40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test...
40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test...
40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test...
40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test...
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...
Code of Federal Regulations, 2012 CFR
2012-07-01
... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...
Code of Federal Regulations, 2014 CFR
2014-07-01
... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...
40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.162-03 Approval of alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own...
NASA Astrophysics Data System (ADS)
Zhou, Jun; Shen, Li; Zhang, Tianhong
2016-12-01
Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.
NASA Astrophysics Data System (ADS)
Kim, J. K.; Kim, M. S.; Yang, D. Y.
2017-12-01
Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.
Simulation study on the maximum continuous working condition of a power plant boiler
NASA Astrophysics Data System (ADS)
Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo
2018-05-01
First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard
2016-05-01
This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard
2016-05-12
This report describes the third set of tests (the “DCL a shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.
Lunar Polar Environmental Testing: Regolith Simulant Conditioning
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie
2014-01-01
As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exhaust emission results of air conditioning operation in an environmental test cell by adding additional... conditioning operation in an environmental test cell by adding a heat load to the passenger compartment. The... the simulation matches environmental cell test data for the range of vehicles to be covered by the...
Thermal performance of MSFC hot air collectors under natural and simulated conditions
NASA Technical Reports Server (NTRS)
Shih, K., Sr.
1977-01-01
The procedures used and the results obtained from an evaluation test program conducted to determine the thermal performance and structural characteristics of selected MSFC--designed hot air collectors under both real and simulated environmental conditions are described. Five collectors were tested in the three phased program. A series of outdoor tests were conducted to determine stagnation temperatures on a typical bright day and to determine each collector's ability to withstand these temperatures. Two of the collectors experienced structural deformation sufficient to eliminate them from the remainder of the test program. A series of outdoor tests to evaluate the thermal performance of collector S/N 10 under certain test conditions were performed followed by a series of indoor tests to evaluate the thermal performance of the collector under closely controlled simulated conditions.
Hybrid water immersion simulation of manual IVA performance in weightlessness
NASA Technical Reports Server (NTRS)
Loats, H. L., Jr.; Mattingly, G. S.
1971-01-01
A description is given of the development, tests, and analysis of a manual simulator. The simulator was developed to test mass handling and translation under weightlessness conditions by a test subject. The system is composed of a hybrid simulator with a combination of water immersion and mechanical, Peter Pan, simulation. The concept operates on the equivalence principle, with the subject and the cargo remaining quasi-stationary. Movement is effected through a moving device controlled through force by the subject. Motion response is determined through computations of the inertial movement under such conditions.
Xue, Ligang; Mikkelsen, Kristian Handberg
2013-03-01
The objective of this study was to assess the dose accuracy of NovoPen® 5 in delivering low, medium and high doses of insulin before and after simulated lifetime use. A secondary objective was to evaluate the durability of the pen and its memory function under various stress conditions designed to simulate conditions that may be encountered in everyday use of an insulin pen. All testing was conducted according to International Organization for Standardization guideline 11608-1, 2000 for pen injectors. Dose accuracy was measured for the delivery of 1 unit (U) (10 mg), 30 U (300 mg) and 60 U (600 mg) test medium in standard, cool and hot conditions and before and after simulated lifetime use. Dose accuracy was also tested after preconditioning in dry heat storage; cold storage; damp cyclical heat; shock, bump and vibration; free fall and after electrostatic charge and radiated field test. Memory function was tested under all temperature and physical conditions. NovoPen 5 maintained dosing accuracy and memory function at minimum, medium and maximum doses in standard, cool and hot conditions, stress tests and simulated lifetime use. The pens remained intact and retained dosing accuracy and a working memory function at all doses after exposure to variations in temperature and after physical challenge. NovoPen 5 was accurate at all doses tested and under various functionality tests. Its durable design ensured that the dose accuracy and memory function were retained under conditions of stress likely to be encountered in everyday use.
Development of hybrid electric vehicle powertrain test system based on virtue instrument
NASA Astrophysics Data System (ADS)
Xu, Yanmin; Guo, Konghui; Chen, Liming
2017-05-01
Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.
NASA Astrophysics Data System (ADS)
Niazi, A.; Bentley, L. R.; Hayashi, M.
2016-12-01
Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.
NASA Astrophysics Data System (ADS)
Rybus, Tomasz; Seweryn, Karol
2016-03-01
All devices designed to be used in space must be thoroughly tested in relevant conditions. For several classes of devices the reduced gravity conditions are the key factor. In early stages of development and later due to financial reasons, the tests need to be done on Earth. However, in Earth conditions it is impossible to obtain a different gravity field independent on all linear and rotational spatial coordinates. Therefore, various test-bed systems are used, with their design driven by the device's specific needs. One of such test-beds are planar air-bearing microgravity simulators. In such an approach, the tested objects (e.g., manipulators intended for on-orbit operations or vehicles simulating satellites in a close formation flight) are mounted on planar air-bearings that allow almost frictionless motion on a flat surface, thus simulating microgravity conditions in two dimensions. In this paper we present a comprehensive review of research activities related to planar air-bearing microgravity simulators, demonstrating achievements of the most active research groups and describing newest trends and ideas, such as tests of landing gears for low-g bodies. Major design parameters of air-bearing test-beds are also reviewed and a list of notable existing test-beds is presented.
Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.; Mark, Stephen D.
2018-01-01
The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.
NASA Astrophysics Data System (ADS)
Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng
2017-04-01
For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.
Properties of Syntactic Foam for Simulation of Mechanical Insults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Neal Benson; Haulenbeek, Kimberly K.; Spletzer, Matthew A.
Syntactic foam encapsulation protects sensitive components. The energy mitigated by the foam is calculated with numerical simulations. The properties of a syntactic foam consisting of a mixture of an epoxy-rubber adduct and glass microballoons are obtained from published literature and test results. The conditions and outcomes of the tests are discussed. The method for converting published properties and test results to input for finite element models is described. Simulations of the test conditions are performed to validate the inputs.
Dziuda, Lukasz; Biernacki, Marcin P; Baran, Paulina M; Truszczyński, Olaf E
2014-05-01
In the study, we checked: 1) how the simulator test conditions affect the severity of simulator sickness symptoms; 2) how the severity of simulator sickness symptoms changes over time; and 3) whether the conditions of the simulator test affect the severity of these symptoms in different ways, depending on the time that has elapsed since the performance of the task in the simulator. We studied 12 men aged 24-33 years (M = 28.8, SD = 3.26) using a truck simulator. The SSQ questionnaire was used to assess the severity of the symptoms of simulator sickness. Each of the subjects performed three 30-minute tasks running along the same route in a driving simulator. Each of these tasks was carried out in a different simulator configuration: A) fixed base platform with poor visibility; B) fixed base platform with good visibility; and C) motion base platform with good visibility. The measurement of the severity of the simulator sickness symptoms took place in five consecutive intervals. The results of the analysis showed that the simulator test conditions affect in different ways the severity of the simulator sickness symptoms, depending on the time which has elapsed since performing the task on the simulator. The simulator sickness symptoms persisted at the highest level for the test conditions involving the motion base platform. Also, when performing the tasks on the motion base platform, the severity of the simulator sickness symptoms varied depending on the time that had elapsed since performing the task. Specifically, the addition of motion to the simulation increased the oculomotor and disorientation symptoms reported as well as the duration of the after-effects. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Trudel, Ken; Belore, Randy C; Mullin, Joseph V; Guarino, Alan
2010-09-01
This study determined the limiting oil viscosity for chemical dispersion of oil spills under simulated sea conditions in the large outdoor wave tank at the US National Oil Spill Response Test Facility in New Jersey. Dispersant effectiveness tests were completed using crude oils with viscosities ranging from 67 to 40,100 cP at test temperature. Tests produced an effectiveness-viscosity curve with three phases when oil was treated with Corexit 9500 at a dispersant-to-oil ratio of 1:20. The oil viscosity that limited chemical dispersion under simulated at-sea conditions was in the range of 18,690 cP to 33,400 cP. Visual observations and measurements of oil concentrations and droplet size distributions in the water under treated and control slicks correlated well with direct measurements of effectiveness. The dispersant effectiveness versus oil viscosity relationship under simulated at sea conditions at Ohmsett was most similar to those from similar tests made using the Institut Francais du Pétrole and Exxon Dispersant Effectiveness (EXDET) test methods. Copyright 2010 Elsevier Ltd. All rights reserved.
Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.
2015-01-01
NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.
Effect of extraoral aging conditions on mechanical properties of maxillofacial silicone elastomer.
Hatamleh, Muhanad M; Polyzois, Gregory L; Silikas, Nick; Watts, David C
2011-08-01
The purpose of this study was to investigate the effect of extraoral human and environmental conditions on the mechanical properties (tensile strength and modulus, elongation, tear strength hardness) of maxillofacial silicone elastomer. Specimens were fabricated using TechSil-S25 silicone elastomer (Technovent Ltd, Leeds, UK). Eight groups were prepared (21 specimens in each group; eight tensile, eight tear, five hardness) and conditioned differently as follows (groups 1 through 8): Dry storage for 24 hours; dry storage in dark for 6 months; storage in simulated sebum solution for 6 months; storage in simulated acidic perspiration for 6 months; accelerated artificial daylight aging under controlled moisture for 360 hours; outdoor weathering for 6 months; storage in antimicrobial silicone-cleaning solution for 30 hours; and mixed conditioning of sebum storage and light aging for 360 hours. The conditioning period selected simulated a prosthesis being in service for up to 12 months. Tensile and tear test specimens were fabricated and tested according to the International Standards Organization (ISO) standards no. 37 and 34, respectively. Shore A hardness test specimens were fabricated and tested according to the American Standards for Testing and Materials (ASTM) D 2240. Data were analyzed with one-way ANOVA, Bonferroni, and Dunnett's T3 post hoc tests (p < 0.05). Weibull analysis was also used for tensile strength and tear strength. Statistically significant differences were evident among all properties tested. Mixed conditioning of simulated sebum storage under accelerated artificial daylight aging significantly degraded mechanical properties of the silicone (p < 0.05). Mechanical properties of maxillofacial elastomers are adversely affected by human and environmental factors. Mixed aging of storage in simulated sebum under accelerated daylight aging was the most degrading regime. Accelerated aging of silicone specimens in simulated sebum under artificial daylight for 12 months of simulated clinical service greatly affected functional properties of silicone elastomer; however, in real practice, the effect is modest, since sebum concentration is lower, and daylight is less concentrated. © 2011 by The American College of Prosthodontists.
Design data package and operating procedures for MSFC solar simulator test facility
NASA Technical Reports Server (NTRS)
1981-01-01
Design and operational data for the solar simulator test facility are reviewed. The primary goal of the facility is to evaluate the performance capacibility and worst case failure modes of collectors, which utilize either air or liquid transport media. The facility simulates environmental parameters such as solar radiation intensity, solar spectrum, collimation, uniformity, and solar attitude. The facility also simulates wind conditions of velocity and direction, solar system conditions imposed on the collector, collector fluid inlet temperature, and geometric factors of collector tilt and azimuth angles. Testing the simulator provides collector efficiency data, collector time constant, incident angle modifier data, and stagnation temperature values.
Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2017-01-01
To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.
Advanced development receiver thermal vacuum tests with cold wall
NASA Technical Reports Server (NTRS)
Sedgwick, Leigh M.
1991-01-01
The first ever testing of a full size solar dynamic heat receiver using high temperature thermal energy storage was completed. The heat receiver was designed to meet the requirements for operation on the Space Station Freedom. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partially simulate a low Earth orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to produce flux distributions typical of candidate concentrators. A closed Brayton cycle engine simulator conditioned a helium xenon gas mixture to specific interface conditions to simulate various operational modes of the solar dynamic power module. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles were completed during the test conduct period. The test hardware, execution of testing, test data, and post test inspections are described.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1980-01-01
Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.
Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M
2016-01-01
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. PMID:27160559
Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M
2016-05-01
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. © IMechE 2016.
Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model
NASA Technical Reports Server (NTRS)
Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.
1975-01-01
Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.
Pyro shock simulation: Experience with the MIPS simulator
NASA Technical Reports Server (NTRS)
Dwyer, Thomas J.; Moul, David S.
1988-01-01
The Mechanical Impulse Pyro Shock (MIPS) Simulator at GE Astro Space Division is one version of a design that is in limited use throughout the aerospace industry, and is typically used for component shock testing at levels up to 10,000 response g's. Modifications to the force imput, table and component boundary conditions have allowed a range of test conditions to be achieved. Twelve different designs of components with weights up to 23 Kg are in the process or have completed qualification testing in the Dynamic Simulation Lab at GE in Valley Forge, Pa. A summary of the experience gained through the use of this simulator is presented as well as examples of shock experiments that can be readily simulated at the GE Astro MIPS facility.
Conditional Tests for Localizing Trait Genes
Di, Yanming; Thompson, Elizabeth A.
2009-01-01
Background/Aims With pedigree data, genetic linkage can be detected using inheritance vector tests, which explore the discrepancy between the posterior distribution of the inheritance vectors given observed trait values and the prior distribution of the inheritance vectors. In this paper, we propose conditional inheritance vector tests for linkage localization. These conditional tests can also be used to detect additional linkage signals in the presence of previously detected causal genes. Methods For linkage localization, we propose to perform inheritance vector tests conditioning on the inheritance vectors at two positions bounding a test region. We can detect additional linkage signals by conducting a further conditional test in a region with no previously detected genes. We use randomized p values to extend the marginal and conditional tests when the inheritance vectors cannot be completely determined from genetic marker data. Results We conduct simulation studies to compare and contrast the marginal and the conditional tests and to demonstrate that randomized p values can capture both the significance and the uncertainty in the test results. Conclusions The simulation results demonstrate that the proposed conditional tests provide useful localization information, and with informative marker data, the uncertainty in randomized marginal and conditional test results is small. PMID:19439976
NASA Technical Reports Server (NTRS)
Johnson, Kenneth R.
1997-01-01
The Mars Pathfinder (MPF) Spacecraft was built and tested at the Jet Propulsion Laboratory during 1995/96. MPF is scheduled to launch in December 1996 and to land on Mars on July 4, 1997. The testing program for MPF required subjecting the mission hardware to both deep space and Mars surface conditions. A series of tests were devised and conducted from 1/95 to 7/96 to study the thermal response of the MPF spacecraft to the environmental conditions in which it will be exposed during the cruise phase (on the way to Mars) and the lander phase (landed on Mars) of the mission. Also, several tests were conducted to study the thermal characteristics of the Mars rover, Sojourner, under Mars surface environmental conditions. For these tests, several special test fixtures and methods were devised to simulate the required environmental conditions. Creating simulated Mars surface conditions was a challenging undertaking since Mars' surface is subjected to diurnal cycling between -20 C and -85 C, with windspeeds to 20 m/sec, occurring in an 8 torr CO2 atmosphere. This paper describes the MPF test program which was conducted at JPL to verify the MPF thermal design.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, Thomas W.
1991-01-01
The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.
NASA Technical Reports Server (NTRS)
Collins, Jacob; Hurlbert, Eric; Romig, Kris; Melcher, John; Hobson, Aaron; Eaton, Phil
2009-01-01
A 1,500 lbf thrust-class liquid oxygen (LO2)/Liquid Methane (LCH4) rocket engine was developed and tested at both sea-level and simulated altitude conditions. The engine was fabricated by Armadillo Aerospace (AA) in collaboration with NASA Johnson Space Center. Sea level testing was conducted at Armadillo Aerospace facilities at Caddo Mills, TX. Sea-level tests were conducted using both a static horizontal test bed and a vertical take-off and landing (VTOL) test bed capable of lift-off and hover-flight in low atmosphere conditions. The vertical test bed configuration is capable of throttling the engine valves to enable liftoff and hover-flight. Simulated altitude vacuum testing was conducted at NASA Johnson Space Center White Sands Test Facility (WSTF), which is capable of providing altitude simulation greater than 120,000 ft equivalent. The engine tests demonstrated ignition using two different methods, a gas-torch and a pyrotechnic igniter. Both gas torch and pyrotechnic ignition were demonstrated at both sea-level and vacuum conditions. The rocket engine was designed to be configured with three different nozzle configurations, including a dual-bell nozzle geometry. Dual-bell nozzle tests were conducted at WSTF and engine performance data was achieved at both ambient pressure and simulated altitude conditions. Dual-bell nozzle performance data was achieved over a range of altitude conditions from 90,000 ft to 50,000 ft altitude. Thrust and propellant mass flow rates were measured in the tests for specific impulse (Isp) and C* calculations.
40 CFR 86.000-2 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with air conditioning operating in an environmental test cell by adding the air conditioning compressor... simulates testing with air conditioning operating in an environmental test cell by adding a heat load to the... appendix I, paragraph (a), of this part. Environmental test cell means a test cell capable of wind-speed...
40 CFR 86.000-2 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with air conditioning operating in an environmental test cell by adding the air conditioning compressor... simulates testing with air conditioning operating in an environmental test cell by adding a heat load to the... appendix I, paragraph (a), of this part. Environmental test cell means a test cell capable of wind-speed...
40 CFR 86.000-2 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... with air conditioning operating in an environmental test cell by adding the air conditioning compressor... simulates testing with air conditioning operating in an environmental test cell by adding a heat load to the... appendix I, paragraph (a), of this part. Environmental test cell means a test cell capable of wind-speed...
NASA Technical Reports Server (NTRS)
Hewes, D. E.; Glover, K. E.
1975-01-01
A Skylab experiment was conducted to study the maneuvering capabilities of astronauts using a relatively simple self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. Some of the special considerations given in the definition and development of the experiment as related to the two ground-based simulators are reviewed. These simulators were used to train the test subjects and to obtain baseline data which could be used for comparison with the in-flight tests that were performed inside the Skylab orbital workshop. The results of both premission and postmission tests are discussed, and subjective comparisons of the in-flight and ground-based test conditions are presented.
Simulation and flight test evaluation of head-up-display guidance for harrier approach transitions
NASA Technical Reports Server (NTRS)
Dorr, D. W.; Moralez, E., III; Merrick, V. K.
1994-01-01
Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, whereas the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was level-3, averaged Copper-Harper handling qualities ratings given during simulation were level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.
Tribology and total hip joint replacement: current concepts in mechanical simulation.
Affatato, S; Spinelli, M; Zavalloni, M; Mazzega-Fabbro, C; Viceconti, M
2008-12-01
Interest in the rheology and effects of interacting surfaces is as ancient as man. This subject can be represented by a recently coined word: tribology. This term is derived from the Greek word "tribos" and means the "science of rubbing". Friction, lubrication, and wear mechanism in the common English language means the precise field of interest of tribology. Wear of total hip prosthesis is a significant clinical problem that involves, nowadays, a too high a number of patients. In order to acquire further knowledge on the tribological phenomena that involve hip prosthesis wear tests are conducted on employed materials to extend lifetime of orthopaedic implants. The most basic type of test device is the material wear machine, however, a more advanced one may more accurately reproduce some of the in vivo conditions. Typically, these apparatus are called simulators, and, while there is no absolute definition of a joint simulator, its description as a mechanical rig used to test a joint replacement, under conditions approximating those occurring in the human body, is acceptable. Simulator tests, moreover, can be used to conduct accelerated protocols that replicate/simulate particularly extreme conditions, thus establishing the limits of performance for the material. Simulators vary in their level of sophistication and the international literature reveals many interpretations of the design of machines used for joint replacement testing. This paper aims to review the current state of the art of the hip joint simulators worldwide. This is specified through a schematic overview by describing, in particular, constructive solutions adopted to reproduce in vivo conditions. An exhaustive commentary on the evolution and actually existing simulation standards is proposed by the authors. The need of a shared protocol among research laboratories all over the world could lead to a consensus conference.
Validation of structural analysis methods using the in-house liner cyclic rigs
NASA Technical Reports Server (NTRS)
Thompson, R. L.
1982-01-01
Test conditions and variables to be considered in each of the test rigs and test configurations, and also used in the validation of the structural predictive theories and tools, include: thermal and mechanical load histories (simulating an engine mission cycle; different boundary conditions; specimens and components of different dimensions and geometries; different materials; various cooling schemes and cooling hole configurations; several advanced burner liner structural design concepts; and the simulation of hot streaks. Based on these test conditions and test variables, the test matrices for each rig and configurations can be established to verify the predictive tools over as wide a range of test conditions as possible using the simplest possible tests. A flow chart for the thermal/structural analysis of a burner liner and how the analysis relates to the tests is shown schematically. The chart shows that several nonlinear constitutive theories are to be evaluated.
Hazard-Free Pyrotechnic Simulator
NASA Technical Reports Server (NTRS)
Mcalister, William B., Jr.
1988-01-01
Simulator evaluates performance of firing circuits for electroexplosive devices (EED's) safely and inexpensively. Tests circuits realistically when pyrotechnic squibs not connected and eliminates risks of explosions. Used to test such devices as batteries where test conditions might otherwise degrade them.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
Tabulated data from wind tunnel tests conducted to evaluate the aerodynamic performance of an advanced coannular exhaust nozzle for a future supersonic propulsion system are presented. Tests were conducted with two test configurations: (1) a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and (2) an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At takeoff conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less. Data are provided through test run 25.
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.
Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David
2008-01-01
To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.
Simulant Agent Resistance Test Manikin (SMARTMAN) Testing of Protective Mask Systems
2013-09-16
after approval of the test plan and conduct of the test readiness review (TRR) or equivalent, and/or other installation pretest reviews. 3.1.1...to various types of pre- test conditioning. The number of masks chosen to represent each type of pretest conditioning will be divided (equally...This does not negate the pretest conditioning. TOP 08-2-109 16 September 2013 8 a. Masks undergoing BFC conditioning will be conditioned before
Cabin fire simulator lavatory tests
NASA Technical Reports Server (NTRS)
Schutter, K. J.; Klinck, D. M.
1980-01-01
All tests were conducted in the Douglas Cabin Fire Simulator under in-flight ventilation conditions. All tests were allowed to continue for a period of one hour. Data obtained during these tests included: heat flux and temperatures of the lavatory; cabin temperature variations; gas analyses for O2, CO2, CO, HF, HC1, and HCN; respiration and electrocardiogram data on instrumented animal subjects (rats) exposed in the cabin; and color motion pictures. All tests resulted in a survivable cabin condition; however, occupants of the cabin would have been subjected to noxious fumes.
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Putman, Gabriel C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.
Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)
2016-09-17
test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model
NASA Technical Reports Server (NTRS)
Al-Saadi, Jassim A.
1993-01-01
A computational simulation of a transonic wind tunnel test section with longitudinally slotted walls is developed and described herein. The nonlinear slot model includes dynamic pressure effects and a plenum pressure constraint, and each slot is treated individually. The solution is performed using a finite-difference method that solves an extended transonic small disturbance equation. The walls serve as the outer boundary conditions in the relaxation technique, and an interaction procedure is used at the slotted walls. Measured boundary pressures are not required to establish the wall conditions but are currently used to assess the accuracy of the simulation. This method can also calculate a free-air solution as well as solutions that employ the classical homogeneous wall conditions. The simulation is used to examine two commercial transport aircraft models at a supercritical Mach number for zero-lift and cruise conditions. Good agreement between measured and calculated wall pressures is obtained for the model geometries and flow conditions examined herein. Some localized disagreement is noted, which is attributed to improper simulation of viscous effects in the slots.
Sabouhi, Mahmoud; Bajoghli, Farshad; Abolhasani, Majid
2015-01-01
The success of an implant-supported prosthesis is dependent on the passive fit of its framework fabricated on a precise cast. The aim of this in vitro study was to digitally compare the three-dimensional accuracy of implant impression techniques in partially and completely edentulous conditions. The master model simulated two clinical conditions. The first condition was a partially edentulous mandibular arch with an anterior edentulous space (D condition). Two implant analogs were inserted in bilateral canine sites. After elimination of the teeth, the model was converted to a completely edentulous condition (E condition). Three different impression techniques were performed (open splinted [OS], open unsplinted [OU], closed [C]) for each condition. Six groups of casts (DOS, DOU, DC, EOS, EOU, EC) (n = 8), totaling 48 casts, were made. Two scan bodies were secured onto the master edentulous model and onto each test cast and digitized by an optical scanning system. The related scans were superimposed, and the mean discrepancy for each cast was determined. The statistical analysis showed no significant difference in the accuracy of casts as a function of model status (P = .78, analysis of variance [ANOVA] test), impression technique (P = .57, ANOVA test), or as the combination of both (P = .29, ANOVA test). The distribution of data was normal (Kolmogorov-Smirnov test). Model status (dentate or edentulous) and impression technique did not influence the precision of the casts. There is no difference among any of the impression techniques in either simulated clinical condition.
NASA Astrophysics Data System (ADS)
Sánchez, F. J.; Mateo-Martí, E.; Raggio, J.; Meeßen, J.; Martínez-Frías, J.; Sancho, L. G.a..; Ott, S.; de la Torre, R.
2012-11-01
The "Planetary Atmospheres and Surfaces Chamber" (PASC, at Centro de Astrobiología, INTA, Madrid) is able to simulate the atmosphere and surface temperature of most of the solar system planets. PASC is especially appropriate to study irradiation induced changes of geological, chemical, and biological samples under a wide range of controlled atmospheric and temperature conditions. Therefore, PASC is a valid method to test the resistance potential of extremophile organisms under diverse harsh conditions and thus assess the habitability of extraterrestrial environments. In the present study, we have investigated the resistance of a symbiotic organism under simulated Mars conditions, exemplified with the lichen Circinaria gyrosa - an extremophilic eukaryote. After 120 hours of exposure to simulated but representative Mars atmosphere, temperature, pressure and UV conditions; an unaltered photosynthetic performance demonstrated high resistance of the lichen photobiont.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, N.K.; Diaz, A.
1985-08-01
In January and March of 1985, in-place oil burning tests were conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank. (OHMSETT) facility in Leonardo, New Jersey. In-place combustion of Prudhoe Bay and Amauligak crude oil slicks was attempted in varying ice coverages, oil conditions, and ambient conditions. An emulsion of Amauligak crude oil and water was also ignited three times and burned in 80% ice cover, removing nearly 50% of the emulsion.
NASA Technical Reports Server (NTRS)
Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.
2003-01-01
Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.
2012-01-01
The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.
NASA Technical Reports Server (NTRS)
2008-01-01
The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2015-01-01
During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.
Simulation of Acoustics for Ares I Scale Model Acoustic Tests
NASA Technical Reports Server (NTRS)
Putnam, Gabriel; Strutzenberg, Louise L.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.
Simulation of the dynamic environment for missile component testing: Demonstration
NASA Technical Reports Server (NTRS)
Chang, Kurng Y.
1989-01-01
The problems in defining a realistic test requirement for missile and space vehicle components can be classified into two categories: (1) definition of the test environment representing the expected service condition, and (2) simulation of the desired environment in the test laboratory. Recently, a new three-dimensional (3-D) test facility was completed at the U.S. Army Harry Diamond Laboratory (HDL) to simulate triaxial vibration input to a test specimen. The vibration test system is designed to support multi-axial vibration tests over the frequency range of 5 to 2000 Hertz. The availability of this 3-D test system motivates the development of new methodologies addressing environmental definition and simulation.
NASA Technical Reports Server (NTRS)
Foust, J. W.
1979-01-01
Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.
Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions
NASA Technical Reports Server (NTRS)
Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William
2005-01-01
As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George
2012-01-01
A set of multi-junction GaAs/Ge solar array test coupons provided by Space Systems/Loral were subjected to a sequence of 5-year increments of combined space environment exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is performing electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO standard for ESD testing on solar array panels [ISO-11221]. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of four cells constructed to form two strings. The ESD tests were performed at the beginning-of-life (BOL) and at each 5-year environment exposure point until end-of-life (EOL) at 15 years. The space environmental exposure sequence consisted of ultra-violet radiation, electron/proton particle radiation, thermal cycling, and Xenon ion thruster plume erosion. This paper describes the ESD test setup and the importance of the electrical test design in simulating the on-orbit operational conditions. Arc inception voltage results along with ESD test behavior from the BOL condition through the 15th year age condition are discussed. In addition, results from a Xenon plasma plume exposure test with an EOL coupon under the full ESD test condition will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adu-Wusu, K; Paul Burket, P
2009-03-31
Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtainedmore » from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.« less
Methodology for testing infrared focal plane arrays in simulated nuclear radiation environments
NASA Astrophysics Data System (ADS)
Divita, E. L.; Mills, R. E.; Koch, T. L.; Gordon, M. J.; Wilcox, R. A.; Williams, R. E.
1992-07-01
This paper summarizes test methodology for focal plane array (FPA) testing that can be used for benign (clear) and radiation environments, and describes the use of custom dewars and integrated test equipment in an example environment. The test methodology, consistent with American Society for Testing Materials (ASTM) standards, is presented for the total accumulated gamma dose, transient dose rate, gamma flux, and neutron fluence environments. The merits and limitations of using Cobalt 60 for gamma environment simulations and of using various fast-neutron reactors and neutron sources for neutron simulations are presented. Test result examples are presented to demonstrate test data acquisition and FPA parameter performance under different measurement conditions and environmental simulations.
Comparison of various contact algorithms for poroelastic tissues.
Galbusera, Fabio; Bashkuev, Maxim; Wilke, Hans-Joachim; Shirazi-Adl, Aboulfazl; Schmidt, Hendrik
2014-01-01
Capabilities of the commercial finite element package ABAQUS in simulating frictionless contact between two saturated porous structures were evaluated and compared with those of an open source code, FEBio. In ABAQUS, both the default contact implementation and another algorithm based on an iterative approach requiring script programming were considered. Test simulations included a patch test of two cylindrical slabs in a gapless contact and confined compression conditions; a confined compression test of a porous cylindrical slab with a spherical porous indenter; and finally two unconfined compression tests of soft tissues mimicking diarthrodial joints. The patch test showed almost identical results for all algorithms. On the contrary, the confined and unconfined compression tests demonstrated large differences related to distinct physical and boundary conditions considered in each of the three contact algorithms investigated in this study. In general, contact with non-uniform gaps between fluid-filled porous structures could be effectively simulated with either ABAQUS or FEBio. The user should be aware of the parameter definitions, assumptions and limitations in each case, and take into consideration the physics and boundary conditions of the problem of interest when searching for the most appropriate model.
49 CFR 179.14 - Coupler vertical restraint system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... system shall be tested under the following conditions: (1) The test coupler shall be tested with a mating coupler (or simulated coupler) having only frictional vertical force resistance at the mating interface; or a mating coupler (or simulated coupler) having the capabilities described in paragraph (a) of this...
Liu, Xi-Wen; Bian, Ka; Wen, Zhi-Hong; Li, Xiao-Jing; Zhang, Zuo-Ming; Hu, Wen-Dong
2014-01-01
Objective We evaluated a variety of non-invasive physiological technologies and a series of test approaches for examination of aviator performances under conditions of mental workload in order to provide a standard real-time test for physiological and psychological pilot fatigue assessments. Methods Twenty-one male aviators were selected for a simulated flight in a hypobaric cabin with artificial altitude conditions of 2400 meter above sea level. The simulated flight lasted for 1.5 h, and was repeated for two times with an intervening 0.5 h rest period outside the hypobaric cabin. Subjective criteria (a fatigue assessment instrument [FAI]) and objective criteria (a standing-position balance test as well as a critical flicker fusion frequency (CFF) test) were used for fatigue evaluations. Results No significant change was observed in the FAI scores before and after the simulated flight, indicating that there was no subjective fatigue feeling among the participants. However, significant differences were observed in the standing-position balance and CFF tests among the subjects, suggesting that psychophysiological indexes can reflect mental changes caused by workload to a certain extent. The CFF test was the simplest and clearly indicated the occurrence of workload influences on pilot performances after a simulated flight. Conclusions Results showed that the CFF test was the easiest way to detect workload caused mental changes after a simulated flight in a hypobaric cabin and reflected the psychophysiological state of aviators. We suggest that this test might be used as an effective routine method for evaluating the workload influences on mental conditions of aviators. PMID:24505277
Numerical simulations of the flow in the HYPULSE expansion tube
NASA Technical Reports Server (NTRS)
Wilson, Gregory J.; Sussman, Myles A.; Bakos, Robert J.
1995-01-01
Axisymmetric numerical simulations with finite-rate chemistry are presented for two operating conditions in the HYPULSE expansion tube. The operating gas for these two cases is nitrogen and the computations are compared to experimental data. One test condition is at a total enthalpy of 15.2 MJ/Kg and a relatively low static pressure of 2 kPa. This case is characterized by a laminar boundary layer and significant chemical nonequilibrium in the acceleration gas. The second test condition is at a total enthalpy of 10.2 MJ/Kg and a static pressure of 38 kPa and is characterized by a turbulent boundary layer. For both cases, the time-varying test gas pressure predicted by the simulations is in good agreement with experimental data. The computations are also found to be in good agreement with Mirels' correlations for shock tube flow. It is shown that the nonuniformity of the test gas observed in the HYPULSE expansion tube is strongly linked to the boundary layer thickness. The turbulent flow investigated has a larger boundary layer and greater test gas nonuniformity. In order to investigate possibilities of improving expansion tube flow quality by reducing the boundary layer thickness, parametric studies showing the effect of density and turbulent transition point on the test conditions are also presented. Although an increase in the expansion tube operating pressure level would reduce the boundary layer thickness, the simulations indicate that the reduction would be less than what is predicted by flat plate boundary layer correlations.
Do downscaled general circulation models reliably simulate historical climatic conditions?
Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight
2018-01-01
The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.
NASA Astrophysics Data System (ADS)
van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro
2017-08-01
This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.
Turbine-99 unsteady simulations - Validation
NASA Astrophysics Data System (ADS)
Cervantes, M. J.; Andersson, U.; Lövgren, H. M.
2010-08-01
The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.
Fixed Equipment in the Energy Systems Integration Facility | Energy Systems
dynamic simulation of future energy systems. Photo of a robot used to test hydrogen coupling hardware. At test chambers (rated up to 60°C) for testing HVAC systems under simulated loading conditions Two bench performance Test stand for measuring performance of receiver tubes for concentrating solar power applications
Some Dimensions of Simulation.
ERIC Educational Resources Information Center
Beck, Isabel; Monroe, Bruce
Beginning with definitions of "simulation" (a methodology for testing alternative decisions under hypothetical conditions), this paper focuses on the use of simulation as an instructional method, pointing out the relationships and differences between role playing, games, and simulation. The term "simulation games" is explored with an analysis of…
Myoelectric stimulation on peroneal muscles resists simulated ankle sprain motion.
Fong, Daniel Tik-Pui; Chu, Vikki Wing-Shan; Chan, Kai-Ming
2012-07-26
The inadequate reaction time of the peroneal muscles in response to an incorrect foot contact event has been proposed as one of the etiological factors contributing to ankle joint inversion injury. Thus, the current study aimed to investigate the efficacy of a myoelectric stimulation applied to the peroneal muscles in the prevention of a simulated ankle inversion trauma. Ten healthy male subjects performed simulated inversion and supination tests on a pair of mechanical sprain simulators. An electrical signal was delivered to the peroneal muscles of the subjects through a pair of electrode pads. The start of the stimulus was synchronized with the drop of the sprain simulator's platform. In order to determine the maximum delay time which the stimulus could still resist the simulated ankle sprain motion, different delay time were test (0, 5, 10, and 15ms). Together with the control trial (no stimulus), there were 5 testing conditions for both simulated inversion and supination test. The effect was quantified by the drop in maximum ankle tilting angle and angular velocity, as determined by a motion analysis system with a standard laboratory procedure. Results showed that the myoelectric stimulation was effective in all conditions except the one with myoelectric stimulus delayed for 15ms in simulated supination test. It is concluded that myoelectric stimulation on peroneal muscles could resist an ankle spraining motion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule
NASA Astrophysics Data System (ADS)
Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong
2018-06-01
To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.
Parameter Estimation for a Pulsating Turbulent Buoyant Jet Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Christopher, Jason; Wimer, Nicholas; Lapointe, Caelan; Hayden, Torrey; Grooms, Ian; Rieker, Greg; Hamlington, Peter
2017-11-01
Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other ``truth'' data to be used for the prediction of unknown parameters, such as flow properties and boundary conditions, in numerical simulations of real-world engineering systems. Here we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a direct numerical simulation (DNS) with known boundary conditions and problem parameters, while the ABC procedure utilizes lower fidelity large eddy simulations. Using spatially-sparse statistics from the 2D buoyant jet DNS, we show that the ABC method provides accurate predictions of true jet inflow parameters. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for predicting flow information, such as boundary conditions, that can be difficult to determine experimentally.
Performance characteristics of three-phase induction motors
NASA Technical Reports Server (NTRS)
Wood, M. E.
1977-01-01
An investigation into the characteristics of three phase, 400 Hz, induction motors of the general type used on aircraft and spacecraft is summarized. Results of laboratory tests are presented and compared with results from a computer program. Representative motors were both tested and simulated under nominal conditions as well as off nominal conditions of temperature, frequency, voltage magnitude, and voltage balance. Good correlation was achieved between simulated and laboratory results. The primary purpose of the program was to verify the simulation accuracy of the computer program, which in turn will be used as an analytical tool to support the shuttle orbiter.
WASTE CONDITIONING FOR TANK HEEL TRANSFER
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.A. Ebadian, Ph.D.
1999-01-01
This report summarizes the research carried out at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) for the fiscal year 1998 (FY98) under the Tank Focus Area (TFA) project ''Waste Conditioning for Tank Slurry Transfer.'' The objective of this project is to determine the effect of chemical and physical properties on the waste conditioning process and transfer. The focus of this research consisted in building a waste conditioning experimental facility to test different slurry simulants under different conditions, and analyzing their chemical and physical properties. This investigation would provide experimental data and analysis results that can make the tankmore » waste conditioning process more efficient, improve the transfer system, and influence future modifications to the waste conditioning and transfer system. A waste conditioning experimental facility was built in order to test slurry simulants. The facility consists of a slurry vessel with several accessories for parameter control and sampling. The vessel also has a lid system with a shaft-mounted propeller connected to an air motor. In addition, a circulation system is connected to the slurry vessel for simulant cooling and heating. Experimental data collection and analysis of the chemical and physical properties of the tank slurry simulants has been emphasized. For this, one waste slurry simulant (Fernald) was developed, and another two simulants (SRS and Hanford) obtained from DOE sites were used. These simulants, composed of water, soluble metal salts, and insoluble solid particles, were used to represent the actual radioactive waste slurries from different DOE sites. The simulants' chemical and physical properties analyzed include density, viscosity, pH, settling rate, and volubility. These analyses were done to samples obtained from different experiments performed at room temperature but different mixing time and strength. The experimental results indicate that the viscosity of the slurries follow the Bingham plastic model, especially when the solids concentration is increased. At low concentrations slurries may behave as Newtonian fluids. The three simulants follow a similar settling rate behavior. This behavior can be explained as a combination of one or more decreasing exponential curves. This means that the particle settling rate of the simulants decreases exponentially as time increases. The pH range for the three simulants was from 8 to 13 at all concentrations. The SRS simulant showed the highest pH, around 12; the other two simulants, Hanford and Fernald, had about the same pH range, from 3 to 9. When comparing volubility of the three simulants at the same concentration, SRS simulant showed higher volubility, followed by the Hanford simulant and the Fernald simulant, in that order. Further work is scheduled for next year (FY99) in this project, when other parameters like simulants particle size distribution, particle shape, and crystallization behavior will be studied. The same tests performed this period also will be performed at different temperatures for data comparison.« less
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.
1971-01-01
The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.
NASA Technical Reports Server (NTRS)
Donlan, C. J.
1976-01-01
Some problems relating to longitudinal stability in power-on flight are considered. A derivation is included which shows that, under certain conditions, the rate of change of the pitching moment coefficient with lift coefficient as obtained in wind tunnel tests simulating constant power operation is directly proportional to one of the indices of stability commonly associated with flight analysis, (the slope of the curve relating the elevator angle for trim and lift coefficient). The necessity of analyzing power-on wind tunnel data for trim conditions is emphasized, and a method is provided for converting data obtained from constant thrust tests to simulated constant throttle flight conditions.
NASA Technical Reports Server (NTRS)
1981-01-01
The Sunmaster DEC 8A Large Manifold solar collector using simulated conditions was evaluated. The collector provided 17.17 square feet of gross collector area. Test conditions, test requirements, an analysis of results, and tables of test data are reported.
A metabolic simulator for unmanned testing of breathing apparatuses in hyperbaric conditions.
Frånberg, Oskar; Loncar, Mario; Larsson, Åke; Ornhagen, Hans; Gennser, Mikael
2014-11-01
A major part of testing of rebreather apparatuses for underwater diving focuses on the oxygen dosage system. A metabolic simulator for testing breathing apparatuses was built and evaluated. Oxygen consumption was achieved through catalytic combustion of propene. With an admixture of carbon dioxide in the propene fuel, the system allowed the respiratory exchange ratio to be set freely within human variability and also made it possible to increase test pressures above the condensation pressure of propene. The system was tested by breathing ambient air in a pressure chamber with oxygen uptake (Vo₂) ranging from 1-4 L · min(-1), tidal volume (VT) from 1-3 L, breathing frequency (f) of 20 and 25 breaths/min, and chamber pressures from 100 to 670 kPa. The measured end-tidal oxygen concentration (Fo₂) was compared to calculated end-tidal Fo₂. The largest average difference in end-tidal Fo₂during atmospheric pressure conditions was 0.63%-points with a 0.28%-point average difference during the whole test. During hyperbaric conditions with pressures ranging from 100 to 670 kPa, the largest average difference in Fo₂was 1.68%-points seen during compression from 100 kPa to 400 kPa and the average difference in Fo₂during the whole test was 0.29%-points. In combination with a breathing simulator simulating tidal breathing, the system can be used for dynamic continuous testing of breathing equipment with changes in VT, f, Vo2, and pressure.
The Viking parachute qualification test technique.
NASA Technical Reports Server (NTRS)
Raper, J. L.; Lundstrom, R. R.; Michel, F. C.
1973-01-01
The parachute system for NASA's Viking '75 Mars lander was flight qualified in four high-altitude flight tests at the White Sands Missile range (WSMR). A balloon system lifted a full-scale simulated Viking spacecraft to an altitude where a varying number of rocket motors were used to propel the high drag, lifting test vehicle to test conditions which would simulate the range of entry conditions expected at Mars. A ground-commanded cold gas pointing system located on the balloon system provided powered vehicle azimuth control to insure that the flight trajectory remained within the WSMR boundaries. A unique ground-based computer-radar system was employed to monitor inflight performance of the powered vehicle and insure that command ignition of the parachute mortar occurred at the required test conditions of Mach number and dynamic pressure. Performance data were obtained from cameras, telemetry, and radar.
NASA Technical Reports Server (NTRS)
Chen, Yuan-Liang Albert
1999-01-01
The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.
Planetary and Space Simulation Facilities (PSI) at DLR
NASA Astrophysics Data System (ADS)
Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.
2010-05-01
The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin The results gained during the simulation experiments demonstrated mission preparation as a basic requirement for successful and significant results of every space flight experiment. Hence, the Mission preparation program that was performed in the context of the space missions EXPOSE-E and EXPOSE-R proofed the outstanding importance and accentuated need for ground based experiments before and during a space mission. The facilities are also necessary for the performance of the ground control experiment during the mission, the so-called Mission Simulation Test (MST) under simulated space conditions, by parallel exposure of samples to simulated space parameters according to flight data received by telemetry. Finally the facilities also provide the possibility to simulate the surface and climate conditions of the planet Mars. In this way they offer the possibility to investigate under simulated Mars conditions the chances for development of life on Mars and to gain previous knowledge for the search for life on today's Mars and in this context especially the parameters for a manned mission to Mars. References [1] Rabbow E, Rettberg P, Panitz C, Drescher J, Horneck G, Reitz G (2005) SSIOUX - Space Simulation for Investigating Organics, Evolution and Exobiology, Adv. Space Res. 36 (2) 297-302, doi:10.1016/j.asr.2005.08.040Aman, A. and Bman, B. (1997) JGR, 90,1151-1154. [2] Fekete A, Modos K, Hegedüs M, Kovacs G, Ronto Gy, Peter A, Lammer H, Panitz C (2005) DNA Damage under simulated extraterrestrial conditions in bacteriophage T7 Adv. Space Res. 305-310Aman, A. et al. (1997) Meteoritics & Planet. Sci., 32,A74. [3] Cockell Ch, Schuerger AC, Billi D., Friedmann EI, Panitz C (2005) Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029, Astrobiology, 5/2 127-140Aman, A. (1996) LPS XXVII, 1344-1 [4] de la Torre Noetzel, R.; Sancho, L.G.; Pintado,A.; Rettberg, Petra; Rabbow, Elke; Panitz,Corinna; Deutschmann, U.; Reina, M.; Horneck, Gerda (2007): BIOPAN experiment LICHENS on the Foton M2 mission Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. COSPAR [Hrsg.]: Advances in Space Research, 40, Elsevier, S. 1665 - 1671, DOI 10.1016/j.asr.2007.02.022
Analysis and Synthesis of Adaptive Neural Elements and Assembles
1993-09-30
of an Aplysia sensory neuron was developed that reflects the subcellular processes underlying activity-dependent neuromodulation . This single- Page -3... neuromodulation learning rule could simulate some higher-order features of classical conditioning, such second-order conditioning and blocking. During the...reporting period, simulations were used to test the hypothesis that activity-dependent neuromodulation could also support operant conditioning. A
Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb
2017-02-16
Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less
Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing.
Abdel-Jaber, Sami; Belvedere, Claudio; Leardini, Alberto; Affatato, Saverio
2015-11-05
Knee wear simulators are meant to perform load cycles on knee implants under physiological conditions, matching exactly, if possible, those experienced at the replaced joint during daily living activities. Unfortunately, only conditions of low demanding level walking, specified in ISO-14243, are used conventionally during such tests. A recent study has provided a consistent knee kinematic and load data-set measured during stair climbing in patients implanted with a specific modern total knee prosthesis design. In the present study, wear simulation tests were performed for the first time using this data-set on the same prosthesis design. It was hypothesised that more demanding tasks would result in wear rates that differ from those observed in retrievals. Four prostheses for total knee arthroplasty were tested using a displacement-controlled knee wear simulator for two million cycles at 1.1 Hz, under kinematics and load conditions typical of stair climbing. After simulation, the corresponding damage scars on the bearings were qualified and compared with equivalent explanted prostheses. An average mass loss of 20.2±1.5 mg was found. Scanning digital microscopy revealed similar features, though the explant had a greater variety of damage modes, including a high prevalence of adhesive wear damage and burnishing in the overall articulating surface. This study confirmed that the results from wear simulation machines are strongly affected by kinematics and loads applied during simulations. Based on the present results for the full understanding of the current clinical failure of knee implants, a more comprehensive series of conditions are necessary for equivalent simulations in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.
Expanded operational capabilities of the Langley Mach 7 Scramjet test facility
NASA Technical Reports Server (NTRS)
Thomas, S. R.; Guy, R. W.
1983-01-01
An experimental research program conducted to expand the operational capabilities of the NASA Langley Mach 7 Scramjet Test Facility is described. Previous scramjet testing in this facility was limited to a single simulated flight condition of Mach 6.9 at an altitude of 115,300 ft. The arc heater research demonstrates the potential of the facility for scramjet testing at simulated flight conditions from Mach 4 (at altitudes from 77,000 to 114,000 ft) to Mach 7 (at latitudes from 108,000 to 149,000 ft). Arc heater electrical characteristics, operational problems, measurements of nitrogen oxide contaminants, and total-temperature profiles are discussed.
Scaling Methods for Simulating Aircraft In-Flight Icing Encounters
NASA Technical Reports Server (NTRS)
Anderson, David N.; Ruff, Gary A.
1997-01-01
This paper discusses scaling methods which permit the use of subscale models in icing wind tunnels to simulate natural flight in icing. Natural icing conditions exist when air temperatures are below freezing but cloud water droplets are super-cooled liquid. Aircraft flying through such clouds are susceptible to the accretion of ice on the leading edges of unprotected components such as wings, tailplane and engine inlets. To establish the aerodynamic penalties of such ice accretion and to determine what parts need to be protected from ice accretion (by heating, for example), extensive flight and wind-tunnel testing is necessary for new aircraft and components. Testing in icing tunnels is less expensive than flight testing, is safer, and permits better control of the test conditions. However, because of limitations on both model size and operating conditions in wind tunnels, it is often necessary to perform tests with either size or test conditions scaled. This paper describes the theoretical background to the development of icing scaling methods, discusses four methods, and presents results of tests to validate them.
Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters
NASA Astrophysics Data System (ADS)
Morrison, L.; Swisher, J.
The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.
The impact of contextualization on immersion in healthcare simulation.
Engström, Henrik; Andersson Hagiwara, Magnus; Backlund, Per; Lebram, Mikael; Lundberg, Lars; Johannesson, Mikael; Sterner, Anders; Maurin Söderholm, Hanna
2016-01-01
The aim of this paper is to explore how contextualization of a healthcare simulation scenarios impacts immersion, by using a novel objective instrument, the Immersion Score Rating Instrument. This instrument consists of 10 triggers that indicate reduced or enhanced immersion among participants in a simulation scenario. Triggers refer to events such as jumps in time or space (sign of reduced immersion) and natural interaction with the manikin (sign of enhanced immersion) and can be used to calculate an immersion score. An experiment using a randomized controlled crossover design was conducted to compare immersion between two simulation training conditions for prehospital care: one basic and one contextualized. The Immersion Score Rating Instrument was used to compare the total immersion score for the whole scenario, the immersion score for individual mission phases, and to analyze differences in trigger occurrences. A paired t test was used to test for significance. The comparison shows that the overall immersion score for the simulation was higher in the contextualized condition. The average immersion score was 2.17 (sd = 1.67) in the contextualized condition and -0.77 (sd = 2.01) in the basic condition ( p < .001). The immersion score was significantly higher in the contextualized condition in five out of six mission phases. Events that might be disruptive for the simulation participants' immersion, such as interventions of the instructor and illogical jumps in time or space, are present to a higher degree in the basic scenario condition; while events that signal enhanced immersion, such as natural interaction with the manikin, are more frequently observed in the contextualized condition. The results suggest that contextualization of simulation training with respect to increased equipment and environmental fidelity as well as functional task alignment might affect immersion positively and thus contribute to an improved training experience.
Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Hash, David B.; Hassan, H. A.
1997-01-01
A study is made of the issues surrounding prediction of microchannel flows using the direct simulation Monte Carlo method. This investigation includes the introduction and use of new inflow and outflow boundary conditions suitable for subsonic flows. A series of test simulations for a moderate-size microchannel indicates that a high degree of grid under-resolution in the streamwise direction may be tolerated without loss of accuracy. In addition, the results demonstrate the importance of physically correct boundary conditions, as well as possibilities for reducing the time associated with the transient phase of a simulation. These results imply that simulations of longer ducts may be more feasible than previously envisioned.
Testing solar panels for small-size satellites: the UPMSAT-2 mission
NASA Astrophysics Data System (ADS)
Roibás-Millán, E.; Alonso-Moragón, A.; Jiménez-Mateos, A. G.; Pindado, S.
2017-11-01
At present, the development of small-size satellites by universities, companies and research institutions has become usual practice, and is spreading rapidly. In this kind of project cost plays a significant role. One of the main areas are the assembly, integration and test (AIT) plans, which carry an associated cost for simulating environmental conditions. For instance, in the power subsystems test and, in particular, in the testing of solar panels, the irradiance and temperature conditions might be optimum so the performance of the system can be shown next to real operational conditions. To reproduce the environmental conditions in terms of irradiance, solar simulators are usually used, which carries an associated increase in cost for testing the equipment. The aim of this paper is to present an alternative and inexpensive way to perform AIT plans on spacecraft power subsystems, from a testing campaign performed using outdoor clean-sky conditions and an isolation system to protect the panels. A post-process of the measured data is therefore needed, taking into account the conditions in which the test has been accomplished. The I-V characteristics obtained are compared with a theoretical 1-diode/2-resistor equivalent electric circuit, achieving enough precision based solely on the manufacturer’s data.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Mckissick, B. T.; Steinmetz, G. G.
1979-01-01
A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data.
Post-Flight Assessment of Low Density Supersonic Decelerator Flight Dynamics Test 2 Simulation
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; White, Joseph P.; Striepe, Scott A.; Queen, Eric M.; O'Farrel, Clara; Ivanov, Mark C.
2016-01-01
NASA's Low Density Supersonic Decelerator (LDSD) project conducted its second Supersonic Flight Dynamics Test (SFDT-2) on June 8, 2015. The Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics tools used to simulate and predict the flight performance and was a major tool used in the post-flight assessment of the flight trajectory. This paper compares the simulation predictions with the reconstructed trajectory. Additionally, off-nominal conditions seen during flight are modeled in the simulation to reconcile the predictions with flight data. These analyses are beneficial to characterize the results of the flight test and to improve the simulation and targeting of the subsequent LDSD flights.
Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility
NASA Astrophysics Data System (ADS)
Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G.
2017-11-01
In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermo-fluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation.
NASA Technical Reports Server (NTRS)
West, Jeff S.; Richardson, Brian R.; Schmauch, Preston; Kenny, Robert J.
2011-01-01
Marshall Space Flight Center (MSFC) has been heavily involved in developing the J2-X engine. The Center has been testing a Work Horse Gas Generator (WHGG) to supply gas products to J2-X turbine components at realistic flight-like operating conditions. Three-dimensional time accurate CFD simulations and analytical fluid analysis have been performed to support WHGG tests at MSFC. The general purpose CFD program LOCI/Chem was utilized to simulate flow of products from the WHGG through a turbine manifold, a stationary row of turbine vanes, into a Can and orifice assembly used to control the back pressure at the turbine vane row and finally through an aspirator plate and flame bucket. Simulations showed that supersonic swirling flow downstream of the turbine imparted a much higher pressure on the Can wall than expected for a non-swirling flow. This result was verified by developing an analytical model that predicts wall pressure due to swirling flow. The CFD simulations predicted that the higher downstream pressure would cause the pressure drop across the nozzle row to be approximately half the value of the test objective. With CFD support, a redesign of the Can orifice and aspirator plate was performed. WHGG experimental results and observations compared well with pre-test and post-test CFD simulations. CFD simulations for both quasi-static and transient test conditions correctly predicted the pressure environment downstream of the turbine row and the behavior of the gas generator product plume as it exited the WHGG test article, impacted the flame bucket and interacted with the external environment.
Autonomous Visual Tracking of Stationary Targets Using Small Unmanned Aerial Vehicles
2004-06-01
59 Figure 43. Commanded and Actual Yaw Rates during Simulation ..................................60 Figure 44. Setup for Hardware In Loop Simulation...System with AVDS Figure 44. Setup for Hardware In Loop Simulation with AVDS and PerceptiVU 2. Test Conditions Simulations were conducted for the
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Handschuh, Michael J.
2010-01-01
Component tests were conducted on spring-loaded Teflon seals to determine their performance in keeping lunar simulant out of mechanical component gearbox, motor, and bearing housings. Baseline tests were run in a dry-room without simulant for 10,000 cycles to determine wear effects of the seal against either anodized aluminum or stainless steel shafts. Repeat tests were conducted using lunar simulants JSC-1A and LHT-2M. Finally, tests were conducted with and without simulant in vacuum at ambient temperature. Preliminary results indicate minimal seal and shaft wear through 10,000 cycles, and more importantly, no simulant was observed to pass through the seal-shaft interface. Future endurance tests are planned at relevant NASA Lunar Surface System architecture shaft sizes and operating conditions.
Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory
NASA Technical Reports Server (NTRS)
Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter; Van Zante, Judith
2017-01-01
This presentation describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.
Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory
NASA Technical Reports Server (NTRS)
Bartkus, Tadas P.; Tsao, Jen-Ching; Struk, Peter M.; Van Zante, Judith F.
2017-01-01
This paper describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.
1984-01-01
Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Mean velocity and turbulence velocity measurements of 25 selected flow conditions were performed employing a laser Doppler velocimeter. Static pressure measurements were made to define the actual convergence-divergence condition. Test point definition, tabulation of aerodynamic test conditions, velocity histograms, and shadowgraph photographs are presented. Flow visualization through shadowgraph photography can contribute to the development of an analytical prediction model for shock noise from coannular plug nozzles.
NASA Technical Reports Server (NTRS)
Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.
1975-01-01
A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.
NASA Technical Reports Server (NTRS)
Brown, S. C.; Hardy, G. H.; Hindson, W. S.
1983-01-01
As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.
NASA Technical Reports Server (NTRS)
Simon, F. F.
1975-01-01
The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.
NASA Technical Reports Server (NTRS)
Sree, Dave
2015-01-01
Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.
Wake Numerical Simulation Based on the Park-Gauss Model and Considering Atmospheric Stability
NASA Astrophysics Data System (ADS)
Yang, Xiangsheng; Zhao, Ning; Tian, Linlin; Zhu, Jun
2016-06-01
In this paper, a new Park-Gauss model based on the assumption of the Park model and the Eddy-viscosity model is investigated to conduct the wake numerical simulation for solving a single wind turbine problem. The initial wake radius has been modified to improve the model’s numerical accuracy. Then the impact of the atmospheric stability based on the Park-Gauss model has been studied in the wake region. By the comparisons and the analyses of the test results, it turns out that the new Park-Gauss model could achieve better effects of the wind velocity simulation in the wake region. The wind velocity in the wake region recovers quickly under the unstable atmospheric condition provided the wind velocity is closest to the test result, and recovers slowly under stable atmospheric condition in case of the wind velocity is lower than the test result. Meanwhile, the wind velocity recovery falls in between the unstable and stable neutral atmospheric conditions.
Flightweight radiantly and actively cooled panel: Thermal and structural performance
NASA Technical Reports Server (NTRS)
Shore, C. P.; Nowak, R. J.; Kelly, H. N.
1982-01-01
A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.
NASA Technical Reports Server (NTRS)
Hawk, Clark; Nelson, Karl
1998-01-01
A series of tests were conducted to investigate RBCC performance at ramjet and scramjet conditions. The hardware consisted of a linear strut-rocket manufactured by Aerojet and a dual-mods scramjet combustor. The hardware was tested at NASA Langley Research Center in the Direct Connect Supersonic Combustion Test Facility at Mach 4.0 and 6.5 simulated flight conditions.
Cryogenic Moisture Analysis of Spray-On Foam Insulation (SOFI)
NASA Technical Reports Server (NTRS)
2008-01-01
The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions. The lab tested NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68 (acreage foam with the flame retardant removed). Specimens of all three materials were placed at a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (Atmospheric Exposure Test Site [beach site]). After aging/ weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their ability to absorb moisture under conditions similar to those experienced by the Space Shuttle External Tank (ET) during the loading of cryogenic propellants.
Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector
NASA Technical Reports Server (NTRS)
1979-01-01
The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.
Free-jet testing at Mach 3.44 in GASL's aero/thermo test facility
NASA Technical Reports Server (NTRS)
Cresci, D.; Koontz, S.; Tsai, C. Y.
1993-01-01
A supersonic blow-down tunnel has been used to conduct tests of a hydrogen burning ramjet engine at simulated Mach 3.44 conditions. A pebble-bed type storage heater, a free standing test cabin, and a 48 foot diameter vacuum sphere are used to simulate the flight conditions at nearly matched enthalpy and dynamic pressure. A two dimensional nozzle with a nominal 13.26 inch square exit provides a free-jet test environment. The facility used for these tests is described as are the results of a flow calibration performed on the M = 3.44 nozzle. Some facility/model interactions are discussed as are the eventual hardware modifications and operational procedures required to alleviate the interactions. Some engine test results are discussed briefly to document the success of the test program.
Hardware Fault Simulator for Microprocessors
NASA Technical Reports Server (NTRS)
Hess, L. M.; Timoc, C. C.
1983-01-01
Breadboarded circuit is faster and more thorough than software simulator. Elementary fault simulator for AND gate uses three gates and shaft register to simulate stuck-at-one or stuck-at-zero conditions at inputs and output. Experimental results showed hardware fault simulator for microprocessor gave faster results than software simulator, by two orders of magnitude, with one test being applied every 4 microseconds.
NASA Astrophysics Data System (ADS)
Ramulu, M.; Rogers, E.
1994-04-01
The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.
NASA Technical Reports Server (NTRS)
Brown, B Porter
1958-01-01
Report presents results of tests made on a power control system by means of a ground simulator to determine the effects of various combinations of valve friction and stick friction on the ability of the pilot to control the system. Various friction conditions were simulated with a rigid control system, a flexible system, and a rigid system having some backlash. For the tests, the period and damping of the simulated airplane were held constant.
NASA Astrophysics Data System (ADS)
Guo, Yue; Du, Lei; Jiang, Long; Li, Qing; Zhao, Zhenning
2017-01-01
In this paper, the combustion and NOx emission characteristics of a 300 MW tangential boiler are simulated, we obtain the flue gas velocity field in the hearth, component concentration distribution of temperature field and combustion products, and the speed, temperature, concentration of oxygen and NOx emissions compared with the test results in the waisting air distribution conditions, found the simulation values coincide well with the test value, to verify the rationality of the model. At the same time, the flow field in the furnace, the combustion and the influence of NOx emission characteristics are simulated by different conditions, including compared with primary zone secondary waisting air distribution, uniform air distribution and pagodas go down air distribution, the results show that, waisting air distribution is useful to reduce NOx emissions.
Evaluation of glucose controllers in virtual environment: methodology and sample application.
Chassin, Ludovic J; Wilinska, Malgorzata E; Hovorka, Roman
2004-11-01
Adaptive systems to deliver medical treatment in humans are safety-critical systems and require particular care in both the testing and the evaluation phase, which are time-consuming, costly, and confounded by ethical issues. The objective of the present work is to develop a methodology to test glucose controllers of an artificial pancreas in a simulated (virtual) environment. A virtual environment comprising a model of the carbohydrate metabolism and models of the insulin pump and the glucose sensor is employed to simulate individual glucose excursions in subjects with type 1 diabetes. The performance of the control algorithm within the virtual environment is evaluated by considering treatment and operational scenarios. The developed methodology includes two dimensions: testing in relation to specific life style conditions, i.e. fasting, post-prandial, and life style (metabolic) disturbances; and testing in relation to various operating conditions, i.e. expected operating conditions, adverse operating conditions, and system failure. We define safety and efficacy criteria and describe the measures to be taken prior to clinical testing. The use of the methodology is exemplified by tuning and evaluating a model predictive glucose controller being developed for a wearable artificial pancreas focused on fasting conditions. Our methodology to test glucose controllers in a virtual environment is instrumental in anticipating the results of real clinical tests for different physiological conditions and for different operating conditions. The thorough testing in the virtual environment reduces costs and speeds up the development process.
NASA Astrophysics Data System (ADS)
Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka
The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation test plan to evaluate in-situ effects of neutron/γ-ray irradiation on stress corrosion crack (SCC) growth of irradiated stainless steels using the Japan Materials Testing Reactor (JMTR). SCC growth rate and its dependence on electrochemical corrosion potential (ECP) are different between in-pile test and post irradiation examination (PIE). These differences are not fully understood because of a lack of in-pile data. This paper presents a systematic review on SCC growth data of irradiated stainless steels, an in-pile test plan for crack growth of irradiated SUS316L stainless steel under simulated BWR conditions in the JMTR, and the development of the in-pile test techniques.
Ambient-Light Simulator For Testing Cockpit Displays
NASA Technical Reports Server (NTRS)
Batson, Vernon M.; Gupton, Lawrence E.
1995-01-01
Apparatus provides illumination from outside, through windows and into interior of simulated airplane cockpit. Simulates sunlight, darkness, or lightning on demand. Ambient-lighting simulator surrounds forward section of simulated airplane. Provides control over intensity, color, and diffuseness of solar illumination and of position of Sun relative to airplane. Used to evaluate aircraft-instrumentation display devices under realistic lighting conditions.
Performance Evaluation of an Actuator Dust Seal for Lunar Operation
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Gaier, James R.; Handschuh, Michael; Panko, Scott; Sechkar, Ed
2013-01-01
Exploration of extraterrestrial surfaces (e.g. moon, Mars, asteroid) will require durable space mechanisms that will survive potentially dusty surface conditions in addition to the hard vacuum and extreme temperatures of space. Baseline tests with lunar simulant were recently completed at NASA GRC on a new Low-Temperature Mechanism (LTM) dust seal for space actuator application. Following are top-level findings of the tests completed to date in vacuum using NU-LHT-2M lunar-highlands simulant. A complete set of findings are found in the conclusions section.Tests were run at approximately 10-7 torr with unidirectional rotational speed of 39 RPM.Initial break-in runs were performed at atmospheric conditions with no simulant. During the break-in runs, the maximum torque observed was 16.7 lbf-in. while the maximum seal outer diameter temperature was 103F. Only 0.4 milligrams of NU-LHT-2M simulant passed through the sealshaft interface in the first 511,000 cycles while under vacuum despite a chip on the secondary sealing surface.Approximately 650,000 of a planned 1,000,000 cycles were completed in vacuum with NU-LHT-2M simulant.Upon test disassembly NU-LHT-2M was found on the secondary sealing surface.
Space Power Facility at NASA’s Plum Brook Station
1969-02-21
Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.
Comparison between simulations and lab results on the ASSIST test-bench
NASA Astrophysics Data System (ADS)
Le Louarn, Miska; Madec, Pierre-Yves; Kolb, Johann; Paufique, Jerome; Oberti, Sylvain; La Penna, Paolo; Arsenault, Robin
2016-07-01
We present the latest comparison results between laboratory tests carried out on the ASSIST test bench and Octopus end-to end simulations. We simulated, as closely to the lab conditions as possible, the different AOF modes (Maintenance and commissioning mode (SCAO), GRAAL (GLAO in the near IR), Galacsi Wide Field mode (GLAO in the visible) and Galacsi narrow field mode (LTAO in the visible)). We then compared the simulation results to the ones obtained on the lab bench. Several aspects were investigated, like number of corrected modes, turbulence wind speeds, LGS photon flux etc. The agreement between simulations and lab is remarkably good for all investigated parameters, giving great confidence in both simulation tool and performance of the AO system in the lab.
Simulation of Fatigue Crack Initiation at Corrosion Pits With EDM Notches
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Newman, John A.; Piascik, Robert S.
2003-01-01
Uniaxial fatigue tests were conducted to compare the fatigue life of laboratory produced corrosion pits, similar to those observed in the shuttle main landing gear wheel bolt-hole, and an electro-discharged-machined (EDM) flaw. EDM Jaws are used to simulate corrosion pits during shuttle wheel (dynamometer) testing. The aluminum alloy, (AA 7050) laboratory fatigue tests were conducted to simulate the local stress level contained in the wheel bolt-hole. Under this high local stress condition, the EDM notch produced a fatigue life similar to test specimens containing corrosion pits of similar size. Based on the laboratory fatigue test results, the EDM Jaw (semi-circular disc shaped) produces a local stress state similar to corrosion pits and can be used to simulate a corrosion pit during the shuttle wheel dynamometer tests.
Cheating in OSCEs: The Impact of Simulated Security Breaches on OSCE Performance.
Gotzmann, Andrea; De Champlain, André; Homayra, Fahmida; Fotheringham, Alexa; de Vries, Ingrid; Forgie, Melissa; Pugh, Debra
2017-01-01
Construct: Valid score interpretation is important for constructs in performance assessments such as objective structured clinical examinations (OSCEs). An OSCE is a type of performance assessment in which a series of standardized patients interact with the student or candidate who is scored by either the standardized patient or a physician examiner. In high-stakes examinations, test security is an important issue. Students accessing unauthorized test materials can create an unfair advantage and lead to examination scores that do not reflect students' true ability level. The purpose of this study was to assess the impact of various simulated security breaches on OSCE scores. Seventy-six 3rd-year medical students participated in an 8-station OSCE and were randomized to either a control group or to 1 of 2 experimental conditions simulating test security breaches: station topic (i.e., providing a list of station topics prior to the examination) or egregious security breach (i.e., providing detailed content information prior to the examination). Overall total scores were compared for the 3 groups using both a one-way between-subjects analysis of variance and a repeated measure analysis of variance to compare the checklist, rating scales, and oral question subscores across the three conditions. Overall total scores were highest for the egregious security breach condition (81.8%), followed by the station topic condition (73.6%), and they were lowest for the control group (67.4%). This trend was also found with checklist subscores only (79.1%, 64.9%, and 60.3%, respectively for the security breach, station topic, and control conditions). Rating scale subscores were higher for both the station topic and egregious security breach conditions compared to the control group (82.6%, 83.1%, and 77.6%, respectively). Oral question subscores were significantly higher for the egregious security breach condition (88.8%) followed by the station topic condition (64.3%), and they were the lowest for the control group (48.6%). This simulation of different OSCE security breaches demonstrated that student performance is greatly advantaged by having prior access to test materials. This has important implications for medical educators as they develop policies and procedures regarding the safeguarding and reuse of test content.
Engineering of a multi-station shoulder simulator.
Smith, Simon L; Li, Lisa; Joyce, Thomas J
2016-05-01
This work aimed to engineer a multi-station shoulder simulator in order to wear test shoulder prostheses using recognized shoulder activities of daily living. A bespoke simulator was designed, built and subject to commissioning trials before a first wear test was conducted. Five JRI Orthopaedics Reverse Shoulder VAIOS 42 mm prostheses were tested for 2.0 million cycles and a mean wear rate and standard deviation of 14.2 ± 2.1 mm(3)/10(6) cycles measured for the polymeric glenoid components. This result when adjusted for prostheses diameters and test conditions showed excellent agreement with results from hip simulator studies of similar materials in a lubricant of bovine serum. The Newcastle Shoulder Simulator is the first multi-station shoulder simulator capable of applying physiological motion and loading for typical activities of daily living. © IMechE 2016.
Examining publication bias—a simulation-based evaluation of statistical tests on publication bias
2017-01-01
Background Publication bias is a form of scientific misconduct. It threatens the validity of research results and the credibility of science. Although several tests on publication bias exist, no in-depth evaluations are available that examine which test performs best for different research settings. Methods Four tests on publication bias, Egger’s test (FAT), p-uniform, the test of excess significance (TES), as well as the caliper test, were evaluated in a Monte Carlo simulation. Two different types of publication bias and its degree (0%, 50%, 100%) were simulated. The type of publication bias was defined either as file-drawer, meaning the repeated analysis of new datasets, or p-hacking, meaning the inclusion of covariates in order to obtain a significant result. In addition, the underlying effect (β = 0, 0.5, 1, 1.5), effect heterogeneity, the number of observations in the simulated primary studies (N = 100, 500), and the number of observations for the publication bias tests (K = 100, 1,000) were varied. Results All tests evaluated were able to identify publication bias both in the file-drawer and p-hacking condition. The false positive rates were, with the exception of the 15%- and 20%-caliper test, unbiased. The FAT had the largest statistical power in the file-drawer conditions, whereas under p-hacking the TES was, except under effect heterogeneity, slightly better. The CTs were, however, inferior to the other tests under effect homogeneity and had a decent statistical power only in conditions with 1,000 primary studies. Discussion The FAT is recommended as a test for publication bias in standard meta-analyses with no or only small effect heterogeneity. If two-sided publication bias is suspected as well as under p-hacking the TES is the first alternative to the FAT. The 5%-caliper test is recommended under conditions of effect heterogeneity and a large number of primary studies, which may be found if publication bias is examined in a discipline-wide setting when primary studies cover different research problems. PMID:29204324
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Putman, Gabriel C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Building on dry simulations of the ASMAT tests with the vehicle at 5 ft. elevation (100 ft. real vehicle elevation), wet simulations of the ASMAT test setup have been performed using the Loci/CHEM computational fluid dynamics software to explore the effect of rainbird water suppression inclusion on the launch platform deck. Two-phase water simulation has been performed using an energy and mass coupled lagrangian particle system module where liquid phase emissions are segregated into clouds of virtual particles and gas phase mass transfer is accomplished through simple Weber number controlled breakup and boiling models. Comparisons have been performed to the dry 5 ft. elevation cases, using configurations with and without launch mounts. These cases have been used to explore the interaction between rainbird spray patterns and launch mount geometry and evaluate the acoustic sound pressure level knockdown achieved through above-deck rainbird deluge inclusion. This comparison has been anchored with validation from live-fire test data which showed a reduction in rainbird effectiveness with the presence of a launch mount.
Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development
NASA Technical Reports Server (NTRS)
Putnam, G. C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.
Performance evaluation of NCDOT w-beam guardrails under MASH TL-2 conditions.
DOT National Transportation Integrated Search
2013-11-01
This report summarizes the research efforts of using finite element modeling and simulations to evaluate the performance : of W-beam guardrails for different heights under MASH Test Level 2 (TL-2) and Test Level 3 (TL-3) impact conditions. A : litera...
Thermal Vacuum Facility for Testing Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.
2002-01-01
A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.
ATD Occupant Responses from Three Full-Scale General Aviation Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Annett, Martin S.
2016-01-01
During the summer of 2015, three Cessna 172 General Aviation (GA) aircraft were crash tested at the Landing and Impact Research (LandIR) Facility at NASA Langley Research Center (LaRC). Three different crash scenarios were represented. The first test simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway. The second test simulated a controlled flight into terrain with a nose down pitch of the aircraft, and the third test simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system (DAS) captured 64 channels of airframe acceleration, along with accelerations and loads in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices (ATDs) representing the pilot and copilot. Each of the three tests contained different airframe loading conditions and different types of restraints for both the pilot and co-pilot ATDs. The results show large differences in occupant response and restraint performance with varying likelihoods of occupant injury.
Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Arend, David J.; Wolter, John D.
2017-01-01
The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.
Acoustic test and analyses of three advanced turboprop models
NASA Technical Reports Server (NTRS)
Brooks, B. M.; Metzger, F. B.
1980-01-01
Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.
An active interference projector for the electro-optical test facility
NASA Astrophysics Data System (ADS)
Crowe, D. G.; Nowak, T. M.
1980-09-01
A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.
NASA Technical Reports Server (NTRS)
Marshall, B. A.
1984-01-01
The Advanced Flexible Reusable Surface Insulation (AFRSI) test article was wind tunnel tested. The AFRSI was exposed to a simulated ascent airloads environment and data was obtained which could be used to support the AFRSI certification program. The AFRSI sequence of environments also included radiant heating (1500 degrees Fahrenheit) and wind/rain environments. The test article was wind/rain conditioned before each wind tunnel entry and was thermally conditioned after each wind tunnel entry. The AFRSI failed and the test was aborted before reaching the ascent environment. The AFRSI test article sequentially exposed to 50 wind/rain and 49 simulated entry thermal missions, as well as four wind tunnel entries equivalent to 40 ascent missions.
Flow Characterization Studies of the 10-MW TP3 Arc-Jet Facility: Probe Sweeps
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Alunni, Antonella I.
2016-01-01
This paper reports computational simulations and analysis in support of calibration and flow characterization tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted in the NASA Ames 10-MW TP3 facility using flat-faced stagnation calorimeters at six conditions corresponding to the steps of a simulated flight heating profile. Data were obtained using a conical nozzle test configuration in which the models were placed in a free jet downstream of the nozzle. Experimental surveys of arc-jet test flow with pitot pressure and heat flux probes were also performed at these arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. Two different sets of pitot pressure and heat probes were used: 9.1-mm sphere-cone probes (nose radius of 4.57 mm or 0.18 in) with null-point heat flux gages, and 15.9-mm (0.625 in) diameter hemisphere probes with Gardon gages. The probe survey data clearly show that the test flow in the TP3 facility is not uniform at most conditions (not even axisymmetric at some conditions), and the extent of non-uniformity is highly dependent on various arc-jet parameters such as arc current, mass flow rate, and the amount of cold-gas injection at the arc-heater plenum. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested. Comparisons of computations with the experimental measurements show reasonably good agreement except at the extreme low pressure conditions of the facility envelope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Peter C.; Reynolds, John G.
2013-04-26
Butyl Nitrate (BN) was examined by Small-Scale Safety and Thermal (SSST) Testing techniques to determine its sensitivity to impact, friction, spark and thermal exposure simulating handling and storage conditions. Under the conditions tested, the BN exhibits thermal sensitivity above 150 °C, and does not exhibit sensitive to impact, friction or spark.
NREL Research Proves Wind Can Provide Ancillary Grid Fault Response | News
controllable grid interface (CGI) test facility, which simulates the real-time conditions of a utility-scale power grid. This began an ongoing, Energy Department-funded research effort to test how wind turbines test their equipment under any possible grid fault condition. Researchers such as Mark McDade, project
Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.
1996-01-01
A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.
1963-05-10
The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed “The Arm Farm”, the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swingarm mechanisms that were used to hold the rocket in position until lift-off. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center.
1967-07-28
The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed “The Arm Farm”, the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swingarm mechanisms that were used to hold the rocket in position until lift-off. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center.
Ames Research Center life sciences payload
NASA Technical Reports Server (NTRS)
Callahan, P. X.; Tremor, J. W.
1982-01-01
In response to a recognized need for an in-flight animal housing facility to support Spacelab life sciences investigators, a rack and system compatible Research Animal Holding Facility (RAHF) has been developed. A series of ground tests is planned to insure its satisfactory performance under certain simulated conditions of flight exposure and use. However, even under the best conditions of simulation, confidence gained in ground testing will not approach that resulting from actual spaceflight operation. The Spacelab Mission 3 provides an opportunity to perform an inflight Verification Test (VT) of the RAHF. Lessons learned from the RAHF-VT and baseline performance data will be invaluable in preparation for subsequent dedicated life sciences missions.
Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures
ERIC Educational Resources Information Center
Atar, Burcu; Kamata, Akihito
2011-01-01
The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…
Modeling of membrane processes for air revitalization and water recovery
NASA Technical Reports Server (NTRS)
Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.
1992-01-01
Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.
NASA Technical Reports Server (NTRS)
Curren, A. N.
1978-01-01
A description of the methods used to measure component temperatures and heat-rejection rates in a simulated space environment on output stage tubes (OST's) developed for the Communications Technology Satellite is presented along with summaries of experimentally determined values. The OST's were operated over the entire anticipated operating drive range, from the dc beam (zero drive) condition to the 6-db overdrive condition. The baseplate temperature was varied from -10 to 58 C with emphasis placed on the testing done at 45 C, the normal anticipated operating temperature. The heat-rejection rate of the OST baseplate ranged from 7.6 W at the dc beam condition to 184.5 W at the 6-db overdrive condition; the heat-rejection rate of the multistage depressed collector (MDC) cover ranged from 192.2 to 155.9 W for the same conditions. The maximum OST temperature measured on the MDC cover was 227 C during a dc beam test. The minimum temperature measured, also on the MDC cover, was -67.5 C at the end of an extended simulated eclipse test period. No effects were observed on the OST thermal characteristics due to vibration testing or temperature-reversal cycle testing.
Automated Boundary Conditions for Wind Tunnel Simulations
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2018-01-01
Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.
The effect of simulated air conditions on N95 filtering facepiece respirators performance.
Ramirez, Joel A; O'Shaughnessy, Patrick T
2016-07-01
The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity.
NASA Technical Reports Server (NTRS)
Cunnington, G. R.; Funaa, A. I.; Cassady, P. E.
1973-01-01
Studies were made to develop a test apparatus for the measurement of total emittance of materials under repeated exposure to simulated earth entry conditions. As no existing test facility met the emittance measurement and entry simulation goals, a new apparatus was designed, fabricated and checked out. This apparatus has the capability of performing total and spectral emittance measurements during cyclic temperature and pressure exposure under sonic and supersonic flow conditions. Emittance measurements were performed on a series of oxidized superalloys, silicide coated columbium alloys and ceramic coatings.
Fatigue properties on the failure mode of a dental implant in a simulated body environment
NASA Astrophysics Data System (ADS)
Kim, Min Gun
2011-10-01
This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.
Development of a device to simulate tooth mobility.
Erdelt, Kurt-Jürgen; Lamper, Timea
2010-10-01
The testing of new materials under simulation of oral conditions is essential in medicine. For simulation of fracture strength different simulation devices are used for test set-up. The results of these in vitro tests differ because there is no standardization of tooth mobility in simulation devices. The aim of this study is to develop a simulation device that depicts the tooth mobility curve as accurately as possible and creates reproducible and scalable mobility curves. With the aid of published literature and with the help of dentists, average forms of tooth classes were generated. Based on these tooth data, different abutment tooth shapes and different simulation devices were designed with a CAD system and were generated with a Rapid Prototyping system. Then, for all simulation devices the displacement curves were created with a universal testing machine and compared with the tooth mobility curve. With this new information, an improved adapted simulation device was constructed. A simulations device that is able to simulate the mobility curve of natural teeth with high accuracy and where mobility is reproducible and scalable was developed.
Balloon launched decelerator test program: Post-test test report
NASA Technical Reports Server (NTRS)
Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.
1972-01-01
Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.
A New Tribological Test for Candidate Brush Seal Materials Evaluation
NASA Technical Reports Server (NTRS)
Fellenstein, James A.; Dellacorte, Christopher
1994-01-01
A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.
NASA GRC and MSFC Space-Plasma Arc Testing Procedures
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd
2007-01-01
Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. Discussed herein are neutral gas conditions, plasma densities and uniformity, vacuum chamber sizes, sample sizes and Debye lengths, biasing samples versus self-generated voltages, floating samples versus grounded samples, test electrical conditions, arc detection, preventing sustained discharges during testing, real samples versus idealized samples, validity of LEO tests for GEO samples, extracting arc threshold information from arc rate versus voltage tests, snapover, current collection, and glows at positive sample bias, Kapton pyrolysis, thresholds for trigger arcs, sustained arcs, dielectric breakdown and Paschen discharge, tether arcing and testing in very dense plasmas (i.e. thruster plumes), arc mitigation strategies, charging mitigation strategies, models, and analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.
NASA Technical Reports Server (NTRS)
Moss, J. E., Jr.
1981-01-01
Emissions of carbon dioxide, total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from an F100 afterburning two spool turbofan engine at simulated flight conditions are reported. Tests were run at Mach 0.8 at altitudes of 10.97 and 13.71 km (36,000 and 45,000 ft), and at Mach 1.2 at 13.71 km (45,000 ft). Emission measurements were made from intermediate power (nonafterburning) through maximum afterburning, using a single point gas sample probe traversed across the horizontal diameter of the exhaust nozzle. The data show that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate and partial afterburning power. Unburned hydrocarbons were near zero for most of the simulated flight conditions. At maximum afterburning, there were regions of NOx deficiency in regions of high CO. The results suggest that the low NOx levels observed in the tests are a result of interaction with high CO in the thermal converter. CO2 emissions were proportional to local fuel air ratio for all test conditions.
Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Wilkinson, R. Allen
2014-01-01
For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.
NASA Astrophysics Data System (ADS)
Luty, W.
2016-09-01
- A description of the tire Basic Relaxation Model (BRM) is presented in this paper. Simulation research of the tire BRM model in conditions of oscillatory changes of the wheel cornering angle were performed. During the simulation tests the courses of changes in the value of lateral reaction force, transmitted by the wheel, as a response to the sinusoidal changes in the value of the wheel cornering angle have been presented. There have been compared the simulation results obtained for the model of tire-road interaction in two modes: including and not including the BRM. The simulation results allowed to verify prepared BRM and also to determine the influence of the tire relaxation process on the tire behavior in conditions of dynamic changes of the wheel cornering angle.
The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison
NASA Technical Reports Server (NTRS)
TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.
Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.
2016-11-01
Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.
Simulating Extraterrestrial Ices in the Laboratory
NASA Astrophysics Data System (ADS)
Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.
2017-12-01
Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.
NASA Astrophysics Data System (ADS)
Sawada, Masataka; Nishimoto, Soshi; Okada, Tetsuji
2017-01-01
In high-level radioactive waste disposal repositories, there are long-term complex thermal, hydraulic, and mechanical (T-H-M) phenomena that involve the generation of heat from the waste, the infiltration of ground water, and swelling of the bentonite buffer. The ability to model such coupled phenomena is of particular importance to the repository design and assessments of its safety. We have developed a T-H-M-coupled analysis program that evaluates the long-term behavior around the repository (called "near-field"). We have also conducted centrifugal model tests that model the long-term T-H-M-coupled behavior in the near-field. In this study, we conduct H-M-coupled numerical simulations of the centrifugal near-field model tests. We compare numerical results with each other and with results obtained from the centrifugal model tests. From the comparison, we deduce that: (1) in the numerical simulation, water infiltration in the rock mass was in agreement with the experimental observation. (2) The constant-stress boundary condition in the centrifugal model tests may cause a larger expansion of the rock mass than in the in situ condition, but the mechanical boundary condition did not affect the buffer behavior in the deposition hole. (3) The numerical simulation broadly reproduced the measured bentonite pressure and the overpack displacement, but did not reproduce the decreasing trend of the bentonite pressure after 100 equivalent years. This indicates the effect of the time-dependent characteristics of the surrounding rock mass. Further investigations are needed to determine the effect of initial heterogeneity in the deposition hole and the time-dependent behavior of the surrounding rock mass.
NASA Technical Reports Server (NTRS)
Riley, Donald R.; Brandon, Jay M.; Glaab, Louis J.
1994-01-01
A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company.
Simulations of carbon fiber composite delamination tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, G
2007-10-25
Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-statemore » testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.« less
Simulated space environment tests on cadmium sulfide solar cells
NASA Technical Reports Server (NTRS)
Clarke, D. R.; Oman, H.
1971-01-01
Cadmium sulfide (Cu2s - CdS) solar cells were tested under simulated space environmental conditions. Some cells were thermally cycled with illumination from a Xenon-arc solar simulator. A cycle was one hour of illumination followed immediately with one-half hour of darkness. In the light, the cells reached an equilibrium temperature of 60 C (333 K) and in the dark the cell temperature dropped to -120 C (153 K). Other cells were constantly illuminated with a Xenon-arc solar simulator. The equilibrium temperature of these cells was 55 C (328 K). The black vacuum chamber walls were cooled with liquid nitrogen to simulate a space heat sink. Chamber pressure was maintained at 0.000001 torr or less. Almost all of the solar cells tested degraded in power when exposed to a simulated space environment of either thermal cycling or constant illumination. The cells tested the longest were exposed to 10.050 thermal cycles.
NASA Technical Reports Server (NTRS)
Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James
1997-01-01
Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.
14 CFR 29.725 - Limit drop test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in the attitude simulating the landing condition that is most critical from the standpoint of the energy...-up attitude considered in the nose-up landing conditions. h=specified free drop height (inches). L...
14 CFR 29.725 - Limit drop test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in the attitude simulating the landing condition that is most critical from the standpoint of the energy...-up attitude considered in the nose-up landing conditions. h=specified free drop height (inches). L...
14 CFR 27.725 - Limit drop test.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Each landing gear unit must be tested in the attitude simulating the landing condition that is most... rotorcraft in the most critical attitude. A rational method may be used in computing a main gear static... with the rotorcraft in the maximum nose-up attitude considered in the nose-up landing conditions. h...
Effects of simulated weightlessness on bone mineral metabolism
NASA Technical Reports Server (NTRS)
Globus, R. K.; Bikle, D. D.; Morey-Holton, E.
1984-01-01
It is pointed out that prolonged space flight, bedrest, and immobilization are three factors which can produce a negative calcium balance, osteopenia, and an inhibition of bone formation. It is not known whether the effects of gravity on bone mineral metabolism are mediated by systemic endocrine factors which affect all bones simultaneously, or by local factors which affect each bone individually. The present investigation has the objective to test the relative importance of local vs. systemic factors in regulating the bone mineral response to conditions simulating weightlessness. Experiments were conducted with male Sprague-Dawley rats. The test conditions made it possible to compare the data from weighted and unweighted bones in the same animal. The obtained findings indicate that a decrease in bone mass relative to control value occurs rapidly under conditions which simulate certain aspects of weightlessness. However, this decrease reaches a plateau after 10 days.
Use of agar/glycerol and agar/glycerol/water as a translucent brain simulant for ballistic testing.
Falland-Cheung, Lisa; Waddell, J Neil; Lazarjan, Milad Soltanipour; Jermy, Mark C; Winter, Taylor; Tong, Darryl; Brunton, Paul A
2017-01-01
The suitability of agar/glycerol/water and agar/glycerol mixtures as brain simulants was investigated. Test specimens (n=15) (50x27×37mm) were fabricated for these different mixtures and conditioned to 12°C, 22°C, and 26°C prior to testing. For comparison, fresh deer brain specimens (n=20) were sourced and prepared to the same dimensions as the agar/glycerol(/water) mixtures and conditioned to 12°C and 37°C. High impact tests were carried out with a 0.22-caliber air rifle pellet and a high-speed camera was used to record the projectile as it passed through the specimens, allowing for energy loss and vertical displacement velocity calculation. Although the agar/glycerol/water mixture presented with similar vertical expansion and contraction of the specimens to the warm and cold deer brains, a two-fold decrease of the vertical expansion and contraction was noticed with the agar/glycerol specimens. Also considerably less extrusion of this mixture out of the exit and entry sides after specimen penetration was observed. Of the simulants tested, agar/glycerol/water was the most suitable brain simulant for ballistic testing and impact studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harandi, Shervin Eslami; Singh Raman, R. K.
2015-05-01
Magnesium (Mg) alloys possess great potential as bioimplants. A temporary implant employed as support for the repair of a fractured bone must possess sufficient strength to maintain their mechanical integrity for the required duration of healing. However, Mg alloys are susceptible to sudden cracking or fracture under the simultaneous action of cyclic loading and the corrosive physiological environment, i.e., corrosion fatigue (CF). Investigations of such fracture should be performed under appropriate mechanochemical conditions that appropriately simulate the actual human body conditions. This article reviews the existing knowledge on CF of Mg alloys in simulated body fluid and describes a relatively more accurate testing procedure developed in the authors' laboratory.
Ramos-Ruiz, Adriana; Wilkening, Jean V.; Field, James A.; Sierra-Alvarez, Reyes
2017-01-01
A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30 days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1 mg L-1), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005 mg L-1). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. PMID:28472709
NASA Technical Reports Server (NTRS)
Russin, W. R.
1974-01-01
Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.
Hanford spent nuclear fuel hot conditioning system test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, K.J.
1997-09-16
This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing.
Ha, D; Bertocci, G; Deemer, E; van Roosmalen, L; Karg, P
2000-01-01
Automotive seats are tested for compliance with federal motor vehicle safety standards (FMVSS) to assure safety during impact. Many wheelchair users rely upon their wheelchairs to serve as vehicle seats. However, the crashworthiness of these wheelchairs during impact is often unknown. This study evaluated the crashworthiness of five combinations of wheelchair back support surfaces and attachment hardware using a static test procedure simulating crash loading conditions. The crashworthiness was tested by applying a simulated rearward load to each seat-back system. The magnitude of the applied load was established through computer simulation and biodynamic calculations. None of the five tested wheelchair back supports withstood the simulated crash loads. All failures were associated with attachment hardware.
Damage progression in Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
1996-01-01
A computational simulation tool is used to evaluate the various stages of damage progression in composite materials during Iosipescu sheat testing. Unidirectional composite specimens with either the major or minor material axis in the load direction are considered. Damage progression characteristics are described for each specimen using two types of boundary conditions. A procedure is outlined regarding the use of computational simulation in composites testing. Iosipescu shear testing using the V-notched beam specimen is a convenient method to measure both shear strength and shear stiffness simultaneously. The evaluation of composite test response can be made more productive and informative via computational simulation of progressive damage and fracture. Computational simulation performs a complete evaluation of laminated composite fracture via assessment of ply and subply level damage/fracture processes.
A mechanical adapter for installing mission equipment on large space structures
NASA Technical Reports Server (NTRS)
Lefever, A. E.; Totah, R. S.
1980-01-01
A mechanical attachment adapter was designed, constructed, and tested. The adapter was was included in a simulation program that investigated techniques for assembling erectable structures under simulated zero-g conditions by pressure-suited subjects in a simulated EVA mode. The adapter was utilized as an interface attachment between a simulated equipment module and one node point of a tetrahedral structural cell. The mating performance of the adapter, a self-energized mechanism, was easily and quickly demonstrated and required little effort on the part of the test subjects.
Fatigue Tests with Random Flight Simulation Loading
NASA Technical Reports Server (NTRS)
Schijve, J.
1972-01-01
Crack propagation was studied in a full-scale wing structure under different simulated flight conditions. Omission of low-amplitude gust cycles had a small effect on the crack rate. Truncation of the infrequently occurring high-amplitude gust cycles to a lower level had a noticeably accelerating effect on crack growth. The application of fail-safe load (100 percent limit load) effectively stopped subsequent crack growth under resumed flight-simulation loading. In another flight-simulation test series on sheet specimens, the variables studied are the design stress level and the cyclic frequency of the random gust loading. Inflight mean stresses vary from 5.5 to 10.0 kg/sq mm. The effect of the stress level is larger for the 2024 alloy than for the 7075 alloy. Three frequencies were employed: namely, 10 cps, 1 cps, and 0.1 cps. The frequency effect was small. The advantages and limitations of flight-simulation tests are compared with those of alternative test procedures such as constant-amplitude tests, program tests, and random-load tests. Various testing purposes are considered. The variables of flight-simulation tests are listed and their effects are discussed. A proposal is made for performing systematic flight-simulation tests in such a way that the compiled data may be used as a source of reference.
Rocket nozzle thermal shock tests in an arc heater facility
NASA Technical Reports Server (NTRS)
Painter, James H.; Williamson, Ronald A.
1986-01-01
A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.
NASA Technical Reports Server (NTRS)
Puster, R. L.; Chapman, A. J.
1977-01-01
An ablative material composed of silica-filled elastomeric silicone was tested to evaluate its thermal and structural performance as an external insulator, or heat shield, for a hypersonic research aircraft. The material was also tested to determine whether it would form a durable char layer when initially heated and thereafter function primarily as an insulator with little further pyrolysis or char removal. Aerothermal tests were representative of nominal Mach 6 cruise conditions of the aircraft, and additional tests were representative of Mach 8 cruise and interference heating conditions. Radiant heating tests were used to simulate the complete nominal Mach 6 surface-temperature history. The silica char that formed during aerothermal tests was not durable. The char experienced a general and preferential surface recession, with the primary mechanism for char removal being erosion. Tests revealed that radiant heating is not a valid technique for simulating aerodynamic heating of the material.
[Nursing students assessment in simulated conditions : in search of meaning and ethics].
Homerin, Marie-Pierre; Roumanet, Marie-Cécile
2014-10-01
A thought about the assessment in simulated conditions is at the origin of this research-action conducted at the Institute of Nursing Education of Chambery, France. Indeed, the differences in the assessment procedures between units that require this kind of validation and the disappointing rate of success at the examinations in simulated situations have led the trainers to raise the following question : « How can these assessments be meaningful and consistent with the goal of training (help to become autonomous and reflexive practitioners) » ?This issue was addressed with concepts such as socioconstructivism, simulation in health, assessment and ethical principles. The change of practices has been the application of the principles of ?educative? assessment according to G. Nunziatti which strongly involves the students in the assessment?s process.In order to estimate the impact of these changes of practices, an unidentified online survey was offered to all students who benefited from this kind of assessment. The results between two classes of students having had different evaluation procedures have also been compared.The objectives were, after the implementation of this new kind of evaluation, to assess the students? satisfaction, to compare the failure rate at the tests in simulated conditions and to verify the compliance with the ethical principles.This study has shown the students? satisfaction about these new forms of assessment in simulated conditions, an increased success rate in the tests and the applicability of the ethical principles with this way of proceeding. However, the principles of justice and non-maleficence are difficult to implement. Nevertheless, this critical thinking on the procedures of assessment in simulated conditions has helped to change the practices and the assessment design by the teachers.
Virtual geotechnical laboratory experiments using a simulator
NASA Astrophysics Data System (ADS)
Penumadu, Dayakar; Zhao, Rongda; Frost, David
2000-04-01
The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.
Prototype Common Bus Spacecraft: Hover Test Implementation and Results. Revision, Feb. 26, 2009
NASA Technical Reports Server (NTRS)
Hine, Butler Preston; Turner, Mark; Marshall, William S.
2009-01-01
In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle.
NASA Technical Reports Server (NTRS)
Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.
2006-01-01
The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan
2012-01-01
Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.
HiL simulation in biomechanics: a new approach for testing total joint replacements.
Herrmann, Sven; Kaehler, Michael; Souffrant, Robert; Rachholz, Roman; Zierath, János; Kluess, Daniel; Mittelmeier, Wolfram; Woernle, Christoph; Bader, Rainer
2012-02-01
Instability of artificial joints is still one of the most prevalent reasons for revision surgery caused by various influencing factors. In order to investigate instability mechanisms such as dislocation under reproducible, physiologically realistic boundary conditions, a novel test approach is introduced by means of a hardware-in-the-loop (HiL) simulation involving a highly flexible mechatronic test system. In this work, the underlying concept and implementation of all required units is presented enabling comparable investigations of different total hip and knee replacements, respectively. The HiL joint simulator consists of two units: a physical setup composed of a six-axes industrial robot and a numerical multibody model running in real-time. Within the multibody model, the anatomical environment of the considered joint is represented such that the soft tissue response is accounted for during an instability event. Hence, the robot loads and moves the real implant components according to the information provided by the multibody model while transferring back the position and resisting moment recorded. Functionality of the simulator is proved by testing the underlying control principles, and verified by reproducing the dislocation process of a standard total hip replacement. HiL simulations provide a new biomechanical testing tool for analyzing different joint replacement systems with respect to their instability behavior under realistic movements and physiological load conditions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks
NASA Astrophysics Data System (ADS)
Sebastian, Resmi; Sitharam, T. G.
2018-01-01
Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.
Test of a Cardiology Patient Simulator with Students in Fourth-Year Electives.
ERIC Educational Resources Information Center
Ewy, Gordon A.; And Others
1987-01-01
Students at five medical schools participated in an evaluation of a cardiology patient simulator (CPS), a life-size mannequin capable of simulating a wide variety of cardiovascular conditions. The CPS enhances learning both the knowledge and the skills necessary to perform a bedside cardiovascular evaluation. (Author/MLW)
40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... heat loading. (1)(i) Acceptable types of radiant energy emitters that may be used for simulating solar... this section. (3) Radiant energy specifications. (i) Simulated solar radiant energy intensity is... time major changes in the solar simulation hardware occur. (vi) The radiant energy intensity...
40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... heat loading. (1)(i) Acceptable types of radiant energy emitters that may be used for simulating solar... this section. (3) Radiant energy specifications. (i) Simulated solar radiant energy intensity is... time major changes in the solar simulation hardware occur. (vi) The radiant energy intensity...
40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... heat loading. (1)(i) Acceptable types of radiant energy emitters that may be used for simulating solar... this section. (3) Radiant energy specifications. (i) Simulated solar radiant energy intensity is... time major changes in the solar simulation hardware occur. (vi) The radiant energy intensity...
40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... heat loading. (1)(i) Acceptable types of radiant energy emitters that may be used for simulating solar... this section. (3) Radiant energy specifications. (i) Simulated solar radiant energy intensity is... time major changes in the solar simulation hardware occur. (vi) The radiant energy intensity...
NASA Technical Reports Server (NTRS)
Melcher, John C., IV; Allred, Jennifer K.
2009-01-01
Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Dickens, Kevin W.; Skaff, Tony F.; Cmar, Mark D.; VanMeter, Matthew J.; Haberbusch, Mark S.
1998-01-01
The Spacecraft Propulsion Research Facility at the NASA Lewis Research Center's Plum Brook Station was reactivated in order to conduct flight simulation ground tests of the Delta 3 cryogenic upper stage. The tests were a cooperative effort between The Boeing Company, Pratt and Whitney, and NASA. They included demonstration of tanking and detanking of liquid hydrogen, liquid oxygen and helium pressurant gas as well as 12 engine firings simulating first, second, and third burns at altitude conditions. A key to the success of these tests was the performance of the primary facility systems and their interfaces with the vehicle. These systems included the structural support of the vehicle, propellant supplies, data acquisition, facility control systems, and the altitude exhaust system. While the facility connections to the vehicle umbilical panel simulated the performance of the launch pad systems, additional purge and electrical connections were also required which were unique to ground testing of the vehicle. The altitude exhaust system permitted an approximate simulation of the boost-phase pressure profile by rapidly pumping the test chamber from 13 psia to 0.5 psia as well as maintaining altitude conditions during extended steady-state firings. The performance of the steam driven ejector exhaust system has been correlated with variations in cooling water temperature during these tests. This correlation and comparisons to limited data available from Centaur tests conducted in the facility from 1969-1971 provided insight into optimizing the operation of the exhaust system for future tests. Overall, the facility proved to be robust and flexible for vehicle space simulation engine firings and enabled all test objectives to be successfully completed within the planned schedule.
The Lewis Research Center geomagnetic substorm simulation facility
NASA Technical Reports Server (NTRS)
Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.
1977-01-01
A simulation facility was established to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated include the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests include sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients are measured by means of current probes and oscilloscopes and are verified by a photomultiplier. Details of this facility and typical operating procedures are presented.
Simulating hemispatial neglect with virtual reality.
Baheux, Kenji; Yoshizawa, Makoto; Yoshida, Yasuko
2007-07-19
Hemispatial neglect is a cognitive disorder defined as a lack of attention for stimuli contra-lateral to the brain lesion. The assessment is traditionally done with basic pencil and paper tests and the rehabilitation programs are generally not well adapted. We propose a virtual reality system featuring an eye-tracking device for a better characterization of the neglect that will lead to new rehabilitation techniques. This paper presents a comparison of eye-gaze patterns of healthy subjects, patients and healthy simulated patients on a virtual line bisection test. The task was also executed with a reduced visual field condition hoping that fewer stimuli would limit the neglect. We found that patients and healthy simulated patients had similar eye-gaze patterns. However, while the reduced visual field condition had no effect on the healthy simulated patients, it actually had a negative impact on the patients. We discuss the reasons for these differences and how they relate to the limitations of the neglect simulation. We argue that with some improvements the technique could be used to determine the potential of new rehabilitation techniques and also help the rehabilitation staff or the patient's relatives to better understand the neglect condition.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Leuko, Stefan; Bohmeier, Maria; Hanke, Franziska; Böettger, Ute; Rabbow, Elke; Parpart, Andre; Rettberg, Petra; de Vera, Jean-Pierre P.
2017-01-01
Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets. PMID:28966605
Leuko, Stefan; Bohmeier, Maria; Hanke, Franziska; Böettger, Ute; Rabbow, Elke; Parpart, Andre; Rettberg, Petra; de Vera, Jean-Pierre P
2017-01-01
Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.
A piezoelectric shock-loading response simulator for piezoelectric-based device developers
NASA Astrophysics Data System (ADS)
Rastegar, J.; Feng, Z.
2017-04-01
Pulsed loading of piezoelectric transducers occurs in many applications, such as those in munitions firing, or when a mechanical system is subjected to impact type loading. In this paper, an electronic simulator that can be programmed to generate electrical charges that a piezoelectric transducer generates as it is subjected to various shock loading profiles is presented. The piezoelectric output simulator can provide close to realistic outputs so that the circuit designer can use it to test the developed system under close to realistic conditions without the need for the costly and time consuming process of performing actual tests. The design of the electronic simulator and results of its testing are presented.
Shuttle avionics software development trials: Tribulations and successes, the backup flight system
NASA Technical Reports Server (NTRS)
Chevers, E. S.
1985-01-01
The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.
NASA Astrophysics Data System (ADS)
Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman
2012-06-01
Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.
Water corrosion of F82H-modified in simulated irradiation conditions by heat treatment
NASA Astrophysics Data System (ADS)
Lapeña, J.; Blázquez, F.
2000-12-01
This paper presents results of testing carried out on F82H in water at 260°C with 2 ppm H 2 and the addition of 0.27 ppm Li in the form of LiOH. Uniform corrosion tests have been carried out on as-received material and on specimens from welded material [TIG and electron beam (EB)]. Stress corrosion cracking (SCC) tests have been carried out in as-received material and in material heat treated to simulate neutron irradiation hardening (1075°C/30' a.c. and 1040°C/30' + 625°C/1 h a.c.) with hardness values of 405 and 270 HV30, respectively. Results for uniform corrosion after 2573 h of testing have shown weight losses of about 60 mg/dm 2. Compact tension (CT) specimens from the as-received material tested under constant load have not experienced crack growth. However, in the simulated irradiation conditions for a stress intensity factor between 40 and 80 MPa√m, crack growth rates of about 7×10 -8 m/s have been measured.
Inverted initial conditions: Exploring the growth of cosmic structure and voids
Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; ...
2016-05-18
We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δ A(x,t initial) = –δ B(x,t initial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand tomore » create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.« less
Simulated airline service experience with laminar-flow control leading-edge systems
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Fisher, David F.; Jennett, Lisa A.; Fischer, Michael C.
1987-01-01
The first JetStar leading edge flight test was made November 30, 1983. The JetStar was flown for more than 3 years. The titanium leading edge test articles today remain in virtually the same condition as they were in on that first flight. No degradation of laminar flow performance has occurred as a result of service. The JetStar simulated airline service flights have demonstrated that effective, practical leading edge systems are available for future commercial transports. Specific conclusions based on the results of the simulated airline service test program are summarized.
Cellular Responses of the Lichen Circinaria gyrosa in Mars-Like Conditions.
de la Torre Noetzel, Rosa; Miller, Ana Z; de la Rosa, José M; Pacelli, Claudia; Onofri, Silvano; García Sancho, Leopoldo; Cubero, Beatriz; Lorek, Andreas; Wolter, David; de Vera, Jean P
2018-01-01
Lichens are extremely resistant organisms that colonize harsh climatic areas, some of them defined as "Mars-analog sites." There still remain many unsolved questions as to how lichens survive under such extreme conditions. Several studies have been performed to test the resistance of various lichen species under space and in simulated Mars-like conditions. The results led to the proposal that Circinaria gyrosa (Lecanoromycetes, Ascomycota) is one of the most durable astrobiological model lichens. However, although C . gyrosa has been exposed to Mars-like environmental conditions while in a latent state, it has not been exposed in its physiologically active mode. We hypothesize that the astrobiological test system " Circinaria gyrosa ," could be able to be physiologically active and to survive under Mars-like conditions in a simulation chamber, based on previous studies performed at dessicated-dormant stage under simulated Mars-like conditions, that showed a complete recover of the PSII activity (Sánchez et al., 2012). Epifluorescence and confocal laser scanning microscopy (CLSM) showed that living algal cells were more abundant in samples exposed to niche conditions, which simulated the conditions in micro-fissures and micro-caves close to the surface that have limited scattered or time-dependent light exposure, than in samples exposed to full UV radiation. The medulla was not structurally affected, suggesting that the niche exposure conditions did not disturb the lichen thalli structure and morphology as revealed by field emission scanning electron microscopy (FESEM). In addition, changes in the lichen thalli chemical composition were determined by analytical pyrolysis. The chromatograms resulting from analytical pyrolysis at 500°C revealed that lichen samples exposed to niche conditions and full UV radiation consisted primarily of glycosidic compounds, lipids, and sterols, which are typical constituents of the cell walls. However, specific differences could be detected and used as markers of the UV-induced damage to the lichen membranes. Based on its viability responses after rehydration, our study shows that the test lichen survived the 30-day incubation in the Mars chamber particularly under niche conditions. However, the photobiont was not able to photosynthesize under the Mars-like conditions, which indicates that the surface of Mars is not a habitable place for C . gyrosa .
NASA Technical Reports Server (NTRS)
Krist, Steven E.; Ghaffari, Farhad
2015-01-01
Computational simulations for a Space Launch System configuration at liftoff conditions for incidence angles from 0 to 90 degrees were conducted in order to generate integrated force and moment data and longitudinal lineloads. While the integrated force and moment coefficients can be obtained from wind tunnel testing, computational analyses are indispensable in obtaining the extensive amount of surface information required to generate proper lineloads. However, beyond an incidence angle of about 15 degrees, the effects of massive flow separation on the leeward pressure field is not well captured with state of the art Reynolds Averaged Navier-Stokes methods, necessitating the employment of a Detached Eddy Simulation method. Results from these simulations are compared to the liftoff force and moment database and surface pressure data derived from a test in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel.
Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
2012-01-01
In June 2011, the multi-university sponsored Cosmic Ray Electron Synchrotron Telescope (CREST) has undergone thermal-vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the B-2 Space Propulsion Facility vacuum chamber. The CREST was later flown over the Antarctic region as the payload of a stratospheric balloon. Solar simulation was provided by a system of planar infrared lamp arrays specifically designed for CREST. The lamp arrays, in conjunction with a liquid-nitrogen-cooled cold wall, achieved the required thermal conditions for the qualification tests. The following slides accompanied the presentation of the report entitled Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2, at the 27th Aerospace Testing Seminar, October 2012. The presentation described the test article, the test facility capability, the solar simulation requirements, the highlights of the engineering approach, and the results achieved. The presentation was intended to generate interest in the report and in the B-2 test facility.
NASA Astrophysics Data System (ADS)
Maniowski, M.; Para, S.; Knapczyk, M.
2016-09-01
This paper presents a modernization approach of a standard test bench for determination of damping characteristics of automotive shock absorbers. It is known that the real-life work conditions of wheel-suspension dampers are not easy to reproduce in laboratory conditions, for example considering a high frequency damper response or a noise emission. The proposed test bench consists of many elements from a real vehicle suspension. Namely, an original tyre-wheel with additional unsprung mass, a suspension spring, an elastic top mount, damper bushings and a simplified wheel guiding mechanism. Each component was tested separately in order to identify its mechanical characteristics. The measured data serve as input parameters for a numerical simulation of the test bench behaviour by using a vibratory model with 3 degrees of freedom. Study on the simulation results and the measurements are needed for further development of the proposed test bench.
Filter Media Tests Under Simulated Martian Atmospheric Conditions
NASA Technical Reports Server (NTRS)
Agui, Juan H.
2016-01-01
Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.
Numerical simulations of the first operational conditions of the negative ion test facility SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Agostinetti, P.; Antoni, V.
2016-02-15
In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.
Numerical simulations of the first operational conditions of the negative ion test facility SPIDER
NASA Astrophysics Data System (ADS)
Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Cavenago, M.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.
2016-02-01
In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.
Environmental testing of flat plate solar cell modules
NASA Technical Reports Server (NTRS)
Griffith, J.; Dumas, L.; Hoffman, A.
1978-01-01
Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.
NASA Astrophysics Data System (ADS)
Pokorný, Jan; Kopečková, Barbora; Fišer, Jan; JÍcha, Miroslav
2018-06-01
The aim of the paper is to assemble a simulator for evaluation of thermal comfort in car cabins in order to give a feedback to the HVAC (heating, ventilation and air conditioning) system. The HW (hardware) part of simulator is formed by thermal manikin Newton and RH (relative humidity), velocity and temperature probes. The SW (software) part consists of the Thermal Comfort Analyser (using ISO 14505-2) and Virtual Testing Stand of Car Cabin defining the heat loads of car cabin. Simulator can provide recommendation for the climate control how to improve thermal comfort in cabin by distribution and directing of air flow, and also by amount of ventilation power to keep optimal temperature inside a cabin. The methods of evaluation of thermal comfort were verified by tests with 10 test subjects for summer (summer clothing, ambient air temperature 30 °C, HVAC setup: +24 °C auto) and winter conditions (winter clothing, ambient air temperature -5 °C, HVAC setup: +18 °C auto). The tests confirmed the validity of the thermal comfort evaluation using the thermal manikin and ISO 14505-2.
Rader, T; Fastl, H; Baumann, U
2017-03-01
After implantation of cochlear implants with hearing preservation for combined electronic acoustic stimulation (EAS), the residual acoustic hearing ability relays fundamental speech frequency information in the low frequency range. With the help of acoustic simulation of EAS hearing perception the impact of frequency and level fine structure of speech signals can be systematically examined. The aim of this study was to measure the speech reception threshold (SRT) under various noise conditions with acoustic EAS simulation by variation of the frequency and level information of the fundamental frequency f0 of speech. The study was carried out to determine to what extent the SRT is impaired by modification of the f0 fine structure. Using partial tone time pattern analysis an acoustic EAS simulation of the speech material from the Oldenburg sentence test (OLSA) was generated. In addition, determination of the f0 curve of the speech material was conducted. Subsequently, either the parameter frequency or level of f0 was fixed in order to remove one of the two fine contour information of the speech signal. The processed OLSA sentences were used to determine the SRT in background noise under various test conditions. The conditions "f0 fixed frequency" and "f0 fixed level" were tested under two different situations, under "amplitude modulated background noise" and "continuous background noise" conditions. A total of 24 subjects with normal hearing participated in the study. The SRT in background noise for the condition "f0 fixed frequency" was more favorable in continuous noise with 2.7 dB and in modulated noise with 0.8 dB compared to the condition "f0 fixed level" with 3.7 dB and 2.9 dB, respectively. In the simulation of speech perception with cochlear implants and acoustic components, the level information of the fundamental frequency had a stronger impact on speech intelligibility than the frequency information. The method of simulation of transmission of cochlear implants allows investigation of how various parameters influence speech intelligibility in subjects with normal hearing.
Heat Flux and Wall Temperature Estimates for the NASA Langley HIFiRE Direct Connect Rig
NASA Technical Reports Server (NTRS)
Cuda, Vincent, Jr.; Hass, Neal E.
2010-01-01
An objective of the Hypersonic International Flight Research Experimentation (HIFiRE) Program Flight 2 is to provide validation data for high enthalpy scramjet prediction tools through a single flight test and accompanying ground tests of the HIFiRE Direct Connect Rig (HDCR) tested in the NASA LaRC Arc Heated Scramjet Test Facility (AHSTF). The HDCR is a full-scale, copper heat sink structure designed to simulate the isolator entrance conditions and isolator, pilot, and combustor section of the HIFiRE flight test experiment flowpath and is fully instrumented to assess combustion performance over a range of operating conditions simulating flight from Mach 5.5 to 8.5 and for various fueling schemes. As part of the instrumentation package, temperature and heat flux sensors were provided along the flowpath surface and also imbedded in the structure. The purpose of this paper is to demonstrate that the surface heat flux and wall temperature of the Zirconia coated copper wall can be obtained with a water-cooled heat flux gage and a sub-surface temperature measurement. An algorithm was developed which used these two measurements to reconstruct the surface conditions along the flowpath. Determinations of the surface conditions of the Zirconia coating were conducted for a variety of conditions.
Implementation of Slater Boundary Condition into OVERFLOW
NASA Astrophysics Data System (ADS)
Duncan, Sean
Bleed is one of the primary methods of controlling the flow within a mixed compression inlet. In this work the Slater boundary condition, first applied in WindUS, is implemented in OVERFLOW. Further, a simulation using discrete holes is run in order to show the differences between use of the boundary condition and use of the bleed hole geometry. Recent tests at Wright Patterson Air Force Base seek to provide a baseline for study of mixed compression inlets. The inlet used by the Air Force Research Laboratory is simulated in the modified OVERFLOW. The results from the experiment are compared to the CFD to qualitatively assess the accuracy of the simulations. The boundary condition is shown to be robust and viable in studying bleed.
Airflow and thrust calibration of an F100 engine, S/N P680059, at selected flight conditions
NASA Technical Reports Server (NTRS)
Biesiadny, T. J.; Lee, D.; Rodriguez, J. R.
1978-01-01
An airflow and thrust calibration of an F100 engine, S/N P680059, was conducted to study airframe propulsion system integration losses in turbofan-powered high-performance aircraft. The tests were conducted with and without thrust augmentation for a variety of simulated flight conditions with emphasis on the transonic regime. The resulting corrected airflow data generalized into one curve with corrected fan speed while corrected gross thrust increased as simulated flight conditions increased. Overall agreement between measured data and computed results was 1 percent for corrected airflow and -1 1/2 percent for gross thrust. The results of an uncertainty analysis are presented for both parameters at each simulated flight condition.
Reliability Assessment of GaN Power Switches
2015-04-17
Possibilities for single event burnout testing were examined as well. Device simulation under the conditions of some of the testing was performed on...reverse-bias (HTRB) and single electron burnout (SEE) tests. 8. Refine test structures, circuits, and procedures, and, if possible, develop
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1986-01-01
The development of an electronic primary flight display format aligned with the aircraft velocity vector, a simulation evaluation comparing this format with an electronic attitude-aligned primary flight display format, and a flight evaluation of the velocity-vector-aligned display format are described. Earlier tests in turbulent conditions with the electronic attitude-aligned display format had exhibited unsteadiness. A primary objective of aligning the display format with the velocity vector was to take advantage of a velocity-vector control-wheel steering system to provide steadiness of display during turbulent conditions. Better situational awareness under crosswind conditions was also achieved. The evaluation task was a curved, descending approach with turbulent and crosswind conditions. Primary flight display formats contained computer-drawn perspective runway images and flight-path angle information. The flight tests were conducted aboard the NASA Transport Systems Research Vehicle (TSRV). Comparative results of the simulation and flight tests were principally obtained from subjective commentary. Overall, the pilots preferred the display format aligned with the velocity vector.
Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William
2005-01-01
As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.
Possibilities of rock constitutive modelling and simulations
NASA Astrophysics Data System (ADS)
Baranowski, Paweł; Małachowski, Jerzy
2018-01-01
The paper deals with a problem of rock finite element modelling and simulation. The main intention of authors was to present possibilities of different approaches in case of rock constitutive modelling. For this purpose granite rock was selected, due to its wide mechanical properties recognition and prevalence in literature. Two significantly different constitutive material models were implemented to simulate the granite fracture in various configurations: Johnson - Holmquist ceramic model which is very often used for predicting rock and other brittle materials behavior, and a simple linear elastic model with a brittle failure which can be used for simulating glass fracturing. Four cases with different loading conditions were chosen to compare the aforementioned constitutive models: uniaxial compression test, notched three-point-bending test, copper ball impacting a block test and small scale blasting test.
The Negated Conditional: A Litmus Test for the Suppositional Conditional?
ERIC Educational Resources Information Center
Handley, Simon J.; Evans, Jonathan St. B. T.; Thompson, Valerie A.
2006-01-01
Under the suppositional account of conditionals, when people think about a conditional assertion, "if p then q," they engage in a mental simulation in which they imagine p holds and evaluate the probability that q holds under this supposition. One implication of this account is that belief in a conditional equates to conditional probability…
NASA Technical Reports Server (NTRS)
Moehlmann, D.; Kochan, H.
1992-01-01
The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.
Similarity constraints in testing of cooled engine parts
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Stepka, F. S.
1974-01-01
A study is made of the effect of testing cooled parts of current and advanced gas turbine engines at the reduced temperature and pressure conditions which maintain similarity with the engine environment. Some of the problems facing the experimentalist in evaluating heat transfer and aerodynamic performance when hardware is tested at conditions other than the actual engine environment are considered. Low temperature and pressure test environments can simulate the performance of actual size prototype engine hardware within the tolerance of experimental accuracy if appropriate similarity conditions are satisfied. Failure to adhere to these similarity constraints because of test facility limitations or other reasons, can result in a number of serious errors in projecting the performance of test hardware to engine conditions.
NASA Technical Reports Server (NTRS)
Cimino, A. A.
1973-01-01
One Thiokol Chemical Corporation TE-M-521-5 solid-propellant apogee rocket motor was successfully fired at an average simulated altitude of about 108,000 ft while spinning at 46 rpm. The general program objectives were to verify compliance of motor performance with the manufacturer's specifications. Specific primary objectives were to determine vacuum ballistic performance of the motor after prefire vibration conditioning and temperature conditioning at 40F, altitude ignition characteristics, motor structural integrity, and motor temperature-time history during and after motor operation. Additional objectives were to measure the lateral (nonaxial) thrust component during motor operation and to measure radiation heat flux in the vicinity of the nozzle exit plane.
Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle
NASA Technical Reports Server (NTRS)
Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael
2009-01-01
The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.
NASA Technical Reports Server (NTRS)
Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark
2011-01-01
A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.
Simulation of SEU Cross-sections using MRED under Conditions of Limited Device Information
NASA Technical Reports Server (NTRS)
Lauenstein, J. M.; Reed, R. A.; Weller, R. A.; Mendenhall, M. H.; Warren, K. M.; Pellish, J. A.; Schrimpf, R. D.; Sierawski, B. D.; Massengill, L. W.; Dodd, P. E.;
2007-01-01
This viewgraph presentation reviews the simulation of Single Event Upset (SEU) cross sections using the membrane electrode assembly (MEA) resistance and electrode diffusion (MRED) tool using "Best guess" assumptions about the process and geometry, and direct ionization, low-energy beam test results. This work will also simulate SEU cross-sections including angular and high energy responses and compare the simulated results with beam test data for the validation of the model. Using MRED, we produced a reasonably accurate upset response model of a low-critical charge SRAM without detailed information about the circuit, device geometry, or fabrication process
Boundary Layer Protuberance Simulations in Channel Nozzle Arc-Jet
NASA Technical Reports Server (NTRS)
Marichalar, J. J.; Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.
2010-01-01
Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.
Seddighi, Mona; Briguglio, Antonino; Hohenegger, Johann; Papazzoni, Cesare Andrea
2015-01-01
Settling velocities of 58 well-preserved tests of fossil Nummulites were experimentally determined using a settling tube. The tests were collected from the nummulite banks of Pederiva di Grancona (A forms of N. lyelli and N. striatus, Middle Eocene) and San Germano dei Berici (A and B forms of N. fabianii, Late Eocene), both in the Berici Mts. (Veneto, northern Italy). The data were compared with estimated settling velocities that the same specimens might have had in life conditions. This was done by reconstructing their densities simulating water-filled condition and, to simulate post-diagenetic effects, under calcite-filled condition. These simulations show that A and B forms, even if they greatly diverge in shape, volume and size, still possess comparable settling velocities, and that each nummulite bank is characterized by specific hydrodynamic parameters. The use of settling velocity as a parameter to quantify the hydrodynamic behaviour of particles in seawater enables estimation of palaeoenvironmental conditions such as depth, substrate and the energy scenario. Such information is useful in obtaining further insights into the genesis of nummulite banks, the autochthony or allochthony of which is still being debated. Our results point to an autochthonous interpretation. PMID:26681827
Seddighi, Mona; Briguglio, Antonino; Hohenegger, Johann; Papazzoni, Cesare Andrea
2015-09-01
Settling velocities of 58 well-preserved tests of fossil Nummulites were experimentally determined using a settling tube. The tests were collected from the nummulite banks of Pederiva di Grancona (A forms of N. lyelli and N. striatus, Middle Eocene) and San Germano dei Berici (A and B forms of N. fabianii, Late Eocene), both in the Berici Mts. (Veneto, northern Italy). The data were compared with estimated settling velocities that the same specimens might have had in life conditions. This was done by reconstructing their densities simulating water-filled condition and, to simulate post-diagenetic effects, under calcite-filled condition. These simulations show that A and B forms, even if they greatly diverge in shape, volume and size, still possess comparable settling velocities, and that each nummulite bank is characterized by specific hydrodynamic parameters. The use of settling velocity as a parameter to quantify the hydrodynamic behaviour of particles in seawater enables estimation of palaeoenvironmental conditions such as depth, substrate and the energy scenario. Such information is useful in obtaining further insights into the genesis of nummulite banks, the autochthony or allochthony of which is still being debated. Our results point to an autochthonous interpretation.
Airframe Icing Research Gaps: NASA Perspective
NASA Technical Reports Server (NTRS)
Potapczuk, Mark
2009-01-01
qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K.; Davidson, Megan
As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to themore » deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping to improve these simulations so they provide increasingly credible analysis of the system response and performance over the full range of conditions.« less
Modeled ground water age distributions
Woolfenden, Linda R.; Ginn, Timothy R.
2009-01-01
The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.
Ramos-Ruiz, Adriana; Wilkening, Jean V; Field, James A; Sierra-Alvarez, Reyes
2017-08-15
A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1mgL -1 ), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005mgL -1 ). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Harman, R.; Blejer, D.
1990-01-01
The requirements and mathematical specifications for the Gamma Ray Observatory (GRO) Dynamics Simulator are presented. The complete simulator system, which consists of the profie subsystem, simulation control and input/output subsystem, truth model subsystem, onboard computer model subsystem, and postprocessor, is described. The simulator will be used to evaluate and test the attitude determination and control models to be used on board GRO under conditions that simulate the expected in-flight environment.
Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream
NASA Technical Reports Server (NTRS)
Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.
2011-01-01
In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.
Annual progress report on the NSRR experiments, (21)
NASA Astrophysics Data System (ADS)
1992-05-01
Fuel behavior studies under simulated reactivity-initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor (NSRR) since 1975. This report gives the results of experiments performed from April, 1989 through March, 1990 and discussions of them. A total of 41 tests were carried out during this period. The tests are distinguished into pre-irradiated fuel tests and fresh fuel tests; the former includes 2 JMTR pre-irradiated fuel tests, 2 PWR pre-irradiated fuel tests, and 2 BWR pre-irradiated fuel tests, and the latter includes 6 standard fuel tests (6 SP(center dot)CP scoping tests), 7 power and cooling condition parameter tests (4 flow shrouded fuel tests, 1 bundle simulation test, 1 fully water-filled vessel test, 1 high pressure/high temperature loop test), 12 special fuel tests (3 stainless steel clad fuel tests, 3 improved PWR fuel tests, 6 improved BWR fuel tests), 3 severe fuel damage tests (1 high temperature flooding test, 1 flooding behavior observation test, 1 debris coolability test), 3 fast breeder reactor fuel tests (2 moderator material characteristic measurement tests, 1 fuel behavior observation test), and 2 miscellaneous tests (2 preliminary tests for pre-irradiated fuel tests).
Status of the Flooding Fragility Testing Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.; Savage, B.; Bhandari, B.
2016-06-01
This report provides an update on research addressing nuclear power plant component reliability under flooding conditions. The research includes use of the Component Flooding Evaluation Laboratory (CFEL) where individual components and component subassemblies will be tested to failure under various flooding conditions. The resulting component reliability data can then be incorporated with risk simulation strategies to provide a more thorough representation of overall plant risk. The CFEL development strategy consists of four interleaved phases. Phase 1 addresses design and application of CFEL with water rise and water spray capabilities allowing testing of passive and active components including fully electrified components.more » Phase 2 addresses research into wave generation techniques followed by the design and addition of the wave generation capability to CFEL. Phase 3 addresses methodology development activities including small scale component testing, development of full scale component testing protocol, and simulation techniques including Smoothed Particle Hydrodynamic (SPH) based computer codes. Phase 4 involves full scale component testing including work on full scale component testing in a surrogate CFEL testing apparatus.« less
Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.
2017-01-01
During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.
JT9D performance deterioration results from a simulated aerodynamic load test
NASA Technical Reports Server (NTRS)
Stakolich, E. G.; Stromberg, W. J.
1981-01-01
The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.
An experimental investigation of the NASA space shuttle external tank at hypersonic Mach numbers
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1975-01-01
Pressure and heat transfer tests were conducted simulating flight conditions which the space shuttle external tank will experience prior to break-up. The tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel and simulated entry conditions for nominal, abort-once-around (AOA), and return to launch site (RTLS) launch occurrences. Surface pressure and heat-transfer-rate distributions were obtained with and without various protuberences (or exterior hardware) on the model at Mach numbers from 15.2 to 17.7 at angles of attack from -15 deg to -180 deg and at several roll angles. The tests were conducted over a Reynolds number range from 1300 to 58,000, based on model length.
Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame
NASA Astrophysics Data System (ADS)
Sadeghian, Vahid; Kwon, Oh-Sung; Vecchio, Frank
2017-10-01
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shearcritical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.
Simulated Gastrointestinal pH Condition Improves Antioxidant Properties of Wheat and Rice Flours
Chan, Kim Wei; Khong, Nicholas M. H.; Iqbal, Shahid; Ismail, Maznah
2012-01-01
The present study was conducted to evaluate the antioxidant properties of wheat and rice flours under simulated gastrointestinal pH condition. After subjecting the wheat and rice flour slurries to simulated gastrointestinal pH condition, both slurries were centrifuged to obtain the crude phenolic extracts for further analyses. Extraction yield, total contents of phenolic and flavonoids were determined as such (untreated) and under simulated gastrointestinal pH condition (treated). 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical cation (ABTS•+) scavenging activity, ferric reducing antioxidant power (FRAP), beta-carotene bleaching (BCB) and iron chelating activity assays were employed for the determination of antioxidant activity of the tested samples. In almost all of the assays performed, significant improvements in antioxidant properties (p < 0.05) were observed in both flours after treatment, suggesting that wheat and rice flours contain considerably heavy amounts of bound phenolics, and that their antioxidant properties might be improved under gastrointestinal digestive conditions. PMID:22837707
Research and development at the Marshall Space Flight Center Neutral Buoyancy Simulator
NASA Technical Reports Server (NTRS)
Kulpa, Vygantas P.
1987-01-01
The Neutral Buoyancy Simulator (NBS), a facility designed to imitate zero-gravity conditions, was used to test the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS). Neutral Buoyancy Simulator applications and operations; early space structure research; development of the EASE/ACCESS experiments; and improvement of NBS simulation are summarized.
USDA-ARS?s Scientific Manuscript database
Well-tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model’s ability to simulate pesticide tr...
NASA Technical Reports Server (NTRS)
Atwell, Matthew J.; Melcher, John C.; Hurlbert, Eric A.; Morehead, Robert L.
2017-01-01
A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated.
Hybrid test on building structures using electrodynamic fatigue test machine
NASA Astrophysics Data System (ADS)
Xu, Zhao-Dong; Wang, Kai-Yang; Guo, Ying-Qing; Wu, Min-Dong; Xu, Meng
2017-01-01
Hybrid simulation is an advanced structural dynamic experimental method that combines experimental physical models with analytical numerical models. It has increasingly been recognised as a powerful methodology to evaluate structural nonlinear components and systems under realistic operating conditions. One of the barriers for this advanced testing is the lack of flexible software for hybrid simulation using heterogeneous experimental equipment. In this study, an electrodynamic fatigue test machine is made and a MATLAB program is developed for hybrid simulation. Compared with the servo-hydraulic system, electrodynamic fatigue test machine has the advantages of small volume, easy operation and fast response. A hybrid simulation is conducted to verify the flexibility and capability of the whole system whose experimental substructure is one spring brace and numerical substructure is a two-storey steel frame structure. Experimental and numerical results show the feasibility and applicability of the whole system.
Van Biesen, Debbie; Mactavish, Jennifer J; Vanlandewijck, Yves C
2014-04-01
Technical skill proficiency among elite table tennis players with intellectual disabilities (ID) was investigated in this study using two approaches: an off-court simulation testing protocol and an on-court, standardized observational framework during game play. Participants included 24 players with ID (M age = 25 yr., SD = 6; M IQ = 61, SD = 9), the top 16 performers, 13 men and 11 women, at the International Federation for sport for para-athletes with an intellectual disability (Inas) World Championships. Self-reported table tennis training experience of the players was 13 +/- 5 yr. In the Simulation Testing condition, players were instructed to play five sets of basic and five sets of advanced skills, which were subsequently assessed by experts using a standardized and validated observational protocol. The same protocol was used to assess the same skills during Game Play. Ratings of overall technical proficiency were not significantly different between Simulation Testing and Game Play conditions. There was a strong positive correlation between technical proficiency measured during Game Play vs Simulation Testing for the variables flick, topspin forehand, and topspin backhand. No correlations were found for the variables contra, block, and push. Insight into this relationship is important for future development of classification systems for ID athletes in the Paralympic Games, because comparing competition observation with the athlete's potential shown during the classification session is essential information for classifiers to confirm the athlete's competition class.
Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber
NASA Technical Reports Server (NTRS)
Klenhenz, Julie; Linne, Diane
2013-01-01
In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambon, Paul H.; Deter, Dean D.
2016-07-01
xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.
A Hybrid Parachute Simulation Environment for the Orion Parachute Development Project
NASA Technical Reports Server (NTRS)
Moore, James W.
2011-01-01
A parachute simulation environment (PSE) has been developed that aims to take advantage of legacy parachute simulation codes and modern object-oriented programming techniques. This hybrid simulation environment provides the parachute analyst with a natural and intuitive way to construct simulation tasks while preserving the pedigree and authority of established parachute simulations. NASA currently employs four simulation tools for developing and analyzing air-drop tests performed by the CEV Parachute Assembly System (CPAS) Project. These tools were developed at different times, in different languages, and with different capabilities in mind. As a result, each tool has a distinct interface and set of inputs and outputs. However, regardless of the simulation code that is most appropriate for the type of test, engineers typically perform similar tasks for each drop test such as prediction of loads, assessment of altitude, and sequencing of disreefs or cut-aways. An object-oriented approach to simulation configuration allows the analyst to choose models of real physical test articles (parachutes, vehicles, etc.) and sequence them to achieve the desired test conditions. Once configured, these objects are translated into traditional input lists and processed by the legacy simulation codes. This approach minimizes the number of sim inputs that the engineer must track while configuring an input file. An object oriented approach to simulation output allows a common set of post-processing functions to perform routine tasks such as plotting and timeline generation with minimal sensitivity to the simulation that generated the data. Flight test data may also be translated into the common output class to simplify test reconstruction and analysis.
NASA Technical Reports Server (NTRS)
Bezos, Gaudy M.; Campbell, Bryan A.
1993-01-01
A large-scale, outdoor, ground-based test capability for acquiring aerodynamic data in a simulated rain environment was developed at the Langley Aircraft Landing Dynamics Facility (ALDF) to assess the effect of heavy rain on airfoil performance. The ALDF test carriage was modified to transport a 10-ft-chord NACA 64210 wing section along a 3000-ft track at full-scale aircraft approach speeds. An overhead rain simulation system was constructed along a 525-ft section of the track with the capability of producing simulated rain fields of 2, 10, 30, and 40 in/hr. The facility modifications, the aerodynamic testing and rain simulation capability, the design and calibration of the rain simulation system, and the operational procedures developed to minimize the effect of wind on the simulated rain field and aerodynamic data are described in detail. The data acquisition and reduction processes are also presented along with sample force data illustrating the environmental effects on data accuracy and repeatability for the 'rain-off' test condition.
Simulation-based Testing of Control Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Nutaro, James J.; Sanyal, Jibonananda
It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulatormore » can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.« less
FDTD simulation of field performance in reverberation chamber excited by two excitation antennas
NASA Astrophysics Data System (ADS)
Wang, Song; Wu, Zhan-cheng; Cui, Yao-zhong
2013-03-01
The excitation source is one of the critical items that determine the electromagnetic fields in a reverberation chamber (RC). In order to optimize the electromagnetic fields performance, a new method of exciting RC with two antennas is proposed based on theoretical analysis. The full 3D simulation of RC is carried out by the finite difference time domain (FDTD) method on two excitation conditions of one antenna and two antennas. The broadband response of RC is obtained by fast Fourier transformation (FFT) after only one simulation. Numerical data show that the field uniformity in the test space is improved on the condition of two transmitting antennas while the normalized electric fields decreased slightly compared to the one antenna condition. It is straightforward to recognize that two antennas excitation can reduce the demands on power amplifier as the total input power is split among the two antennas, and consequently the cost of electromagnetic compatibility (EMC) test in large-scale RC can be reduced.
NASA Technical Reports Server (NTRS)
James, W. F.
1985-01-01
An experimental investigation was made to evaluate two nickel base alloys (Nickel-201 and Inconel-718) in three heat treated conditions. These conditions were: (1) annealed; (2) after thermal exposure simulating a braze cycle; and (3) after a thermal exposure simulating a braze cycle plus one operational lifetime of high temperature service. For the Nickel-201, two different braze cycle temperatures were evaluated. A braze cycle utilizing a lower braze temperature resulted in less grain growth for Nickel-201 than the standard braze cycle used for joining Nickel-201 to Inconel-718. It was determined, however, that Nickel-201, was marginal for temperatures investigated due to large grain growth. After the thermal exposures described above, the mechanical properties of Nickel-201 were degraded, whereas similar exposure on Inconel-718 actually strengthened the material compared with the annealed condition. The investigation included tensile tests at both room temperature and elevated temperatures, stress-rupture tests, and metallographic examination.
Tests to Help Plan Opportunity Moves
2005-05-06
Rover engineers check how a test rover moves in material chosen to simulate some difficult Mars driving conditions. The scene is inside the In-Situ Instrument Laboratory at NASA Jet Propulsion Laboratory, Pasadena, Calif.
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.
1984-01-01
Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Acoustic behavior as a function of nozzle flow passage geometry was measured. The acoustic data consist primarily of 1/3 octave band sound pressure levels and overall sound pressure levels. Detailed schematics and geometric characteristics of the six scale model nozzle configurations and acoustic test point definitions are presented. Tabulation of aerodynamic test conditions and a computer listing of the measured acoustic data are displayed.
Design and development of a 40 kV pierce electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D., E-mail: dhruva.bhattacharjee@gmail.com
A 40 kV electron gun is designed and developed using the Pierce configuration for the focusing electrode. Simulations were carried out using CST Particle Studio. The Gun is a thermionic type electron gun with indirect heating of the LaB6 cathode. The gun is capable of delivering a beam current of more than 500 mA at 40 kV with a beam size of less than 5 mm. The cathode assembly consists of cups and heat shields made out of Tantalum and Rhenium sheets. The cathode assembly and the electron gun was fabricated, assembled and tested on test bench for cathode conditioning,more » HV conditioning and beam characterization. This paper presents the gun design, particle simulations study, testing of the gun on test bench. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borst, M.
1984-03-01
This report covers the performance testing of five oil spill recovery devices at the Oil and Hazardous Materials Simulated Environmental Test Tank in Leonardo, New Jersey. The GOR Skimmer was tow tested in harbor chops, regular waves, and calm water at tow speeds through 2 knots to determine the effectiveness of modifications made to the device since it was last tested. The performance was consistently lower after the modifications in all conditions. The Hydrovac Veegarm was the most exhaustively tested skimmer in this program.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.
Meyer, B; Morin, V N; Rödger, H-J; Holah, J; Bird, C
2010-04-01
The results from European standard disinfectant tests are used as one basis to approve the use of disinfectants in Europe. The design of these laboratory-based tests should thus simulate as closely as possible the practical conditions and challenges that the disinfectants would encounter in use. No evidence is available that the organic and microbial loading in these tests simulates actual levels in the food service sector. Total organic carbon (TOC) and total viable count (TVC) were determined on 17 visibly clean and 45 visibly dirty surfaces in two restaurants and the food preparation surfaces of a large retail store. These values were compared to reference values recovered from surfaces soiled with the organic and microbial loading, following the standard conditions of the European Surface Test for bactericidal efficacy, EN 13697. The TOC reference values for clean and dirty conditions were higher than the data from practice, but cannot be regarded as statistical outliers. This was considered as a conservative assessment; however, as additional nine TOC samples from visibly dirty surfaces were discarded from the analysis, as their loading made them impossible to process. Similarly, the recovery of test organisms from surfaces contaminated according to EN 13697 was higher than the TVC from visibly dirty surfaces in practice; though they could not be regarded as statistical outliers of the whole data field. No correlation was found between TVC and TOC in the sampled data, which re-emphasizes the potential presence of micro-organisms on visibly clean surfaces and thus the need for the same degree of disinfection as visibly dirty surfaces. The organic soil and the microbial burden used in EN disinfectant standards represent a realistic worst-case scenario for disinfectants used in the food service and food-processing areas.
A simulation framework for the CMS Track Trigger electronics
NASA Astrophysics Data System (ADS)
Amstutz, C.; Magazzù, G.; Weber, M.; Palla, F.
2015-03-01
A simulation framework has been developed to test and characterize algorithms, architectures and hardware implementations of the vastly complex CMS Track Trigger for the high luminosity upgrade of the CMS experiment at the Large Hadron Collider in Geneva. High-level SystemC models of all system components have been developed to simulate a portion of the track trigger. The simulation of the system components together with input data from physics simulations allows evaluating figures of merit, like delays or bandwidths, under realistic conditions. The use of SystemC for high-level modelling allows co-simulation with models developed in Hardware Description Languages, e.g. VHDL or Verilog. Therefore, the simulation framework can also be used as a test bench for digital modules developed for the final system.
NASA Technical Reports Server (NTRS)
Hoeppner, David W.; Pettit, Donald E.; Feddersen, Charles E.; Hyler, Walter S.
1968-01-01
The specific experimental investigation undertaken was designed to answer these questions on Ti-6Al-4V in the solution treated and aged condition. The defect growth and fracture characteristics were studied in parent (unwelded) and welded sheet material. The results of the study indicate that cryogenic proof testing will screen smaller size defects than proof testing at ambient conditions. However some unusual crack growth behavior during the proof test simulation suggests that some further study be made of stress and time duration effects.
Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2003-01-01
The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in identifying design solutions and validating thermal performance models under a very aggressive development schedule. The test data have assisted Johns Hopkins engineers in selecting a flight solar array vendor and a thermal shield design. MESSENGER is one in a series of missions in NASA's Discovery Program. Infrared thermography provides data on the thermal gradients in the MESSENGER components during high solar insolation vacuum testing.
Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham
2012-01-01
Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...
NASA Technical Reports Server (NTRS)
Guo, Li-Wen; Cardullo, Frank M.; Telban, Robert J.; Houck, Jacob A.; Kelly, Lon C.
2003-01-01
A study was conducted employing the Visual Motion Simulator (VMS) at the NASA Langley Research Center, Hampton, Virginia. This study compared two motion cueing algorithms, the NASA adaptive algorithm and a new optimal control based algorithm. Also, the study included the effects of transport delays and the compensation thereof. The delay compensation algorithm employed is one developed by Richard McFarland at NASA Ames Research Center. This paper reports on the analyses of the results of analyzing the experimental data collected from preliminary simulation tests. This series of tests was conducted to evaluate the protocols and the methodology of data analysis in preparation for more comprehensive tests which will be conducted during the spring of 2003. Therefore only three pilots were used. Nevertheless some useful results were obtained. The experimental conditions involved three maneuvers; a straight-in approach with a rotating wind vector, an offset approach with turbulence and gust, and a takeoff with and without an engine failure shortly after liftoff. For each of the maneuvers the two motion conditions were combined with four delay conditions (0, 50, 100 & 200ms), with and without compensation.
The Maintenance of Wakefulness Test and driving simulator performance.
Banks, Siobhan; Catcheside, Peter; Lack, Leon C; Grunstein, Ron R; McEvoy, R Doug
2005-11-01
It has been suggested that the Maintenance of Wakefulness Test (MWT) may be clinically useful to assess fitness to drive, yet little is known about the actual relationship between sleep latency and driving performance. This study examined the ability of 2 MWT trials to predict driving-simulator performance in healthy individuals. Experimental. NA. Twenty healthy volunteers (mean age 22.8 years; 9 men). NA. The MWT and driving-simulator performance were examined under 2 conditions-partial sleep deprivation and a combination of partial sleep deprivation and alcohol consumption. Each subject was studied a week apart, with the order randomly assigned. Subjects completed a nighttime 70-minute AusEd driving simulation task and two 40-minute MWT trials, 1 before (MWT1) and 1 after (MWT2) the driving task. In the sleep-deprived condition, the MWT1 sleep latency was inversely correlated with braking reaction time. During the partial sleep deprivation and alcohol condition, the number of microsleeps during the driving task, steering deviation, braking reaction time, and crashes all negatively correlated with the MWT1 sleep latency. Additionally, construction of a receiver-operator characteristic curve revealed that MWT1 sleep latency in the partial sleep deprivation plus alcohol condition significantly discriminated subjects who had a crash from those who did not. These results indicate that sleep latency on the MWT is a reasonable predictor of driving simulator performance in sleepy, alcohol-impaired, normal subjects. Further research is needed to examine the relationship between daytime MWT results and driving simulator performance in sleepy patients (eg, those with obstructive sleep apnea) and in experimentally sleep-deprived normal subjects.
Hemmerich, Joshua A; Elstein, Arthur S; Schwarze, Margaret L; Moliski, Elizabeth G; Dale, William
2013-01-01
The present study tested predictions derived from the Risk as Feelings hypothesis about the effects of prior patients' negative treatment outcomes on physicians' subsequent treatment decisions. Two experiments at The University of Chicago, U.S.A., utilized a computer simulation of an abdominal aortic aneurysm (AAA) patient with enhanced realism to present participants with one of three experimental conditions: AAA rupture causing a watchful waiting death (WWD), perioperative death (PD), or a successful operation (SO), as well as the statistical treatment guidelines for AAA. Experiment 1 tested effects of these simulated outcomes on (n=76) laboratory participants' (university student sample) self-reported emotions, and their ratings of valence and arousal of the AAA rupture simulation and other emotion inducing picture stimuli. Experiment 2 tested two hypotheses: 1) that experiencing a patient WWD in the practice trial's experimental condition would lead physicians to choose surgery earlier, and 2) experiencing a patient PD would lead physicians to choose surgery later with the next patient. Experiment 2 presented (n=132) physicians (surgeons and geriatricians) with the same experimental manipulation and a second simulated AAA patient. Physicians then chose to either go to surgery or continue watchful waiting. The results of Experiment 1 demonstrated that the WWD experimental condition significantly increased anxiety, and was rated similarly to other negative and arousing pictures. The results of Experiment 2 demonstrated that, after controlling for demographics, baseline anxiety, intolerance for uncertainty, risk attitudes, and the influence of simulation characteristics, the WWD experimental condition significantly expedited decisions to choose surgery for the next patient. The results support the Risk as Feelings hypothesis on physicians' treatment decisions in a realistic AAA patient computer simulation. Bad outcomes affected emotions and decisions, even with statistical AAA rupture risk guidance present. These results suggest that bad patient outcomes cause physicians to experience anxiety and regret that influences their subsequent treatment decision-making for the next patient. PMID:22571890
Hemmerich, Joshua A; Elstein, Arthur S; Schwarze, Margaret L; Moliski, Elizabeth Ghini; Dale, William
2012-07-01
The present study tested predictions derived from the Risk as Feelings hypothesis about the effects of prior patients' negative treatment outcomes on physicians' subsequent treatment decisions. Two experiments at The University of Chicago, U.S.A., utilized a computer simulation of an abdominal aortic aneurysm (AAA) patient with enhanced realism to present participants with one of three experimental conditions: AAA rupture causing a watchful waiting death (WWD), perioperative death (PD), or a successful operation (SO), as well as the statistical treatment guidelines for AAA. Experiment 1 tested effects of these simulated outcomes on (n = 76) laboratory participants' (university student sample) self-reported emotions, and their ratings of valence and arousal of the AAA rupture simulation and other emotion-inducing picture stimuli. Experiment 2 tested two hypotheses: 1) that experiencing a patient WWD in the practice trial's experimental condition would lead physicians to choose surgery earlier, and 2) experiencing a patient PD would lead physicians to choose surgery later with the next patient. Experiment 2 presented (n = 132) physicians (surgeons and geriatricians) with the same experimental manipulation and a second simulated AAA patient. Physicians then chose to either go to surgery or continue watchful waiting. The results of Experiment 1 demonstrated that the WWD experimental condition significantly increased anxiety, and was rated similarly to other negative and arousing pictures. The results of Experiment 2 demonstrated that, after controlling for demographics, baseline anxiety, intolerance for uncertainty, risk attitudes, and the influence of simulation characteristics, the WWD experimental condition significantly expedited decisions to choose surgery for the next patient. The results support the Risk as Feelings hypothesis on physicians' treatment decisions in a realistic AAA patient computer simulation. Bad outcomes affected emotions and decisions, even with statistical AAA rupture risk guidance present. These results suggest that bad patient outcomes cause physicians to experience anxiety and regret that influences their subsequent treatment decision-making for the next patient. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Woodward, Richard P.
1990-01-01
Two modern high-speed advanced counterrotation propellers, F7/A7 and F7/A3 were tested in the NASA Lewis Research Center's 9- by 15-Foot Anechoic Wind Tunnel at simulated takeoff/approach conditions of 0.2 Mach. Both rotors were of similar diameter on the F7/A7 propeller, while the aft diameter of the F7/A3 propeller was 85 percent of the forward propeller to reduce tip vortex-aft rotor interaction. The two propellers were designed for similar performance. The propellers were tested in both the baseline configuration and installed configuration consisting of a simulated upstream nacelle support pylon and fuselage section. Acoustic measurements were made with a polar microphone probe which recorded sideline directivities at various azimuthal locations. Aerodynamic measurements were also made to establish propeller operating conditions. The propellers were run at initial blade setting angles adjusted to achieve equal forward/aft torque ratios at angle of attack with the pylon and fuselage simulation in place. Data are presented for propeller operation at 80 and 90 percent of design speed (the forward rotor design tip speed was 238 m/sec (780 ft/sec). Both propellers were tested at the maximum rotor-rotor spacing of 14.99 cm (5.90 in.) based on the pitch change axis separation.
NASA Technical Reports Server (NTRS)
Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce
1990-01-01
An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.
DOT National Transportation Integrated Search
1999-11-01
Goal 5 is the comparison of the performance of drained and undrained flexible pavements under 'wet' conditions. Wet conditions intend to simulate approximate surface infiltration rates that would occur along the northwest coast of California during a...
Accuracy of user-friendly blood typing kits tested under simulated military field conditions.
Bienek, Diane R; Charlton, David G
2011-04-01
Rapid user-friendly ABO-Rh blood typing kits (Eldon Home Kit 2511, ABO-Rh Combination Blood Typing Experiment Kit) were evaluated to determine their accuracy when used under simulated military field conditions and after long-term storage at various temperatures and humidities. Rates of positive tests between control groups, experimental groups, and industry standards were measured and analyzed using the Fisher's exact chi-square method to identify significant differences (p < or = 0.05). When Eldon Home Kits 2511 were used in various operational conditions, the results were comparable to those obtained with the control group and with the industry standard. The performance of the ABO-Rh Combination Blood Typing Experiment Kit was adversely affected by prolonged storage in temperatures above 37 degrees C. The diagnostic performance of commercial blood typing kits varies according to product and environmental storage conditions.
TUTORIAL: Validating biorobotic models
NASA Astrophysics Data System (ADS)
Webb, Barbara
2006-09-01
Some issues in neuroscience can be addressed by building robot models of biological sensorimotor systems. What we can conclude from building models or simulations, however, is determined by a number of factors in addition to the central hypothesis we intend to test. These include the way in which the hypothesis is represented and implemented in simulation, how the simulation output is interpreted, how it is compared to the behaviour of the biological system, and the conditions under which it is tested. These issues will be illustrated by discussing a series of robot models of cricket phonotaxis behaviour. .
LOX/Hydrogen Coaxial Injector Atomization Test Program
NASA Technical Reports Server (NTRS)
Zaller, M.
1990-01-01
Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.
Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.
2016-01-01
During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.
Three Dimensional Thermal Pollution Models. Volume 2; Rigid-Lid Models
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1978-01-01
Three versions of rigid lid programs are presented: one for near field simulation; the second for far field unstratified situations; and the third for stratified basins, far field simulation. The near field simulates thermal plume areas, and the far field version simulates larger receiving aquatic ecosystems. Since these versions have many common subroutines, a unified testing is provided, with main programs for the three possible conditions listed.
Analysis of non-destructive current simulators of flux compression generators.
O'Connor, K A; Curry, R D
2014-06-01
Development and evaluation of power conditioning systems and high power microwave components often used with flux compression generators (FCGs) requires repeated testing and characterization. In an effort to minimize the cost and time required for testing with explosive generators, non-destructive simulators of an FCG's output current have been developed. Flux compression generators and simulators of FCGs are unique pulsed power sources in that the current waveform exhibits a quasi-exponential increasing rate at which the current rises. Accurately reproducing the quasi-exponential current waveform of a FCG can be important in designing electroexplosive opening switches and other power conditioning components that are dependent on the integral of current action and the rate of energy dissipation. Three versions of FCG simulators have been developed that include an inductive network with decreasing impedance in time. A primary difference between these simulators is the voltage source driving them. It is shown that a capacitor-inductor-capacitor network driving a constant or decreasing inductive load can produce the desired high-order derivatives of the load current to replicate a quasi-exponential waveform. The operation of the FCG simulators is reviewed and described mathematically for the first time to aid in the design of new simulators. Experimental and calculated results of two recent simulators are reported with recommendations for future designs.
Berthing simulator for space station and orbiter
NASA Technical Reports Server (NTRS)
Veerasamy, Sam
1991-01-01
The development of a real-time man-in-the-loop berthing simulator is in progress at NASA Lyndon B. Johnson Space Center (JSC) to conduct a parametric study and to measure forces during contact conditions of the actual docking mechanisms for the Space Station Freedom and the orbiter. In berthing, the docking ports of the Space Station and the orbiter are brought together using the orbiter robotic arm to control the relative motion of the vehicles. The berthing simulator consists of a dynamics docking test system (DDTS), computer system, simulator software, and workstations. In the DDTS, the Space Station, and the orbiter docking mechanisms are mounted on a six-degree-of-freedom (6 DOF) table and a fixed platform above the table. Six load cells are used on the fixed platform to measure forces during contact conditions of the docking mechanisms. Two Encore Concept 32/9780 computers are used to simulate the orbiter robotic arm and to operate the berthing simulator. A systematic procedure for a real-time dynamic initialization is being developed to synchronize the Space Station docking port trajectory with the 6 DOF table movement. The berthing test can be conducted manually or automatically and can be extended for any two orbiting vehicles using a simulated robotic arm. The real-time operation of the berthing simulator is briefly described.
Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft
NASA Technical Reports Server (NTRS)
Mason, Brian H.; Warren, Jerry E., Jr.
2017-01-01
The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.
The NASA atomic oxygen effects test program
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.
1988-01-01
The NASA Atomic Oxygen Effects Test Program was established to compare the low earth orbital simulation characteristics of existing atomic oxygen test facilities and utilize the collective data from a multitude of simulation facilities to promote understanding of mechanisms and erosion yield dependence upon energy, flux, metastables, charge, and environmental species. Four materials chosen for this evaluation include Kapton HN polyimide, FEP Teflon, polyethylene, and graphite single crystals. The conditions and results of atomic oxygen exposure of these materials is reported by the participating organizations and then assembled to identify degrees of dependency of erosion yields that may not be observable from any single atomic oxygen low earth orbital simulation facility. To date, the program includes 30 test facilities. Characteristics of the participating test facilities and results to date are reported.
2011-09-30
simulation provides boundary condition to the SPH simulation in a sub- domain. For the test with surface wave propagation, the free surface and the...This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that can be used to study the fundamental physics...of horizontal velocity(normalized by wave phase speed c) obtained from SPH simulation and the corresponding free surface obtained from LSM
Progressive Damage and Fracture in Composites Under Dynamic Loading
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
1994-01-01
A computational simulation tool is used to evaluate the various stages of damage progression in composite materials during losipescu shear testing. Unidirectional composite specimens with either the major or minor material axis in the load direction are considered. Damage progression characteristics are described for each specimen using two types of boundary conditions. A procedure is outlined regarding the use of computational simulation in the testing of composite materials.
Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere
NASA Astrophysics Data System (ADS)
Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit
2015-08-01
Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.
NASA Technical Reports Server (NTRS)
Simon, F. F.; Miller, D. R.
1975-01-01
A generalized collector performance correlation was derived and shown by experimental verification to be of the proper form to account for the majority of the variable conditions encountered both in outdoor and in indoor collector tests. This correlation permits a determination of collector parameters which are essentially nonvarying under conditions which do vary randomly (outdoors) or conditions which vary in a controlled manner (indoors - simulator). It was shown that correlation of the experimental performance of collectors allows the following: (1) comparisons of different collector designs; (2) collector performance prediction under conditions that differ from the conditions of the test program; and (3) monitoring performance degradation effects.
NASA Technical Reports Server (NTRS)
Melcher, John C., IV; Allred, Jennifer K.
2009-01-01
Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to 122,000 ft (37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were met with the RS-18 data and additional testing data from subsequent LO2/methane test programs in 2009 which included the first simulated-altitude pyrotechnic ignition demonstration of LO2/methane.
Verification of a ground-based method for simulating high-altitude, supersonic flight conditions
NASA Astrophysics Data System (ADS)
Zhou, Xuewen; Xu, Jian; Lv, Shuiyan
Ground-based methods for accurately representing high-altitude, high-speed flight conditions have been an important research topic in the aerospace field. Based on an analysis of the requirements for high-altitude supersonic flight tests, a ground-based test bed was designed combining Laval nozzle, which is often found in wind tunnels, with a rocket sled system. Sled tests were used to verify the performance of the test bed. The test results indicated that the test bed produced a uniform-flow field with a static pressure and density equivalent to atmospheric conditions at an altitude of 13-15km and at a flow velocity of approximately M 2.4. This test method has the advantages of accuracy, fewer experimental limitations, and reusability.
Lightning vulnerability of fiber-optic cables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Leonard E.; Caldwell, Michele
2008-06-01
One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less
Improved Test Planning and Analysis Through the Use of Advanced Statistical Methods
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Maxwell, Katherine A.; Glass, David E.; Vaughn, Wallace L.; Barger, Weston; Cook, Mylan
2016-01-01
The goal of this work is, through computational simulations, to provide statistically-based evidence to convince the testing community that a distributed testing approach is superior to a clustered testing approach for most situations. For clustered testing, numerous, repeated test points are acquired at a limited number of test conditions. For distributed testing, only one or a few test points are requested at many different conditions. The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied to enable distributed test planning, data analysis and test augmentation. The D-Optimal class of DOE is used to plan an optimally efficient single- and multi-factor test. The resulting simulated test data are analyzed via ANOVA and a parametric model is constructed using RSM. Finally, ANOVA can be used to plan a second round of testing to augment the existing data set with new data points. The use of these techniques is demonstrated through several illustrative examples. To date, many thousands of comparisons have been performed and the results strongly support the conclusion that the distributed testing approach outperforms the clustered testing approach.
Examining Ankle-Joint Laxity Using 2 Knee Positions and With Simulated Muscle Guarding
Hanlon, Shawn; Caccese, Jaclyn; Knight, Christopher A.; Swanik, Charles “Buz”; Kaminski, Thomas W.
2016-01-01
Context: Several factors affect the reliability of the anterior drawer and talar tilt tests, including the individual clinician's experience and skill, ankle and knee positioning, and muscle guarding. Objectives: To compare gastrocnemius activity during the measurement of ankle-complex motion at different knee positions, and secondarily, to compare ankle-complex motion during a simulated trial of muscle guarding. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: Thirty-three participants aged 20.2 ± 1.7 years were tested. Intervention(s): The ankle was loaded under 2 test conditions (relaxed, simulated muscle guarding) at 2 knee positions (0°, 90° of flexion) while gastrocnemius electromyography (EMG) activity was recorded. Main Outcome Measure(s): Anterior displacement (mm), inversion-eversion motion (°), and peak EMG amplitude values of the gastrocnemius (μV). Results: Anterior displacement did not differ between the positions of 0° and 90° of knee flexion (P = .193). Inversion-eversion motion was greater at 0° of knee flexion compared with 90° (P < .001). Additionally, peak EMG amplitude of the gastrocnemius was not different between 0° and 90° of knee flexion during anterior displacement (P = .101). As expected, the simulated muscle-guarding trial reduced anterior displacement compared with the relaxed condition (0° of knee flexion, P = .008; 90° of knee flexion, P = .016) and reduced inversion-eversion motion (0° of knee flexion, P = .03; 90° of knee flexion, P < .001). Conclusions: In a relaxed state, the gastrocnemius muscle did not appear to affect anterior ankle laxity at the 2 most common knee positions for anterior drawer testing; however, talar tilt testing may be best performed with the knee in 0° of knee flexion. Finally, our outcomes from the simulated muscle-guarding condition suggest that clinicians should use caution and be aware of reduced perceived laxity when performing these clinical examination techniques immediately postinjury. PMID:26881870
Examining Ankle-Joint Laxity Using 2 Knee Positions and With Simulated Muscle Guarding.
Hanlon, Shawn; Caccese, Jaclyn; Knight, Christopher A; Swanik, Charles Buz; Kaminski, Thomas W
2016-02-01
Several factors affect the reliability of the anterior drawer and talar tilt tests, including the individual clinician's experience and skill, ankle and knee positioning, and muscle guarding. To compare gastrocnemius activity during the measurement of ankle-complex motion at different knee positions, and secondarily, to compare ankle-complex motion during a simulated trial of muscle guarding. Cross-sectional study. Research laboratory. Thirty-three participants aged 20.2 ± 1.7 years were tested. The ankle was loaded under 2 test conditions (relaxed, simulated muscle guarding) at 2 knee positions (0°, 90° of flexion) while gastrocnemius electromyography (EMG) activity was recorded. Anterior displacement (mm), inversion-eversion motion (°), and peak EMG amplitude values of the gastrocnemius (μV). Anterior displacement did not differ between the positions of 0° and 90° of knee flexion (P = .193). Inversion-eversion motion was greater at 0° of knee flexion compared with 90° (P < .001). Additionally, peak EMG amplitude of the gastrocnemius was not different between 0° and 90° of knee flexion during anterior displacement (P = .101). As expected, the simulated muscle-guarding trial reduced anterior displacement compared with the relaxed condition (0° of knee flexion, P = .008; 90° of knee flexion, P = .016) and reduced inversion-eversion motion (0° of knee flexion, P = .03; 90° of knee flexion, P < .001). In a relaxed state, the gastrocnemius muscle did not appear to affect anterior ankle laxity at the 2 most common knee positions for anterior drawer testing; however, talar tilt testing may be best performed with the knee in 0° of knee flexion. Finally, our outcomes from the simulated muscle-guarding condition suggest that clinicians should use caution and be aware of reduced perceived laxity when performing these clinical examination techniques immediately postinjury.
Vadose zone flow convergence test suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, B. T.
Performance Assessment (PA) simulations for engineered disposal systems at the Savannah River Site involve highly contrasting materials and moisture conditions at and near saturation. These conditions cause severe convergence difficulties that typically result in unacceptable convergence or long simulation times or excessive analyst effort. Adequate convergence is usually achieved in a trial-anderror manner by applying under-relaxation to the Saturation or Pressure variable, in a series of everdecreasing RELAxation values. SRNL would like a more efficient scheme implemented inside PORFLOW to achieve flow convergence in a more reliable and efficient manner. To this end, a suite of test problems that illustratemore » these convergence problems is provided to facilitate diagnosis and development of an improved convergence strategy. The attached files are being transmitted to you describing the test problem and proposed resolution.« less
Wear resistance of ductile irons
NASA Astrophysics Data System (ADS)
Lerner, Y. S.
1994-06-01
This study was undertaken to evaluate the wear resistance of different grades of ductile iron as alterna-tives to high- tensile- strength alloyed and inoculated gray irons and bronzes for machine- tool and high-pressure hydraulic components. Special test methods were employed to simulate typical conditions of reciprocating sliding wear with and without abrasive- contaminated lubricant for machine and press guideways. Quantitative relationships were established among wear rate, microstructure and micro-hardness of structural constituents, and nodule size of ductile iron. The frictional wear resistance of duc-tile iron as a bearing material was tested with hardened steel shafts using standard test techniques under continuous rotating movement with lubricant. Lubricated sliding wear tests on specimens and compo-nents for hydraulic equipment and apparatus were carried out on a special rig with reciprocating motion, simulating the working conditions in a piston/cylinder unit in a pressure range from 5 to 32 MPa. Rig and field tests on machine- tool components and units and on hydraulic parts have confirmed the test data.
NASA Astrophysics Data System (ADS)
Oberhuttinger, C.; Quabis, D.; Zimmermann, C. G.
2014-08-01
During both the BepiColombo and the Solar Orbiter (SolO) mission, severe environmental conditions with sun intensities up to 10.6 solar constants (SCs) resp. 12.8 SCs will be encountered. Therefore, a special cell design was developed which can withstand these environmental loads. To verify the solar cells under representative conditions, a set of specific tests is conducted. The key qualification test for these high intensity, high temperature (HIHT) missions is a combined test, which exposes a large number of cells simultaneously to the complete AM0 spectrum at the required irradiance and temperature. Such a test was set up in the VTC1.5 chamber located at ESTEC. This paper provides an overview of the challenges in designing a setup capable of achieving this HIHT simulation. The solutions that were developed will be presented. Also the performance of the setup will be illustrated by actual test results.
Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.
2017-01-01
The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.
Performance of an alpha-vane and pitot tube in simulated heavy rain environment
NASA Technical Reports Server (NTRS)
Luers, J. K.; Fiscus, I. B.
1985-01-01
Experimental tests were conducted in the UDRI Environmental Wind/Rain Tunnel to establish the performance of an alpha-vane, that measures angle of attack, in a simulated heavy rain environment. The tests consisted of emersing the alpha-vane in an airstream with a concurrent water spray penetrating vertically through the airstream. The direction of the spray was varied to make an angle of 5.8 to 18 deg with the airstream direction in order to simulate the conditions that occur when an aircraft lands in a heavy rain environment. Rainrates simulated varied from 1000 to 1200 mm/hr which are the most severe ever expected to be encountered by an aircraft over even a 30 second period. Tunnel airspeeds ranged from 85 to 125 miles per hour. The results showed that even the most severe rainrates produced a misalignment in the alpha-vane of only 1 deg away from the airstream direction. Thus for normal rain conditions experienced by landing aircraft no significant deterioration in alpha-vane performance is expected.
Simulation of car movement along circular path
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Tikhov-Tinnikov, D. A.; Ovchinnikova, N. I.; Lysenko, A. V.
2017-10-01
Under operating conditions, suspension system performance changes which negatively affects vehicle stability and handling. The paper aims to simulate the impact of changes in suspension system performance on vehicle stability and handling. Methods. The paper describes monitoring of suspension system performance, testing of vehicle stability and handling, analyzes methods of suspension system performance monitoring under operating conditions. The mathematical model of a car movement along a circular path was developed. Mathematical tools describing a circular movement of a vehicle along a horizontal road were developed. Turning car movements were simulated. Calculation and experiment results were compared. Simulation proves the applicability of a mathematical model for assessment of the impact of suspension system performance on vehicle stability and handling.
Cellular Responses of the Lichen Circinaria gyrosa in Mars-Like Conditions
de la Torre Noetzel, Rosa; Miller, Ana Z.; de la Rosa, José M.; Pacelli, Claudia; Onofri, Silvano; García Sancho, Leopoldo; Cubero, Beatriz; Lorek, Andreas; Wolter, David; de Vera, Jean P.
2018-01-01
Lichens are extremely resistant organisms that colonize harsh climatic areas, some of them defined as “Mars-analog sites.” There still remain many unsolved questions as to how lichens survive under such extreme conditions. Several studies have been performed to test the resistance of various lichen species under space and in simulated Mars-like conditions. The results led to the proposal that Circinaria gyrosa (Lecanoromycetes, Ascomycota) is one of the most durable astrobiological model lichens. However, although C. gyrosa has been exposed to Mars-like environmental conditions while in a latent state, it has not been exposed in its physiologically active mode. We hypothesize that the astrobiological test system “Circinaria gyrosa,” could be able to be physiologically active and to survive under Mars-like conditions in a simulation chamber, based on previous studies performed at dessicated-dormant stage under simulated Mars-like conditions, that showed a complete recover of the PSII activity (Sánchez et al., 2012). Epifluorescence and confocal laser scanning microscopy (CLSM) showed that living algal cells were more abundant in samples exposed to niche conditions, which simulated the conditions in micro-fissures and micro-caves close to the surface that have limited scattered or time-dependent light exposure, than in samples exposed to full UV radiation. The medulla was not structurally affected, suggesting that the niche exposure conditions did not disturb the lichen thalli structure and morphology as revealed by field emission scanning electron microscopy (FESEM). In addition, changes in the lichen thalli chemical composition were determined by analytical pyrolysis. The chromatograms resulting from analytical pyrolysis at 500°C revealed that lichen samples exposed to niche conditions and full UV radiation consisted primarily of glycosidic compounds, lipids, and sterols, which are typical constituents of the cell walls. However, specific differences could be detected and used as markers of the UV-induced damage to the lichen membranes. Based on its viability responses after rehydration, our study shows that the test lichen survived the 30-day incubation in the Mars chamber particularly under niche conditions. However, the photobiont was not able to photosynthesize under the Mars-like conditions, which indicates that the surface of Mars is not a habitable place for C. gyrosa. PMID:29556220
Louie, Richard F; Ferguson, William J; Curtis, Corbin M; Vy, John H; Tang, Chloe S; Kost, Gerald J
2013-01-01
To characterize the effects of environmental stress on point-of-care (POC) cardiac biomarker testing during a simulated rescue. Multiplex test cassettes for cardiac troponin I (cTnI), brain natriuretic peptide (BNP), CK-MB, myoglobin, and D-dimer were exposed to environmental stresses simulating a 24-hour rescue from Hawaii to the Marshall Islands and back. We used Tenney environmental chambers (T2RC and BTRC) to simulate flight conditions (20°C, 10 percent relative humidity) and ground conditions (22.3-33.9°C, 73-77 percent). We obtained paired measurements using stressed versus control (room temperature) cassettes at seven time points (T1-7 with T1,2,6,7 during flight and T3-5 on ground). We analyzed paired differences (stressed minus control) with Wilcoxon signed rank test. We assessed the impact on decision-making at clinical thresholds. cTnI results from stressed test cassettes (n = 10) at T4 (p < 0.05), T5 (p < 0.01), and T7 (p < 0.05) differed significantly from control, when testing samples with median cTnI concentration of 90 ng/L. During the ground rescue, 36.7 percent (11/30) of cTnI measurements from stressed cassettes generated significantly lowered results. At T5, 20 percent (2/10) of cTnI results were highly discrepant-stressed cassettes reported normal results, when control results were >100 ng/L. With sample median concentration of 108 pg/mL, BNP results from stressed test cassettes differed significantly from controls (p < 0.05). Despite modest, short-term temperature elevation, environmental stresses led to erroneous results. False negative cTnI and BNP results potentially could miss acute myocardial infarction and congestive heart failure, confounded treatment, and increased mortality and morbidity. Therefore, rescuers should protect POC reagents from temperature extremes.
Harrell-Williams, Leigh; Wolfe, Edward W
2014-01-01
Previous research has investigated the influence of sample size, model misspecification, test length, ability distribution offset, and generating model on the likelihood ratio difference test in applications of item response models. This study extended that research to the evaluation of dimensionality using the multidimensional random coefficients multinomial logit model (MRCMLM). Logistic regression analysis of simulated data reveal that sample size and test length have a large effect on the capacity of the LR difference test to correctly identify unidimensionality, with shorter tests and smaller sample sizes leading to smaller Type I error rates. Higher levels of simulated misfit resulted in fewer incorrect decisions than data with no or little misfit. However, Type I error rates indicate that the likelihood ratio difference test is not suitable under any of the simulated conditions for evaluating dimensionality in applications of the MRCMLM.
NASA Astrophysics Data System (ADS)
Escobar Gómez, J. D.; Torres-Verdín, C.
2018-03-01
Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.
NASA Astrophysics Data System (ADS)
Muldoon, Gail; Jackson, Charles S.; Young, Duncan A.; Quartini, Enrica; Cavitte, Marie G. P.; Blankenship, Donald D.
2017-04-01
Information about the extent and dynamics of the West Antarctic Ice Sheet during past glaciations is preserved inside ice sheets themselves. Ice cores are capable of retrieving information about glacial history, but they are spatially sparse. Ice-penetrating radar, on the other hand, has been used to map large areas of the West Antarctic Ice Sheet and can be correlated to ice core chronologies. Englacial isochronous layers observed in ice-penetrating radar are the result of variations in ice composition, fabric, temperature and other factors. The shape of these isochronous surfaces is expected to encode information about past and present boundary conditions and ice dynamics. Dipping of englacial layers, for example, may reveal the presence of rapid ice flow through paleo ice streams or high geothermal heat flux. These layers therefore present a useful testbed for hypotheses about paleo ice sheet conditions. However, hypothesis testing requires careful consideration of the sensitivity of layer shape to the competing forces of ice sheet boundary conditions and ice dynamics over time. Controlled sensitivity tests are best completed using models, however ice sheet models generally do not have the capability of simulating layers in the presence of realistic boundary conditions. As such, modeling 3D englacial layers for comparison to observations is difficult and requires determination of a 3D ice velocity field. We present a method of post-processing simulated 3D ice sheet velocities into englacial isochronous layers using an advection scheme. We then test the sensitivity of layer geometry to uncertain boundary conditions, including heterogeneous subglacial geothermal flux and bedrock topography. By identifying areas of the ice sheet strongly influenced by boundary conditions, it may be possible to isolate the signature of paleo ice dynamics in the West Antarctic ice sheet.
NASA Technical Reports Server (NTRS)
Shields, W. E.
1973-01-01
Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.
CFD Simulations for Arc-Jet Panel Testing Capability Development Using Semi-Elliptical Nozzles
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Balboni, John A.; Hartman, G. Joseph
2016-01-01
This paper reports computational simulations in support of arc-jet panel testing capability development using semi-elliptical nozzles in a high enthalpy arc-jet facility at NASA Ames Research Center. Two different semi-elliptical nozzle configurations are proposed for testing panel test articles. Computational fluid dynamics simulations are performed to provide estimates of achievable panel surface conditions and useful test area for each configuration. The present analysis comprises three-dimensional simulations of the nonequilibrium flowfields in the semi-elliptical nozzles, test box and flowfield over the panel test articles. Computations show that useful test areas for the proposed two nozzle options are 20.32 centimeters by 20.32 centimeters (8 inches by 8 inches) and 43.18 centimeters by 43.18 centimeters (17 inches by 17 inches). Estimated values of the maximum cold-wall heat flux and surface pressure are 155 watts per centimeters squared and 39 kilopascals for the smaller panel test option, and 44 watts per centimeters squared and 7 kilopascals for the larger panel test option. Other important properties of the predicted flowfields are presented, and factors that limit the useful test area in the semi-free jet test configuration are discussed.
Application for managing model-based material properties for simulation-based engineering
Hoffman, Edward L [Alameda, CA
2009-03-03
An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.
The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests.
Prasad, Priya; Dalmotas, Dainius; German, Alan
2014-11-01
A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test. The field relevance is indicated by the frequency of occurrence of real world crashes that are simulated by the test conditions, the proportion of serious-to-fatal real world injuries explained by the test condition, and rates of serious injury to the head, chest and other body regions in the real world crashes resembling the test condition. The database examined for real world crashes is NASS. Results of the study indicate that 1.4% of all frontal 11-to-1 o'clock crashes are simulated by the test conditions that account for 2.4% to 4.5% of all frontal serious-to-fatal (MAIS3+F) injuries. Injury rates of the head and the chest are substantially lower in far-side than in near-side frontal impacts. Crash test ATD rotational responses of the head in the tests overpredict the real world risk of serious-to-fatal brain injuries.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William J.; Moran, Robert P.; Pearson, J. Bose
2013-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator
Three dimensional audio versus head down TCAS displays
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Pittman, Marc T.
1994-01-01
The advantage of a head up auditory display was evaluated in an experiment designed to measure and compare the acquisition time for capturing visual targets under two conditions: Standard head down traffic collision avoidance system (TCAS) display, and three-dimensional (3-D) audio TCAS presentation. Ten commercial airline crews were tested under full mission simulation conditions at the NASA Ames Crew-Vehicle Systems Research Facility Advanced Concepts Flight Simulator. Scenario software generated targets corresponding to aircraft which activated a 3-D aural advisory or a TCAS advisory. Results showed a significant difference in target acquisition time between the two conditions, favoring the 3-D audio TCAS condition by 500 ms.
Effects of simulant mixed waste on EPDM and butyl rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-11-01
The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; andmore » (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.« less
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise
2012-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities
Production Strategies for Production-Quality Parts for Aerospace Applications
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)
2000-01-01
A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.
Development and mechanical properties of construction materials from lunar simulants
NASA Technical Reports Server (NTRS)
Desai, Chandra S.
1990-01-01
The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. Currently, this research involves two aspects: (1) liquefaction of lunar simulants with various additives in a furnace so as to produce a construction material like an intermediate ceramic; and (2) cyclic loading of simulant with different initial vacuums and densities with respect to the theoretical maximum densities (TMD). In both cases, bending, triaxial compression, extension, and hydrostatic tests will be performed to define the stress-strain strength response of the resulting materials. In the case of the intermediate ceramic, bending and available multiaxial test devices will be used, while for the compacted case, tests will be performed directly in the new device. The tests will be performed by simulating in situ confining conditions. A preliminary review of high-purity metal is also conducted.
Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo
2011-01-01
An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.
Day Time Gimballing A-1 Test Stand
NASA Technical Reports Server (NTRS)
1989-01-01
A close-up view of a Space Shuttle Main Engine during a daytime test at Stennis Space Center shows how the engine is gimbaled, or rotated, to evaluate the performance of its components under simulated flight conditions.
Strain compatibility tests for sprayed foam cryogenic insulation
NASA Technical Reports Server (NTRS)
Hill, W. L.; Kimberlin, D. O.
1970-01-01
Mechanical stress applied to foam-coated aluminum alloy specimens maintained at cryogenic temperature simulates actual use conditions of the foam insulation. The testing reveals defects in the polyurethane foam or in the foam to metal bond.
Investigation of Zircaloy-2 oxidation model for SFP accident analysis
NASA Astrophysics Data System (ADS)
Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Kondo, Keietsu; Nakashima, Kazuo; Kanazawa, Toru; Tojo, Masayuki
2017-05-01
The authors previously conducted thermogravimetric analyses on Zircaloy-2 in air. By using the thermogravimetric data, an oxidation model was constructed in this study so that it can be applied for the modeling of cladding degradation in spent fuel pool (SFP) severe accident condition. For its validation, oxidation tests of long cladding tube were conducted, and computational fluid dynamics analyses using the constructed oxidation model were proceeded to simulate the experiments. In the oxidation tests, high temperature thermal gradient along the cladding axis was applied and air flow rates in testing chamber were controlled to simulate hypothetical SFP accidents. The analytical outputs successfully reproduced the growth of oxide film and porous oxide layer on the claddings in oxidation tests, and validity of the oxidation model was proved. Influence of air flow rate for the oxidation behavior was thought negligible in the conditions investigated in this study.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2008-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2010-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy
2006-01-01
Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abernethy, Cary S.; Amidan, Brett G.; Cada, G F.
Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were comparedmore » to results from previous test series. Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Both fish species were acclimated for 16-22 hours at either surface (101 kPa; 1 atm) or 30 ft (191 kPa; 1.9 atm) of pressure in a hyperbaric chamber before exposure to a pressure scenario simulating passage through a horizontal bulb turbine. The simulation was as follows: gradual pressure increase to about 2 atm of pressure, followed by a sudden (0.4 second) decrease in pressure to either 0.7 or 0.95 atm, followed by gradual return to 1 atm (surface water pressure). Following the exposure, fish were held at surface pressure for a 48-hour post exposure observation period. No fall chinook salmon died during or after exposure to the horizontal bulb turbine passage pressures, and no injuries were observed during the 48-hour post exposure observation period. As with the previous test series, it cannot be determined whether fall chinook salmon acclimated to the greater water pressure during the pretest holding period. For bluegill sunfish exposed to the horizontal bulb turbine turbine-passage pressures, only one fish died and injuries were less severe and less common than for bluegills subjected to either the"worst case" pressure or modified Kaplan turbine pressure conditions in previous tests. Injury rates for bluegills were higher at 0.7 atm nadir than for the 0.95 atm nadir. However, injuries were limited to minor internal hemorrhaging. Bluegills did not suffer swim bladder rupture in any tested scenarios. Tests indicated that for most of the cross-sectional area of a horizontal bulb turbine, pressure changes occurring during turbine passage are not harmful to fall chinook salmon and only minimally harmful to bluegill. However, some areas within a horizontal bulb turbine may have extreme pressure conditions that would be harmful to fish. These scenarios were not tested because they represent a small cross-sectional area of the turbine compared to the centerline pressures scenarios used in these tests.« less
Validation of Supersonic Film Cooling Modeling for Liquid Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Morris, Christopher I.; Ruf, Joseph H.
2010-01-01
Topics include: upper stage engine key requirements and design drivers; Calspan "stage 1" results, He slot injection into hypersonic flow (air); test articles for shock generator diagram, slot injector details, and instrumentation positions; test conditions; modeling approach; 2-d grid used for film cooling simulations of test article; heat flux profiles from 2-d flat plate simulations (run #4); heat flux profiles from 2-d backward facing step simulations (run #43); isometric sketch of single coolant nozzle, and x-z grid of half-nozzle domain; comparison of 2-d and 3-d simulations of coolant nozzles (run #45); flowfield properties along coolant nozzle centerline (run #45); comparison of 3-d CFD nozzle flow calculations with experimental data; nozzle exit plane reduced to linear profile for use in 2-d film-cooling simulations (run #45); synthetic Schlieren image of coolant injection region (run #45); axial velocity profiles from 2-d film-cooling simulation (run #45); coolant mass fraction profiles from 2-d film-cooling simulation (run #45); heat flux profiles from 2-d film cooling simulations (run #45); heat flux profiles from 2-d film cooling simulations (runs #47, #45, and #47); 3-d grid used for film cooling simulations of test article; heat flux contours from 3-d film-cooling simulation (run #45); and heat flux profiles from 3-d and 2-d film cooling simulations (runs #44, #46, and #47).
A microstructurally based model of solder joints under conditions of thermomechanical fatigue
NASA Astrophysics Data System (ADS)
Frear, D. R.; Burchett, S. N.; Rashid, M. M.
The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue. We present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.
Site Simulation of Solidified Peat: Lab Monitoring
NASA Astrophysics Data System (ADS)
Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd
2018-04-01
In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.
EXPERIMENTAL EVALUATION OF A NOVEL FULL-SCALE EVAPORATIVELY COOLED CONDENSER
The report compares the performance of a novel evaporatively cooled condenser with that of a conventional air-cooled condenser for a split-system heat pump. The system was tested in an environmentally controlled test chamber that is able to simulate test conditions as specified b...
NASA Astrophysics Data System (ADS)
Lobanov, D. S.; Slovikov, S. V.
2017-01-01
The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.
NASA Technical Reports Server (NTRS)
1979-01-01
The thermal performance of a liquid solar collector was tested in eight- and ten-tube configurations under simulated conditions. A time constant test and an incident angle modifier test were also conducted to determine the transient and incident angle effects on the collector. Performance loss with accessory covers is demonstrated. The gross collector area is about 17.4 ft sq without manifold and 19.1 ft sq with manifold. The collector weight is approximately 60 pounds empty and 75 pounds with manifold.
Apparatus For Tests Of Percussion Primers
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Bailey, James W.; Schimmel, Morry L.
1991-01-01
Test apparatus and method developed to measure ignition capability of percussion primers. Closely simulates actual conditions and interfaces encountered in such applications as in munitions and rocket motors. Ignitability-testing apparatus is small bomb instrumented with pressure transducers. Sizes, shapes, and positions of bomb components and materials under test selected to obtain quantitative data on ignition.
Code of Federal Regulations, 2012 CFR
2012-07-01
... power requirements to roadload dynamometer requirements. AC2 simulates, in standard test cell ambient...)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...)(5)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...
Code of Federal Regulations, 2013 CFR
2013-07-01
... power requirements to roadload dynamometer requirements. AC2 simulates, in standard test cell ambient...)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...)(5)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Swegle, A. R.
1981-01-01
The design and fabrication of two large brazed Rene 41 honeycomb panels, the establishment of a test plan, the design and fabrication of a test fixture to subject the panels to cyclic thermal gradients and mechanical loads equivalent to those imposed on an advanced space transportation vehicle during its boost and entry trajectories are discussed. The panels will be supported at four points, creating three spans. The outer spans are 45.7 cm (18 in.) and the center span 76.2 cm (30 in). Specimen width is 30.5 cm (12 in.). The panels were primarily designed by boost conditions simulated by subjecting the panels to liquid nitrogen, 77K (-320 F) on one side and 455K (360 F) on the other side and by mechanically imposing loads representing vehicle fuel pressure loads. Entry conditions were simulated by radiant heating to 1034K (1400 F). The test program subjected the panels to 500 boost thermal conditions. Results are presented.
ERIC Educational Resources Information Center
Paek, Insu; Wilson, Mark
2011-01-01
This study elaborates the Rasch differential item functioning (DIF) model formulation under the marginal maximum likelihood estimation context. Also, the Rasch DIF model performance was examined and compared with the Mantel-Haenszel (MH) procedure in small sample and short test length conditions through simulations. The theoretically known…
Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3
Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.
2008-01-01
The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined ground-water flow is presented in detail. It illustrates the use of HTI with the combination precipitation-recharge and seepage-surface boundary condition, and functions as a tutorial example problem for the new user.
NASA Astrophysics Data System (ADS)
Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.
2016-05-01
The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.
Abdelgaied, A; Fisher, J; Jennings, L M
2018-02-01
A more robust pre-clinical wear simulation framework is required in order to simulate wider and higher ranges of activities, observed in different patient populations such as younger more active patients. Such a framework will help to understand and address the reported higher failure rates for younger and more active patients (National_Joint_Registry, 2016). The current study has developed and validated a comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements (TKR). The input mechanical (elastic modulus and Poisson's ratio) and wear parameters of the moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) bearing material were independently measured from experimental studies under realistic test conditions, similar to the loading conditions found in the total knee replacements. The wear predictions from the computational wear simulation were validated against the direct experimental wear measurements for size 3 Sigma curved total knee replacements (DePuy, UK) in an independent experimental wear simulation study under three different daily activities; walking, deep squat, and stairs ascending kinematic conditions. The measured compressive mechanical properties of the moderately cross-linked UHMWPE material were more than 20% lower than that reported in the literature under tensile test conditions. The pin-on-plate wear coefficient of moderately cross-linked UHMWPE was significantly dependant of the contact stress and the degree of cross-shear at the articulating surfaces. The computational wear predictions for the TKR from the current framework were consistent and in a good agreement with the independent full TKR experimental wear simulation measurements, with 0.94 coefficient of determination of the framework. In addition, the comprehensive combined experimental and computational framework was able to explain the complex experimental wear trends from the three different daily activities investigated. Therefore, such a framework can be adopted as a pre-clinical simulation approach to optimise different designs, materials, as well as patient's specific total knee replacements for a range of activities. Copyright © 2017. Published by Elsevier Ltd.
Nuclear power plant cable materials :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard
2013-05-01
A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by amore » LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.« less
Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine
NASA Technical Reports Server (NTRS)
Watson, T. L.
1982-01-01
A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.
NASA Technical Reports Server (NTRS)
Calleja, John; Tamagno, Jose
1993-01-01
A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.
NASA Astrophysics Data System (ADS)
Dörr, Dominik; Schirmaier, Fabian J.; Henning, Frank; Kärger, Luise
2017-10-01
Finite Element (FE) forming simulation offers the possibility of a detailed analysis of the deformation behavior of multilayered thermoplastic blanks during forming, considering material behavior and process conditions. Rate-dependent bending behavior is a material characteristic, which is so far not considered in FE forming simulation of pre-impregnated, continuously fiber reinforced polymers (CFRPs). Therefore, an approach for modeling viscoelastic bending behavior in FE composite forming simulation is presented in this work. The presented approach accounts for the distinct rate-dependent bending behavior of e.g. thermoplastic CFRPs at process conditions. The approach is based on a Voigt-Kelvin (VK) and a generalized Maxwell (GM) approach, implemented within a FE forming simulation framework implemented in several user-subroutines of the commercially available FE solver Abaqus. The VK, GM, as well as purely elastic bending modeling approaches are parameterized according to dynamic bending characterization results for a PA6-CF UD-tape. It is found that only the GM approach is capable to represent the bending deformation characteristic for all of the considered bending deformation rates. The parameterized bending modeling approaches are applied to a hemisphere test and to a generic geometry. A comparison of the forming simulation results of the generic geometry to experimental tests show a good agreement between simulation and experiments. Furthermore, the simulation results reveal that especially a correct modeling of the initial bending stiffness is relevant for the prediction of wrinkling behavior, as a similar onset of wrinkles is observed for the GM, the VK and an elastic approach, fitted to the stiffness observed in the dynamic rheometer test for low curvatures. Hence, characterization and modeling of rate-dependent bending behavior is crucial for FE forming simulation of thermoplastic CFRPs.
Face and construct validation of a next generation virtual reality (Gen2-VR) surgical simulator.
Sankaranarayanan, Ganesh; Li, Baichun; Manser, Kelly; Jones, Stephanie B; Jones, Daniel B; Schwaitzberg, Steven; Cao, Caroline G L; De, Suvranu
2016-03-01
Surgical performance is affected by distractors and interruptions to surgical workflow that exist in the operating room. However, traditional surgical simulators are used to train surgeons in a skills laboratory that does not recreate these conditions. To overcome this limitation, we have developed a novel, immersive virtual reality (Gen2-VR) system to train surgeons in these environments. This study was to establish face and construct validity of our system. The study was a within-subjects design, with subjects repeating a virtual peg transfer task under three different conditions: Case I: traditional VR; Case II: Gen2-VR with no distractions and Case III: Gen2-VR with distractions and interruptions. In Case III, to simulate the effects of distractions and interruptions, music was played intermittently, the camera lens was fogged for 10 s and tools malfunctioned for 15 s at random points in time during the simulation. At the completion of the study subjects filled in a 5-point Likert scale feedback questionnaire. A total of sixteen subjects participated in this study. Friedman test showed significant difference in scores between the three conditions (p < 0.0001). Post hoc analysis using Wilcoxon signed-rank tests with Bonferroni correction further showed that all the three conditions were significantly different from each other (Case I, Case II, p < 0.0001), (Case I, Case III, p < 0.0001) and (Case II, Case III, p = 0.009). Subjects rated that fog (mean 4.18) and tool malfunction (median 4.56) significantly hindered their performance. The results showed that Gen2-VR simulator has both face and construct validity and that it can accurately and realistically present distractions and interruptions in a simulated OR, in spite of limitations of the current HMD hardware technology.
Face and Construct Validation of a Next Generation Virtual Reality (Gen2-VR©) Surgical Simulator
Sankaranarayanan, Ganesh; Li, Baichun; Manser, Kelly; Jones, Stephanie B.; Jones, Daniel B.; Schwaitzberg, Steven; Cao, Caroline G. L.; De, Suvranu
2015-01-01
Introduction Surgical performance is affected by distractors and interruptions to surgical workflow that exist in the operating room. However, traditional surgical simulators are used to train surgeons in a skills lab that does not recreate these conditions. To overcome this limitation, we have developed a novel, immersive virtual reality (Gen2-VR©) system to train surgeons in these environments. This study was to establish face and construct validity of our system. Methods and Procedures The study was a within-subjects design, with subjects repeating a virtual peg transfer task under three different conditions: CASE I: traditional VR; CASE II: Gen2-VR© with no distractions and CASE III: Gen2-VR© with distractions and interruptions.. In Case III, to simulate the effects of distractions and interruptions, music was played intermittently, the camera lens was fogged for 10 seconds and tools malfunctioned for 15 seconds at random points in time during the simulation. At the completion of the study subjects filled in a 5-point Likert scale feedback questionnaire. A total of sixteen subjects participated in this study. Results Friedman test showed significant difference in scores between the three conditions (p < 0.0001). Post hoc analysis using Wilcoxon Signed Rank tests with Bonferroni correction further showed that all the three conditions were significantly different from each other (Case I, Case II, p < 0.001), (Case I, Case III, p < 0.001) and (Case II, Case III, p = 0.009). Subjects rated that fog (mean= 4.18) and tool malfunction (median = 4.56) significantly hindered their performance. Conclusion The results showed that Gen2-VR© simulator has both face and construct validity and it can accurately and realistically present distractions and interruptions in a simulated OR, in spite of limitations of the current HMD hardware technology. PMID:26092010
Influence of a controlled environment simulating an in-flight airplane cabin on dry eye disease.
Tesón, Marisa; González-García, María J; López-Miguel, Alberto; Enríquez-de-Salamanca, Amalia; Martín-Montañez, Vicente; Benito, María Jesús; Mateo, María Eugenia; Stern, Michael E; Calonge, Margarita
2013-03-01
To evaluate symptoms, signs, and the levels of 16 tears inflammatory mediators of dry eye (DE) patients exposed to an environment simulating an in-flight air cabin in an environmental chamber. Twenty DE patients were exposed to controlled environment simulating an in-flight airplane cabin (simulated in-flight condition [SIC]) of 23°C, 5% relative humidity, localized air flow, and 750 millibars (mb) of barometric pressure. As controls, 15 DE patients were subjected to a simulated standard condition (SSC) of 23°C, 45% relative humidity, and 930 mb. A DE symptoms questionnaire, diagnostic tests, and determination of 16 tear molecules by multiplex bead array were performed before and 2 hours after exposure. After SIC exposure, DE patients became more symptomatic, suffered a significant (P ≤ 0.05) decrease in tear stability (tear break up time) (from 2.18 ± 0.28 to 1.53 ± 0.20), and tear volume (phenol red thread test), and a significant (P ≤ 0.05) increase in corneal staining, both globally (0.50 ± 0.14 before and 1.25 ± 0.19 after) and in each area (Baylor scale). After SSC, DE patients only showed a mild, but significant (P ≤ 0.05), increase in central and inferior corneal staining. Consistently, tear levels of IL-6 and matrix metalloproteinase (MMP)-9 significantly increased and tear epidermal growth factor (EGF) significantly decreased (P ≤ 0.05) only after SIC. The controlled adverse environment conditions in this environmental chamber can simulate the conditions in which DE patients might be exposed during flight. As this clearly impaired their lacrimal functional unit, it would be advisable that DE patients use therapeutic strategies capable of ameliorating these adverse episodes.
NASA Technical Reports Server (NTRS)
Pionke, L. J.; Garland, K. C.
1973-01-01
Candidate alloys for the Shuttle Solid Rocket Booster (SRB) case were tested under simulated service conditions to define subcritical flaw growth behavior under both sustained and cyclic loading conditions. The materials evaluated were D6AC and 18 Ni maraging steel, both heat treated to a nominal yield strength of 1380 MN/sq m (200 ksi). The sustained load tests were conducted by exposing precracked, stressed specimens of both alloys to alternate immersion in synthetic sea water. It was found that the corrosion and stress corrosion resistance of the 18 Ni maraging steel were superior to that of the D6AC steel under these test conditions. It was also found that austenitizing temperature had little influence on the threshold stress intensity of the D6AC. The cyclic tests were conducted by subjecting precracked surface-flawed specimens of both alloys to repeated load/thermal/environmental profiles which were selected to simulate the SRB missions. It was found that linear removal operations that involve heating to 589 K (600 F) cause a decrease in cyclic life of D6AC steel relative to those tests conducted with no thermal cycling.
NASA Technical Reports Server (NTRS)
Lundstrom, R. R.; Raper, J. L.; Bendura, R. J.; Shields, E. W.
1974-01-01
Flight qualifications for parachutes were tested on full-scale simulated Viking spacecraft at entry conditions for the Viking 1975 mission to Mars. The vehicle was carried to an altitude of 36.6 km for the supersonic and transonic tests by a 980.000 cu m balloon. The vehicles were released and propelled to test conditions with rocket engines. A 117,940 cu m balloon carried the test vehicle to an altitude of 27.5 km and the conditions for the subsonic tests were achieved in free fall. Aeroshell separation occurred on all test vehicles from 8 to 14 seconds after parachute deployment. This report describes: (1) the test vehicle; (2) methods used to insure that the test conditions were achieved; and (3) the balloon system design and operations. The report also presents the performance data from onboard and ground based instruments and the results from a statistical trajectory program which gives a continuous history of test-vehicle motions.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Constitutive Soil Properties for Mason Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.
2011-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.
Testability analysis on a hydraulic system in a certain equipment based on simulation model
NASA Astrophysics Data System (ADS)
Zhang, Rui; Cong, Hua; Liu, Yuanhong; Feng, Fuzhou
2018-03-01
Aiming at the problem that the complicated structure and the shortage of fault statistics information in hydraulic systems, a multi value testability analysis method based on simulation model is proposed. Based on the simulation model of AMESim, this method injects the simulated faults and records variation of test parameters ,such as pressure, flow rate, at each test point compared with those under normal conditions .Thus a multi-value fault-test dependency matrix is established. Then the fault detection rate (FDR) and fault isolation rate (FIR) are calculated based on the dependency matrix. Finally the system of testability and fault diagnosis capability are analyzed and evaluated, which can only reach a lower 54%(FDR) and 23%(FIR). In order to improve testability performance of the system,. number and position of the test points are optimized on the system. Results show the proposed test placement scheme can be used to solve the problems that difficulty, inefficiency and high cost in the system maintenance.
Rain Simulation for the Test of Automotive Surround Sensors
NASA Astrophysics Data System (ADS)
Hasirlioglu, Sinan; Riener, Andreas; Doric, Igor
2017-04-01
The WHO Global Health Observatory data indicates that over 1.25 million people die in traffic accidents annually. To save lives, car manufacturers spend lot of efforts on the development of novel safety systems aiming to avoid or mitigate accidents and provide maximum protection for vehicle occupants as well as vulnerable road users. All the safety features mainly rely on data from surround sensors such as radar, lidar and camera and intelligent vehicles today use these environmental data for instant decision making and vehicle control. As already small errors in sensor data measurements could lead to catastrophes like major injuries or road traffic fatalities, it is of utmost importance to ensure high reliability and accuracy of sensors and safety systems. This work focuses on the influence of environmental factors such as rain conditions, as it is known that rain drops scatter the electromagnetic waves. The result is incorrect measurements with a direct negative impact on environment detection. To identify potential problems of sensors under varying environmental conditions, systems are today tested in real-world settings with two main problems: First, tests are time-consuming and second, environmental conditions are not reproducible. Our approach to test the influence of weather on automotive sensors is to use an indoor rain simulator. Our artificial rain maker, installed at CARISSMA (Center of Automotive Research on Integrated Safety Systems and Measurement Area), is parametrized with rain characteristics measured in the field using a standard disdrometer. System behavior on artificial rain is compared and validated with natural rainfall. With this simulator it is finally possible to test environmental influence at various levels and under reproducible conditions. This saves lot of efforts required for the test process itself and furthermore has a positive impact on the reliability of sensor systems due to the fact that test driven development is enabled.
NASA Technical Reports Server (NTRS)
Pu, Zhao-Xia; Tao, Wei-Kuo
2004-01-01
An effort has been made at NASA/GSFC to use the Goddard Earth Observing system (GEOS) global analysis in generating the initial and boundary conditions for MM5/WRF simulation. This linkage between GEOS global analysis and MM5/WRF models has made possible for a few useful applications. As one of the sample studies, a series of MM5 simulations were conducted to test the sensitivity of initial and boundary conditions to MM5 simulated precipitation over the eastern; USA. Global analyses horn different operational centers (e.g., NCEP, ECMWF, I U ASA/GSFCj were used to provide first guess field and boundary conditions for MM5. Numerical simulations were performed for one- week period over the eastern coast areas of USA. the distribution and quantities of MM5 simulated precipitation were compared. Results will be presented in the workshop. In addition,other applications from recent and future studies will also be addressed.
NASA Astrophysics Data System (ADS)
Chaturvedi, Pratik; Arora, Akshit; Dutt, Varun
2018-06-01
Feedback via simulation tools is likely to help people improve their decision-making against natural disasters. However, little is known on how differing strengths of experiential feedback and feedback's availability in simulation tools influence people's decisions against landslides. We tested the influence of differing strengths of experiential feedback and feedback's availability on people's decisions against landslides in Mandi, Himachal Pradesh, India. Experiential feedback (high or low) and feedback's availability (present or absent) were varied across four between-subject conditions in a tool called the Interactive Landslide Simulation (ILS): high damage with feedback present, high damage with feedback absent, low damage with feedback present, and low damage with feedback absent. In high-damage conditions, the probabilities of damages to life and property due to landslides were 10 times higher than those in the low-damage conditions. In feedback-present conditions, experiential feedback was provided in numeric, text, and graphical formats in ILS. In feedback-absent conditions, the probabilities of damages were described; however, there was no experiential feedback present. Investments were greater in conditions where experiential feedback was present and damages were high compared to conditions where experiential feedback was absent and damages were low. Furthermore, only high-damage feedback produced learning in ILS. Simulation tools like ILS seem appropriate for landslide risk communication and for performing what-if analyses.
Experimental clean combustor program, alternate fuels addendum, phase 2
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Bahr, D. W.
1976-01-01
The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.
Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs
NASA Astrophysics Data System (ADS)
Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.
2008-12-01
CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.
New method of processing heat treatment experiments with numerical simulation support
NASA Astrophysics Data System (ADS)
Kik, T.; Moravec, J.; Novakova, I.
2017-08-01
In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.
Hanušová, Kristýna; Vrbík, Karel; Rajchl, Aleš; Dobiáš, Jaroslav; Sosnovcová, Jitka
2015-01-01
Previous studies have shown that a large number of polyvinylchloride (PVC) lid gaskets exceed the existing migration limits for epoxidised soybean oil (ESBO) and correct prediction of ESBO release into food therefore appears to be a difficult issue. ESBO migration from PVC gaskets of metal closures into food simulants and food products from the Czech market is evaluated during a survey in 2009 and subsequently one in 2012 to assess progress in lid manufacturing and official testing conditions. ESBO migration from lids into various food simulants was studied at various temperatures (25, 40 and 60°C) during storage times up to 12 months. ESBO released into food simulants or food products was transmethylated, derivatised and analysed by GC-MS. The levels of ESBO migration in foodstuffs in 2012 exceeded the specific migration limit (SML) in fewer products in comparison with the previous survey. However, most of the products were analysed at a time far from the expiry date and exceedance of the SML at the end of the product shelf life is not therefore excluded. More severe test conditions (60°C for 10 days) for specific migration given by the current European Union legislation (Regulation (EU) No. 10/2011) still seem to be insufficient for the simulation of ESBO migration during long-term storage.
Toxicity of pyrolysis gases from wood
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Huttlinger, N. V.; Oneill, B. A.; Kourtides, D. A.; Parker, J. A.
1977-01-01
The toxicity of the pyrolysis gases from nine wood samples was investigated. The samples of hardwoods were aspen poplar, beech, yellow birch, and red oak. The samples of softwoods were western red cedar, Douglas fir, western hemlock, eastern white pine, and southern yellow pine. There was no significant difference between the wood samples under rising temperature conditions, which are intended to simulate a developing fire, or under fixed temperature conditions, which are intended to simulate a fully developed fire. This test method is used to determine whether a material is significantly more toxic than wood under the preflashover conditions of a developing fire.
Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system
NASA Technical Reports Server (NTRS)
Namkoong, D.
1976-01-01
A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.
NASA Astrophysics Data System (ADS)
Hallal, P. B.; Bis, R. F.
1986-08-01
The developmental EMATT (expendable, mobile, ASW training target) may use a high-energy (lithium/sulfuryl chloride) battery system. Safety problems with the original battery cell design were experienced during early performance and safety testing. After redesign of the battery cell, performance and safety tests were made under specified abuse conditions, as well as under simulated launch conditions. The test results showed that the power system now meets all safety requirements, and that the EMATT vehicle is safe to deploy for its engineering development phase.
Explosive response model evaluation using the explosive H6
NASA Astrophysics Data System (ADS)
Sutherland, Gerrit T.; Burns, Joseph
2000-04-01
Reactive rate model parameters for a two term Lee Tarver [simplified ignition and growth (SIG)] model were obtained for the explosive H6 from modified gap test data. These model was used to perform simulations of the underwater sensitivity test (UST) using the CTH hydrocode. Reaction was predicted in the simulations for the same water gaps that reaction was observed in the UST. The expansions observed for the UST samples were not simulated correctly, and this is attributed to the density equilibrium conditions imposed between unreacted and reacted components in CTH for the Lee-Tarver model.
NASA Technical Reports Server (NTRS)
Kennedy, Carolyn D.
2007-01-01
This document is an environmental assessment that examines the environmental impacts of a proposed plan to clear land and to construct a test stand for use in testing the J-2X rocket engine at simulated altitude conditions in support of NASA's Constellation Program.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge coefficients, and static pressure tap measurements.
ERIC Educational Resources Information Center
Lau, Che-Ming Allen; And Others
This study focused on the robustness of unidimensional item response theory (UIRT) models in computerized classification testing against violation of the unidimensionality assumption. The study addressed whether UIRT models remain acceptable under various testing conditions and dimensionality strengths. Monte Carlo simulation techniques were used…
Study of the lateral pressure of fresh concrete as related to the design of drilled shafts.
DOT National Transportation Integrated Search
1983-11-01
A series of tests were conducted to determine the effect of the consistency of : concrete, as measured by the slump test, on the lateral pressure of concrete. : Testing conditions simulated the construction of drilled shafts as practiced by the : Tex...
Experimental and simulational result multipactors in 112 MHz QWR injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, T.; Ben-Zvi, I.; Belomestnykh, S.
2015-05-03
The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsedmore » mode after several round of conditioning processes.« less
Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range
Robert J. Pabst; Matthew N. Goslin; Steven L. Garman; Thomas A. Spies
2008-01-01
The complex mix of economic and ecological objectives facing today's forest managers necessitates the development of growth models with a capacity for simulating a wide range of forest conditions while producing outputs useful for economic analyses. We calibrated the gap model ZELIG to simulate stand level forest development in the Oregon Coast Range as part of a...
NASCAP simulation of laboratory charging tests using multiple electron guns
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.; Parks, D. E.
1981-01-01
NASCAP calculations have been performed simulating exposure of a spacecraft-like model to multiple electron guns. The results agree well with experiment. It is found that magnetic field effects are fairly small, but substantial differential charging can result from electron gun placement. Conditions for surface flashover are readily achieved.
BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL
Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Onofri, Silvano; de Vera, Jean-Pierre; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano; Venkateswaran, Kasthuri J; Rabbow, Elke; de la Torre, Rosa; Horneck, Gerda
2015-12-01
Dehydrated Antarctic cryptoendolithic communities and colonies of the rock inhabitant black fungi Cryomyces antarcticus (CCFEE 515) and Cryomyces minteri (CCFEE 5187) were exposed as part of the Lichens and Fungi Experiment (LIFE) for 18 months in the European Space Agency's EXPOSE-E facility to simulated martian conditions aboard the International Space Station (ISS). Upon sample retrieval, survival was proved by testing colony-forming ability, and viability of cells (as integrity of cell membrane) was determined by the propidium monoazide (PMA) assay coupled with quantitative PCR tests. Although less than 10% of the samples exposed to simulated martian conditions were able to proliferate and form colonies, the PMA assay indicated that more than 60% of the cells and rock communities had remained intact after the "Mars exposure." Furthermore, a high stability of the DNA in the cells was demonstrated. The results contribute to assessing the stability of resistant microorganisms and biosignatures on the surface of Mars, data that are valuable information for further search-for-life experiments on Mars. Endoliths-Eukaryotes-Extremophilic microorganisms-Mars-Radiation resistance.
Transition to manual: Comparing simulator with on-road control transitions.
Eriksson, A; Banks, V A; Stanton, N A
2017-05-01
Whilst previous research has explored how driver behaviour in simulators may transfer to the open road, there has been relatively little research showing the same transfer within the field of driving automation. As a consequence, most research into human-automation interaction has primarily been carried out in a research laboratory or on closed-circuit test tracks. The aim of this study was to assess whether research into non-critical control transactions in highly automated vehicles performed in driving simulators correlate with road driving conditions. Twenty six drivers drove a highway scenario using an automated driving mode in the simulator and twelve drivers drove on a public motorway in a Tesla Model S with the Autopilot activated. Drivers were asked to relinquish, or resume control from the automation when prompted by the vehicle interface in both the simulator and on road condition. Drivers were generally faster to resume control in the on-road driving condition. However, strong positive correlations were found between the simulator and on road driving conditions for drivers transferring control to and from automation. No significant differences were found with regard to workload, perceived usefulness and satisfaction between the simulator and on-road drives. The results indicate high levels of relative validity of driving simulators as a research tool for automated driving research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nondestructive evaluation of pavement structural condition for rehabilitation design : final report.
DOT National Transportation Integrated Search
2016-05-31
Falling Weight Deflectometer (FWD) is the common non-destructive testing method for in-situ evaluation of pavement condition. : This study aims to develop finite element (FE) models that can simulate FWD loading on pavement system and capture the : c...
Simulation of diesel engine emissions on the example of Fiat Panda in the NEDC test
NASA Astrophysics Data System (ADS)
Botwinska, Katarzyna; Mruk, Remigiusz; Słoma, Jacek; Tucki, Karol; Zaleski, Mateusz
2017-10-01
Road transport may be deemed a strategic branch of modern economy. Unfortunately, a rapid increase in the number of on-road motor vehicles entails some negative consequences as well, for instance, excessive concentration of exhausts produced by engines which results in deterioration of air quality. EURO emission standards which define acceptable limits for exhaust emissions of power units is an example of an activity performed in attempt to improve air quality. The EURO standard defines permissible amount of exhausts produced by a vehicle. Presently new units are examined through NEDC test. For the purpose of this thesis, a virtual test stand in a form of a computer simulation of a chassis dynamometer was used to simulate emission of a diesel engine (compression-ignition engine) in the NEDC test. Actual parameters of the 1.3 MultiJet engine of the Fiat Panda passenger car of 2014 were applied in the model. The simulation was carried out in the Matlab Simulink environment. The simulation model of the Fiat Panda passenger car enables the designation of the emission waveform for all test stages which corresponds to the values received during an approval test in real-life conditions.
Semi-physical simulation test for micro CMOS star sensor
NASA Astrophysics Data System (ADS)
Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun
2008-03-01
A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.
Urlic, Iris; Verzak, Željko; Vranic, Dubravka Negovetic
2016-01-01
Aim The purpose of this study was to compare near visual acuity of dentists without optical aids (VSC) with near visual acuity of those using the Galilean telescope system (VGA2) with magnification of x 2.5, and the distance of 350 mm in simulated clinical conditions. Methods The study included 46 dentists (visual acuity 1.0 without correction). A visual acuity testing was carried out using a miniaturized Snellen visual acuity chart which was placed in the cavity of molar teeth mounted in a phantom head in simulated clinical conditions. Near visual acuity for the vicinity was examined: 1) without correction at a distance of 300-400 mm (VSC); 2) with Galilean loupes with magnification of x2.5, focal length of 350mm. Results The distributions of near visual acuity recorded using VSC and VGA2, 5 systems were compared by the Wilcoxon Signed Rank test. The results obtained by Wilcoxon Signed Rank test pointed to a statistically significant difference in the distribution of recorded visual acuity between the VSC and VGA2 optical systems (W = - 403.5; p <0.001). Conclusion If using the VGA2, 5 systems, higher values of the near visual acuity were recorded and subsequently compared to near visual acuity without magnifying aids (VSC). PMID:27847397
Urlic, Iris; Verzak, Željko; Vranic, Dubravka Negovetic
2016-09-01
The purpose of this study was to compare near visual acuity of dentists without optical aids (VSC) with near visual acuity of those using the Galilean telescope system (VGA2) with magnification of x 2.5, and the distance of 350 mm in simulated clinical conditions. The study included 46 dentists (visual acuity 1.0 without correction). A visual acuity testing was carried out using a miniaturized Snellen visual acuity chart which was placed in the cavity of molar teeth mounted in a phantom head in simulated clinical conditions. Near visual acuity for the vicinity was examined: 1) without correction at a distance of 300-400 mm (VSC); 2) with Galilean loupes with magnification of x2.5, focal length of 350mm. The distributions of near visual acuity recorded using VSC and VGA2, 5 systems were compared by the Wilcoxon Signed Rank test. The results obtained by Wilcoxon Signed Rank test pointed to a statistically significant difference in the distribution of recorded visual acuity between the VSC and VGA2 optical systems (W = - 403.5; p <0.001). If using the VGA2, 5 systems, higher values of the near visual acuity were recorded and subsequently compared to near visual acuity without magnifying aids (VSC).
An Investigation of the Impact of Guessing on Coefficient α and Reliability
2014-01-01
Guessing is known to influence the test reliability of multiple-choice tests. Although there are many studies that have examined the impact of guessing, they used rather restrictive assumptions (e.g., parallel test assumptions, homogeneous inter-item correlations, homogeneous item difficulty, and homogeneous guessing levels across items) to evaluate the relation between guessing and test reliability. Based on the item response theory (IRT) framework, this study investigated the extent of the impact of guessing on reliability under more realistic conditions where item difficulty, item discrimination, and guessing levels actually vary across items with three different test lengths (TL). By accommodating multiple item characteristics simultaneously, this study also focused on examining interaction effects between guessing and other variables entered in the simulation to be more realistic. The simulation of the more realistic conditions and calculations of reliability and classical test theory (CTT) item statistics were facilitated by expressing CTT item statistics, coefficient α, and reliability in terms of IRT model parameters. In addition to the general negative impact of guessing on reliability, results showed interaction effects between TL and guessing and between guessing and test difficulty.
Banks, Siobhan; Catcheside, Peter; Lack, Leon; Grunstein, Ron R; McEvoy, R Doug
2004-09-15
Partial sleep deprivation and alcohol consumption are a common combination, particularly among young drivers. We hypothesized that while low blood alcohol concentration (<0.05 g/dL) may not significantly increase crash risk, the combination of partial sleep deprivation and low blood alcohol concentration would cause significant performance impairment. Experimental Sleep Disorders Unit Laboratory 20 healthy volunteers (mean age 22.8 years; 9 men). Subjects underwent driving simulator testing at 1 am on 2 nights a week apart. On the night preceding simulator testing, subjects were partially sleep deprived (5 hours in bed). Alcohol consumption (2-3 standard alcohol drinks over 2 hours) was randomized to 1 of the 2 test nights, and blood alcohol concentrations were estimated using a calibrated Breathalyzer. During the driving task subjects were monitored continuously with electroencephalography for sleep episodes and were prompted every 4.5 minutes for answers to 2 perception scales-performance and crash risk. Mean blood alcohol concentration on the alcohol night was 0.035 +/- 0.015 g/dL. Compared with conditions during partial sleep deprivation alone, subjects had more microsleeps, impaired driving simulator performance, and poorer ability to predict crash risk in the combined partial sleep deprivation and alcohol condition. Women predicted crash risk more accurately than did men in the partial sleep deprivation condition, but neither men nor women predicted the risk accurately in the sleep deprivation plus alcohol condition. Alcohol at legal blood alcohol concentrations appears to increase sleepiness and impair performance and the detection of crash risk following partial sleep deprivation. When partially sleep deprived, women appear to be either more perceptive of increased crash risk or more willing to admit to their driving limitations than are men. Alcohol eliminated this behavioral difference.
NASA Astrophysics Data System (ADS)
Panteleev, A. A.; Bobinkin, V. V.; Larionov, S. Yu.; Ryabchikov, B. E.; Smirnov, V. B.; Shapovalov, D. A.
2017-10-01
When designing large-scale water-treatment plants based on reverse-osmosis systems, it is proposed to conduct experimental-industrial or pilot tests for validated simulation of the operation of the equipment. It is shown that such tests allow establishing efficient operating conditions and characteristics of the plant under design. It is proposed to conduct pilot tests of the reverse-osmosis systems on pilot membrane plants (PMPs) and test membrane plants (TMPs). The results of a comparative experimental study of pilot and test membrane plants are exemplified by simulating the operating parameters of the membrane elements of an industrial plant. It is concluded that the reliability of the data obtained on the TMP may not be sufficient to design industrial water-treatment plants, while the PMPs are capable of providing reliable data that can be used for full-scale simulation of the operation of industrial reverse-osmosis systems. The test membrane plants allow simulation of the operating conditions of individual industrial plant systems; therefore, potential areas of their application are shown. A method for numerical calculation and experimental determination of the true selectivity and the salt passage are proposed. An expression has been derived that describes the functional dependence between the observed and true salt passage. The results of the experiments conducted on a test membrane plant to determine the true value of the salt passage of a reverse-osmosis membrane are exemplified by magnesium sulfate solution at different initial operating parameters. It is shown that the initial content of a particular solution component has a significant effect on the change in the true salt passage of the membrane.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip
2016-01-01
The high total temperatures or total enthalpies required to duplicate the high-speed flight conditions in ground experiments often place stringent requirements on the material selection and cooling needs for the test articles and intrusive flow diagnostic equipment. Furthermore, for internal flows, these conditions often complicate the use of nonintrusive diagnostics that need optical access to the test section and interior portions of the flowpath. Because of the technical challenges and increased costs associated with experimentation at high values of total enthalpy, an attempt is often made to reduce it. This is the case for the Enhanced Injection and Mixing Project (EIMP) currently underway in the Arc-Heated Scramjet Test Facility at the NASA Langley Research Center. The EIMP aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships between mixing performance and losses relevant to flight Mach numbers greater than 8. The experiments will consider a "direct-connect" approach and utilize a Mach 6 nozzle to simulate the combustor entrance flow of a scramjet engine. However, while the value of the Mach number is matched to that expected at the combustor entrance in flight, the maximum value of the total enthalpy for these experiments is limited by the thermal-structural limits of the uncooled experimental hardware. Furthermore, the fuel simulant is helium, not hydrogen. The use of "cold" flows and non-reacting mixtures of fuel simulants for mixing experiments is not new and has been extensively utilized as a screening technique for scramjet fuel injectors. In this study, Reynolds-averaged simulations are utilized (RAS) to systematically verify the implicit assumptions used by the EIMP. This is accomplished by first performing RAS of mixing for two injector configurations at planned nominal experimental conditions. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared to the values obtained from RAS under the true enthalpy conditions and using helium and hydrogen. Finally, the impact of combustion on mixing, often deemed small enough to neglect at hypervelocity conditions, is assessed by comparing the results obtained from the hydrogen-fueled reacting and non-reacting RAS. For reacting flows, in addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also considered. In all of the simulations, the incoming air Mach number and the fuel-to-air ratio are the same, while the total pressure, total enthalpy, and the fuel simulant vary depending on the case considered. It is found that under some conditions the "cold" flow experiments are a good approximation of the flight.
NASA Astrophysics Data System (ADS)
de Vera, J.-P.; Dulai, S.; Kereszturi, A.; Koncz, L.; Lorek, A.; Mohlmann, D.; Marschall, M.; Pocs, T.
2014-01-01
Tests on cyanobacteria communities embedded in cryptobiotic crusts collected in hot and cold deserts on Earth were performed under Mars-like conditions. The simulations were realized as a survey, to find the best samples for future research. During the tests organisms have to resist Mars-like conditions such as atmospheric composition, pressure, variable humidity (saturated and dry conditions) and partly strong UV irradiation. Organisms were tested within their original habitat inside the crust. Nearly half of the cryptobiotic samples from various sites showed survival of a substantial part of their coexisting organisms. The survival in general depended more on the nature of the original habitat and type of the sample than on the different conditions they were exposed to. The best survival was observed in samples from United Arab Emirates (Jebel Ali, 25 km SW of Dubai town) and from Western Australia (near the South edge of Lake Barley), by taxa: Tolypothrix byssoidea, Gloeocapsopsis pleurocapsoides, Nostoc microscopicum, Leptolyngbya or Symploca sp. At both places in salty desert areas members of the Chenopodiaceae family dominated among the higher plants and in the cryptobiotic crust cyanobacterial taxa Tolypothrix was dominant. These organisms were all living in salty locations with dry conditions most of the year. Among them Tolypothrix, Gloeocapsopsis and Symploca sp. were tested in Mars simulation chambers for the first time. The results suggest that extremophiles should be tested with taken into account the context of their original microenvironment, and also the importance to analyse communities of microbes beside single organisms.
Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels
NASA Astrophysics Data System (ADS)
Fang, Haiping; Wang, Zuowei; Lin, Zhifang; Liu, Muren
2002-05-01
A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.
Single element injector testing for STME injector technology
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.; Davis, J.
1992-01-01
An oxidizer-swirled coaxial element injector is being developed for application in the liquid oxygen/gaseous hydrogen Space Transportation Main Engine (STME) for the National Launch System (NLS) vehicle. This paper reports on the first two parts of a four part single injector element study for optimization of the STME injector design. Measurements of Rupe mixing efficiency and atomization characteristics are reported for single element versions of injection elements from two multielement injectors that have been recently hot fire tested. Rather than attempting to measure a definitive mixing efficiency or droplet size parameters of these injector elements, the purpose of these experiments was to provide a baseline comparison for evaluating future injector element design modifications. Hence, all the experiments reported here were conducted with cold flow simulants to nonflowing, ambient conditions. Mixing experiments were conducted with liquid/liquid simulants to provide economical trend data. Atomization experiments were conducted with liquid/gas simulants without backpressure. The results, despite significant differences from hot fire conditions, were found to relate to mixing and atomization parameters deduced from the hot fire testing, suggesting that these experiments are valid for trend analyses. Single element and subscale multielement hot fire testing will verify optimized designs before committing to fullscale fabrication.
Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes
NASA Astrophysics Data System (ADS)
Jakobsen, Michael L.; Thorsteinsson, Sune; Poulsen, Peter B.; Riedel, N.; Rødder, Peter M.; Rødder, Kristin
2017-09-01
Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data.
Aeroacoustic Analysis of Fan Noise Reduction With Increased Bypass Nozzle Area
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Hughes, Christopher E.; Podboy, Gary G.
2005-01-01
An advanced model turbofan was tested in the NASA Glenn 9-by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects of increased bypass nozzle area. This fan stage test was part of the NASA Glenn Fan Broadband Source Diagnostic Test, second entry (SDT2) which acquired aeroacoustic results over a range of test conditions. The baseline nozzle was sized to produce maximum stage performance at cruise condition. However, the wind tunnel testing is conducted near sea level condition. Therefore, in order to simulate and obtain performance at other operating conditions, two additional nozzles were designed and tested one with +5 percent increase in weight flow (+5.4 percent increase in nozzle area compared with the baseline nozzle), sized to simulate the performance at the stage design point (takeoff) condition, and the other with a +7.5 percent increase in weight flow (+10.9 percent increase in nozzle area) sized for maximum weight flow with a fixed nozzle at sea level condition. Measured acoustic benefits with increased nozzle area were very encouraging, showing overall sound power level (OAPWL) reductions of 2 or more dB while the stage thrust actually increased by 2 to 3 percent except for the most open nozzle at takeoff rotor speed where stage performance decreased. Effective perceived noise levels for a 1500 ft engine flyover and 3.35 scale factor showed a similar noise reduction of 2 or more EPNdB. Noise reductions, principally in the level of broadband noise, were observed everywhere in the far field. Laser Doppler Velocimetry measurements taken downstream of the rotor showed that the total turbulent velocity decreased with increasing nozzle flow, which may explain the reduced rotor broadband noise levels.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Paxson, Daniel E.
2008-01-01
Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.
Characterization and Simulation of Thermoacoustic Instability in a Low Emissions Combustor Prototype
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Paxson, Daniel E.
2008-01-01
Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior vs. operating condition have been identified and documented. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends vs. operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
Glenn Extreme Environment Rig (GEER)
2017-01-17
NASA Glenn research engineers prepare our extreme environments chamber (GEER) for a test. GEER, which simulates the extreme conditions found in space, tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800˚F.
Materials Test Program, Contact Power Collection for High Speed Tracked Vehicles
DOT National Transportation Integrated Search
1971-01-01
A test program is defined for determining the failure modes and wear characteristics for brushes used to collect electrical power from the wayside for high speed tracked vehicles. Simulation of running conditions and the necessary instrumentation for...
Preparing for Solar and Thermal Testing of Curiosity Mars Rover
2011-03-18
This image shows preparation for March 2011 testing of the Mars Science Laboratory rover, Curiosity, in a space-simulation chamber; the rover will go through operational sequences in environmental conditions similar to what it will experience on Mars.
Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins
NASA Astrophysics Data System (ADS)
Cheng, Polly; Kambli, Ankita; Stone, Johnny
2017-10-01
Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.
Low Gravity Freefall Facilities
NASA Technical Reports Server (NTRS)
1981-01-01
Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.
1981-03-30
Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.
NASA Technical Reports Server (NTRS)
Cullom, R. R.; Johnsen, R. L.
1979-01-01
Three afterburner configurations were tested in a low-bypass-ratio turbofan engine to determine the effect of various fuel distributions, inlet conditions, flameholder geometry, and fuel injection location on combustion instability. Tests were conducted at simulated flight conditions of Mach 0.75 and 1.3 at altitudes from 11,580 to 14,020 m (38,000 to 46,000 ft). In these tests combustion instability with frequency from 28 to 90 Hz and peak-to-peak pressure amplitude up to 46.5 percent of the afterburner inlet total pressure level was encountered. Combustion instability was suppressed in these tests by varying the fuel distribution in the afterburner.
Kontominas, M G; Goulas, A E; Badeka, A V; Nerantzaki, A
2006-06-01
Overall migration from a wide range of commercial plastics-based netting materials destined to be used as either meat or vegetable packaging materials into the fatty food simulant isooctane or the aqueous simulant distilled water, respectively, was studied. In addition, sensory tests of representative netting materials were carried out in bottled water in order to investigate possible development of off-odour/taste and discoloration in this food simulant as a result of migration from the netting material. Sensory tests were supplemented by determination of the volatile compounds' profile in table water exposed to the netting materials using SPME-GC/MS. Test conditions for packaging material/food simulant contact and method of overall migration analysis were according to European Union Directives 90/128 (EEC, 1990) and 2002/72 (EEC, 2002). The results showed that for both PET and polyethylene-based netting materials, overall migration values into distilled water ranged between 11.5 and 48.5 mg l(-1), well below the upper limit (60 mg l(-1)) for overall migration values from plastics-packaging materials set by the European Union. The overall migration values from netting materials into isooctane ranged between 38.0 and 624.0 mg l(-1), both below and above the European Union upper limit for migration. Sensory tests involving contact of representative samples with table water under refluxing (100 degrees C/4 h) conditions showed a number of the netting materials produced both off-odour and/or taste as well as discoloration of the food simulant rendering such materials unfit for the packaging of foodstuffs in applications involving heating at elevated temperatures. GC/MS analysis showed the presence of numerous volatile compounds being produced after netting materials/water contact under refluxing conditions. Although it is extremely difficult to establish a clear correlation between sensory off-odour development and GC/MS volatile compounds' profile, it may be postulated that plastics oxidation products such as hexanal, heptanal, octanal and 2,6 di-tert-butylquinone may contribute to off-odour development using commercially bottled table water as a food simulant. Likewise, compounds such as carbon disulfide, [1,1'-biphenyl]-2-ol and propanoic acid, 2 methyl 1-(1,1-dimethyl)-2-methyl-1,3-propanediyl ester probably originating from cotton and rubber components of netting materials may also contribute to off-odour/taste development.
Reexamining the Impact of Nonnormality in Two-Group Comparison Procedures
ERIC Educational Resources Information Center
Kang, Yoonjeong; Harring, Jeffrey R.; Li, Ming
2015-01-01
The authors performed a Monte Carlo simulation to empirically investigate the robustness and power of 4 methods in testing mean differences for 2 independent groups under conditions in which 2 populations may not demonstrate the same pattern of nonnormality. The approaches considered were the t test, Wilcoxon rank-sum test, Welch-James test with…
Pietsch, Hollie A; Bosch, Kelly E; Weyland, David R; Spratley, E Meade; Henderson, Kyvory A; Salzar, Robert S; Smith, Terrance A; Sagara, Brandon M; Demetropoulos, Constantine K; Dooley, Christopher J; Merkle, Andrew C
2016-11-01
Three laboratory simulated sub-injurious under-body blast (UBB) test conditions were conducted with whole-body Post Mortem Human Surrogates (PMHS) and the Warrior Assessment Injury Manikin (WIAMan) Technology Demonstrator (TD) to establish and assess UBB biofidelity of the WIAMan TD. Test conditions included a rigid floor and rigid seat with independently varied pulses. On the floor, peak velocities of 4 m/s and 6 m/s were applied with a 5 ms time to peak (TTP). The seat peak velocity was 4 m/s with varied TTP of 5 and 10 ms. Tests were conducted with and without personal protective equipment (PPE). PMHS response data was compiled into preliminary biofidelity response corridors (BRCs), which served as evaluation metrics for the WIAMan TD. Each WIAMan TD response was evaluated against the PMHS preliminary BRC for the loading and unloading phase of the signal time history using Correlation Analysis (CORA) software to assign a numerical score between 0 and 1. A weighted average of all responses was calculated to determine body region and whole body biofidelity scores for each test condition. The WIAMan TD received UBB biofidelity scores of 0.62 in Condition A, 0.59 in Condition B, and 0.63 in Condition C, putting it in the fair category (0.44-0.65). Body region responses with scores below a rating of good (0.65-0.84) indicate potential focus areas for the next generation of the WIAMan design.
Cluster Development Test 2: An Assessment of a Failed Test
NASA Technical Reports Server (NTRS)
Machin, Ricardo A.; Evans, Carol T.
2009-01-01
On 31 July 2008 the National Aeronautics and Space Administration Crew Exploration Vehicle Parachute Assembly System team conducted the final planned cluster test of the first generation parachute recovery system design. The two primary test objectives were to demonstrate the operation of the complete parachute system deployed from a full scale capsule simulator and to demonstrate the test technique of separating the capsule simulator from the Low Velocity Air Drop pallet used to extract the test article from a United States Air Force C-17 aircraft. The capsule simulator was the Parachute Test Vehicle with an accurate heat shield outer mold line and forward bay compartment of the Crew Exploration Vehicle Command Module. The Parachute Test Vehicle separated cleanly from the pallet following extraction, but failed to reach test conditions resulting in the failure of the test and the loss of the test assets. No personnel were injured. This paper will discuss the design of the test and the findings of the team that investigated the test, including a discussion of what were determined to be the root causes of the failure.
Uprated OMS Engine Status-Sea Level Testing Results
NASA Technical Reports Server (NTRS)
Bertolino, J. D.; Boyd, W. C.
1990-01-01
The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.
In-flight and simulated aircraft fuel temperature measurements
NASA Technical Reports Server (NTRS)
Svehla, Roger A.
1990-01-01
Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.
The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.
NASA Technical Reports Server (NTRS)
Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.
1972-01-01
The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.
Mars Science Laboratory Rover System Thermal Test
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.
2012-01-01
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.
Utility of an airframe referenced spatial auditory display for general aviation operations
NASA Astrophysics Data System (ADS)
Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.
2009-05-01
The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.
Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.; Killpatrick, D. H.
1973-01-01
The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.
Deployment/retraction ground testing of a large flexible solar array
NASA Technical Reports Server (NTRS)
Chung, D. T.
1982-01-01
The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.
IMPLEMENTATION OF GREEN ROOF SUSTAINABILITY IN ARID CONDITIONS
We successfully designed and fabricated accurately scaled prototypes of a green roof and a conventional white roof and began testing in simulated conditions of 115-70°F with relative humidity of 13%. The design parameters were based on analytical models created through ver...
Effects of Distortion on Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.
2015-01-01
A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.
Simulated astigmatism impairs academic-related performance in children.
Narayanasamy, Sumithira; Vincent, Stephen J; Sampson, Geoff P; Wood, Joanne M
2015-01-01
Astigmatism is an important refractive condition in children. However, the functional impact of uncorrected astigmatism in this population is not well established, particularly with regard to academic performance. This study investigated the impact of simulated bilateral astigmatism on academic-related tasks before and after sustained near work in children. Twenty visually normal children (mean age: 10.8 ± 0.7 years; six males and 14 females) completed a range of standardised academic-related tests with and without 1.50 D of simulated bilateral astigmatism (with both academic-related tests and the visual condition administered in a randomised order). The simulated astigmatism was induced using a positive cylindrical lens while maintaining a plano spherical equivalent. Performance was assessed before and after 20 min of sustained near work, during two separate testing sessions. Academic-related measures included a standardised reading test (the Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (the Developmental Eye Movement test). Each participant was systematically assigned either with-the-rule (WTR, axis 180°) or against-the-rule (ATR, axis 90°) simulated astigmatism to evaluate the influence of axis orientation on any decrements in performance. Reading, visual information processing and reading-related eye movement performance were all significantly impaired by both simulated bilateral astigmatism (p < 0.001) and sustained near work (p < 0.001), however, there was no significant interaction between these factors (p > 0.05). Simulated astigmatism led to a reduction of between 5% and 12% in performance across the academic-related outcome measures, but there was no significant effect of the axis (WTR or ATR) of astigmatism (p > 0.05). Simulated bilateral astigmatism impaired children's performance on a range of academic-related outcome measures irrespective of the orientation of the astigmatism. These findings have implications for the clinical management of non-amblyogenic levels of astigmatism in relation to academic performance in children. Correction of low to moderate levels of astigmatism may improve the functional performance of children in the classroom. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
NASA Astrophysics Data System (ADS)
Conti, Roberto; Meli, Enrico; Pugi, Luca; Malvezzi, Monica; Bartolini, Fabio; Allotta, Benedetto; Rindi, Andrea; Toni, Paolo
2012-05-01
Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel-roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel-rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel-roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.
Liquid oxygen (LO2) propellant conditioning concept testing
NASA Technical Reports Server (NTRS)
Perry, Gretchen L. E.; Orth, Michael S.; Mehta, Gopal K.
1993-01-01
Testing of a simplified LO2 propellant conditioning concept for future expendable launch vehicles is discussed. Four different concepts are being investigated: no-bleed, low-bleed, use of a recirculation line, and He bubbling. A full-scale test article, which is a facsimile of a propellant feed duct with an attached section to simulate heat input from an LO2 turbopump, is to be tested at the Cold Flow Facility of the Marshall Space Flight Center West Test Area. Work to date includes: design and fabrication of the test article, design of the test facility and initial fabrication, development of a test matrix and test procedures, initial predictions of test output, and heat leak calibration and heat exchanger tests on the test articles.
SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions
NASA Technical Reports Server (NTRS)
Robinson, R. Craig; Hatton, Kenneth S.
1999-01-01
Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.
NASA Astrophysics Data System (ADS)
Badwe, Sunil
In the nuclear repository conditions, the nuclear waste package wall surfaces will be at elevated temperatures because of the heat generated by fission reactions within the waste. It is anticipated that the ground water may contain varying levels of anions such as chloride, nitrate, sulfate picked up from the rocks. The ground waters could seep through the rock faults and drip on to the waste packages. The dripped water will evaporate due to the heat from the nuclear waste leaving behind concentrated brine which eventually becomes dry salt deposit. The multi-ionic salts in the ground water are expected to be hygroscopic in nature. The next drop of water falling at the same place or the humidity in the repository will transform the hygroscopic salt deposit into a more concentrated brine. This cycle will continue for years and eventually a potentially corrosive brine will be formed on the waste package surface. Hence the waste package surface goes through the alternate wet-dry cycles. These conditions indicate that the concentration and pH of the environment in the repository vary considerably. The conventional corrosion tests hardly simulate these varying environmental conditions. Hence there has been a need to develop an electrochemical test that could closely simulate the anticipated repository conditions stated above. In this research, a new electrochemical method, called as Heated Surface Corrosion testing (HSCT) has been devised and tested. In the conventional testing the electrolyte is heated and in HSCT the working electrode is heated. The present study employs the temperature of 80°C which may be one of the temperatures of the waste package surface. The new HSCT was validated by testing stainless steel type 304. The HSCT was observed to be more aggressive than the conventional tests. Initiation of pitting of SS 304 in chloride solution (pH 3) occurred at much shorter exposure times in the HSCT condition than the exposure time required for pitting in conventional testing. The reduced time to pitting demonstrated the capability of HSCT to impose repository more corrosive conditions. The stability of the passive film of stainless alloys under the hygroscopic salt layers could be determined using this technique. Alloy 22, a nickel base Ni-22Cr-13Mo-3W alloy has an excellent corrosion resistance in oxidizing and reducing environments. Corrosion behavior of Alloy 22 was evaluated using the newly devised HSCT method in simulated acidified water (SAW), simulated concentrated water (SCW) and in pure chloride (pH 3 and 8) environments. In this method, the concentration of the environment varied with test duration. Alloy 22 was evaluated in four different heat treated conditions viz. (a) mill annealed, (b) 610°C/1 h-representing Cr depletion, (c) 650°C/100 h-representing Mo+Cr depletion, (d) 800°C/100 h-representing Mo depletion. The corrosion rate of mill annealed Alloy 22 was not affected by the continuous increase in ionic strength of the SAW (pH 3) environment. Passivation kinetics was faster with increase in concentration of the electrolytes. The major difference between the conventional test and HSCT was the aging characteristics of the passive film of Alloy 22. Cyclic polarization was carried out on Alloy 22 in conventional ASTM G61 and HSCT method to compare. The electrochemical response of Alloy 22 was the same by heating the electrolyte or heating the electrode. The corrosion behavior of Alloy 22 was investigated in three different aged conditions using HSCT approach in two different electrolytes. The thermal aging conditions of the specimens introduced depletion of chromium and molybdenum near the grain boundaries/phase boundaries. Long-term exposure tests (up to 850 h) were conducted in simulated acidified water (SAW, pH 3) and simulated concentrated water (SCW, pH 8) at 80°C. Corrosion potential, corrosion current and passive current decay exponent were determined at regular intervals. The specimens aged at 610°C/1 h and 800°C/100 h showed almost identical corrosion behaviors in the SAW environment. The specimen aged at 650°C/100 h showed lower corrosion resistance in the SAW environment indicating the effect of Mo-depletion profile near the grain boundaries. The specimen aged at 800°C for 100 h showed lower corrosion resistance in the SCW environment because of possible dissolution of the Mo-rich precipitates. Compared to the mill annealed condition, the aged specimens showed approximately an order of magnitude higher corrosion current in the SAW environment and almost similar corrosion currents in the SCW environment. Results also indicate that the passivity of Alloy 22, both in mill annealed and in aged conditions was not hampered during dry-out/rewet cycles. Presence of nitrate and other oxyanions in the SAW environment reduced the charge required to form a stable passive film of alloy 22 aged samples as compared to the charge passed in the pure chloride pH 3 environments. The passive film of the aged Alloy 22 specimens exposed to pure chloride solutions showed predominantly n-type semiconducting behavior and the on-set of p-type semiconductivity at higher potentials. The charge carrier density of the passive film of Alloy 22 varied in the range 1.5-9.0 x 10 21/cm3. The predominant charge carriers could be oxygen vacancies. Increase in the charge carrier density was observed in the specimen aged at 800°C/100 h when exposed to pH 3 solution as compared to exposure in pH 8 solution. In Summary, Alloy 22 sustained the heated surface corrosion test without any appreciable surface attack in the simulated repository environments as well as the more corrosive chloride environments.
Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.
2014-01-01
This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.
Partridge, Susan; Tipper, Joanne L; Al-Hajjar, Mazen; Isaac, Graham H; Fisher, John; Williams, Sophie
2018-05-01
Wear and fatigue of polyethylene acetabular cups have been reported to play a role in the failure of total hip replacements. Hip simulator testing under a wide range of clinically relevant loading conditions is important. Edge loading of hip replacements can occur following impingement under extreme activities and can also occur during normal gait, where there is an offset deficiency and/or joint laxity. This study evaluated a hip simulator method that assessed wear and damage in polyethylene acetabular liners that were subjected to edge loading. The liners tested to evaluate the method were a currently manufactured crosslinked polyethylene acetabular liner and an aged conventional polyethylene acetabular liner. The acetabular liners were tested for 5 million standard walking cycles and following this 5 million walking cycles with edge loading. Edge loading conditions represented a separation of the centers of rotation of the femoral head and the acetabular liner during the swing phase, leading to loading of the liner rim on heel strike. Rim damage and cracking was observed in the aged conventional polyethylene liner. Steady-state wear rates assessed gravimetrically were lower under edge loading compared to standard loading. This study supports previous clinical findings that edge loading may cause rim cracking in liners, where component positioning is suboptimal or where material degradation is present. The simulation method developed has the potential to be used in the future to test the effect of aging and different levels of severity of edge loading on a range of cross-linked polyethylene materials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1456-1462, 2018. © 2017 Wiley Periodicals, Inc.
Mental simulation of drawing actions enhances delayed recall of a complex figure.
De Lucia, Natascia; Trojano, Luigi; Senese, Vincenzo Paolo; Conson, Massimiliano
2016-10-01
Motor simulation implies that the same motor representations involved in action execution are re-enacted during observation or imagery of actions. Neurofunctional data suggested that observation of letters or abstract paintings can elicit simulation of writing or drawing gestures. We performed four behavioural experiments on right-handed healthy participants to test whether observation of a static and complex geometrical figure implies re-enactment of drawing actions. In Experiment 1, participants had to observe the stimulus without explicit instruction (observation-only condition), while performing irrelevant finger tapping (motor dual task), or while articulating irrelevant verbal material (verbal dual task). Delayed drawing of the stimulus was less accurate in the motor dual-task (interfering with simulation of hand actions) than in verbal dual-task and observation-only conditions. In Experiment 2, delayed drawing in the observation only was as accurate as when participants encoded the stimulus by copying it; in both conditions, accuracy was higher than when participants were instructed to observe the stimulus to recall it later verbally (observe to recall), thus being discouraged from engaging motor simulation. In Experiment 3, delayed drawing was as accurate in the observation-only condition as when participants imagined copying the stimulus; accuracy in both conditions was higher than in the observe-to-recall condition. In Experiment 4, in the observe-only condition participants who observed the stimulus with their right arm hidden behind their back were significantly less accurate than participants who had their left arm hidden. These findings converge in suggesting that mere observation of a geometrical stimulus can activate motor simulation and re-enactment of drawing actions.
Experimental Characterization of Gas Turbine Emissions at Simulated Flight Altitude Conditions
NASA Technical Reports Server (NTRS)
Howard, R. P.; Wormhoudt, J. C.; Whitefield, P. D.
1996-01-01
NASA's Atmospheric Effects of Aviation Project (AEAP) is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. A primary goal is to assist assessments of United Nations scientific organizations and hence, consideration of emissions standards by the International Civil Aviation Organization (ICAO). Engine tests have been conducted at AEDC to fulfill the need of AEAP. The purpose of these tests is to obtain a comprehensive database to be used for supplying critical information to the atmospheric research community. It includes: (1) simulated sea-level-static test data as well as simulated altitude data; and (2) intrusive (extractive probe) data as well as non-intrusive (optical techniques) data. A commercial-type bypass engine with aviation fuel was used in this test series. The test matrix was set by parametrically selecting the temperature, pressure, and flow rate at sea-level-static and different altitudes to obtain a parametric set of data.
Modeling and Simulation of a Nuclear Fuel Element Test Section
NASA Technical Reports Server (NTRS)
Moran, Robert P.; Emrich, William
2011-01-01
"The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1980-01-01
In order to aid in the design of the National Transonic Facility (NTF) control system, test section/plenum response studies were carried out in a 0.186 scale model of the NTF high speed duct. Two types of disturbances, those induced by the model and those induced by the compressor inlet guide vanes were simulated. Some observations with regard to the test section/plenum response tests are summarized as follows. A resonance frequency for the test section/plenum area of the tunnel of approximately 50 Hz was observed for Mach numbers from 0.40 to 0.90. However, since the plenum is 3.1 times (based on volume) too large for the scaled size of the test section, care must be taken in extrapolating these data to NTF conditions. The plenum pressure data indicate the existence of pressure gradients in the plenum. The test results indicate that the difference between test section static pressure and plenum pressure is dependent on test section flow conditions. Plenum response to inlet guide vane type disturbances appears to be slower than plenum response to test section disturbances.
Icing simulation: A survey of computer models and experimental facilities
NASA Technical Reports Server (NTRS)
Potapczuk, M. G.; Reinmann, J. J.
1991-01-01
A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.
Icing simulation: A survey of computer models and experimental facilities
NASA Technical Reports Server (NTRS)
Potapczuk, M. G.; Reinmann, J. J.
1991-01-01
A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.
Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindstrom, Jason
2010-01-31
Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less
NASA Astrophysics Data System (ADS)
Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki
2018-03-01
A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.
NASA Technical Reports Server (NTRS)
1979-01-01
The procedures used and the results obtained during the evaluation test program on a liquid solar collector are presented. The narrow flat plate collector with reflective concentrating mirrors uses water as the working fluid. The double-covered collector weighs 137 pounds and has overall dimensions of about 35" by 77" by 6.75". The test program was conducted to obtain the following information: thermal performance data under simulated conditions, structural behavior under static load, and the effects of long term exposure to natural weathering.
NASA Astrophysics Data System (ADS)
Hamilton, J. A.; Rand, D. A. J.
1983-03-01
A test rig has been designed and constructed to examine the performance of batteries under laboratory conditions that simulate the power characteristics of electric vehicles. Each station in the rig subjects a battery to continuous charge/discharge cycles, with an equalising charge every eighth cycle. The battery discharge follows the current-verse-time profile of a given vehicle operating under a driving schedule normal to road service. The test rig allows both smooth- and pulsed-current discharge to be investigated. Data collection is accomplished either with multi-pen recorders or with a computer-based information logger.
Van Dongen, Hans P A; Belenky, Gregory; Vila, Bryan J
2011-07-01
Under simulated shift-work conditions, we investigated the efficacy of a restart break for maintaining neurobehavioral functioning across consecutive duty cycles, as a function of the circadian timing of the duty periods. As part of a 14-day experiment, subjects underwent two cycles of five simulated daytime or nighttime duty days, separated by a 34-hour restart break. Cognitive functioning and high-fidelity driving simulator performance were tested 4 times per day during the two duty cycles. Lapses on a psychomotor vigilance test (PVT) served as the primary outcome variable. Selected sleep periods were recorded polysomnographically. The experiment was conducted under standardized, controlled laboratory conditions with continuous monitoring. Twenty-seven healthy adults (13 men, 14 women; aged 22-39 years) participated in the study. Subjects were randomly assigned to a nighttime duty (experimental) condition or a daytime duty (control) condition. The efficacy of the 34-hour restart break for maintaining neurobehavioral functioning from the pre-restart duty cycle to the post-restart duty cycle was compared between these two conditions. Relative to the daytime duty condition, the nighttime duty condition was associated with reduced amounts of sleep, whereas sleep latencies were shortened and slow-wave sleep appeared to be conserved. Neurobehavioral performance measures ranging from lapses of attention on the PVT to calculated fuel consumption on the driving simulators remained optimal across time of day in the daytime duty schedule, but degraded across time of night in the nighttime duty schedule. The 34-hour restart break was efficacious for maintaining PVT performance and other objective neurobehavioral functioning profiles from one duty cycle to the next in the daytime duty condition, but not in the nighttime duty condition. Subjective sleepiness did not reliably track objective neurobehavioral deficits. The 34-hour restart break was adequate for maintaining performance in the case of optimal circadian placement of sleep and duty periods (control condition) but was inadequate (and perhaps even detrimental) for maintaining performance in a simulated nighttime duty schedule (experimental condition). Current US transportation hours-of-service regulations mandate time off duty but do not consider the circadian aspects of shift scheduling. Reinforcing a recent trend of applying sleep science to inform policymaking for duty and rest times, our findings indicate that restart provisions in hours-of-service regulations could be improved by taking the circadian timing of the duty schedules into account.
NASA Astrophysics Data System (ADS)
James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.
2018-03-01
Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.
A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.
TDRSS system configuration study for space shuttle program
NASA Technical Reports Server (NTRS)
1978-01-01
This study was set up to assure that operation of the shuttle orbiter communications systems met the program requirements when subjected to electrical conditions similar to those which will be encountered during the operational mission. The test program intended to implement an integrated test bed, consisting of applicable orbiter, EVA, payload simulator, STDN, and AF/SCF, as well as the TDRSS equipment. The stated intention of Task 501 Program was to configure the test bed with prototype hardware for a system development test and production hardware for a system verification test. In case of TDRSS when the hardware was not available, simulators whose functional performance was certified to meet appropriate end item specification were used.
Advanced Hybrid Modeling of Hall Thruster Plumes
2010-06-16
Hall thruster operated in the Large Vacuum Test Facility at the University of Michigan. The approach utilizes the direct simulation Monte Carlo method and the Particle-in-Cell method to simulate the collision and plasma dynamics of xenon neutrals and ions. The electrons are modeled as a fluid using conservation equations. A second code is employed to model discharge chamber behavior to provide improved input conditions at the thruster exit for the plume simulation. Simulation accuracy is assessed using experimental data previously
Testing and evaluation of light ablation decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmer, R.L.; Ferguson, R.L.
1994-10-01
This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.
A Mixture Rasch Model-Based Computerized Adaptive Test for Latent Class Identification
ERIC Educational Resources Information Center
Jiao, Hong; Macready, George; Liu, Junhui; Cho, Youngmi
2012-01-01
This study explored a computerized adaptive test delivery algorithm for latent class identification based on the mixture Rasch model. Four item selection methods based on the Kullback-Leibler (KL) information were proposed and compared with the reversed and the adaptive KL information under simulated testing conditions. When item separation was…
Rebecca E. Ibach; Craig M. Clemons; Nicole M. Stark
2003-01-01
During outdoor exposure, woodfiber-plastic composites (WPC) are subject to biological, moisture, and ultraviolet (UV) degradation. The purpose of laboratory evaluations is to simulate outdoor conditions and accelerate the testing for quicker results. Traditionally, biological, moisture, and W laboratory tests are done separately, and only combined in outdoor field...
ATM/cable arch and beam structural test program
NASA Technical Reports Server (NTRS)
Housley, J. A.
1972-01-01
The structural testing is described of an Apollo Telescope Mount (ATM) cable arch and beam assembly, using static loads to simulate the critical conditions expected during transportation and launch of the ATM. All test objectives were met. Stress and deflection data show that the assembly is structurally adequate for use in the ATM.
Remote control circuit breaker evaluation testing. [for space shuttles
NASA Technical Reports Server (NTRS)
Bemko, L. M.
1974-01-01
Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.
Evaluation of Brushing as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces
NASA Technical Reports Server (NTRS)
Gaier, James R.; Journey, Khrissaundra; Christopher, Steven; Davis, Shanon
2011-01-01
Evaluation of brushing to remove lunar simulant dust from thermal control surfaces is described. First, strip brushes made with nylon, PTFE, or Thunderon (Nihon Sanmo Dyeing Company Ltd.) bristles were used to remove JSC-1AF dust from AZ93 thermal control paint or aluminized FEP (AlFEP) thermal control surface under ambient laboratory conditions. Nylon and PTFE bristles removed a promising amount of dust from AZ93, and nylon and Thunderon bristles from AlFEP. But when these were tested under simulated lunar conditions in the lunar dust adhesion bell jar (LDAB), they were not effective. In a third effort, seven brushes made up of three different materials, two different geometries, and different bristle lengths and thicknesses were tested under laboratory conditions against AZ93 and AlFEP. Two of these brushes, the Zephyr fiberglass fingerprint brush and the Escoda nylon fan brush, removed over 90 percent of the dust, and so were tested in the fourth effort in the LDAB. They also performed well under these conditions recovering 80 percent or more of the original thermal performance (solar absorptance/thermal emittance) of both AZ93 and AgFEP after 20 strokes, and 90 or more percent after 200 strokes
Evaluation of Brushing as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces
NASA Technical Reports Server (NTRS)
Gaier, James R.; Journey, Hhrissaundra; Christopher, Steven; Davis, Shanon
2011-01-01
Evaluation of brushing to remove lunar simulant dust from thermal control surfaces is described. First, strip brushes made with nylon, PTFE, or Thunderon bristles were used to remove JSC-1AF dust from AZ93 thermal control paint or aluminized FEP (AlFEP) thermal control surface under ambient laboratory conditions. Nylon and PTFE bristles removed a promising amount of dust from AZ93, and nylon and Thunderon bristles from AlFEP. But when these were tested under simulated lunar conditions in the lunar dust adhesion bell jar (LDAB), they were not effective. In a third effort, seven brushes made up of three different materials, two different geometries, and different bristle lengths and thicknesses were tested under laboratory conditions against AZ93 and AlFEP. Two of these brushes, the Zephyr fiberglass fingerprint brush and the Escoda nylon fan brush, removed over 90 percent of the dust, and so were tested in the fourth effort in the LDAB. They also performed well under these conditions recovering 80 percent or more of the original thermal performance (solar absorptance/thermal emittance) of both AZ93 and AgFEP after 20 strokes, and 90 or more percent after 200 strokes.
Wide range operation of advanced low NOx aircraft gas turbine combustors
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.; Butze, H. F.
1978-01-01
The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.
Field test and simulation evaluation of variable refrigerant flow systems performance
Lee, Je Hyeon; Im, Piljae; Song, Young-hak
2017-10-24
Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating operation. As a result, energy consumption of the VRF system was reduced by more than that of the RTU by 55% approximately.« less
Field test and simulation evaluation of variable refrigerant flow systems performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Je Hyeon; Im, Piljae; Song, Young-hak
Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating operation. As a result, energy consumption of the VRF system was reduced by more than that of the RTU by 55% approximately.« less
xyZET: A Simulation Program for Physics Teaching.
ERIC Educational Resources Information Center
Hartel, Hermann
2000-01-01
Discusses xyZET, a simulation program that allows 3D-space in numerous experiments in basic mechanics and electricity and was developed to support physics teaching. Tests course material for 11th grade at German high schools under classroom conditions and reports on their stability and effectiveness. (Contains 15 references.) (Author/YDS)
USDA-ARS?s Scientific Manuscript database
The use of simulated and mimic sprays for atomization studies in high speed wind tunnels allows researchers to limit the amount of active ingredients used in spray tests; however, it is important that these simulated and mimic sprays have the same physical and atomization characteristics of spray co...
Ares I-X First Stage Separation Loads and Dynamics Reconstruction
NASA Technical Reports Server (NTRS)
Demory, Lee; Rooker, BIll; Jarmulowicz, Marc; Glaese, John
2011-01-01
The Ares I-X flight test provided NASA with the opportunity to test hardware and gather critical data to ensure the success of future Ares I flights. One of the primary test flight objectives was to evaluate the environment during First Stage separation to better understand the conditions that the J-2X second stage engine will experience at ignition [1]. A secondary objective was to evaluate the effectiveness of the stage separation motors. The Ares I-X flight test vehicle was successfully launched on October 29, 2009, achieving most of its primary and secondary test objectives. Ground based video camera recordings of the separation event appeared to show recontact of the First Stage and the Upper Stage Simulator followed by an unconventional tumbling of the Upper Stage Simulator. Closer inspection of the videos and flight test data showed that recontact did not occur. Also, the motion during staging was as predicted through CFD analysis performed during the Ares I-X development. This paper describes the efforts to reconstruct the vehicle dynamics and loads through the staging event by means of a time integrated simulation developed in TREETOPS, a multi-body dynamics software tool developed at NASA [2]. The simulation was built around vehicle mass and geometry properties at the time of staging and thrust profiles for the first stage solid rocket motor as well as for the booster deceleration motors and booster tumble motors. Aerodynamic forces were determined by models created from a combination of wind tunnel testing and CFD. The initial conditions such as position, velocity, and attitude were obtained from the Best Estimated Trajectory (BET), which is compiled from multiple ground based and vehicle mounted instruments. Dynamic loads were calculated by subtracting the inertial forces from the applied forces. The simulation results were compared to the Best Estimated Trajectory, accelerometer flight data, and to ground based video.
Hu, B.X.; He, C.
2008-01-01
An iterative inverse method, the sequential self-calibration method, is developed for mapping spatial distribution of a hydraulic conductivity field by conditioning on nonreactive tracer breakthrough curves. A streamline-based, semi-analytical simulator is adopted to simulate solute transport in a heterogeneous aquifer. The simulation is used as the forward modeling step. In this study, the hydraulic conductivity is assumed to be a deterministic or random variable. Within the framework of the streamline-based simulator, the efficient semi-analytical method is used to calculate sensitivity coefficients of the solute concentration with respect to the hydraulic conductivity variation. The calculated sensitivities account for spatial correlations between the solute concentration and parameters. The performance of the inverse method is assessed by two synthetic tracer tests conducted in an aquifer with a distinct spatial pattern of heterogeneity. The study results indicate that the developed iterative inverse method is able to identify and reproduce the large-scale heterogeneity pattern of the aquifer given appropriate observation wells in these synthetic cases. ?? International Association for Mathematical Geology 2008.
Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments
NASA Astrophysics Data System (ADS)
Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.
2014-05-01
In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length < 15mm) this investigation concentrates on the prediction of the local mechanical properties of an injection molded part. To realize this, the Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.
Liquid Secondary Waste Grout Formulation and Waste Form Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Williams, B. D.; Snyder, Michelle M. V.
This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting themore » U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption K d (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.« less
Relative advantages of dichromatic and trichromatic color vision in camouflage breaking.
Troscianko, Jolyon; Wilson-Aggarwal, Jared; Griffiths, David; Spottiswoode, Claire N; Stevens, Martin
2017-01-01
There is huge diversity in visual systems and color discrimination abilities, thought to stem from an animal's ecology and life history. Many primate species maintain a polymorphism in color vision, whereby most individuals are dichromats but some females are trichromats, implying that selection sometimes favors dichromatic vision. Detecting camouflaged prey is thought to be a task where dichromatic individuals could have an advantage. However, previous work either has not been able to disentangle camouflage detection from other ecological or social explanations, or did not use biologically relevant cryptic stimuli to test this hypothesis under controlled conditions. Here, we used online "citizen science" games to test how quickly humans could detect cryptic birds (incubating nightjars) and eggs (of nightjars, plovers and coursers) under trichromatic and simulated dichromatic viewing conditions. Trichromats had an overall advantage, although there were significant differences in performance between viewing conditions. When searching for consistently shaped and patterned adult nightjars, simulated dichromats were more heavily influenced by the degree of pattern difference than were trichromats, and were poorer at detecting prey with inferior pattern and luminance camouflage. When searching for clutches of eggs-which were more variable in appearance and shape than the adult nightjars-the simulated dichromats learnt to detect the clutches faster, but were less sensitive to subtle luminance differences. These results suggest there are substantial differences in the cues available under viewing conditions that simulate different receptor types, and that these interact with the scene in complex ways to affect camouflage breaking.
Relative advantages of dichromatic and trichromatic color vision in camouflage breaking
Wilson-Aggarwal, Jared; Griffiths, David; Spottiswoode, Claire N.; Stevens, Martin
2017-01-01
Abstract There is huge diversity in visual systems and color discrimination abilities, thought to stem from an animal’s ecology and life history. Many primate species maintain a polymorphism in color vision, whereby most individuals are dichromats but some females are trichromats, implying that selection sometimes favors dichromatic vision. Detecting camouflaged prey is thought to be a task where dichromatic individuals could have an advantage. However, previous work either has not been able to disentangle camouflage detection from other ecological or social explanations, or did not use biologically relevant cryptic stimuli to test this hypothesis under controlled conditions. Here, we used online “citizen science” games to test how quickly humans could detect cryptic birds (incubating nightjars) and eggs (of nightjars, plovers and coursers) under trichromatic and simulated dichromatic viewing conditions. Trichromats had an overall advantage, although there were significant differences in performance between viewing conditions. When searching for consistently shaped and patterned adult nightjars, simulated dichromats were more heavily influenced by the degree of pattern difference than were trichromats, and were poorer at detecting prey with inferior pattern and luminance camouflage. When searching for clutches of eggs—which were more variable in appearance and shape than the adult nightjars—the simulated dichromats learnt to detect the clutches faster, but were less sensitive to subtle luminance differences. These results suggest there are substantial differences in the cues available under viewing conditions that simulate different receptor types, and that these interact with the scene in complex ways to affect camouflage breaking. PMID:29622920
Neurocognitive Correlates of Young Drivers' Performance in a Driving Simulator.
Guinosso, Stephanie A; Johnson, Sara B; Schultheis, Maria T; Graefe, Anna C; Bishai, David M
2016-04-01
Differences in neurocognitive functioning may contribute to driving performance among young drivers. However, few studies have examined this relation. This pilot study investigated whether common neurocognitive measures were associated with driving performance among young drivers in a driving simulator. Young drivers (19.8 years (standard deviation [SD] = 1.9; N = 74)) participated in a battery of neurocognitive assessments measuring general intellectual capacity (Full-Scale Intelligence Quotient, FSIQ) and executive functioning, including the Stroop Color-Word Test (cognitive inhibition), Wisconsin Card Sort Test-64 (cognitive flexibility), and Attention Network Task (alerting, orienting, and executive attention). Participants then drove in a simulated vehicle under two conditions-a baseline and driving challenge. During the driving challenge, participants completed a verbal working memory task to increase demand on executive attention. Multiple regression models were used to evaluate the relations between the neurocognitive measures and driving performance under the two conditions. FSIQ, cognitive inhibition, and alerting were associated with better driving performance at baseline. FSIQ and cognitive inhibition were also associated with better driving performance during the verbal challenge. Measures of cognitive flexibility, orienting, and conflict executive control were not associated with driving performance under either condition. FSIQ and, to some extent, measures of executive function are associated with driving performance in a driving simulator. Further research is needed to determine if executive function is associated with more advanced driving performance under conditions that demand greater cognitive load. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Interpretation of the results of the CORA-33 dry core BWR test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, L.J.; Hagen, S.
All BWR degraded core experiments performed prior to CORA-33 were conducted under ``wet`` core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ``dry`` core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ``dry`` core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions ofmore » a ``dry`` BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ``dry`` core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed.« less
Bradley, E L; Castle, L; Day, J S; Ebner, I; Ehlert, K; Helling, R; Koster, S; Leak, J; Pfaff, K
2010-12-01
A variety of melaware articles were tested for the migration of melamine into the food simulant 3% w/v acetic acid as a benchmark, and into other food simulants, beverages and foods for comparison. The results indicate that the acidity of the food simulant plays a role in promoting migration, but not by as much as might have been anticipated, since 3% acetic acid gave migration values about double those obtained using water under the same time and temperature test conditions. In contrast, migration into the fatty food simulant olive oil was not detectable and at least 20-fold lower than with the aqueous food simulants. This was expected given the solubility properties of melamine and the characteristics of the melaware plastic. Migration levels into hot acidic beverages (apple juice, tomato juice, red-fruit tea and black coffee) were rather similar to the acetic acid simulant when the same time and temperature test conditions are used, e.g. 2 h at 70°C. However, migration levels into foods that were placed hot into melaware articles and then allowed to cool on standing were much lower (6-14 times lower) than if pre-heated food was placed into the articles and then maintained (artificially) at that high temperature in the same way that a controlled time-temperature test using simulants would be conducted. This very strong influence of time and especially temperature was manifest in the effects seen of microwave heating of food or beverage in the melaware articles. Here, despite the short duration of hot contact, migration levels were similar to simulants used for longer periods, e.g. 70°C for 2 h. This is rationalized in terms of the peak temperature achieved on microwave heating, which may exceed 70°C, counterbalancing the shorter time period held hot. There was also evidence that when using melaware utensils in boiling liquids, as for stovetop use of spatulas, the boiling action of circulating food/simulant can have an additional effect in promoting surface erosion, increasing the plastic decomposition and so elevating the melamine release.
High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David
2007-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
Pre-compression volume on flow ripple reduction of a piston pump
NASA Astrophysics Data System (ADS)
Xu, Bing; Song, Yuechao; Yang, Huayong
2013-11-01
Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.
2013-03-01
such that the oxygen mole fraction of the test gas matches that of clean air. A supersonic nozzle then acceler- ates the test gas to the proper Mach...25 km. Its key limitation is that the gas chemistry is different from air, with lower oxygen and higher moisture and carbon-dioxide levels.5 Among the...Refs. 33,34 Briefly, it is a scramjet engine built to study supersonic combustion over a range of simulated flight J. Smialek—contributing editor
Mars aerobrake assembly simulation
NASA Technical Reports Server (NTRS)
Filatovs, G. J.; Lee, Gordon K. F.; Garvey, John
1992-01-01
On-orbit assembly operation simulations in neutral buoyancy conditions are presently undertaken by a partial/full-scale Mars mission aerobrake mockup, whose design, conducted in the framework of an engineering senior students' design project, involved several levels of constraints for critical physical and operational features. Allowances had to be made for the auxiliary constraints introduced by underwater testing, as well as the subsegmenting required for overland shipment to the neutral-buoyancy testing facility. This mockup aerobrake's fidelity is determined by the numerous, competing design objectives.
Enhanced Master Controller Unit Tester
NASA Technical Reports Server (NTRS)
Benson, Patricia; Johnson, Yvette; Johnson, Brian; Williams, Philip; Burton, Geoffrey; McCoy, Anthony
2007-01-01
The Enhanced Master Controller Unit Tester (EMUT) software is a tool for development and testing of software for a master controller (MC) flight computer. The primary function of the EMUT software is to simulate interfaces between the MC computer and external analog and digital circuitry (including other computers) in a rack of equipment to be used in scientific experiments. The simulations span the range of nominal, off-nominal, and erroneous operational conditions, enabling the testing of MC software before all the equipment becomes available.
NASA Technical Reports Server (NTRS)
Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.
2012-01-01
Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.
Bradley, E L; Castle, L; Day, J S; Leak, J
2011-02-01
Resins based on melamine-formaldehyde and related analogues such as methylolated melamine are used to cross-link coatings used inside food cans and on the metal closures of glass jars. Thirteen commercially coated cans and closures representing 80% of the European market were tested using simulants under realistic industrial heat-processing conditions for canned and jarred foods. The food simulants and the retort conditions used were 3% acetic acid for 1 h at 100 °C and 10% ethanol for 1 h at 130 °C. The highest migration level seen for melamine into simulant was 332 µg kg⁻¹. There was no detectable migration of the melamine analogues cyanuric acid (<1 µg kg⁻¹) or ammelide (<5 µg kg⁻¹) from any sample. Twelve of the thirteen samples released no detectable ammeline (<5 µg kg⁻¹) but the coating giving the highest release of melamine did also release ammeline at 8 µg kg⁻¹ with the higher of the two process temperatures used. Migration experiments into food simulant and foods themselves were then conducted using two experimental coatings made using amino-based cross-linking resins. Coated metal panels were exposed to the food simulant 10% (v/v) aqueous ethanol and to three foodstuffs under a range of time and temperature conditions both in the laboratory and in a commercial food canning facility using proprietary time and temperature conditions. The highest migration into a food was 152 µg kg⁻¹ from the first coating processed for a long time at a moderate sterilisation temperature. The highest migration into simulant was also from this coating at 220 µg kg⁻¹ when processed at 134 °C for 60 min, dropping to 190 µg k⁻¹ when processed at 123 °C for 70 min. Migration from the second coating was quite uniformly two to three times lower under all tests. These migration results were significantly higher than the levels of melamine extractable using 95% ethanol at room temperature. The experiments show that commercial canning and retorting can be mimicked in an acceptable way using laboratory tests with an autoclave or a simple pressure cooker. The results overall show there is hydrolytic degradation of the melamine cross-linked resins to release additional melamine. There is a strong influence of the temperature of heat treatment applied with foods or simulants but only a minor influence of time of heating and only a minor influence, if any, of food/simulant acidity.
Digital data processing system dynamic loading analysis
NASA Technical Reports Server (NTRS)
Lagas, J. J.; Peterka, J. J.; Tucker, A. E.
1976-01-01
Simulation and analysis of the Space Shuttle Orbiter Digital Data Processing System (DDPS) are reported. The mated flight and postseparation flight phases of the space shuttle's approach and landing test configuration were modeled utilizing the Information Management System Interpretative Model (IMSIM) in a computerized simulation modeling of the ALT hardware, software, and workload. System requirements simulated for the ALT configuration were defined. Sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and the sensitivity analyses, a test design is described for adapting, parameterizing, and executing the IMSIM. Varying load and stress conditions for the model execution are given. The analyses of the computer simulation runs were documented as results, conclusions, and recommendations for DDPS improvements.
Space shuttle orbiter digital data processing system timing sensitivity analysis OFT ascent phase
NASA Technical Reports Server (NTRS)
Lagas, J. J.; Peterka, J. J.; Becker, D. A.
1977-01-01
Dynamic loads were investigated to provide simulation and analysis of the space shuttle orbiter digital data processing system (DDPS). Segments of the ascent test (OFT) configuration were modeled utilizing the information management system interpretive model (IMSIM) in a computerized simulation modeling of the OFT hardware and software workload. System requirements for simulation of the OFT configuration were defined, and sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and these sensitivity analyses, a test design was developed for adapting, parameterizing, and executing IMSIM, using varying load and stress conditions for model execution. Analyses of the computer simulation runs are documented, including results, conclusions, and recommendations for DDPS improvements.
Blanco-Martín, Laura; Wolters, Ralf; Rutqvist, Jonny; ...
2016-04-28
The Thermal Simulation for Drift Emplacement heater test is modeled with two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Martín, Laura; Wolters, Ralf; Rutqvist, Jonny
The Thermal Simulation for Drift Emplacement heater test is modeled with two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems.
EVA/ORU model architecture using RAMCOST
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.
1990-01-01
A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.
Seo, Dong Gi; Choi, Jeongwook
2018-05-17
Computerized adaptive testing (CAT) has been adopted in license examinations due to a test efficiency and accuracy. Many research about CAT have been published to prove the efficiency and accuracy of measurement. This simulation study investigated scoring method and item selection methods to implement CAT in Korean medical license examination (KMLE). This study used post-hoc (real data) simulation design. The item bank used in this study was designed with all items in a 2017 KMLE. All CAT algorithms for this study were implemented by a 'catR' package in R program. In terms of accuracy, Rasch and 2parametric logistic (PL) model performed better than 3PL model. Modal a Posteriori (MAP) or Expected a Posterior (EAP) provided more accurate estimates than MLE and WLE. Furthermore Maximum posterior weighted information (MPWI) or Minimum expected posterior variance (MEPV) performed better than other item selection methods. In terms of efficiency, Rasch model was recommended to reduce test length. Simulation study should be performed under varied test conditions before adopting a live CAT. Based on a simulation study, specific scoring and item selection methods should be predetermined before implementing a live CAT.
SRB thermal protection systems materials test results in an arc-heated nitrogen environment
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.
1979-01-01
The external surface of the Solid Rocket Booster (SRB) will experience imposed thermal and shear environments due to aerodynamic heating and radiation heating during launch, staging and reentry. This report is concerned with the performance of the various TPS materials during the staging maneuver. During staging, the wash from the Space Shuttle Main Engine (SSME) exhust plumes impose severe, short duration, thermal environments on the SRB. Five different SRB TPS materials were tested in the 1 MW Arc Plasma Generator (APG) facility. The maximum simulated heating rate obtained in the APG facility was 248 Btu/sq ft./sec, however, the test duration was such that the total heat was more than simulated. Similarly, some local high shear stress levels of 0.04 psia were not simulated. Most of the SSME plume impingement area on the SRB experiences shear stress levels of 0.02 psia and lower. The shear stress levels on the test specimens were between 0.021 and 0.008 psia. The SSME plume stagnation conditions were also simulated.
TEMPEST code modifications and testing for erosion-resisting sludge simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Trent, D.S.
The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results formore » solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.« less
Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.; Killpatrick, D. H.
1976-01-01
The results obtained in a program to evaluate dispersion-strengthened nickel-base alloys for use in a metallic radiative thermal protection system operating at surface temperatures to 1477 K for the space shuttle were presented. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr characteristics of material used in the current study are compared with previous results; cyclic load, temperature, and pressure effects on sheet material residual strength are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded joints are evaluated; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full scale subsize heat shield panels in two configurations are described. Initial tests of full scale subsize panels included simulated meteoroid impact tests, simulated entry flight aerodynamic heating, programmed differential pressure loads and temperatures simulating mission conditions, and acoustic tests simulating sound levels experienced during boost flight.
Simulation of Earth textures by conditional image quilting
NASA Astrophysics Data System (ADS)
Mahmud, K.; Mariethoz, G.; Caers, J.; Tahmasebi, P.; Baker, A.
2014-04-01
Training image-based approaches for stochastic simulations have recently gained attention in surface and subsurface hydrology. This family of methods allows the creation of multiple realizations of a study domain, with a spatial continuity based on a training image (TI) that contains the variability, connectivity, and structural properties deemed realistic. A major drawback of these methods is their computational and/or memory cost, making certain applications challenging. It was found that similar methods, also based on training images or exemplars, have been proposed in computer graphics. One such method, image quilting (IQ), is introduced in this paper and adapted for hydrogeological applications. The main difficulty is that Image Quilting was originally not designed to produce conditional simulations and was restricted to 2-D images. In this paper, the original method developed in computer graphics has been modified to accommodate conditioning data and 3-D problems. This new conditional image quilting method (CIQ) is patch based, does not require constructing a pattern databases, and can be used with both categorical and continuous training images. The main concept is to optimally cut the patches such that they overlap with minimum discontinuity. The optimal cut is determined using a dynamic programming algorithm. Conditioning is accomplished by prior selection of patches that are compatible with the conditioning data. The performance of CIQ is tested for a variety of hydrogeological test cases. The results, when compared with previous multiple-point statistics (MPS) methods, indicate an improvement in CPU time by a factor of at least 50.
Comparative analysis of PA-31-350 Chieftain (N44LV) accident and NASA crash test data
NASA Technical Reports Server (NTRS)
Hayduk, R. J.
1979-01-01
A full scale, controlled crash test to simulate the crash of a Piper PA-31-350 Chieftain airplane is described. Comparisons were performed between the simulated crash and the actual crash in order to assess seat and floor behavior, and to estimate the acceleration levels experienced in the craft at the time of impact. Photographs, acceleration histories, and the tested airplane crash data is used to augment the accident information to better define the crash conditions. Measured impact parameters are presented along with flight path velocity and angle in relation to the impact surface.
Indoor test for thermal performance evaluation of the Solaron (air) solar collector
NASA Technical Reports Server (NTRS)
1978-01-01
The test procedure used and the results obtained from an evaluation test program, conducted to obtain thermal performance data on a Solaron double glazed air solar collector under simulated conditions in a solar simulator are described. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed. The Solaron collector absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
NASA Astrophysics Data System (ADS)
Izzuddin, Nur; Sunarsih, Priyanto, Agoes
2015-05-01
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.
Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D
2008-02-01
Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.
Hand, Laurence H; Nichols, Carol; Kuet, Sui F; Oliver, Robin G; Harbourt, Christopher M; El-Naggar, Essam M
2015-10-01
Soil surface photolysis can be a significant dissipation pathway for agrochemicals under field conditions, although it is assumed that such degradation ceases once the agrochemical is transported away from the surface following rainfall or irrigation and subsequent drainage of soil porewater. However, as both downward and upward water movements occur under field conditions, relatively mobile compounds may return to the surface, prolonging exposure to ultraviolet light and increasing the potential for degradation by photolysis. To test this hypothesis, a novel experimental system was used to quantify the contribution of photolysis to the overall dissipation of a new herbicide, bicyclopyrone, under conditions that mimicked field studies more closely than the standard laboratory test guidance. Soil cores were taken from 3 US field study sites, and the surfaces were treated with [(14) C]-bicyclopyrone. The radioactivity was redistributed throughout the cores using a simulated rainfall event, following which the cores were incubated under a xenon-arc lamp with continuous provision of moisture from below and a wind simulator to induce evaporation. After only 2 d, most of the test compound had returned to the soil surface. Significantly more degradation was observed in the irradiated samples than in a parallel dark control sample. Degradation rates were very similar to those observed in both the thin layer photolysis study and the field dissipation studies and significantly faster than in the soil metabolism studies conducted in the dark. Thus, for highly soluble, mobile agrochemicals, such as bicyclopyrone, photolysis is not terminated permanently by rainfall or irrigation but can resume following transport to the surface in evaporating water. © 2015 SETAC.
NASA Technical Reports Server (NTRS)
Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim
1987-01-01
An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.
Finite Element Analysis and Test Correlation of a 10-Meter Inflation-Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Sleight, David W.; Michii, Yuki; Lichodziejewski, David; Derbes, Billy; Mann. Troy O.; Slade, Kara N.; Wang, John T.
2005-01-01
Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA's future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive phased test plan is currently being implemented to advance the technology readiness level of the solar sail design. These tests consist of solar sail component, subsystem, and sub-scale system ground tests that simulate the vacuum and thermal conditions of the space environment. Recently, two solar sail test articles, a 7.4-m beam assembly subsystem test article and a 10-m four-quadrant solar sail system test article, were tested in vacuum conditions with a gravity-offload system to mitigate the effects of gravity. This paper presents the structural analyses simulating the ground tests and the correlation of the analyses with the test results. For programmatic risk reduction, a two-prong analysis approach was undertaken in which two separate teams independently developed computational models of the solar sail test articles using the finite element analysis software packages: NEiNastran and ABAQUS. This paper compares the pre-test and post-test analysis predictions from both software packages with the test data including load-deflection curves from static load tests, and vibration frequencies and mode shapes from vibration tests. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were uncertainties in the material properties, test conditions, and modeling assumptions used in the analyses.
Test Facility Simulation Results for Aerospace Loss-of-Lubrication of Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Gargano, Lucas J.
2014-01-01
Prior to receiving airworthiness certification, extensive testing is required during the development of rotary wing aircraft drive systems. Many of these tests are conducted to demonstrate the drive system's ability to operate at extreme conditions, beyond that called for in the normal to maximum power operating range. One of the most extreme tests is referred to as the loss-of-lubrication or run dry test. During this test, the drive system is expected to last at least 30 min without failure while the primary lubrication system is disabled for predetermined, scripted flight conditions. Failure of this test can lead to a partial redesign of the drive system or the addition of an emergency lubrication system. Either of these solutions can greatly increase the aircraft drive system cost and weight and extend the schedule for obtaining airworthiness certification. Recent work at NASA Glenn Research Center focused on performing tests, in a relevant aerospace environment, to simulate the behavior of spur gears under loss-of-lubrication conditions. Tests were conducted using a test facility that was used in the past for spur gear contact fatigue testing. A loss-oflubrication test is initiated by shutting off the single into mesh lubricating jet. The test proceeds until the gears fail and can no longer deliver the applied torque. The observed failures are typically plastically deformed gear teeth, due to the high tooth temperatures, that are no longer in mesh. The effect of several different variables to gear tooth condition during loss-of-lubrication have been tested such as gear pitch, materials, shrouding, lubrication condition, and emergency supplied mist lubrication in earlier testing at NASA. Recent testing has focused on newer aerospace gear steels and imbedding thermocouples in the shrouding to measure the air-oil temperatures flung off the gear teeth. Along with the instrumented shrouding, an instrumented spur gear was also tested. The instrumented spur gear had five thermocouples installed at different locations on the gear tooth and web. The data from these two types of measurements provided important information as to the thermal environment during the loss-of-lubrication event. This data is necessary to validate on-going modeling efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valkenburg, Wessel; Hu, Bin, E-mail: valkenburg@lorentz.leidenuniv.nl, E-mail: hu@lorentz.leidenuniv.nl
2015-09-01
We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravitymore » outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.« less
Heteroskedasticity as a leading indicator of desertification in spatially explicit data.
Seekell, David A; Dakos, Vasilis
2015-06-01
Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale-free patterning. These models simulate shifts from extensive vegetative cover to bare, desert-like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.
A microstructurally based model of solder joints under conditions of thermomechanical fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frear, D.R.; Burchett, S.N.; Rashid, M.M.
The thermomechanical fatigue failure of solder joints in increasingly becoming an important reliability issue. In this paper we present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. Themore » single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.« less
Transient, hypervelocity flow in an axisymmetric nozzle
NASA Technical Reports Server (NTRS)
Jacobs, P. A.
1991-01-01
The performance of an axisymmetric nozzle was examined which was designed to produce uniform, parallel flow with a nominal Mach number of 8. A free-piston driven shock tube was used to supply the nozzle with high-temperature, high-pressure test gas. Performance was assessed by measuring Pitot pressures across the exit plane of the nozzle and, over the range of operating conditions examined, the nozzle produced satisfactory test flows. However, there were flow disturbances that persisted for significant times after flow initiation. The detailed starting process of the nozzle was also investigated by performing numerical simulations at several nominal test conditions. The classical description of the starting process, based on a quasi-one-dimensional model, provided a reasonable approximation and was used to demonstrate that the starting process could consume a significant fraction of the otherwise usable test gas. This was especially important at high operating enthalpies where nozzle supply conditions were maintained for shorter times. Multidimensional simulations illustrated a mechanism by which the starting process in the actual nozzle could take longer than that predicted by the quasi-one-dimensional analysis. However, the cause of the persistent disturbances observed in the experimental calibration was not identified.
Scalable File Systems for High Performance Computing Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, S A
2007-10-03
Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-statemore » testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.« less