz, 210μs, 1V). ESI reversed mechanical hypersensitivity in the paw contralateral to the brain hemisphere stimulated, without inducing motor impairment in the open-field test. Pharmacological blockade of μ-opioid (MOR) or type 1-cannabinoid receptors (CB1R) abolished ESI-induced antinociceptive effects. Evaluation of CB1R and MOR spatial expression demonstrated differential modulation of CB1R and MOR in the periaqueductal gray matter (PAG) of ESI-treated rats in sub-areas involved in pain processing/modulation. These results indicate that ESI induces antinociception by functionally modulating opioid and cannabinoid systems in the PAG pain circuitry in rats with experimentally induced neuropathic pain. Copyright © 2017 Elsevier B.V. All rights reserved.
Mast cells in endometriosis: guilty or innocent bystanders?
Kirchhoff, Dennis; Kaulfuss, Stefan; Fuhrmann, Ulrike; Maurer, Marcus; Zollner, Thomas M
2012-03-01
Endometriosis (EMS) is a chronic, estrogen-dependent inflammatory disease characterized by growth of endometrial tissue outside the uterine cavity. Symptoms in EMS patients include severe pelvic pain, dysmenorrhea, dyspareunia and infertility. To date, medical therapies are mostly based on hormonal suppressive drugs that induce a hypoestrogenic state. Although being effective regarding the reduction of endometriotic tissue masses and pelvic pain, this treatment is accompanied by severe side effects. Since EMS is associated with chronic inflammation, novel therapeutic strategies also focus on immune modulating drugs. However, little is known about how and to what extent immune cell subsets contribute to the network of locally produced cytokines, chemokines and other mitogenic factors that modulate the growth of ectopic endometrial implants and the inflammation associated with them. Mast cells (MCs) are known to be key players of the immune system, especially during allergic reactions. However, in recent years MCs have been identified to exhibit a far broader range of functions and to be involved in host defense and wound healing responses. Here, recent reports that imply an involvement of MCs in EMS has been reviewed, while the value of novel mouse models for clarifying their contribution to the pathology of this condition has been discussed.
McNamara, Courtney L; Balaj, Mirza; Thomson, Katie H; Eikemo, Terje A; Solheim, Erling F; Bambra, Clare
2017-02-01
A range of non-communicable diseases (NCDs) has been found to follow a social pattern whereby socioeconomic status predicts either a higher or lower risk of disease. Comprehensive evidence on the socioeconomic distribution of NCDs across Europe, however, has been limited. Using cross-sectional 2014 European Social Survey data from 20 countries, this paper examines socioeconomic inequalities in 14 self-reported NCDs separately for women and men: heart/circulatory problems, high blood pressure, back pain, arm/hand pain, foot/leg pain, allergies, breathing problems, stomach/digestion problems, skin conditions, diabetes, severe headaches, cancer, obesity and depression. Using education to measure socioeconomic status, age-controlled adjusted risk ratios were calculated and separately compared a lower and medium education group with a high education group. At the pooled European level, a social gradient in health was observed for 10 NCDs: depression, diabetes, obesity, heart/circulation problems, hand/arm pain, high blood pressure, breathing problems, severe headaches, foot/leg pain and cancer. An inverse social gradient was observed for allergies. Social gradients were observed among both genders, but a greater number of inequalities were observed among women. Country-specific analyses show that inequalities in NCDs are present everywhere across Europe and that inequalities exist to different extents for each of the conditions. This study provides the most up-to-date overview of socioeconomic inequalities for a large number of NCDs across 20 European countries for both women and men. Future investigations should further consider the diseases, and their associated determinants, for which socioeconomic differences are the greatest. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Moore, R A; Derry, S; Wiffen, P J; Straube, S; Aldington, D J
2015-10-01
Ibuprofen and paracetamol have long been used as analgesics in a range of acute, intermittent and chronic pain conditions. Paracetamol is often the first line analgesic recommended, without consensus about which is the better analgesic. An overview review of systematic reviews and meta-analyses directly compares ibuprofen and paracetamol at standard doses in particular painful conditions, or uses indirect comparisons against placebo. Electronic searches for systematic reviews were sought published since 1995 using outcomes approximating to ≥50% pain intensity reduction. Painful conditions were acute post-operative pain, dysmenorrhoea, tension-type headache (TTH), migraine, osteoarthritis and rheumatoid arthritis, back pain, cancer and paediatric pain. There was no systematic assessment of harm. Sixteen systematic reviews and four individual patient data meta-analyses were included. Ibuprofen was consistently superior to paracetamol at conventional doses in a range of painful conditions. Two direct comparisons favoured ibuprofen (acute pain, osteoarthritis). Three of four indirect comparisons favoured ibuprofen (acute pain, migraine, osteoarthritis); one showed no difference (TTH), although there were methodological problems. In five pain conditions (dysmenorrhoea, paediatric pain, cancer pain, back pain and rheumatoid arthritis), there were limited data on paracetamol and ibuprofen. At standard doses in different painful conditions, ibuprofen was usually superior producing more patients with the degree of pain relief that patients feel worthwhile. Neither of the drugs will be effective for everyone, and both are needed. This overview questions the practice of routinely using paracetamol as a first line analgesic because there is no good evidence for efficacy of paracetamol in many pain conditions. © 2014 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFICC®.
Barry, Alison; O'Halloran, Ken D; McKenna, Joseph P; McCreary, Christine; Downer, Eric J
2018-02-01
Burning mouth syndrome (BMS) is a neuropathic orofacial pain condition of unknown aetiology that encompasses intra-oral burning pain without abnormal clinical findings. Psychological, neural and inflammatory processes are associated with BMS pathogenesis. Currently, studies characterising plasma cytokine/chemokine profiles with pain and depression in patients with BMS are lacking. Considering that inflammation is associated with the pathophysiology of BMS, and that inflammation is closely associated with pain and depression, we aimed to correlate depressive symptomatology and oral cavity pain with plasma cytokine/chemokine signatures in a cohort of patients with BMS. In this study, plasma protein levels of Th1 cytokines (IFN-γ, IL-2, IL-12p70, TNF-α), Th2 cytokines (IL-4, IL-10, IL-6, IL-13) and the chemokine IL-8 were assessed in patients with BMS (n = 10) and healthy volunteers (n = 10), using pro-inflammatory-10-plex assays. Clinical histories, alongside self-rated oral cavity pain intensities and depressive symptomatology were assessed using a visual analogue scale and the 16-item Quick Inventory of Depressive Symptomatology questionnaires, respectively. We present evidence that BMS is associated with increased depressive symptomatology and enhanced oral cavity pain. Plasma isolated from BMS patients display enhanced expression of the pro-inflammatory chemokine IL-8, when compared to plasma from healthy individuals. Plasma IL-8 signature correlates with pain and depressive symptomatology in the study cohort. Overall, these findings indicate that plasma IL-8 profiles are dysregulated in BMS and that modulation of IL-8 production in the disorder may be a tool in the management of BMS symptomatology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sofina, T.; Kamil, W. A.; Ahmad, A. H.
2014-11-01
The aims of this study are to image and investigate the areas of brain response to laser-induced heat pain, to analyse for any difference in the brain response when a subject is alone and when her loved one is present next to the MRI gantry. Pain stimuli was delivered using Th-YAG laser to four female subjects. Blood-Oxygenation-Level-Dependent (BOLD) fMRI experiment was performed using blocked design paradigm with five blocks of painful (P) stimuli and five blocks of non-painful (NP) stimuli arranged in pseudorandom order with an 18 seconds rest (R) between each stimulation phase. Brain images were obtained from 3T Philips Achieva MRI scanner using 32-channel SENSE head coil. A T1-weighted image (TR/TE/slice/FOV = 9ms/4ms/4mm slices/240×240mm) was obtained for verification of brain anatomical structures. An echo-planar-imaging sequence were used for the functional scans (TR/TE/slice/flip/FOV=2000ms/35ms/4mm slices/90°/220×220mm). fMRI data sets were analysed using SPM 8.0 involving preprocessing steps followed by t-contrast analysis for individuals and FFX analysis. In both with and without-loved-one conditions, neuronal responses were seen in the somatosensory gyrus, supramarginal gyrus, thalamus and insula regions, consistent with pain-related areas. FFX analysis showed that the presence of loved one produced more activation in the frontal and supramarginal gyrus during painful and non-painful stimulations compared to absence of a loved one. Brain response to pain is modulated by the presence of a loved one, causing more activation in the cognitive/emotional area i.e. 'love hurts'.
Bedini, Andrea; Spampinato, Santi Mario
2017-02-15
Chronic pain is a clinically relevant and yet unsolved conditions that is poorly treated with the currently available drugs, thus highlighting the urgent need of innovative analgesics. Although opiates are not very effective in the treatment of inflammatory and neuropathic pain, developing novel opioid receptor peptide agonists, as well as modulating the opioid receptor-mediated responses in a ligand-specific fashion, may represent an innovative and promising strategy to identify more efficacious and safer antalgic drugs. In this review, novel analogues of endomorphin 1 (a mu opioid receptor selective agonist able to induce analgesia in different animal models of pain - including neuropathic pain) and dermorphin (one of the most potent opioid peptide existing in nature) will be discussed as they are emerging as a promising starting point to develop novel opioid agonists: endomorphin 1 analogues, in fact, may determine antinociception in different models of neuropathic pain with reduced side effects as compared to classic opiates as morphine; dermorphin analogues may elicit analgesia in animal models of both inflammatory and neuropathic pain and with less severe adverse effects. Furthermore, such opioid peptides may allow to explore unprecedented modalities of ligand-receptor interactions, helping to characterize biased agonism at opioid receptors: exploiting functional selectivity at opioid receptor may lead to identify innovative analgesic with improved pharmacological responses and optimized side effects. Thus, innovative opioid peptides, as those outlined in this review, are promising candidates to develop more effective opioid analgesics to be employed as medications for chronic pain states, as inflammatory or neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Distinct Brain Mechanisms Support Spatial vs. Temporal Filtering of Nociceptive Information
Nahman-Averbuch, H.; Martucci, K.T.; Granovsky, Y.; Weissman-Fogel, I.; Yarnitsky, D.; Coghill, R. C.
2014-01-01
The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional MRI during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula and SII. OA produced reduced activity in SI, but was associated with greater activation in the anterior insula, dorso-lateral prefrontal cortex, intra-parietal sulcus, and inferior parietal lobule relative to CPM. In the brainstem, CPM consistently produced reductions in activity while OA produced increases in activity. Conjunction analysis confirmed that CPM related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs. temporal filtering of nociceptive information. PMID:25047783
Molecular Signatures of Chronic Pain Subtypes
2013-01-01
on August 4, 2011. Our project coordinator was in touch with Ms. Lesnow on December 21. We were asked to provide a breakdown of costs for the...49]. A few candidate gene polymorphisms have been linked to pain susceptibility, including catechol-O-methyltranferase ( COMT ). This gene modulates...nociceptive and inflammatory pain and has been linked to temporomandibular joint pain syndromes [50]. Even studies of COMT , however, have demonstrated
Vieira, Graziela; Cavalli, Juliana; Gonçalves, Elaine C. D.; Gonçalves, Tainara R.; Laurindo, Larissa R.; Cola, Maíra; Dutra, Rafael C.
2017-01-01
Simvastatin is a lipid-lowering agent that blocks the production of cholesterol through inhibition of 3-hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase. In addition, recent evidence has suggested its anti-inflammatory and antinociceptive actions during inflammatory and pain disorders. Herein, we investigated the effects of simvastatin in an animal model of complex regional pain syndrome-type I, and its underlying mechanisms. Chronic post-ischemia pain (CPIP) was induced by ischemia and reperfusion (IR) injury of the left hind paw. Our findings showed that simvastatin inhibited mechanical hyperalgesia induced by CPIP model in single and repeated treatment schedules, respectively; however simvastatin did not alter inflammatory signs during CPIP model. The mechanisms underlying those actions are related to modulation of transient receptor potential (TRP) channels, especially TRMP8. Moreover, simvastatin oral treatment was able to reduce the nociception induced by acidified saline [an acid-sensing ion channels (ASICs) activator] and bradykinin (BK) stimulus, but not by TRPA1, TRPV1 or prostaglandin-E2 (PGE2). Relevantly, the antinociceptive effects of simvastatin did not seem to be associated with modulation of the descending pain circuits, especially noradrenergic, serotoninergic and dopaminergic systems. These results indicate that simvastatin consistently inhibits mechanical hyperalgesia during neuropathic and inflammatory disorders, possibly by modulating the ascending pain signaling (TRPM8/ASIC/BK pathways expressed in the primary sensory neuron). Thus, simvastatin open-up new standpoint in the development of innovative analgesic drugs for treatment of persistent pain, including CRPS-I. PMID:28928655
Graven-Nielsen, T; Svensson, P; Arendt-Nielsen, L
1997-04-01
The relation between muscle pain, muscle activity, and muscle co-ordination is still controversial. The present human study investigates the influence of experimental muscle pain on resting, static, and dynamic muscle activity. In the resting and static experiments, the electromyography (EMG) activity and the contraction force of m. tibialis anterior were assessed before and after injection of 0.5 ml hypertonic saline (5%) into the same muscle. In the dynamic experiment, injections of 0.5 ml hypertonic saline (5%) were performed into either m. tibialis anterior (TA) or m. gastrocnemius (GA) and the muscle activity and co-ordination were investigated during gait on a treadmill by EMG recordings from m. TA and m. GA. At rest no evidence of EMG hyperactivity was found during muscle pain. The maximal voluntary contraction (MVC) during muscle pain was significantly lower than the control condition (P < 0.05). During a static contraction at 80% of the pre-pain MVC muscle pain caused a significant reduction in endurance time (P < 0.043). During dynamic contractions, muscle pain resulted in a significant decrease of the EMG activity in the muscle, agonistic to the painful muscle (P < 0.05), and a significant increase of the EMG activity of the muscle, antagonistic to the painful muscle (P < 0.05). Muscle pain seems to cause a general protection of painful muscles during both static and dynamic contractions. The increased EMG activity of the muscle antagonistic to the painful muscle is probably a functional adaptation of muscle co-ordination in order to limit movements. Modulation of muscle activity by muscle pain could be controlled via inhibition of muscles agonistic to the movement and/or excitation of muscles antagonistic to the movement. The present results are in accordance with the pain-adaptation model (Lund, J.P., Stohler, C.S. and Widmer, C.G. In: H. Vaerøy and H. Merskey (Eds.), Progress in Fibromyalgia and Myofascial Pain. Elsevier, Amsterdam, 1993, pp. 311-327.) which predicts increased activity of antagonistic muscle and decreased activity of agonistic muscle during experimental and clinical muscle pain.
Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin
Greenwood-Van Meerveld, Beverley; Johnson, Anthony C.
2017-01-01
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing. PMID:29213232
Functional Results in Arthroscopic Treatment in Patients with Chronic Lateral Elbow Pain.
Phorkhar, Termphong; Chanlalit, Cholawish
2015-11-01
Modern surgery as elbow arthroscopic surgery is an accepted operation due to benefit in precise intra-articular lesion detection and minimally invasive surgery. To report the functional results when using arthroscopic surgery to treat chronic lateral elbow pain. The data was collected from 25 patients with chronic lateral elbow pain that failed in non-operative treatment and treated with elbow arthroscopic surgery. Five patients were excluded from this study due to diagnosed as instability that needed the ligament reconstruction. The etiology of pain were grouped in to tennis elbow (4 pts), plica (9 pts), tennis elbow combined with plica (4 pts) and cartilage lesion (3 pts). Thai quick DASH questionnaire was used to evaluate the functional results by comparing pre and post operation score and calculated statistic results with paired t-test by level of significance p < 0.05. The mean follow-up after surgery was 22 months by mean disability module pre and post-operative score is 68 and 18 respectively. In the occupation module was 74 and 25 respectively and in sports module was 81 and 17 respectively. All modules, scores was significant improved with p-value = 0.000, 0.000 and 0.004 respectively. The disability mean score in pre and post-operative along the diagnosis, tennis elbow mean score was 74 and 33, in plica lesion mean score was 65 and 11, combined lesions mean score was 60 and 18 and cartilage lesion mean score was 60 and 20. Approaching chronic lateral elbow pain with arthroscopy can maintain the signficant improvement of functional result in midterm follow-up.
Parabrachial complex links pain transmission to descending pain modulation.
Roeder, Zachary; Chen, QiLiang; Davis, Sophia; Carlson, Jonathan D; Tupone, Domenico; Heinricher, Mary M
2016-12-01
The rostral ventromedial medulla (RVM) has a well-documented role in pain modulation and exerts antinociceptive and pronociceptive influences mediated by 2 distinct classes of neurons, OFF-cells and ON-cells. OFF-cells are defined by a sudden pause in firing in response to nociceptive inputs, whereas ON-cells are characterized by a "burst" of activity. Although these reflex-related changes in ON- and OFF-cell firing are critical to their pain-modulating function, the pathways mediating these responses have not been identified. The present experiments were designed to test the hypothesis that nociceptive input to the RVM is relayed through the parabrachial complex (PB). In electrophysiological studies, ON- and OFF-cells were recorded in the RVM of lightly anesthetized male rats before and after an infusion of lidocaine or muscimol into PB. The ON-cell burst and OFF-cell pause evoked by noxious heat or mechanical probing were substantially attenuated by inactivation of the lateral, but not medial, parabrachial area. Retrograde tracing studies showed that neurons projecting to the RVM were scattered throughout PB. Few of these neurons expressed calcitonin gene-related peptide, suggesting that the RVM projection from PB is distinct from that to the amygdala. These data show that a substantial component of "bottom-up" nociceptive drive to RVM pain-modulating neurons is relayed through the PB. While the PB is well known as an important relay for ascending nociceptive information, its functional connection with the RVM allows the spinoparabrachial pathway to access descending control systems as part of a recurrent circuit.
Pathophysiological links between traumatic brain injury and post-traumatic headaches
Ruff, Robert L.; Blake, Kayla
2016-01-01
This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD. PMID:27635228
Armour, Mike; Smith, Caroline A; Schabrun, Siobhan; Steiner, Genevieve Z; Zhu, Xiaoshu; Lawson, Kenny; Song, Jing
2018-01-01
Endometriosis is the most common cause of chronic pelvic pain worldwide. Non-surgical treatments are effective for only 30-50% of women and have a significant side effect burden that leads to high discontinuation rates. Surgery can be effective but is expensive and invasive, and symptoms tend to recur within 5 years. There is early evidence that acupuncture may be effective in treating endometriosis-related chronic pelvic pain, showing clinically significant analgesia. Both levels of inflammation and pain processing have been shown to be altered in women with chronic pelvic pain. Acupuncture has been shown to reduce inflammation and change central pain processing in other conditions, but research on women with endometriosis is currently lacking. The aim of this feasibility study is to provide data on recruitment rates, retention, appropriateness of outcome measures, minimal clinically important difference in numeric rated scales for pain and the potential effect of acupuncture on pain processing and markers of inflammation in endometriosis-related CPP. We will include women aged 18-45 years with a diagnosis of endometriosis via laparoscopy in the past 5 years. A total of 30 participants will be recruited and randomly allocated in a 1:1 ratio to receive acupuncture or usual care. Women in the acupuncture group will receive two 45-min treatment sessions per week for 8 weeks (total of 16 sessions). Women in the usual care group will continue with their current treatment regimen. The primary feasibility outcomes are recruitment rates, retention rates and the safety and acceptability of the intervention; secondary patient-centred outcomes include a change in 0-10 daily pelvic pain ratings, the Endometriosis Health Profile 30 (EHP-30) and changes in conditioned pain modulation, resting and task-related EEG activity and inflammatory markers. Analyses will be performed blind to group allocation. This is a two-armed, assessor blind, randomised controlled feasibility trial. Data will be compared at baseline and trial completion 8 weeks later. Outcomes from this feasibility study will inform a larger, fully powered clinical trial should the treatment show trends for potential effectiveness. Australian New Zealand Clinical Trials Registry, ACTRN12617000053325 (http://www.ANZCTR.org.au/ACTRN12617000053325.aspx).
Trompetter, Hester R.; Bohlmeijer, Ernst T.; Lamers, Sanne M. A.; Schreurs, Karlein M. G.
2016-01-01
The web-based delivery of psychosocial interventions is a promising treatment modality for people suffering from chronic pain, and other forms of physical and mental illness. Despite the promising findings of first studies, patients may vary in the benefits they draw from self-managing a full-blown web-based psychosocial treatment. We lack knowledge on moderators and predictors of change during web-based interventions that explain for whom web-based interventions are especially (in)effective. In this study, we primarily explored for which chronic pain patients web-based Acceptance and Commitment Therapy (ACT) was (in)effective during a large three-armed randomized controlled trial. Besides standard demographic, physical and psychosocial factors we focused on positive mental health. Data from 238 heterogeneously diagnosed chronic pain sufferers from the general Dutch population following either web-based ACT (n = 82), or one of two control conditions [web-based Expressive Writing (EW; n = 79) and Waiting List (WL; n = 77)] were analysed. ACT and EW both consisted of nine modules and lasted nine to 12 weeks. Exploratory linear regression analyses were performed using the PROCESS macro in SPSS. Pain interference at 3-month follow-up was predicted from baseline moderator (characteristics that influence the outcome of specific treatments in comparison to other treatments) and predictor (characteristics that influence outcome regardless of treatment) variables. The results showed that none of the demographic or physical characteristics moderated ACT treatment changes compared to both control conditions. The only significant moderator of change compared to both EW and WL was baseline psychological wellbeing, and pain intensity was a moderator of change compared to EW. Furthermore, higher pain interference, depression and anxiety, and also lower levels of emotional well-being predicted higher pain interference in daily life 6 months later. These results suggest that web-based self-help ACT may not be allocated to chronic pain sufferers experiencing low levels of mental resilience resources such as self-acceptance, goals in life, and environmental mastery. Other subgroups are identified that potentially need specific tailoring of (web-based) ACT. Emotional and psychological wellbeing should receive much more attention in subsequent studies on chronic pain and illness. PMID:27014159
Brain mediators of predictive cue effects on perceived pain
Atlas, Lauren Y.; Bolger, Niall; Lindquist, Martin A.; Wager, Tor D.
2010-01-01
Information about upcoming pain strongly influences pain experience in experimental and clinical settings, but little is known about the brain mechanisms that link expectation and experience. To identify the pathways by which informational cues influence perception, analyses must jointly consider both the effects of cues on brain responses and the relationship between brain responses and changes in reported experience. Our task and analysis strategy were designed to test these relationships. Auditory cues elicited expectations for low or high painful thermal stimulation, and we assessed how cues influenced human subjects’ pain reports and BOLD fMRI responses to matched levels of noxious heat. We used multi-level mediation analysis to identify brain regions that 1) are modulated by predictive cues, 2) predict trial-to-trial variations in pain reports, and 3) formally mediate the relationship between cues and reported pain. Cues influenced heat-evoked responses in most canonical pain-processing regions, including both medial and lateral pain pathways. Effects on several regions correlated with pre-task expectations, suggesting that expectancy plays a prominent role. A subset of pain-processing regions, including anterior cingulate cortex, anterior insula, and thalamus, formally mediated cue effects on pain. Effects on these regions were in turn mediated by cue-evoked anticipatory activity in the medial orbitofrontal cortex (OFC) and ventral striatum, areas not previously directly implicated in nociception. These results suggest that activity in pain-processing regions reflects a combination of nociceptive input and top-down information related to expectations, and that anticipatory processes in OFC and striatum may play a key role in modulating pain processing. PMID:20881115
The effect of acupuncture needle combination on central pain processing-an fMRI study
2014-01-01
Background Empirical acupuncture treatment paradigm for acute pain utilizing Tendinomuscular Meridians (TMM) calls for the stimulation of Ting Points (TPs) and Gathering point(GP). This study aims to compare the supraspinal neuronal mechanisms associated with both TPs and GP needling (EA3), and TPs needling alone (EA2) with fMRI. Results A significant (P < 0.01) difference between pre-scan (heat Pain) HP, and post-EA HP VAS scores in both paradigms was noted (n = 11). The post-EA HP VAS score was significantly (P < 0.05) lower with EA3 comparing to EA2 Within-group random effect analysis indicated that EA3+HP>EA3 (condition EA3+HP subtracted by condition EA3) appeared to exert a significant degree of activity suppression in the affective supraspinal regions including the IPL, anterior cingulate cortex (ACC) and the insular cortex (IN). This level of suppression was not observed in the EA2+HP>EA2 (condition EA2+HP subtracted by condition EA2) within-group random effect analysis Between-group random effect analysis indicated that EA3 induced a significantly (P < 0.01, cluster size threshold 150) higher degree of deactivation than EA2 in several pain related supraspinal regions including the right prefrontal cortex, rostral anterior cingulate (rACC), medial cingulate cortex, left inferior frontal lobe and posterior cerebellum. The 2-factor ANOVA in those regions indicated both rACC and posterior cerebellum had a significant (P < 0.01) needle effect, and the right prefrontal area showed a significant (P < 0.01) HP effect. However, a significant interaction between the two factors was only found in the right prefrontal lobe. Granger causality analysis showed EA3 induced a much higher degree of inference among HP related supraspinal somatosensory, affective and modulatory components than EA2. Deactivation pattern at the medullary-pontine area casted a direct inference on the deactivation pattern of secondary somatosensory cortices which also affected the deactivation of the IN. Conclusions While both EA2 and EA3 induced a significant degree of deactivation in the human brain regions related to pain processing, the addition of GP stimulation further exerts an inhibitory effect on the ascending spinoreticular pain pathway. Therefore, different needling position as mandated in different empirical acupuncture treatment paradigms may play a different role in modulating pain related neuronal functions. PMID:24667015
The Effects of Yin, Yang and Qi in the Skin on Pain.
Adams, James David
2016-01-29
The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients.
The Effects of Yin, Yang and Qi in the Skin on Pain
Adams, James David
2016-01-01
The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients. PMID:28930115
Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex.
Jasmin, Luc; Rabkin, Samuel D; Granato, Alberto; Boudah, Abdennacer; Ohara, Peter T
2003-07-17
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.
Painful Medical Conditions and Alcohol Use: A Prospective Study Among Older Adults
Brennan, Penny L.; Schutte, Kathleen K.; SooHoo, Sonya; Moos, Rudolf H.
2011-01-01
Objective To determine associations between older adults’ baseline painful medical conditions and their 10-year drinking behavior, and whether personal and life context characteristics moderate these associations. Method At baseline, then 1, 4, and 10 years later, late-middle-aged community residents (M=61 years; n=1,291) were surveyed regarding their painful medical conditions, use of alcohol, and personal and life context characteristics. Latent growth modeling was used to determine concurrent and prospective relationships between painful medical conditions and 10-year drinking behavior, and moderating effects of personal and life context characteristics on these relationships. Results At baseline, individuals reporting more numerous painful medical conditions consumed alcohol less frequently, but had more frequent drinking problems, than did individuals with fewer such conditions. Being female and having more interpersonal social resources strengthened the association between painful medical conditions and less ethanol consumed. For men more so than women, more numerous painful medical conditions were associated with more frequent drinking problems. Baseline painful medical conditions alone had no prospective effect on 10-year change in drinking behavior, but being older and having more interpersonal social resources made it more likely that baseline painful medical conditions would predict decline over time in frequency of alcohol consumption and drinking problems. Conclusions Late-middle-aged individuals who have more numerous painful medical conditions reduce alcohol consumption but nonetheless remain at risk for more frequent drinking problems. Gender, age, and interpersonal social resources moderate the influence of painful medical conditions on late-life alcohol use. These results imply that older individuals with pain are at little immediate or long-term risk for increased alcohol consumption, but clinicians should remain alert to drinking problems among their older pain patients, especially men. PMID:21668742
Shimoji, Koki; Takahashi, Norio; Nishio, Yasuyuki; Koyanagi, Mika; Aida, Sumihisa
2007-01-01
Objectives. Newly developed bidirectional modulated sine waves (BMW) might provide some derived benefit to patients with low back pain. Pain relief by transcutaneous electric nerve stimulation (TENS) with BMWs was tested. Materials and Methods. Analgesic effects of BMWs and conventional bidirectional pulsed waves on chronic back pain in 28 patients were compared, and effects of repeated TENS using BMWs on chronic back pain were investigated in 21 patients by means of a randomized double-blind, sham-controlled, parallel-group method. Pain intensity was assessed using numerical rating scale (NRS). Results. There was significant immediate reduction in NRS in patients receiving BMWs, and 60 min after treatment compared to sham TENS. Weekly repeated treatments using massage and TENS with BMWs for 5 weeks resulted in a decrease of NRS, but there were no significant differences between the TENS plus massage and sham TENS plus massage groups. Conclusions. This study shows that TENS with BMWs significantly inhibits chronic back pain, and treatment effects are attained within a day. The results also suggest that there were no statistically significant long-term effects of TENS with BMW in the repeated treatment.
Too Hard to Control: Compromised Pain Anticipation and Modulation in Mild Traumatic Brain Injury
2014-01-07
modulation) will be able to answer these questions. In a related prior study, quantitative sensory testing was conducted in moderate to severe TBI and...found significant loss of thermal and touch sensibility compared with healthy con- trols.67 Although detailed quantitative sensory testing was not...IA. Pain and post traumatic stress disorder ‚Äì Review of clinical and experimental evidence. Neuropharmacology 2012; 62: 586–597. 36 First MB, Spitzer
McNamara, Courtney L; Balaj, Mirza; Thomson, Katie H; Eikemo, Terje A; Bambra, Clare
2017-02-01
Social gradients have been found across European populations, where less affluent groups are more often affected by poor housing and neighbourhood conditions. While poor housing and neighbourhood quality have been associated with a range of non-communicable diseases (NCDs), these conditions have rarely been applied to the examination of socioeconomic differences in NCDs. This study therefore asks ‘to what extent does adjusting for poor housing and neighbourhood conditions reduce inequalities in NCDs among men and women in Europe’? Our analysis used pooled-data from 20 European countries for women (n= 12 794) and men (n= 11 974), aged 25–75, from round 7 of the European Social Survey. Fourteen NCDs were investigated: heart/circulatory problems, high blood pressure, back pain, arm/hand pain, foot/leg pain, allergies, breathing problems, stomach/digestion problems, skin conditions, diabetes, severe headaches, cancer, obesity and depression. We used binary logistic regression models, stratified by gender, and adjusted rate ratios to examine whether educational inequalities in NCDs were reduced after controlling for poor housing and neighbourhood quality. Overall, we find that adjusting for poor housing and neighbourhood quality reduces inequalities in NCDs. While reductions were relatively small for some NCDs–for high blood pressure, reductions were found in the range of 0–4.27% among women—for other conditions reductions were more considerable. Controlling for both housing and neighbourhood conditions for example, reduced inequalities by 16–24% for severe headaches and 14–30% for breathing problems. Social gradients in poor housing and neighbourhood quality could be an important contributor to educational inequalities in some NCDs. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Decreased Empathic Responses to the ‘Lucky Guy’ in Love: The Effect of Intrasexual Competition
Zheng, Li; Wei, Chunli; Xu, Jialin; Wang, Qianfeng; Zhu, Lei; Roberts, Ian D.; Guo, Xiuyan
2016-01-01
People have a greater desire to date highly attractive partners, which induces intrasexual competition between same-sex individuals. The present study used functional magnetic resonance imaging to explore whether and how intrasexual competition modulates pain empathy for a same-sex rival and the underlying neural mechanism. Participants were scanned while processing the pain of a same-sex ‘lucky guy’ who had an attractive partner and one with a plain partner. The results revealed that participants reported lower pain intensity for the lucky guy. Neurally, reduced pain-related activations in anterior insula and anterior mid-cingulate cortex and increased activations in right superior frontal gyrus (SFG) and medial prefrontal gyrus (MPFC) were found for the lucky guy compared to the one with a plain partner. Right SFG and MPFC activations could predict participants’ subsequent pain intensity ratings for the lucky guy. These findings suggest intrasexual competition can modulate normal empathic responses. PMID:27242579
Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.
Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F
2014-11-01
Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.
Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A
2014-01-01
Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS, no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and movement, pressure pain thresholds (PPTs), 6 minute walk test (6MWT), range of motion (ROM), five time sit to stand test (FTSTS), and single leg stance (SLS). Conditioned pain modulation (CPM) was completed at end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. PPTs increased at site of TENS (spine) and outside site of TENS (leg) when compared to placebo TENS or no TENS. During Active TENS CPM was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to how TENS is used clinically, on pain, fatigue, function and quality of life in individuals with fibromyalgia. PMID:23900134
Duloxetine reduces morphine requirements after knee replacement surgery.
Ho, K-Y; Tay, W; Yeo, M-C; Liu, H; Yeo, S-J; Chia, S-L; Lo, N-N
2010-09-01
Multimodal analgesia is advocated for perioperative pain management to reduce opioid use and its associated adverse effects. Serotonin and norepinephrine are involved in the modulation of endogenous analgesic mechanisms via descending inhibitory pain pathways in the brain and spinal cord. An increase in serotonin and norepinephrine may increase inhibition of nociceptive input and improve pain relief. Duloxetine, a selective serotonin and norepinephrine reuptake inhibitor, has demonstrated efficacy in chronic pain conditions such as painful diabetic neuropathy and post-herpetic neuralgia. The objective of the study was to evaluate the efficacy of duloxetine in reducing morphine requirements in patients after knee replacement surgery. Fifty patients received either two doses of oral duloxetine 60 mg (2 h before surgery and on first postoperative day) or placebo. All patients received patient-controlled analgesia with morphine for 48 h after operation. Pain and adverse effects were assessed at 0.5, 1, 2, 6, 12, 24, and 48 h after surgery on an 11-point numeric rating scale. Twenty-three patients in the duloxetine group and 24 patients in the placebo group completed the study. Morphine requirements during the 48 h after surgery were significantly lower in the duloxetine group [19.5 mg, standard deviation (sd) 14.5 mg] compared with the placebo group (30.3 mg, sd 18.1 mg) (P=0.017). There were no statistically significant differences between the groups in pain scores (at rest and on movement) or in adverse effects. Perioperative administration of duloxetine reduced postoperative morphine requirements during the first 48 h after knee replacement surgery, without significant adverse effects.
Brain network alterations in the inflammatory soup animal model of migraine.
Becerra, Lino; Bishop, James; Barmettler, Gabi; Kainz, Vanessa; Burstein, Rami; Borsook, David
2017-04-01
Advances in our understanding of the human pain experience have shifted much of the focus of pain research from the periphery to the brain. Current hypotheses suggest that the progression of migraine depends on abnormal functioning of neurons in multiple brain regions. Accordingly, we sought to capture functional brain changes induced by the application of an inflammatory cocktail known as inflammatory soup (IS), to the dura mater across multiple brain networks. Specifically, we aimed to determine whether IS alters additional neural networks indirectly related to the primary nociceptive pathways via the spinal cord to the thalamus and cortex. IS comprises an acidic combination of bradykinin, serotonin, histamine and prostaglandin PGE2 and was introduced to basic pain research as a tool to activate and sensitize peripheral nociceptors when studying pathological pain conditions associated with allodynia and hyperalgesia. Using this model of intracranial pain, we found that dural application of IS in awake, fully conscious, rats enhanced thalamic, hypothalamic, hippocampal and somatosensory cortex responses to mechanical stimulation of the face (compared to sham synthetic interstitial fluid administration). Furthermore, resting state MRI data revealed altered functional connectivity in a number of networks previously identified in clinical chronic pain populations. These included the default mode, sensorimotor, interoceptive (Salience) and autonomic networks. The findings suggest that activation and sensitization of meningeal nociceptors by IS can enhance the extent to which the brain processes nociceptive signaling, define new level of modulation of affective and cognitive responses to pain; set new tone for hypothalamic regulation of autonomic outflow to the cranium; and change cerebellar functions. Copyright © 2017. Published by Elsevier B.V.
Brain network alterations in the inflammatory soup animal model of migraine
Becerra, Lino; Bishop, James; Barmettler, Gabi; Kainz, Vanessa; Burstein, Rami; Borsook, David
2017-01-01
Advances in our understanding of the human pain experience have shifted much of the focus of pain research from the periphery to the brain. Current hypotheses suggest that the progression of migraine depends on abnormal functioning of neurons in multiple brain regions. Accordingly, we sought to capture functional brain changes induced by the application of an inflammatory cocktail known as inflammatory soup (IS), to the dura mater across multiple brain networks. Specifically, we aimed to determine whether IS alters additional neural networks indirectly related to the primary nociceptive pathways via the spinal cord to the thalamus and cortex. IS comprises an acidic combination of bradykinin, serotonin, histamine and prostaglandin PGE2 and was introduced to basic pain research as a tool to activate and sensitize peripheral nociceptors when studying pathological pain conditions associated with allodynia and hyperalgesia. Using this model of intracranial pain, we found that dural application of IS in awake, fully conscious, rats enhanced thalamic, hypothalamic, hippocampal and somatosensory cortex responses to mechanical stimulation of the face (compared to sham synthetic interstitial fluid administration). Furthermore, resting state MRI data revealed altered functional connectivity in a number of networks previously identified in clinical chronic pain populations. These included the default mode, sensorimotor, interoceptive (Salience) and autonomic networks. The findings suggest that activation and sensitization of meningeal nociceptors by IS can enhance the extent to which the brain processes nociceptive signaling, define new level of modulation of affective and cognitive responses to pain; set new tone for hypothalamic regulation of autonomic outflow to the cranium; and change cerebellar functions. PMID:28167076
Mercadíe, Lolita; Mick, Gérard; Guétin, Stéphane; Bigand, Emmanuel
2015-10-01
In fibromyalgia, pain symptoms such as hyperalgesia and allodynia are associated with fatigue. Mechanisms underlying such symptoms can be modulated by listening to pleasant music. We expected that listening to music, because of its emotional impact, would have a greater modulating effect on the perception of pain and fatigue in patients with fibromyalgia than listening to nonmusical sounds. To investigate this hypothesis, we carried out a 4-week study in which patients with fibromyalgia listened to either preselected musical pieces or environmental sounds when they experienced pain in active (while carrying out a physical activity) or passive (at rest) situations. Concomitant changes of pain and fatigue levels were evaluated. When patients listened to music or environmental sounds at rest, pain and fatigue levels were significantly reduced after 20 minutes of listening, with no difference of effect magnitude between the two stimuli. This improvement persisted 10 minutes after the end of the listening session. In active situations, pain did not increase in presence of the two stimuli. Contrary to our expectations, music and environmental sounds produced a similar relieving effect on pain and fatigue, with no benefit gained by listening to pleasant music over environmental sounds. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
Emotion intensity modulates perspective taking in men and women: an event-related potential study.
Luo, Pinchao; Xu, Danna; Huang, Fengjuan; Wei, Fang
2018-06-13
When empathizing with another individual, one can imagine the individual's emotional states and how he or she perceives a situation. However, it is not known to what extent imagining the other differs from imagining oneself under different emotional intensity situations in both sexes. The present study investigated the regulatory effect of emotional intensity on perspective taking in men and women by event-related potentials. The participants were shown pictures of individuals in highly negative (HN), moderately negative, and neutral situations, and instructed to imagine the degree of pain perceived from either a self-perspective or an other-perspective. The results showed that there was no N2 differentiation between the self-perspective and other-perspective under all conditions. Nor was there late positive potential differentiation under moderately negative and neutral conditions in either sex. In contrast, late positive potential induced by HN pictures under the self-perspective was significantly larger than that under the other-perspective only in women. These results suggested that women tended to overestimate the pain of HN stimuli from a self-perspective than from an other-perspective.
Phillips, Jane L; Heneka, Nicole; Hickman, Louise; Lam, Lawrence; Shaw, Tim
2014-06-01
Pain is a complex multidimensional phenomenon moderated by consumer, provider and health system factors. Effective pain management cuts across professional boundaries, with failure to screen and assess contributing to the burden of unrelieved pain. To test the impact of an online pain assessment learning module on specialist palliative care nurses' pain assessment competencies, and to determine whether this education impacted positively on palliative care patients' reported pain ratings. A quasi-experimental pain assessment education pilot study utilising 'Qstream © ', an online methodology to deliver 11 case-based pain assessment learning scenarios, developed by an interdisciplinary expert panel and delivered to participants' work emails over a 28-day period in mid-2012. The 'Self-Perceived Pain Assessment Competencies' survey and chart audit data, including patient-reported pain intensity ratings, were collected pre-intervention (T1) and post-intervention (T2) and analysed using inferential statistics to determine key outcomes. Nurses working at two Australian inpatient specialist palliative care services in 2012. The results reported conform to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Guidelines. Participants who completed the education intervention ( n = 34) increased their pain assessment knowledge, assessment tool knowledge and confidence to undertake a pain assessment ( p < 0.001). Participants were more likely to document pain intensity scores in patients' medical records than non-participants (95% confidence interval = 7.3%-22.7%, p = 0.021). There was also a significant reduction in the mean patient-reported pain ratings between the admission and audit date at post-test of 1.5 (95% confidence interval = 0.7-2.3) units in pain score. This pilot confers confidence of the education interventions capacity to improve specialist palliative care nurses' pain assessment practices and to reduce patient-rated pain intensity scores.
Imaging drugs with and without clinical analgesic efficacy.
Upadhyay, Jaymin; Anderson, Julie; Schwarz, Adam J; Coimbra, Alexandre; Baumgartner, Richard; Pendse, G; George, Edward; Nutile, Lauren; Wallin, Diana; Bishop, James; Neni, Saujanya; Maier, Gary; Iyengar, Smriti; Evelhoch, Jeffery L; Bleakman, David; Hargreaves, Richard; Becerra, Lino; Borsook, David
2011-12-01
The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK(1) receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts.
Imaging Drugs with and without Clinical Analgesic Efficacy
Upadhyay, Jaymin; Anderson, Julie; Schwarz, Adam J; Coimbra, Alexandre; Baumgartner, Richard; Pendse, G; George, Edward; Nutile, Lauren; Wallin, Diana; Bishop, James; Neni, Saujanya; Maier, Gary; Iyengar, Smriti; Evelhoch, Jeffery L; Bleakman, David; Hargreaves, Richard; Becerra, Lino; Borsook, David
2011-01-01
The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK1 receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts. PMID:21849979
Sensory neuronal sensitisation occurs through HMGB-1/ RAGE and TRPV1 in high glucose conditions.
Bestall, S M; Hulse, R P; Blackley, Z; Swift, M; Ved, N; Paton, K; Beazley-Long, N; Bates, D O; Donaldson, L F
2018-06-21
Many potential causes for painful diabetic neuropathy have been proposed including actions of cytokines and growth factors. High mobility group protein B1 (HMGB1) is a RAGE agonist, increased in diabetes, that contributes to pain by modulating peripheral inflammatory responses. HMGB1 enhances nociceptive behaviour in naïve animals through an unknown mechanism. We tested the hypothesis that HMGB1 causes pain through direct neuronal activation of RAGE and alteration of nociceptive neuronal responsiveness.HMGB1 and RAGE expression were increased in skin and primary sensory (DRG) neurons of diabetic rats at times when pain behaviour was enhanced. Agonist-evoked TRPV1-mediated calcium responses increased in cultured DRG neurons from diabetic rats and in neurons from naïve rats exposed to high glucose concentrations. HMGB1-mediated increases in TRPV1-evoked calcium responses in DRG neurons were RAGE and PKC-dependent, and this was blocked by co-administration of the growth factor splice variant, VEGF-A 165 b. Pain behaviour and DRG RAGE expression increases were blocked by VEGF-A 165 b treatment of diabetic rats in vivo HMGB-1-RAGE activation sensitizes DRG neurons in vitro VEGF-A 165 b blocks HMGB-1/RAGE DRG activation, which may contribute to its analgesic properties in vivo . © 2018. Published by The Company of Biologists Ltd.
Bisphosphonates in Complex Regional Pain syndrome type I: how do they work?
Varenna, Massimo; Adami, Silvano; Sinigaglia, Luigi
2014-01-01
Complex Regional Pain syndrome type I (CRPS-I) is a disease characterised by extreme pain for which no gold-standard treatment exists to date. In recent years a possible role for bisphosphonates in the treatment of CRPS-I has been proposed. These drugs were first used for their effect in decreasing pain in bone diseases in which bisphosphonates act through their antiosteoclastic properties (metastatic disease, Paget disease, myeloma). In CRPS-I, enhanced osteoclastic activity has never clearly been demonstrated and the benefit shown is possibly exerted by different mechanisms of action. In this paper we review other conjectural mechanisms involved in reducing pain intensity and improving clinical signs and functional status in these patients. The results of most studies on this topic show that bisphosphonates may be effective in the early phases of the disease, when scintigraphic bone scan more frequently shows a local radiotracer accumulation that possibly means a high local concentration of the drug. These features probably represent the required conditions by which bisphosphonates might modulate various inflammatory mediators that are upregulated in CRPS-I. Patients in whom a scintiscan is often negative (long-standing disease or a primarily cold disease) could be less responsive to this treatment. With these limitations, bisphosphonates appear to present a therapeutic strategy that has been proven to reliably offer benefits in patients with CRPS-I.
Vera-Portocarrero, Louis P; Cordero, Toni; Billstrom, Tina; Swearingen, Kim; Wacnik, Paul W; Johanek, Lisa M
2013-01-01
Electrical stimulation has been used for many years for the treatment of pain. Present-day research demonstrates that stimulation targets and parameters impact the induction of specific pain-modulating mechanisms. New targets are increasingly being investigated clinically, but the scientific rationale for a particular target is often not well established. This present study compares the behavioral effects of targeting peripheral axons by electrode placement in the subcutaneous space vs. electrode placement on the surface of the skin in a rodent model. Rodent models of inflammatory and neuropathic pain were used to investigate subcutaneous electrical stimulation (SQS) vs. transcutaneous electrical nerve stimulation (TENS). Electrical parameters and relative location of the leads were held constant under each condition. SQS had cumulative antihypersensitivity effects in both inflammatory and neuropathic pain rodent models, with significant inhibition of mechanical hypersensitivity observed on days 3-4 of treatment. In contrast, reduction of thermal hyperalgesia in the inflammatory model was observed during the first four days of treatment with SQS, and reduction of cold allodynia in the neuropathic pain model was seen only on the first day with SQS. TENS was effective in the inflammation model, and in agreement with previous studies, tolerance developed to the antihypersensitivity effects of TENS. With the exception of a reversal of cold hypersensitivity on day 1 of testing, TENS did not reveal significant analgesic effects in the neuropathic pain rodent model. The results presented show that TENS and SQS have different effects that could point to unique biologic mechanisms underlying the analgesic effect of each therapy. Furthermore, this study is the first to demonstrate in an animal model that SQS attenuates neuropathic and inflammatory-induced pain behaviors. © 2013 Medtronic, Inc.
Gavi, Maria Bernadete Renoldi Oliveira; Vassalo, Dalton Valentin; Amaral, Fabian Tadeu; Macedo, Danielle Constância Felício; Gava, Pablo Lúcio; Dantas, Eduardo Miranda; Valim, Valéria
2014-01-01
Autonomic dysfunction is an important mechanism that could explain many symptoms observed in fibromyalgia (FM). Exercise is an effective treatment, with benefits potentially mediated through changes in autonomic modulation. Strengthening is one of the less studied exercises in FM, and the acute and chronic effects of strengthening on the autonomic system remain unknown. The objective of this study was to assess the chronic effects of strengthening exercises (STRE) on autonomic modulation, pain perception and the quality of life (QOL) of FM patients. Eighty sedentary women with FM (ACR 1990) were randomly selected to participate in STRE or flexibility (FLEX) exercises in a blinded controlled trial. The intensity of STRE was set at 45% of the estimated load of 1 Repetition Maximum (RM) in 12 different exercises. Outcomes were Visual Analog Scale (VAS) for pain, Heart Rate Variability (HRV) analysis, treadmill test, the sit and reach test (Wells and Dillon's Bench), maximal repetitions test and handgrip dynamometry; and quality of life by the Fibromyalgia Impact Questionnaire (FIQ), the Beck and Idate Trait-State Inventory (IDATE), a short-form health survey (SF-36). The STRE group was more effective to strength gain for all muscles and pain control after 4 and 16 weeks (p<0.05). The FLEX group showed higher improvements in anxiety (p<0.05). Both groups showed improvements in the QOL, and there was no significant difference observed between the groups. There was no change in the HRV of the STRE and FLEX groups. Strengthening exercises show greater and more rapid improvements in pain and strength than flexibility exercises. Despite the benefits in fitness, pain, depression, anxiety and quality of life, no effect was observed on the autonomic modulation in both groups. This observation suggests that changes in autonomic modulation are not a target tobe clinically achieved in fibromyalgia. ClinicalTrials.gov NCT02004405.
Operant conditioning of facial displays of pain.
Kunz, Miriam; Rainville, Pierre; Lautenbacher, Stefan
2011-06-01
The operant model of chronic pain posits that nonverbal pain behavior, such as facial expressions, is sensitive to reinforcement, but experimental evidence supporting this assumption is sparse. The aim of the present study was to investigate in a healthy population a) whether facial pain behavior can indeed be operantly conditioned using a discriminative reinforcement schedule to increase and decrease facial pain behavior and b) to what extent these changes affect pain experience indexed by self-ratings. In the experimental group (n = 29), the participants were reinforced every time that they showed pain-indicative facial behavior (up-conditioning) or a neutral expression (down-conditioning) in response to painful heat stimulation. Once facial pain behavior was successfully up- or down-conditioned, respectively (which occurred in 72% of participants), facial pain displays and self-report ratings were assessed. In addition, a control group (n = 11) was used that was yoked to the reinforcement plans of the experimental group. During the conditioning phases, reinforcement led to significant changes in facial pain behavior in the majority of the experimental group (p < .001) but not in the yoked control group (p > .136). Fine-grained analyses of facial muscle movements revealed a similar picture. Furthermore, the decline in facial pain displays (as observed during down-conditioning) strongly predicted changes in pain ratings (R(2) = 0.329). These results suggest that a) facial pain displays are sensitive to reinforcement and b) that changes in facial pain displays can affect self-report ratings.
Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva
2017-01-01
Abstract Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH. PMID:28282362
Moloney, Rachel D; Golubeva, Anna V; O'Connor, Richard M; Kalinichev, Mikhail; Dinan, Timothy G; Cryan, John F
2015-01-01
Glutamate, the main excitatory neurotransmitter in the central nervous system, exerts its effect through ionotropic and metabotropic receptors. Of these, group III mGlu receptors (mGlu 4, 6, 7, 8) are among the least studied due to a lack of pharmacological tools. mGlu7 receptors, the most highly conserved isoform, are abundantly distributed in the brain, especially in regions, such as the amygdala, known to be crucial for the emotional processing of painful stimuli. Visceral hypersensitivity is a poorly understood phenomenon manifesting as an increased sensitivity to visceral stimuli. Glutamate has long been associated with somatic pain processing leading us to postulate that crossover may exist between these two modalities. Moreover, stress has been shown to exacerbate visceral pain. ADX71743 is a novel, centrally penetrant, negative allosteric modulator of mGlu7 receptors. Thus, we used this tool to explore the possible involvement of this receptor in the mediation of visceral pain in a stress-sensitive model of visceral hypersensitivity, namely the Wistar Kyoto (WKY) rat. ADX71743 reduced visceral hypersensitivity in the WKY rat as exhibited by increased visceral sensitivity threshold with concomitant reductions in total number of pain behaviours. Moreover, AD71743 increased total distance and distance travelled in the inner zone of the open field. These findings show, for what is to our knowledge, the first time, that mGlu7 receptor signalling plays a role in visceral pain processing. Thus, negative modulation of the mGlu7 receptor may be a plausible target for the amelioration of stress-induced visceral pain where there is a large unmet medical need.
Moloney, Rachel D.; Golubeva, Anna V.; O'Connor, Richard M.; Kalinichev, Mikhail; Dinan, Timothy G.; Cryan, John F.
2015-01-01
Glutamate, the main excitatory neurotransmitter in the central nervous system, exerts its effect through ionotropic and metabotropic receptors. Of these, group III mGlu receptors (mGlu 4, 6, 7, 8) are among the least studied due to a lack of pharmacological tools. mGlu7 receptors, the most highly conserved isoform, are abundantly distributed in the brain, especially in regions, such as the amygdala, known to be crucial for the emotional processing of painful stimuli. Visceral hypersensitivity is a poorly understood phenomenon manifesting as an increased sensitivity to visceral stimuli. Glutamate has long been associated with somatic pain processing leading us to postulate that crossover may exist between these two modalities. Moreover, stress has been shown to exacerbate visceral pain. ADX71743 is a novel, centrally penetrant, negative allosteric modulator of mGlu7 receptors. Thus, we used this tool to explore the possible involvement of this receptor in the mediation of visceral pain in a stress-sensitive model of visceral hypersensitivity, namely the Wistar Kyoto (WKY) rat. ADX71743 reduced visceral hypersensitivity in the WKY rat as exhibited by increased visceral sensitivity threshold with concomitant reductions in total number of pain behaviours. Moreover, AD71743 increased total distance and distance travelled in the inner zone of the open field. These findings show, for what is to our knowledge, the first time, that mGlu7 receptor signalling plays a role in visceral pain processing. Thus, negative modulation of the mGlu7 receptor may be a plausible target for the amelioration of stress-induced visceral pain where there is a large unmet medical need. PMID:26844237
Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva
2017-07-01
Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.
The long-term reliability of static and dynamic quantitative sensory testing in healthy individuals.
Marcuzzi, Anna; Wrigley, Paul J; Dean, Catherine M; Adams, Roger; Hush, Julia M
2017-07-01
Quantitative sensory tests (QSTs) have been increasingly used to investigate alterations in somatosensory function in a wide range of painful conditions. The interpretation of these findings is based on the assumption that the measures are stable and reproducible. To date, reliability of QST has been investigated for short test-retest intervals. The aim of this study was to investigate the long-term reliability of a multimodal QST assessment in healthy people, with testing conducted on 3 occasions over 4 months. Forty-two healthy people were enrolled in the study. Static and dynamic tests were performed, including cold and heat pain threshold (CPT, HPT), mechanical wind-up [wind-up ratio (WUR)], pressure pain threshold (PPT), 2-point discrimination (TPD), and conditioned pain modulation (CPM). Systematic bias, relative reliability and agreement were analysed using repeated measure analysis of variance, intraclass correlation coefficients (ICCs3,1) and SE of the measurement (SEM), respectively. Static QST (CPT, HPT, PPT, and TPD) showed good-to-excellent reliability (ICCs: 0.68-0.90). Dynamic QST (WUR and CPM) showed poor-to-good reliability (ICCs: 0.35-0.61). A significant linear decrease over time was observed for mechanical QST at the back (PPT and TPD) and for CPM (P < 0.01). Static QST were stable over a period of 4 months; however, a small systematic decrease over time has been observed for mechanical QST. Dynamic QST showed considerable variability over time; in particular, CPM using PPT as the test stimulus did not show adequate reliability, suggesting that this test paradigm may be less useful for monitoring individuals over time.
Influence of culture on pain comorbidity in women with and without temporomandibular disorder-pain.
Al-Harthy, M; Michelotti, A; List, T; Ohrbach, R
2017-06-01
Evidence on cultural differences in prevalence and impact of common chronic pain conditions, comparing individuals with temporomandibular disorders (TMD) versus individuals without TMD, is limited. The aim was to assess cross-cultural comorbid pain conditions in women with chronic TMD pain. Consecutive women patients (n = 122) with the index condition of chronic TMD pain diagnosed per the research diagnostic criteria for TMD and TMD-free controls (n = 121) matched for age were recruited in Saudi Arabia, Italy and Sweden. Self-report questionnaires assessed back, chest, stomach and head pain for prevalence, pain intensity and interference with daily activities. Logistic regression was used for binary variables, and ancova was used for parametric data analysis, adjusting for age and education. Back pain was the only comorbid condition with a different prevalence across cultures; Swedes reported a lower prevalence compared to Saudis (P < 0·01). Saudis reported higher prevalence of work reduced >50% due to back pain compared to Italians or Swedes (P < 0·01). Headache was the most common comorbid condition in all three cultures. The total number of comorbid conditions did not differ cross-culturally but were reported more by TMD-pain cases than TMD-free controls (P < 0·01). For both back and head pain, higher average pain intensities (P < 0·01) and interference with daily activities (P < 0·01) were reported by TMD-pain cases, compared to TMD-free controls. Among TMD-pain cases, Italians reported the highest pain-related disability (P < 0·01). Culture influences the associated comorbidity of common pain conditions. The cultural influence on pain expression is reflected in different patterns of physical representation. © 2017 John Wiley & Sons Ltd.
Shielding cognition from nociception with working memory.
Legrain, Valéry; Crombez, Geert; Plaghki, Léon; Mouraux, André
2013-01-01
Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. Event-related brain potentials (ERPs) were recorded while participants performed primary tasks on visual targets that required or did not require rehearsal in working memory (1-back vs 0-back conditions). The visual targets were shortly preceded by task-irrelevant tactile stimuli. Occasionally, in order to distract the participants, the tactile stimuli were replaced by novel nociceptive stimuli. In the 0-back conditions, task performance was disrupted by the occurrence of the nociceptive distracters, as reflected by the increased reaction times in trials with novel nociceptive distracters as compared to trials with standard tactile distracters. In the 1-back conditions, such a difference disappeared suggesting that attentional capture and task disruption induced by nociceptive distracters were suppressed by working memory, regardless of task demands. Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.
Health care expenditures associated with pediatric pain-related conditions in the United States.
Groenewald, Cornelius B; Wright, Davene R; Palermo, Tonya M
2015-05-01
The primary objective of this study was to assess the impact of pediatric pain-related conditions on health care expenditures. We analyzed data from a nationally representative sample of 6- to 17-year-old children captured in the 2007 National Health Interview Survey and 2008 Medical Expenditure Panel Survey. Health care expenditures of children with pain-related conditions were compared with those of children without pain-related conditions. Pain-related conditions were associated with incremental health care expenditures of $1339 (95% confidence interval [CI], $248-$2447) per capita. Extrapolated to the nation, pediatric pain-related conditions were associated with $11.8 billion (95% CI, $2.18-$21.5 billion) in total incremental health care expenditures. The incremental health care expenditures associated with pediatric pain-related conditions were similar to those of attention deficit and hyperactivity disorder ($9.23 billion; 95% CI, $1.89-$18.1 billion), but more than those associated with asthma ($5.35 billion; 95% CI, $0-$12.3 billion) and obesity ($0.73 billion; 95% CI, $6.28-$8.81 billion). Health care expenditures for pediatric pain-related conditions exert a considerable economic burden on society. Efforts to prevent and treat pediatric pain-related conditions are urgently needed.
Toggle navigation CONDITIONS Low Back Pain Acute Low Back Pain Chronic Low Back Pain SI Joint Pain Other Scoliosis Back Pain and Emotional Distress Muscle Spasms Pinched Nerve Discitis Degenerative Conditions Bulge vs ...
Chronobiology of chronic pain: focus on diurnal rhythmicity of neuropathic pain.
Gilron, Ian; Ghasemlou, Nader
2014-12-01
Although circadian rhythmicity has long been recognized in various nociceptive pain conditions such as arthritis, diurnal pain patterns in neuropathic conditions have only recently been described. The purpose of this article is to review emerging evidence and discuss future research to further understand this phenomenon. Secondary analyses of neuropathic pain clinical trials demonstrate that pain intensity fluctuations exhibit a distinct diurnal pattern that contrasts that of nociceptive pain conditions. Ongoing preclinical investigations support the phenomenon of circadian pain fluctuations and provide the opportunity to better describe pain chronobiology and to elucidate underlying mechanisms of circadian pain rhythmicity. The observation of clinically relevant diurnal pain variability in neuropathic conditions has important implications for future research and treatment of pain. This is an immature research field, and further investigation is needed to better characterize these patterns in more detail, investigate contributory mechanisms, and to develop therapeutic strategies that exploit this phenomenon.
Systematic Review and Meta-Analysis of Psychological Therapies for Children With Chronic Pain
Heathcote, Lauren; Palermo, Tonya M.; de C Williams, Amanda C; Lau, Jennifer; Eccleston, Christopher
2014-01-01
Objectives This systematic review and meta-analysis examined the effects of psychological therapies for management of chronic pain in children. Methods Randomized controlled trials of psychological interventions treating children (<18 years) with chronic pain conditions including headache, abdominal, musculoskeletal, or neuropathic pain were searched for. Pain symptoms, disability, depression, anxiety, and sleep outcomes were extracted. Risk of bias was assessed and quality of the evidence was rated using GRADE. Results 35 included studies revealed that across all chronic pain conditions, psychological interventions reduced pain symptoms and disability posttreatment. Individual pain conditions were analyzed separately. Sleep outcomes were not reported in any trials. Optimal dose of treatment was explored. For headache pain, higher treatment dose led to greater reductions in pain. No effect of dosage was found for other chronic pain conditions. Conclusions Evidence for psychological therapies treating chronic pain is promising. Recommendations for clinical practice and research are presented. PMID:24602890
Krøll, L S; Sjödahl Hammarlund, C; Gard, G; Jensen, R H; Bendtsen, L
2018-04-10
A large subset of persons with migraine suffers from coexisting tension-type headache and neck pain which may adversely affect the prognosis of migraine. Aerobic exercise has been shown to decrease migraine burden in these persons. Therefore, the aim of this study was to investigate whether the effect of aerobic exercise in persons with migraine and coexisting tension-type headache and neck pain can be explained by changes in pain perception. Seventy consecutively recruited persons with migraine and coexisting tension-type headache and neck pain were randomized into exercise group or control group. Aerobic exercise consisted of bike/cross-trainer/brisk walking for 45 min, three times/week for 3 months. Controls continued their usual daily activities. Pericranial tenderness, pain thresholds, supra-thresholds and temporal summation were assessed at baseline, after treatment and at follow-up (6 months from baseline). Fifty-two persons with migraine and coexisting tension-type headache and neck pain completed the study. Aerobic exercise did not induce consistent changes in nociceptive pathways measured by pericranial tenderness, pressure pain thresholds and sensitivity to electrical stimulation. The effect of aerobic exercise cannot be explained by measurable effects on the pain modulation system. Thus, the positive effect on migraine burden may rather be explained by positive alteration of avoidance behaviour. Aerobic exercise can be recommended as a safe and inexpensive migraine treatment strategy. This study adds further knowledge about the positive effect of aerobic exercise for persons with migraine and coexisting tension-type headache and neck pain. This effect cannot be measured by changes in pain modulation, but may rather be explained by positive alteration of avoidance behaviour. © 2018 European Pain Federation - EFIC®.
Pain conditions ranked by healthcare costs for members of a national health plan.
Pasquale, Margaret K; Dufour, Robert; Schaaf, David; Reiners, Andrew T; Mardekian, Jack; Joshi, Ashish V; Patel, Nick C
2014-02-01
Healthcare resource utilization (HCRU) and associated costs specific to pain are a growing concern, as increasing dollar amounts are spent on pain-related conditions. Understanding which pain conditions drive the highest utilization and cost burden to the healthcare system would enable providers and payers to better target conditions to manage pain adequately and efficiently. The current study focused on 36 noncancer chronic and 14 noncancer acute pain conditions and measured the HCRU and costs per member over 365 days. These conditions were ranked by per-member costs and total adjusted healthcare costs to determine the most expensive conditions to a national health plan. The top 5 conditions for the commercial line of business were back pain, osteoarthritis (OA), childbirth, injuries, and non-hip, non-spine fractures (adjusted annual total costs for the commercial members were $119 million, $98 million, $69 million, $61 million, and $48 million, respectively). The top 5 conditions for Medicare members were OA, back pain, hip fractures, injuries, and non-hip, non-spine fractures (adjusted annual costs for the Medicare members were $327 million, $218 million, $117 million, $82 million, and $67 million, respectively). The conditions ranked highest for both per-member and total healthcare costs were hip fractures, childbirth, and non-hip, non-spine fractures. Among these, hip fractures in the Medicare member population had the highest mean cost per member (adjusted per-member cost was $21,058). Further examination specific to how pain is managed in these high-cost conditions will enable providers and payers to develop strategies to improve patient outcomes through appropriate pain management. © 2013 Humana Inc. and Pfizer Inc. Pain Practice © 2013 World Institute of Pain.
Das, Debashish A; Grimmer, Karen A; Sparnon, Anthony L; McRae, Sarah E; Thomas, Bruce H
2005-03-03
The management of burn injuries is reported as painful, distressing and a cause of anxiety in children and their parents. Child's and parents' pain and anxiety, often contributes to extended time required for burns management procedures, in particular the process of changing dressings. The traditional method of pharmacologic analgesia is often insufficient to cover the burnt child's pain, and it can have deleterious side effects 12. Intervention with Virtual Reality (VR) games is based on distraction or interruption in the way current thoughts, including pain, are processed by the brain. Research on adults supports the hypothesis that virtual reality has a positive influence on burns pain modulation. This study investigates whether playing a virtual reality game, decreases procedural pain in children aged 5-18 years with acute burn injuries. The paper reports on the findings of a pilot study, a randomised trial, in which seven children acted as their own controls though a series of 11 trials. Outcomes were pain measured using the self-report Faces Scale and findings of interviews with parent/carer and nurses. The average pain scores (from the Faces Scale) for pharmacological analgesia only was, 4.1 (SD 2.9), while VR coupled with pharmacological analgesia, the average pain score was 1.3 (SD 1.8) The study provides strong evidence supporting VR based games in providing analgesia with minimal side effects and little impact on the physical hospital environment, as well as its reusability and versatility, suggesting another option in the management of children's acute pain.
5-HT modulation of pain perception in humans.
Martin, Sarah L; Power, Andrea; Boyle, Yvonne; Anderson, Ian M; Silverdale, Monty A; Jones, Anthony K P
2017-10-01
Although there is clear evidence for the serotonergic regulation of descending control of pain in animals, little direct evidence exists in humans. The majority of our knowledge comes from the use of serotonin (5-HT)-modulating antidepressants as analgesics in the clinical management of chronic pain. Here, we have used an acute tryptophan depletion (ATD) to manipulate 5-HT function and examine its effects of ATD on heat pain threshold and tolerance, attentional manipulation of nociceptive processing and mood in human volunteers. Fifteen healthy participants received both ATD and balanced amino acid (BAL) drinks on two separate sessions in a double-blind cross-over design. Pain threshold and tolerance were determined 4 h post-drink via a heat thermode. Additional attention, distraction and temperature discrimination paradigms were completed using a laser-induced heat pain stimulus. Mood was assessed prior and throughout each session. Our investigation reported that the ATD lowered plasma TRP levels by 65.05 ± 7.29% and significantly reduced pain threshold and tolerance in response to the heat thermode. There was a direct correlation between the reduction in total plasma TRP levels and reduction in thermode temperature. In contrast, ATD showed no effect on laser-induced pain nor significant impact of the distraction-induced analgesia on pain perception but did reduce performance of the painful temperature discrimination task. Importantly, all findings were independent of any effects of ATD on mood. As far as we are aware, it is the first demonstration of 5-HT effects on pain perception which are not confounded by mood changes.
Nerandzic, Vladimir; Mrozkova, Petra; Adamek, Pavel; Spicarova, Diana; Nagy, Istvan; Palecek, Jiri
2018-06-01
Endocannabinoids play an important role in modulating spinal nociceptive signalling, crucial for the development of pain. The cannabinoid CB 1 receptor and the TRPV1 cation channel are both activated by the endocannabinoid anandamide, a product of biosynthesis from the endogenous lipid precursor N-arachidonoylphosphatidylethanolamine (20:4-NAPE). Here, we report CB 1 receptor- and TRPV1-mediated effects of 20:4-NAPE on spinal synaptic transmission in control and inflammatory conditions. Spontaneous (sEPSCs) and dorsal root stimulation-evoked (eEPSCs) excitatory postsynaptic currents from superficial dorsal horn neurons in rat spinal cord slices were assessed. Peripheral inflammation was induced by carrageenan. Anandamide concentration was assessed by mass spectrometry. Application of 20:4-NAPE increased anandamide concentration in vitro. 20:4-NAPE (20 μM) decreased sEPSCs frequency and eEPSCs amplitude in control and inflammatory conditions. The inhibitory effect of 20:4-NAPE was sensitive to CB 1 receptor antagonist PF514273 (0.2 μM) in both conditions, but to the TRPV1 antagonist SB366791 (10 μM) only after inflammation. After inflammation, 20:4-NAPE increased sEPSCs frequency in the presence of PF514273 and this increase was blocked by SB366791. While 20:4-NAPE treatment inhibited the excitatory synaptic transmission in both naive and inflammatory conditions, peripheral inflammation altered the underlying mechanisms. Our data indicate that 20:4-NAPE application induced mainly CB 1 receptor-mediated inhibitory effects in naive animals while TRPV1-mediated mechanisms were also involved after inflammation. Increasing anandamide levels for analgesic purposes by applying substrate for its local synthesis may be more effective than systemic anandamide application or inhibition of its degradation. This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc. © 2017 The British Pharmacological Society.
Psychological factors in oral mucosal and orofacial pain conditions.
Alrashdan, Mohammad S; Alkhader, Mustafa
2017-01-01
The psychological aspects of chronic pain conditions represent a key component of the pain experience, and orofacial pain conditions are not an exception. In this review, we highlight how psychological factors affect some common oral mucosal and orofacial pain conditions (namely, oral lichen planus, recurrent aphthous stomatitis, burning mouth syndrome, and temporomandibular disorders) with emphasis on the significance of supplementing classical biomedical treatment modalities with appropriate psychological counseling to improve treatment outcomes in targeted patients. A literature search restricted to reports with highest relevance to the selected mucosal and orofacial pain conditions was carried out to retrieve data.
Lumbar (Open) Microscopic Discectomy
Toggle navigation CONDITIONS Low Back Pain Acute Low Back Pain Chronic Low Back Pain SI Joint Pain Other Scoliosis Back Pain and Emotional Distress Muscle Spasms Pinched Nerve Discitis Degenerative Conditions Bulge vs ...
Divergent functions of the left and right central amygdala in visceral nociception.
Sadler, Katelyn E; McQuaid, Neal A; Cox, Abigail C; Behun, Marissa N; Trouten, Allison M; Kolber, Benedict J
2017-04-01
The left and right central amygdalae (CeA) are limbic regions involved in somatic and visceral pain processing. These 2 nuclei are asymmetrically involved in somatic pain modulation; pain-like responses on both sides of the body are preferentially driven by the right CeA, and in a reciprocal fashion, nociceptive somatic stimuli on both sides of the body predominantly alter molecular and physiological activities in the right CeA. Unknown, however, is whether this lateralization also exists in visceral pain processing and furthermore what function the left CeA has in modulating nociceptive information. Using urinary bladder distension (UBD) and excitatory optogenetics, a pronociceptive function of the right CeA was demonstrated in mice. Channelrhodopsin-2-mediated activation of the right CeA increased visceromotor responses (VMRs), while activation of the left CeA had no effect. Similarly, UBD-evoked VMRs increased after unilateral infusion of pituitary adenylate cyclase-activating polypeptide in the right CeA. To determine intrinsic left CeA involvement in bladder pain modulation, this region was optogenetically silenced during noxious UBD. Halorhodopsin (NpHR)-mediated inhibition of the left CeA increased VMRs, suggesting an ongoing antinociceptive function for this region. Finally, divergent left and right CeA functions were evaluated during abdominal mechanosensory testing. In naive animals, channelrhodopsin-2-mediated activation of the right CeA induced mechanical allodynia, and after cyclophosphamide-induced bladder sensitization, activation of the left CeA reversed referred bladder pain-like behaviors. Overall, these data provide evidence for functional brain lateralization in the absence of peripheral anatomical asymmetries.
Charlet, Alexandre; Lasbennes, François; Darbon, Pascal; Poisbeau, Pierrick
2008-10-31
Fast Inhibitory controls mediated by glycine (GlyRs) and GABAA receptors (GABAARs) play an important role to prevent the apparition of pathological pain symptoms of allodynia and hyperalgesia. The use of positive allosteric modulators of these receptors, specifically expressed in the spinal cord, may represent an interesting strategy to limit or block pain expression. In this study, we have used stereoisomers of progesterone metabolites, acting only via non-genomic effects, in order to evaluate the contribution of GlyRs and GABAARs for the reduction of mechanical and thermal heat hypernociception. We show that 3alpha neurosteroids were particularly efficient to elevate nociceptive thresholds in naive animal. It also reduced mechanical allodynia and thermal heat hyperalgesia in the carrageenan model of inflammatory pain. This effect is likely to be mediated by GABAA receptors since 3beta isomer was inefficient. More interestingly, 3alpha5beta neurosteroid was only efficient on mechanical allodynia while having no effect on thermal heat hyperalgesia. We characterized these paradoxical effects of 3alpha5beta neurosteroid using the strychnine and bicuculline models of allodynia. We clearly show that 3alpha5beta neurosteroid exerts an antinociceptive effect via a positive allosteric modulation of GABAARs but, at the same time, is pronociceptive by reducing GlyR function. This illustrates the importance of the inhibitory amino acid receptor channels and their allosteric modulators in spinal pain processing. Moreover, our results indicate that neurosteroids, which are synthesized in the dorsal horn of the spinal cord and have limited side effects, may be of significant interest in order to treat pathological pain symptoms.
Vaseghi, Bita; Zoghi, Maryam; Jaberzadeh, Shapour
2015-01-01
Background Integration of information between multiple cortical regions of the pain neuromatrix is thought to underpin pain modulation. Although altered processing in the primary motor (M1) and sensory (S1) cortices is implicated in separate studies, the simultaneous changes in and the relationship between these regions are unknown yet. The primary aim was to assess the effects of anodal transcranial direct current stimulation (a-tDCS) over superficial regions of the pain neuromatrix on M1 and S1 excitability. The secondary aim was to investigate how M1 and S1 excitability changes affect sensory (STh) and pain thresholds (PTh). Methods Twelve healthy participants received 20 min a-tDCS under five different conditions including a-tDCS of M1, a-tDCS of S1, a-tDCS of DLPFC, sham a-tDCS, and no-tDCS. Excitability of dominant M1 and S1 were measured before, immediately, and 30 minutes after intervention respectively. Moreover, STh and PTh to peripheral electrical and mechanical stimulation were evaluated. All outcome measures were assessed at three time-points of measurement by a blind rater. Results A-tDCS of M1 and dorsolateral prefrontal cortex (DLPFC) significantly increased brain excitability in M1 (p < 0.05) for at least 30 min. Following application of a-tDCS over the S1, the amplitude of the N20-P25 component of SEPs increased immediately after the stimulation (p < 0.05), whilst M1 stimulation decreased it. Compared to baseline values, significant STh and PTh increase was observed after a-tDCS of all three stimulated areas. Except in M1 stimulation, there was significant PTh difference between a-tDCS and sham tDCS. Conclusion a-tDCS of M1 is the best spots to enhance brain excitability than a-tDCS of S1 and DLPFC. Surprisingly, a-tDCS of M1 and S1 has diverse effects on S1 and M1 excitability. A-tDCS of M1, S1, and DLPFC increased STh and PTh levels. Given the placebo effects of a-tDCS of M1 in pain perception, our results should be interpreted with caution, particularly with respect to the behavioural aspects of pain modulation. Trial Registration Australian New Zealand Clinical Trials, ACTRN12614000817640, http://www.anzctr.org.au/. PMID:25738603
Cryopreserved amniotic membrane for modulation of periodontal soft tissue healing: a pilot study.
Velez, Ines; Parker, William B; Siegel, Michael A; Hernandez, Maria
2010-12-01
The purpose of this randomized study is to evaluate cryopreserved amniotic membrane (CAM) for helping cicatrization and wound healing after dental implant surgery. Epithelialization, pain, infection, inflammation, and scarring were studied. CAM was placed in surgical wounds related to implant surgery. The extent of healing was evaluated by a masked investigator for lesion size, epithelialization, pain, infection, inflammation, and scarring. A clinical evaluation occurred at baseline, 72 and 144 hours, 2 weeks, and 1, 1.5, and 3 months. The results were compared to conventionally managed, similar lesions that were treated the same day in the same patient allowing each patient to serve as their own control. This prospective randomized study showed statistically significant differences between experimental and control groups regarding cicatrization, wound healing, and pain. The effects of the membrane were statistically significant during the first 3 weeks of the study, and thereafter, the effects of the membrane for the two groups were equivalent. CAM was effective in helping cicatrization and wound healing. CAM supported the growth of the epithelium and, thus, facilitated migration and reinforced adhesion. It also decreased the pain of subjects. Regarding dental implants, the use of CAM is not cost effective. New studies evaluating other oral conditions are encouraged.
Yoga-based intervention in patients with somatoform disorders: an open label trial.
Sutar, Roshan; Desai, Geetha; Varambally, Shivarama; Gangadhar, B N
2016-06-01
Somatoform disorders are common mental disorders associated with impaired functioning and increased utilization of health resources. Yoga-based interventions have been used successfully for anxiety, depression, and chronic pain conditions. However, literature on the use of yoga in treatment of somatoform disorders is minimal. The current study assessed the effect of a specific yoga-based intervention in patients with somatoform disorders. Consenting patients meeting ICD-10 criteria for somatoform disorders were offered a specific yoga module (1 h per day) as a treatment. Assessments including Visual Analogue Scale (VAS), Brief Pain Inventory (BPI), and others were carried out at baseline and after 2, 6, and 12 weeks. Sixty-four subjects were included in the study and 34 completed 12 weeks follow-up. Significant improvement was noted in pain severity from baseline to 12 weeks after regular yoga sessions. The mean VAS score dropped from 7.24 to 2.88. Worst and average pain score in the last 24 h on BPI dropped from 7.71 to 3.26 and from 6.12 to 2.0,7 respectively. Results of the study suggest that yoga-based intervention can be one of the non-pharmacological treatment options in somatoform disorders. These preliminary findings need replication in larger controlled studies.
Terry Loghmani, M.; Bayliss, Amy J.; Clayton, Greg; Gundeck, Evelina
2015-01-01
Finger injuries are common and can greatly affect a musician’s quality of life. A 55-year-old man, who had injured the proximal interphalangeal joint of the left index finger 6 months prior to any intervention, was treated with a manual therapy approach incorporating instrument-assisted soft tissue mobilization (IASTM). Initial examination findings included self-reported pain and functional limitations and physical impairments that significantly impeded his ability to play the acoustic guitar. He was treated once a week for 6 weeks with IASTM, joint mobilization, therapeutic exercise, and ice massage. Additionally, a home exercise program and self-care instructions were provided. The patient gained positive outcomes with improvements in pain (Numerical Pain Rating Scale while playing the guitar: initial 5/10, discharge 1/10) and function (Disability Arm Shoulder Hand Sports-Performing Arts Optional Module: initial 75; discharge 6·25), each reaching a minimum clinically important difference. Importantly, he was able to play the guitar with minimal to no pain as desired. Physical measures also improved, including an immediate gain in finger range of motion with IASTM alone. Manual therapy approaches integrating IASTM may provide an effective conservative treatment strategy for patients with finger/hand conditions in the performing arts and other patient populations. PMID:26952165
Smith, Shad B.; Maixner, Dylan; Greenspan, Joel; Dubner, Ron; Fillingim, Roger; Ohrbach, Richard; Knott, Charles; Slade, Gary; Bair, Eric; Gibson, Dustin G.; Zaykin, Dmitri V.; Weir, Bruce; Maixner, William; Diatchenko, Luda
2011-01-01
Genetic factors play a role in the etiology of persistent pain conditions, putatively by modulating underlying processes such as nociceptive sensitivity, psychological well-being, inflammation, and autonomic response. However, to date, only a few genes have been associated with temporomandibular disorders (TMD). This study evaluated 358 genes involved in pain processes, comparing allelic frequencies between 166 cases with chronic TMD and 1442 controls enrolled in the OPPERA (Orofacial Pain: Prospective Evaluation and Risk Assessment) study cooperative agreement. To enhance statistical power, 182 TMD cases and 170 controls from a similar study were included in the analysis. Genotyping was performed using the Pain Research Panel, an Affymetrix gene chip representing 3295 single nucleotide polymorphisms, including ancestry-informative markers that were used to adjust for population stratification. Adjusted associations between genetic markers and TMD case status were evaluated using logistic regression. The OPPERA findings provided evidence supporting previously-reported associations between TMD and two genes: HTR2A and COMT. Other genes were revealed as potential new genetic risk factors for TMD, including NR3C1, CAMK4, CHRM2, IFRD1, and GRK5. While these findings need to be replicated in independent cohorts, the genes potentially represent important markers of risk for TMD and they identify potential targets for therapeutic intervention. PMID:22074755
THE TRPV1 RECEPTOR: TARGET OF TOXICANTS AND THERAPEUTICS
Understanding the structural and functional complexities of the TRPV1 is essential to the therapeutic modulation of inflammation and pain. Because of its central role in initiating inflammatory processes and integrating painful stimuli, there is an understandable interest...
Davis, Mary C.; Thummala, Kirti; Zautra, Alex J.
2014-01-01
Background Chronic pain with co-morbid depression is characterized by poor mood regulation and stress-related pain. Purpose Compare depressed and non-depressed pain patients in mood and pain stress reactivity and recovery, and test whether a post-stress positive mood induction moderates pain recovery. Methods Women with fibromyalgia and/or osteoarthritis (N=110) underwent interpersonal stress and were then randomly assigned by pain condition and depression status, assessed via the Center for Epidemiological Studies-Depression scale, to positive versus neutral mood induction. Results Depression did not predict stress-related reactivity in despondency, joviality, or clinical pain. However, depression X mood condition predicted recovery in joviality and clinical pain; depressed women recovered only in the positive mood condition, whereas non-depressed women recovered in both mood conditions. Conclusions Depression does not alter pain and mood stress reactivity, but does impair recovery. Boosting post-stress jovial mood ameliorates pain recovery deficits in depressed patients, a finding relevant to chronic pain interventions. PMID:24532393
Davis, Mary C; Thummala, Kirti; Zautra, Alex J
2014-08-01
Chronic pain with comorbid depression is characterized by poor mood regulation and stress-related pain. This study aims to compare depressed and non-depressed pain patients in mood and pain stress reactivity and recovery, and test whether a post-stress positive mood induction moderates pain recovery. Women with fibromyalgia and/or osteoarthritis (N = 110) underwent interpersonal stress and were then randomly assigned by pain condition and depression status, assessed via the Center for Epidemiological Studies-Depression scale, to positive versus neutral mood induction. Depression did not predict stress-related reactivity in despondency, joviality, or clinical pain. However, depression × mood condition predicted recovery in joviality and clinical pain; depressed women recovered only in the positive mood condition, whereas non-depressed women recovered in both mood conditions. Depression does not alter pain and mood stress reactivity, but does impair recovery. Boosting post-stress jovial mood ameliorates pain recovery deficits in depressed patients, a finding relevant to chronic pain interventions.
Nutakki, Kavitha; Varni, James W; Steinbrenner, Sheila; Draucker, Claire B; Swigonski, Nancy L
2017-03-01
Health-related quality of life (HRQOL) is arguably one of the most important measures in evaluating effectiveness of clinical treatments. At present, there is no disease-specific outcome measure to assess the HRQOL of children, adolescents and young adults with Neurofibromatosis Type 1 (NF1). This study aimed to develop the items and support the content validity for the Pediatric Quality of Life Inventory™ (PedsQL™) NF1 Module for children, adolescents and young adults. The iterative process included multiphase qualitative methods including a literature review, survey of expert opinions, semi-structured interviews, cognitive interviews and pilot testing. Fifteen domains were derived from the qualitative methods, with content saturation achieved, resulting in 115 items. The domains include skin, pain, pain impact, pain management, cognitive functioning, speech, fine motor, balance, vision, perceived physical appearance, communication, worry, treatment, medicines and gastrointestinal symptoms. This study is limited because all participants are recruited from a single-site. Qualitative methods support the content validity for the PedsQL™ NF1 Module for children, adolescents and young adults. The PedsQL™ NF1 Module is now undergoing national multisite field testing for the psychometric validation of the instrument development.
Schafer, Scott M; Geuter, Stephan; Wager, Tor D
2018-01-01
Placebo treatments are pharmacologically inert, but are known to alleviate symptoms across a variety of clinical conditions. Associative learning and cognitive expectations both play important roles in placebo responses, however we are just beginning to understand how interactions between these processes lead to powerful effects. Here, we review the psychological principles underlying placebo effects and our current understanding of their brain bases, focusing on studies demonstrating both the importance of cognitive expectations and those that demonstrate expectancy-independent associative learning. To account for both forms of placebo analgesia, we propose a dual-process model in which flexible, contextually driven cognitive schemas and attributions guide associative learning processes that produce stable, long-term placebo effects. According to this model, the placebo-induction paradigms with the most powerful effects are those that combine reinforcement (e.g., the experience of reduced pain after placebo treatment) with suggestions and context cues that disambiguate learning by attributing perceived benefit to the placebo. Using this model as a conceptual scaffold, we review and compare neurobiological systems identified in both human studies of placebo analgesia and behavioral pain modulation in rodents. We identify substantial overlap between the circuits involved in human placebo analgesia and those that mediate multiple forms of context-based modulation of pain behavior in rodents, including forebrain-brainstem pathways and opioid and cannabinoid systems in particular. This overlap suggests that placebo effects are part of a set of adaptive mechanisms for shaping nociceptive signaling based on its information value and anticipated optimal response in a given behavioral context. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trojan, Jörg; Kleinböhl, Dieter; Stolle, Annette M; Andersen, Ole K; Hölzl, Rupert; Arendt-Nielsen, Lars
2009-03-01
Distortions of the body image have been repeatedly reported for various clinical conditions, but direct experimental analyses of the perceptual changes involved are still scarce. In addition, most experimental studies rely on cerebral activation patterns to assess neuroplastic changes in central representation, although the relationship between cerebral topography and the topology of the perceptual space is not clear. This study examines whether the direct psychophysical mapping approach we introduced recently (Trojan et al., Brain Res 2006;1120:106-113) is capable of tracking perceptual distortions in the somatotopic representation of heat-pain stimuli. Eleven healthy participants indicated the perceived positions of CO(2) laser stimuli, repetitively presented to the dorsal forearm, with a 3D tracking system in two consecutive sessions, separated by the topical application of capsaicin cream. In line with earlier reports, we expected that the resulting individual perceptual maps (i.e., one-dimensional projections of the perceived positions onto the forearm surface) would be subject to modulation through the altered sensory input, to be measured in terms of altered topological parameters. We found that the topology and metrics of the somatotopic representation were well preserved in the second session, but that the perceptual map was compressed to a smaller range in 9 out of 11 participants. By providing dimensional measures of perceptual representations, perceptual maps constitute an independent, genuinely psychological complement to the topography of cortical activations measured with neuroimaging methods. In addition, we expect them to be useful in diagnosing pathological changes in body perception accompanying chronic pain and other disorders.
[Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].
Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P
2012-12-01
Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.
Mechanisms in Chronic Multisympton Illnesses
2007-10-01
Fibro-fog While cognition appears to modulate the experience of pain, it is also likely that pain interferes with the ability to think and process...the ability of exercise and/or cognitive behavioral therapies to alter patients’ locus of control for pain, the neurobiological mechanism(s) of...evaluate the ability of different measures to predict group membership (symptomatic vs. asymptomatic). Two abstracts reflecting preliminary results
Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain
Weng, Hao-Jui; Patel, Kush N.; Jeske, Nathaniel A.; Bierbower, Sonya M.; Zou, Wangyuan; Tiwari, Vinod; Zheng, Qin; Tang, Zongxiang; Mo, Gary C.H.; Wang, Yan; Geng, Yixun; Zhang, Jin; Guan, Yun; Akopian, Armen; Dong, Xinzhong
2014-01-01
SUMMARY TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Here, we identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Tmem100 is co-expressed and forms a complex with TRPA1 and TRPV1 in DRG neurons. Tmem100-deficient mice show a reduction in inflammatory mechanical hyperalgesia and TRPA1- but not TRPV1-mediated pain. Single-channel recording in a heterologous system reveals that Tmem100 selectively potentiates TRPA1 activity in a TRPV1-dependent manner. Mechanistically, Tmem100 weakens the association of TRPA1 and TRPV1, thereby releasing the inhibition of TRPA1 by TRPV1. A Tmem100 mutant, Tmem100-3Q, exerts the opposite effect, i.e., it enhances the association of TRPA1 and TRPV1 and strongly inhibits TRPA1. Strikingly, a cell-permeable peptide (CPP) containing the C-terminal sequence of Tmem100-3Q mimics its effect and inhibits persistent pain. Our study unveils a context-dependent modulation of the TRPA1-V1 complex, and Tmem100-3Q CPP is a promising pain therapy. PMID:25640077
High-Definition and Non-Invasive Brain Modulation of Pain and Motor Dysfunction in Chronic TMD
Donnell, Adam; Nascimento, Thiago; Lawrence, Mara; Gupta, Vikas; Zieba, Tina; Truong, Dennis Q.; Bikson, Marom; Datta, Abhi; Bellile, Emily; DaSilva, Alexandre F.
2015-01-01
Background Temporomandibular disorders (TMD) have a relatively high prevalence and in many patients pain and masticatory dysfunction persist despite a range of treatments. Non-invasive brain neuromodulatory methods, namely transcranial direct current stimulation (tDCS), can provide relatively long-lasting pain relief in chronic pain patients. Objective To define the neuromodulatory effect of five daily 2×2 motor cortex high-definition tDCS (HD-tDCS) sessions on clinical pain and motor measures in chronic TMD patients. It is predicted that M1 HD-tDCS will selectively modulate clinical measures, by showing greater analgesic after-effects compared to placebo, and active treatment will increase pain free jaw movement more than placebo. Methods Twenty-four females with chronic myofascial TMD pain underwent five daily, 20-minute sessions of active or sham 2 milliamps (mA) HD-tDCS. Measurable outcomes included pain-free mouth opening, visual analog scale (VAS), sectional sensory-discriminative pain measures tracked by a mobile application, short form of the McGill Pain Questionnaire, and the Positive and Negative Affect Schedule. Follow-up occurred at one-week and four-weeks post treatment. Results There were significant improvements for clinical pain and motor measurements in the active HD-tDCS group compared to the placebo group for: responders with pain relief above 50% in the VAS at four-week follow-up (p=0.04); pain-free mouth opening at one-week follow-up (p<0.01); and sectional pain area, intensity and their sum measures contralateral to putative M1 stimulation during the treatment week (p<0.01). No changes in emotional values were shown between groups. Conclusion Putative M1 stimulation by HD-tDCS selectively improved meaningful clinical sensory-discriminative pain and motor measures during stimulation, and up to four weeks post-treatment in chronic myofascial TMD pain patients. PMID:26226938
Hara, Karen Walseth; Borchgrevink, Petter
2017-12-29
Background All nations are posed with the challenge of deciding how to allocate limited health care resources. A Patients' Rights Law from 1999 gives patients in Norway with a serious health condition, for which there is efficacious and cost-effective treatment, a legal right to receive health care from the National Health Care system. Methods Recently national guidelines have been produced for implementing these legal rights within 32 fields of specialist health care. One of these fields deals with serious chronic pain conditions. A task force established by the Directorate of Health, comprising pain specialists, primary care and patient representatives, have produced guidelines for pain conditions. The newly published guidelines seek to answer the difficult questions of which patients should be prioritised at pain clinics and what is a medically acceptable waiting time. Results The guidelines deal with non-acute pain conditions that are too complex for primary care and organ- or disease-specific fields of specialist care. The guidelines state that if health-related quality of life is severely affected by the pain condition and efficacious and cost-effective treatment is available, then patients have a legal right to receive prioritised specialist health care in multidisciplinary pain clinics. The guidelines describe 5 categories of complex pain disorders that as a main rule should be given the right to prioritised health care in pain clinics. The 5 categories are Category 1 Sub-acute (≤6 months) pain conditions with reason to fear chronification. Maximum waiting time 2 weeks, e.g., progressing complex regional pain syndrome (CRPS) 5 months after an ankle-fracture. Category 2 Chronic complex pain condition, with or without known initiating cause, combined with substance abuse and/or psychiatric illness. These patients need concomitant follow-up by psychiatric and/or addiction medicine department(s) and a multidisciplinary pain clinic approach. Maximum waiting time 16 weeks, e.g., CRPS of an arm combined with depression and addiction to heroin. Category 3 Chronic complex pain condition WITH known initiating cause (that can no longer be treated with a curative approach). Maximum waiting time 16 weeks, e.g., Post-herpetic neuralgia. Category 4 Chronic complex pain condition WITHOUT known initiating cause. Maximum waiting time 16 weeks, e.g., chronic muscle pain syndrome. Category 5 Severe and difficult to treat pain condition in patients suffering from a known serious and advanced illness. Maximum waiting time 2 weeks, e.g., advanced cancer, COLD, heart failure, end stage multiple sclerosis. The maximum medically accepted waiting time is set at either 2 or 16 weeks depending on the condition. The full version of the guidelines describes pain categories in detail and gives information on cases that do not qualify to be prioritised for care in a pain clinic. Conclusions Norwegian national guidelines for prioritising among pain conditions are in the process of being implemented. Epidemiologic data and expert opinion suggest that in order to meet the chronic pain patient's legal claim to prioritised specialist health care, the national health care system in Norway will have to establish new pain clinics and increase capacity at existing pain clinics.
Cancer-specific health-related quality of life in children with brain tumors.
Sato, Iori; Higuchi, Akiko; Yanagisawa, Takaaki; Mukasa, Akitake; Ida, Kohmei; Sawamura, Yutaka; Sugiyama, Kazuhiko; Saito, Nobuhito; Kumabe, Toshihiro; Terasaki, Mizuhiko; Nishikawa, Ryo; Ishida, Yasushi; Kamibeppu, Kiyoko
2014-05-01
To understand the influence of disease and treatment on the health-related quality of life (HRQOL) of children with brain tumors, compared to the HRQOL of children with other cancers, from the viewpoints of children and parents. A total of 133 children aged 5-18 years and 165 parents of children aged 2-18 completed questionnaires of the Pediatric Quality of Life Inventory Cancer Module (Pain and Hurt, Nausea, Procedural Anxiety, Treatment Anxiety, Worry, Cognitive Problems, Perceived Physical Appearance, and Communication scales); higher scores indicate a better HRQOL. The Cancer Module scores, weighted by age and treatment status, were compared to those obtained in a previous study of children with other cancers (mostly leukemia). The weighted mean scores for Pain and Hurt (effect size d = 0.26) and Nausea (d = 0.23) from child reports and the scores for Nausea (d = 0.28) from parent reports were higher for children with brain tumors than scores for children with other cancers. The scores for Procedural Anxiety (d = -0.22) and Treatment Anxiety (d = -0.32) from parent reports were lower for parents of children with brain tumors than the scores for parents of children with other cancers. The child-reported Pain and Hurt score of the Cancer Module was higher (d = 0.29) and in less agreement (intraclass correlation coefficient = 0.43) with scores from the Brain Tumor Module, indicating that assessments completed with the Cancer Module misesteem pain and hurt problems in children with brain tumors. The profiles of cancer-specific HRQOL in children with brain tumors differ from those of children with other cancers; we therefore suggest that these children receive specific psychological support.
Genaro, Karina; Fabris, Débora; Arantes, Ana L. F.; Zuardi, Antônio W.; Crippa, José A. S.; Prado, Wiliam A.
2017-01-01
Background: Pain involves different brain regions and is critically determined by emotional processing. Among other areas, the rostral anterior cingulate cortex (rACC) is implicated in the processing of affective pain. Drugs that interfere with the endocannabinoid system are alternatives for the management of clinical pain. Cannabidiol (CBD), a phytocannabinoid found in Cannabis sativa, has been utilized in preclinical and clinical studies for the treatment of pain. Herein, we evaluate the effects of CBD, injected either systemically or locally into the rACC, on mechanical allodynia in a postoperative pain model and on the negative reinforcement produced by relief of spontaneous incision pain. Additionally, we explored whether CBD underlies the reward of pain relief after systemic or rACC injection. Methods and Results: Male Wistar rats were submitted to a model of incision pain. All rats had mechanical allodynia, which was less intense after intraperitoneal CBD (3 and 10 mg/kg). Conditioned place preference (CPP) paradigm was used to assess negative reinforcement. Intraperitoneal CBD (1 and 3 mg/kg) inverted the CPP produced by peripheral nerve block even at doses that do not change mechanical allodynia. CBD (10 to 40 nmol/0.25 μL) injected into the rACC reduced mechanical allodynia in a dose-dependent manner. CBD (5 nmol/0.25 μL) did not change mechanical allodynia, but reduced peripheral nerve block-induced CPP, and the higher doses inverted the CPP. Additionally, CBD injected systemically or into the rACC at doses that did not change the incision pain evoked by mechanical stimulation significantly produced CPP by itself. Therefore, a non-rewarding dose of CBD in sham-incised rats becomes rewarding in incised rats, presumably because of pain relief or reduction of pain aversiveness. Conclusion: The study provides evidence that CBD influences different dimensions of the response of rats to a surgical incision, and the results establish the rACC as a brain area from which CBD evokes antinociceptive effects in a manner similar to the systemic administration of CBD. In addition, the study gives further support to the notion that the sensorial and affective dimensions of pain may be differentially modulated by CBD. PMID:28680401
Bingefors, Kerstin; Isacson, Dag
2004-10-01
Headache and musculo-skeletal pain are major public health problems. Substantial proportions of the general population report that they experience pain problems that affect their work, daily living and social life. Epidemiological studies have consistently shown that the prevalence of most pain conditions is higher in women than in men. Cross-sectional survey in the county of Uppland, Sweden, 1995. Five thousand four hundred and four completed the questionnaire (response rate=68%). In these analyses for persons aged 20-64 years 4506 were included. Back pain (22.7%) and shoulder pain (21.0%) were the most commonly reported medical problems in the population with pain in arms/legs (15.7%) in fifth and headache (12.5%) in eight place. Major gender differences were found. The prevalence of pain conditions, especially headache, was higher among women. Women reported more severe pain. Co-morbidity between pain conditions and psychiatric and somatic problems was higher among women. Health-related quality of life (SF-36) differed by gender and type of pain condition. The physical dimensions of HRQoL were more affected by headache among men; psychological dimensions were more affected among women. Among both men and women, pain conditions were associated with poorer socioeconomic conditions and life-style factors but there were gender differences. Education and unemployment were important only among men while economical difficulties, half-time work and being married were associated with pain among women. Obesity, early disability retirement, long time sick-leave and lack of exercise were associated with pain conditions generally. Factors associated with pain conditions were unevenly distributed between genders. There are major differences between men and women in the prevalence and severity of self-reported pain in the population. Biological factors may explain some of the differences but the main explanation is presumably gender disparities in work, economy, daily living, social life and expectations between women and men. Although improved working conditions are of importance, deeper societal changes are needed to reduce the inequities in pain experiences between women and men.
Kim, Jinhyung; Ryu, Sang Baek; Lee, Sung Eun; Shin, Jaewoo; Jung, Hyun Ho; Kim, Sung June; Kim, Kyung Hwan; Chang, Jin Woo
2016-03-01
Neuropathic pain is often severe. Motor cortex stimulation (MCS) is used for alleviating neuropathic pain, but the mechanism of action is still unclear. This study aimed to understand the mechanism of action of MCS by investigating pain-signaling pathways, with the expectation that MCS would regulate both descending and ascending pathways. Neuropathic pain was induced in Sprague-Dawley rats. Surface electrodes for MCS were implanted in the rats. Tactile allodynia was measured by behavioral testing to determine the effect of MCS. For the pathway study, immunohistochemistry was performed to investigate changes in c-fos and serotonin expression; micro-positron emission tomography (mPET) scanning was performed to investigate changes of glucose uptake; and extracellular electrophysiological recordings were performed to demonstrate brain activity. MCS was found to modulate c-fos and serotonin expression. In the mPET study, altered brain activity was observed in the striatum, thalamic area, and cerebellum. In the electrophysiological study, neuronal activity was increased by mechanical stimulation and suppressed by MCS. After elimination of artifacts, neuronal activity was demonstrated in the ventral posterolateral nucleus (VPL) during electrical stimulation. This neuronal activity was effectively suppressed by MCS. This study demonstrated that MCS effectively attenuated neuropathic pain. MCS modulated ascending and descending pain pathways. It regulated neuropathic pain by affecting the striatum, periaqueductal gray, cerebellum, and thalamic area, which are thought to regulate the descending pathway. MCS also appeared to suppress activation of the VPL, which is part of the ascending pathway.
Poorly controlled postoperative pain: prevalence, consequences, and prevention
Gan, Tong J
2017-01-01
This review provides an overview of the clinical issue of poorly controlled postoperative pain and therapeutic approaches that may help to address this common unresolved health-care challenge. Postoperative pain is not adequately managed in greater than 80% of patients in the US, although rates vary depending on such factors as type of surgery performed, analgesic/anesthetic intervention used, and time elapsed after surgery. Poorly controlled acute postoperative pain is associated with increased morbidity, functional and quality-of-life impairment, delayed recovery time, prolonged duration of opioid use, and higher health-care costs. In addition, the presence and intensity of acute pain during or after surgery is predictive of the development of chronic pain. More effective analgesic/anesthetic measures in the perioperative period are needed to prevent the progression to persistent pain. Although clinical findings are inconsistent, some studies of local anesthetics and nonopioid analgesics have suggested potential benefits as preventive interventions. Conventional opioids remain the standard of care for the management of acute postoperative pain; however, the risk of opioid-related adverse events can limit optimal dosing for analgesia, leading to poorly controlled acute postoperative pain. Several new opioids have been developed that modulate μ-receptor activity by selectively engaging intracellular pathways associated with analgesia and not those associated with adverse events, creating a wider therapeutic window than unselective conventional opioids. In clinical studies, oliceridine (TRV130), a novel μ-receptor G-protein pathway-selective modulator, produced rapid postoperative analgesia with reduced prevalence of adverse events versus morphine. PMID:29026331
Poorly controlled postoperative pain: prevalence, consequences, and prevention.
Gan, Tong J
2017-01-01
This review provides an overview of the clinical issue of poorly controlled postoperative pain and therapeutic approaches that may help to address this common unresolved health-care challenge. Postoperative pain is not adequately managed in greater than 80% of patients in the US, although rates vary depending on such factors as type of surgery performed, analgesic/anesthetic intervention used, and time elapsed after surgery. Poorly controlled acute postoperative pain is associated with increased morbidity, functional and quality-of-life impairment, delayed recovery time, prolonged duration of opioid use, and higher health-care costs. In addition, the presence and intensity of acute pain during or after surgery is predictive of the development of chronic pain. More effective analgesic/anesthetic measures in the perioperative period are needed to prevent the progression to persistent pain. Although clinical findings are inconsistent, some studies of local anesthetics and nonopioid analgesics have suggested potential benefits as preventive interventions. Conventional opioids remain the standard of care for the management of acute postoperative pain; however, the risk of opioid-related adverse events can limit optimal dosing for analgesia, leading to poorly controlled acute postoperative pain. Several new opioids have been developed that modulate μ-receptor activity by selectively engaging intracellular pathways associated with analgesia and not those associated with adverse events, creating a wider therapeutic window than unselective conventional opioids. In clinical studies, oliceridine (TRV130), a novel μ-receptor G-protein pathway-selective modulator, produced rapid postoperative analgesia with reduced prevalence of adverse events versus morphine.
Sankarasubramanian, Vishwanath; Cunningham, David A; Potter-Baker, Kelsey A; Beall, Erik B; Roelle, Sarah M; Varnerin, Nicole M; Machado, Andre G; Jones, Stephen E; Lowe, Mark J; Plow, Ela B
2017-04-01
The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks, whereas DLPFC stimulation modulates FC of both sensory and affective networks. Our findings when replicated in a larger group of individuals could provide useful evidence that may inform future studies on pain to differentiate between effects of M1 and DLPFC stimulation. Notably, our finding that individuals with high baseline pain thresholds experience greater FC changes with DLPFC tDCS implies the role of DLPFC in pain modulation, particularly pain tolerance.
Sankarasubramanian, Vishwanath; Cunningham, David A.; Potter-Baker, Kelsey A.; Beall, Erik B.; Roelle, Sarah M.; Varnerin, Nicole M.; Machado, Andre G.; Jones, Stephen E.; Lowe, Mark J.
2017-01-01
Abstract The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks, whereas DLPFC stimulation modulates FC of both sensory and affective networks. Our findings when replicated in a larger group of individuals could provide useful evidence that may inform future studies on pain to differentiate between effects of M1 and DLPFC stimulation. Notably, our finding that individuals with high baseline pain thresholds experience greater FC changes with DLPFC tDCS implies the role of DLPFC in pain modulation, particularly pain tolerance. PMID:28142257
Swimming Training Reduces Neuroma Pain by Regulating Neurotrophins
TIAN, JINGE; YU, TINGTING; XU, YONGMING; PU, SHAOFENG; LV, YINGYING; ZHANG, XIN; DU, DONGPING
2018-01-01
ABSTRACT Introduction Neuroma formation after peripheral nerve transection leads to severe neuropathic pain in amputees. Previous studies suggested that physical exercise could bring beneficial effect on alleviating neuropathic pain. However, the effect of exercise on neuroma pain still remained unclear. In addition, long-term exercise can affect the expression of neurotrophins (NT), such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which play key roles in nociceptor sensitization and nerve sprouting after nerve injury. Here, we investigated whether long-term swimming exercise could relieve neuroma pain by modulating NT expression. Methods We used a tibial neuroma transposition (TNT) rat model to mimic neuroma pain. After TNT surgery, rats performed swimming exercise for 5 wk. Neuroma pain and tactile sensitivities were detected using von Frey filaments. Immunofluorescence was applied to analyze neuroma formation. NGF and BDNF expressions in peripheral neuroma, dorsal root ganglion, and the spinal cord were measured using enzyme-linked immunosorbent assay and Western blotting. Results TNT led to neuroma formation, induced neuroma pain, and mechanical allodynia in hind paw. Five-week swimming exercise inhibited neuroma formation and relieved mechanical allodynia in the hind paw and neuroma pain in the lateral ankle. The analgesic effect lasted for at least 1 wk, even when the exercise ceased. TNT elevated the expressions of BDNF and NGF in peripheral neuroma, dorsal root ganglion, and the spinal cord to different extents. Swimming also decreased the elevation of NT expression. Conclusions Swimming exercise not only inhibits neuroma formation induced by nerve transection but also relieves pain behavior. These effects might be associated with the modulation of NT. PMID:28846565
Swimming Training Reduces Neuroma Pain by Regulating Neurotrophins.
Tian, Jinge; Yu, Tingting; Xu, Yongming; Pu, Shaofeng; Lv, Yingying; Zhang, Xin; DU, Dongping
2018-01-01
Neuroma formation after peripheral nerve transection leads to severe neuropathic pain in amputees. Previous studies suggested that physical exercise could bring beneficial effect on alleviating neuropathic pain. However, the effect of exercise on neuroma pain still remained unclear. In addition, long-term exercise can affect the expression of neurotrophins (NT), such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which play key roles in nociceptor sensitization and nerve sprouting after nerve injury. Here, we investigated whether long-term swimming exercise could relieve neuroma pain by modulating NT expression. We used a tibial neuroma transposition (TNT) rat model to mimic neuroma pain. After TNT surgery, rats performed swimming exercise for 5 wk. Neuroma pain and tactile sensitivities were detected using von Frey filaments. Immunofluorescence was applied to analyze neuroma formation. NGF and BDNF expressions in peripheral neuroma, dorsal root ganglion, and the spinal cord were measured using enzyme-linked immunosorbent assay and Western blotting. TNT led to neuroma formation, induced neuroma pain, and mechanical allodynia in hind paw. Five-week swimming exercise inhibited neuroma formation and relieved mechanical allodynia in the hind paw and neuroma pain in the lateral ankle. The analgesic effect lasted for at least 1 wk, even when the exercise ceased. TNT elevated the expressions of BDNF and NGF in peripheral neuroma, dorsal root ganglion, and the spinal cord to different extents. Swimming also decreased the elevation of NT expression. Swimming exercise not only inhibits neuroma formation induced by nerve transection but also relieves pain behavior. These effects might be associated with the modulation of NT.
Chapman, C Richard; Vierck, Charles J
2017-04-01
The nature of the transition from acute to chronic pain still eludes explanation, but chronic pain resulting from surgery provides a natural experiment that invites clinical epidemiological investigation and basic scientific inquiry into the mechanisms of this transition. The primary purpose of this article is to review current knowledge and hypotheses on the transition from acute to persistent postsurgical pain, summarizing literature on clinical epidemiological studies of persistent postsurgical pain development, as well as basic neurophysiological studies targeting mechanisms in the periphery, spinal cord, and brain. The second purpose of this article is to integrate theory, information, and causal reasoning in these areas. Conceptual mapping reveals 5 classes of hypotheses pertaining to pain. These propose that chronic pain results from: 1) persistent noxious signaling in the periphery; 2) enduring maladaptive neuroplastic changes at the spinal dorsal horn and/or higher central nervous system structures reflecting a multiplicity of factors, including peripherally released neurotrophic factors and interactions between neurons and microglia; 3) compromised inhibitory modulation of noxious signaling in medullary-spinal pathways; 4) descending facilitatory modulation; and 5) maladaptive brain remodeling in function, structure, and connectivity. The third purpose of this article is to identify barriers to progress and review opportunities for advancing the field. This review reveals a need for a concerted, strategic effort toward integrating clinical epidemiology, basic science research, and current theory about pain mechanisms to hasten progress toward understanding, managing, and preventing persistent postsurgical pain. The development of chronic pain after surgery is a major clinical problem that provides an opportunity to study the transition from acute to chronic pain at epidemiologic and basic science levels. Strategic, coordinated, multidisciplinary research efforts targeting mechanisms of pain chronification can to help minimize or eliminate persistent postsurgical pain. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Sonesson, Mikael; De Geer, Emelie; Subraian, Jaqueline; Petrén, Sofia
2016-07-07
Recently low-level laser therapy (LLLT) has been proposed to improve orthodontic treatment. The aims of this systematic review were to investigate the scientific evidence to support applications of LLLT: (a) to accelerate tooth movement, (b) to prevent orthodontic relapse and (c) to modulate acute pain, during treatment with fixed appliances in children and young adults. To ensure a systematic literature approach, this systematic review was conducted to Goodman's four step model. Three databases were searched (Medline, Cochrane Controlled Clinical Trials Register and Scitation), using predetermined search terms. The quality of evidence was rated according to the GRADE system. The search identified 244 articles, 16 of which fulfilled the inclusion criteria: three on acceleration of tooth movement by LLLT and 13 on LLLT modulation of acute pain. No study on LLLT for prevention of relapse was identified. The selected studies reported promising results for LLLT; elevated acceleration of tooth movement and lower pain scores, than controls. With respect to method, there were wide variations in type of laser techniques. The quality of evidence supporting LLLT to accelerate orthodontic tooth movement is very low and low with respect to modulate acute pain. No studies met the inclusion criteria for evaluating LLLT to limit relapse. The results highlight the need for high quality research, with consistency in study design, to determine whether LLLT can enhance fixed appliance treatment in children and young adults.
Sex differences underlying orofacial varicella zoster associated pain in rats.
Stinson, Crystal; Deng, Mohong; Yee, Michael B; Bellinger, Larry L; Kinchington, Paul R; Kramer, Phillip R
2017-05-17
Most people are initially infected with varicella zoster virus (VZV) at a young age and this infection results in chickenpox. VZV then becomes latent and reactivates later in life resulting in herpes zoster (HZ) or "shingles". Often VZV infects neurons of the trigeminal ganglia to cause ocular problems, orofacial disease and occasionally a chronic pain condition termed post-herpetic neuralgia (PHN). To date, no model has been developed to study orofacial pain related to varicella zoster. Importantly, the incidence of zoster associated pain and PHN is known to be higher in women, although reasons for this sex difference remain unclear. Prior to this work, no animal model was available to study these sex-differences. Our goal was to develop an orofacial animal model for zoster associated pain which could be utilized to study the mechanisms contributing to this sex difference. To develop this model VZV was injected into the whisker pad of rats resulting in IE62 protein expression in the trigeminal ganglia; IE62 is an immediate early gene in the VZV replication program. Similar to PHN patients, rats showed retraction of neurites after VZV infection. Treatment of rats with gabapentin, an agent often used to combat PHN, ameliorated the pain response after whisker pad injection. Aversive behavior was significantly greater for up to 7 weeks in VZV injected rats over control inoculated rats. Sex differences were also seen such that ovariectomized and intact female rats given the lower dose of VZV showed a longer affective response than male rats. The phase of the estrous cycle also affected the aversive response suggesting a role for sex steroids in modulating VZV pain. These results suggest that this rat model can be utilized to study the mechanisms of 1) orofacial zoster associated pain and 2) the sex differences underlying zoster associated pain.
Chen, Chao-Jin; Liu, De-Zhao; Yao, Wei-Feng; Gu, Yu; Huang, Fei; Hei, Zi-Qing; Li, Xiang
2017-01-01
Neuropathic pain is a complex chronic condition occurring post-nervous system damage. The transcriptional reprogramming of injured dorsal root ganglia (DRGs) drives neuropathic pain. However, few comparative analyses using high-throughput platforms have investigated uninjured DRG in neuropathic pain, and potential interactions among differentially expressed genes (DEGs) and pathways were not taken into consideration. The aim of this study was to identify changes in genes and pathways associated with neuropathic pain in uninjured L4 DRG after L5 spinal nerve ligation (SNL) by using bioinformatic analysis. The microarray profile GSE24982 was downloaded from the Gene Expression Omnibus database to identify DEGs between DRGs in SNL and sham rats. The prioritization for these DEGs was performed using the Toppgene database followed by gene ontology and pathway enrichment analyses. The relationships among DEGs from the protein interactive perspective were analyzed using protein-protein interaction (PPI) network and module analysis. Real-time polymerase chain reaction (PCR) and Western blotting were used to confirm the expression of DEGs in the rodent neuropathic pain model. A total of 206 DEGs that might play a role in neuropathic pain were identified in L4 DRG, of which 75 were upregulated and 131 were downregulated. The upregulated DEGs were enriched in biological processes related to transcription regulation and molecular functions such as DNA binding, cell cycle, and the FoxO signaling pathway. Ctnnb1 protein had the highest connectivity degrees in the PPI network. The in vivo studies also validated that mRNA and protein levels of Ctnnb1 were upregulated in both L4 and L5 DRGs. This study provides insight into the functional gene sets and pathways associated with neuropathic pain in L4 uninjured DRG after L5 SNL, which might promote our understanding of the molecular mechanisms underlying the development of neuropathic pain.
Albrecht, Phillip J; Hou, Quanzhi; Argoff, Charles E; Storey, James R; Wymer, James P; Rice, Frank L
2013-06-01
To determine if peripheral neuropathology exists among the innervation of cutaneous arterioles and arteriole-venule shunts (AVS) in fibromyalgia (FM) patients. Cutaneous arterioles and AVS receive a convergence of vasoconstrictive sympathetic innervation, and vasodilatory small-fiber sensory innervation. Given our previous findings of peripheral pathologies in chronic pain conditions, we hypothesized that this vascular location may be a potential site of pathology and/or serotonergic and norepinephrine reuptake inhibitors (SNRI) drug action. Twenty-four female FM patients and nine female healthy control subjects were enrolled for study, with 14 additional female control subjects included from previous studies. AVS were identified in hypothenar skin biopsies from 18/24 FM patient and 14/23 control subjects. Multimolecular immunocytochemistry to assess different types of cutaneous innervation in 3 mm skin biopsies from glabrous hypothenar and trapezius regions. AVS had significantly increased innervation among FM patients. The excessive innervation consisted of a greater proportion of vasodilatory sensory fibers, compared with vasoconstrictive sympathetic fibers. In contrast, sensory and sympathetic innervation to arterioles remained normal. Importantly, the sensory fibers express α2C receptors, indicating that the sympathetic innervation exerts an inhibitory modulation of sensory activity. The excessive sensory innervation to the glabrous skin AVS is a likely source of severe pain and tenderness in the hands of FM patients. Importantly, glabrous AVS regulate blood flow to the skin in humans for thermoregulation and to other tissues such as skeletal muscle during periods of increased metabolic demand. Therefore, blood flow dysregulation as a result of excessive innervation to AVS would likely contribute to the widespread deep pain and fatigue of FM. SNRI compounds may provide partial therapeutic benefit by enhancing the impact of sympathetically mediated inhibitory modulation of the excess sensory innervation. Wiley Periodicals, Inc.
Tesarz, Jonas; Gerhardt, Andreas; Leisner, Sabine; Janke, Susanne; Hartmann, Mechthild; Seidler, Günther H; Eich, Wolfgang
2013-08-30
Non-specific chronic back pain (CBP) is often accompanied by psychological trauma, but treatment for this associated condition is often insufficient.Nevertheless, despite the common co-occurrence of pain and psychological trauma, a specific trauma-focused approach for treating CBP has been neglected to date. Accordingly, eye movement desensitization and reprocessing (EMDR), originally developed as a treatment approach for posttraumatic stress disorders, is a promising approach for treating CBP in patients who have experienced psychological trauma.Thus, the aim of this study is to determine whether a standardized, short-term EMDR intervention added to treatment as usual (TAU) reduces pain intensity in CBP patients with psychological trauma vs. TAU alone. The study will recruit 40 non-specific CBP patients who have experienced psychological trauma. After a baseline assessment, the patients will be randomized to either an intervention group (n = 20) or a control group (n = 20). Individuals in the EMDR group will receive ten 90-minute sessions of EMDR fortnightly in addition to TAU. The control group will receive TAU alone. The post-treatment assessments will take place two weeks after the last EMDR session and six months later.The primary outcome will be the change in the intensity of CBP within the last four weeks (numeric rating scale 0-10) from the pre-treatment assessment to the post-treatment assessment two weeks after the completion of treatment.In addition, the patients will undergo a thorough assessment of the change in the experience of pain, disability, trauma-associated distress, mental co-morbidities, resilience, and quality of life to explore distinct treatment effects. To explore the mechanisms of action that are involved, changes in pain perception and pain processing (quantitative sensory testing, conditioned pain modulation) will also be assessed.The statistical analysis of the primary outcome will be performed on an intention-to-treat basis. The secondary outcomes will be analyzed in an explorative, descriptive manner. This study adapts the standard EMDR treatment for traumatized patients to patients with CBP who have experienced psychological trauma. This specific, mechanism-based approach might benefit patients. This trial has been registered with ClinicalTrials.gov (NCT01850875).
2013-01-01
Background Non-specific chronic back pain (CBP) is often accompanied by psychological trauma, but treatment for this associated condition is often insufficient. Nevertheless, despite the common co-occurrence of pain and psychological trauma, a specific trauma-focused approach for treating CBP has been neglected to date. Accordingly, eye movement desensitization and reprocessing (EMDR), originally developed as a treatment approach for posttraumatic stress disorders, is a promising approach for treating CBP in patients who have experienced psychological trauma. Thus, the aim of this study is to determine whether a standardized, short-term EMDR intervention added to treatment as usual (TAU) reduces pain intensity in CBP patients with psychological trauma vs. TAU alone. Methods/design The study will recruit 40 non-specific CBP patients who have experienced psychological trauma. After a baseline assessment, the patients will be randomized to either an intervention group (n = 20) or a control group (n = 20). Individuals in the EMDR group will receive ten 90-minute sessions of EMDR fortnightly in addition to TAU. The control group will receive TAU alone. The post-treatment assessments will take place two weeks after the last EMDR session and six months later. The primary outcome will be the change in the intensity of CBP within the last four weeks (numeric rating scale 0–10) from the pre-treatment assessment to the post-treatment assessment two weeks after the completion of treatment. In addition, the patients will undergo a thorough assessment of the change in the experience of pain, disability, trauma-associated distress, mental co-morbidities, resilience, and quality of life to explore distinct treatment effects. To explore the mechanisms of action that are involved, changes in pain perception and pain processing (quantitative sensory testing, conditioned pain modulation) will also be assessed. The statistical analysis of the primary outcome will be performed on an intention-to-treat basis. The secondary outcomes will be analyzed in an explorative, descriptive manner. Discussion This study adapts the standard EMDR treatment for traumatized patients to patients with CBP who have experienced psychological trauma. This specific, mechanism-based approach might benefit patients. Trial registration This trial has been registered with ClinicalTrials.gov (NCT01850875). PMID:23987561
Freitas, K; Negus, SS; Carroll, FI; Damaj, MI
2013-01-01
Background and Purpose The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU-120596 induces antinociception on its own and in combination with choline in the formalin pain model. Experimental Approach We assessed the effects of PNU-120596 and choline and the nature of their interactions in the formalin test using an isobolographic analysis. In addition, we evaluated the interaction of PNU-120596 with PHA-54613, an exogenous selective α7 nAChR agonist, in the formalin test. Finally, we assessed the interaction between PNU-120596 and nicotine using acute thermal pain, locomotor activity, body temperature and convulsing activity tests in mice. Key Results We found that PNU-120596 dose-dependently attenuated nociceptive behaviour in the formalin test after systemic administration in mice. In addition, mixtures of PNU-120596 and choline synergistically reduced formalin-induced pain. PNU-120596 enhanced the effects of nicotine and α7 agonist PHA-543613 in the same test. In contrast, PNU-120596 failed to enhance nicotine-induced convulsions, hypomotility and antinociception in acute pain models. Surprisingly, it enhanced nicotine-induced hypothermia via activation of α7 nAChRs. Conclusions and Implications Our results demonstrate that type II α7 positive allosteric modulators produce antinociceptive effects in the formalin test through a synergistic interaction with the endogenous α7 agonist choline. PMID:23004024
Griffiths, Lisa A; Flatters, Sarah J L
2015-10-01
Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.