Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes
NASA Astrophysics Data System (ADS)
Sadeghi, Gholamreza; Schijven, Jack F.; Behrends, Thilo; Hassanizadeh, S. Majid; van Genuchten, Martinus Th.
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments.
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes.
Sadeghi, Gholamreza; Schijven, Jack F; Behrends, Thilo; Hassanizadeh, S Majid; van Genuchten, Martinus Th
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Lavergne, Céline; Jeison, David; Ortega, Valentina; Chamy, Rolando; Donoso-Bravo, Andrés
2018-09-15
An important variability in the experimental results in anaerobic digestion lab test has been reported. This study presents a meta-analysis coupled with multivariate analysis aiming to assess the impact of this experimental variability in batch and continuous operation at mesophilic and thermophilic anaerobic digestion of waste activated sludge. An analysis of variance showed that there was no significant difference between mesophilic and thermophilic conditions in both continuous and batch conditions. Concerning the operation mode, the values of methane yield were significantly higher in batch experiment than in continuous reactors. According to the PCA, for both cases, the methane yield is positive correlated to the temperature rises. Interestingly, in the batch experiments, the higher the volatile solids in the substrate was, the lowest was the methane production, which is correlated to experimental flaws when setting up those tests. In continuous mode, unlike the batch test, the methane yield is strongly (positively) correlated to the organic content of the substrate. Experimental standardization, above all, in batch conditions are urgently necessary or move to continuous experiments for reporting results. The modeling can also be a source of disturbance in batch test. Copyright © 2018 Elsevier Ltd. All rights reserved.
Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol
2015-01-01
The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.
Estrella, M R; Brusseau, M L; Maier, R S; Pepper, I L; Wierenga, P J; Miller, R M
1993-01-01
The fate of an organic contaminant in soil depends on many factors, including sorption, biodegradation, and transport. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model compound to illustrate the impact of these interacting factors on the fate of an organic contaminant. Batch and column experiments performed with a sandy loam soil mixture under saturated and unsaturated conditions were used to determine the effects of sorption and biodegradation on the fate and transport of 2,4-D. Sorption of 2,4-D was found to have a slight but significant effect on transport of 2,4-D under saturated conditions (retardation factor, 1.8) and unsaturated conditions (retardation factor, 3.4). Biodegradation of 2,4-D was extensive under both batch and column conditions and was found to have a significant impact on 2,4-D transport in column experiments. In batch experiments, complete mineralization of 2,4-D (100 mg kg-1) occurred over a 4-day period following a 3-day lag phase under both saturated and unsaturated conditions. The biodegradation rate parameters calculated for batch experiments were found to be significantly different from those estimated for column experiments. PMID:8285717
Adaptation to high throughput batch chromatography enhances multivariate screening.
Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried
2015-09-01
High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions
The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under drinking water relevant conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Three batch reactors were used in each ...
Comparison of neptunium sorption results using batch and column techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triay, I.R.; Furlano, A.C.; Weaver, S.C.
1996-08-01
We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments undermore » static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.« less
Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre
2015-04-10
Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
Kwon, Kyu-Sang; Kim, Song-Bae; Choi, Nag-Choul; Kim, Dong-Ju; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo
2013-01-01
In this study, the deposition and transport of Pseudomonas aeruginosa on sandy porous materials have been investigated under static and dynamic flow conditions. For the static experiments, both equilibrium and kinetic batch tests were performed at a 1:3 and 3:1 soil:solution ratio. The batch data were analysed to quantify the deposition parameters under static conditions. Column tests were performed for dynamic flow experiments with KCl solution and bacteria suspended in (1) deionized water, (2) mineral salt medium (MSM) and (3) surfactant + MSM. The equilibrium distribution coefficient (K(d)) was larger at a 1:3 (2.43 mL g(-1)) than that at a 3:1 (0.28 mL g(-1)) soil:solution ratio. Kinetic batch experiments showed that the reversible deposition rate coefficient (k(att)) and the release rate coefficient (k(det)) at a soil:solution ratio of 3:1 were larger than those at a 1:3 ratio. Column experiments showed that an increase in ionic strength resulted in a decrease in peak concentration of bacteria, mass recovery and tailing of the bacterial breakthrough curve (BTC) and that the presence of surfactant enhanced the movement of bacteria through quartz sand, giving increased mass recovery and tailing. Deposition parameters under dynamic condition were determined by fitting BTCs to four different transport models, (1) kinetic reversible, (2) two-site, (3) kinetic irreversible and (4) kinetic reversible and irreversible models. Among these models, Model 4 was more suitable than the others since it includes the irreversible sorption term directly related to the mass loss of bacteria observed in the column experiment. Applicability of the parameters obtained from the batch experiments to simulate the column breakthrough data is evaluated.
NASA Astrophysics Data System (ADS)
Laura, P.; Probert, I.; Langer, G.; Aloisi, G.
2016-02-01
Coccolithophores are unicellular, calcifying marine algae that play a fundamental role in the oceanic carbon cycle. Recent research has focused on investigating the effect of ocean acidification on cellular calcification. However, the success of this important phytoplankton group in the future ocean will depend on how cellular growth reacts to changes in a combination of environmental variables. We carried out batch culture experiments in conditions of light- and nutrient- (nitrate and phosphate) limitation that reproduce the in situ conditions of a deep ecological niche of coccolithophores in the South Pacific Gyre (BIOSOPE cruise, 2004). We modelled nutrient acquisition and cellular growth in our batch experiments using a Droop internal-stores model. We show that nutrient acquisition and growth are decoupled in coccolithophores; this ability may be key in making life possible in oligotrophic conditions such as the deep BIOSOPE biological niche. Combining the results of our culture experiments with those of Langer et al. (2013), we used the model to obtain estimates of fundamental physiological parameters such as the Monod constant for nutrient uptake, the maximum growth rate and the minimum cellular nutrient quota. These parameters are characteristic of different phytoplankton groups and are needed to simulate phytoplankton growth in biogeochemical models. Our results suggest that growth of coccolithophores in the BIOSOPE deep ecological niche is light-limited rather than nutrient-limited. Our work also shows that simple batch experiments and straightforward numerical modelling are capable of providing estimates of physiological parameters usually obtained in more costly and complicated chemostat experiments.
Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter
2017-11-07
In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.
"Batch" kinetics in flow: online IR analysis and continuous control.
Moore, Jason S; Jensen, Klavs F
2014-01-07
Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E
2016-01-01
Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out. Copyright © 2015 Elsevier Ltd. All rights reserved.
Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A
2013-09-01
Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dozier, R.; Montgomery, D.; Wylie, E. M.; Dogan, M.; Moysey, S. M.; Powell, B. A.; Martinez, N. E.
2015-12-01
Experiments were performed under various reducing conditions to evaluate the transport behavior of technetium-99 (99Tc) in the presence of sandy clay loam soil from the Savannah River Site (SRS) and goethite, magnetite, and iron sulfide, which were selected for their increasing reducing potential. The experiments were conducted to investigate how redox reaction equilibria and rates affect the overall mobility of 99Tc as it transitions between the mobile Tc(VII) and immobile Tc(IV). Under oxygen-rich conditions, batch sorption isotherms measured for TcO4- across the concentration range 0.5 to 50 μg/L were linear with distribution coefficients (Kd) of 0.78 mL/g or lower, with decreasing sorption for goethite, magnetite, and iron sulfide, respectively. Addition of Na2S resulted in a marked increase in apparent 99Tc sorption to the solid phase, with Kd of 43 mL/g, 35 mL/g, and 29 mL/g, following the same mineral trend as previously. The increased Kd values are possibly due to reduction of Tc(VII) to Tc(IV), resulting in the formation of TcO2(s). SRS soil batch sorption isotherms measured for TcO4- across the same concentration range were also linear, with Kd of 0.7 mL/g for unadjusted pH, 5.1 mL/g for pH of around 6, and 6.7 mL/g for pH of around 4. Kinetic batch sorption tests showed less than 10% 99Tc sorption in an oxidizing environment and greater than 95% sorption in a reducing environment, with both reactions occurring on the order of minutes. In contrast, desorption experiments initiated by transferring the samples from a reducing environment (0.1% H2(g)/99.9% N2(g)) to atmospheric conditions resulted in a slow desorption step on the order of days. Column experiments conducted with the SRS sands indicate a retardation factor of 1.17 for 99Tc under oxygen rich conditions. Additional column experiments are being conducted to evaluate 99Tc transport dependencies on transitions between oxygen rich and poor conditions.
Phosphate-Induced Immobilization of Uranium in Hanford Sediments.
Pan, Zezhen; Giammar, Daniel E; Mehta, Vrajesh; Troyer, Lyndsay D; Catalano, Jeffrey G; Wang, Zheming
2016-12-20
Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred only at high initial U(VI) (>25 μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.
Phosphate-Induced Immobilization of Uranium in Hanford Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Zezhen; Giammar, Daniel E.; Mehta, Vrajesh
2016-12-20
Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred onlymore » at high initial U(VI) (>25 μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.« less
Phosphate-Induced Immobilization of Uranium in Hanford Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Zezhen; Giammar, Daniel E.; Mehta, Vrajesh
2016-12-20
Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred onlymore » at high initial U(VI) (>25μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.« less
Cometabolism of Monochloramine by Nitrosomonas europaea under Distribution System Conditions
Batch kinetic experiments were carried out with a pure culture of N. europaea to characterize the kinetics of NH2Cl cometabolism. Nitrite, nitrate, NH2Cl, ammonia and pH were measured. The experiments were performed at a variety of conditions relevant to distribution system nitri...
The Design and Implementation of Adsorptive Removal of Cu(II) from Leachate Using ANFIS
Turan, Nurdan Gamze; Ozgonenel, Okan
2013-01-01
Clinoptilolite was investigated for the removal of Cu(II) ions from industrial leachate. Adaptive neural fuzzy interface system (ANFIS) was used for modeling the batch experimental system and predicting the optimal input values, that is, initial pH, adsorbent dosage, and contact time. Experiments were studied under laboratory batch and fixed bed conditions. The outcomes of suggested ANFIS modeling were then compared to a full factorial experimental design (23), which was utilized to assess the effect of three factors on the adsorption of Cu(II) ions in aqueous leachate of industrial waste. It was observed that the optimized parameters are almost close to each other. The highest removal efficiency was found as about 93.65% at pH 6, adsorbent dosage 11.4 g/L, and contact time 33 min for batch conditions of 23 experimental design and about 90.43% at pH 5, adsorbent dosage 15 g/L and contact time 35 min for batch conditions of ANFIS. The results show that clinoptilolite is an efficient sorbent and ANFIS, which is easy to implement and is able to model the batch experimental system. PMID:23844405
Park, Ji-Hyun; Kim, So-Jeong; Ahn, Joo Sung; Lim, Dong-Hee; Han, Young-Soo
2018-04-01
The mobility of heavy metalloids including As, Sb, Mo, W, and Cr in soil was investigated under both reducing and oxidizing conditions. The effects of soil mineralogy and the presence of competitive anions were studied as important factors affecting the mobility of these contaminants. Batch experiments conducted with the addition of oxidized and fresh FeS exhibited enhanced sorption rates for As and W under oxidizing conditions, and for Mo under reducing conditions. The inhibitory effect of phosphate on the sorption rates was most apparent for As and Mo under both oxidizing and reducing conditions, while only a small phosphate effect was observed for Sb and W. For Sb and W mobility, pH was determined to be the most important controlling factor. The results of long-term batch experiments revealed that differences in the mobility of metalloids, particularly As, were also influenced by microbial activity in the oxidizing and reducing conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H.
2015-12-01
Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp = 200…600 μm, porosity ε = 0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol) = 0 after t = 6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest.
Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H
2015-12-01
Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights reserved.
Ternes, T A; Kreckel, P; Mueller, J
1999-01-12
Aerobic batch experiments containing a diluted slurry of activated sludge from a real sewage treatment plant (STP) near Frankfurt/Main were undertaken, in order to investigate the persistence of natural estrogens and contraceptives under aerobic conditions. The batch experiments showed that while in contact with activated sludge the natural estrogen 17 beta-estradiol was oxidized to estrone, which was further eliminated in the batch experiments in an approximate linear time dependence. Further degradation products of estrone were not observed. 16 alpha-hydroxyestrone was rapidly eliminated, again without detection of further degradation products. The contraceptive 17 alpha-ethinylestradiol was principally persistent under the selected aerobic conditions, whereas mestranol was rapidly eliminated and small portions of 17 alpha-ethinylestradiol were formed by demethylation. Additionally, two glucuronides of 17 beta-estradiol (17 beta-estradiol-17-glucuronide and 17 beta-estradiol-3-glucuronide) were cleaved in contact with the diluted activated sludge solution and thus 17 beta-estradiol was released. The glucuronidase activity of the activated sludge was further confirmed by the cleavage of 4-methylumbelliferyl-beta-D-glucuronide (MUF-beta-glucuronide) in a solution of a activated sludge slurry and Milli-Q-water (1:100, v/v). The turnover rate obtained was approximately steady state, with a turnover rate of 0.1 mumol/l for the released MUF. Hence, it is very likely that the glucuronic acid moiety of 17 beta-estradiol glucuronides and other estrogen glucuronides become cleaved in a real municipal STP, so that the concentrations of the free estrogens increase.
NASA Technical Reports Server (NTRS)
Tadros, M. G.
1990-01-01
Spirulina sp. is a bioregenerative photosynthetic and edible alga for space craft crews in a Closed Ecological Life Support System (CLESS). It was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for one strain of Spirulina: S. maxima. Fast growth rate and high yield were obtained. The partitioning of the assimulatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental conditions. Experiments with Spirulina demonstrated that under stress conditions carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. In other words, the nutritional quality of the alga could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.
Process performance of high-solids batch anaerobic digestion of sewage sludge.
Liao, Xiaocong; Li, Huan; Cheng, Yingchao; Chen, Nan; Li, Chenchen; Yang, Yuning
2014-01-01
The characteristics of high-solids anaerobic digestion (AD) of sewage sludge were investigated by comparison with conventional low-solids processes. A series of batch experiments were conducted under mesophilic condition and the initial solid contents were controlled at four levels of 1.79%, 4.47%, 10.28% and 15.67%. During these experiments, biogas production, organic degradation and intermediate products were monitored. The results verified that high-solids batch AD of sewage sludge was feasible. Compared with the low-solids AD with solid contents of 1.79% or 4.47%, the high-solids processes decreased the specific biogas yield per gram of sludge volatile solids slightly, achieved the same organic degradation rate of about 40% within extended degradation time, but increased the volumetric biogas production rate and the treatment capability of digesters significantly. The blocked mass and energy transfer, the low substrate to inoculum rate and the excessive cumulative free ammonia were the main factors impacting the performance of high-solids batch AD.
Puig-Grajales, L; Rodríguez-Nava, O; Razo-Flores, E
2003-01-01
Denitrification is a feasible alternative for the treatment of phenolic bearing-wastewaters. The aim of this study was to evaluate the biodegradability of phenolic compounds, as the only carbon and energy source in batch and continuous experiments, using nitrate as a final electron acceptor. Experiments in a continuous upward anaerobic sludge bed reactor demonstrated the possibility of biodegrading a mixture of phenol and 3,4-dimethylphenol at organic loads of 251.6 and 39.5 mg/L-d, respectively, at a COD/NO3(-)-N ratio of 2.57. A nitrogen production efficiency of 86% was obtained according to the nitrate consumption. GC-MS analyses demonstrated that m-cresol was an intermediate of 3,4-dimethylphenol degradation in batch conditions, and had an inhibitory effect on phenol degradation.
A high-throughput media design approach for high performance mammalian fed-batch cultures
Rouiller, Yolande; Périlleux, Arnaud; Collet, Natacha; Jordan, Martin; Stettler, Matthieu; Broly, Hervé
2013-01-01
An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame. PMID:23563583
Relative Importance of Nitrite Oxidation by Hypochlorous Acid under Chloramination Conditions
The importance of nitrite’s oxidation by tree chlorine under chloramination conditions was evaluated using batch kinetic experiments and a chloramine model implemented into the computer program AWUASIM. The experimental data was best represented with the inclusion of a reaction b...
Zelić, B; Bolf, N; Vasić-Racki, D
2006-06-01
Three different models: the unstructured mechanistic black-box model, the input-output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249-258 (2004); Zelić et al. Eng Life Sci 3:299-305 (2003); Zelić et al Biotechnol Bioeng 85:638-646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.
Unraveling the Fate and Transport of SrEDTA-2 and Sr+2 in Hanford Sediments
NASA Astrophysics Data System (ADS)
Pace, M. N.; Mayes, M. A.; Jardine, P. M.; Mehlhorn, T. L.; Liu, Q. G.; Yin, X. L.
2004-12-01
Accelerated migration of strontium-90 has been observed in the vadose zone beneath the Hanford tank farm. The goal of this paper is to provide an improved understanding of the hydrogeochemical processes that contribute to strontium transport in the far-field Hanford vadose zone. Laboratory scale batch, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core were conducted to quantify geochemical and hydrological processes controlling Sr+2 and SrEDTA-2 sorption to Hanford flood deposits. After experimentation, the undisturbed core was disassembled and samples were collected from different bedding units as a function of depth. Sequential extractions were then performed on the samples. It has been suggested that organic chelates such as EDTA may be responsible for the accelerated transport of strontium due to the formation of stable anionic complexes. Duplicate batch and column experiments performed with Sr+2 and SrEDTA-2 suggested that the SrEDTA-2 complex was not stable in the presence of soil and rapid dissociation allowed strontium to be transported as a divalent cation. Batch experiments indicated a decrease in sorption with increasing rock:water ratios, whereas saturated packed column experiments indicated equal retardation in columns of different lengths. This difference between the batch and column experiments is primarily due to the difference between equilibrium conditions where dissolution of cations may compete for sorption sites versus flowing conditions where any dissolved cations are flushed through the system minimizing competition for sorption sites. Unsaturated transport in the undisturbed core resulted in significant Sr+2 retardation despite the presence of physical nonequilibrium. Core disassembly and sequential extractions revealed the mass wetness distribution and reactive mineral phases associated with strontium in the core. Overall, results indicated that strontium will most likely be transported through the Hanford far-field vadose zone as a divalent cation.
NASA Astrophysics Data System (ADS)
Skold, M. E.; Thyne, G. D.; McCray, J. E.; Drexler, J. W.
2005-12-01
One of the major challenges in remediating soil and ground water is the presence of mixed organic and inorganic contaminants. Due to their very different behavior, research has to a large extent focused on remediation of either organic or inorganic contaminants rather than mixed waste. Cyclodextrins (CDs) are a group of non-toxic sugar based molecules that do not sorb to soil particles and do not experience pore size exclusion. Thus, they have good hydraulic properties. CDs enhance the solubility of organic compounds by forming inclusion complexes between organic contaminants and the non-polar cavity at the center of the CD. By substituting functional groups to the cyclodextrin molecule it can form complexes with heavy metals. Previous studies have shown that carboxymethyl-beta-cyclodextrin (CMCD) can simultaneously complex organic and inorganic contaminants. The aim of this study is to compare how strongly CMCD complexes several common heavy metals, radioactive elements and a common divalent cation. Results from batch experiments show that CMCD has the ability to complex a wide array of heavy metals and radioactive elements. The solubility of metal oxalates and metal oxides clearly increased in the presence of CMCD. Logarithmic conditional formation constants ranged from 3.5 to 6 for heavy metals and from 3 to 6 for radioactive elements. Calcium, which may compete for binding sites, has a logarithmic conditional formation constant of 3.1. Batch experiments performed at 10 and 25 degrees C showed little temperature effect on conditional formation constants. Results from batch experiments were compared to results from column experiments where Pb was sorbed onto hydrous ferric oxide coated sand and subsequently removed by a CMCD solution. The results indicate that CMCD is a potential flushing agent for remediation of mixed waste sites.
Gong, Zongqiang; Wilke, B-M; Alef, Kassem; Li, Peijun
2005-05-01
The influence of soil moisture on efficiency of sunflower oil extraction of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil was investigated. The PAH-contaminated soil was collected from a manufactured gas plant (MGP) site in Berlin, Germany. Half of the soil was air-dried, and the other half was kept as field-moist soil. Batch experiments were performed using air-dried and field-moist soils, and sunflower oil was used as extractant at oil/soil ratios of 2:1 and 1:1 (v/m). The experimental data were fitted to a first-order empirical model to describe mass-transfer profiles of the PAHs. Column extraction experiments were also conducted. Field-moist and air-dried soils in the column were extracted using sunflower oil at an oil/soil ratio of 2:1. In the batch experiments, PAHs were more rapidly extracted from air-dried soil than from field-moist soil. Removal rate of total PAH increased 23% at oil/soil ratio of 1:1 and 15.5% at oil/soil ratio of 2:1 after the soil was air dried. The most favorable conditions for batch extraction were air-dried soil, with an oil/soil ratio of 2:1. In the column experiments, the removal rate of total PAH from air-dried soil was 30.7% higher than that from field-moist soil. For field-moist soil, extraction efficiencies of the batch extraction (67.2% and 81.5%) were better than that for column extraction (65.6%). However, this difference between the two methods became less significant for the air-dried soil, with a total removal rate of 96.3% for column extraction and 90.2% and 97% for batch extractions. A mass-balance test was carried out for analytical quality assurance. The results of both batch and column experiments indicated that drying the soil increased efficiency of extraction of PAHs from the MGP soil.
A Semi-Batch Reactor Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Derevjanik, Mario; Badri, Solmaz; Barat, Robert
2011-01-01
This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…
Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption
Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A.; Karaman, Rafik
2013-01-01
Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques. PMID:24222757
Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure
USDA-ARS?s Scientific Manuscript database
Forage radish cover crops were investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Lab-scale batch digesters (300 mL) were operated under mesophilic conditions during two experiments. In the first experiment, the optimal co-digestion ratio for ...
Friedly, J.C.; Davis, J.A.; Kent, D.B.
1995-01-01
A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be located in the reducing stratum. Within this context and as long as there is adequate reductive capacity present, the transport simulation results are insensitive to the parameters important for the batch simulations. The results illustrate how a combination of field measurements and batch laboratory studies can be used to improve predictive modeling of contaminant transport.
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V
2017-07-01
A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is reduced by over 74%, meaning that it is possible to target the final maximum fill reproducibly. The product concentration achieved at a given set of process conditions was unaffected by the control strategy. Biotechnol. Bioeng. 2017;114: 1459-1468. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.
Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid
2012-09-01
An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.
NASA Astrophysics Data System (ADS)
Ding, Dong; Benson, David A.; Fernández-Garcia, Daniel; Henri, Christopher V.; Hyndman, David W.; Phanikumar, Mantha S.; Bolster, Diogo
2017-12-01
Measured (or empirically fitted) reaction rates at groundwater remediation sites are typically much lower than those found in the same material at the batch or laboratory scale. The reduced rates are commonly attributed to poorer mixing at the larger scales. A variety of methods have been proposed to account for this scaling effect in reactive transport. In this study, we use the Lagrangian particle-tracking and reaction (PTR) method to simulate a field bioremediation experiment at the Schoolcraft, MI site. A denitrifying bacterium, Pseudomonas Stutzeri strain KC (KC), was injected to the aquifer, along with sufficient substrate, to degrade the contaminant, carbon tetrachloride (CT), under anaerobic conditions. The PTR method simulates chemical reactions through probabilistic rules of particle collisions, interactions, and transformations to address the scale effect (lower apparent reaction rates for each level of upscaling, from batch to column to field scale). In contrast to a prior Eulerian reaction model, the PTR method is able to match the field-scale experiment using the rate coefficients obtained from batch experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seol, Yongkoo; Javandel, Iraj
Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varyingmore » H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.« less
Seol, Yongkoo; Javandel, Iraj
2008-06-01
Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.
NASA Astrophysics Data System (ADS)
Wang, G.; Qafoku, N. P.; Truex, M. J.; Strickland, C. E.; Freedman, V. L.
2017-12-01
Isotopes of iodine were generated during plutonium production at the U.S. Department of Energy (DOE) Hanford Site. The long half-life 129I generated during reactor operations has been released into the subsurface, resulting in several large plumes at the Hanford subsurface. We studied the interaction of iodate (IO3-) and iodide (I-) with Fe oxides. A series of batch experiments were conducted to investigate adsorption and co-precipitation of iodine species in the presence of a variety of Fe oxides, such as ferrihydrite, goethite, hematite and magnetite. In the sorption experiments, each Fe oxide was added to an artificial groundwater containing either iodate or iodide, and reacted at room temperature. The sorption batch experiments for each mineral were conducted at varied initial iodate or iodide concentrations under 3 different pH conditions (pH 5, 7, and 9). In the co-precipitation batch experiments, the initial Fe-mineral-forming solutions were prepared in artificial groundwater containing iodate or iodide. Our results indicate that both sorption and co-precipitation are viable mechanisms of the attenuation of the liquid phase iodine. Species Fe oxides could serve as hosts of iodate and iodide that are present at the Hanford subsurface.
Schmukat, A; Duester, L; Goryunova, E; Ecker, D; Heininger, P; Ternes, T A
2016-03-05
Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.
Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron
2009-01-01
The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.
Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems
Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron
2009-01-01
The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems. PMID:19177226
Algicidal activity of an actinomycete strain, Streptomyces rameus, against Microcystis aeruginosa.
Phankhajon, Kanchariya; Somdee, Anchana; Somdee, Theerasak
2016-09-01
An actinomycete strain (KKU-A3) with algicidal activity against Microcystis aeruginosa was isolated from soil in Khon Kaen Province, Thailand. Based on its phenotypic characteristics and 16S rDNA sequence, strain KKU-A3 was identified as Streptomyces rameus. Strain KKU-A3 also exhibited algicidal activity against the cyanobacteria Synechococcus elongatus, Cylindrospermum sp. and Oscillatoria sp. A mathematical and statistical technique was used to optimize the culture conditions and maximize its anti-Microcystis activity. The single factor experiments indicated that glucose and casein were the most effective carbon and nitrogen sources, respectively, and produced the highest anti-Microcystis activity. Response surface methodology indicated that the optimum culture conditions were 19.81 g/L glucose and 2.0 g/L casein at an initial pH of 7.8 and an incubation temperature of 30 °C. The anti-Microcystis activity increased from 82% to 95% under optimum conditions. In an internal airlift loop bioreactor, the removal of M. aeruginosa KKU-13 by the bacterium was investigated in batch and continuous flow experiments. In the batch experiment, KKU-A3 displayed maximum anti-Microcystis activity of 95% at day 7, whereas in the continuous flow experiment, KKU-A3 displayed maximum anti-Microcystis activity of 95% at day 10.
ADSORPTION MECHANISMS AND TRANSPORT BEHAVIOR BETWEEN SELENATE AND SELENITE ON DIFFERENT SORBENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Michelle MV; Um, Wooyong
Adsorption of different oxidation species of selenium (Se), selenate (SeO42-) and selenite (SeO32-), with varying pHs (2 - 10) and ionic strengths (I = 0.01 M, 0.1 M and 1.0 M NaNO3) was measured on quartz, aluminum oxide, and synthetic iron oxide (ferrihydrite) using batch reactors to obtain a more detailed understanding of the adsorption mechanisms (e.g., inner- and outer-sphere complex). In addition to the batch experiments with single minerals contained in native Hanford Site sediment, additional batch adsorption studies were conducted with native Hanford Site sediment and groundwater as a function of 1) total Se concentration (from 0.01 tomore » 10 mg L-1) and 2) soil to solution ratios (1:20 and 1:2 grams per mL). Results from these batch studies were compared to a set of saturated column experiments that were conducted with natural Hanford sediment and groundwater spiked with either selenite or selenate to observe the transport behavior of these species. Both batch and column results indicated that selenite adsorption was consistently higher than that of selenate in all experimental conditions used. These different adsorption mechanisms between selenite and selenate result in the varying mobility of Se in the subsurface environment and explain the dependence on the oxidation species.« less
Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weimin; Criddle, Craig S.
2015-11-16
We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetingsmore » at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.« less
Parameter identification of thermophilic anaerobic degradation of valerate.
Flotats, Xavier; Ahring, Birgitte K; Angelidaki, Irini
2003-01-01
The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform simultaneous batch experiments with different initial conditions for estimating these parameters. Four simultaneous batch experiments were conducted at 55 degrees C, characterized by four different initial acetate concentrations. Product inhibition of valerate degradation by acetate was considered. Practical identification was done optimizing the sum of the multiple determination coefficients for all measured state variables and for all experiments simultaneously. The estimated values of kinetic parameters and stoichiometric coefficients were characterized by the parameter correlation matrix, the confidence interval, and the student's t-test at 5% significance level with positive results except for the saturation constant, for which more experiments for improving its identifiability should be conducted. In this article, we discuss kinetic parameter estimation methods.
Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.
2011-01-01
In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.
Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.
2011-01-01
In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.
Gilman, Alexey; Laurens, Lieve M.; Puri, Aaron W.; ...
2015-11-16
Methane is a feedstock of interest for the future, both from natural gas and from renewable biogas sources. Methanotrophic bacteria have the potential to enable commercial methane bioconversion to value-added products such as fuels and chemicals. A strain of interest for such applications is Methylomicrobium buryatense 5GB1, due to its robust growth characteristics. But, to take advantage of the potential of this methanotroph, it is important to generate comprehensive bioreactor-based datasets for different growth conditions to compare bioprocess parameters. The datasets of growth parameters, gas utilization rates, and products (total biomass, extracted fatty acids, glycogen, excreted acids) were obtained formore » cultures of M. buryatense 5GB1 grown in continuous culture under methane limitation and O2 limitation conditions. Additionally, experiments were performed involving unrestricted batch growth conditions with both methane and methanol as substrate. All four growth conditions show significant differences. The most notable changes are the high glycogen content and high formate excretion for cells grown on methanol (batch), and high O2:CH4 utilization ratio for cells grown under methane limitation. The results presented here represent the most comprehensive published bioreactor datasets for a gamma-proteobacterial methanotroph. This information shows that metabolism by M. buryatense 5GB1 differs significantly for each of the four conditions tested. O2 limitation resulted in the lowest relative O2 demand and fed-batch growth on methane the highest. Future studies are needed to understand the metabolic basis of these differences. However, these results suggest that both batch and continuous culture conditions have specific advantages, depending on the product of interest.« less
NASA Astrophysics Data System (ADS)
Tobella, J.
2010-05-01
Summary Spain, as most other Mediterranean countries, faces near future water shortages, generalized pollution and loss of water dependent ecosystems. Aquifer recharge represents a promising option to become a source for indirect potable reuse purposes but presence of pathogens as well as organic and inorganic pollutants should be avoided. To this end, understanding the processes of biogeochemical degradation occurring within the aquifer during infiltration is capital. A set of laboratory batch experiments has been assembled in order to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. Data collected during laboratory experiments and monitoring activities at the Sant Vicenç dels Horts test site will be used to build and calibrate a numerical model (i) of the physical-chemical-biochemical processes occurring in the batches and (ii) of multicomponent reactive transport in the unsaturated/saturated zone at the test site. Keywords Aquifer recharge, batch experiments, emerging micropollutants, infiltration, numerical model, reclaimed water, redox conditions, Soil Aquifer Treatment (SAT). 1. Introduction In Spain, the Llobregat River and aquifers, which supply water to Barcelona, have been overexploited for years and therefore, suffer from serious damages: the river dries up on summer, riparian vegetation has disappeared and seawater has intruded the aquifer. In a global context, solutions to water stress problems are urgently needed yet must be sustainable, economical and safe. Recent developments of analytical techniques detect the presence of the so-called "emerging" organic micropollutants in water and soils. Such compounds may affect living organisms when occurring in the environment at very low concentrations (microg/l or ng/l). In wastewater and drinking water treatment plants, a remarkable removal of these chemicals from water can be obtained only using advanced and costly treatments. Nevertheless, a number of studies are demonstrating that physical, chemical and biochemical processes associated with water movement within the subsoil represent a natural alternative way to reduce the presence of these contaminants. This processes are called Soil Aquifer Treatment (SAT). Aquifer recharge will become a source for indirect potable reuse purposes as long as the presence of pathogens and organic and inorganic pollutants is avoided. To this end, understanding the biogeochemical degradation processes occurring within the aquifer during infiltration is capital. 2. Laboratory batch experiments A set of laboratory batch experiments has been assembled to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. The setup of the experiments consists of glass bottles containing 120 g of soil and 240 ml of synthetic water spiked with the mix of micropollutants. A source of easily degradable organic carbon and, depending on the type of test, electron acceptors are added in order to yield aerobic respiration and nitrate/iron/manganese/sulphate reduction conditions. The evolution of the processes is monitored by sacrificing duplicate bottles according to a defined schedule and analysing water for major and minor components as well as for micropollutants. Results from biotic tests are compared with abiotic ones in order to discern biodegradation from other chemical processes. The soil, the synthetic water and the micropollutants selected for the experiments are representative of a test site in the nearby of Barcelona (Spain) where artificial recharge of groundwater through ponds is going to be performed using river water or tertiary effluent from a waste water treatment plant. The results of the experiments improve the knowledge on the behaviour of the selected micropollutants under different redox conditions and provide with useful information on the conditions to develop at the test site during artificial recharge. The data collected during the laboratory experiments and in the test site will be used to build and calibrate a numerical model of the physical-chemical-biochemical processes developing in the batches and of multicomponent reactive transport in the unsaturated/saturated zone in the test site area. 3. Field test site The infiltration site of Sant Vicenç dels Horts has been selected to assessing the biogeochemical processes occurring during SAT. The system consists of two ponds that have been built as compensatory measure for the reduction in natural recharge caused by the construction of the High Speed Train Line. The first pond acts as a decantation pond while the second one acts as an infiltration basin (Figure 1). Recharge water comes from the tertiary treatment plant of the El Prat de Llobregat WWTP and the river (?). The CUADLL (Lower Llobregat Aquifer End-Users Community) is now managing the system operation. Tasks that are currently being carried out at this Test Site aims at (i) improving the local experience on MAR through infiltration ponds operational aspects and (ii) monitoring the changes in water quality during the recharge processes (unsaturated and saturated zone). Special attention is being paid to the fate of emerging organic pollutants (pharmaceuticals, surfactants, pesticides, etc.). The yielding of the monitoring will be compared with the results from the laboratory batch experiments on the behaviour of selected emerging organic pollutants. To this end, observation wells have been constructed, pressure / temperature / electrical conductivity transducers have been installed and the vadose zone under the infiltration pond has been instrumented (tensiometers, water content probes and suction cups). In addition double ring and infiltration tests have been performed in order to forecast the infiltration capacity of the basin.
Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M
2011-01-01
In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Perrin, Laura; Probert, Ian; Langer, Gerald; Aloisi, Giovanni
2016-11-01
Coccolithophores are unicellular calcifying marine algae that play an important role in the oceanic carbon cycle via their cellular processes of photosynthesis (a CO2 sink) and calcification (a CO2 source). In contrast to the well-studied, surface-water coccolithophore blooms visible from satellites, the lower photic zone is a poorly known but potentially important ecological niche for coccolithophores in terms of primary production and carbon export to the deep ocean. In this study, the physiological responses of an Emiliania huxleyi strain to conditions simulating the deep niche in the oligotrophic gyres along the BIOSOPE transect in the South Pacific Gyre were investigated. We carried out batch culture experiments with an E. huxleyi strain isolated from the BIOSOPE transect, reproducing the in situ conditions of light and nutrient (nitrate and phosphate) limitation. By simulating coccolithophore growth using an internal stores (Droop) model, we were able to constrain fundamental physiological parameters for this E. huxleyi strain. We show that simple batch experiments, in conjunction with physiological modelling, can provide reliable estimates of fundamental physiological parameters for E. huxleyi that are usually obtained experimentally in more time-consuming and costly chemostat experiments. The combination of culture experiments, physiological modelling and in situ data from the BIOSOPE cruise show that E. huxleyi growth in the deep BIOSOPE niche is limited by availability of light and nitrate. This study contributes more widely to the understanding of E. huxleyi physiology and behaviour in a low-light and oligotrophic environment of the ocean.
Schmid, Doris; Micić, Vesna; Laumann, Susanne; Hofmann, Thilo
2015-10-01
The high specific surface area and high reactivity of nanoscale zero-valent iron (nZVI) particles have led to much research on their application to environmental remediation. The reactivity of nZVI is affected by both the water chemistry and the properties of the particular type of nZVI particle used. We have investigated the reactivity of three types of commercially available Nanofer particles (from Nanoiron, s.r.o., Czech Republic) that are currently either used in, or proposed for use in full scale environmental remediation projects. The performance of one of these, the air-stable and thus easy-to-handle Nanofer Star particle, has not previously been reported. Experiments were carried out first in batch shaking reactors in order to derive maximum reactivity rates and provide a rapid estimate of the Nanofer particle's reactivity. The experiments were performed under near-natural environmental conditions with respect to the pH value of water and solute concentrations, and results were compared with those obtained using synthetic water. Thereafter, the polyelectrolyte-coated Nanofer 25S particles (having the highest potential for transport within porous media) were chosen for the experiments in column reactors, in order to elucidate nanoparticle reactivity under a more field-site realistic setting. Iopromide was rapidly dehalogenated by the investigated nZVI particles, following pseudo-first-order reaction kinetics that was independent of the experimental conditions. The specific surface area normalized reaction rate constant (kSA) value in the batch reactors ranged between 0.12 and 0.53Lm(-2)h(-1); it was highest for the uncoated Nanofer 25 particles, followed by the polyacrylic acid-coated Nanofer 25S and air-stable Nanofer Star particles. In the batch reactors all particles were less reactive in natural water than in synthetic water. The kSA values derived from the column reactor experiments were about 1000 times lower than those from the batch reactors, ranging between 2.6×10(-4) and 5.7×10(-4)Lm(-2)h(-1). Our results revealed that the easy-to-handle and air-stable Nanofer Star particles are the least reactive of all the Nanofer products tested. The reaction kinetics predicted by column experiments were more realistic than those predicted by batch experiments and these should therefore be used when designing a full-scale field application of nanomaterials for environmental remediation. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling microbial products in activated sludge under feast-famine conditions.
Ni, Bing-Jie; Fang, Fang; Rittmann, Bruce E; Yu, Han-Qing
2009-04-01
We develop an expanded unified model that integrates production and consumption of internal storage products (X(STO)) into a unified model for extracellular polymeric substances (EPS), soluble microbial products (SMP), and active and inert biomass in activated sludge. We also conducted independent experiments to find needed parameter values and to test the ability of the expanded unified model to describe all the microbial products, along with original substrate and oxygen uptake. The model simulations match all experimental measurements and provide insights into the dynamics of soluble and solid components in activated sludge exposed to dynamic feast-and-famine conditions in two batch experiments and in one cycle of a sequencing batch reactor. In particular, the model illustrates how X(STO) cycles up and down rapidly during feast and famine periods, while EPS and biomass components are relatively stable despite feast and famine. The agreement between model outputs and experimental EPS, SMP, and X(STO) data from distinctly different experiments supports that the expanded unified model properly captures the relationships among the forms of microbial products.
Asadzadeh, Farrokh; Maleki-Kaklar, Mahdi; Soiltanalinejad, Nooshin; Shabani, Farzin
2018-02-08
Citric acid (CA) was evaluated in terms of its efficiency as a biodegradable chelating agent, in removing zinc (Zn) from heavily contaminated soil, using a soil washing process. To determine preliminary ranges of variables in the washing process, single factor experiments were carried out with different CA concentrations, pH levels and washing times. Optimization of batch washing conditions followed using a response surface methodology (RSM) based central composite design (CCD) approach. CCD predicted values and experimental results showed strong agreement, with an R 2 value of 0.966. Maximum removal of 92.8% occurred with a CA concentration of 167.6 mM, pH of 4.43, and washing time of 30 min as optimal variable values. A leaching column experiment followed, to examine the efficiency of the optimum conditions established by the CCD model. A comparison of two soil washing techniques indicated that the removal efficiency rate of the column experiment (85.8%) closely matching that of the batch experiment (92.8%). The methodology supporting the research experimentation for optimizing Zn removal may be useful in the design of protocols for practical engineering soil decontamination applications.
Bridging the gap between batch and column experiments: A case study of Cs adsorption on granite.
Wang, Tsing-Hai; Li, Ming-Hsu; Teng, Shi-Ping
2009-01-15
Both batch and column methods are conventionally utilized to determine some critical parameters for assessing the transport of contaminants of concern. The validity of using these parameters is somewhat confusing, however, since outputs such as distribution coefficient (Kd) from these two approaches are often discrepant. To bridge this gap, all possible factors that might contribute to this discrepancy were thoroughly investigated in this report by a case study of Cs sorption to crushed granite under various conditions. Our results confirm an important finding that solid/liquid (S/L) ratio is the dominant factor responsible for this discrepancy. As long as the S/L ratio exceeds 0.25, a consistent Kd value can be reached by the two methods. Under these conditions (S/L ratios>0.25), the sorption capacity of the solid is about an order of magnitude less than that in low S/L ratios (<0.25). Although low sorption capacity is observed in the cases of high S/L ratios, the sorption usually takes place preferentially on the most favorable (thermodynamically stable) sorption sites to form a stronger binding. This is verified by our desorption experiments in which a linear isotherm feature is shown either in deionized water or in 1M of ammonium acetate solutions. It may be concluded that batch experiment with an S/L ratio exceeding 0.25 is crucial to obtain convincing Kd values for safety assessment of radioactive waste repository.
Investigation of Poultry Waste for Anaerobic Digestion: A Case Study
NASA Astrophysics Data System (ADS)
Salam, Christopher R.
Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under mesophilic batch conditions all at 3 gVS/L loading were determined to be 148.6 +/- 7.82, 176.5 +/- 11.1 and 542.0 +/- 37.9 mL/ gVS, respectively and were 201.9 +/- 10.0, 210.4 +/- 29.3, and 419.3 +/- 12.1 mL/gVS, respectively, for initial loading of 6 gVS/L. Under thermophilic batch conditions, the top litter, mixed litter, and DAF waste had the biogas yields of 255.3 +/- 7.9, 313.4 +/- 30.1and 297.4 +/- 33.8 mL/gVS for loading rate of 3 gVS/L and 233.8 +/- 45.3, 306.5 +/- 11.8 and 185.1 +/- 0.85 mL/gVS for loading rate of 6 gVS/L. The biogas yields from co-digestion of the mixed litter and DAF waste at 3 gVS/L were 461.8 +/- 41.3 mL/gVS under thermophilic conditions. The results from batch anaerobic digestion tests were then used for designing continuous digestion experiments. All the continuous digestion experiments were conducted by using an Anaerobic Phase Solids (APS) digester system operated at a thermophilic temperature. The total volume of the continuous digester system was 4.8 L and the working volume was around 4.4 L. The APS digester system had two hydrolysis reactors and one biogasification reactor. Feedstock was loaded into the hydrolysis reactors in batches. The feedstock digestion time was 14 days and the average organic loading rate (OLR) of the system was 3 gVS/L/day. The experiment has three distinct feedstock stages, first with turkey litter waste, a co-digestion of DAF and turkey litter waste, followed by DAF waste. The biogas yields were determined to be 305.2 +/- 70.6 mL/gVS/d for turkey mixed litter, 455.8 +/- 77.2 mL/gVS/d during the mixture of mixed litter and DAF waste, and 382.0 +/- 39.6 mL/gVS for DAF waste. The biogas yields from the thermophilic batch test yields compare with that of the continuous digester yields. For experiments utilizing turkey litter, batch tests yielded 313.4 +/- 30.1mL/gVS biogas and 305.2 +/- 70.6 mL/gVS/d for continuous experiments. For experiments using codigestion of turkey litter and DAF waste, batches yielded 461.8 +/- 41.3 mL/gVS biogas comparing well to continuous digester operation that yielded 455.8 +/- 77.2 mL/gVS/d. It was mainly in the case for DAF that batch vs. continuous digester testing yielded a significant difference in performance. For experiments using DAF waste, batches yielded 297.4 +/- 33.8 mL/gVS biogas and continuous digester operation yielded 455.8 +/- 77.2 mL/gVS/d. For a case study on the APS digester system, mesophilic DAF waste was chosen as the optimum substrate. Using this material and reactor condition, a case study was built using provided information and experimental results to build a simulation. A reactor site needed to process 11,800 kgVS of DAF waste would require 4,800 m3 of tank volume, and use nearly 4,000 m3 as working volume. This reactor was modeled after a 2 stage APS reactor, with 2 hydrolysis reactors and 1 biogasification reactor, and had a 14 day retention time and a 3 gVS/L/d organic loading rate. The expected biogas output was 550 mL/gVS, and expected waste reduction was 20%. The reactor would produce 7,113 m3/d of biogas, and would be burned for 127,223 MJ/d.
Microfluidic biolector-microfluidic bioprocess control in microtiter plates.
Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen
2010-10-15
In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.
Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P
2012-12-01
This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.
Sze, M F F; McKay, G
2010-05-01
Batch adsorption experiments were carried out to study the adsorptive removal and diffusion mechanism of para-chlorophenol (p-CP) onto Calgon Filtrasorb 400 (F400) activated carbon. The external mass transfer resistance is negligible in the adsorption process carried out under different conditions in batch operation. Intraparticle diffusion model plots were used to correlate the batch p-CP adsorption data; three distinct linear sections were obtained for every batch operation. The textural properties of F400 activated carbon showed that it has a large portion of supermicropores, which is comparable to the size of the p-CP molecules. Due to the stronger interactions between p-CP molecules and F400 micropores, p-CP molecules predominantly diffused and occupied active sites in micropore region by hopping mechanism, and eventually followed by a slow filling of mesopores and micropores. This hypothesis is proven by the excellent agreement of the intraparticle diffusion model plots and the textural properties of F400 activated carbon. Copyright 2009 Elsevier Ltd. All rights reserved.
Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie
2017-01-01
Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.
NASA Astrophysics Data System (ADS)
Rechthaler, Justyna; Pittenauer, Ernst; Schaub, Tanner M.; Allmaier, Günter
2013-05-01
We have studied sample preparation conditions to increase the reproducibility of positive UV-MALDI-TOF mass spectrometry of peptides in the amol range. By evaluating several α-cyano-4-hydroxy-cinnamic acid (CHCA) matrix batches and preparation protocols, it became apparent that two factors have a large influence on the reproducibility and the quality of the generated peptide mass spectra: (1) the selection of the CHCA matrix, which allows the most sensitive measurements and an easier finding of the "sweet spots," and (2) the amount of the sample volume deposited onto the thin crystalline matrix layer. We have studied in detail the influence of a contaminant, coming from commercial CHCA matrix batches, on sensitivity of generated peptide mass spectra in the amol as well as fmol range of a tryptic peptide mixture. The structure of the contaminant, N, N-dimethylbutyl amine, was determined by applying MALDI-FT-ICR mass spectrometry experiments for elemental composition and MALDI high energy CID experiments utilizing a tandem mass spectrometer (TOF/RTOF). A recrystallization of heavily contaminated CHCA batches that reduces or eliminates the determined impurity is described. Furthermore, a fast and reliable method for the assessment of CHCA matrix batches prior to tryptic peptide MALDI mass spectrometric analyses is presented.
Batch-Versuche zur Bestimmung der Sorption und Reaktionskinetik von fluoreszierenden Tracern
NASA Astrophysics Data System (ADS)
Vaitl, Tobias; Wohnlich, Stefan
2018-06-01
For many tracer experiments, prior determination of interaction between solid medium and used tracers is of major interest in order to achieve efficient, economic and successful field experiments. In the present study, three different types of batch experiments were performed with three fluorescent dyes (Na-Fluorescein, Amidorhodamin G and Tinopal CBS-X) and three different rock types (sandstone, claystone and limestone), to determine distribution coefficients and reaction kinetics. All three rock types were analysed for organic carbon content, specific surface area and mineralogical composition to identify the main sorption mechanisms. For all tracers, different sorption properties were found depending on the type of rock. The strongest sorption was observed for Tinopal CBS-X in contact with claystone. Only Na-Fluorescein showed sorption (albeit limited) in contact with the sandstones. The investigated limestones indicated a high sorption for the tracer Tinopal CBS-X. Regarding reaction kinetics, in most cases, thermodynamic equilibrium conditions were reached after two weeks.
Lin, Jian-Ping; Wei, Lian; Xia, Li-Ming; Cen, Pei-Lin
2003-01-01
The production of laccase by Coriolus versicolor was studied. The effect of cultivation conditions on laccase production by Coriolus versicolor was examined to obtain optimal medium and cultivation conditions. Both batch and repeated-batch processes were performed for laccase production. In repeated-batch fermentation with self-immobilized mycelia, total of 14 cycles were performed with laccase activity in the range between 3.4 and 14.8 U/ml.
Optimality of affine control system of several species in competition on a sequential batch reactor
NASA Astrophysics Data System (ADS)
Rodríguez, J. C.; Ramírez, H.; Gajardo, P.; Rapaport, A.
2014-09-01
In this paper, we analyse the optimality of affine control system of several species in competition for a single substrate on a sequential batch reactor, with the objective being to reach a given (low) level of the substrate. We allow controls to be bounded measurable functions of time plus possible impulses. A suitable modification of the dynamics leads to a slightly different optimal control problem, without impulsive controls, for which we apply different optimality conditions derived from Pontryagin principle and the Hamilton-Jacobi-Bellman equation. We thus characterise the singular trajectories of our problem as the extremal trajectories keeping the substrate at a constant level. We also establish conditions for which an immediate one impulse (IOI) strategy is optimal. Some numerical experiences are then included in order to illustrate our study and show that those conditions are also necessary to ensure the optimality of the IOI strategy.
The objective of these laboratory experiments was to determine the role nitrate plays in enhancing the biodegradation of fuel contaminated groundwater. Column studies were conducted to simulate the nitrate field demonstration project carried out earlier at Traverse City, MI so a...
A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.
Moon, S H; Parulekar, S J
1991-03-05
Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design of bioreactors for production of protease and bulk chemicals by this bacterium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Asmussen, R. Matthew; Lawter, Amanda R.
Many efforts have focused on the sequestration and immobilization of 99Tc because the radionuclide is highly mobile in oxidizing environments and presents serious health risks due to its radiotoxicity and long half-life (t1/2 = 213 000 a). One of the more common methods for Tc removal from solution and immobilization in solids is based on reducing Tc from highly soluble Tc(VII) to sparingly soluble Tc(IV). In order to remove solution Tc through this reduction process, the Tc-sequestering solid must contain a reducing agent and, ideally, the Tc-sequestering material would function in a large range of chemical environments. For long-term stability,more » the reduced Tc would preferentially be incorporated into the resulting mineral structure instead of simply being sorbed onto the mineral surface. Here, we report results obtained from batch sorption experiments performed in anoxic and oxic conditions with two sulfide-containing potassium metal sulfide (KMS) materials, known as KMS-2 and KMS-2-SS. In deionized water in anoxic conditions after 15 d of contact, KMS-2 is capable of removing ~45% of Tc and KMS-2-SS is capable of removing ~90% of Tc. The improved performance of KMS-2-SS compared to KMS-2 in deionized water in anoxic conditions appears to be linked both to a higher pH resulting from the batch sorption experiments performed with KMS-2-SS and a higher overall purity of KMS-2-SS. Both materials perform even better in highly caustic (pH~13.5), high ionic strength (8.0 M) simulated Hanford low-activity waste solutions, removing more than 90% Tc after 15 d of contact in anoxic conditions. Post-reaction solids analysis indicate that Tc(VII) is reduced to Tc(IV) and that Tc(IV) is bonded to S atoms in the resulting KMS-2 structure in a Tc2S7 form. In contrast to previous ion exchange experiments with other KMS materials, the batch sorption experiments examining Tc removal cause the initially crystalline KMS materials to lose much of their initial long-range order.« less
Influence of soil properties and test conditions on sorption and desorption of testosterone
USDA-ARS?s Scientific Manuscript database
In this study, batch sorption and desorption experiments were conducted for testosterone using four agricultural soils and five clay minerals. Significant differences in sorption behavior were observed between abiotic and biotic systems. The Freundlich sorption coefficient Kf (µg per g)/(µg per mL) ...
ASSESSMENT OF THE POTENTIAL FOR TRANSPORT OF DIOXINS AND CODISPOSED MATERIALS TO GROUNDWATER
Dioxins are very toxic contaminants and warrant study under a variety of experimental conditions. Studies were performed to evaluate the mobility of several of the dioxins in both soil columns as well as in batch experiments. The studies showed that the amount of chlorination did...
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, Edward H.
1999-01-01
Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for X-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of solution conditions on the nucleation rate and final crystal size of two crystal systems; tetragonal lysozyme and glucose isomerase. Batch crystallization plates were prepared at given solution concentration and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Duplicate experiments indicate the reproducibility of the technique. Results for each system showing the effect of supersaturation, incubation temperature and solution pH on nucleation rates will be presented and discussed. In the case of lysozyme, having optimized solution conditions to produce an appropriate number of crystals of a suitable size, a batch of crystals were prepared under exactly the same conditions. Fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.
Laboratory evidence of MTBE biodegradation in Borden aquifer material
NASA Astrophysics Data System (ADS)
Schirmer, Mario; Butler, Barbara J.; Church, Clinton D.; Barker, James F.; Nadarajah, Nalina
2003-02-01
Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.
Degradation of landfill leachate compounds by persulfate for groundwater remediation
Zhong, Hua; Tian, Yaling; Yang, Qi; Brusseau, Mark L; Yang, Lei; Zeng, Guangming
2016-01-01
In this study, batch and column experiments were conducted to evaluate the feasibility of using persulfate oxidation to treat groundwater contaminated by landfill leachate (CGW). In batch experiments, persulfate was compared with H2O2, and permanganate for oxidation of organic compounds in CGW. It was also compared with the potential of biodegradation for contaminant removal from CGW. Persulfate was observed to be superior to H2O2 and permanganate for degradation of total organic carbon (TOC) in the CGW. Conversely, biodegradation caused only partial removal of TOC in CGW. In contrast, persulfate caused complete degradation of the TOC in the CGW or aged CGW, showing no selectivity limitation to the contaminants. Magnetite (Fe3O4) enhanced degradation of leachate compounds in both CGW and aged CGW with limited increase in persulfate consumption and sulfate production. Under dynamic flow condition in 1-D column experiments, both biodegradation and persulfate oxidation of TOC were enhanced by Fe3O4. The enhancement, however, was significantly greater for persulfate oxidation. In both batch and column experiments, Fe3O4 by itself caused minimal consumption of persulfate and production of sulfate, indicating that magnetite is a good persulfate activator for treating CGW in heterogeneous systems The results of the study show that the persulfate-based in-situ chemical oxidation (ISCO) method has great potential to treat the groundwater contaminated by landfill leachate. PMID:28584519
Changes in copper sulfate crystal habit during cooling crystallization
NASA Astrophysics Data System (ADS)
Giulietti, M.; Seckler, M. M.; Derenzo, S.; Valarelli, J. V.
1996-09-01
The morphology of technical grade copper(II) sulfate pentahydrate crystals produced from batch cooling experiments in the temperature range of 70 to 30°C is described and correlated with the process conditions. A slow linear cooling rate (batch time of 90 min) predominantly caused the appearance of well-formed crystals. Exponential cooling (120 min) resulted in the additional formation of agglomerates and twins. The presence of seeds for both cooling modes led to round crystals, agglomerates and twins. Fast linear cooling (15 min) gave rise to a mixture of the former types. Broken crystals and adhering fragments were often found. Growth zoning was pronounced in seeded and linear cooling experiments. Fluid inclusions were always found and were more pronounced for larger particles. The occurrence of twinning, zoning and fluid inclusions was qualitatively explained in terms of fundamental principles.
NASA Astrophysics Data System (ADS)
Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin
2017-06-01
Diamond film electrode has been known as a material with very wide potential window for water electrolysis which leads to its applicability in numerous electrochemical processes. Its capability to produce hydroxyl radicals, a very strong oxidants, prompts its popular application in wastewater treatment. Batch and batch recirculation reactor were applied to perform bulk electrolysis experiments to investigate the kinetics of dye decolorization under different operation conditions, such as pH, active species, and current density. Furthermore, COD degradation data from batch recirculation reactor operation was used as the basis for the calculation of current efficiency and power consumption in the decolorization process. The kinetics of decolorization process using boron-doped nanocrystalline diamond (BD-NCD) film electrode revealed that acidic condition is favored for the dye degradation, and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species, as evidenced by the higher reaction rate constants. Applying different current density of 10, 20 and 30 mA cm-2, it was found that the higher the current density the faster the decolorization rate. General current efficiency achieved after nearly total decolorization and 80% COD removal in batch recirculation reactor was around 74%, with specific power consumption of 4.4 kWh m-3 (in terms of volume of solution treated) or 145 kWh kg-1(in terms of kg COD treated).
Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide
2014-01-01
The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.
The influence of calcium supplementation on immobilised mixed microflora for biohydrogen production
NASA Astrophysics Data System (ADS)
Lutpi, Nabilah Aminah; Shian, Wong Yee; Izhar, Tengku Nuraiti Tengku; Zainol, Noor Ainee; Kiong, Yiek Wee
2017-04-01
This study is aim to study the effect of calcium as supplement in attached growth system towards the enhancement of the hydrogen production performance. The effects of calcium ion for thermophilic biohydrogen production were studied by using a mixed culture, from palm oil mill effluent sludge and granular activated carbon (GAC) as the support material. Batch experiments were carried out at 60°C by feeding the anaerobic sludge bacteria with sucrose-containing synthetic medium at an initial pH of 5.5 under anaerobic conditions. The repeated batch cultivation process was conducted by adding different concentration of calcium at range 0.025g/L to 0.15g/L. The results showed that the calcium at 0.1 g/L was the optimal concentration to enhance the fermentative hydrogen production under thermophilic (60°C) conditions.
Modelling of Batch Lactic Acid Fermentation in the Presence of Anionic Clay
Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa
2014-01-01
Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318
Kirwan, J A; Broadhurst, D I; Davidson, R L; Viant, M R
2013-06-01
Direct infusion mass spectrometry (DIMS)-based untargeted metabolomics measures many hundreds of metabolites in a single experiment. While every effort is made to reduce within-experiment analytical variation in untargeted metabolomics, unavoidable sources of measurement error are introduced. This is particularly true for large-scale multi-batch experiments, necessitating the development of robust workflows that minimise batch-to-batch variation. Here, we conducted a purpose-designed, eight-batch DIMS metabolomics study using nanoelectrospray (nESI) Fourier transform ion cyclotron resonance mass spectrometric analyses of mammalian heart extracts. First, we characterised the intrinsic analytical variation of this approach to determine whether our existing workflows are fit for purpose when applied to a multi-batch investigation. Batch-to-batch variation was readily observed across the 7-day experiment, both in terms of its absolute measurement using quality control (QC) and biological replicate samples, as well as its adverse impact on our ability to discover significant metabolic information within the data. Subsequently, we developed and implemented a computational workflow that includes total-ion-current filtering, QC-robust spline batch correction and spectral cleaning, and provide conclusive evidence that this workflow reduces analytical variation and increases the proportion of significant peaks. We report an overall analytical precision of 15.9%, measured as the median relative standard deviation (RSD) for the technical replicates of the biological samples, across eight batches and 7 days of measurements. When compared against the FDA guidelines for biomarker studies, which specify an RSD of <20% as an acceptable level of precision, we conclude that our new workflows are fit for purpose for large-scale, high-throughput nESI DIMS metabolomics studies.
Esteves, Bruno M; Rodrigues, Carmen S D; Madeira, Luís M
2017-11-04
Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe 2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe 2+ ] = 100 ppm, [H 2 O 2 ] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD 5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD 5 /COD ratio also revealed an increase in the effluent's biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.
Angosto, J M; Fernández-López, J A; Godínez, C
2015-01-01
This work aims at the comparison of the electrical and chemical performance of microbial fuel cells (MFCs) fed with several types of brewery and manure industrial wastewaters. Experiments were conducted in a single-cell MFC with the cathode exposed to air operated in batch and fed-batch modes. In fed-batch mode, after 4 days of operation, a standard MFC was refilled with crude wastewater to regenerate the biofilm and recreate initial feeding conditions. Brewery wastewater (CV1) mixed with pig-farm liquid manure (PU sample) gave the highest voltage (199.8 mV) and power density (340 mW/m3) outputs than non-mixed brewery waste water. Also, coulombic efficiency is much larger in the mixture (11%) than in the others (2-3%). However, in terms of chemical oxygen demand removal, the performance showed to be poorer (53%) for the mixed sample than in the pure brewery sample (93%). Fed-batch operation showed to be a good alternate for quasi-continuous operation, with equivalent electrical and chemical yields as compared with normal batchwise operation.
Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma
2015-07-30
Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonen, Martin A.
2014-12-22
The reactivity of sandstones was studied under conditions relevant to the injection of supercritical carbon dioxide in the context of carbon geosequestration. The emphasis of the study was on the reactivity of iron-bearing minerals when exposed to supercritical CO 2 (scCO 2) and scCO 2 with commingled aqueous solutions containing H 2S and/or SO 2. Flow through and batch experiments were conducted. Results indicate that sandstones, irrespective of their mineralogy, are not reactive when exposed to pure scCO2 or scCO 2 with commingled aqueous solutions containing H 2S and/or SO 2 under conditions simulating the environment near the injection pointmore » (flow through experiments). However, sandstones are reactive under conditions simulating the edge of the injected CO 2 plume or ahead of the plume (batch experiments). Sandstones containing hematite (red sandstone) are particularly reactive. The composition of the reaction products is strongly dependent on the composition of the aqueous phase. The presence of dissolved sulfide leads to the conversion of hematite into pyrite and siderite. The relative amount of the pyrite and siderite is influenced by the ionic strength of the solution. Little reactivity is observed when sulfite is present in the aqueous phase. Sandstones without hematite (grey sandstones) show little reactivity regardless of the solution composition.« less
BIOLAB experiment development status 2005
NASA Astrophysics Data System (ADS)
Brinckmann, Enno; Manieri, Pierfilippo
2005-08-01
BIOLAB, ESA's major facility for biological Space research on the International Space Station (ISS), will accommodate the first two batches of experiments after its launch with the "Columbus" Laboratory (spring 2007). Seven experiments have been selected for development: three of the first batch have concluded Phase A/B with the testing of the breadboards, in which the main functions of the scientific studies can be simulated and defined for further inputs to the final design of the experiment hardware. The biological specimens of the first batch are scorpions, plant seedlings, bacteria suspensions and cell cultures of mammalian and invertebrate origin. The experiment protocols request demanding resources ranging from life support for the entire mission (90 days) to skilled crew operations and transport/storage in deep freezers. Even more sophisticated experiments are in preparation for the second batch, dealing with various cell culture systems. This presentation gives an overview about the experiment development status, whilst the science background and breadboard test results will be presented by the respective experiment teams.
Avila, Cristina; Reyes, Carolina; Bayona, Josep María; García, Joan
2013-01-01
This study aimed at assessing the influence of primary treatment (hydrolytic upflow sludge blanket (HUSB) reactor vs. conventional settling) and operational strategy (alternation of saturated/unsaturated phases vs. permanently saturated) on the removal of various emerging organic contaminants (i.e. ibuprofen, diclofenac, acetaminophen, tonalide, oxybenzone, bisphenol A) in horizontal subsurface flow constructed wetlands. For that purpose, a continuous injection experiment was carried out in an experimental treatment plant for 26 days. The plant had 3 treatment lines: a control line (settler-wetland permanently saturated), a batch line (settler-wetland operated with saturate/unsaturated phases) and an anaerobic line (HUSB reactor-wetland permanently saturated). In each line, wetlands had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium D(60) = 7.3 mm, and were planted with common reed. During the study period the wetlands were operated at a hydraulic and organic load of 25 mm/d and about 4.7 g BOD/m(2)d, respectively. The injection experiment delivered very robust results that show how the occurrence of higher redox potentials within the wetland bed promotes the elimination of conventional quality parameters as well as emerging microcontaminants. Overall, removal efficiencies were always greater for the batch line than for the control and anaerobic lines, and to this respect statistically significantly differences were found for ibuprofen, diclofenac, oxybenzone and bisphenol A. As an example, ibuprofen, whose major removal mechanism has been reported to be biodegradation under aerobic conditions, showed a higher removal in the batch line (85%) than in the control (63%) and anaerobic (52%) lines. Bisphenol A showed also a great dependence on the redox status of the wetlands, finding an 89% removal rate for the batch line, as opposed to the control and anaerobic lines (79 and 65%, respectively). Furthermore, diclofenac showed a greater removal under a higher redox status (70, 48 and 32% in the batch, control and anaerobic lines). Average removal efficiencies of acetaminophen, oxybenzone and tonalide were almost >90% for the 3 treatment lines. The results of this study indicate that the efficiency of horizontal flow constructed wetland systems can be improved by using a batch operation strategy. Furthermore, we tentatively identified 4-hydroxy-diclofenac and carboxy-bisphenol A as intermediate degradation products. The higher abundance of the latter under the batch operation strategy reinforced biodegradation as a relevant bisphenol A removal pathway under higher redox conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kinetic modeling of antimony(III) oxidation and sorption in soils.
Cai, Yongbing; Mi, Yuting; Zhang, Hua
2016-10-05
Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.
Fault detection and diagnosis in an industrial fed-batch cell culture process.
Gunther, Jon C; Conner, Jeremy S; Seborg, Dale E
2007-01-01
A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults.
Water decontamination containing nitrate using biosorption with Moringa oleifera in dynamic mode.
Paixão, Rebecca Manesco; Reck, Isabela Maria; Gomes, Raquel Guttierres; Bergamasco, Rosângela; Vieira, Marcelo Fernandes; Vieira, Angélica Marquetotti Salcedo
2018-05-20
This study was conducted to assess the feasibility of using Moringa oleifera Lam. (MO) seeds in the biosorption of nitrate present in aqueous solutions by means of batch and fixed-bed column biosorption processes. The batch assays showed that nitrate biosorption is enhanced under experimental conditions of pH 3 and a biosorbent mass of 0.05 g. For the experiments in dynamic mode, the results obtained from the statistical parameters showed that lesser pH, lesser feed flow rate, and higher initial concentration will result in an increase of the maximum capacity of the bed. These conditions were confirmed by experimental analysis. The best experimental conditions, according to the values for percentage removal (91.09%) and maximum capacity (7.69 mg g -1 ) of the bed, were those used in assay 1, which utilized pH 3, feed flow rate of 1 mL min -1 , and initial nitrate concentration of 100 mg L -1 .
[Evaluation of pipetting systems. III. Micropipette precision in a routine task].
Salas, R; Loría, A; Rocha, C
1995-01-01
To establish a norm of the precision achievable with a micropipette in an IRMA assay under routine conditions. A micropipette (Gilson) adjusted to dispense 100 microL was used by a single analyst with experience in its use. In each assay, ten aliquots of radioactive antiprolactin were pipetted in clean tubes (PRE-batch tubes), followed by pipetting of the tubes being processed in the assay, and at the end, a second pipetting of 10 aliquots in clean tubes (POST-batch tubes). The study includes the data of 15 consecutive batches during a seven month period with an overall mean of 283 tubes per batch. The PRE- and POST-tubes were read in a gamma counter (Crystal plus). The mean, SD and CV for PRE, POST and global (PRE+POST) tubes were calculated for each batch. The global CV of the 15 batches ranged from 1.6 to 6.9%, mean of 3.1%. We found no evidence of increased imprecision due to fatigue of the analyst, but surprisingly, we observed that in nine of the 15 batches there was a significant difference in the means of the PRE-tubes vs the POST-tubes (t test) without differences in precision. Thus, part of the global variability is due to what we have called pseudoimprecision (i.e. an increase in CV due to differences in means). In addition, the POST-tubes had higher values in the first 7 batches but the opposite occurred in the last 8 batches (table 2). This shift in the sign of the PRE-POST differences suggests the presence of opposite factors operating in time, i.e. one or more factors increased the volume of pipetting after using the pipette more than 150 times (batches 1-7) whereas other/others decreased it (batches 8-15). 1. Our first approximation to a norm of micropipetting precision in batches of 200-300 tubes was a CV of 3.1%. 2. This norm was influenced by a problem of pseudoimprecision detected ex-post-facto. 3. Our findings justify continuation studies to detect the pseudoimprecision and evaluate its causes prospectively.
Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël
2016-02-01
Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F
2012-02-01
In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B
2004-07-01
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments. Copyright 2003 Elsevier B.V.
BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment
Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy
2016-01-01
Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955
Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin A.; Day-Lewis, Frederick D.
2015-01-01
Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.
NASA Astrophysics Data System (ADS)
Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid
2018-02-01
The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.
Investigation of vinegar production using a novel shaken repeated batch culture system.
Schlepütz, Tino; Büchs, Jochen
2013-01-01
Nowadays, bioprocesses are developed or optimized on small scale. Also, vinegar industry is motivated to reinvestigate the established repeated batch fermentation process. As yet, there is no small-scale culture system for optimizing fermentation conditions for repeated batch bioprocesses. Thus, the aim of this study is to propose a new shaken culture system for parallel repeated batch vinegar fermentation. A new operation mode - the flushing repeated batch - was developed. Parallel repeated batch vinegar production could be established in shaken overflow vessels in a completely automated operation with only one pump per vessel. This flushing repeated batch was first theoretically investigated and then empirically tested. The ethanol concentration was online monitored during repeated batch fermentation by semiconductor gas sensors. It was shown that the switch from one ethanol substrate quality to different ethanol substrate qualities resulted in prolonged lag phases and durations of the first batches. In the subsequent batches the length of the fermentations decreased considerably. This decrease in the respective lag phases indicates an adaptation of the acetic acid bacteria mixed culture to the specific ethanol substrate quality. Consequently, flushing repeated batch fermentations on small scale are valuable for screening fermentation conditions and, thereby, improving industrial-scale bioprocesses such as vinegar production in terms of process robustness, stability, and productivity. Copyright © 2013 American Institute of Chemical Engineers.
Im, Huncheol; Yeo, Inseol; Maeng, Sung Kyu; Park, Chul Hwi; Choi, Heechul
2016-01-01
Batch and column experiments were conducted to evaluate the removal of organic matter, nutrients, and pharmaceuticals and to identify the removal mechanisms of the target contaminants. The sands used in the experiments were obtained from the Youngsan River located in South Korea. Neutral and cationic pharmaceuticals (iopromide, estrone, and trimethoprim) were removed with efficiencies greater than 80% from different sand media during experiments, due to the effect of sorption between sand and pharmaceuticals. However, the anionic pharmaceuticals (sulfamethoxazole, ketoprofen, ibuprofen, and diclofenac) were more effectively removed by natural sand, compared to baked sand. These observations were mainly attributed to biodegradation under natural conditions of surface organic matter and ATP concentrations. The removal of organic matter and nitrogen was also found to increase under biotic conditions. Therefore, it is indicated that biodegradation plays an important role and act as major mechanisms for the removal of organic matter, nutrients, and selected pharmaceuticals during sand passage and the managed aquifer recharge, which is an effective treatment method for removing target contaminants. However, the low removal efficiencies of pharmaceuticals (e.g., carbamazepine and sulfamethoxazole) require additional processes (e.g., AOPs, NF and RO membrane), a long residence time, and long travel distance for increasing the removal efficiencies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Velimirovic, Milica; Carniato, Luca; Simons, Queenie; Schoups, Gerrit; Seuntjens, Piet; Bastiaens, Leen
2014-04-15
In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate. Copyright © 2014 Elsevier B.V. All rights reserved.
Lorphensri, Oranuj; Sabatini, David A; Kibbey, Tohren C G; Osathaphan, Khemarath; Saiwan, Chintana
2007-05-01
The sorption and transport of three pharmaceutical compounds (acetaminophen, an analgesic; nalidixic acid, an antibiotic; and 17alpha-ethynyl estradiol, a synthetic hormone) were examined by batch sorption experiments and solute displacement in columns of silica, alumina, and low organic carbon aquifer sand at neutral pH. Silica and alumina were used to represent negatively-charged and positively-charged fractions of subsurface media. Column transport experiments were also conducted at pH values of 4.3, 6.2, and 8.2 for the ionizable nalidixic acid. The computer program UFBTC was used to fit the breakthrough data under equilibrium and nonequilibrium conditions with linear/nonlinear sorption. Good agreement was observed between the retardation factors derived from column model studies and estimated from equilibrium batch sorption studies. The sorption and transport of nalidixic acid was observed to be highly pH dependent, especially when the pH was near the pK(a) of nalidixic acid (5.95). Thus, near a compound's pK(a) it is especially important that the batch studies be performed at the same pH as the column experiment. While for ionic pharmaceuticals, ion exchange to oppositely-charged surfaces, appears to be the dominant adsorption mechanism, for neutral pharmaceuticals (i.e., acetaminophen, 17alpha-ethynyl estradiol) the sorption correlated well with the K(ow) of the pharmaceuticals, suggesting hydrophobically motivated sorption as the dominant mechanism.
Gacitúa, Manuel A; Muñoz, Enyelbert; González, Bernardo
2018-02-01
Microbial electrolysis batch reactor systems were studied employing different conditions, paying attention on the effect that biocathode potential has on pH and system performance, with the overall aim to distinguish sulphate reduction from H 2 evolution. Inocula from pure strains (Desulfovibrio paquesii and Desulfobacter halotolerans) were compared to a natural source conditioned inoculum. The natural inoculum possess the potential for sulphate reduction on serum bottles experiments due to the activity of mutualistic bacteria (Sedimentibacter sp. and Bacteroides sp.) that assist sulphate-reducing bacterial cells (Desulfovibrio sp.) present in the consortium. Electrochemical batch reactors were monitored at two different potentials (graphite-bar cathodes poised at -900 and -400mV versus standard hydrogen electrode) in an attempt to isolate bioelectrochemical sulphate reduction from hydrogen evolution. At -900mV all inocula were able to reduce sulphate with the consortium demonstrating superior performance (SO 4 2- consumption: 25.71gm -2 day -1 ), despite the high alkalinisation of the media. At -400mV only the pure Desulfobacter halotolerans inoculated system was able to reduce sulphate (SO 4 2- consumption: 17.47gm -2 day -1 ) and, in this potential condition, pH elevation was less for all systems, confirming direct (or at least preferential) bioelectrochemical reduction of sulphate over H 2 production. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowlymore » biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, M.L.; Wilcox, M.E.; Compernolle, R. van
Biodegradation rate constants for volatile organic compounds (VOCs) in activated-sludge systems are needed to quantify emissions. One current US environmental Protection Agency method for determining a biodegradation rate constant is Method 304B. In this approach, a specific activated-sludge unit is simulated by a continuous biological treatment system with a sealed headspace. Batch experiments, however, can be alternatives to Method 304B. Two of these batch methods are the batch test that uses oxygen addition (BOX) and the serum bottle test (SBT). In this study, Method 304B was directly compared to BOX and SBT experiments. A pilot-scale laboratory reactor was constructed tomore » serve as the Method 304B unit. Biomass from the unit was also used to conduct BOX and modified SBT experiments (modification involved use of a sealed draft-tube reactor with a headspace recirculation pump instead of a serum bottle) for 1,2-dichloroethane, diisopropyl ether, methyl tertiary butyl ether, and toluene. Three experimental runs--each consisting of one Method 304B experiment, one BOX experiment, and one modified SBT experiment--were completed. The BOX and SBT data for each run were analyzed using a Monod model, and best-fit biodegradation kinetic parameters were determined for each experiment, including a first-order biodegradation rate constant (K{sub 1}). Experimental results suggest that for readily biodegradable VOCs the two batch techniques can provide improved means of determining biodegradation rate constants compared with Method 304B. In particular, these batch techniques avoid the Method 304B problem associated with steady-state effluent concentrations below analytical detection limits. However, experimental results also suggest that the two batch techniques should not be used to determine biodegradation rate constants for slowly degraded VOCs (i.e., K{sub 1} {lt} 0.1 L/g VSS-h).« less
Manipulating cyanobacteria: Spirulina for potential CELSS diet
NASA Technical Reports Server (NTRS)
Tadros, Mahasin G.; Smith, Woodrow; Mbuthia, Peter; Joseph, Beverly
1989-01-01
Spirulina sp. as a bioregenerative photosynthetic and an edible alga for spacecraft crew in a CELSS, was characterized for the biomass yield in batch cultures, under various environmental conditions. The partitioning of the assimalitory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. Experiments with Spirulina have shown that under stress conditions (i.e., high light 160 uE/sq m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrates increased at the expense of proteins. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total of the algal could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.
Cycle-time determination and process control of sequencing batch membrane bioreactors.
Krampe, J
2013-01-01
In this paper a method to determine the cycle time for sequencing batch membrane bioreactors (SBMBRs) is introduced. One of the advantages of SBMBRs is the simplicity of adapting them to varying wastewater composition. The benefit of this flexibility can only be fully utilised if the cycle times are optimised for the specific inlet load conditions. This requires either proactive and ongoing operator adjustment or active predictive instrument-based control. Determination of the cycle times for conventional sequencing batch reactor (SBR) plants is usually based on experience. Due to the higher mixed liquor suspended solids concentrations in SBMBRs and the limited experience with their application, a new approach to calculate the cycle time had to be developed. Based on results from a semi-technical pilot plant, the paper presents an approach for calculating the cycle time in relation to the influent concentration according to the Activated Sludge Model No. 1 and the German HSG (Hochschulgruppe) Approach. The approach presented in this paper considers the increased solid contents in the reactor and the resultant shortened reaction times. This allows for an exact calculation of the nitrification and denitrification cycles with a tolerance of only a few minutes. Ultimately the same approach can be used for a predictive control strategy and for conventional SBR plants.
Kargi, Fikret; Cikla, Sinem
2007-12-01
Biosorption of zinc (II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a completely mixed tank operating in fed-batch mode instead of an adsorption column. Experiments with variable feed flow rate (0.05-0.5 L h(-1)), feed Zn(II) ion concentrations (37.5-275 mg L(-1)) and amount of adsorbent (1-6 g PWS) were performed using fed-batch operation at pH 5 and room temperature (20-25 degrees C). Break-through curves describing variations of aqueous (effluent) zinc ion concentrations with time were determined for different operating conditions. Percent zinc removal from the aqueous phase decreased, but the biosorbed (solid phase) zinc ion concentration increased with increasing feed flow rate and zinc concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS (q'(s)) and the rate constant (K) for zinc ion biosorption. Biosorption capacity (q'(s)=57.7 g Zn kg(-1) PWS) of PWS in fed-batch operation was found to be comparable with powdered activated carbon (PAC) in column operations. However, the adsorption rate constant (K=9.17 m(3) kg(-1) h(-1)) in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations. Therefore, a completely mixed tank operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.
Lee, Seung-Chan; Kang, Jin-Kyu; Sim, Eun-Hye; Choi, Nag-Choul; Kim, Song-Bae
2017-11-10
The aim of this study was to investigate Cr(VI) removal from chromium-plating rinse water using modacrylic anion-exchange fibers (KaracaronTM KC31). Batch experiments were performed with synthetic Cr(VI) solutions to characterize the KC31 fibers in Cr(VI) removal. Cr(VI) removal by the fibers was affected by solution pH; the Cr(VI) removal capacity was the highest at pH 2 and decreased gradually with a pH increase from 2 to 12. In regeneration and reuse experiments, the Cr(VI) removal capacity remained above 37.0 mg g -1 over five adsorption-desorption cycles, demonstrating that the fibers could be successfully regenerated with NaCl solution and reused. The maximum Cr(VI) removal capacity was determined to be 250.3 mg g -1 from the Langmuir model. In Fourier-transform infrared spectra, a Cr = O peak newly appeared at 897 cm -1 after Cr(VI) removal, whereas a Cr-O peak was detected at 772 cm -1 due to the association of Cr(VI) ions with ion-exchange sites. X-ray photoelectron spectroscopy analyses demonstrated that Cr(VI) was partially reduced to Cr(III) after the ion exchange on the surfaces of the fibers. Batch experiments with chromium-plating rinse water (Cr(VI) concentration = 1178.8 mg L -1 ) showed that the fibers had a Cr(VI) removal capacity of 28.1-186.4 mg g -1 under the given conditions (fiber dose = 1-10 g L -1 ). Column experiments (column length = 10 cm, inner diameter = 2.5 cm) were conducted to examine Cr(VI) removal from chromium-plating rinse water by the fibers under flow-through column conditions. The Cr(VI) removal capacities for the fibers at flow rates of 0.5 and 1.0 mL min -1 were 214.8 and 171.5 mg g -1 , respectively. This study demonstrates that KC31 fibers are effective in the removal of Cr(VI) ions from chromium-plating rinse water.
The Effect of Temperature and Solution pH on Tetragonal Lysozyme Nucleation Kinetics
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.
1998-01-01
Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions, Duplicate experiments indicate the reproducibility of the technique, Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable however, was pH, where crystal numbers changed by two orders of magnitude over the pH range 4.0 to 5.2. Crystal size varied also with solution conditions, with the largest crystals being obtained at pH 5.2. Having optimized the crystallization conditions, a batch of crystals were prepared under exactly the same conditions and fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikka, V.K.; Santella, M.L.; Viswanathan, S.
1998-08-01
This Cooperative Research and Development Agreement (CRADA) report deals with the development of nickel aluminide alloy for improved longer life heat-resistant fixture assemblies for batch and continuous pusher carburizing furnaces. The nickel aluminide development was compared in both coupon and component testing with the currently used Fe-Ni-Cr heat-resisting alloy known as HU. The specific goals of the CRADA were: (1) casting process development, (2) characterization and possible modification of the alloy composition to optimize its manufacturing ability and performance under typical furnace operating conditions, and (3) testing and evaluation of specimens and prototype fixtures. In support of the CRADA objectives,more » coupons of nickel aluminide and the HU alloy were installed in both batch and pusher furnaces. The coupons were taken from two silicon levels and contained welds made with two different filler compositions (IC-221LA and IC-221W). Both nickel-aluminide and HU coupons were removed from the batch and pusher carburizing furnace at time intervals ranging from one month to one year. The exposed coupons were cut and mounted for metallographic, hardness, and microprobe analysis. The results of the microstructural analysis have been transmitted to General Motors Corporation, Saginaw Division (Delphi Saginaw) through reports that were presented at periodic CRADA review meetings. Based on coupon testing and verification of the coupon results with the testing of trays, Delphi Saginaw moved forward with the use of six additional trays in a batch furnace and two assemblies in a pusher furnace. Fifty percent of the trays and fixtures are in the as-cast condition and the remaining trays and fixtures are in the preoxidized condition. The successful operating experience of two assemblies in the pusher furnace for nearly a year formed the basis for a production run of 63 more assemblies. The production run required melting of 94 heats weighing 500 lb. each. Twenty-six of the 94 heats were from virgin stock, and 68 were from the revert that used 50% virgin and 50% revert. Detailed chemical analysis of the 94 heats reflected that the nickel aluminide can be cast into heat-treat fixtures under production conditions. In addition to the chemical analysis, the castings showed excellent dimensional reproducibility. A total of six batch furnace trays and 65 pusher furnace assemblies of nickel aluminide alloy IC-221M are currently operating in production furnaces at Delphi Saginaw. Two of the pusher furnace assemblies have completed two years of service without any failure. The CRADA has accomplished the goal of demonstrating that the nickel aluminide can be produced under commercial production conditions and it has superior performance over the currently used HU alloy in both batch and pusher furnaces.« less
Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S
2015-03-01
1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.
Ren, Xuemei; Yang, Shitong; Tan, Xiaoli; Chen, Changlun; Sheng, Guodong; Wang, Xiangke
2012-10-30
The mutual effects of Cu(II) and phosphate on their interaction with γ-Al(2)O(3) are investigated by using batch experiments combined with density functional theory (DFT) calculations. The results of batch experiments show that coexisting phosphate promotes the retention of Cu(II) on γ-Al(2)O(3), whereas phosphate retention is not affected by coexisting Cu(II) at low initial phosphate concentrations (≤ 3.6 mg P/L). Cu-phosphate aqueous complexes control Cu(II) retention through the formation of type B ternary surface complexes (where phosphate bridges γ-Al(2)O(3) and Cu(II)) at pH 5.5. This deduction is further supported by the results of DFT calculations. More specifically, the DFT calculation results indicate that the type B ternary surface complexes prefer to form outer-sphere or monodentate inner-sphere binding mode under our experimental conditions. The enhancement of phosphate retention on γ-Al(2)O(3) in the presence of Cu(II) at high initial phosphate concentrations (>3.6 mg P/L) may be attributed to the formation of 1:2 Cu(II)-phosphate species and/or surface precipitates. Understanding the mutual effects of phosphate and Cu(II) on their mobility and transport in mineral/water environments is more realistic to design effective remediation strategies for reducing their negative impacts on aquatic/terrestrial environments. Copyright © 2012 Elsevier B.V. All rights reserved.
Production of capsular polysaccharide from Escherichia coli K4 for biotechnological applications.
Cimini, Donatella; Restaino, Odile Francesca; Catapano, Angela; De Rosa, Mario; Schiraldi, Chiara
2010-02-01
The production of industrially relevant microbial polysaccharides has recently gained much interest. The capsular polysaccharide of Escherichia coli K4 is almost identical to chondroitin, a commercially valuable biopolymer that is so far obtained from animal tissues entailing complex and expensive extraction procedures. In the present study, the production of capsular polysaccharide by E. coli K4 was investigated taking into consideration a potential industrial application. Strain physiology was first characterized in shake flask experiments to determine the optimal culture conditions for the growth of the microorganism and correlate it to polysaccharide production. Results show that the concentration of carbon source greatly affects polysaccharide production, while the complex nitrogen source is mainly responsible for the build up of biomass. Small-scale batch processes were performed to further evaluate the effect of the initial carbon source concentration and of growth temperatures on polysaccharide production, finally leading to the establishment of the medium to use in following fermentation experiments on a bigger scale. The fed-batch strategy next developed on a 2-L reactor resulted in a maximum cell density of 56 g(cww)/L and a titre of capsular polysaccharide equal to 1.4 g/L, approximately ten- and fivefold higher than results obtained in shake flask and 2-L batch experiments, respectively. The release kinetics of K4 polysaccharide into the medium were also explored to gain insight into the mechanisms underlying a complex aspect of the strain physiology.
A Study on the Reuse of Plastic Concrete Using Extended Set-Retarding Admixtures.
Lobo, Colin; Guthrie, William F; Kacker, Raghu
1995-01-01
The disposal of ready mixed concrete truck wash water and returned plastic concrete is a growing concern for the ready mixed concrete industry. Recently, extended set-retarding admixtures, or stabilizers, which slow or stop the hydration of portland cement have been introduced to the market. Treating truck wash-water or returned plastic concrete with stabilizing admixtures delays its setting and hardening, thereby facilitating the incorporation of these typically wasted materials in subsequent concrete batches. In a statistically designed experiment, the properties of blended concrete containing stabilized plastic concrete were evaluated. The variables in the study included (1) concrete age when stabilized, (2) stabilizer dosage, (3) holding period of the treated (stabilized) concrete prior to blending with fresh ingredients, and (4) amount of treated concrete in the blended batch. The setting time, strength, and drying shrinkage of the blended concretes were evaluated. For the conditions tested, batching 5 % treated concrete with fresh material did not have a significant effect on the setting time, strength, or drying shrinkage of the resulting blended concrete. Batching 50 % treated concrete with fresh materials had a significant effect on the setting characteristics of the blended cocnrete, which in turn affected the water demand to maintain slump. The data suggests that for a known set of conditions, the stabilizer dosage can be optimized within a relatively narrow range to produce desired setting characteristics. The strength and drying shrinkage of the blended concretes were essentially a function of the water content at different sampling ages and the relationship followed the general trend of control concrete.
A Study on the Reuse of Plastic Concrete Using Extended Set-Retarding Admixtures
Lobo, Colin; Guthrie, William F.; Kacker, Raghu
1995-01-01
The disposal of ready mixed concrete truck wash water and returned plastic concrete is a growing concern for the ready mixed concrete industry. Recently, extended set-retarding admixtures, or stabilizers, which slow or stop the hydration of portland cement have been introduced to the market. Treating truck wash-water or returned plastic concrete with stabilizing admixtures delays its setting and hardening, thereby facilitating the incorporation of these typically wasted materials in subsequent concrete batches. In a statistically designed experiment, the properties of blended concrete containing stabilized plastic concrete were evaluated. The variables in the study included (1) concrete age when stabilized, (2) stabilizer dosage, (3) holding period of the treated (stabilized) concrete prior to blending with fresh ingredients, and (4) amount of treated concrete in the blended batch. The setting time, strength, and drying shrinkage of the blended concretes were evaluated. For the conditions tested, batching 5 % treated concrete with fresh material did not have a significant effect on the setting time, strength, or drying shrinkage of the resulting blended concrete. Batching 50 % treated concrete with fresh materials had a significant effect on the setting characteristics of the blended cocnrete, which in turn affected the water demand to maintain slump. The data suggests that for a known set of conditions, the stabilizer dosage can be optimized within a relatively narrow range to produce desired setting characteristics. The strength and drying shrinkage of the blended concretes were essentially a function of the water content at different sampling ages and the relationship followed the general trend of control concrete. PMID:29151762
Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.
Oz, Nilgun Ayman; Uzun, Alev Cagla
2015-01-01
This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p<0.05) in terms of SCOD parameter, but not for raw OMW (p>0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (p<0.05). Anaerobic batch reactor fed with ultrasound pretreated diluted OMW produced approximately 20% more biogas and methane compared with the untreated one (control reactor). The overall results indicated that low frequency ultrasound pretreatment increased soluble COD in OMW and subsequently biogas production. Copyright © 2014 Elsevier B.V. All rights reserved.
Ramin, Pedram; Libonati Brock, Andreas; Polesel, Fabio; Causanilles, Ana; Emke, Erik; de Voogt, Pim; Plósz, Benedek Gy
2016-12-20
Sewer pipelines, although primarily designed for sewage transport, can also be considered as bioreactors. In-sewer processes may lead to significant variations of chemical loadings from source release points to the treatment plant influent. In this study, we assessed in-sewer utilization of growth substrates (primary metabolic processes) and transformation of illicit drug biomarkers (secondary metabolic processes) by suspended biomass. Sixteen drug biomarkers were targeted, including mephedrone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC) and their major human metabolites. Batch experiments were performed under aerobic and anaerobic conditions using raw wastewater. Abiotic biomarker transformation and partitioning to suspended solids and reactor wall were separately investigated under both redox conditions. A process model was identified by combining and extending the Wastewater Aerobic/anaerobic Transformations in Sewers (WATS) model and Activated Sludge Model for Xenobiotics (ASM-X). Kinetic and stoichiometric model parameters were estimated using experimental data via the Bayesian optimization method DREAM (ZS) . Results suggest that biomarker transformation significantly differs from aerobic to anaerobic conditions, and abiotic conversion is the dominant mechanism for many of the selected substances. Notably, an explicit description of biomass growth during batch experiments was crucial to avoid significant overestimation (up to 385%) of aerobic biotransformation rate constants. Predictions of in-sewer transformation provided here can reduce the uncertainty in the estimation of drug consumption as part of wastewater-based epidemiological studies.
Lactate and Acrylate Metabolism by Megasphaera elsdenii under Batch and Steady-State Conditions
Prabhu, Rupal; Altman, Elliot
2012-01-01
The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii. PMID:23023753
Leachate Testing of Hamlet City Lake, North Carolina, Sediment
1992-11-01
release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Sediment leaching studies of Hamlet City Lake, Hamlet, NC, were conducted in...laboratories at the U.S. Army Engineer Waterways Experiment Station. The pur- pose of these studies was to provide quantitative information on the...conditions similar to landfarming. The study involved three elements: batch leach tests, column leach tests, and simulations using the Hydrologic
NASA Astrophysics Data System (ADS)
Telfeyan, K.; Migdissov, A. A.; Reimus, P. W.
2017-12-01
Sodium dithionite (Na2S2O4) has proven to be an effective remediation agent in aquifers contaminated with Cr(VI). S2O42- rapidly reduces the Fe(III) in aquifer sediments to Fe(II), which then reduces aqueous Cr(VI) to insoluble Cr(III). Previous work demonstrated that the reaction products from this treatment have no long-lasting undesirable effects. However, current literature regarding the stability of dithionite in aqueous solution and its decomposition products, which are important for developing a practical treatment approach, is sparse and inconsistent. Furthermore, S2O42- treatment effectiveness depends on site-specific geochemical and hydrological conditions, so experiments using site-specific materials are necessary to develop an optimal treatment strategy. In this study, we conducted (1) batch aqueous-phase-only experiments aimed at elucidating dithionite lifetimes and decomposition products as a function of dithionite concentration and pH, (2) batch experiments at the most practical pH for a field deployment, with use of four different representations of site aquifer sediments to evaluate dithionite reaction rates in the presence of the sediments and to determine the reduction capacity of the treated sediments, and (3) column experiments to represent a field-scale deployment of dithionite and determine the Cr(VI) reduction capacity of the reduced sediments. The aqueous-phase-only batch experiments verified the presence of S2O42- in aqueous anoxic solution beyond 100 days at alkaline pH. Each sampling interval also recorded the concentration of decomposition products, which enabled the derivation of a possible hydrolysis/decomposition reaction. In the batch experiments with sediments, dithionite reacted more rapidly than in blank solutions, but measurable concentrations remained for over a month. Cr was then added to the reactors to determine the efficacy of treatment. Depending on the sediment type and concentration of dithionite, the treated sediments were able to remove between 100 and 1000 µg Cr per gram of sediment. Column experiments then determined that the dithionite treatment of aquifer sediments could treat over 30 pore volumes of contaminated water (900 ppb Cr) prior to any breakthrough of Cr, suggesting that S2O42- should be an effective treatment agent at this site.
Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic
2017-02-01
Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Fate of 90Sr and U(VI) in Dounreay sediments following saline inundation and erosion.
Eagling, Jane; Worsfold, Paul J; Blake, William H; Keith-Roach, Miranda J
2013-08-01
There is concern that sea level rise associated with projected climate change will lead to the inundation, flooding and erosion of soils and sediments contaminated with radionuclides at coastal nuclear sites, such as Dounreay (UK), with seawater. Here batch and column experiments were designed to simulate these scenarios and sequential extractions were used to identify the key radionuclide solid phase associations. Strontium was exchangeable and was mobilised rapidly by ion exchange with seawater Mg(2+) in both batch and column experiments. In contrast, U was more strongly bound to the sediments and mobilisation was initially limited by the influence of the sediment on the pH of the water. Release was only observed when the pH increased above 6.9, suggesting that the formation of soluble U(VI)-carbonate species was important. Under dynamic flow conditions, long term release was significant (47%), but controlled by slow desorption kinetics from a range of binding sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater.
Riaño, B; Molinuevo, B; García-González, M C
2011-03-01
This work examines the methane production potential for the anaerobic co-digestion of swine manure (SM) with winery wastewater (WW). Batch and semi-continuous experiments were carried out under mesophilic conditions. Batch experiments revealed that the highest specific methane yield was 348 mL CH(4)g(-1) COD added, obtained at 85.4% of WW and 0.7 g COD g(-1)VS. Specific methane yield from SM alone was 27 mL CH(4)g(-1) COD added d(-1). Furthermore, specific methane yields were 49, 87 and 107 mL CH(4)g(-1) COD added d(-1) for the reactors co-digesting mixtures with 10% WW, 25% WW and 40% WW, respectively. Co-digestion with 40% WW improved the removal efficiencies up to 52% (TCOD), 132% (SCOD) and 61% (VSS) compared to SM alone. These results suggest that methane can be produced very efficiently by the co-digestion of swine manure with winery wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan
2015-02-24
Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research weremore » to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.« less
Leaching Behavior Of Mineral Processing Waste: Comparison Of Batch And Column Investigations
In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid–solid ratios (LS) to determ...
Improving industrial full-scale production of baker's yeast by optimizing aeration control.
Blanco, Carlos A; Rayo, Julia; Giralda, José M
2008-01-01
This work analyzes the control of optimum dissolved oxygen of an industrial fed-batch procedure in which baker's yeast (Saccharomyces cerevisiae) is grown under aerobic conditions. Sugar oxidative metabolism was controlled by monitoring aeration, molasses flows, and yeast concentration in the propagator along the later stage of the propagation, and keeping pH and temperature under controlled conditions. A large number of fed-batch growth experiments were performed in the tank for a period of 16 h, for each of the 3 manufactured commercial products. For optimization and control of cultivations, the growth and metabolite formation were quantified through measurement of specific growth and ethanol concentration. Data were adjusted to a model of multiple lineal regression, and correlations representing dissolved oxygen as a function of aeration, molasses, yeast concentration in the broth, temperature, and pH were obtained. The actual influence of each variable was consistent with the mathematical model, further justified by significant levels of each variable, and optimum aeration profile during the yeast propagation.
Plasmodium vivax Sporozoite Production in Anopheles albimanus Mosquitoes for Vaccine Clinical Trials
Solarte, Yezid; Manzano, María R.; Rocha, Leonardo; Hurtado, Hugo; James, Mark A.; Arévalo-Herrera, Myriam; Herrera, Sócrates
2011-01-01
Vaccine development for Plasmodium vivax malaria is underway. A model to assess the protective efficacy of vaccine candidates in humans is urgently needed. Given the lack of continuous P. vivax cultures, we developed a system to infect Anopheles albimanus mosquitoes using blood from P. vivax-infected patients and determined parameters for challenge of malaria-naive volunteers by mosquito bite. Absence of co-infections in parasitized blood was confirmed by tests consistent with blood bank screening. A total of 119 experiments were conducted using batches of 900–4,500 mosquitoes fed by an artificial membrane feeding method. Optimal conditions for mosquito probing and infection were determined. Presence of oocyst and sporozoites were assessed on Days 7–8 and 14–15, respectively, and conditions to choose batches of infected mosquitoes for sporozoite challenge were established. Procedures to infect volunteers took a 2-hour period including verification of inoculum dose. Anopheles albimanus mosquitoes represent a valuable resource for P. vivax sporozoite challenge of volunteers. PMID:21292875
Tavares, Ana P M; Silva, Rui P; Amaral, António L; Ferreira, Eugénio C; Xavier, Ana M R B
2014-02-01
Image analysis technique was applied to identify morphological changes of pellets from white-rot fungus Trametes versicolor on agitated submerged cultures during the production of exopolysaccharide (EPS) or ligninolytic enzymes. Batch tests with four different experimental conditions were carried out. Two different culture media were used, namely yeast medium or Trametes defined medium and the addition of lignolytic inducers as xylidine or pulp and paper industrial effluent were evaluated. Laccase activity, EPS production, and final biomass contents were determined for batch assays and the pellets morphology was assessed by image analysis techniques. The obtained data allowed establishing the choice of the metabolic pathways according to the experimental conditions, either for laccase enzymatic production in the Trametes defined medium, or for EPS production in the rich Yeast Medium experiments. Furthermore, the image processing and analysis methodology allowed for a better comprehension of the physiological phenomena with respect to the corresponding pellets morphological stages.
Effect of Growth Conditions and Trehalose Content on Cryotolerance of Bakers' Yeast in Frozen Doughs
Gélinas, Pierre; Fiset, Gisèle; LeDuy, Anh; Goulet, Jacques
1989-01-01
The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56°C min−1. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (μ = 0.088 h−1 compared with 0.117 h−1) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20°C instead of 30°C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium. PMID:16348024
Retardation of iron-cyanide complexes in the soil of a former manufactured gas plant site.
Sut, Magdalena; Repmann, Frank; Raab, Thomas
2015-01-01
The soil in the vicinities of former Manufactured Gas Plant (MGP) sites is commonly contaminated with iron-cyanide complexes (ferric ferrocyanide). The phenomenon of cyanide mobility in soil, according to the literature, is mainly governed by the dissolution and precipitation of ferric ferrocyanide, which is only slightly soluble (<1 mg L(-1)) under acidic conditions. In this paper, retention properties of the sandy loam soil and the potential vertical movement of the solid iron-cyanide complexes, co-existing with the dissolution, sorption and precipitation reactions were investigated. Preliminary research conducted on a former MGP site implied colloidal transport of ferric ferricyanide from the initial deposition in the wastes layer towards the sandy loam material (secondary accumulation), which possibly retarded the mobility of cyanide (CN). A series of batch and column experiments were applied in order to investigate the retardation of iron-cyanide complexes by the sandy loam soil. Batch experiments revealed that in circumneutral pH conditions sandy loam material decreases the potassium ferro- and ferricyanide concentration. In column experiments a minor reduction in CN concentration was observed prior to addition of iron sulfide (FeS) layer, which induced the formation of the Prussian blue colloids in circumneutral pH conditions. Precipitated solid iron-cyanide complexes were mechanically filtered by the coherent structure of the investigated soil. Additionally, the reduction of the CN concentration of the percolation solutions by the sandy loam soil was presumably induced due to the formation of potassium manganese iron-cyanide (K2Mn[Fe(CN)6]).
Modeling of the adsorptive removal of arsenic(III) using plant biomass: a bioremedial approach
NASA Astrophysics Data System (ADS)
Roy, Palas; Dey, Uttiya; Chattoraj, Soumya; Mukhopadhyay, Debasis; Mondal, Naba Kumar
2017-06-01
In the present work, the possibility of using a non-conventional finely ground (250 μm) Azadirachta indica (neem) bark powder [AiBP] has been tested as a low-cost biosorbent for the removal of arsenic(III) from water. The removal of As(III) was studied by performing a series of biosorption experiments (batch and column). The biosorption behavior of As(III) for batch and column operations were examined in the concentration ranges of 50-500 µg L-1 and 500.0-2000.0 µg L-1, respectively. Under optimized batch conditions, the AiBP could remove up to 89.96 % of As(III) in water system. The artificial neural network (ANN) model was developed from batch experimental data sets which provided reasonable predictive performance ( R 2 = 0.961; 0.954) of As(III) biosorption. In batch operation, the initial As(III) concentration had the most significant impact on the biosorption process. For column operation, central composite design (CCD) was applied to investigate the influence on the breakthrough time for optimization of As(III) biosorption process and evaluation of interacting effects of different operating variables. The optimized result of CCD revealed that the AiBP was an effective and economically feasible biosorbent with maximum breakthrough time of 653.9 min, when the independent variables were retained at 2.0 g AiBP dose, 2000.0 µg L-1 initial As(III) concentrations, and 3.0 mL min-1 flow rate, at maximum desirability value of 0.969.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shull, H.E.
The objective of the project was to investigate the economic feasibility of converting potato waste to fuel alcohol. The source of potato starch was Troyer Farms Potato Chips. Experimental work was carried out at both the laboratory scale and the larger pilot scale batch operation at a decommissioned waste water treatment building on campus. The laboratory scale work was considerably more extensive than originally planned, resulting in a much improved scientific work. The pilot scale facility has been completed and operated successfully. In contrast, the analysis of the economic feasibility of commercial production has not yet been completed. The projectmore » was brought to a close with the successful demonstration of the fermentation and distillation using the large scale facilities described previously. Two batches of mash were cooked using the procedures established in support of the laboratory scale work. One of the batches was fermented using the optimum values of the seven controlled factors as predicted by the laboratory scale application of the Box-Wilson design. The other batch was fermented under conditions derived out of Mr. Rouse's interpretation of his long sequence of laboratory results. He was gratified to find that his commitment to the Box-Wilson experiments was justified. The productivity of the Box-Wilson design was greater. The difference between the performance of the two fermentors (one stirred, one not) has not been established yet. Both batches were then distilled together, demonstrating the satisfactory performance of the column still. 4 references.« less
Chromium (VI) purification using pine sawdust in batch systems
NASA Astrophysics Data System (ADS)
Politi, Dorothea; Sidiras, Dimitris
2012-12-01
Pine sawdust, a waste generated in furniture industry, has been used as low-cost potential adsorbent. This low-cost adsorbent was used for the removal of chromium (VI) from an aqueous solution. The kinetics of adsorption and extent of adsorption at equilibrium are dependent on the physical and chemical characteristics of the adsorbent and adsorbate. The effect of hydrogen ion concentration, contact time, adsorbent dose and initial concentration of adsorbate on the uptake of chromium were studied in batch experiments. The adsorption data has been correlated with Lagergren - Eldridge pseudofirst order kinetic model. The efficiency of adsorbent material for the removal of Cr(VI) was found to be between 13.1 and 95.6%, respectively. These results depend on the conditions of pH, contact time, sawdust dose and Cr(VI) concentration.
A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical cond...
Experience with a UNIX based batch computing facility for H1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhards, R.; Kruener-Marquis, U.; Szkutnik, Z.
1994-12-31
A UNIX based batch computing facility for the H1 experiment at DESY is described. The ultimate goal is to replace the DESY IBM mainframe by a multiprocessor SGI Challenge series computer, using the UNIX operating system, for most of the computing tasks in H1.
Cui, Bin; Huang, Shaobin; Xu, Fuqian; Zhang, Ruijian; Zhang, Yongqing
2015-07-01
A particularly successful polyhydroxyalkanoate (PHA) in industrial applications is poly (3-hydroxybutyrate) (PHB). However, one of the major obstacles for wider application of PHB is the cost of its production and purification. Therefore, it is desirable to discover a method for producing PHB in large quantities at a competitive price. Glycerol is a cheap and widely used carbon source that can be applied in PHB production process. There are numerous advantages to operating fermentation at elevated temperatures; only several thermophilic bacteria are able to accumulate PHB when glycerol is the growth substrate. Here, we report on the possibility of increasing PHB production at low cost using thermophilic Chelatococcus daeguensis TAD1 when glycerol is the growth substrate in a fed-batch culture. We found that (1) excess glycerol inhibited PHB accumulation and (2) organic nitrogen sources, such as tryptone and yeast extract, promoted the growth of C. daeguensis TAD1. In the batch fermentation experiments, we found that using glycerol at low concentrations as the sole carbon source, along with the addition of mixed nitrate (NH4Cl, tryptone, and yeast extract), stimulated PHB accumulation in C. daeguensis TAD1. The results showed that the PHB productivity decreased in the following order: two-stage fed-batch fermentation > fed-batch fermentation > batch fermentation. In optimized culture conditions, a PHB amount of 17.4 g l(-1) was obtained using a two-stage feeding regimen, leading to a productivity rate of 0.434 g l(-1) h(-1), which is the highest productivity rate reported for PHB to date. This high PHB biosynthetic productivity could decrease the total production cost, allowing for further development of industrial applications of PHB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.
Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less
Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.; ...
2017-09-22
Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less
Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk
2016-11-01
In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.
Hassan, Muhammad; Ding, Weimin; Umar, Muhammad; Rasool, Ghulam
2017-04-01
The present study focused on carbon to nitrogen ratio (C/N) and organic loading rate (OLR) optimization of goose manure (GM) and wheat straw (WS). Dealing the anaerobic digestion of poultry manure on industrial scale; the question of optimum C/N (mixing ratio) and OLR (daily feeding concentration) have significant importance still lack in literature. Therefore, Batch and CSTR co-digestion experiments of the GM and WS were carried out at mesophilic condition. The alkali (NaOH) solubilization pretreatment for the WS had greatly enhanced its anaerobic digestibility. The highest methane production was evaluated between the C/N of 20-30 during Batch experimentation while for CSTRs; the second applied OLR of (3g.VS/L.d) was proved as the optimum with maximum methane production capability of 254.65ml/g.VS for reactor B at C/N of 25. The C/N and OLR regression optimization models were developed for their commercial scale usefulness. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah
2012-09-01
The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.
El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W
2015-01-01
Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.
El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.
2015-01-01
Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292
Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life.
Scharf, Roger G; Johnston, Robert W; Semmens, Michael J; Hozalski, Raymond M
2010-02-01
Saint Paul Regional Water Services (SPRWS) in Saint Paul, MN experiences annual taste and odor episodes during the warm summer months. These episodes are attributed primarily to geosmin that is produced by cyanobacteria growing in the chain of lakes used to convey and store the source water pumped from the Mississippi River. Batch experiments, pilot-scale experiments, and model simulations were performed to determine the geosmin removal performance and bed life of a granular activated carbon (GAC) filter-sorber. Using batch adsorption isotherm parameters, the estimated bed life for the GAC filter-sorber ranged from 920 to 1241 days when challenged with a constant concentration of 100 ng/L of geosmin. The estimated bed life obtained using the AdDesignS model and the actual pilot-plant loading history was 594 days. Based on the pilot-scale GAC column data, the actual bed life (>714 days) was much longer than the simulated values because bed life was extended by biological degradation of geosmin. The continuous feeding of high concentrations of geosmin (100-400 ng/L) in the pilot-scale experiments enriched for a robust geosmin-degrading culture that was sustained when the geosmin feed was turned off for 40 days. It is unclear, however, whether a geosmin-degrading culture can be established in a full-scale filter that experiences taste and odor episodes for only 1 or 2 months per year. The results of this research indicate that care must be exercised in the design and interpretation of pilot-scale experiments and model simulations for predicting taste and odor removal in full-scale GAC filter-sorbers. Adsorption and the potential for biological degradation must be considered to estimate GAC bed life for the conditions of intermittent geosmin loading typically experienced by full-scale systems. (c) 2009 Elsevier Ltd. All rights reserved.
Grösbacher, Michael; Eckert, Dominik; Cirpka, Olaf A; Griebler, Christian
2018-06-01
Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific "carrying capacity" depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.
Anyanwu, Emeka G
2015-06-01
Notable challenges, such as mental distress, boredom, negative moods, and attitudes, have been associated with learning in the cadaver dissection laboratory (CDL). The ability of background music (BM) to enhance the cognitive abilities of students is well documented. The present study was designed to investigate the impact of BM in the CDL and on stress associated with the dissection experience. After 8 wk of normal dissection without BM, various genres of BM were introduced into the cadaver dissection sessions of 260 medical and dental students for 3 wk. Feedback on the impact of BM on students in the CDL and students' attitude were accessed using a questionnaire. Psychological stress assessment was done using Psychological Stress Measure 9. Two batches of 30 students each were made to dissect same areas of the body for 2 h, one batch with BM playing and the other batch without. The same examination was given to both groups at the end. Over 90% of the participants expressed a desire to incorporate BM into the CDL; 87% of the sampled population that expressed love for music also reported BM to be a very useful tool that could be used to enhance learning conditions in the CDL. A strong positive relationship was established between love for music and its perception as a tool for learning in the CDL (P < 0.001). Students that studied under the influence of BM had significantly higher scores (P < 0.001) in the overall examination result. BM reduced the level of stress associated with the dissection experience by ∼33%. Copyright © 2015 The American Physiological Society.
NASA Astrophysics Data System (ADS)
Schmidt, Natalie; Page, Declan; Tiehm, Andreas
2017-08-01
Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.
Nalakath Abubackar, Haris; Veiga, María C.; Kennes, Christian
2015-01-01
The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54. PMID:25608591
Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian
2015-01-20
The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54.
Investigating the Affinities and Persistence of VX Nerve Agent in Environmental Matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, A H; Vance, A L; Reynolds, J G
2004-03-09
Laboratory experiments were conducted to determine environmental variables that affect the affinities and persistence of the nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) at dilute concentrations in environmental matrices. Quantitative analyses of VX and its degradation products were performed using LC-MS. Batch hydrolysis experiments demonstrated an increasing hydrolysis rate as pH increased, as shown in previous studies, but also indicated that dissolved aqueous constituents can cause significant differences in the absolute hydrolysis rate. Adsorption isotherms from batch aqueous experiments revealed that VX has a high affinity for hydrophobic organics, a moderate affinity for montmorillonite clay, and a very low affinity formore » an iron-oxyhydroxide soil mineral, goethite. The adsorption on goethite was increased with the presence of dissolved organic matter in solution. VX degraded rapidly when dried onto goethite, when an inner-sphere complex was forced. No enhanced degradation occurred with goethite in small amounts water. These results suggest that aqueous conditions have important controls on VX adsorption and degradation in the environment and a more mechanistic understanding of these controls is needed in order to enable accurate predictions of its long-term fate and persistence.« less
Ferrando-Climent, Laura; Cruz-Morató, Carles; Marco-Urrea, Ernest; Vicent, Teresa; Sarrà, Montserrat; Rodriguez-Mozaz, Sara; Barceló, Damià
2015-10-01
This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at the end of the batch experiment (8 days) with the exception of Ifosfamide and Tamoxifen. These two recalcitrant compounds, together with Cyclophosphamide, were selected for further studies to test their degradability by T. versicolor under optimal growth conditions. Cyclophosphamide and Ifosfamide were inalterable during batch experiments both at high and low concentration, whereas Tamoxifen exhibited a decrease in its concentration along the treatment. Two positional isomers of a hydroxylated form of Tamoxifen were identified during this experiment using a high resolution mass spectrometry based on ultra-high performance chromatography coupled to an Orbitrap detector (LTQ-Velos Orbitrap). Finally the identified transformation products of Tamoxifen were monitored in the bioreactor run with real hospital wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kaukonen, E; Norring, M; Valros, A
2017-10-01
1. Experiment 1, comparing wood shavings and ground straw bedding with peat, was performed on 7 broiler farms over two consecutive batches during the winter season. Experiment 2, assessing the effect of elevated (30 cm) platforms, was conducted in three farms replicated with 6 consecutive batches. 2. Footpad lesions were inspected at slaughter following the Welfare Quality® (WQ) assessment and official programme. Hock lesions, plumage cleanliness and litter condition were assessed using the WQ assessment. Litter height, pH, moisture and ammonia were determined. 3. Footpad condition on wood shavings appeared to be worse compared with peat using both methods of assessment and was accompanied by inferior hock skin health. WQ assessment resulted in poorer footpad and hock skin condition on ground straw compared with peat. Farms differed in footpad and hock skin condition. Footpad and hock lesions were not affected by platform treatment. Peat appeared more friable than ground straw. The initial pH of wood shavings was higher and moisture was lower than in peat, but at the end of production period there were no differences. Ground straw exhibited higher initial and lower end pH, and was drier in the beginning than peat. Litter condition and quality were not affected by platform treatment. 4. This study provides new knowledge about the applicability of peat as broiler bedding and shows no negative effects of elevated platforms on litter condition or the occurrence of contact dermatitis in commercial environments. The results suggest a complicated relationship between litter condition, moisture and contact dermatitis. Furthermore, it is concluded that the farmer's ability to manage litter conditions is important, regardless of the chosen litter material. Peat bedding was beneficial for footpad and hock skin health compared with wood shavings and ground straw.
A neural network strategy for end-point optimization of batch processes.
Krothapally, M; Palanki, S
1999-01-01
The traditional way of operating batch processes has been to utilize an open-loop "golden recipe". However, there can be substantial batch to batch variation in process conditions and this open-loop strategy can lead to non-optimal operation. In this paper, a new approach is presented for end-point optimization of batch processes by utilizing neural networks. This strategy involves the training of two neural networks; one to predict switching times and the other to predict the input profile in the singular region. This approach alleviates the computational problems associated with the classical Pontryagin's approach and the nonlinear programming approach. The efficacy of this scheme is illustrated via simulation of a fed-batch fermentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Oostrom, Martinus; Truex, Michael J.
2016-01-12
Injectable slow-release permanganate gel (ISRPG), formed by mixing KMnO 4 solution with fumed silica powder, may have a potential application in remediating chlorinated solvent plumes in groundwater. A series of batch, column, and flow cell experiments has been completed to test the gel behavior under a variety of conditions. The experiments have provided information on ISRPG rheology, permanganate (MnO 4 - ) release dynamics and distribution, and trichloroethene (TCE) degradation by ISRPG-released oxidant. The gel possesses remarkable shear thinning characteristics, resulting in a relative low viscosity during mixing, and facilitating its subsurface injection and distribution. Batch tests revealed that MnOmore » 4 - was diffused out from ISRPG into water while the gel did not dissolve or disperse into water but maintained its initial shape. Column experiments showed that MnO 4 - release from ISRPG lasted considerably longer than the release from aqueous solution. TCE degradation by ISRPG-released MnO 4 - was much more effective than that when MnO 4 - was delivered using aqueous solution injection. In two-dimensional flow cell experiments, it was demonstrated that ISRPG slowly released a long-lasting low concentration MnO 4 - plume sufficient for remediation and sustainable in an aquifer for a long period of time.« less
Pyrethroid sorption to Sacramento River suspended solids and bed sediments
Fojut, Tessa L.; Young, Thomas M.
2011-01-01
Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, CA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r2 > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature by approximately an order of magnitude and ranged from 106.16 to 106.68 at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. PMID:21191877
Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara
2014-01-01
In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.
Dong, Shunan; Gao, Bin; Sun, Yuanyuan; Shi, Xiaoqing; Xu, Hongxia; Wu, Jianfeng; Wu, Jichun
2016-12-15
Understanding the fate and transport of antibiotics in porous media can help reduce their contamination risks to soil and groundwater systems. In this work, batch and column experiments were conducted to determine the interactions between two representative antibiotics, sulfacetamide (SA) and levofloxacin (LEV), and sand porous media under various solution pH, humic acid (HA) concentration, grain size, and moisture content conditions. Batch sorption experimental results indicated that the sand had relatively strong bonding affinity to LEV, but little sorption of SA under different pH, HA concentration, grain size conditions. Results from the packed sand column experiments showed that SA had extremely high mobility in the porous media for all combinations of pH, HA concentration, grain size, and moisture content. The mass recovery of SA was higher than 98.5% in all the columns with the exception of the one packed with fine sand (97.2%). The retention of LEV in the columns was much higher and the recovery rates ranged from 0% to 71.1%. Decreases in solution pH, HA concentration, grain size, or moisture content reduced the mobility of LEV in the columns under the tested conditions. These results indicated that type of antibiotics and environmental conditions also played an important role in controlling their fate and transport in porous media. Mathematical models were applied to simulate and interpret experimental data, and model simulations described the interactions between the two antibiotics and sand porous media very well. Findings from this study elucidated the key factors and processes controlling the fate of SA and LEV in porous media, which can inform the prediction and assessment of the environmental risks of antibiotics. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taillefert, Martial; Van Cappellen, Philippe
Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competitionmore » experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).« less
The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing...
Baruah, Rwivoo; Deka, Barsha; Kashyap, Niharika; Goyal, Arun
2018-01-01
Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K 2 HPO 4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.
Liu, Nuo; Jiang, Jianguo; Yan, Feng; Gao, Yuchen; Meng, Yuan; Aihemaiti, Aikelaimu; Ju, Tongyao
2018-07-01
The positive effect of sonication on volatile fatty acid (VFA) and hydrogen production was investigated by batch experiments. Several sonication densities (2, 1.6, and 1.2 W/mL) and times (5, 10, and 15 min) were tested. The optimal sonication condition was ultrasonic density 2 W/mL and ultrasonic time 15 min (2-U15). The FW particle size larger than 50 μm (d > 50 μm) were more susceptible to the sonication treatment than the smaller particle size (d ≤ 50 μm). The SCOD increased and VS reduction accelerated under sonication treatment. The maximum VFA production and the highest proportion of hydrogen in the biogas increased 65.3% and 59.1%, respectively, under the optimal sonication conditions compared to the unsonicated batch. Moreover, a reduction of over 50% in the time required to reach its maximum production was also observed. Butyric acid fermentation type was obtained whether following sonication treatment or not. The composition of key microbial community differed under the various sonication conditions. The genera Clostridium and Parabacteroides are predominantly responsible for VFA generation and both were found to be abundant under the optimal condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cadmium removal using Cladophora in batch, semi-batch and flow reactors.
Sternberg, Steven P K; Dorn, Ryan W
2002-02-01
This study presents the results of using viable algae to remove cadmium from a synthetic wastewater. In batch and semi-batch tests, a local strain of Cladophora algae removed 80-94% of the cadmium introduced. The flow experiments that followed were conducted using non-local Cladophora parriaudii. Results showed that the alga removed only 12.7(+/-6.4)% of the cadmium introduced into the reactor. Limited removal was the result of insufficient algal quantities and poor contact between the algae and cadmium solution.
Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas
2017-08-01
An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.
Wang, Ruifei; Koppram, Rakesh; Olsson, Lisbeth; Franzén, Carl Johan
2014-11-01
Fed-batch simultaneous saccharification and fermentation (SSF) is a feasible option for bioethanol production from lignocellulosic raw materials at high substrate concentrations. In this work, a segregated kinetic model was developed for simulation of fed-batch simultaneous saccharification and co-fermentation (SSCF) of steam-pretreated birch, using substrate, enzymes and cell feeds. The model takes into account the dynamics of the cellulase-cellulose system and the cell population during SSCF, and the effects of pre-cultivation of yeast cells on fermentation performance. The model was cross-validated against experiments using different feed schemes. It could predict fermentation performance and explain observed differences between measured total yeast cells and dividing cells very well. The reproducibility of the experiments and the cell viability were significantly better in fed-batch than in batch SSCF at 15% and 20% total WIS contents. The model can be used for simulation of fed-batch SSCF and optimization of feed profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann
2016-05-10
Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tratnyek, Paul G.; Tebo, Bradley M.; Fan, Dimin
One way to minimize the mobility of the Tc VII oxyanion pertechnetate (TcO 4 -) is to effect reduction under sulfidogenic conditions (generated abiotically by Fe 0 or biotically) to form TcS x, which is significantly slower to oxidize than Tc IVO 2. In sediment systems, TcS x and other precipitates may oxidize more slowly due to oxygen diffusion limitations to these low permeability precipitate zones. In addition, the TcO 4 - reduction rate may be more rapid in the presence of sediment because of additional reductive surface phases. This project aims to provide a fundamental understanding of the feasibilitymore » of immobilization of TcO 4 - as TcS x in the vadose zone or groundwater by application nano zero-valent iron (nZVI), and sulfide or sulfate. Biotic batch experiments have used the sulfate-reducing bacterium (SRB) Desulfotomaculum reducens. The iron sulfide mineral mackinawite was generated under these conditions, while vivianite was formed in nZVI only controls. The sulfide/bacteria-containing system consistently reduced aqueous pertechnetate rapidly (> 95% in the first hour), a rate similar to that for the sulfide-free, nZVI only system. Reduced Tc (aged for 3 months) generated in both SRB/nZVI systems was highly resistant to reoxidation. In reduced samples, Tc was found associated with solid phases containing Fe and S (D. reducens/nZVI) or Fe (nZVI only). Experiments using D. reducens without nZVI provided some additional insights. Firstly, stationary phase cultures were able to slowly reduce pertechnetate. Secondly, addition of pertechnetate at the beginning of cell growth (lag phase) resulted in a faster rate of Tc reduction, possibly indicating a direct (e.g. enzymatic) role for D. reducens in Tc reduction. Abiotic batch experiments were conducted with Na 2S as the sulfide source. Pertechnetate reduction was rapid in the presence of sulfide and nZVI, although the rate was suppressed at the higher S/Fe ratios tested. This suppression appeared to be due to the formation of Tc-containing colloids. As with the biotic experiments, pertechnetate reduced under sulfidic conditions was highly resistant to reoxidation. The microscopic morphology of abiotically-transformed nZVI particles varied significantly with those in the biotic experiment, although mackinawite was formed in both systems (as indicated by μXRD and Mössbauer spectroscopy). Preliminary XAS analysis pointed to a mixture of Tc-O and Tc-S binding in the abiotic sulfide/nZVI system, while the major reduced solids under non-sulfidic conditions were TcO 2•nH 2O. The presence of sediment and advective flow to the TcO 4 -/nZVI/sulfide system results in additional processes occurring. Although the natural Hanford sediment used has sufficient available ferrous iron to slowly reduce TcO 4 -, under anaerobic conditions, that rate is orders of magnitude slower than reduction by nZVI/sulfide. Batch and 1-D column experiments showed that the TcO 4 - reduction rate increased with the sediment surface area (with the same nZVI mass). As in batch systems, column studies showed that the presence of sulfide with TcO 4 - at low (2-5 mM) concentrations increased the TcO 4 - reduction rate and high (10-30 mM) sulfide decreased the rate. This change is attributed to the formation of sulfide precipitates on the nZVI and sediment surfaces. Injection of low and high sulfide (i.e. pretreatment) prior to TcO 4 -/sulfide injection also greatly decreased the TcO 4 - reduction rate, likely decreasing the generation of ferrous iron from the nZVI. Although the high sulfide systems have slower Tc reduction rates, 190 times more Tc mass precipitated than in the low sulfide systems and the highest fraction of Tc mass remained immobilized.« less
Fate and transport of uranium (VI) in weathered saprolite
Kim, Young-Jin; Brooks, Scott C.; Zhang, Fan; ...
2014-11-09
We conducted batch and column experiments to investigate sorption and transport of uranium (U) in the presence of saprolite derived from interbedded shale, limestone, and sandstone sequences. Sorption kinetics were measured at two initial concentrations (C0; 1, 10 mM) and three soil:solution ratios (Rs/w; 0.005, 0.25, 2 kg/L) at pH 4.5 (pH of the saprolite). The rate of U loss from solution (mmole/L/h) increased with increasing Rs/w. Uranium sorption exhibited a fast phase with 80% sorption in the first eight hours for all C0 and Rs/w values and a slow phase during which the reaction slowly approached (pseudo) equilibrium overmore » the next seven days. The pH-dependency of U sorption was apparent in pH sorption edges. U(VI) sorption increased over the pH range 4e6, then decreased sharply at pH > 7.5. U(VI) sorption edges were well described by a surface complexation model using calibrated parameters and the reaction network proposed by Waite et al. (1994). Sorption isotherms measured using the same Rs/w and pH values showed a solids concentration effect where U(VI) sorption capacity and affinity decreased with increasing solids concentration. Moreover, this effect may have been due to either particle aggregation or competition between U(VI) and exchangeable cations for sorption sites. The surface complexation model with calibrated parameters was able to predict the general sorption behavior relatively well, but failed to reproduce solid concentration effects, implying the importance of appropriate design if batch experiments are to be utilized for dynamic systems. Transport of U(VI) through the packed column was significantly retarded. We also conducted transport simulations using the reactive transport model HydroGeoChem (HGC) v5.0 that incorporated the surface complexation reaction network used to model the batch data. Model parameters reported by Waite et al. (1994) provided a better prediction of U transport than optimized parameters derived from our sorption edges. The results presented in this study highlight the challenges in defining appropriate conditions for batch-type experiments used to extrapolate parameters for transport models, and also underline a gap in our ability to transfer batch results to transport simulations.« less
Aquilina, Luc; Roques, Clément; Boisson, Alexandre; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Pauwels, Hélène; Pételet-Giraud, Emmanuelle; Pettenati, Marie; Dufresne, Alexis; Bethencourt, Lorine; Bour, Olivier
2018-04-01
We investigate denitrification mechanisms through batch experiments using crushed rock and groundwater from a granitic aquifer subject to long term pumping (Ploemeur, France). Except for sterilized experiments, extensive denitrification reaction induces NO 3 decreases ranging from 0.3 to 0.6mmol/L. Carbon concentrations, either organic or inorganic, remain relatively stable and do not document potential heterotrophic denitrification. Batch experiments show a clear effect of mineral dissolution which is documented through cation (K, Na, Ca) and Fluoride production. These productions are tightly related to denitrification progress during the experiment. Conversely, limited amounts of SO 4 , systematically lower than autotrophic denitrification coupled to sulfur oxidation stoichiometry, are produced during the experiments which indicates that sulfur oxidation is not likely even when pyrite is added to the experiments. Analysis of cation ratios, both in isolated minerals of the granite and within water of the batch, allow the mineral dissolution during the experiments to be quantified. Using cation ratios, we show that batch experiments are characterized mainly by biotite dissolution. As biotite contains 21 to 30% of Fe and 0.3 to 1.7% of F, it constitutes a potential source for these two elements. Denitrification could be attributed to the oxidation of Fe(II) contained in biotite. We computed the amount of K and F produced through biotite dissolution when entirely attributing denitrification to biotite dissolution. Computed amounts show that this process may account for the observed K and F produced. We interpret these results as the development of microbial activity which induces mineral dissolution in order to uptake Fe(II) which is used for denitrification. Although pyrite is probably available, SO 4 and cation measurements favor a large biotite dissolution reaction which could account for all the observed Fe production. Chemical composition of groundwater produced from the Ploemeur site indicates similar denitrification processes although original composition shows mainly plagioclase dissolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deo, Milind; Huang, Hai; Kweon, Hyukmin
2016-03-28
Reactivity of carbon dioxide (CO 2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO 2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO 2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batchmore » experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments revealed that an initial high-permeability pathway facilitated the formation of wormholes. The peak cation concentrations and general trends were matched using Toughreact. Batch reactor modeling showed that the geometric factors obtained using powder data that related effective surface area to the BET surface area had to be reduced for fractured samples and cores. This indicates that the available surface area in consolidated samples is lower than that deduced from powder experiments. Field-scale modeling of reactive transport and geomechanics was developed in parallel at Idaho National Laboratory. The model is able to take into account complex chemistry, and consider interactions of natural fractures and faults. Poroelastic geomechanical considerations are also included in the model.« less
NASA Astrophysics Data System (ADS)
Gulliver, D. M.; Lowry, G. V.; Gregory, K.
2013-12-01
Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the atmospheric release of greenhouse gasses, establishing a concern of sequestered CO2 leakage into overlying potable aquifers. Leaking CO2 may affect existing biogeochemical processes and therefore water quality. There is a critical need to understand the evolution of CO2 exposed microbial communities that influence the biogeochemistry in these freshwater aquifers. The evolution of microbial ecology for different CO2 exposure concentrations was investigated using fluid-slurry samples obtained from a shallow freshwater aquifer (55 m depth, 0.5 MPa, 22 °C, Escatawpa, MS). The microbial community of well samples upstream and downstream of CO2 injection was characterized. In addition, batch vessel experiments were conducted with the upstream aquifer samples exposed to varying pCO2 from 0% to 100% under reservoir temperature and pressure for up to 56 days. The microbial community of the in situ experiment and the batch reactor experiment were analyzed with 16S rRNA clone libraries and qPCR. In both the in situ experiment and the batch reactor experiment, DNA concentration did not correlate with CO2 exposure. Both the in situ experiment and the batch reactors displayed a changing microbial community with increased CO2 exposure. The well water isolate, Curvibacter, appeared to be the most tolerant genus to high CO2 concentrations in the in situ experiments and to mid-CO2 concentrations in the batch reactors. In batch reactors with pCO2 concentrations higher than experienced in situ (pCO2 = 0.5 MPa), Pseudomonas appeared to be the most tolerant genus. Findings provide insight into a dynamic biogeochemical system that will alter with CO2 exposure. Adapted microbial populations will eventually give rise to the community that will impact the metal mobility and water quality. Knowledge of the surviving microbial populations will enable improved models for predicting the fate of CO2 following leakage and lead to better strategies for ensuring the quality of potable aquifer water.
Janke, Leandro; Leite, Athaydes; Batista, Karla; Weinrich, Sören; Sträuber, Heike; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter
2016-01-01
Different methods for optimization the anaerobic digestion (AD) of sugarcane filter cake (FC) with a special focus on volatile fatty acids (VFA) production were studied. Sodium hydroxide (NaOH) pretreatment at different concentrations was investigated in batch experiments and the cumulative methane yields fitted to a dual-pool two-step model to provide an initial assessment on AD. The effects of nitrogen supplementation in form of urea and NaOH pretreatment for improved VFA production were evaluated in a semi-continuously operated reactor as well. The results indicated that higher NaOH concentrations during pretreatment accelerated the AD process and increased methane production in batch experiments. Nitrogen supplementation resulted in a VFA loss due to methane formation by buffering the pH value at nearly neutral conditions (∼ 6.7). However, the alkaline pretreatment with 6g NaOH/100g FCFM improved both the COD solubilization and the VFA yield by 37%, mainly consisted by n-butyric and acetic acids. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yan; Yan, Xi-Luan; Fan, Jie-Ping; Zhu, Jian-Hang; Zhou, Wen-Bin
2011-06-01
The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH(4) g(-1) volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g(-1) mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH(4) g(-1) volatile solid added d(-1) at 3.50 g volatile solids g(-1) mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH(4) g (-1) volatile solids added d(-1) for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Monochloramine Cometabolism by Mixed-Culture Nitrifiers ...
The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under drinking water relevant conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Three batch reactors were used in each experiment: (1) a positive control to estimate ammonia kinetic parameters, (2) a negative control to account for abiotic reactions, and (3) a cometabolism reactor to estimate cometabolism kinetic constants. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to all experimental data. Cometabolism kinetics were best described by a first order model. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (30% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems. The results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criddle, Craig S.; Wu, Weimin
2013-04-17
With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with themore » addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.« less
Effective Pb2+ removal from water using nanozerovalent iron stored 10 months
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Bishay, Samiha T.; Ahmed, Fatma M.; El-Dek, S. I.
2017-10-01
Heavy metal removal from water required reliable and cost-effective considerations, fast separation as well as easy methodology. In this piece of research, nanozerovalent iron (NZVI) was prepared as ideal sorbent for Pb2+ removal. The sample was characterized using X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), and atomic force microscope (AFM-SPM). Batch experiments comprised the effect of pH value and contact time on the adsorption process. The same NZVI was stored for a shelf time (10 months) and the batch experiment was repeated. The outcomes of the investigation assured that NZVI publicized an extraordinary large metal uptake (98%) after a short contact time (10 h). The stored sample revealed the same effectiveness on Pb2+ removal under the same conditions. The results of the physical properties, magnetic susceptibility, and conductance were correlated with the adsorption efficiency. This work offers evidence that these NZVI particles could be potential candidate for Pb2+ removal in large scale, stored for a long time using a simple, green, and cost-effective methodology, and represent an actual feedback in waste water treatment.
Kitchen, Robert R; Sabine, Vicky S; Sims, Andrew H; Macaskill, E Jane; Renshaw, Lorna; Thomas, Jeremy S; van Hemert, Jano I; Dixon, J Michael; Bartlett, John M S
2010-02-24
Microarray technology is a popular means of producing whole genome transcriptional profiles, however high cost and scarcity of mRNA has led many studies to be conducted based on the analysis of single samples. We exploit the design of the Illumina platform, specifically multiple arrays on each chip, to evaluate intra-experiment technical variation using repeated hybridisations of universal human reference RNA (UHRR) and duplicate hybridisations of primary breast tumour samples from a clinical study. A clear batch-specific bias was detected in the measured expressions of both the UHRR and clinical samples. This bias was found to persist following standard microarray normalisation techniques. However, when mean-centering or empirical Bayes batch-correction methods (ComBat) were applied to the data, inter-batch variation in the UHRR and clinical samples were greatly reduced. Correlation between replicate UHRR samples improved by two orders of magnitude following batch-correction using ComBat (ranging from 0.9833-0.9991 to 0.9997-0.9999) and increased the consistency of the gene-lists from the duplicate clinical samples, from 11.6% in quantile normalised data to 66.4% in batch-corrected data. The use of UHRR as an inter-batch calibrator provided a small additional benefit when used in conjunction with ComBat, further increasing the agreement between the two gene-lists, up to 74.1%. In the interests of practicalities and cost, these results suggest that single samples can generate reliable data, but only after careful compensation for technical bias in the experiment. We recommend that investigators appreciate the propensity for such variation in the design stages of a microarray experiment and that the use of suitable correction methods become routine during the statistical analysis of the data.
2010-01-01
Background Microarray technology is a popular means of producing whole genome transcriptional profiles, however high cost and scarcity of mRNA has led many studies to be conducted based on the analysis of single samples. We exploit the design of the Illumina platform, specifically multiple arrays on each chip, to evaluate intra-experiment technical variation using repeated hybridisations of universal human reference RNA (UHRR) and duplicate hybridisations of primary breast tumour samples from a clinical study. Results A clear batch-specific bias was detected in the measured expressions of both the UHRR and clinical samples. This bias was found to persist following standard microarray normalisation techniques. However, when mean-centering or empirical Bayes batch-correction methods (ComBat) were applied to the data, inter-batch variation in the UHRR and clinical samples were greatly reduced. Correlation between replicate UHRR samples improved by two orders of magnitude following batch-correction using ComBat (ranging from 0.9833-0.9991 to 0.9997-0.9999) and increased the consistency of the gene-lists from the duplicate clinical samples, from 11.6% in quantile normalised data to 66.4% in batch-corrected data. The use of UHRR as an inter-batch calibrator provided a small additional benefit when used in conjunction with ComBat, further increasing the agreement between the two gene-lists, up to 74.1%. Conclusion In the interests of practicalities and cost, these results suggest that single samples can generate reliable data, but only after careful compensation for technical bias in the experiment. We recommend that investigators appreciate the propensity for such variation in the design stages of a microarray experiment and that the use of suitable correction methods become routine during the statistical analysis of the data. PMID:20181233
Use of column experiments to investigate the fate of organic micropollutants - a review
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Hebig, Klaus H.
2016-09-01
Although column experiments are frequently used to investigate the transport of organic micropollutants, little guidance is available on what they can be used for, how they should be set up, and how the experiments should be carried out. This review covers the use of column experiments to investigate the fate of organic micropollutants. Alternative setups are discussed together with their respective advantages and limitations. An overview is presented of published column experiments investigating the transport of organic micropollutants, and suggestions are offered on how to improve the comparability of future results from different experiments. The main purpose of column experiments is to investigate the transport and attenuation of a specific compound within a specific sediment or substrate. The transport of (organic) solutes in groundwater is influenced by the chemical and physical properties of the compounds, the solvent (i.e., the groundwater, including all solutes), and the substrate (the aquifer material). By adjusting these boundary conditions a multitude of different processes and related research questions can be investigated using a variety of experimental setups. Apart from the ability to effectively control the individual boundary conditions, the main advantage of column experiments compared to other experimental setups (such as those used in field experiments, or in batch microcosm experiments) is that conservative and reactive solute breakthrough curves can be derived, which represent the sum of the transport processes. There are well-established methods for analyzing these curves. The effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) is an important factor, in contrast to batch experiments where all processes are observed until equilibrium is reached in the substrate-solution system. Slight variations in the boundary conditions of different experiments can have a marked influence on the transport and degradation of organic micropollutants. This is of critical importance when comparing general results from different column experiments investigating the transport behavior of a specific organic compound. Such variations unfortunately mean that the results from most column experiments are not transferable to other hydrogeochemical environments but are only valid for the specific experimental setup used. Column experiments are fast, flexible, and easy to manage; their boundary conditions can be controlled and they are cheap compared to extensive field experiments. They can provide good estimates of all relevant transport parameters. However, the obtained results will almost always be limited to the scale of the experiment and are not directly transferrable to field scales as too many parameters are exclusive to the column setup. The challenge for the future is to develop standardized column experiments on organic micropollutants in order to overcome these issues.
Determination of the long-term release of metal(loid)s from construction materials using DGTs.
Schmukat, A; Duester, L; Ecker, D; Heininger, P; Ternes, T A
2013-09-15
Long-term leaching experiments are crucial to estimate the potential release of dangerous substances from construction materials. The application of Diffuse Gradients in Thin film (DGT) in static-batch experiments was tested to study the long-term release of metal(loid)s from construction materials for hydraulic engineering, for half a year. Long-term release experiments are essential to improve calculations of the life-time release for this materials. DGTs in batch experiments were found to be a space and labour efficient application, which enabled (i) to study, in a non-invasive manner, the total release of nine metal(loid)s for half a year, (ii) to differentiate between release mechanisms and (iii) to study mechanisms which were contrary to the release or caused experimental artefacts in the batch experiments. For copper slag (test material) it was found that eight metal(loid)s were released over the whole time period of 184 d. Cu, Ni and Pb were found to be released, predominantly caused by (the) weathering of sulphide minerals. Only for Zn a surface depletion mechanism was identified. The results from the long-term batch experiments deliver new information on the release of metal(loid)s during the life cycle of construction materials with regard to river basin management objectives. Copyright © 2013 Elsevier B.V. All rights reserved.
Fürhacker, M; Pressl, A; Allabashi, R
2003-09-01
Mixtures of different amines including tertiary amines (methyldiethanolamine, MDEA) are commonly used for the removal of CO2 from gas mixtures or in gas sweetening processes for the extraction of CO2 and H2S. The absorber solutions used can be released into the industrial waste water due to continuous substitution of degraded MDEA, periodically cleaning processes or an accidental spill. In this study, the aerobic biodegradability of MDEA was investigated in a standardised batch test and a continuous flow experiment (40 l/d). The results of the batch test indicated that the MDEA-solution was non-biodegradable during the test period of 28 days, whereas the continuous flow experiments showed biodegradation of more than 96% based on TOC-measurements. This was probably due to the adaptation of the microorganisms to this particular waste water contamination during continuous flow experiment.
NASA Astrophysics Data System (ADS)
Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.
2016-02-01
In the manufacturing industry, several identical parts can be processed in batches, and setup time is needed between two consecutive batches. Since the processing times of batches are not always fixed during a scheduling period due to learning and deterioration effects, this research deals with batch scheduling problems with simultaneous learning and deterioration effects. The objective is to minimize total actual flow time, defined as a time interval between the arrival of all parts at the shop and their common due date. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. This research proposes a heuristic algorithm based on the Lagrange Relaxation. The effectiveness of the proposed algorithm is determined by comparing the resulting solutions of the algorithm to the respective optimal solution obtained from the enumeration method. Numerical experience results show that the average of difference among the solutions is 0.05%.
[Effect on iron release in drinking water distribution systems].
Niu, Zhang-bin; Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Wang, Sheng-hui
2007-10-01
Batch-scale experiments were done to quantitatively study the effect of inorganic chemical parameters on iron release in drinking water distribution systems. The parameters include acid-base condition, oxidation-reduction condition, and neutral ion condition. It was found that the iron release rate decreased with pH, alkalinity, the concentration of dissolved oxygen increasing, and the iron release rate increased with the concentration of chloride increasing. The theoretical critical formula of iron release rate was elucidated. According to the formula, the necessary condition for controlling iron release is that pH is above 7.6, the concentration of alkalinity and dissolved oxygen is more than 150 mg/L and 2 mg/L, and the concentration of chloride is less than 150 mg/L of distributed water.
Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions.
Diak, James; Örmeci, Banu; Kennedy, Kevin J
2013-04-01
Micro-aeration, which refers to the addition of very small amounts of air, is a simple technology that can potentially be incorporated in septic tanks to improve the digestion performance. The purpose of this study was to investigate and compare the effects of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. 1.6 L batch reactor experiments were carried out in duplicate using raw primary sludge, with 4.1 % total solids, and diluted primary sludge, with 2.1 % total solids. Reactors were operated for 5 weeks at room temperature to simulate septic tank conditions. Micro-aeration rate of 0.00156 vvm effectively solubilised chemical oxygen demand (COD) and improved the subsequent degradation of COD. Micro-aeration also increased the generation of ammonia and soluble proteins, but did not improve the reduction in total and volatile solids, or the reduction in carbohydrates. Experiments using diluted sludge samples showed similar trends as the experiments with raw sludge, which suggest that initial solids concentration did not have a significant effect on the degradation of primary sludge under septic tank conditions.
Methane production from food waste leachate in laboratory-scale simulated landfill.
Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck
2010-01-01
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, K.; Kim, B.; Lee, D.; Choi, N.; Park, C.
2011-12-01
Adaptation to environment is a natural phenomena that takes place in many animals, plants and microorganisms. These adapted organisms achieve stronger applicability than unadapted organisms after habitation in a specific environment for a long time. In the biohydrometallurgical industry, adaptation to special environment conditions by selective culturing is the most popular method for improving bioleaching activity of strains-although that is time consuming. This study investigated the influence of the bioleaching efficiency of mine waste under batch experimental conditions (adaptation and pulp density) using the indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea. We conducted the batch experiments at the influences of parameters, such as the adaptation of bacteria and pulp density of the mine waste. In the adaptation case, the value of pH in 1'st adaptation bacteria sample exhibited lower than in 2'nd adaptation bacteria sample. And the content of both Cu and Zn at 1'st adaptation bacteria sample appeared lower than at 2'nd adaptation bacteria sample. In the SEM analysis, the rod-shaped bacteria with 1μm in length were observed on the filter paper (pore size - 0.45μm). The results of pulp density experiments revealed that the content of both Cu and Zn increased with increasing pulp density, since the increment of pulp density resulted in the enhancement of bioleaching capacity.
Molahid, Verma Loretta M; Mohd Kusin, Faradiella; Madzin, Zafira
2018-01-12
The potential of selected materials in treating metal-rich acid mine drainage (AMD) has been investigated in a series of batch experiment. The efficiencies of both single and mixed substrates under two conditions i.e. low- and high-concentration solutions containing heavy metals were evaluated. Synthetic metal-containing AMD was used in the experiments treated using spent mushroom compost (SMC), ochre, steel slag (SS), and limestone. Different ratios of treatment materials were incorporated in the substrate mix and were tested in an anoxic condition. In the batch test, physicochemical parameters (pH, redox potential, total dissolved solids, conductivity, and Ca concentration) and heavy metals (Fe, Mn, Pb, Zn, and Al) were analysed. The mixed substrates have shown satisfactory performance in increasing pH with increasing Ca concentration and removing metals. It has been found that SS and ochre played an important role in the treatment of AMD. The results showed that the mixed substrates SM1 (i.e. 10% SMC mixed with 20% ochre, 30% steel slag, and 40% limestone) and SM2 (i.e. 20% SMC mixed with 30% ochre, 40% steel slag, and 10% limestone) were effective in increasing the pH from as low as 3.5-8.09, and removing heavy metals with more than 90% removal efficiencies.
Monochloramine cometabolism by Nitrosomonas europaea under drinking water conditions.
Maestre, Juan P; Wahman, David G; Speitel, Gerald E
2013-09-01
Chloramine is widely used in United States drinking water systems as a secondary disinfectant, which may promote the growth of nitrifying bacteria because ammonia is present. At the onset of nitrification, both nitrifying bacteria and their products exert a monochloramine demand, decreasing the residual disinfectant concentration in water distribution systems. This work investigated another potentially significant mechanism for residual disinfectant loss: monochloramine cometabolism by ammonia-oxidizing bacteria (AOB). Monochloramine cometabolism was studied with the pure culture AOB Nitrosomonas europaea (ATCC 19718) in batch kinetic experiments under drinking water conditions. Three batch reactors were used in each experiment: a positive control to estimate the ammonia kinetic parameters, a negative control to account for abiotic reactions, and a cometabolism reactor to estimate the cometabolism kinetic constants. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to all experimental data. The cometabolism reactors showed a more rapid monochloramine decay than in the negative controls, demonstrating that cometabolism occurs. Cometabolism kinetics were best described by a pseudo first order model with a reductant term to account for ammonia availability. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (30-60% of the observed monochloramine decay). These results suggest that monochloramine cometabolism should occur in practice and may be a significant contribution to monochloramine decay during nitrification episodes in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process.
Santos, Sílvia; Arauz, Luciana Juncioni de; Baruque-Ramos, Júlia; Lebrun, Ivo; Carneiro, Sylvia Mendes; Barreto, Sandra Alves; Schenkman, Rocilda Perazzini Furtado
2012-09-14
Serogroup B outer membrane vesicles (OMV) with iron regulated proteins (IRP) from Neisseria meningitidis constitute the antigen for the vaccine against the disease caused by this bacterium. Aiming to enhance final OMV concentration, seven batch experiments were carried out under four different conditions: (i) with original Catlin medium; (ii) with original Catlin medium and lactate and amino acids pulse at the 6th cultivation hour; (iii) with Catlin medium with double initial concentrations of lactate and amino acids and (iv) Catlin medium without glycerol and with double initial concentrations of lactate and amino acids. The cultivation experiments were carried out in a 7-L bioreactor under the following conditions: 36°C, 0.5atm, overlay air 1L/min, agitation: 250-850 rpm, and O(2) control at 10%, 20 h. After lactate and amino acids exhaustion, cell growth reached stationary phase and a significant release increase of OMV was observed. According to the Luedeking & Piret model, OMV liberation is non-growth associated. Glycerol was not consumed during cultivation. The maximum OMV concentration value attained was 162 mg/L with correspondent productivity of 8.1mg/(Lh) employing Catlin medium with double initial concentrations of lactate and amino acids. The obtained OMV satisfied constitution and protein pattern criteria and were suitable for vaccine production. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bisschops, Markus M.; Vos, Tim; Martínez-Moreno, Rubén; Cortés, Pilar T.; Pronk, Jack T.; Daran-Lapujade, Pascale
2015-01-01
Stationary-phase (SP) batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability. PMID:28357268
Reductive Dechlorination of Carbon Tetrachloride by Soil With Ferrous and Bisulfide
NASA Astrophysics Data System (ADS)
Choi, K.; Lee, W.
2008-12-01
Batch and column experiments were conducted to investigate the effect of concentration of reductants, contact time to activate reductive capacity, and pH on reductive dechlorination by soil with Fe(II) and HS- in this study. Carbon tetrachloride (CT) was used as a representative target organic compound. Sorption kinetic and isotherm tests were performed to investigate the influence of adsorption on the soil surface. Target compound in the soil suspension reached sorption equilibrium in 4 hours and the type of isotherm was well fitted by a linear type isotherm. In batch experiment, kinetic rate constants for the reductive dechlorination of CT increased with increasing the concentration of the reductants (Fe(II) and HS-). However, Fe(II) was a much more effective reductant, producing higher k values than those of HS-. The contact time of one day for the soil with HS- and that of four hours with Fe(II) showed the highest reaction rates. Additionally, the rate constants increased with the increase of pH in soil suspension with Fe(II) (5.2~8) and HS- (8.3~10.3), respectively. In column experiment, the soil column with Fe(II) showed larger bed volumes (13.76) to reach a column breakthrough than that with HS- indicating the treatment of Fe(II) is more effective for the reductive dechlorination of CT. To enhance reductive capacity of soil column under an acidic condition, CaO addition to the column treated with Fe(II) showed better results for the reductive dechlorination of CT than that of HS-. Fe(II) showed better CT dechlorination than HS- in batch and column reactors therefore, it can be used as an effective reducing agent for the treatment of soil contaminated with chlorinated organic compounds.
Rate dependent fractionation of sulfur isotopes in through-flowing systems
NASA Astrophysics Data System (ADS)
Giannetta, M.; Sanford, R. A.; Druhan, J. L.
2017-12-01
The fidelity of reactive transport models in quantifying microbial activity in the subsurface is often improved through the use stable isotopes. However, the accuracy of current predictions for microbially mediated isotope fractionations within open through-flowing systems typically depends on nutrient availability. This disparity arises from the common application of a single `effective' fractionation factor assigned to a given system, despite extensive evidence for variability in the fractionation factor between eutrophic environments and many naturally occurring, nutrient-limited environments. Here, we demonstrate a reactive transport model with the capacity to simulate a variable fractionation factor over a range of microbially mediated reduction rates and constrain the model with experimental data for nutrient limited conditions. Two coupled isotope-specific Monod rate laws for 32S and 34S, constructed to quantify microbial sulfate reduction and predict associated S isotope partitioning, were parameterized using a series of batch reactor experiments designed to minimize microbial growth. In the current study, we implement these parameterized isotope-specific rate laws within an open, through-flowing system to predict variable fractionation with distance as a function of sulfate reduction rate. These predictions are tested through a supporting laboratory experiment consisting of a flow-through column packed with homogenous porous media inoculated with the same species of sulfate reducing bacteria used in the previous batch reactors, Desulfovibrio vulgaris. The collective results of batch reactor and flow-through column experiments support a significant improvement for S isotope predictions in isotope-sensitive multi-component reactive transport models through treatment of rate-dependent fractionation. Such an update to the model will better equip reactive transport software for isotope informed characterization of microbial activity within energy and nutrient limited environments.
NASA Astrophysics Data System (ADS)
Liu, Ruqin; Huang, Ming; Yao, Xiaolu; Chen, Shuang; Wang, Shucun; Suo, Zhirong
2018-06-01
2,4,6-Triamino-1,3,5-trinitrobenzene is the attractive insensitive high energetic material used extensively in the military and civil fields. Combined with the double-films theory, the global gas-liquid chemical reaction kinetics of 2,4,6-triamino-1,3,5-trinitrobenzene was developed by means of the infinitesimal material balance calculation. The raw material concentration and reactive temperature effects on the crystallization of 2,4,6-triamino-1,3,5-trinitrobenzene were investigated by the batch experiments. The reactive crystallization kinetics associated ammonia feeding rate of 2,4,6-triamino-1,3,5-trinitrobenzene, including nucleation as well as crystal growth, was systematically investigated in the heterogonous semi-batch procedure. The nucleation and crystal growth kinetic exponents were estimated by the linear least-squares method. The crystallization kinetic results indicated that nucleation rate strongly increased but liner growth rate decreased with the increasing of ammonia feeding rate. In terms of manufacturing coarse 2,4,6-triamino-1,3,5-trinitrobenzene, it was found that a slow ammonia feeding rate and a low raw material concentration were feasible under the present experimental conditions.
Ca/Na selectivity coefficients from the Poisson-Boltzmann theory
NASA Astrophysics Data System (ADS)
Hedström, Magnus; Karnland, Ola
As a model for ion equilibrium in montmorillonite, the Poisson-Boltzmann (PB) equation was solved for two parallel charged surfaces in contact with an external NaCl/CaCl 2 mixed solution. The ion concentration profiles in the montmorillonite interlayer were obtained from the PB equation and integration of those gave the occupancy of Na + and Ca 2+ in the clay. That information together with the composition of the external electrolyte were then used for the calculation of the Gaines-Thomas selectivity coefficient K GT. The predictions from the model were compared to experimental data from batch as well as compacted conditions, and the agreement was generally good. With a surface layer-charge density of one unit charge per 145 Å 2, which is close to the value for Wyoming-type montmorillonite, the calculated selectivity coefficients were found to vary from about 4 in batch to 8 in compacted montmorillonite with dry density ∼1700 kg/m 3. From the point of view of assessing the evolution, with regard to sodium-calcium ion exchange, of the bentonite buffer in a repository for spent nuclear fuel, these results justify the use of data obtained in batch experiments.
Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.
Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn
2017-04-01
The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics characterize the process. Biotechnol. Bioeng. 2017;114: 798-812. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Schmidt, Natalie; Page, Declan; Tiehm, Andreas
2017-08-01
Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of >50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of >50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Smectite Formation in Acid Sulfate Environments on Mars
NASA Technical Reports Server (NTRS)
Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.
2017-01-01
Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.
Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses
NASA Astrophysics Data System (ADS)
Diener, A.; Neumann, T.; Kramar, U.; Schild, D.
2012-05-01
Selenium has a toxic potential leading to diseases by ingestion and a radiotoxic potential as 79Se radionuclide if discharged from a high-level nuclear waste repository in deep geological formations into the biosphere. Selenium is often associated with sulfides, such as pyrite, the most important near-surface iron sulfide and constituent of host rocks and bentonite backfills considered for radioactive waste disposal. This study was aimed at investigating the incorporation of Se2- and Se4+ into pyrite and mackinawite to determine the relevance of iron sulfides to Se retention and the type of structural bonding. The syntheses of pyrite and mackinawite occurred via direct precipitation in batches and also produced coatings on natural pyrite in mixed-flow reactor experiments (MFR) under anoxic conditions at Se concentrations in the solutions of up to 10- 3 mol/L. Mineralogical analyses by SEM and XRD reveal the formation of pyrite and mackinawite phases. The average Se2- uptake in pyrite in batch experiments amounts to 98.6%. In MFR syntheses, it reaches 99.5%, both suggesting a high potential for retention. XAFS results indicate a substitution of sulfur by selenide during instantaneous precipitation in highly supersaturated solutions only. In selenide-doted mackinawite S2- was substituted by Se2-, resulting in a mackinawite-type compound. S- is substituted by Se- in selenide-doted pyrite, yielding a FeSSe compound as a slightly distorted pyrite structure. Under slighter supersaturated conditions, XAFS results indicate an incorporation of Se2- and Se4+ predominantly as Se0. This study shows that a substitution of S by Se in iron sulfides is probable only for highly supersaturated solutions under acidic and anoxic conditions. Under closer equilibrium conditions, Se0 is expected to be the most stable species.
Krzywonos, Małgorzata; Cibis, Edmund; Lasik, Małgorzata; Nowak, Jacek; Miśkiewicz, Tadeusz
2009-05-01
The aim of the study was to ascertain the extent to which temperature influences the utilisation of main carbon sources (reducing substances determined before and after hydrolysis, glycerol and organic acids) by a mixed culture of thermo- and mesophilic bacteria of the genus Bacillus in the course of aerobic batch biodegradation of potato stillage, a high-strength distillery effluent (COD=51.88 g O(2)/l). The experiments were performed at 20, 30, 35, 40, 45, 50, 55, 60 and 63 degrees C, at pH 7, in a 5l working volume stirred-tank bioreactor (Biostat B, B. Braun Biotech International) with a stirrer speed of 550 rpm and aeration at 1.6 vvm. Particular consideration was given to the following issues: (1) the sequence in which the main carbon sources in the stillage were assimilated and (2) the extent of their assimilation achieved under these conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. J. Tranter; T. A. Vereschchagina; V. Utgikar
2009-03-01
A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numericalmore » algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments were very favorable for cesium uptake and indicated maximum cesium loading of approximately 9 % by weight of dry AMP. Batch kinetic experiments were also performed to obtain the necessary data to estimate the effective diffusion coefficient for cesium in the sorbent particle. These experiments resulted in effective intraparticle cesium diffusivity coefficients of 4.99 x 10-8 cm2/min and 4.72 x 10-8 cm2/min for the 20% and 25 % AMP-C material, respectively.« less
A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Reimus, P. W.
2013-12-01
In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 μM U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.
Knibbe, Carole; Schneider, Dominique; Beslon, Guillaume
2017-01-01
Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character displacement, at the level of the metabolic network but also of the genome structure. This difference of genome structure between both ecotypes impacts the stability of the cross-feeding interaction, when the population is propagated in chemostat conditions. This study shows the crucial role played by seasonality in temporal niche partitioning and in promoting cross-feeding subgroups into stable ecotypes, a premise to sympatric speciation. PMID:28358919
Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor
NASA Astrophysics Data System (ADS)
Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.
2010-12-01
A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.
Pyrethroid sorption to Sacramento River suspended solids and bed sediments.
Fojut, Tessa L; Young, Thomas M
2011-04-01
Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, California, USA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r(2) > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments, and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature, by approximately an order of magnitude, and ranged from 10(6.16) to 10(6.68) at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. Copyright © 2011 SETAC.
Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R
2008-07-01
Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on acclimatization period and influent COD concentration.
Kaeseberg, Thomas; Zhang, Jin; Schubert, Sara; Oertel, Reinhard; Krebs, Peter
2018-05-26
In this study, degradation affinities of 14 antibiotics and one metabolite were determined in batch experiments. A modelling framework was applied to decrypt potential ranges of abiotic, biotic and photolytic degradation coefficients. In detail, we performed batch experiments with three different sewages in the dark at 7 °C and 22 °C. Additionally, we conducted further batch experiments with artificial irradiation and different dilutions of the sewage at 30 °C - de novo three different sewages were used. The batch experiments were initially spiked with a stock solution with 14 antibiotics and one metabolite to increase background concentrations by 1 μg L -1 for each compound. The final antibiotic concentrations were sub-inhibitory with regard to sewage bacteria. The here presented modelling framework based on the Activated Sludge Model No. 3 in combination with adsorption and desorption processes. The model was calibrated with monitored standard sewage compounds before antibiotic degradation rates were quantified. The model decrypted ranges of abiotic, biotic and photolytic degradation coefficients. In detail, six antibiotics were not abiotic degradable at 7 °C, five antibiotics not at 22 °C and only 2 antibiotics at 30 °C. Finally, nine antibiotics were not significantly biodegradable at 7 °C and 22 °C. The model determined the link between adsorption characteristics and biodegradation rates. In detail, the rate was significantly affected by the bio-solid partition coefficient and the duration until adsorption was balanced. All antibiotics and the metabolite were photolytic degradable. In general, photolytic degradation was the most efficient elimination pathway of presented antibiotics except for the given metabolite and penicillin antibiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar
2018-03-01
The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.
Straka, Levi; Rittmann, Bruce E
2018-02-01
The viability of large-scale microalgae cultivation depends on providing optimal growth conditions, for which a key operational parameter is culture density. Using Synechocystis sp. PCC 6803, we conducted a series of fixed-density, steady-state experiments and one batch-growth experiment to investigate the role of culture density on biomass production and light utilization efficiency. In all cases, the fixed-density, steady-state experiments and batch-growth experiment showed good agreement. The highest biomass production rates (260 mg L -1 d -1 ) and efficiency for converting light energy to biomass (0.80 μg (μmol photons) -1 ) occurred together at a culture density near 760 mg L -1 , which approximately corresponded to the lowest culture density where almost all incident light was absorbed. The ratio of OD 680 /OD 735 increased with culture density up to the point of maximum productivity, where it plateaued (at a value of 2.4) for higher culture densities. This change in OD 680 /OD 735 indicates a photoacclimation effect that depended on culture density. Very high culture densities led to a sharp decline in efficiency of biomass production per photons absorbed, likely due to a combination of increased decay relative to growth, metabolic changes due to cell-cell interactions, and photodamage due to mixing between regions with high light intensity and zero light intensity. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi
2017-07-01
Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.
In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...
Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.
Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein
2012-01-01
Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.
Column Experiments to Interpret Weathering in Columbia Hills
NASA Technical Reports Server (NTRS)
Hausrath, E. M.; Morris, R.V.; Ming, D.W.; Golden, D.C.; Galindo, C.; Sutter, B.
2009-01-01
Phosphate mobility has been postulated as an indicator of early aqueous activity on Mars. In addition, rock surfaces analyzed by the Mars Exploration Rover Spirit are consistent with the loss of a phosphate- containing mineral To interpret phosphate alteration behavior on Mars, we performed column dissolution experiments leaching the primary phases Durango fluorapatite, San Carlos olivine, and basalt glass (Stapafjell Volcano, courtesy of S. Gislason, University of Iceland) [3,4]) with acidic solutions. These phases were chosen to represent quickly dissolving phases likely present in Columbia Hills. Column dissolution experiments are closer to natural dissolution conditions than batch experiments, although they can be difficult to interpret. Acidic solutions were used because the leached layers on the surfaces of these rocks have been interpreted as resulting from acid solutions [5].
Raman, Babu; Nandakumar, M P; Muthuvijayan, Vignesh; Marten, Mark R
2005-11-05
Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions. Copyright (c) 2005 Wiley Periodicals, Inc.
Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3.
Luna, María F; Bernardelli, Cecilia E; Galar, María L; Boiardi, José L
2006-03-01
Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]-linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N(2) or NH(3)). Its synthesis was stimulated by conditions of high energetic demand (i.e., N(2)-fixation) and/or C-limitation. Under C-excess conditions, PQQ-GDH synthesis increased with the glucose concentration in the culture medium. In batch cultures, PQQ-GDH was actively expressed in very early stages with higher activities under conditions of N(2)-fixation. Hexokinase activity was almost absent under any culture condition. Cytoplasmic nicotinamide adenine dinucleotide (NAD)-linked glucose dehydrogenase (GDH) was expressed in continuous cultures under all tested conditions, and its synthesis increased with the glucose concentration. In contrast, low activities of this enzyme were detected in batch cultures. Periplasmic oxidation, by way of PQQ-GDH, seems to be the principal pathway for metabolism of glucose in G. Diazotrophicus, and NAD-GDH is an alternative route under certain environmental conditions.
Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.
Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo
2010-09-30
Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.
Yeo, David; Kiparissides, Alexandros; Cha, Jae Min; Aguilar-Gallardo, Cristobal; Polak, Julia M.; Tsiridis, Elefterios; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios
2013-01-01
Background High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement. Methodology/Principal Findings To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality ‘naïve’ mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency (‘stemness’) genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment. Conclusions/Significance The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization. PMID:24339957
Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William
2015-10-29
In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curvesmore » highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.« less
Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors.
Villatoro-Monzón, W R; Mesta-Howard, A M; Razo-Flores, E
2003-01-01
Anaerobic BTEX biodegradation was tested in batch experiments using an anaerobic sediment as inoculum under Fe(III) and Mn(IV) reducing conditions. All BTEX were degraded under the conditions tested, specially under Mn(IV) reducing conditions, where benzene was degraded at a rate of 0.8 micromol l(-1) d(-1), significantly much faster than Fe(III) reducing conditions. Under Fe(III) reducing conditions, ethylbenzene was the compound that degraded at the faster rate of 0.19 micromol l(-1) d(-1). Mn(IV) reducing conditions are energetically more favourable than Fe(III), therefore, BTEX were more rapidly degraded under Mn(IV) reducing conditions. These results represent the first report of the degradation of benzene with Mn(IV) as the final electron acceptor. Amorphous manganese oxide is a natural widely distributed metal in groundwater, where it can be microbiologically reduced, leading to the degradation of monoaromatic compounds.
NASA Astrophysics Data System (ADS)
Pastare, Laura; Romagnoli, Francesco; Lauka, Dace; Dzene, Ilze; Kuznecova, Tatjana
2014-12-01
The study focuses on sustainability evaluation of an algae-based energy system in Latvia with a holistic and integrated approach of multi-criteria analysis combined with life cycle assessment (including a practical side - biogas yield experiments of locally available algae). The study shows potential for sustainable use of algae in Latvian conditions and thus that algal biomass can be utilized for the production of biogas. The most sustainable and feasible scenario of using algae for biogas energy production foresees the collection of algae biomass from natural water bodies. Important beneficial effects through the use of algae are related to avoiding global warming potential (GWP) and eutrophication impacts. Biogas batch experiments carried out with the local macrophyte C.demersum have shown a methane yield of 554 l CH4/kg VS.
Qiang, Hong; Lang, Dong-Li; Li, Yu-You
2012-01-01
The effect of trace metals on the mesophilic methane fermentation of high-solid food waste was investigated using both batch and continuous experiments. The continuous experiment was conducted by using a CSTR-type reactor with three run. During the first run, the HRT of the reactor was stepwise decreased from 100 days to 30 days. From operation day 50, the reactor efficiency deteriorated due to the lack of trace metals. The batch experiment showed that iron, cobalt, and nickel combinations had a significant effect on food waste. According to the results of the batch experiment, a combination of iron, cobalt, and nickel was added into the CSTR reactor by two different methods at run II, and III. Based on experimental results and theoretical calculations, the most suitable values of Fe/COD, Co/COD, and Ni/COD in the substrate were identified as 200, 6.0, and 5.7 mg/kg COD, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi
2010-02-01
Anaerobic sludges, pretreated by chloroform, base, acid, heat and loading-shock, as well as untreated sludge were evaluated for their thermophilic fermentative hydrogen-producing characters from cassava stillage in both batch and continuous experiments. Results showed that the highest hydrogen production was obtained by untreated sludge and there were significant differences (p<0.05) in hydrogen yields (varied from 32.9 to 65.3mlH(2)/gVS) among the tested pretreatment methods in batch experiments. However, the differences in hydrogen yields disappeared in continuous experiments, which indicated the pretreatment methods had only short-term effects on the hydrogen production. Further study showed that alkalinity was a crucial parameter influencing the fermentation process. When the influent was adjusted to pH 6 by NaHCO(3) instead of NaOH, the hydrogen yield increased from about 40 to 52mlH(2)/gVS in all the experiments. Therefore, pretreatment of anaerobic sludge is unnecessary for practical thermophilic fermentative hydrogen production from cassava stillage.
NIGHTHAWK simulates the fate and transport of biogeochemically reactive contaminants in the saturated subsurface. Version 1.2 supports batch and one- dimensional advective-dispersive-reactive transport involving a number of biogeochemical processes, including: microbially-mediate...
Comparison of the release of constituents from granular materials under batch and column testing.
Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S
2008-01-01
Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.
Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckman, M.E.; Latheef, I.M.; Anthony, R.G.
1999-04-01
The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less
Galí, A; García-Montoya, E; Ascaso, M; Pérez-Lozano, P; Ticó, J R; Miñarro, M; Suñé-Negre, J M
2016-09-01
Although tablet coating processes are widely used in the pharmaceutical industry, they often lack adequate robustness. Up-scaling can be challenging as minor changes in parameters can lead to varying quality results. To select critical process parameters (CPP) using retrospective data of a commercial product and to establish a design of experiments (DoE) that would improve the robustness of the coating process. A retrospective analysis of data from 36 commercial batches. Batches were selected based on the quality results generated during batch release, some of which revealed quality deviations concerning the appearance of the coated tablets. The product is already marketed and belongs to the portfolio of a multinational pharmaceutical company. The Statgraphics 5.1 software was used for data processing to determine critical process parameters in order to propose new working ranges. This study confirms that it is possible to determine the critical process parameters and create design spaces based on retrospective data of commercial batches. This type of analysis is thus converted into a tool to optimize the robustness of existing processes. Our results show that a design space can be established with minimum investment in experiments, since current commercial batch data are processed statistically.
Leaching of TCIPP from furniture foam is rapid and substantial.
Stubbings, William A; Harrad, Stuart
2018-02-01
A series of laboratory experiments were conducted, in which waste furniture polyurethane foam samples containing tris (1-chloro-2-propyl) phosphate (TCIPP) were contacted with a range of leaching fluids, formulated to simulate the composition of landfill leachate. Leaching was examined under a number of different scenarios, such as: dissolved humic matter concentration, pH, and temperature, as well as the effect of agitation, and waste:leaching fluid contact duration. In addition to single batch (no replenishment of leaching fluid), serial batch (draining of leachate and replenishment with fresh leaching fluid at various time intervals) experiments were conducted. Leaching of TCIPP from PUF appears to be a first order process. Concentrations of TCIPP in leachate generated by the experiments in this study ranged from 13 mg L -1 to 130 mg L -1 . In serial batch leaching experiments, >95% of TCIPP was depleted from PUF after 168 h total contact with leaching fluid. Our experiments indicate leaching is potentially a very significant pathway of TCIPP emissions to the environment. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nancharaiah, Y.V.; Francis, A.; Dodge, C.
2010-04-01
We assessed the potential of mixed microbial consortia, in the form of granular biofilms, to reduce chromate and remove it from synthetic minimal medium. In batch experiments, acetate-fed granular biofilms incubated aerobically reduced 0.2 mM Cr(VI) from a minimal medium at 0.15 mM day-1 g-1, with reduction of 0.17 mM day-1 g-1 under anaerobic conditions. There was negligible removal of Cr(VI) (i) without granular biofilms, (ii) with lyophilized granular biofilms, and (iii) with granules in the absence of an electron donor. Analyses by X-ray absorption near edge spectroscopy (XANES) of the granular biofilms revealed the conversion of soluble Cr(VI) tomore » Cr(III). Extended X-ray absorption fine-structure (EXAFS) analysis of the Cr-laden granular biofilms demonstrated similarity to Cr(III) phosphate, indicating that Cr(III) was immobilized with phosphate on the biomass subsequent to microbial reduction. The sustained reduction of Cr(VI) by granular biofilms was confirmed in fed-batch experiments. Our study demonstrates the promise of granular-biofilm-based systems in treating Cr(VI)-containing effluents and wastewater.« less
NASA Astrophysics Data System (ADS)
Giordano, Raquel L. C.; Trovati, Joubert; Schmidell, Willibaldo
This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silicaenzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/1 of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/1 of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/1/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10-4 cm/s.
Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276.
Furlan, Valcenir Júnior Mendes; Maus, Victor; Batista, Irineu; Bandarra, Narcisa Maria
The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
Xu, Yinhui; Zhao, Dongye
2007-05-01
Laboratory batch and column experiments were conducted to investigate the feasibility of using a new class of stabilized zero-valent iron (ZVI) nanoparticles for in situ reductive immobilization of Cr(VI) in water and in a sandy loam soil. Batch kinetic tests indicated that 0.08g/L of the ZVI nanoparticles were able to rapidly reduce 34mg/L of Cr(VI) in water at an initial pseudo first-order rate constant of 0.08h(-1). The extent of Cr(VI) reduction was increased from 24% to 90% as the ZVI dosage was increased from 0.04 to 0.12g/L. The leachability of Cr preloaded in a Cr-loaded sandy soil was reduced by nearly 50% when the soil was amended with 0.08g/L of the ZVI nanoparticles in batch tests at a soil-to-solution ratio of 1g: 10mL. Column experiments indicated that the stabilized ZVI nanoparticles are highly deliverable in the soil column. When the soil column was treated with 5.7 bed volumes of 0.06g/L of the nanoparticles at pH 5.60, only 4.9% of the total Cr was eluted compared to 12% for untreated soil under otherwise identical conditions. The ZVI treatment reduced the TCLP leachability of Cr in the soil by 90%, and the California WET (Waste Extraction Test) leachability by 76%. The stabilized ZVI nanoparticles may serve as a highly soil-dispersible and effective agent for in situ reductive immobilization of chromium in soils, groundwater, or industrial wastes.
Giordano, Raquel L C; Trovati, Joubert; Schmidell, Willibaldo
2008-03-01
This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silica-enzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/l of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/l of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/l/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 x 10(-4) cm/s.
Simulated Batch Production of Penicillin
ERIC Educational Resources Information Center
Whitaker, A.; Walker, J. D.
1973-01-01
Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes.
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel
2015-01-01
A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 gVS/Ld. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro
2018-05-04
A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.
von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui
2016-09-01
In this study, step variations in temperature, pH, and carbon substrate feeding rate were performed within five high cell density Escherichia coli fermentations to assess whether intraexperiment step changes, can principally be used to exploit the process operation space in a design of experiment manner. A dynamic process modeling approach was adopted to determine parameter interactions. A bioreactor model was integrated with an artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for heterologous protein production. A model reliability measure was introduced to assess in which process region the model can be expected to predict process states accurately. It was found that the model could accurately predict process states of multiple fermentations performed at fixed conditions within the determined validity domain. The results suggest that intraexperimental variations of process conditions could be used to reduce the number of experiments by a factor, which in limit would be equivalent to the number of intraexperimental variations per experiment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1343-1352, 2016. © 2016 American Institute of Chemical Engineers.
Removal of pharmaceuticals during drinking water treatment.
Ternes, Thomas A; Meisenheimer, Martin; McDowell, Derek; Sacher, Frank; Brauch, Heinz-Jürgen; Haist-Gulde, Brigitte; Preuss, Gudrun; Wilme, Uwe; Zulei-Seibert, Ninette
2002-09-01
The elimination of selected pharmaceuticals (bezafibrate, clofibric acid, carbamazepine, diclofenac) during drinking water treatment processes was investigated at lab and pilot scale and in real waterworks. No significant removal of pharmaceuticals was observed in batch experiments with sand under natural aerobic and anoxic conditions, thus indicating low sorption properties and high persistence with nonadapted microorganisms. These results were underscored by the presence of carbamazepine in bank-filtrated water with anaerobic conditions in a waterworks area. Flocculation using iron(III) chloride in lab-scale experiments (Jar test) and investigations in waterworks exhibited no significant elimination of the selected target pharmaceuticals. However, ozonation was in some cases very effective in eliminating these polar compounds. In lab-scale experiments, 0.5 mg/L ozone was shown to reduce the concentrations of diclofenac and carbamazepine by more than 90%, while bezafibrate was eliminated by 50% with a 1.5 mg/L ozone dose. Clofibric acid was stable even at 3 mg/L ozone. Under waterworks conditions, similar removal efficiencies were observed. In addition to ozonation, filtration with granular activated carbon (GAC) was very effective in removing pharmaceuticals. Except for clofibric acid, GAC in pilot-scale experiments and waterworks provided a major elimination of the pharmaceuticals under investigation.
Experimental study on anomalous neutron production in deuterium/solid system
NASA Astrophysics Data System (ADS)
He, Jianyu; Zhu, Rongbao; Wang, Xiaozhong; Lu, Feng; Luo, Longjun; Liu, Hengjun; Jiang, Jincai; Tian, Baosheng; Chen, Guoan; Yuan, Yuan; Dong, Baiting; Yang, Liucheng; Qiao, Shengzhong; Yi, Guoan; Guo, Hua; Ding, Dazhao; Menlove, H. O.
1991-05-01
A series of experiments on both D2O electrolysis and thermal cycle of deuterium absorbed Ti Turnings has been designed to examine the anomalous phenomena in Deuterium/Solid System. A neutron detector containing 16 BF3 tubes with a detection limit of 0.38 n/s for two hour counting was used for electrolysis experiments. No neutron counting rate statistically higher than detection limit was observed from Fleischmann & Pons type experiments. An HLNCC neutron detector equipped with 18 3He tubes and a JSR-11 shift register unit with a detection limit of 0.20 n/s for a two hour run was employed to study the neutron signals in D2 gas experiments. Different material pretreatments were selected to review the changes in frequency and size of the neutron burst production. Experiment sequence was deliberately designed to distinguish the neutron burst from fake signals, e.g. electronic noise pickup, the cosmic rays and other sources of environmental background. Ten batches of dry fusion samples were tested, among them, seven batches with neutron burst signals occurred roughly at the temperature from -100 degree centigrade to near room temperature. In the first four runs of a typical sample batch, seven neutron bursts were observed with neutron numbers from 15 to 482, which are 3 and 75 times, respectively, higher than the uncertainty of background. However, no bursts happened for H2 dummy samples running in-between and afterwards and for sample batch after certain runs.
Emerson, H P; Zengotita, F; Richmann, M; Katsenovich, Y; Reed, D T; Dittrich, T M
2018-10-01
The results presented in this paper highlight the complexity of adsorption and incorporation processes of Nd with dolomite and significantly improve upon previous work investigating trivalent actinide and lanthanide interactions with dolomite. Both batch and mini column experiments were conducted at variable ionic strength. These data highlight the strong chemisorption of Nd to the dolomite surface (equilibrium K d 's > 3000 mL/g) and suggest that equilibrium adsorption processes may not be affected by ionic strength based on similar results at 0.1 and 5.0 M ionic strength in column breakthrough and equilibrium batch (>5 days) results. Mini column experiments conducted over approximately one year also represent a significant development in measurement of sorption of Nd in the presence of flow as previous large-scale column experiments did not achieve breakthrough likely due to the high loading capacity of dolomite for Nd (up to 240 μg/g). Batch experiments in the absence of flow show that the rate of Nd removal increases with increasing ionic strength (up to 5.0 M) with greater removal at greater ionic strength for a 24 h sampling point. We suggest that the increasing ionic strength induces increased mineral dissolution and re-precipitation caused by changes in activity with ionic strength that lead to increased removal of Nd through co-precipitation processes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Divakar, K; Suryia Prabha, M; Nandhinidevi, G; Gautam, P
2017-04-21
The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking-Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820 × 10 3 U/L and extracellular protease activity of 172 × 10 3 U/L were obtained at the 16th hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.
van Heerden, Carel D; Nicol, Willie
2013-09-17
Succinic acid (SA) has become a prominent biobased platform chemical with global production quantities increasing annually. Numerous genetically modified E. coli strains have been developed with the main aim of increasing the SA yield of the organic carbon source. In this study, a promising SA-producing strain, E. coli KJ134 [Biotechnol. Bioeng. 101:881-893, 2008], from the Department of Microbiology and Cell Science of the University of Florida was evaluated under continuous and batch conditions using D-glucose and CO2 in a mineral salt medium. Production characteristics entailing growth and maintenance rates, growth termination points and metabolic flux distributions under growth and non-growth conditions were determined. The culture remained stable for weeks under continuous conditions. Under growth conditions the redox requirements of the reductive tricarboxylic acid (TCA) cycle was solely balanced by acetic acid (AcA) production via the pyruvate dehydrogenase route resulting in a molar ratio of SA:AcA of two. A maximum growth rate of 0.22 h(-1) was obtained, while complete growth inhibition occurred at a SA concentration of 18 g L(-1). Batch culture revealed that high-yield succinate production (via oxidative TCA or glyoxylate redox balancing) occurred under non-growth conditions where a SA:AcA molar ratio of up to five was attained, with a final SA yield of 0.94 g g(-1). Growth termination of the batch culture was in agreement with that of the continuous culture. The maximum maintenance production rate of SA under batch conditions was found to be 0.6 g g(-1) h(-1). This is twice the maintenance rate observed in the continuous runs. The study revealed that the metabolic flux of E. coli KJ134 differs significantly for growth and non-growth conditions, with non-growth conditions resulting in higher SA:AcA ratios and SA yields. Bioreaction characteristics entailing growth and maintenance rates, as well as growth termination markers will guide future fermentor designs and improvements.
Ghorbani, M; Eskicioglu, C
2011-12-01
Batch and semi-continuous flow aerobic digesters were used to stabilize thickened waste-activated sludge at different initial conditions and mean solids retention times. Under dynamic conditions, total suspended solids, volatile suspended solids (VSS) and total and particulate chemical oxygen demand (COD and PCOD) were monitored in the batch reactors and effluent from the semi-continuous flow reactors. Activated Sludge Model (ASM) no. 1 and ASM no. 3 were applied to measured data (calibration data set) to evaluate the consistency and performances of models at different flow regimes for digester COD and VSS modelling. The results indicated that both ASM1 and ASM3 predicted digester COD, VSS and PCOD concentrations well (R2, Ra2 > or = 0.93). Parameter estimation concluded that compared to ASM1, ASM3 parameters were more consistent across different batch and semi-continuous flow runs with different operating conditions. Model validation on a data set independent from the calibration data successfully predicted digester COD (R2 = 0.88) and VSS (R2 = 0.94) concentrations by ASM3, while ASM1 overestimated both reactor COD (R2 = 0.74) and VSS concentrations (R2 = 0.79) after 15 days of aerobic batch digestion.
Microwave superheated water extraction of polysaccharides from spent coffee grounds.
Passos, Cláudia P; Coimbra, Manuel A
2013-04-15
The spent coffee grounds (SCG) are a food industry by-product that can be used as a rich source of polysaccharides. In the present work, the feasibility of microwave superheated water extraction of polysaccharides from SCG was studied. Different ratios of mass of SCG to water, from 1:30 to 1:5 (g:mL) were used for a total volume of 80 mL. Although the amount of material extracted/batch (MAE1) increased with the increase of the concentration of the sample, the amount of polysaccharides achieved a maximum of 0.57 g/batch for 1:10. Glycosidic-linkage composition showed that all extraction conditions allowed to obtain mainly arabinogalactans. When the unextracted insoluble material was re-extracted under the same conditions (MAE2), a further extraction of polysaccharides was observed (0.34 g/batch for 1:10), mainly galactomannans. Also, a high amount of oligosaccharides, mainly derived from galactomannans, can be obtained in MAE2 (0.96 g/batch for 1:10). This technology allows to obtain galactomannans and arabinogalactans in proportions that are dependent on the operating conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rahmathulla, V. K.; Suresh, H. M.
2012-01-01
Food consumption and utilization is influenced by various biotic and abiotic factors. Under different environmental, feeding, and nutritional conditions, and with ingestion of the same amount of mulberry leaves, the silkworm shows significant difference in its ability to digest, absorb, and convert food to body matter. Here, influences of season, temperature, and humidity on food intake, assimilation, and conversion efficiency of the Indian bivoltine hybrid (CSR2 × CSR4) Bombyx mori L. (Lepidoptera: Bombycidae) were studied. The results indicated that food ingestion and assimilation were significantly higher among silkworm batches where optimum temperature and humidity were maintained compared with silkworm batches exposed to natural climatic conditions of the respective season. However, during summer the nutritional efficiency parameters were significantly higher among silkworms reared under natural temperature and humidity conditions when compared with the control. During the winter and rainy season, the nutritional efficiency parameters were significantly higher in control batches, where optimum temperature and humidity were maintained. Ingesta and digesta required to produce one gram of cocoon/shell were also lower in control batches for all seasons except summer. This may be due to the physiological adaptation of silkworms to overcome stress during the summer season. PMID:23414194
Tackling the widespread and critical impact of batch effects in high-throughput data.
Leek, Jeffrey T; Scharpf, Robert B; Bravo, Héctor Corrada; Simcha, David; Langmead, Benjamin; Johnson, W Evan; Geman, Donald; Baggerly, Keith; Irizarry, Rafael A
2010-10-01
High-throughput technologies are widely used, for example to assay genetic variants, gene and protein expression, and epigenetic modifications. One often overlooked complication with such studies is batch effects, which occur because measurements are affected by laboratory conditions, reagent lots and personnel differences. This becomes a major problem when batch effects are correlated with an outcome of interest and lead to incorrect conclusions. Using both published studies and our own analyses, we argue that batch effects (as well as other technical and biological artefacts) are widespread and critical to address. We review experimental and computational approaches for doing so.
Removal of trivalent chromium from water using low-cost natural diatomite.
Gürü, Metin; Venedik, Duygu; Murathan, Ayşe
2008-12-30
Trivalent chromium was removed from the artificial wastewater using low-cost diatomite in batch and continuous systems. In batch system, four different sizes and five different amount of sorbent were used. The effect of the temperature on sorption was evaluated with using three different temperatures. As a result of the experiments, 85% of the trivalent chromium was removed from the wastewater in conditions of using 1.29mm grain material at 30 degrees C temperature for 60min in batch system but chromium removal was 82% at 30 degrees C temperature for 22min and 97% from the wastewater at 30 degrees C temperature for 80min in continuous system. Also, the equilibrium adsorption isotherms have been analyzed by Langmuir and Freundlich models. The Langmuir isotherms have the highest correlation coefficients. Langmuir adsorption isotherm constants corresponding to adsorption capacity, q0, were found to be 28.1, 26.5 and 21.8mg Cr3+/g diatomite at 15, 30 and 45 degrees C, respectively. Adsorption process was an exothermic process as a result of thermodynamic parameters calculations. The kinetic data of the sorption showed that the pseudo second-order equation was the more appropriate, which indicate that the intraparticle diffusion is the rate-limiting factor.
Fate and transport of phenol in a packed bed reactor containing simulated solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saquing, Jovita M., E-mail: jmsaquing@gmail.com; Knappe, Detlef R.U., E-mail: knappe@ncsu.edu; Barlaz, Morton A., E-mail: barlaz@ncsu.edu
Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictivemore » models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls.« less
Slininger, P J; Dien, B S; Lomont, J M; Bothast, R J; Ladisch, M R; Okos, M R
2014-08-01
Scheffersomyces (formerly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol production as functions of ethanol, oxygen, and xylose concentrations for both growth and fermentation stages. The model was validated for various growth conditions including batch, cell recycle, batch with in situ ethanol removal and fed-batch. The model provides a summary of basic physiological yeast properties and is an important tool for simulating and optimizing various culture conditions and evaluating various bioreactor designs for ethanol production. © 2014 Wiley Periodicals, Inc.
Cocoa residues as viable biomass for renewable energy production through anaerobic digestion.
Acosta, Nayaret; De Vrieze, Jo; Sandoval, Verónica; Sinche, Danny; Wierinck, Isabella; Rabaey, Korneel
2018-05-31
The aim of this work was to evaluate the bioenergy potential of cocoa residue via anaerobic digestion. Batch and fed-batch lab-scale reactors were operated under low and high solids conditions. In the batch tests, 59 ± 4% of Chemical Oxygen Demand (COD) was recovered as methane. This corresponded with an average methane yield of 174 (wet) and 193 (dry) L kg -1 volatile solids fed, whereas a series of fed-batch reactors produced 70 ± 24 (wet) and 107 ± 39 (dry) L CH 4 kg -1 volatile solids fed during stable conditions. A case study was developed for canton Balao (Ecuador) based on our experimental data, operational estimates and available cocoa waste in the area. Annually, 8341 MWh could be produced, meeting 88% of the current electricity demand in Balao. This case study proves the potential for cocoa waste as a source of renewable energy in rural areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neuro-estimator based GMC control of a batch reactive distillation.
Prakash, K J Jithin; Patle, Dipesh S; Jana, Amiya K
2011-07-01
In this paper, an artificial neural network (ANN)-based nonlinear control algorithm is proposed for a simulated batch reactive distillation (RD) column. In the homogeneously catalyzed reactive process, an esterification reaction takes place for the production of ethyl acetate. The fundamental model has been derived incorporating the reaction term in the model structure of the nonreactive distillation process. The process operation is simulated at the startup phase under total reflux conditions. The open-loop process dynamics is also addressed running the batch process at the production phase under partial reflux conditions. In this study, a neuro-estimator based generic model controller (GMC), which consists of an ANN-based state predictor and the GMC law, has been synthesized. Finally, this proposed control law has been tested on the representative batch reactive distillation comparing with a gain-scheduled proportional integral (GSPI) controller and with its ideal performance (ideal GMC). Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL
An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...
Casas, Mònica Escolà; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai
2015-10-15
Hospital wastewater represents a significant input of pharmaceuticals into municipal wastewater. As Moving Bed Biofilm Reactors (MBBRs) appear to remove organic micro-pollutants, hospital wastewater was treated with a pilot plant consisting of three MBBRs in series. The removal of pharmaceuticals was studied in two experiments: 1) A batch experiment where pharmaceuticals were spiked to each reactor and 2) a continuous flow experiment at native concentrations. DOC removal, nitrification as well as removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) occurred mainly in the first reactor. In the batch experiment most of the compounds followed a single first-order kinetics degradation function, giving degradation rate constants ranged from 5.77 × 10(-3) to 4.07 h(-1), from -5.53 × 10(-3) to 9.24 × 10(-1) h(-1) and from 1.83 × 10(-3) to 2.42 × 10(-1) h(-1) for first, second and third reactor respectively. Generally, the highest removal rate constants were found in the first reactor while the lowest were found in the third one. This order was inverted for most compounds, when the removal rate constants were normalized to biomass, indicating that the last tank had the most effective biofilms. In the batch experiment, 21 out of 26 compounds were assessed to be degraded with more than 20% within the MBBR train. In the continuous flow experiment the measured removal rates were lower than those estimated from the batch experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gibson, Blair D; Blowes, David W; Lindsay, Matthew B J; Ptacek, Carol J
2012-11-30
The removal of aqueous Se(VI) from a simulated groundwater by granular iron (GI), organic carbon (OC), and a mixture of these reactive materials (GI-OC) was evaluated in laboratory batch experiments. The experiments were performed under anoxic conditions to simulate subsurface treatment. A total reaction time of 120 h (5 d) was chosen to investigate the rapid changes in speciation occurring over reaction times that are reasonable for permeable reactive barrier (PRB) systems. After 120 h, concentrations of Se decreased by >90% in the GI system, 15% in the OC system and 35% in the GI-OC mixture. Analysis of the materials after contact with Se using synchrotron-radiation based X-ray absorption spectroscopy (XAS) indicated the presence of Se(IV) and Se(0) on the margins of GI grains after 6h with evidence of SeO and SeSe bonding, whereas Se(VI) was not observed. After 72 h, Se(0) was the only form of Se present in the GI experiments. In the OC batches, the XAS analysis indicated binding consistent with sorption of aqueous Se(VI) onto the OC with only minor reduction to Se(IV) and Se(0) after 120 h. Selenium XAS spectra collected for the GI-OC mixture were consistent with spectra for Se(IV) and Se(0) on both the margins of GI grains and OC particles, suggesting that the presence of dissolved Fe may have mediated the reduction of sorbed Se(VI). The results suggest that the application of granular Fe is effective at inducing aqueous Se removal in anoxic conditions through reductive precipitation processes. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Novak, Tihana; Gašparović, Blaženka; Godrijan, Jelena; Maric, Daniela; Djakovac, Tamara; Mlakar, Marina
2017-04-01
Phytoplankton is the major primary producer in the world. Marine phytoplankton lives in a rather changing environment, with variations in temperature, light, salinity, nutrient availability, etc. In such changing environment phytoplankton should live, grow and reproduce, and, in order to achieve that, they fix carbon and nutrients to produce biomolecules (lipids, proteins and carbohydrates). Lipids are a good indicator of organic matter (OM) processes in the seas and oceans, also good bioindicators for OM origin, and phytoplankton adaptations to environmental stress. Marine lipids are produced by organisms, mostly in phototrophic part of the seas and oceans, and their crucial producer is phytoplankton. We were interested to see how the increasing temperature and different nutrient availability affect quantitative and qualitative lipid and lipid classes production by plankton community. To test how marine phytoplankton would respond to predicted increasing temperature we conducted monoculture batch experiments in laboratory on model diatom Chaetoceros curvisetus at five different temperatures from 10 to 30C. Also we conducted experiments in phosphorous replete and deplete conditions mimicking eutrophic and oligotrophic marine conditions. We have chosen Chaetoceros curvisetus as a model culture since it is a major component of Northern Adriatic (NA) phytoplankton, but also Chaetoceros genus of diatoms is most abundant in wide range of marine ecosystems. We also conducted annual sampling of the NA particulate matter that covers the same temperature range as for the batch experiments. NA samples were taken on two stations with different nutrient supply that were characterized as oligotrophic and mesotrophic stations. Samples were taken from 2013 to 2014 on a monthly basis. Lipid classes were characterized with thin-layer chromatography-flame ionization detection. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a) concentrations and phytoplankton taxonomy and cell abundances.
Biotic nitrosation of diclofenac in a soil aquifer system (Katari watershed, Bolivia).
Chiron, Serge; Duwig, Céline
2016-09-15
Up till now, the diclofenac (DCF) transformation into its nitrogen-derivatives, N-nitroso-DCF (NO-DCF) and 5-nitro-DCF (NO2-DCF), has been mainly investigated in wastewater treatment plant under nitrification or denitrification processes. This work reports, for the first time, an additional DCF microbial mediated nitrosation pathway of DCF in soil under strictly anoxic conditions probably involving codenitrification processes and fungal activities. This transformation pathway was investigated by using field observations data at a soil aquifer system (Katari watershed, Bolivia) and by carrying out soil slurry batch experiments. It was also observed for diphenylamine (DPA). Field measurements revealed the occurrence of NO-DCF, NO2-DCF and NO-DPA in groundwater samples at concentration levels in the 6-68s/L range. These concentration levels are more significant than those previously reported in wastewater treatment plant effluents taking into account dilution processes in soil. Interestingly, the p-benzoquinone imine of 5-OH-DCF was also found to be rather stable in surface water. In laboratory batch experiments under strictly anoxic conditions, the transformation of DCF and DPA into their corresponding N-nitroso derivatives was well correlated to denitrification processes. It was also observed that NO-DCF evolved into NO2-DCF while NO-DPA was stable. In vitro experiments showed that the Fisher-Hepp rearrangement could not account for NO2-DCF formation. One possible mechanism might be that NO-DCF underwent spontaneous NO loss to give the resulting intermediates diphenylaminyl radical or nitrenium cation which might evolve into NO2-DCF in presence of NO2 radical or nitrite ion, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Process intensification for the production of hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Castro, Filipa Juliana Fernandes
Precipitation processes are widely used in chemical industry for the production of particulate solids. In these processes, the chemical and physical nature of synthesized particles is of key importance. The traditional stirred tank batch reactors are affected by non-uniform mixing of reactants, often resulting in broad particle size distribution. The main objective of this thesis was to apply meso and microreactors for the synthesis of hydroxyapatite (HAp) nanoparticles under near-physiological conditions of pH and temperature, in order to overcome the limitations associated with stirred tank batch reactors. Meso and microreactors offer unique features in comparison with conventional chemical reactors. Their high surface-to-volume ratio enables enhanced heat and mass transfer, as well as rapid and efficient mixing. In addition to low consumption of reagents, meso and microreactors are usually operated in continuous flow, making them attractive tools for high throughput experimentation. Precipitation of HAp was first studied in a stirred tank batch reactor, mixing being assured by a novel metal stirrer. HAp was synthetized by mixing diluted aqueous solutions of calcium hydroxide and orthophosphoric acid at 37 °C. After process optimization, a suspension of HAp nanoparticles with pH close to 7 was obtained for a mixing molar ratio Ca/P=1.33. The precipitation process was characterized by three stages: precipitation of amorphous calcium phosphate, transformation of amorphous calcium phosphate into HAp and growth of HAp crystals. The reaction system was further characterized based on equilibrium equations. The resolution of the system, which was possible with the knowledge of three process variables (temperature, pH and calcium concentration), allowed identifying and quantifying all the chemical species present in solution. The proposed model was validated by comparing the experimental and theoretical conductivity. Precipitation of HAp was then investigated in a meso oscillatory flow reactor (meso-OFR). The mesoreactor was first operated batchwise in a vertical tube and experiments were performed under the same conditions of temperature, reactants concentration and power density applied in the stirred tank batch reactor. Despite hydrodynamic conditions being not directly comparable, it was possible to assess the effectiveness of both reactors in terms of mixing and quality of the precipitated particles. The experimental results show the advantages of the meso-OFR over the stirred tank due to the production, about four times faster, of smaller and more uniform HAp nanoparticles. Afterwards, continuous-flow precipitation of HAp was carried out in one meso-OFR and in a series of eight meso-OFRs. Experiments were carried out using fixed frequency (f) and amplitude (x0), varying only the residence time. HAp nanoparticles were successfully obtained in both systems, mean particle size and aggregation degree of the prepared HAp particles decreasing with decreasing residence time. In the present work continuous-flow precipitation of HAp was also investigated in two ultrasonic microreactors. Initially, the process was carried out in a tubular microreactor immersed in an ultrasonic bath, where single-phase (laminar) and gas-liquid flow experiments were both performed. Continuous-flow precipitation of HAp in single-phase flow was then done in a Teflon microreactor with integrated piezoelectric actuator. Rod-like shape HAp nanoparticles were yielded in both reactors under near-physiological conditions of pH and temperature. Further, particles showed improved characteristics, namely in terms of size, shape, particle aggregation and crystallinity. In summary, scale-down of the HAp precipitation process has resulted in the formation of HAp nanoparticles with improved characteristics when compared with HAp particles prepared in a stirred tank batch reactor. Therefore, we believe that the work developed can be a useful contribution to the development of a platform for the continuous production of high quality HAp nanoparticles.
[Batch release of immunoglobulin and monoclonal antibody products].
Gross, S
2014-10-01
The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.
Buyel, Johannes Felix; Fischer, Rainer
2014-01-31
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Charlestra, Lucner; Amirbahman, Aria; Courtemanch, David L.; Alvarez, David A.; Patterson, Howard
2012-01-01
The polar organic chemical integrative sampler (POCIS) was calibrated to monitor pesticides in water under controlled laboratory conditions. The effect of natural organic matter (NOM) on the sampling rates (Rs) was evaluated in microcosms containing -1 of total organic carbon (TOC). The effect of hydrodynamics was studied by comparing Rs values measured in stirred (SBE) and quiescent (QBE) batch experiments and a flow-through system (FTS). The level of NOM in the water used in these experiments had no effect on the magnitude of the pesticide sampling rates (p > 0.05). However, flow velocity and turbulence significantly increased the sampling rates of the pesticides in the FTS and SBE compared to the QBE (p < 0.001). The calibration data generated can be used to derive pesticide concentrations in water from POCIS deployed in stagnant and turbulent environmental systems without correction for NOM.
Characterization of Spirulina biomass for CELSS diet potential
NASA Technical Reports Server (NTRS)
Tadros, Mahasin G.
1988-01-01
Spirulina sp. as a bioregenerative photosynthetic and an edible alga for space craft crew in a CELSS, was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for two strains of Spirulina: S. maxima and S. plantensis. Fast growth rate and high yield of both strains were obtained under the following conditions: temperature (30 to 35 C), light irradiance (60 to 100 uE/m/s), nitrate (30 mM), phosphate (2 mM), aeration (300 ml/min), and ph (9 to 10). The partitioning of the assimalatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. The experiments with Spirulina demonstrated that under stress conditions (high light 120 uE/m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. Conclusion: The nutritional quality of the alga could be manipulated by growth conditions, and therefore usful as a subsystem in CELSS.
Fluidized bed coal desulfurization
NASA Technical Reports Server (NTRS)
Ravindram, M.
1983-01-01
Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.
Reducing power usage on demand
NASA Astrophysics Data System (ADS)
Corbett, G.; Dewhurst, A.
2016-10-01
The Science and Technology Facilities Council (STFC) datacentre provides large- scale High Performance Computing facilities for the scientific community. It currently consumes approximately 1.5MW and this has risen by 25% in the past two years. STFC has been investigating leveraging preemption in the Tier 1 batch farm to save power. HEP experiments are increasing using jobs that can be killed to take advantage of opportunistic CPU resources or novel cost models such as Amazon's spot pricing. Additionally, schemes from energy providers are available that offer financial incentives to reduce power consumption at peak times. Under normal operating conditions, 3% of the batch farm capacity is wasted due to draining machines. By using preempt-able jobs, nodes can be rapidly made available to run multicore jobs without this wasted resource. The use of preempt-able jobs has been extended so that at peak times machines can be hibernated quickly to save energy. This paper describes the implementation of the above and demonstrates that STFC could in future take advantage of such energy saving schemes.
Hu, Tai-Ho; Whang, Liang-Ming; Liu, Pao-Wen Grace; Hung, Yu-Ching; Chen, Hung-Wei; Lin, Li-Bin; Chen, Chia-Fu; Chen, Sheng-Kun; Hsu, Shu Fu; Shen, Wason; Fu, Ryan; Hsu, Romel
2012-06-01
This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kooh, Muhammad Raziq Rahimi; Dahri, Muhammad Khairud; Lim, Linda B. L.; Lim, Lee Hoon; Chan, Chin Mei
2018-05-01
Three plant-based materials, namely water lettuce (WL), tarap peel (TP) and cempedak peel (CP), were used to investigate their potentials as adsorbents using acid blue 25 (AB25) dye as a model for acidic dye. The adsorbents were characterised using Fourier transform infrared spectroscopy, X-ray fluorescence and scanning electron microscope. Batch experiments involving parameters such as pH, temperature, contact time, and initial dye concentration were done to investigate the optimal conditions for the adsorption of AB25 onto the adsorbents. Thermodynamics study showed that the uptake of AB25 by the three adsorbents was feasible and endothermic in nature. Both the Langmuir and Freundlich isotherm models can be used to describe the adsorption process of AB25 onto WL and CP while pseudo-second-order fitted the kinetics data, suggesting that chemisorptions were majorly involved. The use of 0.1 M of NaOH showed the best results in regenerating of the WL, TP and CP's adsorption ability after AB25 treatment.
Niessen, J; Schröder, U; Harnisch, F; Scholz, F
2005-01-01
To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.
Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.
Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini
2017-05-01
Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Lipid Content and Cryotolerance of Bakers' Yeast in Frozen Doughs †
Gélinas, Pierre; Fiset, Gisèle; Willemot, Claude; Goulet, Jacques
1991-01-01
The relationship between lipid content and tolerance to freezing at −50°C was studied in Saccharomyces cerevisiae grown under batch or fed-batch mode and various aeration and temperature conditions. A higher free-sterol-to-phospholipid ratio as well as higher free sterol and phospholipid contents correlated with the superior cryoresistance in dough or in water of the fed-batch-grown compared with the batch-grown cells. For both growth modes, the presence of excess dissolved oxygen in the culture medium greatly improved yeast cryoresistance and trehalose content (P. Gélinas, G. Fiset, A. LeDuy, and J. Goulet, Appl. Environ. Microbiol. 26:2453-2459, 1989) without significantly changing the lipid profile. Under the batch or fed-batch modes, no correlation was found between the cryotolerance of bakers' yeast and the total cellular lipid content, the total sterol content, the phospholipid unsaturation index, the phosphate or crude protein content, or the yeast cell morphology (volume and roundness). PMID:16348412
The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions.
Vito, Davide; Smales, C Mark
2018-05-21
The role of non-coding RNAs in determining growth, productivity and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). We have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. We report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. We demonstrate that the mouse microarray was suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. We then further analysed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. We discuss the implications for the publication of this rich dataset and how this may be used by the community. This article is protected by copyright. All rights reserved.
Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R
2014-01-01
Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.
Zucker, Ines; Avisar, Dror; Mamane, Hadas; Jekel, Martin; Hübner, Uwe
2016-09-01
The use of kinetic models to predict oxidation performance in wastewater is limited due to fast ozone depletion during the first milliseconds of the reaction. This paper introduces the Quench Flow Module (QFM), a bench-scale experimental technique developed to measure the first 5-500 milliseconds of ozone depletion for accurate determination of ozone exposure in wastewater-ozonation processes. Calculated ozone exposure in QFM experiments was up to 24% lower than in standard batch experiments, strongly depending on the initial sampling point for measurement in batch experiments. However, oxidation rates of slowly- and moderately-reacting trace organic compounds (TrOCs) were accurately predicted from batch experiments based on integration of ozone depletion and removal of an ozone-resistant probe compound to calculate oxidant exposures. An alternative concept, where ozone and hydroxyl radical exposures are back-calculated from the removal of two probe compounds, was tested as well. Although the QFM was suggested to be an efficient mixing reactor, ozone exposure ranged over three orders of magnitude when different probe compounds reacting moderately with ozone were used for the calculation. These effects were beyond uncertainty ranges for apparent second order rate constants and consistently observed with different ozone-injection techniques, i.e. QFM, batch experiments, bubble columns and venturi injection. This indicates that previously suggested mixing effects are not responsible for the difference and other still unknown factors might be relevant. Results furthermore suggest that ozone exposure calculations from the relative residual concentration of a probe compound are not a promising option for evaluation of ozonation of secondary effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meghdadi, Aminreza
2018-05-02
Nitrate has been recognized as a global threat to environmental health. In this regard, the hyporheic zone (saturated media beneath and adjacent to the stream bed) plays a crucial role in attenuating groundwater nitrate, prior to discharge into surface water. While different nitrate removal pathways have been investigated over recent decades, the adsorption capacity of hyporheic sediments under natural conditions has not yet been identified. In this study, the natural attenuation capacity of the hyporheic-sediments of the Ghezel-Ozan River, located in the north-west of Iran, was determined. The sampled sediments (from 1 m below the stream bed) were characterized via XRD, FT-IR, BET, SEM, BJH, and Zeta potential. Nitrate adsorption was evaluated using a batch experiment with hyporheic pore-water from each study site. The study was performed in the hyporheic sediments of two morphologically different zones, including Z 1 located in the parafluvial zone having the clay sediment texture (57.8% clay) with smectite/Illite mixed layer clay type and Z 2 located in the river confluence area containing silty clay sediment texture (47.6% clay) with smectite/kaolinite mixed layer clay type. Data obtained from the batch experiment were subjected to pseudo-first order, pseudo-second order, intra-particle diffusion, and Elovich mass transfer kinetic models to characterize the nitrate adsorption mechanism. Furthermore, to replicate nitrate removal efficiencies of the hyporheic sediments under natural conditions, the sampled hyporheic pore-waters were applied as initial solutions to run the batch experiment. The results of the artificial nitrate solution correlated well with pseudo-second order (R 2 >95%; in both Z 1 and Z 2 ) and maximum removal efficiencies of 85.3% and 71.2% (adsorbent dosage 90 g/L, pH = 5.5, initial adsorbate concentration of 90 mg/L) were achieved in Z 1 and Z 2 , respectively. The results of the nitrate adsorption analysis revealed that the nitrate removal efficiencies varied from 17.24 ± 1.86% in Z 1 during the wet season to 28.13 ± 0.89% in Z 2 during the dry season. The results obtained by this study yielded strong evidence of the potential of hyporheic sediments to remove nitrate from an aqueous environment with great efficiency. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Biosorption of Cr(VI) and As(V) at high concentrations by organic and inorganic wastes
NASA Astrophysics Data System (ADS)
María Rivas Pérez, Ivana; Paradelo Núñez, Remigio; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel; José Fernández Sanjurjo, María; Álvarez Rodríguez, Esperanza; Núñez Delgado, Avelino
2016-04-01
The potential reutilization of several wastes as biosorbents for As(V) and Cr(VI) has been assessed in batch-type experiments. The materials studied were one inorganic: mussel shell, and three organic: pine bark, oak ash and hemp waste. Batch experiments were performed in order to determine the removal capacity of the wastes under conditions of high As(V) and Cr(VI) loads. For this, 3 g of each waste material were added with 30 mL NaNO3 0.01 M dissolutions containing 0, 0.5, 1.5, 3 and 6 mmol As(V) L-1 or Cr(VI) L-1, prepared from analytical grade Na2HAsO4 or K2Cr2O7. The resulting suspensions were shaken for 24 h, centrifuged and filtered. Once each batch experiment corresponding to the sorption trials ended, each individual sample was added with 30 mL of NaNO3 0.01 M to desorb As(V) or Cr(VI), shaken for 24 h, centrifuged and filtered as in the sorption trials. Oak ash showed high sorption (>76%) and low desorption (<7%) for As(V), which was lower on mussel shell (<31%), hemp waste (<16%) and pine bark (<9.9%). In turn, pine bark showed the highest Cr(VI) sorption (>98%) with very low desorption (<0.5%), followed by oak ash (27% sorption), and hemp waste and mussel shell, that presented very low Cr(VI) sorption (<10%). Sorption data for both elements were better described by the Freundlich than by the Langmuir model. The variable results obtained for the removal of the two anionic contaminants for a given sorbent suggest that different mechanisms govern removal from the solution in each case. In summary, oak ash would be an efficient sorbent material for As(V), but not for Cr(VI), while pine bark would be the best sorbent for Cr(VI) removal.
Smith, J.A.; Sahoo, D.; Mclellan, H.M.; Imbrigiotta, T.E.
1997-01-01
Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer at Picatinny Arsenal, NJ, has been studied through a series of laboratory and field experiments. In the laboratory, batch and column experiments were conducted to quantify the rate and amount of Triton X-100 sorption to the aquifer sediments. In the field, a 400 mg/L aqueous Triton X-100 solution was injected into the aquifer at a rate of 26.5 L/min for a 35-d period. The transport of Triton X-100 was monitored by sampling and analysis of groundwater at six locations surrounding the injection well. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two- dimensional (respectively) transient solute transport models with either equilibrium or rate-limited sorption. These analyses reveal that Triton X- 100 sorption to the aquifer solids is slow relative to advective and dispersive transport and that an equilibrium sorption model cannot simulate accurately the observed soil column and field data. Comparison of kinetic sorption parameters from batch, column, and field transport data indicate that both physical heterogeneities and Triton X-100 mass transfer between water and soil contribute to the kinetic transport effects.Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer was studied. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two-dimensional transient solute transport models with either equilibrium or rate-limited sorption. These analyses revealed that Triton X-100 sorption to the aquifer solids was slow relative to advective and dispersive transport.
Morgeaux, S; Manniam, I; Variot, P; Daas, A; Costanzo, A
2015-01-01
The current batch of the European Pharmacopoeia (Ph. Eur.) Biological Reference Reagents (BRRs) used for the in vitro potency assay of hepatitis A vaccines (HAV) by ELISA (enzymelinked immunosorbent assay) was established in 2012 for use in conjunction with Ph. Eur. general chapter 2.7.14 Assay of hepatitis A vaccine. It is composed of a coating reagent and a set of detection antibodies. As stocks of the latter are running low, the European Directorate for the Quality of Medicines & HealthCare (EDQM) organised a collaborative study to qualify replacement batches. The candidate BRR antibodies (primary monoclonal antibody and labelled secondary antibody) were prepared under appropriate conditions from starting materials similar to those used for the current batches. The new batches of antibodies were tested alongside previous batches of BRRs to ensure continuity, and the results confirmed that they were suitable for use in the potency assay of hepatitis A vaccines by ELISA using the standard method referenced in Ph. Eur. general chapter 2.7.14 at the same final concentrations as the previous batches, i.e. 1:500 for the primary monoclonal antibody and 1:400 for the secondary conjugated antibody. The outcome of the study allowed their establishment by the Ph. Eur. Commission in March 2015 as anti-hepatitis A virus primary detection antibody BRR batch 3 and conjugated secondary detection antibody BRR batch 3 respectively. They are available from the EDQM as hepatitis A vaccine ELISA detection antibodies set BRR batch 3.
Jabari, P; Yuan, Q; Oleszkiewicz, J A
2016-11-01
The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sludge Settling Rate Observations and Projections at the Savannah River Site - 13238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillam, Jeffrey M.; Shah, Hasmukh B.; Keefer, Mark T.
2013-07-01
Since 2004, sludge batches have included a high percentage of stored sludge generated from the H- modified (HM) process. The slow-settling nature of HM sludge means that the settling is often the major part of the washing tank quiescent period between required pump runs to maintain flammability control. Reasonable settling projections are needed to wash soluble salts from sludge in an efficient manner, to determine how much sludge can be washed in a batch within flammability limits, and to provide composition projections for batch qualification work done in parallel with field preparation. Challenges to providing reasonably accurate settling projections includemore » (1) large variations in settling behavior from tank-to-tank, (2) accounting for changing initial concentrations, sludge masses, and combinations of different sludge types, (3) changing the settling behavior upon dissolving some sludge compounds, and (4) sludge preparation schedules that do not allow for much data collection for a particular sludge before washing begins. Scaling from laboratory settling tests has provided inconsistent results. Several techniques have been employed to improve settling projections and therefore the overall batch preparation efficiency. Before any observations can be made on a particular sludge mixture, projections can only be made based on historical experience with similar sludge types. However, scaling techniques can be applied to historical settling models to account for different sludge masses, concentrations, and even combinations of types of sludge. After sludge washing/settling cycles begin, the direct measurement of the sludge height, once generally limited to a single turbidity meter measurement per settle period, is now augmented by examining the temperature profile in the settling tank, to help determine the settled sludge height over time. Recently, a settling model examined at PNNL [1,2,3] has been applied to observed thermocouple and turbidity meter readings to quickly provide settling correlations to project settled heights for other conditions. These tools improve the accuracy and adaptability of short and mid-range planning for sludge batch preparation. (authors)« less
Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy
2011-05-01
This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vishnuganth, M A; Remya, Neelancherry; Kumar, Mathava; Selvaraju, N
2016-10-01
The photocatalytic removal of carbofuran (CBF) from aqueous solution in the presence of granular activated carbon supported TiO2 (GAC-TiO2) catalyst was investigated under batch-mode experiments. The presence of GAC enhanced the photocatalytic efficiency of the TiO2 catalyst. Experiments were conducted at different concentrations of CBF to clarify the dependence of apparent rate constant (kapp) in the pseudo first-order kinetics on CBF photodegradation. The general relationship between the adsorption equilibrium constant (K) and reaction rate constant (kr) were explained by using the modified Langmuir-Hinshelwood (L-H) model. From the observed kinetics, it was observed that the surface reaction was the rate limiting step in the GAC-TiO2 catalyzed photodegradation of CBF. The values of K and kr for this pseudo first-order reaction were found to be 0.1942 L mg(-1) and 1.51 mg L(-1) min(-1), respectively. In addition, the dependence of kapp on the half-life time was determined by calculating the electrical energy per order experimentally (EEO experimental) and also by modeling (EEO model). The batch-mode experimental outcomes revealed the possibility of 100% CBF removal (under optimized conditions and at an initial concentration of 50 mg L(-1) and 100 mg L(-1)) at a contact time of 90 min and 120 min, respectively. Both L-H kinetic model and EEO model fitted well with the batch-mode experimental data and also elucidated successfully the phenomena of photocatalytic degradation in the presence of GAC-TiO2 catalyst. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aribowo, Slamet; Hafizah, Mas Ayu Elita; Manaf, Azwar; Andreas
2018-04-01
In the present paper, we reported particle size kinetic studies on the conducting polyaniline (PANI) which synthesized through a chemical oxidative polymerization technique from aniline monomer. PANI was prepared using ammonium persulfate (APS) as oxidizing agent which carried out in acidic and neutral medium at various batch temperatures of respectively 20, 30 and 50 °C. From the studies, it was noticed that the complete polymerization reaction progressed within 480 minutes duration time. The pH of the solution during reaction kinetic reached values 0.8 - to 1.2 in acidic media, while in the neutral media the pH value reached values 3.8 - 4.9. The batch temperature controlled the polymerization reaction in which the reaction progressing, which followed by the temperature rise of solution above the batch temperature before settled down to the initial temperature. An increment in the batch temperature gave highest rise in the solution temperature for the two media which cannot be more than 50 °C. The final product of polymerization reaction was PANI confirmed by Fourier Transform Infra-Red (FTIR) spectrophotometer for molecule structure identification. The averages particle size of PANI which carried out in the two different media is evidently similar in the range 30 - 40 μm and insensitive to the batch temperature. However, the particle size of PANI which obtained from the polymerization reaction at a batch temperature of 50 °C under acidic condition reached ˜53.1 μm at the tip of the propagation stage which started in the first 5 minutes. The size is obviously being the largest among the batch temperatures. Whereas, under neutral condition the particle size is much larger which reached the size 135 μm at the batch temperature of 20 °C. It is concluded that the particle size formation during the polymerization reaction being one of the important parameter to determine particle growing of polymer which indicated the reaction kinetics mechanism of synthesize polyaniline.
Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.
Gąszczak, Agnieszka; Bartelmus, Grażyna; Greń, Izabela
2012-01-01
The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5-90 g m(-3). The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ (m) = 0.1188 h(-1), K(S) = 5.984 mg l(-1), and K (i) = 156.6 mg l(-1). The yield coefficient mean value [Formula in text] for the batch culture was 0.72 g(dry cells weight) (g(substrate))(-1). The experiments conducted in a chemostat at various dilution rates (D = 0.035-0.1 h(-1)) made it possible to determine the value of the coefficient for maintenance metabolism m (d) = 0.0165 h(-1) and the maximum yield coefficient value [Formula in text]. Chemostat experiments confirmed the high value of yield coefficient [Formula in text] observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.
Column experiments on organic micropollutants - applications and limitations
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Hebig, Klaus
2016-04-01
As organic micropollutants become more and more ubiquitous in the aquatic environment, a sound understanding of their fate and transport behaviour is needed. This is to assure both safe and clean drinking water supply for mankind in the future and to protect the aquatic environment from pollution and negative consequences caused by manmade contamination. Apart from countless field studies, column experiments were and are frequently used to study transport of organic micropollutants. As the transport of (organic) solutes in groundwater is controlled by the chemical and physical properties of the compounds, the solvent (the groundwater including all solutes), and the substrate (the aquifer material), the adjustment and control of these boundary conditions allow to study a multitude of different experimental setups and to address specific research questions. The main purpose, however, remains to study the transport of a specific compound and its sorption and degradation behaviour in a specific sediment or substrate. Apart from the effective control of the individual boundary conditions, the main advantage of columns studies compared to other experimental setups (such as field studies, batch/microcosm studies), is that conservative and reactive solute breakthrough curves are obtained, which represent the sum of the transport processes. The analysis of these curves is well-developed and established. Additionally, limitations of this experimental method are presented here: the effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) plays a major role in contrast to batch experiments, in which all processes will be observed until equilibrium is reached in the substrate-solution-system. Slightly modifying boundary conditions in different experiments have a strong influence on transport and degradation behaviour of organic micropollutants. This is a significant severe issue when it comes to general findings on the transport behaviour of a specific organic compound that are transferable to any given hydrogeochemical environment. Unfortunately, results of most column experiments therefore remain restricted to their specific setup. Column experiments can provide good estimates of all relevant transport parameters. However, the obtained results will almost always be limited to the scale they were obtained from. This means that direct application to field scale studies is infeasible as too many parameters are exclusive for the laboratory column setup. The remaining future challenge is to develop standard column experiments on organic micropollutants that overcome this issue. Here, we present a review of column experiments on organic micropollutants. We present different setups and discuss weaknesses, problems and advantages and provide ideas how to obtain more comparable results on the transport of organic micropollutants in the future.
Gisi, Daniel; Willi, Laurent; Traber, Hubert; Leisinger, Thomas; Vuilleumier, Stéphane
1998-01-01
Methylobacterium sp. strain DM4 and Methylophilus sp. strain DM11 can grow with dichloromethane (DCM) as the sole source of carbon and energy by virtue of homologous glutathione-dependent DCM dehalogenases with markedly different kinetic properties (the kcat values of the enzymes of these strains are 0.6 and 3.3 s−1, respectively, and the Km values are 9 and 59 μM, respectively). These strains, as well as transconjugant bacteria expressing the DCM dehalogenase gene (dcmA) from DM11 or DM4 on a broad-host-range plasmid in the background of dcmA mutant DM4-2cr, were investigated by growing them under growth-limiting conditions and in the presence of an excess of DCM. The maximal growth rates and maximal levels of dehalogenase for chemostat-adapted bacteria were higher than the maximal growth rates and maximal levels of dehalogenase for batch-grown bacteria. The substrate saturation constant of strain DM4 was much lower than the Km of its associated dehalogenase, suggesting that this strain is adapted to scavenge low concentrations of DCM. Strains and transconjugants expressing the DCM dehalogenase from strain DM11, on the other hand, had higher growth rates than bacteria expressing the homologous dehalogenase from strain DM4. Competition experiments performed with pairs of DCM-degrading strains revealed that a strain expressing the dehalogenase from DM4 had a selective advantage in continuous culture under substrate-limiting conditions, while strains expressing the DM11 dehalogenase were superior in batch culture when there was an excess of substrate. Only DCM-degrading bacteria with a dcmA gene similar to that from strain DM4, however, were obtained in batch enrichment cultures prepared with activated sludge from sewage treatment plants. PMID:9546153
Mozzetti, V; Grattepanche, F; Berger, B; Rezzonico, E; Arigoni, F; Lacroix, C
2013-06-01
A central issue in the application of probiotics as food additives is their fastidious production and their sensitivity to many environmental stresses. The importance of inducible cell-protective mechanisms triggered by application of sublethal stresses for survival under stress conditions has been demonstrated. Continuous cultures could be a suitable and more efficient method to test stress factors on one culture instead of several repeated batch cultures. In this study, the application of a two-stage continuous culture of Bifidobacterium longum NCC2705 was investigated. The first reactor was operated under fixed conditions at 37 °C and pH 6.0 and used to produce cells with controlled physiology, mimicking cells in the late exponential growth phase. Stress pretreatment combinations of pH (6.0, 5.0 and 4.0), temperature (37, 45 and 47 °C) and NaCl (0, 5 and 10%) were tested in the second reactor. Of all tested combinations, only those of pH 4.0 significantly decreased cell viability in the second reactor compared to control conditions (37 °C, pH 6.0, 0% NaCl) and, therefore, could not be considered as sublethal stresses. Pretreatments with 5 or 10% NaCl had a negative effect on cell viability after gastric lethal stress. A significant improvement in cell resistance to heat lethal stress (56 °C, 5 min) was observed for cells pretreated at 47 °C. In contrast, heat pretreatment negatively affected cell viability after freeze drying and osmotic lethal stresses. The two-stage continuous culture allowed for efficient screening of several stress pretreatments during the same experiment with up to four different conditions tested per day. Optimal sublethal stress conditions can also be applied for producing cells with traditional batch cultures.
Application of gain scheduling to the control of batch bioreactors
NASA Technical Reports Server (NTRS)
Cardello, Ralph; San, Ka-Yiu
1987-01-01
The implementation of control algorithms to batch bioreactors is often complicated by the inherent variations in process dynamics during the course of fermentation. Such a wide operating range may render the performance of fixed gain PID controllers unsatisfactory. In this work, a detailed study on the control of batch fermentation is performed. Furthermore, a simple batch controller design is proposed which incorporates the concept of gain-scheduling, a subclass of adaptive control, with oxygen uptake rate as an auxiliary variable. The control of oxygen tension in the biorector is used as a vehicle to convey the proposed idea, analysis and results. Simulation experiments indicate significant improvement in controller performance can be achieved by the proposed approach even in the presence of measurement noise.
Consumption and diffusion of dissolved oxygen in sedimentary rocks.
Manaka, M; Takeda, M
2016-10-01
Fe(II)-bearing minerals (e.g., biotite, chlorite, and pyrite) are a promising reducing agent for the consumption of atmospheric oxygen in repositories for the geological disposal of high-level radioactive waste. To estimate effective diffusion coefficients (D e , in m 2 s -1 ) for dissolved oxygen (DO) and the reaction rates for the oxidation of Fe(II)-bearing minerals in a repository environment, we conducted diffusion-chemical reaction experiments using intact rock samples of Mizunami sedimentary rock. In addition, we conducted batch experiments on the oxidation of crushed sedimentary rock by DO in a closed system. From the results of the diffusion-chemical reaction experiments, we estimated the values of D e for DO to lie within the range 2.69×10 -11
Usman, Muhammad; Tascone, Oriane; Rybnikova, Victoria; Faure, Pierre; Hanna, Khalil
2017-06-01
This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg -1 ) and γ-HCH (lindane, 25 mg kg -1 ) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H 2 O 2 alone, H 2 O 2 /Fe II , Na 2 S 2 O 8 alone, Na 2 S 2 O 8 /Fe II , and KMnO 4 . Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H 2 O 2 improved the oxidation efficiency while in Na 2 S 2 O 8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by Fe II -activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO 4 > Na 2 S 2 O 8 /Fe II > Na 2 S 2 O 8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO 4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.
Linear Covariance Analysis and Epoch State Estimators
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Carpenter, J. Russell
2014-01-01
This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.
Linear Covariance Analysis and Epoch State Estimators
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Carpenter, J. Russell
2012-01-01
This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.
Mingyan Yang; Hairui Ji; Junyong Zhu
2016-01-01
This study evaluated batch fermentation modes, namely, separate hydrolysis and fermentation (SHF), quasi-simultaneous saccharification and fermentation (Q-SSF), and simultaneous saccharification and fermentation (SSF), and fermentation conditions, i.e., enzyme and yeast loadings, nutrient supplementation and sterilization, on high titer bioethanol production from SPORL...
NITRATE CONVERSION OF HB-LINE REILLEXTM HPQ RESIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steimke, J.; Williams, M.; Steeper, T.
Reillex{trademark} HPQ ion exchange resin is used by HB Line to remove plutonium from aqueous streams. Reillex{trademark} HPQ resin currently available from Vertellus Specialties LLC is a chloride ionic form, which can cause stress corrosion cracking in stainless steels. Therefore, HB Line Engineering requested that Savannah River National Laboratory (SRNL) convert resin from chloride form to nitrate form in the Engineering Development Laboratory (EDL). To perform this task, SRNL treated two batches of resin in 2012. The first batch of resin from Reilly Industries Batch 80302MA was initially treated at SRNL in 2001 to remove chloride. This batch of resin,more » nominally 30 liters, has been stored wet in carboys since that time until being retreated in 2012. The second batch of resin from Batch 23408 consisted of 50 kg of new resin purchased from Vertellus Specialties in 2012. Both batches were treated in a column designed to convert resin using downflow of 1.0 M sodium nitrate solution through the resin bed followed by rinsing with deionized water. Both batches were analyzed for chloride concentration, before and after treatment, using Neutron Activation Analysis (NAA). The resin specification [Werling, 2003] states the total chlorine and chloride concentration shall be less than 250 ppm. The resin condition for measuring this concentration is not specified; however, in service the resin would always be fully wet. Measurements in SRNL showed that changing from oven dry resin to fully wet resin, with liquid in the particle interstices but no supernatant, increases the total weight by a factor of at least three. Therefore, concentration of chlorine or chloride expressed as parts per million (ppm) decreases by a factor of three. Therefore, SRNL recommends measuring chlorine concentration on an oven dry basis, then dividing by three to estimate chloride concentration in the fully wet condition. Chloride concentration in the first batch (No.80302MA) was nearly the same before the current treatment (759 ppm dry) and after treatment (745 ppm dry or {approx}248 ppm wet). Treatment of the second batch of resin (No.23408) was very successful. Chloride concentration decreased from 120,000 ppm dry to an average of 44 ppm dry or {approx}15ppm wet, which easily passes the 250 ppm wet criterion. Per guidance from HB Line Engineering, SRNL blended Batch 80302 resin with Batch P9059 resin which had been treated previously by ResinTech to remove chloride. The chloride concentrations for the two drums of Batch P9059 were 248 ppm dry ({approx}83 ppm wet) {+-}22.8% and 583 ppm dry ({approx}194 ppm wet) {+-} 11.8%. The blended resin was packaged in five gallon buckets.« less
Callewaert, Raf; De Vuyst, Luc
2000-01-01
Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source. PMID:10653724
Park, Seonghwan; Kim, Jeongmi; Park, Younghyun; Son, Suyoung; Cho, Sunja; Kim, Changwon; Lee, Taeho
2017-06-01
Two competitive strategies, fed-batch and sequencing-batch cultivation, were compared in cost-effective biomass production of a high lipid microalgae, Micractinium inermum NLP-F014 using a blended wastewater medium. For fed-batch cultivations, additional nutrient was supplemented at day 2 (FB1) or consecutively added at day 2 and 4 (FB2). Through inoculum size test, 1.0g-DCWL -1 was selected for the sequencing-batch cultivation (SB) where about 65% of culture was replaced with fresh medium every 2days. Both fed-batch cultivations showed the maximum biomass productivity of 0.95g-DCWL -1 d -1 , while average biomass productivity in SB was slightly higher as 0.96±0.08g-DCWL -1 d -1 . Furthermore, remained concentrations of organics (426mg-CODL -1 ), total nitrogen (15.4mg-NL -1 ) and phosphorus (0.6mg-PL -1 ) in SB were much lower than those of fed-batch conditions. The results suggested that SB could be a promising strategy to cultivate M. inermum NLP-F014 with the blended wastewater medium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oliveira, L Z; Arruda, R P; de Andrade, A F C; Santos, R M; Beletti, M E; Peres, R F G; Martins, J P N; de Lima, V F M Hossepian
2012-11-01
The objective was to determine the effect of sequence of insemination after simultaneous thawing of multiple 0.5 mL semen straws on conception rate in suckled multiparous Nelore cows. The effect of this thawing procedure on in vitro sperm characteristics was also evaluated. All cows (N = 944) received the same timed AI protocol. Ten straws (0.5 mL) of frozen semen from the same batch were simultaneously thawed at 36 °C, for a minimum of 30 sec. One straw per cow was used for timed AI. Frozen semen from three Angus bulls was used. Timed AI records included sequence of insemination (first to tenth) and time of semen removal from thawing bath. For laboratory analyses, the same semen batches used in the field experiment were evaluated. Ten frozen straws from the same batch were thawed simultaneously in a thawing unit identical to that used in the field experiment. The following sperm characteristics were analyzed: sperm motility parameters, sperm thermal resistance, plasma and acrosomal membrane integrity, lipid peroxidation, chromatin structure, and sperm morphometry. Based on logistic regression, there were no significant effects of breeding group, body condition score, AI technician, and sire on conception rate, but there was an interaction between sire and straw group (P = 0.002). Semen from only one bull had decreased (P < 0.05) field fertility for the group of straws associated with the longest interval from thawing to AI. However, the results of the laboratory experiment were unable to explain the findings of the field experiment. Sperm width:length ratio of morphometric analysis was the single sperm characteristic with a significant interaction between sire and straw group (P = 0.02). It was concluded that sequence of insemination after simultaneous thawing of 10 semen straws can differently affect conception rates at timed AI, depending on the sire used. Nevertheless, the effects of this thawing environment on in vitro sperm characteristics, remain to be further investigated. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernandez, N. M.; Druhan, J. L.; Potrel, A.; Jacobson, A. D.
2016-12-01
The concept of dynamic equilibrium carries the implicit assumption of continued isotopic exchange between a mineral and the surrounding fluid. While this effect has received much attention in the marine paleoproxy literature, it has been relatively overlooked in application to the terrestrial environment. In weathering systems, a potential consequence is that rapid reequilibration may alter or erase isotopic signatures generated during secondary mineral formation. The extent and timescale over which isotopic signatures are reset in these hydrologic systems is unknown. Using reactive transport modeling, we show isotopic reequilibration under conditions reflecting terrestrial hydrologic settings to be significant and dependent on the reactive surface area of the solid. In particular, we suggest that the non-traditional stable isotopes commonly used in application to carbonates (e.g., Ca, Mg, Sr) are sensitive to these effects due to their rapid reaction rates. We aim to characterize the dependence of Ca isotopic reequilibration on surface area during calcite precipitation via batch experiments conducted at ambient temperature over 48-hour time periods. Calcite precipitation was performed in a closed batch reactor utilizing a controlled free-drift method. The batch reactors contained mixed supersaturated solutions of CaCl2 and NaHCO3 at an initial pH of 8.54. Precipitation was initiated by seed inoculation of calcite crystals with two distinct, pre-constrained surface areas. All experiments achieved the same final state of chemical equilibrium, but as expected, the fastest approach to equilibrium occurred for experiments employing calcite seeds with the highest surface area. This implies that differences in equilibrated Ca isotope ratios (δ44/40Ca) should reflect differences in surface area. This prediction is upheld by models of the experiments, indicating a measureable difference in δ44Ca during calcite precipitation where the higher surface area corresponds to lower δ44Ca values and a faster approach to isotopic equilibrium. The dependence of δ44Ca resetting on calcite surface areas has broad ramifications for tracing carbonate weathering in the Critical Zone.
Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.
Unrean, Pornkamol; Nguyen, Nhung H A
2013-01-01
We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.
Hernández-Apaolaza, Lourdes; Lucena, Juan J
2011-03-23
Synthetic Fe chelates are the most efficient agricultural practice to control Fe deficiency in crops, EDTA/Fe3+ and o,o-EDDHA/Fe3+ being the most commonly used. Their efficacy as Fe sources and carriers in soils can be severely limited by their retention on it. The aim of this work is to evaluate the possible bias introduced in the studies of the iron chelate retention by soils. For that purpose, results obtained for EDTA and EDDHA iron chelates from two batch studies with different soil/solution ratios were compared with data obtained for a leaching column experiment. Moreover, different extractants were tested to study the o,o-EDDHA/Fe3+ and o,p-EDDHA/Fe3+ desorption from a calcareous soil, and also the effect of the interaction time in their retention process has been evaluated. In summary, the mobility through a calcareous soil of the studied iron chelates differs greatly depending on the type of iron chelate and also on the procedure used to evaluate the retention and the soil/solution ratio used. In general, the leaching column method is preferred because the achieved conclusions are more representative of the natural conditions, but batch methods are very useful as a preliminary experiment, especially one with a high soil/solution ratio. The iron chelate desorption could be quantified by using a sequential extraction with water, sodium sulfate, and DTPA as extractants. Under the experimental conditions used in this study, o,o-EDDHA/Fe3+ retention increased with interaction time.
Oxidation and mobilization of selenium by nitrate in irrigation drainage
Wright, W.G.
1999-01-01
Selenium (Se) can be oxidized by nitrate (NO3-) from irrigation on Cretaceous marine shale in western Colorado. Dissolved Se concentrations are positively correlated with dissolved NO3- concentrations in surface water and ground water samples from irrigated areas. Redox conditions dominate in the mobilization of Se in marine shale hydrogeologic settings; dissolved Se concentrations increase with increasing platinum-electrode potentials. Theoretical calculations for the oxidation of Se by NO3- and oxygen show favorable Gibbs free energies for the oxidation of Se by NO3-, indicating NO3- can act as an electron acceptor for the oxidation of Se. Laboratory batch experiments were performed by adding Mancos Shale samples to zero- dissolved-oxygen water containing 0, 5, 50, and 100 mg/L NO3- as N (mg N/L). Samples were incubated in airtight bottles at 25??C for 188 d; samples collected from the batch experiment bottles show increased Se concentrations over time with increased NO3- concentrations. Pseudo first-order rate constants for NO3- oxidation of Se ranged from 0.0007 to 0.0048/d for 0 to 100 mg N/L NO3- concentrations, respectively. Management of N fertilizer applications in Cretaceous shale settings might help to control the oxidation and mobilization of Se and other trace constituents into the environment.
Jayanegara, A; Leiber, F; Kreuzer, M
2012-06-01
A meta-analysis was conducted to evaluate the extent to which dietary tannin level is related to methane emissions from ruminants. Data from a total of 30 experiments comprising 171 treatments were entered in a database. In vitro batch culture and in vivo measurements were distinguished as experimental approaches. With any approach, methane declined when dietary tannins increased. The in vitro approach predicted the in vivo response quite accurately. However, in vitro, the response followed a quadratic response pattern (R(2) = 0.66; lower response with increasing tannin level), whereas in vivo, this decline was linear (R(2) = 0.29). This indicates that the in vitro batch culture is of limited accuracy for estimating effects at levels >100 g tannin/kg dry matter. The large variation in methane/digestible organic matter (OM) found at low tannin levels may explain contrasting literature reports. Methane reduction with tannins was associated with a reduced apparent digestion of OM, and especially fibre, but methane/apparently digestible OM declined also. The present findings are helpful as they identified an underlying general antimethanogenic effect of tannins across tannin sources and experimental conditions, thus allowing concentrating the search on sources with satisfactory palatability and low adverse effects on animal performance. © 2011 Blackwell Verlag GmbH.
Lorenz, Eric; Schmacht, Maximilian; Senz, Martin
2016-11-01
Economical yeast based glutathione (GSH) production is a process that is influenced by several factors like raw material and production costs, biomass production and efficient biotransformation of adequate precursors into the final product GSH. Nowadays the usage of cysteine for the microbial conversion into GSH is industrial state of practice. In the following study, the potential of different inducers to increase the GSH content was evaluated by means of design of experiments methodology. Investigations were executed in three natural Saccharomyces strains, S. cerevisiae, S. bayanus and S. boulardii, in a well suited 50ml shake tube system. Results of shake tube experiments were confirmed in traditional baffled shake flasks and finally via batch cultivation in lab-scale bioreactors under controlled conditions. Comprehensive studies showed that the usage of cysteine ethyl ester (CEE) for the batch-wise biotransformation into GSH led up to a more than 2.2 times higher yield compared to cysteine as inducer. Additionally, the intracellular GSH content could be significantly increased for all strains in terms of 2.29±0.29% for cysteine to 3.65±0.23% for CEE, respectively, in bioreactors. Thus, the usage of CEE provides a highly attractive inducing strategy for the GSH overproduction. Copyright © 2016 Elsevier Inc. All rights reserved.
A short term quality control tool for biodegradable microspheres.
D'Souza, Susan; Faraj, Jabar A; Dorati, Rossella; DeLuca, Patrick P
2014-06-01
Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C.
NASA Astrophysics Data System (ADS)
Wi, D.; Kim, B.; Cho, K.; Choi, N.; Park, C.
2011-12-01
Bioleaching technology which is based on the ability of bacteria to transform solid compounds into soluble or extractable elements that can be recovered, has developed rapidly in recent decades for its advantages, such as mild reaction, low energy consumption, simple process, environmentally friendly and suitable for low-grade mine tailing and residues. This study investigated the bioleaching efficiency of copper matte under batch experimental conditions (various mineral particle size) using the indigenous acidophilic bacteria collected from acidic hot spring in Hatchnobaru, Japan. We conducted the batch experiments at three different mineral particle sizes: 0.06, 0.16 and 1.12mm. The results showed that the pH in the bacteria inoculating sample increased than initial condition, possibly due to buffer effects by phosphate ions in growth medium. After 22 days from incubation the leached accumulation content of Cu was 0.06 mm - 1,197 mg/L, 0.16 mm - 970 mg/L and 1.12 mm - 704 mg/L. Additionally, through SEM analysis we found of gypsum formed crystals which coated the copper matte surface 6 days after inoculation in 1.12mm case. This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.
Deniz, Fatih; Ersanli, Elif Tezel
2018-03-21
In this study, the capacity of a natural macroalgae consortium consisting of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species for the removal of copper ions from aqueous environment was investigated at different operating conditions, such as solution pH, copper ion concentration and contact time. These environmental parameters affecting the biosorption process were optimized on the basis of batch experiments. The experimentally obtained data for the biosorption of copper ions onto the macroalgae-based biosorbent were modeled using the isotherm models of Freundlich, Langmuir, Sips and Dubinin-Radushkevich and the kinetic models of pseudo-first-order, pseudo-second-order, Elovich and Weber and Morris. The pseudo-first-order and Sips equations were the most suitable models to describe the copper biosorption from aqueous solution. The thermodynamic data revealed the feasibility, spontaneity and physical nature of biosorption process. Based on the data of Sips isotherm model, the biosorption capacity of biosorbent for copper ions was calculated as 105.370 mg g -1 under the optimum operating conditions. A single-stage batch biosorption system was developed to predict the real-scale-based copper removal performance of biosorbent. The results of this investigation showed the potential utility of macroalgae consortium for the biosorption of copper ions from aqueous medium.
Sequential Injection Analysis for Optimization of Molecular Biology Reactions
Allen, Peter B.; Ellington, Andrew D.
2011-01-01
In order to automate the optimization of complex biochemical and molecular biology reactions, we developed a Sequential Injection Analysis (SIA) device and combined this with a Design of Experiment (DOE) algorithm. This combination of hardware and software automatically explores the parameter space of the reaction and provides continuous feedback for optimizing reaction conditions. As an example, we optimized the endonuclease digest of a fluorogenic substrate, and showed that the optimized reaction conditions also applied to the digest of the substrate outside of the device, and to the digest of a plasmid. The sequential technique quickly arrived at optimized reaction conditions with less reagent use than a batch process (such as a fluid handling robot exploring multiple reaction conditions in parallel) would have. The device and method should now be amenable to much more complex molecular biology reactions whose variable spaces are correspondingly larger. PMID:21338059
USDA-ARS?s Scientific Manuscript database
In this study, plants (14) and essential oils (EO; 88) from plants that are naturalized to, or can be successfully grown in North America were evaluated in a batch culture in vitro screening experiments with ruminal fluid as potential anti-methanogenic additives for ruminant diets. Essential oils we...
Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa
2012-01-01
Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.
The origin of high sulfate concentrations in a coastal plain aquifer, Long Island, New York
Brown, C.J.; Schoonen, M.A.A.
2004-01-01
Ion-exchange batch experiments were run on Cretaceous (Magothy aquifer) clay cores from a nearshore borehole and an inland borehole on Long Island, NY, to determine the origin of high SO42- concentrations in ground water. Desorption batch tests indicate that the amounts of SO 42- released from the core samples are much greater (980-4700 ??g/g of sediment) than the concentrations in ground-water samples. The locally high SO42- concentrations in pore water extracted from cores are consistent with the overall increase in SO 42- concentrations in ground water along Magothy flow paths. Results of the sorption batch tests indicate that SO42- sorption onto clay is small but significant (40-120 ??g/g of sediment) in the low-pH (<5) pore water of clays, and a significant part of the SO42- in Magothy pore water may result from the oxidation of FeS2 by dissolved Fe(III). The acidic conditions that result from FeS2 oxidation in acidic pore water should result in greater sorption of SO42- and other anions onto protonated surfaces than in neutral-pH pore water. Comparison of the amounts of Cl- released from a clay core sample in desorption batch tests (4 ??g/g of sediment) with the amounts of Cl- sorbed to the same clay in sorption tests (3.7-5 ??g/g) indicates that the high concentrations of Cl- in pore water did not originate from connate seawater but were desorbed from sediment that was previously in contact with seawater. Furthermore, a hypothetical seawater transgression in the past is consistent with the observed pattern of sorbed cation complexes in the Magothy cores and could be a significant source of high SO42- concentrations in Magothy ground water.
A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium
NASA Astrophysics Data System (ADS)
Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.
2015-08-01
The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.
Huang, Edwin P; Marquis, Christopher P; Gray, Peter P
2004-11-20
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 microM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 10(7) cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (c) 2004 Wiley Periodicals, Inc
Escobedo-Bonilla, César Marcial; Rangel, José Luis Ibarra
2014-01-01
Abstract The present study evaluated the susceptibility of three different batches of whiteleg shrimp Litopenaeus vannamei from Mexico to an inoculum of infectious hypodermal and haematopoietic necrosis virus (IHHNV). Each of the three shrimp batches came from a different hatchery. Because of their origin, it was possible that the genetic makeup of these batches was different among each other. The three batches tested showed differences in IHHNV susceptibility. Here, susceptibility is defined as the capacity of the host to become infected, and it can be measured by the infectivity titer. Susceptibility to IHHNV was observed in decreasing order in shrimp from batch 1 (hatchery from El Rosario, Sinaloa), batch 3 (hatchery from Nayarit) and batch 2 (hatchery from El Walamo, Sinaloa), respectively. The largest susceptibility difference between batches was 5012 times, and that between early and late juveniles from the same batch was 25 times. These results indicate that within a species, susceptibility to a pathogen such as IHHNV can have large differences. Susceptibility to pathogens is an important trait to consider before performing studies on pathogenesis. It may influence virological parameters such as speed of replication, pathogenicity and virus titer. In order to evaluate the potential use of IHHNV as a natural control agent against white spot syndrome virus (WSSV), it is necessary to know host susceptibility and the kinetics of IHHNV infection. These features can help to determine the conditions in which IHHNV could be used as antagonist in a WSSV infection. PMID:25561847
Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin
2015-01-01
The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.
A Batch Feeder for Inhomogeneous Bulk Materials
NASA Astrophysics Data System (ADS)
Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.
2016-04-01
The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.
Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.
Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing
2018-05-15
The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.
A comparison of abundance estimates from extended batch-marking and Jolly–Seber-type experiments
Cowen, Laura L E; Besbeas, Panagiotis; Morgan, Byron J T; Schwarz, Carl J
2014-01-01
Little attention has been paid to the use of multi-sample batch-marking studies, as it is generally assumed that an individual's capture history is necessary for fully efficient estimates. However, recently, Huggins et al. (2010) present a pseudo-likelihood for a multi-sample batch-marking study where they used estimating equations to solve for survival and capture probabilities and then derived abundance estimates using a Horvitz–Thompson-type estimator. We have developed and maximized the likelihood for batch-marking studies. We use data simulated from a Jolly–Seber-type study and convert this to what would have been obtained from an extended batch-marking study. We compare our abundance estimates obtained from the Crosbie–Manly–Arnason–Schwarz (CMAS) model with those of the extended batch-marking model to determine the efficiency of collecting and analyzing batch-marking data. We found that estimates of abundance were similar for all three estimators: CMAS, Huggins, and our likelihood. Gains are made when using unique identifiers and employing the CMAS model in terms of precision; however, the likelihood typically had lower mean square error than the pseudo-likelihood method of Huggins et al. (2010). When faced with designing a batch-marking study, researchers can be confident in obtaining unbiased abundance estimators. Furthermore, they can design studies in order to reduce mean square error by manipulating capture probabilities and sample size. PMID:24558576
NASA Astrophysics Data System (ADS)
Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.
2012-12-01
Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality primarily through carbonate dissolution which releases Ca and elements that substitute for Ca in crystal lattices. Silicate weathering releases primarily Si and K at lower rates. Chemical changes with the addition of CO2 may initially mobilize As, Mo, V, Zn, Se and Cd but these elements become immobile in the lowered pH water and sorb onto aquifer minerals. A combined laboratory batch experiment and field push-pull test in fresh water aquifers overlying CCUS projects will best characterize the response of the aquifer to increased pCO2. The long experimental duration of the batch experiments may allow reactions to reach equilibrium however; reaction rates may be artificially high due to increased mineral surface areas. Field based push-pull tests offer a more realistic water rock ratio and test a much larger volume of aquifer material but the test must be shorter in duration because the high pCO2 water is subject to mixing with low pCO2 background water and migration away from the test well with groundwater flow. A comparison of the two methods best characterizes the potential effects on groundwater chemistry
Stenholm, Åke; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E
2018-03-04
This paper describes the search for procedures through which the xenobiotic pollutant diclofenac can be removed from non-sterile aquatic systems. Specifically, adsorption to solid supports (carriers) in combination with biodegradation by non-immobilized and immobilized white rot fungus Trametes versicolor were investigated. Batch experiments using polyurethane foam (PUF)-carriers resulted in 99.9% diclofenac removal after 4 h, with monolayer adsorption of diclofenac to carrier and glass surfaces accounting for most of the diclofenac decrease. Enzymatic reactions contributed less, accounting for approximately < 0.5% of this decrease. In bioreactor experiments using PUF-carriers, an initial 100% removal was achieved with biodegradation contributing approximately 7%. In batch experiments that utilized polyethylene-carriers with negligible immobilization of Trametes versicolor, a 98% total diclofenac removal was achieved after one week, with a biodegradation contribution of approximately 14%. Five novel enzyme-catalyzed biodegradation products were tentatively identified in the batch-wise and bioreactor experiments using full scan ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry. Both reduction and oxidation products were found, with the contents estimated to be at µg L -1 concentration levels.
NASA Astrophysics Data System (ADS)
Lange, Jens; Payraudeau, Sylvain; Imfeld, Gwenaël
2016-04-01
Traditionally, hydrological tracers are selected to behave as conservatively as possible, since most applications aim to investigate the transport of water or conservative solutes. Non-conservative tracer behavior is regarded as a limitation. However, the environmental behavior of organic pesticides is strictly non-conservative as their fate is affected by various processes, including sorption, photolysis and biochemical transformation in various environmental compartments. If tracers are used to study pesticides under these conditions, we believe that a paradigm shift is necessary: only a tracer that is affected by similar attenuation processes can realistically reproduce the overall behavior of a target pesticide. We present here two examples from two different environmental compartments: (i) agricultural soils and (ii) wetland systems. In both studies two organic fluorescent tracers (uranine, UR and sulforhodamine-B, SRB) and the salt tracer bromide (BR) were applied together with the chloroacetanilide herbicide S-metolachlor (S-MET). On an agricultural field, plot experiments were conducted under artificial and natural rainfall conditions. The use of BR overestimated both slow leaching and fast preferential transport of S-MET in the unsaturated zone, while UR/SRB were more realistic markers. Under artificial conditions, recovery rates of BR in a tile drain were twice as high as UR and one order of magnitude higher than SRB. Under natural conditions, BR concentrations in surface soils (0-1 cm) displayed larger variances during wetting and drying periods than UR, SRB and S-MET. BR also leached deeper (below 5 cm) than S-MET in the soil column. After 70 days, characteristic fluorescent peaks of UR and SRB gradually decreased in soil samples, while a new peak increased in another spectrum, which suggests the production of a potential transformation product. In two artificial wetland systems the impact of hydrological conditions (batch versus continuous-flow) on solute dissipation was studied. The solute mass budgets included plants, sediment and water phases and reflected the main dissipation pathways. Apart from plant uptake, BR was conservative under both conditions. Similar to S-MET, UR and SRB were affected by sorption, photo- and presumably biodegradation and all processes were more prominent in the batch than in the continuous flow wetland. This was in agreement with a larger overall dissipation of S-MET under batch (90%) than continuous mode (60%). Hence, only UR/SRB realistically illustrated the effect of hydrological conditions (different hydraulic residence times and alternating biogeochemical conditions) on S-MET attenuation in the wetland systems.
NASA Astrophysics Data System (ADS)
Ahrens, B.; Schrumpf, M.; Reichstein, M.
2013-12-01
Subsoil soil organic carbon (SOC) is characterized by conventional radiocarbon ages on the order of centuries to millennia. Most vertically explicit SOC turnover models represent this persistence of deep SOC by one pool that has millennial turnover times. This approach lumps different stabilizing mechanisms such as chemical recalcitrance, sorptive stabilization and energy limitation into a single rate constant. As an alternative, we present a continuous, vertically explicit SOC decomposition model that allows for stabilization via sorption and microbial interactions (COMISSION model). We compare the COMISSION model with the SOC profile of a Haplic Podzol under a Norway spruce forest. In the COMISSION model two pools receive aboveground litter input and vertically distributed root litter input. The readily leachable and soluble fraction of litter input enters a dissolved organic carbon pool (DOC), while the rest enters the residue pool which represents polymeric, non-soluble SOC. The residue pool is depolymerized with extracellular enzymes produced by a microbial pool to enter the DOC pool which represents SOC potentially available for assimilation by microbes. The adsorption/desorption of DOC from/to mineral surfaces controls the availability of carbon in the DOC pool for assimilatory uptake by microbes. The sorption of DOC is modeled with dynamic Langmuir equations. The desorbed part of the DOC pool not only constitutes the substrate for the microbial pool, but is also transported via advection. Interactions of microbes with the residue and DOC pool are modeled with Michaelis-Menten kinetics - this not only allows representing ';priming', but also the retardation of decomposition via energy limitation in the deep soil where substrate is scarce. Further, soil organic matter is recycled within the soil profile through microbial processing - dead microbes either enter the DOC or the residue pool, and thereby also contribute to longer residence times with soil depth. First results of a calibration against SOC, SO14C, MOC and MO14C profiles (mineral associated organic carbon, density fraction >1.6 g cm-3) of a Haplic Podzol of the Waldstein site (Germany) show that we can use the maximum sorption capacity (qmax) estimated from batch sorption experiments to parameterize the dynamic Langmuir sorption equation. qmax could potentially be extrapolated to other soil profiles based on relations to iron and aluminum oxide contents. Although we are able to capture the secondary maximum of SOC contents in the Bh horizon with qmax from batch sorption experiments, our results indicate that the adsorption and desorption rates retrieved from batch sorption experiments are too fast to explain the low Δ14C values of the MOC. This could point to other processes apart from DOC sorption that trigger stabilization by organo-mineral associations with a stronger apparent irreversibility (e.g. inclusion in small pores). Alternatively, the conditions of batch sorption experiments (constant shaking in centrifuge tubes) might not be representative for in situ sorption conditions. Overall, we show how effective decomposition rates and 14C ages readily emerge from a combination of known stabilizing and destabilizing mechanisms and we discuss how to identify these processes with a model-data fusion framework.
Formation and transformation of chloroform during managed aquifer recharge (MAR).
Liu, Dan; Liang, Xiujuan; Zhang, Wenjing; Wang, Zhuo; Ma, Tianyi; Li, Fulin; Chen, Xuequn
2018-05-09
Chlorination is an effective method to protect the safety of groundwater systems during managed aquifer recharge. However, chlorination leads to the formation of disinfection by-products, whose behavior in aquifers remains unclear and has caused public concern. In this study, an in-site test was performed on an anoxic aquifer in Shouguang City, China, to investigate the formation and transformation of chloroform during managed aquifer recharge. The field tests showed that the formation of chloroform in groundwater caused by the recharge of chlorinated water, and that the fate of chloroform was affected by adsorption and biodegradation. The retardation factor was 1.27, and the half-life was 29 days. The formation and transformation of chloroform during continuous recharge under different hydrochemical conditions was further investigated by batch experiments. These experiments showed that the formation of chloroform increased with contact time, tended to be stable after 10 h, and was facilitated by high chloride/TOC ratios, high pH, and low ionic strength (IS) for a given contact time. The adsorption experiments showed that the process accords with the pseudo-second-order kinetic equations and the Freundlich model. The adsorption capacity was pH dependent (1.01-1.66 μg/g at pH 5 and 2.17-3.05 μg/g at pH 9). Increasing the IS promotes adsorption. The results from biodegradation experiments indicated that the biodegradation was well fitted by the Monod equation. The retardation factor in the batch experiments was close to that of the field test, but the half-life was less than the field test. This is mainly due to the difference in the concentration of dissolved oxygen. Copyright © 2018 Elsevier Ltd. All rights reserved.
Production Experiences with the Cray-Enabled TORQUE Resource Manager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, Matthew A; Maxwell, Don E; Beer, David
High performance computing resources utilize batch systems to manage the user workload. Cray systems are uniquely different from typical clusters due to Cray s Application Level Placement Scheduler (ALPS). ALPS manages binary transfer, job launch and monitoring, and error handling. Batch systems require special support to integrate with ALPS using an XML protocol called BASIL. Previous versions of Adaptive Computing s TORQUE and Moab batch suite integrated with ALPS from within Moab, using PERL scripts to interface with BASIL. This would occasionally lead to problems when all the components would become unsynchronized. Version 4.1 of the TORQUE Resource Manager introducedmore » new features that allow it to directly integrate with ALPS using BASIL. This paper describes production experiences at Oak Ridge National Laboratory using the new TORQUE software versions, as well as ongoing and future work to improve TORQUE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Helmreich, Grant W.; Dyer, John A.
Coated particle batches J52O-16-93172B and J52O-16-93173B were produced by Babcock and Wilcox Technologies (BWXT) as part of the production campaign for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), but were not used in the final fuel composite. However, these batches may be used as demonstration production-scale coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture ofmore » 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93172A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017b]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93172B).« less
Jones, Sara; Wiesneth, Russ; Barry, Cathy; Webb, Erika; Belova, Larissa; Dolan, Peggy; Ho, Shiaolan; Abravaya, Klara; Cloherty, Gavin
2013-01-01
Diagnostic laboratories are under increasing pressure to improve and expand their services. Greater flexibility in sample processing is a critical factor that can improve the time to results while reducing reagent waste, making laboratories more efficient and cost-effective. The introduction of the Abbott mPLUS feature, with the capacity for extended use of amplification reagents, significantly increases the flexibility of the m2000 platform and enables laboratories to customize their workflows based on sample arrival patterns. The flexibility in sample batch size offered by mPLUS enables significant reductions in processing times. For hepatitis B virus tests, a reduction in sample turnaround times of up to 30% (105 min) was observed for batches of 12 samples compared with those for batches of 24 samples; for Chlamydia trachomatis/Neisseria gonorrhoeae tests, the ability to run batches of 24 samples reduced the turnaround time by 83% (54 min) compared with that for batches of 48 samples. Excellent correlations between mPLUS and m2000 standard condition results were observed for all RealTime viral load assays evaluated in this study, with correlation r values of 0.998 for all assays tested. For the qualitative RealTime C. trachomatis/N. gonorrhoeae assay, the overall agreements between the two conditions tested were >98% for C. trachomatis and 100% for N. gonorrhoeae. Comparable precision results were observed for the two conditions tested for all RealTime assays. The enhanced mPLUS capability provides clinical laboratories with increased efficiencies to meet increasingly stringent turnaround time requirements without increased costs associated with discarding partially used amplification reagents. PMID:24088850
Lucic, Danijela; Jones, Sara; Wiesneth, Russ; Barry, Cathy; Webb, Erika; Belova, Larissa; Dolan, Peggy; Ho, Shiaolan; Abravaya, Klara; Cloherty, Gavin
2013-12-01
Diagnostic laboratories are under increasing pressure to improve and expand their services. Greater flexibility in sample processing is a critical factor that can improve the time to results while reducing reagent waste, making laboratories more efficient and cost-effective. The introduction of the Abbott mPLUS feature, with the capacity for extended use of amplification reagents, significantly increases the flexibility of the m2000 platform and enables laboratories to customize their workflows based on sample arrival patterns. The flexibility in sample batch size offered by mPLUS enables significant reductions in processing times. For hepatitis B virus tests, a reduction in sample turnaround times of up to 30% (105 min) was observed for batches of 12 samples compared with those for batches of 24 samples; for Chlamydia trachomatis/Neisseria gonorrhoeae tests, the ability to run batches of 24 samples reduced the turnaround time by 83% (54 min) compared with that for batches of 48 samples. Excellent correlations between mPLUS and m2000 standard condition results were observed for all RealTime viral load assays evaluated in this study, with correlation r values of 0.998 for all assays tested. For the qualitative RealTime C. trachomatis/N. gonorrhoeae assay, the overall agreements between the two conditions tested were >98% for C. trachomatis and 100% for N. gonorrhoeae. Comparable precision results were observed for the two conditions tested for all RealTime assays. The enhanced mPLUS capability provides clinical laboratories with increased efficiencies to meet increasingly stringent turnaround time requirements without increased costs associated with discarding partially used amplification reagents.
Wang, Xiao-Ling; Ding, Zhong-Yang; Zhao, Yan; Liu, Gao-Qiang; Zhou, Guo-Ying
2017-01-01
Triterpene acids are among the major bioactive constituents of lucidum. However, submerged fermentation techniques for isolating triterpene acids from G. lucidum have not been optimized for commercial use, and the antitumor activity of the mycelial triterpene acids needs to be further proven. The aim of this work was to optimize the conditions for G. lucidum culture with respect to triterpene acid production, scaling up the process, and examining the in vitro antitumor activity of mycelial triterpene acids. The key conditions (i.e., initial pH, fermentation temperature, and rotation speed) were optimized using response surface methodology, and the in vitro antitumor activity was evaluated using the MTT method. The optimum key fermentation conditions for triterpene acid production were pH 6.0; rotation speed, 161.9 rpm; and temperature, 30.1°C, resulting in a triterpene acid yield of 291.0 mg/L in the validation experiment in a 5-L stirred bioreactor; this yield represented a 70.8% increase in titer compared with the nonoptimized conditions. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and a triterpene productivity of 47.9 mg/L/day was achieved, which is, to our knowledge, the highest reported in the large-scale fermentation of G. lucidum. In addition, the mycelial triterpene acids were found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro. Chemical analysis showed that the key active triterpene acid compounds, ganoderic acids T and Me, predominated in the extract, at 69.2 and 41.6 mg/g, respectively. Thus, this work develops a simple and feasible batch fermentation technique for the large-scale production of antitumor triterpene acids from G. lucidum.
Cravotta, Charles A.
2015-01-01
Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the model results for Fe(II) or pH. In contrast, the model results for pH and Fe(II) were sensitive to the CO2 mass transfer rate constant (kL,CO2a). The value of kL,CO2a estimated for the stream (0.010 min−1) was within the range for the batch aeration experiments (0–0.033 min−1). These results indicate that the abiotic homogeneous Fe(II) oxidation rate law, with adjustments for variations in temperature and CO2 outgassing rate, may be applied to predict changes in aqueous iron and pH for net-alkaline, ferruginous waters within a stream (natural conditions) or a CMD treatment system (engineered conditions).
Din, M F M; Ujang, Z; van Loosdrecht, M C M; Ahmad, A; Sairan, M F
2006-01-01
The process for the production of biodegradable plastic material (polyhydroxyalkanoates, PHAs) from microbial cells by mixed-bacterial cultivation using readily available waste (renewable resources) is the main consideration nowadays. These observations have shown impressive results typically under high carbon fraction, COD/N and COD/P (usually described as nutrient-limiting conditions) and warmest temperature (moderate condition). Therefore, the aim of this work is predominantly to select mixed cultures under high storage responded by cultivation on a substrate - non limited in a single batch reactor with shortest period for feeding and to characterize their storage response by using specific and kinetics determination. In that case, the selected-fixed temperature is 30 degrees C to establish tropical conditions. During the accumulated steady-state period, the cell growth was inhibited by high PHA content within the cells because of the carbon reserve consumption. From the experiments, there is no doubt about the PHA accumulation even at high carbon fraction ratio. Apparently, the best accumulation occurred at carbon fraction, 160 +/- 7.97 g COD/g N (PHAmean, = 44.54% of dried cells). Unfortunately, the highest PHA productivity was achieved at the high carbon fraction, 560 +/- 1.62 g COD/g N (0.152 +/- 0.17 g/l. min). Overall results showed that with high carbon fraction induced to the cultivation, the PO4 and NO3 can remove up to 20% in single cultivation.
Biosorption of Congo Red from aqueous solution onto burned root of Eichhornia crassipes biomass
NASA Astrophysics Data System (ADS)
Roy, Tapas Kumar; Mondal, Naba Kumar
2017-07-01
Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye containing waste water. In this work, adsorption of Congo Red (CR) from aqueous solution on burned root of Eichhornia crassipes ( BREC) biomass was investigated. A series of batch experiments were performed utilizing BREC biomass to remove CR dye from aqueous systems. Under optimized batch conditions, the BREC could remove up to 94.35 % of CR from waste water. The effects of operating parameters such as initial concentration, pH, adsorbent dose and contact time on the adsorption of CR were analyzed using response surface methodology. The proposed quadratic model for central composite design fitted very well to the experimental data. Response surface plots were used to determine the interaction effects of main factors and optimum conditions of the process. The optimum adsorption conditions were found to be initial CR concentration = 5 mg/L-1, pH = 7, adsorbent dose = 0.125 g and contact time = 45 min. The experimental isotherms data were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm equations and the results indicated that the Freundlich isotherm showed a better fit for CR adsorption. Thermodynamic parameters were calculated from Van't Hoff plot, confirming that the adsorption process was spontaneous and exothermic. The high CR adsorptive removal ability and regeneration efficiency of this adsorbent suggest its applicability in industrial/household systems and data generated would help in further upscaling of the adsorption process.
Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman
2017-11-01
A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental study of dissolution of minerals and CO2 sequestration in steel slag.
Yadav, Shashikant; Mehra, Anurag
2017-06-01
This study strives to achieve a substantial amount of steel slag carbonation without using any harmful chemicals. For this purpose, experiments were performed in an aqueous medium, in a semi-batch reactor, to investigate the effect of varying reaction conditions during the steel slag CO 2 sequestration process. Further, studying the effect of dissolution on carbonation reactions and the mineralogical changes that subsequently occur within the slag helps provide insight into the parameters that ultimately have an impact on the carbonation rate as well the magnitude of the impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kitchen, Robert R; Sabine, Vicky S; Simen, Arthur A; Dixon, J Michael; Bartlett, John M S; Sims, Andrew H
2011-12-01
Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependent upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. The magnitude of systematic processing noise in a microarray experiment is variable across probes and experiments, however it is generally the case that procedures earlier in the sample-preparation workflow are liable to introduce the most noise. Careful experimental design is important to protect against noise, detailed meta-data should always be provided, and diagnostic procedures should be routinely performed prior to downstream analyses for the detection of bias in microarray studies.
2011-01-01
Background Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. Results A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependant upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. Conclusions The magnitude of systematic processing noise in a microarray experiment is variable across probes and experiments, however it is generally the case that procedures earlier in the sample-preparation workflow are liable to introduce the most noise. Careful experimental design is important to protect against noise, detailed meta-data should always be provided, and diagnostic procedures should be routinely performed prior to downstream analyses for the detection of bias in microarray studies. PMID:22133085
Shaw, Kathryn; Martins, Ricardo; Hadis, Mohammed Abdul; Burke, Trevor; Palin, William
2016-09-01
A majority of dental materials are manufactured by companies who have experience in the field. However, a number of "own label" materials have become available, principally marketed by distributors and other companies with little or no experience in the field. These materials are attractive because of their reduced cost, but they may have no research on which clinicians might base their potential performance. It is therefore the purpose of this work to compare the performance of different batches of a number of "own-label" dental materials with a similar number from manufacturers with experience in the field, using a variety of laboratory test regimes which include filler determination, degree of conversion, flexural strength and flexural modulus, in order to evaluate key material properties. The results indicated that own-label dental resin composites produced similar results to materials from established companies in terms of flexural strength characteristics and degree of conversion. However, a greater batch-to-batch variation in several mechanical and physical properties of the own-label materials was noted. Copyright© 2016 Dennis Barber Ltd.
Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.
Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus
2014-08-15
We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. Copyright © 2014 Elsevier B.V. All rights reserved.
Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.
Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En
2014-05-01
This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.
Langer, K; Anhorn, M G; Steinhauser, I; Dreis, S; Celebi, D; Schrickel, N; Faust, S; Vogel, V
2008-01-22
Nanoparticles prepared from human serum albumin (HSA) are versatile carrier systems for drug delivery and can be prepared by an established desolvation process. A reproducible process with a low batch-to-batch variability is required for transfer from the lab to an industrial production. In the present study the batch-to-batch variability of the starting material HSA on the preparation of nanoparticles was investigated. HSA can build dimers and higher aggregates because of a free thiol group present in the molecule. Therefore, the quality of different HSA batches was analysed by size exclusion chromatography (SEC) and analytical ultracentrifugation (AUC). The amount of dimerised HSA detected by SEC did not affect particle preparation. Higher aggregates of the protein detected in two batches by AUC disturbed nanoparticle formation at pH values below 8.0. At pH 8.0 and above monodisperse particles between 200 and 300 nm could be prepared with all batches, with higher pH values leading to smaller particles. Besides human derived albumin a particle preparation was also feasible based on recombinant human serum albumin (rHSA). Under comparable preparation conditions monodisperse nanoparticles could be achieved and the same effects of protein aggregates on particle formation were observed. For nanoparticulate drug delivery systems the enzymatic degradation is a crucial parameter for the release of an embedded drug. For this reason, besides the particle preparation process, particle degradation in the presence of different enzymes was studied. Under acidic conditions HSA as well as rHSA nanoparticles could be digested by pepsin and cathepsin B. At neutral pH trypsin, proteinase K, and protease were suitable for particle degradation. It could be shown that the kinetics of particle degradation was dependent on the degree of particle stabilisation. Therefore, the degree of particle stabilisation will influence drug release after cellular accumulation of HSA nanoparticles.
Dutta, Sayantani; Bhattacharjee, Paramita
2015-07-01
Black pepper (Piper nigrum L.), the King of Spices is the most popular spice globally and its active ingredient, piperine, is reportedly known for its therapeutic potency. In this work, enzyme-assisted supercritical carbon dioxide (SC-CO2) extraction of black pepper oleoresin was investigated using α-amylase (from Bacillus licheniformis) for enhanced yield of piperine-rich extract possessing good combination of phytochemical properties. Optimization of the extraction parameters (without enzyme), mainly temperature and pressure, was conducted in both batch and continuous modes and the optimized conditions that provided the maximum yield of piperine was in the batch mode, with a sample size of 20 g of black pepper powder (particle diameter 0.42 ± 0.02 mm) at 60 °C and 300 bar at 2 L/min of CO2 flow. Studies on activity of α-amylase were conducted under these optimized conditions in both batch and continuous modes, with varying amounts of lyophilized enzyme (2 mg, 5 mg and 10 mg) and time of exposure of the enzyme to SC-CO2 (2.25 h and 4.25 h). The specific activity of the enzyme increased by 2.13 times when treated in the continuous mode than in the batch mode (1.25 times increase). The structural changes of the treated enzymes were studied by (1)H NMR analyses. In case of α-amylase assisted extractions of black pepper, both batch and continuous modes significantly increased the yields and phytochemical properties of piperine-rich extracts; with higher increase in batch mode than in continuous. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nielsen, Per H.; Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas H.
1995-11-01
The transformation of specific organic compounds was investigated by in situ and laboratory experiments in an anaerobic landfill leachate pollution plume at four different distances from the landfill. This paper presents the experimental conditions in the in situ microcosm and laboratory batch microcosm experiments performed and the results on the fate of 7 phenolic compounds. Part 2 of this series of papers, also published in this issue, presents the results on the fate of 8 aromatic compounds and 4 chlorinated aliphatic compounds. The redox conditions in the plume were characterized as methanogenic, Fe(III)-reducing and NO 3--reducing by the redox sensitive species present in groundwater and sediment and by bioassays. With a few exceptions the aquifer redox conditions were maintained throughout the experiments as monitored by redox sensitive species present in groundwater during the experiments, by redox sensitive species present in the sediment after the experiments and by bioassays performed after the experiments. Transformation of nitrophenol was very fast close to the landfill in strongly reducing conditions, while transformation was slower in the more oxidized part of the plume. Lag phases for the nitrophenols were short (maximum 10 days). Phenol was only transformed in the more distant part of the plume in experiments where NO 3-, Fe(III) and Mn(IV) reduction was dominant. Lag phases for phenol were either absent or lasted up to 2 months. Dichlorophenols were only transformed in experiments representing strongly reducing, presumably methanogenic, redox conditions close to the landfill after lag phases of up to 3 months. Transformation of o-cresol was not observed in any of the experiments throughout the plume. Generally, there was good accordance between the results obtained by in situ and laboratory experiments, both concerning redox conditions and the fate of the phenolic compounds. However, for phenol and 2,4-dichlorophenol, transformation was observed in some in situ experiments but not in the corresponding laboratory experiments. In some experiments, this coul be explained by differences in the redox conditions developing during the experiments. Nitrophenols were apparently transformed abiotically in the most reduced part of the plume, at 2 m from the landfill.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.
2017-03-01
Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide andmore » uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).« less
Semiautomated, Reproducible Batch Processing of Soy
NASA Technical Reports Server (NTRS)
Thoerne, Mary; Byford, Ivan W.; Chastain, Jack W.; Swango, Beverly E.
2005-01-01
A computer-controlled apparatus processes batches of soybeans into one or more of a variety of food products, under conditions that can be chosen by the user and reproduced from batch to batch. Examples of products include soy milk, tofu, okara (an insoluble protein and fiber byproduct of soy milk), and whey. Most processing steps take place without intervention by the user. This apparatus was developed for use in research on processing of soy. It is also a prototype of other soy-processing apparatuses for research, industrial, and home use. Prior soy-processing equipment includes household devices that automatically produce soy milk but do not automatically produce tofu. The designs of prior soy-processing equipment require users to manually transfer intermediate solid soy products and to press them manually and, hence, under conditions that are not consistent from batch to batch. Prior designs do not afford choices of processing conditions: Users cannot use previously developed soy-processing equipment to investigate the effects of variations of techniques used to produce soy milk (e.g., cold grinding, hot grinding, and pre-cook blanching) and of such process parameters as cooking times and temperatures, grinding times, soaking times and temperatures, rinsing conditions, and sizes of particles generated by grinding. In contrast, the present apparatus is amenable to such investigations. The apparatus (see figure) includes a processing tank and a jacketed holding or coagulation tank. The processing tank can be capped by either of two different heads and can contain either of two different insertable mesh baskets. The first head includes a grinding blade and heating elements. The second head includes an automated press piston. One mesh basket, designated the okara basket, has oblong holes with a size equivalent to about 40 mesh [40 openings per inch (.16 openings per centimeter)]. The second mesh basket, designated the tofu basket, has holes of 70 mesh [70 openings per inch (.28 openings per centimeter)] and is used in conjunction with the press-piston head. Supporting equipment includes a soy-milk heat exchanger for maintaining selected coagulation temperatures, a filter system for separating okara from other particulate matter and from soy milk, two pumps, and various thermocouples, flowmeters, level indicators, pressure sensors, valves, tubes, and sample ports
NASA Astrophysics Data System (ADS)
Newcomb, D. E.; McKeen, R. G.
1983-12-01
This report documents over 2 years of research efforts to characterize asphalt-rubber mixtures to be used in Stress-Absorbing Membrane Interlayers (SAMI). The purpose of these SAMIs is to retard or prevent reflection cracking in asphalt-concrete overlays. Several laboratory experiments and one field trial were conducted to define significant test methods and parameters for incorporation into construction design and specification documents. Test methods used in this study included a modified softening point test, force-ductility, and Schweyer viscosity. Variables investigated included (1) Laboratory-mixing temperature; (2) Rubber type; (3) Laboratory storage time; (4) Laboratory storage condition; (5) Laboratory batch replication; (6) Laboratory mixing time; (7) Field mixing time; (8) Laboratory test temperature; (9) Force-Ductility elongation rates; and (10) Asphalt grade. It was found that mixing temperature, mixing time, rubber type, and asphalt grade all have significant effects upon the behavior of asphalt-rubber mixtures. Significant variability was also noticed in different laboratory batch replications. Varying laboratory test temperature and force-ductility elongation rate revealed further differences in asphalt-rubber mixtures.
Ethanol production from lignocellulosic byproducts of olive oil extraction.
Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M
2001-01-01
The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.
Influence of water quench cooling on degassing and aroma stability of roasted coffee.
Baggenstoss, Juerg; Poisson, Luigi; Luethi, Regina; Perren, Rainer; Escher, Felix
2007-08-08
Coffee roasting experiments with air cooling versus water quench cooling were carried out on laboratory scale with a fluidized-bed hot air roasting system (200 g batch size) and on production scale with a rotating bowl roaster (320 kg batch size). Two series of coffees with different water contents resulted, which were stored at 25 degrees C under normal atmospheric conditions. Carbon dioxide desorption was followed and stability of selected aroma compounds was tested with headspace solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and stable isotope labeled compounds as internal standards. Degassing is faster in water-quenched coffees with higher moisture content, but pore size distribution in the different coffee samples did not correlate with degassing behavior. Bean firmness, which increases with increasing moisture content, might have an influence on degassing. Air- and water-quenched coffees exhibit similar stability of most aroma compounds despite different degassing behavior. However, evolution of dimethyl trisulfide was different in coffees with increased water content. This suggests higher thiol oxidation rates, a factor that is cited to be related to a faster loss of freshness attributes.
Liu, Qing; Cheng, Ke-ke; Zhang, Jian-an; Li, Jin-ping; Wang, Ge-hua
2010-01-01
A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 degrees C, 20 FPU g(-1) substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l(-1) was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.
Charlestra, Lucner; Amirbahman, Aria; Courtemanch, David L; Alvarez, David A; Patterson, Howard
2012-10-01
The polar organic chemical integrative sampler (POCIS) was calibrated to monitor pesticides in water under controlled laboratory conditions. The effect of natural organic matter (NOM) on the sampling rates (R(s)) was evaluated in microcosms containing <0.1-5 mg L(-1) of total organic carbon (TOC). The effect of hydrodynamics was studied by comparing R(s) values measured in stirred (SBE) and quiescent (QBE) batch experiments and a flow-through system (FTS). The level of NOM in the water used in these experiments had no effect on the magnitude of the pesticide sampling rates (p > 0.05). However, flow velocity and turbulence significantly increased the sampling rates of the pesticides in the FTS and SBE compared to the QBE (p < 0.001). The calibration data generated can be used to derive pesticide concentrations in water from POCIS deployed in stagnant and turbulent environmental systems without correction for NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, D.; Jaisi, D. P.; Jin, Y.
2015-12-01
Hydroxyapatite nanoparticles (HANPs) are increasingly being advocated as an efficient and environment-friendly "green" phosphorus nanofertilizer attributed to their nanoscale dimension, large reactive surface area, and low leaching potential. However, knowledge of how naturally occurring low-molecular-weight organic acids (LMWOAs) that are secreted by plant roots mediate the dissolution of HANPs (releasing PO43- ion for plant growth) is nonexistent. Here three most commonly encountered LMWOAs (acetic acid, oxalic acid, and citric acid) at environmentally relevant concentration (1 mM) were evaluated for their effects on HANPs' dissolution in static batch and dynamic column systems. Particularly, phosphate oxygen isotope fractionation of HANPs during dissolution was examined to disentangle mechanisms controlling the evolution of O-isotopic composition of dissolved PO43- ion. Our results reveal that in batch experiments the dissolution of HANPs was fast but the overall dissolution efficiency of HANPs was limited (≤30%). In contrast, ~100% HANPs were dissolved in columns where LMWOAs were continuously injected. The limited dissolution of HANPs in static batch systems was due primarily to pH buffer effect (pH increased sharply when LMWOA was added in HANPs suspension), whereas in dynamic column systems the HANPs were continuously dissolved by low pH LMWOAs and leached away. Regardless of LMWOA type and experimental system, the isotopically light phosphate (P16O4) was preferentially released during dissolution and the O-isotopic composition of dissolved PO43- ion increased gradually with increasing dissolution due to equilibrium isotope effect between dissolved PO43- ion and HANPs. However, the overall magnitude of O-isotopic fractionation of dissolved PO43- ion was less in batch than in column systems, due to less mass transfer between dissolved PO43- ions and HANPs in batch relative to column experiments. Our findings provide new insights into bioavailability, transformation, and evolution of O-isotopic signatures of phosphate-based nanoparticles in agricultural soils particularly in the rhizosphere where such LMWOAs are ubiquitous.
Protocol for quantitative tracing of surface water with synthetic DNA
NASA Astrophysics Data System (ADS)
Foppen, J. W.; Bogaard, T. A.
2012-04-01
Based on experiments we carried out in 2010 with various synthetic single stranded DNA markers with a size of 80 nucleotides (ssDNA; Foppen et al., 2011), we concluded that ssDNA can be used to carry out spatially distributed multi-tracer experiments in the environment. Main advantages are in principle unlimited amount of tracers, environmental friendly and tracer recovery at very high dilution rates (detection limit is very low). However, when ssDNA was injected in headwater streams, we found that at selected downstream locations, the total mass recovery was less than 100%. The exact reason for low mass recovery was unknown. In order to start identifying the cause of the loss of mass in these surface waters, and to increase our knowledge of the behaviour of synthetic ssDNA in the environment, we examined the effect of laboratory and field protocols working with artificial DNA by performing numerous batch experiments. Then, we carried out several field tests in different headwater streams in the Netherlands and in Luxembourg. The laboratory experiments consisted of a batch of water in a vessel with in the order of 10^10 ssDNA molecules injected into the batch. The total duration of each experiment was 10 hour, and, at regular time intervals, 100 µl samples were collected in a 1.5 ml Eppendorf vial for qPCR analyses. The waters we used ranged from milliQ water to river water with an Electrical Conductivity of around 400 μS/cm. The batch experiments were performed in different vessel types: polyethylene bottles, polypropylene copolymer bottles , and glass bottles. In addition, two filter types were tested: 1 µm pore size glass fibre filters and 0.2 µm pore size cellulose acetate filters. Lastly, stream bed sediment was added to the batch experiments to quantify interaction of the DNA with sediment. For each field experiment around 10^15 ssDNA molecules were injected, and water samples were collected 100 - 600 m downstream of the point of injection. Additionally, the field tests were performed with salt and deuterium as tracer. To study possible decay by sunlight and/or microbial activity for synthetic DNA, immediately in the field and for the duration of the entire experiment, we carried out batch experiments. All samples were stored in a 1.5 ml Eppendorf vial in a cool-box in dry ice (-80°C). Quantitative PCR on a Mini Opticon (Bio Rad, Hercules, CA, USA) was carried out to determine DNA concentrations in the samples. Results showed the importance of a strict protocol for working with ssDNA as a tracer for quantitative tracing, since ssDNA interacts with surface areas of glass and plastic, depending on water quality and ionic strength. Interaction with the sediment and decay due to sunlight and/or microbial activity was negligible in most cases. The ssDNA protocol was then tested in natural streams. Promising results were obtained using ssDNA as quantitative tracer. The breakthrough curves using ssDNA were similar to the ones of salt or deuterium. We will present the revised protocol to use ssDNA for multi-tracing experiments in natural streams and discuss the opportunities and limitations.
Experimental evaluation of a recursive model identification technique for type 1 diabetes.
Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E
2009-09-01
A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.
Transport and retention of bacteria and viruses in biochar-amended sand.
Sasidharan, Salini; Torkzaban, Saeed; Bradford, Scott A; Kookana, Rai; Page, Declan; Cook, Peter G
2016-04-01
The transport and retention of Escherichia coli and bacteriophages (PRD1, MS2 and ФX174), as surrogates for human pathogenic bacteria and viruses, respectively, were studied in the sand that was amended with several types of biochar produced from various feedstocks. Batch and column studies were conducted to distinguish between the role of attachment and straining in microbe retention during transport. Batch experiments conducted at various solution chemistries showed negligible attachment of viruses and bacteria to biochar before or after chemical activation. At any given solution ionic strength, the attachment of viruses to sand was significantly higher than that of biochar, whereas bacteria showed no attachment to either sand or biochar. Consistent with batch results, biochar addition (10% w/w) to sand reduced virus retention in the column experiments, suggesting a potential negative impact of biochar application to soil on virus removal. In contrast, the retention of bacteria was enhanced in biochar-amended sand columns. However, elimination of the fine fraction (<60μm) of biochar particles in biochar-amended sand columns significantly reduced bacteria retention. Results from batch and column experiments suggest that land application of biochar may only play a role in microbe retention via straining, by alteration of pore size distribution, and not via attachment. Consequently, the particle size distribution of biochar and sediments is a more important factor than type of biochar in determining whether land application of biochar enhances or diminishes microbial retention. Copyright © 2016 Elsevier B.V. All rights reserved.
de Wilt, Arnoud; He, Yujie; Sutton, Nora; Langenhoff, Alette; Rijnaarts, Huub
2018-02-01
This study explored the removal of six pharmaceutically active compounds (PhACs) in lab-scale experiments with sediments under four redox conditions, namely aerobic, nitrate reducing, sulfate reducing, and methanogenic conditions using batch and column set-ups. Redox conditions were found to influence PhAC removal by sorption and biodegradation. The most optimal PhAC removal was observed at the outer ranges of the redox spectrum, i.e. either aerobic or deep anaerobic (sulfate reducing and methanogenic conditions), whereas nitrate reducing conditions were found least effective for PhACs biodegradation and sorption. For instance, sorption coefficient K d values for metoprolol in column experiments were 90, 65, 42 and 11 L/kg for sulfate reducing, methanogenic, aerobic and nitrate reducing conditions, respectively. For the same conditions K d values for propranolol were 101, 94, 55 and 55 L/kg, respectively. As expected, biodegradation efficiencies were highest under aerobic conditions, showing >99% removal of caffeine and naproxen, but no removal for propranolol and carbamazepine. The adaptive capacity of sediment was demonstrated by pre-exposure to PhACs leading to improved PhAC biodegradation. The results of this study indicate the necessity to combine diverse redox conditions, including aerobic conditions, for maximizing PhAC removal by sorption and biodegradation. Furthermore, our findings stress the need for additional treatment measures as recalcitrant PhACs are not effectively removed under any redox condition. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution
Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; ...
2015-04-17
We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pHmore » 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.« less
Effect of reducing groundwater on the retardation of redox-sensitive radionuclides
Hu, QH; Zavarin, M; Rose, TP
2008-01-01
Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and 237Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)4. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk assessment in various radionuclide environmental contamination scenarios. The implications for increased sorption of 99Tc and 237Np to devitrified tuff under reducing conditions are significant as the fractured devitrified tuff serves as important water flow path at the NTS and the horizon for a proposed repository to store high-level nuclear waste at Yucca Mountain. PMID:19077277
Kakuk, Balázs; Kovács, Kornél L; Szuhaj, Márk; Rákhely, Gábor; Bagi, Zoltán
2017-08-01
Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the <10 mm fraction of the grinded and sieved CS was amenable for biogasification, but it required 10% more time to produce 90% of the total biomethane yield than the <2 mm sized fraction, although in the total yields there was no significant difference between the two size ranges. We also observed that increasing amount of substrate added to the fermentation lowered the specific methane yield. In the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 g vs /L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH 4 /g vs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Biodegradation of PAHs in Soil: Influence of Initial PAHs Concentration
NASA Astrophysics Data System (ADS)
Kamil, N. A. F. M.; Talib, S. A.
2016-07-01
Most studies on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) evaluate the effect of initial PAHs concentration in liquid medium. There are limited studies on evaluation in solid medium such as contaminated soil. This study investigated the potential of the bacteria, Corynebacterium urealyticum isolated from municipal sludge in degrading phenanthrene contaminated soil in different phenanthrene concentration. Batch experiments were conducted over 20 days in reactors containing artificially contaminated phenanthrene soil at different concentration inoculated with a bacterial culture. This study established the optimum condition for phenanthrene degradation by the bacteria under nonindigenous condition at 500 mg/kg of initial phenanthrene concentration. High initial concentration required longer duration for biodegradation process compared to low initial concentration. The bacteria can survive for three days for all initial phenanthrene concentrations.
NASA Astrophysics Data System (ADS)
Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.
2016-06-01
In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.
Formation of Manganese Oxide Coatings onto Sand for Adsorption of Trace Metals from Groundwater.
Tilak, A S; Ojewole, S; Williford, C W; Fox, G A; Sobecki, T M; Larson, S L
2013-11-01
Manganese oxide (MnO) occurs naturally in soil and has a high affinity for trace metals adsorption. In this work, we quantified the factors (pH; flow rate; use of oxidants such as bleach, HO, and O; initial Mn(II) concentrations; and two types of geologic media) affecting MnO coatings onto Ottawa and aquifer sand using batch and column experiments. The batch experiments consisted of manual and automated titration, and the column experiments mimicked natural MnO adsorption and oxidation cycles as a strategy for in situ adsorption. A Pb solution of 50 mg L was passed through MnO-coated sand at a flow rate of 4 mL min to determine its adsorption capacity. Batch experimental results showed that MnO coatings increased from pH 6 to 8, with maximum MnO coating occurring at pH 8. Regarding MnO coatings, bleach and O were highly effective compared with HO. The Ottawa sand had approximately twice the MnO coating of aquifer sand. The sequential increase in initial Mn(II) concentrations on both sands resulted in incremental buildup of MnO. The automated procedure enhanced MnO coatings by 3.5 times compared with manual batch experiments. Column results showed that MnO coatings were highly dependent on initial Mn(II) and oxidant concentrations, pH, flow rate, number of cycles (h), and the type of geologic media used. Manganese oxide coating exceeded 1700 mg kg for Ottawa sand and 130 mg kg for aquifer sand. The Pb adsorption exceeded 2200 mg kg for the Ottawa sand and 300 mg kg for the aquifer sand. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Bioleaching of arsenic in contaminated soil using metal-reducing bacteria
NASA Astrophysics Data System (ADS)
Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek
2014-05-01
A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.
Removal of Radioactive Materials from Groundwater Using Porous Iron Composite Media
NASA Astrophysics Data System (ADS)
Dorward, E.; Thomas, R.; Cochran, J. P.; Chang, H. S.; Tandukar, M.; Coutelot, F.; Seaman, J. C.
2017-12-01
Uranium (U) is a concern in aqueous environments because of its toxicity. Reducing the mobile U(VI) to the relatively immobile U(IV) can decrease soluble U concentrations. Zero valent iron (ZVI) has been demonstrated as an effective reducing agent for U(VI) as well as other frequently occurring co-contaminants, such as nitrate (NO3-). However, the ability of ZVI to chemically reduce and immobilize U and other associated contaminants in more complex systems containing many alternate electron acceptors and non-ideal chemical conditions remains a concern. Porous iron composite (PIC) materials were evaluated for their ability to address these concerns in both batch and column experiments. We created an artificial groundwater surrogate containing ≈ 100 mg L-1 NO3-, 200 mg L-1 alkalinity, 100 µg L-1 U(VI) as uranyl (UO2+2), 100 µg L-1 rhenium (Re) as perrhenate (ReO4-), and 50 µg L-1 arsenic (As). In batch, we reacted 5 grams of PIC material with 200 mL groundwater surrogate under two different atmospheric conditions to evaluate the impact of O2. At specific time intervals, 5 mL aliquots from each batch treatment were removed for chemical analysis (i.e., U, Re, As, Fe, NO3, etc.) and the pH and ORP of the remaining suspension was measured. The PIC was effective at fully reducing NO3- levels over the extended reaction time despite rapid pH increase (> 8) during equilibration. Soluble levels of U and Re, a chemical surrogate for 99Tc, decreased in a similar fashion to NO3- in both the presence and absence of O2. Soluble As levels decreased more rapidly than other contaminants, but remained at ≈ 1 µg L-1. Very little nitrite (NO2-) was detected in the batch tests, with NH4+ levels consistent with the amount of NO3- reduced. Similar rates of immobilization for U, Re, and As were observed in the presence and absence of NO3-. Subsequent leaching tests corresponding to residence times ranging from 120 to 7.5 minutes demonstrated the ability of the PIC to reduce NO3- to NH4+, with no persistence of NO2-. Uranium and As were readily immobilized regardless of flow velocity. A strong kinetic component was observed for Re leaching behavior in the column tests. These results indicate the strong ability of PIC material to reduce U, NO3-, and other species under conditions that frequently inhibit conventional ZVI effectiveness.
Gravimetric enrichment of high lipid and starch accumulating microalgae.
Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad
2015-11-01
This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pudlo, Dieter; Enzmann, Frieder; Heister, Katja; Werner, Lars; Ganzer, Leonhard; Reitenbach, Viktor; Henkel, Steven; Albrecht, Daniel; Gaupp, Reinhard
2014-05-01
The Rotliegend reservoir sandstones of the Altmark area (central Germany) comprise the second largest natural gas field of Europe. These sandstones were deposited on a playa-like continental platform with braided river systems, ephemeral lakes and aeolian dunes under semi-arid conditions. Some of the pristine, red coloured deposits suffered intensive late diagenetic alteration and are now preserved as bleached, high porous and permeable sandstones. To evaluate the relevance of distinct fluids and their fluid-rock alteration reactions on such bleaching processes we performed laboratory static batch experiments on the Altmark sandstones. These 4-6 week lasting runs were conducted with CO2 saturated synthetic brines under typical Altmark reservoir conditions (p= 20 MPa, T= 125°C). Thereby mineralogical, petrophysical and (hydro- and geo-) chemical rock features were maintained prior and after the experiments. Chemical data proved the dissolution of carbonate and sulphate minerals during the runs, whereas the variation in abundance of further elements was within the detection limit of analytical accuracy. However, FE-SEM investigations on used, evaporated brines reveal the presence of illite and chlorite minerals within a matrix of Ca-, Si-, Fe, Al-, Na- and S components (carbonate, anhydrite, albite and Fe-(hydr-) oxides ?). By porosity and relative permeability measurements an increase in both rock features was observed after the runs, indicating that mineral dissolution and/or (clay) fine migration/detachment occurred during the experiments. Mineral dissolution, especially of pore-filling cements (e.g. carbonate-, sulphate minerals) is also deduced by BET analysis, in determining the specific surface of the sandstones. The size of these reactive surfaces increased after the experiments, suggesting that after the dissolution of pore-filling cements, formerly armoured grain rimming clay cutans were exposed to potential migrating fluids. These findings are also supported by µ-CT investigations. Here, the achieved 3D modelling data indicate an increase in reactive surface areas exposed to the pore space (which is in accord to the BET observations), as well as an enhancement in rock porosity and permeability after the runs. Moreover, these simulations showed that a remarkable mass (mineral) transfer was induced by the experiments, which led to a displacement of the porosity and permeability distribution in the sandstones and therefore a change in the fluid flow characteristics within the rocks - a parameter most important for every fluid-rock process. These observations are quite astonishing because they suggest that not only fluid velocity (e.g. during fluid flow experiments) might detach and transport grain rimming (clay) minerals, but also that physico-chemical reactions may enforce the release of such solids, even during almost static p-/T-/Xfluid conditions, as used in our experiments.
Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L
2014-08-30
The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Aguirre von Wobeser, Eneas; Ibelings, Bas W.; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C.P.
2011-01-01
Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618
Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater.
Bautista, P; Casas, J A; Zazo, J A; Rodriguez, J J; Mohedano, A F
2014-01-01
The treatment of cosmetic wastewaters by Fenton (Fe²⁺/H₂O₂) and Fenton-like (Fe³⁺/H₂O₂) oxidation has been studied. From batch and continuous experiments it has been proved that both versions of the Fenton process lead to quite similar results in terms of chemical oxygen demand (COD) and total organic carbon reduction although the COD shows a slightly higher rate in the early stages of reaction. COD reductions of around 55% after 2 h reaction time and 75-80% with 4 h residence time were reached in batch and continuous experiments, respectively, conducted at pH around 3, ambient temperature (20 °C), with 200 mg/L of Fe dose and an initial H₂O₂/COD weight ratio corresponding to the theoretical stoichiometric value. Achieving the locally allowable limit of COD for industrial wastewater discharge into the municipal sewer system takes no more than 30 min reaction time under those conditions by both Fenton systems. However, the Fenton-like process, where iron is fed as Fe(3+), would be preferable for industrial applications since the ferric sludge resulting upon final neutralization of the effluent can be recycled to the process. A second-order kinetic equation with respect to COD fitted fairly well the experimental results at different temperatures, thus providing a simple practical tool for design purposes.
Effective control of modified palygorskite to NH4+-N release from sediment.
Chen, Lei; Zheng, Tianyuan; Zhang, Junjie; Liu, Jie; Zheng, Xilai
2014-01-01
Sediment capping is an in situ treatment technology that can effectively restrain nutrient and pollutant release from the sediment in lakes and reservoirs. Research on sediment capping has focused on the search for effective, non-polluting and affordable capping materials. The efficiency and mechanism of sediment capping with modified palygorskite in preventing sediment ammonia nitrogen (NH4+-N) release to surface water were investigated through a series of batch and sediment capping experiments. Purified palygorskite and different types of modified palygorskite (i.e. heated, acid-modified and NaCI-modified palygorskite) were used in this investigation. Factors affecting control efficiency, including the temperature, thickness and grain size of the capping layer, were also analysed. The batch tests showed that the adsorption of NH4+-N on modified palygorskite achieved an equilibration in the initial 45 min, and the adsorption isotherm followed the Freundlich equation. Sediment capping experiments showed that compared with non-capped condition, covering the sediment with modified palygorskite and sand both inhibited NH4+-N release to the overlying water. Given its excellent chemical stability and strong adsorption, heated palygorskite, which has a NH4+-N release inhibition ratio of 41.3%, is a more effective sediment capping material compared with sand. The controlling effectiveness of the modified palygorskite increases with thicker capping layer, lower temperature and smaller grain size of the capping material.
Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie
2018-07-01
During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol
NASA Astrophysics Data System (ADS)
Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.
2017-04-01
Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.
Sulphate release from construction and demolition material in soils
NASA Astrophysics Data System (ADS)
Abel, Stefan; Wessolek, Gerd
2013-04-01
In Berlin and many other cities soils are heavily influenced by anthropogenic activities and deposited substrates. A widespread technical substrate in technosols is construction and demolition material from residential and industrial buildings. Existing rubble landfills without sealing facilities pose threats to ground water quality. In the central city of Berlin rising sulphate concentrations of groundwaters (up to 1200 mg/L) are measured since more than two decades. Previous studies point out that the high sulphate concentrations are mainly attributed to World War II rubble. The major part of debris was deposited in form of landfills and contains approximately 0.3 wt% gypsum. The scope of our research is to determine mechanisms of sulphate release from debris material, interactions between sulphate release, soil hydraulic properties and potential sinks of sulphur. To estimate equilibrium concentration and kinetics of sulphate release of various debris components batch and column experiments are conducted. The same method is applied to determine potential adsorptive character of common debris components. To analyse the impacts of soil hydraulic properties on sulphate leaching we carry out soil column experiments with defined upper and lower boundary conditions, varying water flow velocity and induced preferential flow. Simultaneously we monitor sulphate concentration of soil leachate in a 2 m³ lysimeter. First results of the batch experiments show that gypsum from broken stucco is the main source of sulphate in the observed technosols. Other components as mortar and slag show a quite low sulphate release. Similar results are found within the column experiments. For brigs medium and strongly time dependent sulphate release is determined. Concentrations up to 1500 mg/L are measured in the soil leachate from the lysimeter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se; Escobar, Federico; Fu Xinmei
2012-01-15
Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competitionmore » for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.« less
Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar
2009-08-01
The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.
Zotta, T; Ianniello, R G; Guidone, A; Parente, E; Ricciardi, A
2014-03-01
Lactobacillus plantarum is a lactic acid bacterium involved in the production of many fermented foods. Recently, several studies have demonstrated that aerobic or respiratory metabolism in this species leads to improved technological and stress response properties. We investigated respiratory growth, metabolite production and stress resistance of Lact. plantarum C17 during batch, fed-batch and chemostat cultivations under respiratory conditions. Sixty mutants were selected for their ability to tolerate oxidative stress using H2 O2 and menadione as selective agents and further screened for their capability to growth under anaerobic, respiratory and oxidative stress conditions. Dilution rate clearly affected the physiological state of cells and, generally, slow-growing cultures had improved survival to stresses, catalase production and oxygen uptake. Most mutants were more competitive in terms of biomass production and ROS degradation compared with wild-type strain (wt) C17 and two of these (C17-m19 and C17-m58) were selected for further experiments. This work confirms that, in Lact. plantarum, respiration and low growth rates confer physiological and metabolic advantages compared with anaerobic cultivation. Our strategy of natural selection successfully provides a rapid and inexpensive screening for a large number of strains and represents a food-grade approach of practical relevance in the production of starter and probiotic cultures. © 2013 The Society for Applied Microbiology.
Penloglou, Giannis; Chatzidoukas, Christos; Kiparissides, Costas
2012-01-01
The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Peters, K. A.; Atkinson, P. F.; Hammond, E. C., Jr.
1986-01-01
Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. The results indicate that film batch differences, temperature, and aging play an important role in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.
Timoumi, Asma; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie
2017-10-01
Dynamic behavior of Yarrowia lipolytica W29 strain under conditions of fluctuating, low, and limited oxygen supply was characterized in batch and glucose-limited chemostat cultures. In batch cultures, transient oscillations between oxygen-rich and -deprived environments induced a slight citric acid accumulation (lower than 29 mg L -1 ). By contrast, no citric acid was detected in continuous fermentations for all stress conditions: full anoxia (zero pO 2 value, 100% N 2 ), limited (zero pO 2 value, 75% of cell needs), and low (pO 2 close to 2%) dissolved oxygen (DO) levels. The macroscopic behavior (kinetic parameters, yields, viability) of Y. lipolytica was not significantly affected by the exposure to DO fluctuations under both modes of culture. Nevertheless, conditions of oxygen limitation resulted in the destabilization of the glucose-limited growth during the continuous cultivations. Morphological responses of Y. lipolytica to DO oscillations were different between batch and chemostat runs. Indeed, a yeast-to-mycelium transition was induced and progressively intensified during the batch fermentations (filamentous subpopulation reaching 74% (v/v)). While, in chemostat bioreactors, the culture consisted mainly of yeast-like cells (mean diameter not exceeding 5.7 μm) with a normal size distribution. During the continuous cultures, growth at low DO concentration did not induce any changes in Y. lipolytica morphology. Dimorphism (up to 80.5% (v/v) of filaments) was only detected under conditions of oxygen limitation in the presence of a residual glucose excess (more than 0.75 g L -1 ). These data suggest an impact of glucose levels on the signaling pathways regulating dimorphic responses in Y. lipolytica.
Removal of mercury from an alumina refinery aqueous stream.
Mullett, Mark; Tardio, James; Bhargava, Suresh; Dobbs, Charles
2007-06-01
Digestion condensate is formed as a by-product of the alumina refinery digestion process. The solution exhibits a high pH and is chemically reducing, containing many volatile species such as water, volatile organics, ammonia, and mercury. Because digestion condensate is chemically unique, an innovative approach was required to investigate mercury removal. The mercury capacity and adsorption kinetics were investigated using a number of materials including gold, silver and sulphur impregnated silica and a silver impregnated carbon. The results were compared to commercial sorbents, including extruded and powdered virgin activated carbons and a sulphur impregnated mineral. Nano-gold supported on silica (88% removal under batch conditions and 95% removal under flow conditions) and powdered activated carbon (91% under batch conditions and 98% removal under flow conditions) were the most effective materials investigated. The silver and sulphur impregnated materials were unstable in digestion condensate under the test conditions used.
Sar, Taner; Seker, Gamze; Erman, Ayse Gokce; Stark, Benjamin C.; Yesilcimen Akbas, Meltem
2017-01-01
ABSTRACT This study describes an efficient and reusable process for ethanol production from medium containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing (TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains were investigated regarding their ethanol production capacities over the course of 15 successive 96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production, with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15 or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8 successive batch fermentations; again strain TS3 maintained a substantial advantage over strain FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long periods of time and large numbers of repeated batch fermentations, including, as in this case, using media with food processing wastes as the carbon source. PMID:28394725
Sar, Taner; Seker, Gamze; Erman, Ayse Gokce; Stark, Benjamin C; Yesilcimen Akbas, Meltem
2017-09-03
This study describes an efficient and reusable process for ethanol production from medium containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing (TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains were investigated regarding their ethanol production capacities over the course of 15 successive 96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production, with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15 or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8 successive batch fermentations; again strain TS3 maintained a substantial advantage over strain FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long periods of time and large numbers of repeated batch fermentations, including, as in this case, using media with food processing wastes as the carbon source.
Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun
2010-09-01
The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Unobtrusive integration of data management with fMRI analysis.
Poliakov, Andrew V; Hertzenberg, Xenia; Moore, Eider B; Corina, David P; Ojemann, George A; Brinkley, James F
2007-01-01
This note describes a software utility, called X-batch which addresses two pressing issues typically faced by functional magnetic resonance imaging (fMRI) neuroimaging laboratories (1) analysis automation and (2) data management. The first issue is addressed by providing a simple batch mode processing tool for the popular SPM software package (http://www.fil.ion. ucl.ac.uk/spm/; Welcome Department of Imaging Neuroscience, London, UK). The second is addressed by transparently recording metadata describing all aspects of the batch job (e.g., subject demographics, analysis parameters, locations and names of created files, date and time of analysis, and so on). These metadata are recorded as instances of an extended version of the Protégé-based Experiment Lab Book ontology created by the Dartmouth fMRI Data Center. The resulting instantiated ontology provides a detailed record of all fMRI analyses performed, and as such can be part of larger systems for neuroimaging data management, sharing, and visualization. The X-batch system is in use in our own fMRI research, and is available for download at http://X-batch.sourceforge.net/.
Low-temperature catalytic gasification of food processing wastes. 1995 topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.C.; Hart, T.R.
The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previousmore » interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.« less
Column Chromatography To Obtain Organic Cation Sorption Isotherms.
Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A
2016-08-02
Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.
Kolbl, Sabina; Paloczi, Attila; Panjan, Jože; Stres, Blaž
2014-02-01
The primary aim of the study was to develop and validate an in-house upscale of Automatic Methane Potential Test System II for studying real-time inocula and real-scale substrates in batch, codigestion and enzyme enhanced hydrolysis experiments, in addition to semi-continuous operation of the developed equipment and experiments testing inoculum functional quality. The successful upscale to 5L enabled comparison of different process configurations in shorter preparation times with acceptable accuracy and high-through put intended for industrial decision making. The adoption of the same scales, equipment and methodologies in batch and semi-continuous tests mirroring those at full scale biogas plants resulted in matching methane yields between the two laboratory tests and full-scale, confirming thus the increased decision making value of the approach for industrial operations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Uranium fate in Hanford sediment altered by simulated acid waste solutions
Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; ...
2015-07-31
Many aspects of U(VI) behavior in sediments that are previously exposed to acidic waste fluids for sufficiently long times to induce significant changes in pH and other physical, mineralogical and chemical properties, are not well documented in the literature. For this reason, we conducted a series of macroscopic batch experiments combined with a variety of bulk characterization studies (Mössbauer and laser spectroscopy), micro-scale inspections (µ-XRF), and molecular scale interrogations (XANES) with the objectives to: i) determine the extent of U(VI) partitioning to Hanford sediments previously exposed to acidic waste simulants (pH = 2 and pH = 5) and under neutralmore » conditions (pH = 8) at varying background solution concentrations (i.e., NaNO 3); ii) determine micron-scale solid phase associated U valence state and phase identity; and iii) provide information for a plausible conceptual model of U(VI) attenuation under waste plume acidic conditions. The results of the batch experiments showed that the acid pre-treated sediment had high affinity for aqueous U(VI), which was removed from solution via two pH dependent and apparently different mechanisms (adsorption at pH = 2 and precipitation at pH = 5). The micro-scale inspections and XANES analyses confirmed that high concentration areas were rich mainly in U(VI), demonstrating that most of the added U(VI) was not reduced to U(IV). The laser spectroscopy data showed that uranyl phosphates {e.g. metaautunite [Ca(UO 2) 2(PO 4) 2•10-12H 2O] and phosphuranylite [KCa(H 3O) 3(UO 2) 7(PO 4) 4O 4•8(H 2O)]} were present in the sediments. They also showed clear differences between the U bearing phases in the experiments conducted in the presence or absence of air. As a result, the data generated from these experiments will help in a better understanding of the reactions and processes that have a significant effect and/or control U mobility.« less
Batch Statistical Process Monitoring Approach to a Cocrystallization Process.
Sarraguça, Mafalda C; Ribeiro, Paulo R S; Dos Santos, Adenilson O; Lopes, João A
2015-12-01
Cocrystals are defined as crystalline structures composed of two or more compounds that are solid at room temperature held together by noncovalent bonds. Their main advantages are the increase of solubility, bioavailability, permeability, stability, and at the same time retaining active pharmaceutical ingredient bioactivity. The cocrystallization between furosemide and nicotinamide by solvent evaporation was monitored on-line using near-infrared spectroscopy (NIRS) as a process analytical technology tool. The near-infrared spectra were analyzed using principal component analysis. Batch statistical process monitoring was used to create control charts to perceive the process trajectory and define control limits. Normal and non-normal operating condition batches were performed and monitored with NIRS. The use of NIRS associated with batch statistical process models allowed the detection of abnormal variations in critical process parameters, like the amount of solvent or amount of initial components present in the cocrystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Assessment of CO2-Induced Geochemical Changes in Soil/Mineral-Water Systems
NASA Astrophysics Data System (ADS)
Jeong, H. Y.; Choi, H. J.
2016-12-01
Although the storage of CO2 in deep geological formations is considered the most promising sequestration path, there is still a risk that it may leak into the atmosphere. To ensure the secure operation of CO2 storage sites, thus, it is necessary to implement CO2 leakage monitoring systems. Furthermore, the leakage may alter geochemical properties of overlying geological units to have adverse environmental consequences. By elucidating geochemical changes due to CO2 leakage, it is possible to develop effective CO2 monitoring techniques and predict the influence of CO2 leakage. A series of batch experiments were conducted to simulate CO2-induced geochemical changes in soil/mineral-water systems. Soil samples, obtained from Eumseong basin in Eumseong-gun, Chungcheongbuk-do, were dried for 6 hours at 60° and then divided into two size fractions: < 106 and 106-212 mm. Minerals including mica/illite, vermiculite, and feldspar were purchased and purified if necessary. Prior to batch experiments, soils and minerals were characterized for surface area, mineralogy, elemental composition, carbon and nitrogen contents, pH buffering capacity, and metal extractability. Batch experiments were initiated by reacting 100% CO2 atmosphere with aqueous suspensions of 120 g soils or 50 g minerals in 3,000 mL of 10 mM CsClO4 at room temperature. In parallel, the batches having the same soil/mineral compositions were run under the ambient air as controls. To prevent microbial activities, all batches were sterilized with 0.03% HCHO. To track geochemical changes, pH and electrical conductivity were monitored. Also, while solutions were regularly sampled and analyzed for trace metals as well as main cations and anions, solid phases were sampled to observe changes in mineralogical compositions. Geochemical changes in both solution and solid phases during the initial 6 month reaction will be presented. Acknowledgement: The "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).
Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun
2015-10-10
Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.
Ribeiro, Ana Ferreira; de Oliveira Rezende, Ricardo Leite; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira
2013-01-01
The aim of this research was to develop and optimize a process for obtaining poly ɛ-caprolactone (PCL) nanoparticles loaded with Uncaria tomentosa (UT) extract. Nanoparticles were produced by the oil-in-water emulsion solvent evaporation method. Preliminary experiments determined the initial conditions of the organic phase (OP) and of the aqueous phase (AP) that would be utilized for this study. Ultimately, a three-factor three-level Box-Behnken design (BBD) was employed during the optimization process. PCL and polyvinyl alcohol (PVA) concentrations (X(1) and X(2), respectively) and the AP/OP volume ratio (X(3)) were the independent variables studied, while entrapment efficiency (Y(1)), particle mean diameter (Y(2)), polydispersity (Y(3)), and zeta potential (Y(4)) served as the evaluated responses. PRELIMINARY EXPERIMENTS REVEALED THAT THE OPTIMAL INITIAL CONDITIONS FOR THE PREPARATION OF NANOPARTICLES WERE AS FOLLOWS: OP composed of 5 mL ethyl acetate/acetone (3/2) mixture containing UT extract and PCL, and an AP of buffered PVA (pH 7.5) solution. Statistical analysis of the BBD results indicated that all of the studied factors had significant effects on the responses Y(1), Y(2), and Y(4,) and these effects are closely described or fitted by regression equations. Based on the obtained models and the selected desirability function, the nanoparticles were optimized to maximize Y(1) and minimize Y(2). These optimal conditions were achieved using 3% (w/v) PCL, 1% (w/v) PVA, and an AP/OP ratio of 1.7, with predicted values of 89.1% for Y(1) and 280 nm for Y(2). Another batch was produced under the same optimal conditions. The entrapment efficiency of this new batch was measured at 81.6% (Y(1)) and the particles had a mean size of 247 nm (Y(2)) and a polydispersity index of 0.062 (Y(3)). This investigation obtained UT-loaded nanoparticle formulations with desired characteristics. The BBD approach was a useful tool for nanoparticle development and optimization, and thus should be useful especially in the realm of phytotherapeutics, in which varied compositions may be assessed in quantitative and qualitative terms.
Réduction in situ des ions nitrate dans des eaux par les bactéries indigènes
NASA Astrophysics Data System (ADS)
Abdelouas, Abdesselam; Deng, Lijun; Nuttall, Eric; Lutze, Werner; Fritz, Bertrand; Crovisier, Jean-Louis
1999-02-01
We studied the possibility of cleaning groundwater contaminated with nitrate ions using indigenous bacteria. The groundwater occurs in a site located near a former vegetable farm near Albuquerque, New Mexico (USA) and contains up to 500 mg·L -1 of nitrate ion. Batch and column experiments using groundwater and local sediment showed that indigenous bacteria catalyzed the nitrate ions reduction. Sodium acetate was selected as the best carbon source for the in situ application. As expected, the best conditions for denitrification were encountered in situ. Nitrate ions and their byproducts were reduced to nitrogen gas within 5 days.
Kpaibe, André P S; Ben-Ameur, Randa; Coussot, Gaëlle; Ladner, Yoann; Montels, Jérôme; Ake, Michèle; Perrin, Catherine
2017-08-01
Snake venoms constitute a very promising resource for the development of new medicines. They are mainly composed of very complex peptide and protein mixtures, which composition may vary significantly from batch to batch. This latter consideration is a challenge for routine quality control (QC) in the pharmaceutical industry. In this paper, we report the use of capillary zone electrophoresis for the development of an analytical fingerprint methodology to assess the quality of snake venoms. The analytical fingerprint concept is being widely used for the QC of herbal drugs but rarely for venoms QC so far. CZE was chosen for its intrinsic efficiency in the separation of protein and peptide mixtures. The analytical fingerprint methodology was first developed and evaluated for a particular snake venom, Lachesis muta. Optimal analysis conditions required the use of PDADMAC capillary coating to avoid protein and peptide adsorption. Same analytical conditions were then applied to other snake venom species. Different electrophoretic profiles were obtained for each venom. Excellent repeatability and intermediate precision was observed for each batch. Analysis of different batches of the same species revealed inherent qualitative and quantitative composition variations of the venoms between individuals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the role of humic acids' carboxyl groups in the binding of charged organic compounds.
Smilek, Jiří; Sedláček, Petr; Kalina, Michal; Klučáková, Martina
2015-11-01
Interactions of humic acids (HAs) with two cationic dyes (methylene blue and rhodamine 6G) were studied using a unique combination of diffusion and partitioning studies in HAs, containing hydrogels and batch sorption experiments. In order to investigate the involvement of carboxyl groups of HAs in these interactions, all experiments were performed for both, the original lignite HAs and HAs with selectively methylated carboxyls. The results of the diffusion experiments confirm that the interactions between the solute and humic substances have a strong impact on the rate of diffusion process. Surprisingly, the effect is almost equally approved for original and methylated HAs. On the other hand, the results of batch sorption experiments show strong improvement of the sorption capacity (methylated HAs), which is explained by changed morphology of alkylated HAs. The comparison of the results of diffusion and adsorption experiments shows that the diffusion experiments simulate the transport of solutes in natural humics containing environment more reasonably. Copyright © 2015 Elsevier Ltd. All rights reserved.
Han, Young-Soo; Demond, Avery H; Gallegos, Tanya J; Hayes, Kim F
2015-09-01
FeS has been recognized as a good scavenger for arsenic under anoxic conditions. To create a suitable adsorbent for flow-through reactors such as permeable reactive barriers, it has been suggested that this material may be coated onto sand. However, previous work on FeS-coated sand has focused on batch reactors, while flow-through reactors usually have higher solid-solution ratios. To ascertain whether differences in the solid-solution ratio (SSR) are important in this system, batch sorption experiments were conducted as a function of pH using As(III) and FeS-coated sands at various solid-solution ratios. The results showed little variation in the distribution coefficient with SSR at pH 7 and 9. However, at pH 5, the results showed lower values of the distribution coefficient at lower SSRs, the reverse of typically reported SSR effects. Measured pe values showed a dependence on SSR, which, when coupled with chemical modeling of the Fe-As-S-H2O system, suggested a change in the removal mechanism with SSR, from adsorption to a reduced Fe(II) oxyhydroxide phase (represented by Fe2(OH)5) to precipitation as As2S3 or AsS. On the other hand, at pH 7 and 9, arsenite adsorption is the most probable removal mechanism regardless of the pe. Thus, this study identified variations in pH and redox conditions, and the removal mechanisms that these parameters govern, as the reason for the apparent SSR effect. Copyright © 2014 Elsevier Ltd. All rights reserved.
Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils
NASA Astrophysics Data System (ADS)
Arthur, Jennifer D.; Mark, Noah W.; Taylor, Susan; Šimunek, J.; Brusseau, M. L.; Dontsova, Katerina M.
2017-04-01
The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002 h- 1 and 0.0068 h- 1. DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3 L g- 1, and Freundlich coefficients between 1.3 and 34 mg1 - n Ln kg- 1. Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to contribute to a reduced risk for contamination of ground water from soil residues.
Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils.
Arthur, Jennifer D; Mark, Noah W; Taylor, Susan; Šimunek, J; Brusseau, M L; Dontsova, Katerina M
2017-04-01
The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002h -1 and 0.0068h -1 . DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3Lg -1 , and Freundlich coefficients between 1.3 and 34mg 1 - n L n kg -1 . Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to contribute to a reduced risk for contamination of ground water from soil residues. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus
2015-04-01
Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently cooler and moister climate) the total concentrations of Ca, Mg and K in the aqueous extracts decreased, the relative ionic contribution by K decreased, while the ionic contribution by Ca increased. Thus, a shift in vegetation due to climate change seems to affect the ionic composition - but not the ionic load - of the soil solution. In the case of a shift from forest - to - sagebrush and tundra - to - forest or sagebrush, the relative contribution by K strongly increases at the expense of Ca. We hypothesize that K should play an important role in future biogeochemical cycles under the assumptions of climate warming and subsequent vegetation shifts to higher altitudes.
Pore water colloid properties in argillaceous sedimentary rocks.
Degueldre, Claude; Cloet, Veerle
2016-11-01
The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.
2014-07-01
Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.
Salar-García, María J; Bernal, Vicente; Pastor, José M; Salvador, Manuel; Argandoña, Montserrat; Nieto, Joaquín J; Vargas, Carmen; Cánovas, Manuel
2017-02-08
The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. 13 C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect - mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L -1 ) and volumetric ectoine yields (up to 4.21 g L -1 ) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic efficiency of C. salexigens can be improved by careful design of culture feeding schemes. Metabolic shifts observed at low ammonium concentrations were explained by a shift in the energy required for nitrogen assimilation. Carbon-limited fed-batch cultures with reduced ammonium supply were the best conditions for cultivation of C. salexigens, supporting high density growth and maintaining high ectoines production.
Comparison of batch and column tests for the elution of artificial turf system components.
Krüger, O; Kalbe, U; Berger, W; Nordhauβ, K; Christoph, G; Walzel, H-P
2012-12-18
Synthetic athletic tracks and turf areas for outdoor sporting grounds may release contaminants due to the chemical composition of some components. A primary example is that of zinc from reused scrap tires (main constituent, styrene butadiene rubber, SBR), which might be harmful to the environment. Thus, methods for the risk assessment of those materials are required. Laboratory leaching methods like batch and column tests are widely used to examine the soil-groundwater pathway. We tested several components for artificial sporting grounds with batch tests at a liquid to solid (LS) ratio of 2 L/kg and column tests with an LS up to 26.5 L/kg. We found a higher zinc release in the batch test eluates for all granules, ranging from 15% higher to 687% higher versus data from column tests for SBR granules. Accompanying parameters, especially the very high turbidity of one ethylene propylene diene monomer rubber (EPDM) or thermoplastic elastomer (TPE) eluates, reflect the stronger mechanical stress of batch testing. This indicates that batch test procedures might not be suitable for the risk assessment of synthetic sporting ground components. Column tests, on the other hand, represent field conditions more closely and allow for determination of time-dependent contaminants release.
de Lima, Pollyne Borborema Almeida; Mulder, Kelly Cristina Leite; Melo, Nadiele Tamires Moreira; Carvalho, Lucas Silva; Menino, Gisele Soares; Mulinari, Eduardo; de Castro, Virgilio H; Dos Reis, Thaila F; Goldman, Gustavo Henrique; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa
2016-09-15
Crude glycerol is the main byproduct of the biodiesel industry. Although it can have different applications, its purification is costly. Therefore, in this study a biotechnological route has been proposed for further utilization of crude glycerol in the fermentative production of lactic acid. This acid is largely utilized in food, pharmaceutical, textile, and chemical industries, making it the hydroxycarboxylic acid with the highest market potential worldwide. Currently, industrial production of lactic acid is done mainly using sugar as the substrate. Thus here, for the first time, Pichia pastoris has been engineered for heterologous L-lactic acid production using glycerol as a single carbon source. For that, the Bos taurus lactate dehydrogenase gene was introduced into P. pastoris. Moreover, a heterologous and a novel homologous lactate transporter have been evaluated for L-lactic acid production. Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g. We showed that P. pastoris has a great potential as a fermentative organism for producing L-lactic acid using glycerol as the carbon source at limited oxygenation conditions (below 0.05 % DO in the bioreactor). The best strain had both the LDHb and the homologous lactate transporter encoding genes expressed, and reached a titer 1.5 times higher than the strain with the S. cerevisiae transporter. Finally, it was also shown that increased lactic acid production was concomitant to reduction of acetic acid formation by half.
An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.
ERIC Educational Resources Information Center
Sublette, Kerry L.
1989-01-01
Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)
Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah
2011-03-01
The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists
[Virus adsorption from batch experiments as influenced by air-water interface].
Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji
2007-12-01
The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.
Yamamoto, Hiroshi; Nakamura, Yudai; Moriguchi, Shigemi; Nakamura, Yuki; Honda, Yuta; Tamura, Ikumi; Hirata, Yoshiko; Hayashi, Akihide; Sekizawa, Jun
2009-02-01
We selected eight pharmaceuticals with relatively high potential ecological risk and high consumption-namely, acetaminophen, atenolol, carbamazepine, ibuprofen, ifenprodil, indomethacin, mefenamic acid, and propranolol-and conducted laboratory experiments to examine the persistence and partitioning of these compounds in the aquatic environment. In the results of batch sunlight photolysis experiments, three out of eight pharmaceuticals-propranolol, indomethacin, and ifenprodil-were relatively easily photodegraded (i.e., half-life<24h), whereas the other five pharmaceuticals were relatively stable against sunlight. The results of batch biodegradation experiments using river water suggested relatively slow biodegradation (i.e., half-life>24h) for all eight pharmaceuticals, but the rate constant was dependent on sampling site and time. Batch sorption experiments were also conducted to determine the sorption coefficients to river sediments and a model soil sample. The determined coefficients (K(d) values) were much higher for three amines (atenolol, ifenprodil, and propranolol) than for neutral compounds or carboxylic acids; the K(d) values of the amines were comparable to those of a four-ring polycyclic aromatic hydrocarbon (PAH) pyrene. The coefficients were also higher for sediment/soil with higher organic content, and the organic carbon-based sorption coefficient (logK(oc)) showed a poor linear correlation with the octanol-water distribution coefficient (logD(ow)) at neutral pH. These results suggest other sorption mechanisms-such as electrochemical affinity, in addition to hydrophobic interaction-play an important role in sorption to sediment/soil at neutral pH.
Othman, Majdiah; Ariff, Arbakariya B; Wasoh, Helmi; Kapri, Mohd Rizal; Halim, Murni
2017-11-27
Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chin-Pao
2001-05-31
This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactormore » integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Emily J.; Habas, Susan E.; Wang, Lu
2016-11-07
The translation of batch chemistries to high-throughput continuous flow methods dresses scaling, automation, and reproducibility concerns associated with the implementation of colloidally prepared nanoparticle (NP) catalysts for industrial catalytic processes. Nickel NPs were synthesized by the high-temperature amine reduction of a Ni2+ precursor using a continuous millifluidic (mF) flow method, achieving yields greater than 60%. The resulting Ni NP catalysts were compared against catalysts prepared in a batch reaction under conditions analogous to the continuous flow conditions with respect to total reaction volume, time, and temperature and by traditional incipient wetness (IW) impregnation for the hydrodeoxygenation (HDO) of guaiacol undermore » ex situ catalytic fast pyrolysis conditions. Compared to the IW method, the colloidally prepared NPs displayed increased morphological control and narrowed size distributions, and the NPs prepared by both methods showed similar size, shape, and crystallinity. The Ni NP catalyst synthesized by the continuous flow method exhibited similar H-adsorption site densities, site-time yields, and selectivities towards deoxygenated products as compared to the analogous batch reaction, and outperformed the IW catalyst with respect to higher selectivity to lower oxygen content products and a 6.9-fold slower deactivation rate. These results demonstrate the utility of synthesizing colloidal Ni NP catalysts using continuous flow methods while maintaining the catalytic properties displayed by the batch equivalent. Finally, this methodology can be extended to other catalytically relevant base metals for the high-throughput synthesis of metal NPs for the catalytic production of biofuels.« less
Jain, Suyog N; Gogate, Parag R
2018-03-15
Biosorbent synthesized from dead leaves of Prunus Dulcis with chemical activation during the synthesis was applied for the removal of Acid Green 25 dye from wastewater. The obtained biosorbent was characterized using Brunauer-Emmett-Teller analysis, Fourier transform-infrared spectroscopy and scanning electron microscopy measurements. It was demonstrated that alkali treatment during the synthesis significantly increased surface area of biosorbent from 67.205 to 426.346 m 2 /g. The effect of various operating parameters on dye removal was investigated in batch operation and optimum values of parameters were established as pH of 2, 14 g/L as the dose of natural biosorbent and 6 g/L as the dose of alkali treated biosorbent. Relative error values were determined to check fitting of obtained data to the different kinetic and isotherm models. It was established that pseudo-second order kinetic model and Langmuir isotherm fitted suitably to the obtained batch experimental data. Maximum biosorption capacity values were estimated as 22.68 and 50.79 mg/g for natural biosorbent and for alkali activated Prunus Dulcis, respectively. Adsorption was observed as endothermic and activation energy of 6.22 kJ/mol confirmed physical type of adsorption. Column experiments were also conducted to probe the effectiveness of biosorbent for practical applications in continuous operation. Breakthrough parameters were established by studying the effect of biosorbent height, flow rate of dye solution and initial dye concentration on the extent of dye removal. The maximum biosorption capacity under optimized conditions in the column operation was estimated as 28.57 mg/g. Thomas and Yoon-Nelson models were found to be suitably fitted to obtained column data. Reusability study carried out in batch and continuous column operations confirmed that synthesized biosorbent can be used repeatedly for dye removal from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici
Wang, Xiaoqing; Salvachua, Davinia; Sanchez i Nogue, Violeta; ...
2017-08-17
The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N 2 was found to exhibit improved performance over CO 2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agentsmore » were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH 4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. These results highlight the importance of media and fermentation strategy to improve PA production. Altogether, this work demonstrates the feasibility of producing PA from corn stover hydrolysate.« less
Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoqing; Salvachua, Davinia; Sanchez i Nogue, Violeta
The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N 2 was found to exhibit improved performance over CO 2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agentsmore » were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH 4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. These results highlight the importance of media and fermentation strategy to improve PA production. Altogether, this work demonstrates the feasibility of producing PA from corn stover hydrolysate.« less
Ultrasound assisted biogas production from landfill leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can
Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions formore » solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.« less
Synthesis of Cyclic α-Diazo-β-keto Sulfoxides in Batch and Continuous Flow.
McCaw, Patrick G; Buckley, Naomi M; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R; Collins, Stuart G
2017-04-07
Diazo transfer to β-keto sulfoxides to form stable isolable α-diazo-β-keto sulfoxides has been achieved for the first time. Both monocyclic and benzofused ketone derived β-keto sulfoxides were successfully explored as substrates for diazo transfer. Use of continuous flow leads to isolation of the desired compounds in enhanced yields relative to standard batch conditions, with short reaction times, increased safety profile, and potential to scale up.
Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen
2017-12-11
We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.
Anti-A and anti-B hemagglutinin depletion during Cohn purification process of 5% immunoglobulin.
Salvatore, Alfonso; Esin, Semih; Batoni, Giovanna; Ascione, Ester; Farina, Claudio; Nardini, Claudia
2015-07-01
Polyvalent immunoglobulin G (IgG) products obtained by fractionation of human plasma are widely used to treat a broad range of conditions, including immunodeficiency syndromes and autoimmune, inflammatory, and infectious diseases. For high-quality products and to minimize adverse events related to the use of intravenous IgG (IVIG) it is very important to perform detailed analyses of their components. One of these components, that in rare cases can cause severe hemolytic conditions, is the amount of hemagglutinins, natural antibodies that bind A and/or B (anti-A or -B) antigens present in red blood cells (RBCs). To characterize different IgG batches and to monitor the efficacy of the production procedure in the hemagglutinin reduction, a direct agglutination test (DAT) and a new flow cytometry (FC)-based assay were used for measuring the activity and the content of hemagglutinins in IgG samples obtained at different stages of the purification process. A total of 113 batches of 5% IVIG, produced in 2013 by Kedrion Biopharma, were analyzed for the ability to agglutinate RBCs by DAT. All batches tested were within the limits set by the European Pharmacopoeia. Three batches of 5% IVIG were analyzed for their hemagglutinin levels. The finished products and the production intermediates were evaluated by the DAT and the FC assay. A significant decrease of anti-A and anti-B titer after the Fraction (F)III precipitation was observed in all batches tested and an evaluation of the results obtained by the two methods was performed. This study shows that the hemagglutinin titer, accurately measured in a high number of 5% IVIG batches, is within the allowed limits for the DAT method. The specific production process employed, in particular the FIII precipitation step, successfully removes IgM and significantly reduces IgG class hemagglutinins. © 2015 AABB.
NASA Astrophysics Data System (ADS)
Widjaja, Tri; Altway, Ali; Ni'mah, Hikmatun; Tedji, Namira; Rofiqah, Umi
2015-12-01
Development and innovation of ethanol food grade production are becoming the reasearch priority to increase economy growth. Moreover, the government of Indonesia has established regulation for increasing the renewable energy as primary energy. Sorghum is cerealia plant that contains 11-16% sugar that is optimum for fermentation process, it is potential to be cultivated, especially at barren area in Indonesia. The purpose of this experiment is to learn about the effect of microorganisms in fermentation process. Fermentation process was carried out batchwise in bioreactor and used 150g/L initial sugar concentration. Microorganisms used in this experiment are Zymomonas mobilis mutation (A3), Saccharomyces cerevisiae and mixed of Pichia stipitis. The yield of ethanol can be obtained from this experiment. For ethanol purification result, distillation process from fermentation process has been done to search the best operation condition for efficiency energy consumption. The experiment for purification was divided into two parts, which are distillation with structured packing steel wool and adsorption (dehydration) sequencely. In distillation part, parameters evaluation (HETP and pressure drop) of distillation column that can be used for scale up are needed. The experiment was operated at pressure of 1 atm. The distillation stage was carried out at 85 °C and reflux ratio of 0.92 with variety porosities of 20%, 40%, and 60%. Then the adsorption process was done at 120°C and two types of adsorbent, which are starch - based adsorbent with ingredient of cassava and molecular sieve 3A, were used. The adsorption process was then continued to purify the ethanol from impurities by using activated carbon. This research shows that the batch fermentation process with Zymomonas mobilis A3 obtain higher % yield of ethanol of 40,92%. In addition to that, for purification process, the best operation condition is by using 40% of porosity of stuctured packing steel wool in distillation stage and starch-based adsorbent in adsorption stage, which can obtain ethanol content of 92,15% with acetic acid percentage of 0,001% and the rest is water. This result is qualified for ethanol food grade specification which is between 90 - 94 % of ethanol with maximum percentage of acetic acid is 0,003%, and passes in fusel oil and isopropyl alcohol test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.A.; Atkinson, P.F.; Hammond, E.C.,JR.
Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. The results indicate that film batch differences, temperature, and aging play an important rolemore » in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.« less
Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.
Maugans, Clayton B; Akgerman, Aydin
2003-01-01
Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.
Grützmacher, G; Bartel, H; Althoff, H W; Clemen, S
2007-03-01
A set-up for experiments in the flow-through mode was constructed in order to test the efficacy of substances used for disinfecting water during drinking water treatment. A flow-through mode - in contrast to experiments under stationary conditions (so-called batch experiments) - was chosen, because this experimental design allows experiments to be carried out under constant conditions for an extended time (up to one week) and because efficacy testing is possible repeatedly, simultaneously and under exactly the same conditions for short (about 0.5 min) and also longer (about 47 min) contact times. With this experimental design the effect of biofilms along the inner pipe surfaces can be included in the observations. The construction of the experimental set-up is based on experience with laboratory flow-through systems that were installed by the UBA's drinking water department (formerly Institute for Water-, Soil- and Air Hygiene (WaBoLu) Institute) for testing disinfection with chlorine. In the first step, a test pipe for the simulation of a water works situation was installed. Water of different qualities can be mixed in large volumes beforehand so that the experimental procedure can be run with constant water quality for a minimum of one week. The kinetics of the disinfection reaction can be observed by extracting samples from eight sampling ports situated along the test pipe. In order to assign exact residence times to each of the sampling ports, tracer experiments were performed prior to testing disinfectant efficacy. This paper gives the technical details of the experimental set-up and presents the results of the tracer experiments to provide an introduction with respect to its potential.
ELISA reader does not interfere by mobile phone radiofrequency radiation.
Mortazavi, Seyyed Mohammad Javad; Baradaran-Ghahfarokhi, Hamid Reza; Abdi, Mohammad Reza; Baradaran-Ghahfarokhi, Milad; Mostafavi, Nayyer Sadat; Mahmoudi, Golshan; Berenjkoub, Nafiseh; Akmali, Zahra; Hossein-Beigi, Fahimeh; Arsang, Vajiheh
2016-01-01
The increasing number of mobile phones can physically cause electromagnetic interference (EMI) in medical environments; can also cause errors in immunoassays in laboratories. The ELISA readers are widely used as a useful diagnostic tool for Enzymun colorimetric assay in medicine. The aim of this study was to investigate whether the ELISA reader could be interfered by the exposure to the 900 MHz cell phones in the laboratory. Human serum samples were collected from 14 healthy donors (9 women and 5 men) and each sample was divided into four aliquots and was placed into four batches for the in-vitro quantitative determination of human chorionic gonadotropin (hCG). During colorimetric reading of the first, second, and third batches, the ELISA reader (Stat Fax 2100, Awareness Technology, Inc., USA) was exposed to 0.5, 1.0, and 2.0 W exposure of 900 MHz radiation, respectively. For the forth batch (control group), no radiation was applied. All experiments were performed comparing ELISA read out results of the I, II, and III batches with the control batch, using the Wilcoxon test with criterion level of P = 0.050. The final scores in the exposed batches I, II, and III were not statistically significant relative to the control batch (P > 0.05). The results showed that 900 MHz radiation exposure did not alter the ELISA measured levels of hCG hormone in I (P = 0.219), II (P = 0.909), and III (P = 0.056) batches compared to the control batch. This study showed that ELISA reader does not interfere by mobile phone RF radiation at a closed contact (less than 5 cm distance). However, we recommend that medical institutions discuss these issues in the context of their specific use of technologies and frame a policy that is clear and straightforward to guide staff, patients, and visitors.
ELISA reader does not interfere by mobile phone radiofrequency radiation
Mortazavi, Seyyed Mohammad Javad; Baradaran-Ghahfarokhi, Hamid Reza; Abdi, Mohammad Reza; Baradaran-Ghahfarokhi, Milad; Mostafavi, Nayyer Sadat; Mahmoudi, Golshan; Berenjkoub, Nafiseh; Akmali, Zahra; Hossein-Beigi, Fahimeh; Arsang, Vajiheh
2016-01-01
Background: The increasing number of mobile phones can physically cause electromagnetic interference (EMI) in medical environments; can also cause errors in immunoassays in laboratories. The ELISA readers are widely used as a useful diagnostic tool for Enzymun colorimetric assay in medicine. The aim of this study was to investigate whether the ELISA reader could be interfered by the exposure to the 900 MHz cell phones in the laboratory. Materials and Methods: Human serum samples were collected from 14 healthy donors (9 women and 5 men) and each sample was divided into four aliquots and was placed into four batches for the in-vitro quantitative determination of human chorionic gonadotropin (hCG). During colorimetric reading of the first, second, and third batches, the ELISA reader (Stat Fax 2100, Awareness Technology, Inc., USA) was exposed to 0.5, 1.0, and 2.0 W exposure of 900 MHz radiation, respectively. For the forth batch (control group), no radiation was applied. All experiments were performed comparing ELISA read out results of the I, II, and III batches with the control batch, using the Wilcoxon test with criterion level of P = 0.050. Results: The final scores in the exposed batches I, II, and III were not statistically significant relative to the control batch (P > 0.05). The results showed that 900 MHz radiation exposure did not alter the ELISA measured levels of hCG hormone in I (P = 0.219), II (P = 0.909), and III (P = 0.056) batches compared to the control batch. Conclusion: This study showed that ELISA reader does not interfere by mobile phone RF radiation at a closed contact (less than 5 cm distance). However, we recommend that medical institutions discuss these issues in the context of their specific use of technologies and frame a policy that is clear and straightforward to guide staff, patients, and visitors. PMID:27376040
Friedl, Gregor F; Mockaitis, Gustavo; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugênio
2009-10-01
A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L(-1)), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO(4)(2-)] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L(-1) and sulfate concentrations of 373, 746, and 1,493 mg SO(4)(2-) L(-1) in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30 +/- 1 degrees C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO(4)(2-)] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO(4)(2-)] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO(4)(2-)] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.
Colica, Giovanni; Mecarozzi, Pier Cesare; De Philippis, Roberto
2010-08-01
Seven exopolysaccharide-producing cyanobacteria were tested with regard to their capability to remove Cr(VI) from the wastewater of a plating industry. The cyanobacterium which showed, under lab conditions, the most promising features with regard to both Cr(VI) removal (about 12 mg of Cr(VI) removed per gram of dry biomass) and growth characteristics (highest growth rate and simplest culture medium) was Nostoc PCC7936. Furthermore, in lab experiments, it was also found that a HCl pretreatment is essential to abate the concentration of Cr(VI) in solution and that the viability of the biomass is not necessary. Subsequently, three pilot devices were tested, one batch (a dialysis cell) and two flow-through systems (a filter press and a column filled with quartz grain). The best performances were obtained with the filter press, where it was observed a sharp decrease in the concentration of Cr(VI), partly due to the adsorption of the metal by the biomass (about 50%) and partly due to its reduction to Cr(III). The results are discussed in terms of the role played by the different components (biomass and polysaccharide) of the cyanobacterial cultures in the removal of Cr(VI).
XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate.
Qiu, Muqing; Wang, Min; Zhao, Qingzhou; Hu, Baowei; Zhu, Yuling
2018-06-01
Effect of phosphate on the reduction of U(VI) on nZVI was determined by batch, XPS, XANES and EXAFS techniques. The batch experiments showed that nZVI was quite effective for the removal of uranium under the anaerobic conditions, whereas the addition of phosphate enhanced uranium removal over wide pH range. At low pH, the reduction of U(VI) to U(IV) significantly decreased with increasing phosphate concentration by XPS and XANES analysis. According to EXAFS analysis, the occurrence of UU shell at 10 mg/L phosphate and pH 4.0 was similar to that of U (IV) O 2 (s), whereas the UP and UFe shells were observed at 50 mg/L phosphate, revealing that reductive co-precipitate (U (IV) O 2 (s)) and precipitation of uranyl-phosphate were observed at low and high phosphate, respectively. The findings are crucial for the prediction of the effect of phosphate on the speciation and binding of uranium by nZVI at low pH, which is significant in controlling the mobility of U(VI) in contaminated environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fan, Jinlin; Liang, Shuang; Zhang, Bo; Zhang, Jian
2013-04-01
Oxygen and carbon source supply are usually insufficient in subsurface flow constructed wetlands. Simultaneous removal of organic pollutants and nitrogen in five batch-operated vertical flow constructed wetlands under different operating conditions was investigated. Alternate aerobic and anaerobic regions were created well with intermittent aeration. Four-month experiments showed that the wetland-applied intermittent aeration combined with step feeding strategy (reactor E) greatly improved the removal of organics, ammonium nitrogen (NH4-N), and total nitrogen (TN) simultaneously, which were 97, 96, and 82%, respectively. It was much better than non-aerated reactors A and B and outperformed intermittently aerated reactor D without step feeding. Continuous aeration (reactor C) significantly enhanced the organics removal and nitrification, but it limited the TN removal (29%) seriously as a result of low denitrification level, and the high operation cost remained a question. The effect of plants was confirmed in this study, and the monitoring data showed that the plants could grow normally. Intermittent aeration as well as step feeding had no obvious influence on the growth of wetland plants in this study.
Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T
2014-01-01
For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.
Restaino, Odile Francesca; Marseglia, Mariacarmela; De Castro, Cristina; Diana, Paola; Forni, Pasquale; Parrilli, Michelangelo; De Rosa, Mario; Schiraldi, Chiara
2014-02-01
Streptomyces roseochromogenes is able to hydroxylate steroid compounds in different positions of their cycloalkane rings thanks to a cytochrome P-450 multi-enzyme complex. In this paper, the hydroxylation of the hydrocortisone in the 16α position, performed by bacterial whole cells, was investigated in both shake flask and fermentation conditions; the best settings for both cellular growth and transformation reaction were studied by investigating the optimal medium composition, the kinetic of conversion, the most suitable substrate concentration and the preferred addition timing. Using newly formulated malt extract- and yeast extract-based media, a 16α-hydrohydrocortisone concentration of 0.2 ± 0.01 g L(-1) was reached in shake flasks. Batch experiments in a 2-L fermentor established the reproducibility and robustness of the biotransformation, while a pulsed batch fermentation strategy allowed the production to increase up to 0.508 ± 0.01 g L(-1). By-product formation was investigated, and two new derivates of the hydrocortisone obtained during the bacterial transformation reaction and unknown so far, a C-20 hydroxy derivate and a C-21 N-acetamide one, were determined by NMR analyses.
Heindel, Jerrold J.; vom Saal, Frederick S.
2008-01-01
We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research. PMID:18335108
Heindel, Jerrold J; vom Saal, Frederick S
2008-03-01
We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research.
NASA Astrophysics Data System (ADS)
Zhang, P.; Ding, R.; Wallace, R.; Bandosz, T.
2015-12-01
New composite adsorbents were developed by pyrolyzing sewage sludge and fish waste (75:25 or 90:10 dry mass ratio) at 650 oC and 950 oC. Batch adsorption experiments demonstrated that the composite adsorbents were able to adsorb a wide range of organic contaminants (volatile organic compounds, pharmaceuticals and endocrine disrupting compounds (EDCs), and nitrosamine disinfection byproducts) with high capacities. Here we further examine the performance of the adsorbents for the simultaneous removal of 8 pharmaceuticals and EDCs with rapid small-scale column tests (RSSCT). Results show that the order of breakthrough in RSSCT is in general consistent with the affinity determined via batch tests. As expected, the maximum amount of adsorption for each compound obtained from RSSCT is identical to or less than that obtained from batch tests (with only one exception), due to adsorption kinetics. However, despite the very different input concentration (1 mg/L vs. 100 mg/L) and contact time (2 min empty bed contact time vs. 16 hour equilibrium time) used in RSSCT and batch tests, the maximum amount of pharmaceuticals and EDCs adsorbed under RSSCT is still about one half of that under equilibrium batch tests, validating the approach of using batch tests with much higher input concentrations to determine adsorption capacities. Results of a pilot-scale column test in a drinking water treatment plant for pharmaceuticals removal will also be presented.
Integration of virtualized worker nodes in standard batch systems
NASA Astrophysics Data System (ADS)
Büge, Volker; Hessling, Hermann; Kemp, Yves; Kunze, Marcel; Oberst, Oliver; Quast, Günter; Scheurer, Armin; Synge, Owen
2010-04-01
Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.
Naghibi Beidokhti, Hamid Reza; Ghaffarzadegan, Reza; Mirzakhanlouei, Sasan; Ghazizadeh, Leila; Dorkoosh, Farid Abedin
2017-01-01
The objective of this study was to investigate the combined influence of independent variables in the preparation of folic acid-chitosan-methotrexate nanoparticles (FA-Chi-MTX NPs). These NPs were designed and prepared for targeted drug delivery in tumor. The NPs of each batch were prepared by coaxial electrospray atomization method and evaluated for particle size (PS) and particle size distribution (PSD). The independent variables were selected to be concentration of FA-chitosan, ratio of shell solution flow rate to core solution flow rate, and applied voltage. The process design of experiments (DOE) was obtained with three factors in three levels by Design expert software. Box-Behnken design was used to select 15 batches of experiments randomly. The chemical structure of FA-chitosan was examined by FTIR. The NPs of each batch were collected separately, and morphologies of NPs were investigated by field emission scanning electron microscope (FE-SEM). The captured pictures of all batches were analyzed by ImageJ software. Mean PS and PSD were calculated for each batch. Polynomial equation was produced for each response. The FE-SEM results showed the mean diameter of the core-shell NPs was around 304 nm, and nearly 30% of the produced NPs are in the desirable range. Optimum formulations were selected. The validation of DOE optimization results showed errors around 2.5 and 2.3% for PS and PSD, respectively. Moreover, the feasibility of using prepared NPs to target tumor extracellular pH was shown, as drug release was greater in the pH of endosome (acidic medium). Finally, our results proved that FA-Chi-MTX NPs were active against the human epithelial cervical cancer (HeLa) cells.
Wunderlin, Pascal; Mohn, Joachim; Joss, Adriano; Emmenegger, Lukas; Siegrist, Hansruedi
2012-03-15
Nitrous oxide (N2O) is an important greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment, microbial processes such as autotrophic nitrification and heterotrophic denitrification have been identified as major sources; however, the underlying pathways remain unclear. In this study, the mechanisms of N2O production were investigated in a laboratory batch-scale system with activated sludge for treating municipal wastewater. This relatively complex mixed population system is well representative for full-scale activated sludge treatment under nitrifying and denitrifying conditions. Under aerobic conditions, the addition of nitrite resulted in strongly nitrite-dependent N2O production, mainly by nitrifier denitrification of ammonia-oxidizing bacteria (AOB). Furthermore, N2O is produced via hydroxylamine oxidation, as has been shown by the addition of hydroxylamine. In both sets of experiments, N2O production was highest at the beginning of the experiment, then decreased continuously and ceased when the substrate (nitrite, hydroxylamine) had been completely consumed. In ammonia oxidation experiments, N2O peaked at the beginning of the experiment when the nitrite concentration was lowest. This indicates that N2O production via hydroxylamine oxidation is favored at high ammonia and low nitrite concentrations, and in combination with a high metabolic activity of ammonia-oxidizing bacteria (at 2 to 3 mgO2/l); the contribution of nitrifier denitrification by AOB increased at higher nitrite and lower ammonia concentrations towards the end of the experiment. Under anoxic conditions, nitrate reducing experiments confirmed that N2O emission is low under optimal growth conditions for heterotrophic denitrifiers (e.g. no oxygen input and no limitation of readily biodegradable organic carbon). However, N2O and nitric oxide (NO) production rates increased significantly in the presence of nitrite or low dissolved oxygen concentrations. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Peters, Kevin A.; Atkinson, Pamela F.; Hammond, Ernest C., Jr
1987-01-01
Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. Results indicate that film batch differences, temperature, and aging play an important role in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.
Sorption characteristics of cadmium in a clay soil of Mae Ku creek, Tak Province, Thailand
NASA Astrophysics Data System (ADS)
Thunyawatcharakul, P.; Chotpantarat, S.
2018-05-01
Mae Sot is a district in Tak province, the northern part of Thailand where has encountered with cadmium (Cd) contaminated in soils. Exposure of Cd can lead to severe health effect, for examples, bone softening, osteoporosis, renal dysfunction, and Itai-Itai disease. This study aims at elucidating sorption behavior of Cd in the contaminated soil collected from Mae Ku creek, Mae Sot district, Thailand. Batch sorption experiment was conducted in order to investigate sorption characteristics of Cd onto the contaminated soil. The soil sample taken from the study area consists of 26% sand, 16% silt 58% clay, which categorized as a clay soil, based on USDA classification. Soil pH is slightly alkaline (pH∼7.7) and organic matter in the soil is 2.93%. The initial concentration in the batch sorption experiment was in the range from 0- 200 ppm. The result from the batch sorption experiment showed that soil sample can adsorb Cd up to 173.5 ppm and the sorption behavior of the soil sample can be well described by Freundlich isotherm, indicating the multilayer sorption (R2 = 0.9964), with Freundlich constants of 0.312 and 1.760 L g-1 for 1/n and Kf, respectively.
Removal of phosphorus from water by using volcanic ash soil (VAS): batch and column experiments.
Nguyen, Huy Van; Maeda, Morihiro
2016-09-01
Using low-cost and naturally available materials is considered an optimal adsorbent for removing phosphorus (P) from water due to its simplicity and economic efficiency. This study examined the removal of P from water using volcanic ash soil (VAS) by batch and column experiments. The maximum adsorption capacity of P was 2.94 mg g -1 , estimated from the batch experiment according to a Langmuir isotherm. The column study showed a higher adsorption capacity of 5.57 mg g -1 . The breakthrough curve showed that influent water containing 2 mg L -1 P was completely purified by VAS within 1,230 pore volumes (PV). The breakthrough and saturation points of the curves were 3,100 PV and 14,875 PV, respectively. After an adsorption column was loaded with 20,508 PV, a regeneration procedure was developed to determine whether an ion exchange of P with chloride occurred or adsorbed P in the columns could be eluted. Approximately 20% of P was recovered from columns by desorption tests, regardless of NaCl solution or deionized water. Specific surface area and mineral concentrations are both important characteristics that improve the adsorption capacity of VAS. The present study suggests that VAS is a promising adsorbent to remove P in water.
NASA Astrophysics Data System (ADS)
Sudibyo, Hermida, L.; Suwardi
2017-11-01
Tapioca waste water is very difficult to treat; hence many tapioca factories could not treat it well. One of method which able to overcome this problem is electrodeposition. This process has high performance when it conducted using batch recycle process and use aluminum bipolar electrode. However, the optimum operation conditions are having a significant effect in the tapioca wastewater treatment using bath recycle process. In this research, The Taguchi method was successfully applied to know the optimum condition and the interaction between parameters in electrocoagulation process. The results show that current density, conductivity, electrode distance, and pH have a significant effect on the turbidity removal of cassava starch waste water.
NASA Technical Reports Server (NTRS)
Clements, L. L.; Lee, P. R.
1980-01-01
Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.
Ma, Juan; Li, Lu; Yu, Xiao-Jun; Wei, Xue-Fen; Liu, Juan-Li
2015-02-01
A sequencing batch reactor (SBR) was started up and operated with alternating anaerobic/oxic (An/O) to perform enhanced biological phosphorus removal (EBPR) under the condition of 13-16 degrees C. The results showed that under the condition of low temperature, the EBPR system was successfully started up in a short time (<6 d). The reactor achieved a high and stable phosphorus removal performance with an influent phosphate concentration of 20 mg x L(-1) and the dissolved oxygen (DO) concentration of 2 mg x L(-1). The effluent phosphate concentration was lower than 0.5 mg x L(-1). It was found that decreasing DO had an influence on the steady operation of EBPR system. As DO concentration of aerobic phase decreased from 2 mg x L(-1) to 1 mg x L(-1), the system could still perform EBPR and the phosphorus removal efficiency was greater than 97.4%. However, the amount of phosphate released during anaerobic phase was observed to decrease slightly compared with that of 2 mg x L(-1) DO condition. Moreover, the phosphorus removal performance of the system deteriorated immediately and the effluent phosphate concentration couldn't meet the national integrated wastewater discharge standard when DO concentration was further lowered to 0.5 mg x L(-1). The experiments of increasing DO to recover phosphorus removal performance of the EBPR suggested the process failure resulted from low DO was not reversible in the short-term. It was also found that the batch tests of anoxic phosphorus uptake using nitrite and nitrate as electron acceptors had an impact on the stable operation of EBPR system, whereas the resulting negative influence could be recovered within 6 cycles. In addition, the mixed liquid suspended solids (MLSS) of the EBPR system remained stable and the sludge volume index (SVI) decreased to a certain extend in a long run, implying long-term low temperature and low DO condition favored the sludge sedimentation.
Kausar, Abida; Bhatti, Haq Nawaz; Iqbal, Munawar; Ashraf, Aisha
2017-09-01
Batch and column adsorption modes were compared for the adsorption of U(VI) ions using rice husk waste biomass (RHWB). Response surface methodology was employed for the optimization of process variables, i.e., (pH (A), adsorbent dose (B), initial ion concentration (C)) in batch mode. The B, C and C 2 affected the U(VI) adsorption significantly in batch mode. The developed quadratic model was found to be validated on the basis of regression coefficient as well as analysis of variance. The predicted and actual values were found to be correlated well, with negligible residual value, and B, C and C 2 were significant terms. The column study was performed considering bed height, flow rate and initial metal ion concentration, and adsorption efficiency was evaluated through breakthrough curves and bed depth service time and Thomas models. Adsorption was found to be dependent on bed height and initial U(VI) ion concentration, and flow rate decreased the adsorption capacity. Thomas models fitted well to the U(VI) adsorption onto RHWB. Results revealed that RHWB has potential to remove U(VI) ions and batch adsorption was found to be efficient versus column mode.
Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun
2014-08-01
The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xue, Ya-Ping; Qin, Jun-Wei; Wang, Ya-Jun; Wang, Yuan-Shan; Zheng, Yu-Guo
2013-01-01
Commercial production of acarbose is exclusively via done microbial fermentation with strains from the genera of Actinoplanes. The addition of C7N-aminocyclitols for enhanced production of acarbose and concurrently reduced formation of impurity C by cultivation of A. utahensis ZJB-08196 in 500-mL shake flasks was investigated, and validamine was found to be the most effective strategy. Under the optimal conditions of validamine addition, acarbose titer was increased from 3560 ± 128 mg/L to 4950 ± 156 mg/L, and impurity C concentration was concurrently decreased from 289 ± 24 mg/L to 107 ± 29 mg/L in batch fermentation after 168 h of cultivation. A further fed-batch experiment coupled with the addition of validamine (20 mg/L) in the fermentation medium prior to inoculation was designed to enhance the production of acarbose. When twice feedings of a mixture of 6 g/L glucose, 14 g/L maltose, and 9 g/L soybean flour were performed at 72 h and 96 h, acarbose titer reached 6606 ± 103 mg/L and impurity C concentration was only 212 ± 12 mg/L at 168 h of cultivation. Acarbose titer and proportion of acarbose/impurity C increased by 85.6% and 152.9% when compared with control experiments. This work demonstrates for the first time that validamine addition is a simple and effective strategy for increasing acarbose production and reducing impurity C formation.
U(VI) adsorption on aquifer sediments at the Hanford Site.
Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V
2007-08-15
Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.
Ambika, Selvaraj; Devasena, M; Nambi, Indumathi Manivannan
2016-10-01
Understanding contaminant degradation by different sized zero valent iron (ZVI) particles is one important aspect in addressing the long-term stability of these particles in field studies. In this study, meso zero valent iron (mZVI) particles were synthesised in a milling time of 10 h using ball milling technique. The efficacy of mZVI particles for removal of phenol was quantitatively evaluated in comparison with coarse zero valent iron (cZVI) and nano zero valent iron (nZVI) particles. Phenol degradation experiments were carried out in sacrificial batch mode at room temperature independently with cZVI, nZVI and mZVI under varied pH conditions of 3, 4, 6, 7, 8 and 10. Batch experiments substantiating the reactivity of mZVI under unbuffered pH system were also carried out and compared with buffered and poorly buffered pH systems. mZVI particles showed consistent phenol degradation at circum-neutral pH with efficiency of 44%, 67%, and 89% in a span of 5, 10 and 20 min respectively. The dissolved iron species and residual iron formation were also measured as a function of pH. Unbuffered systems at circum-neutral pH produced less residual iron when compared to buffered and poorly buffered systems. At this pH, oxidation of Fe(2+) produced a different oxidant Ferryl ion, which was found to effectively participate in phenol degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantitative determinations using portable Raman spectroscopy.
Navin, Chelliah V; Tondepu, Chaitanya; Toth, Roxana; Lawson, Latevi S; Rodriguez, Jason D
2017-03-20
A portable Raman spectrometer was used to develop chemometric models to determine percent (%) drug release and potency for 500mg ciprofloxacin HCl tablets. Parallel dissolution and chromatographic experiments were conducted alongside Raman experiments to assess and compare the performance and capabilities of portable Raman instruments in determining critical drug attributes. All batches tested passed the 30min dissolution specification and the Raman model for drug release was able to essentially reproduce the dissolution profiles obtained by ultraviolet spectroscopy at 276nm for all five batches of the 500mg ciprofloxacin tablets. The five batches of 500mg ciprofloxacin tablets also passed the potency (assay) specification and the % label claim for the entire set of tablets run were nearly identical, 99.4±5.1 for the portable Raman method and 99.2±1.2 for the chromatographic method. The results indicate that portable Raman spectrometers can be used to perform quantitative analysis of critical product attributes of finished drug products. The findings of this study indicate that portable Raman may have applications in the areas of process analytical technology and rapid pharmaceutical surveillance. Published by Elsevier B.V.
Dong, Zhen; Zhao, Long
2018-06-01
Combining the advantages of both cellulose and ionic liquid, ionic liquid functionalized cellulose (ILFC) as adsorbent was prepared through radiation grafting glycidyl methacrylate onto cellulose microsphere following by reaction with ionic liquid 1-aminopropyl-3-methyl imidazolium nitrate. Its adsorption properties towards Cr(VI) were investigated in batch and column experiments. In batch experiments, the adsorption kinetics was well fitted with pseudo-second-order mode with equilibrium time of 2 h and the adsorption capacity reached 181.8 mg/g at pH 2 calculated from Langmuir model. In fixed column, both Yoon-Nelson and Thomas models gave satisfactory fit to experimental data and breakthrough curves, and equilibrium adsorption capacity calculated by Thomas model was 161.0 mg/g. Moreover, ILFC exhibited high selectivity towards Cr(VI) even in synthetic chrome-plating wastewater. Besides, adsorption/desorption test revealed ILFC can be regenerated and reused several times without obvious decrease in adsorbed amount. The adsorption process was demonstrated to anion exchange-reduction mechanism via XPS analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Magga, Zoi; Tzovolou, Dimitra N.; Theodoropoulou, Maria A.; Tsakiroglou, Christos D.
2012-03-01
The risk assessment of groundwater pollution by pesticides may be based on pesticide sorption and biodegradation kinetic parameters estimated with inverse modeling of datasets from either batch or continuous flow soil column experiments. In the present work, a chemical non-equilibrium and non-linear 2-site sorption model is incorporated into solute transport models to invert the datasets of batch and soil column experiments, and estimate the kinetic sorption parameters for two pesticides: N-phosphonomethyl glycine (glyphosate) and 2,4-dichlorophenoxy-acetic acid (2,4-D). When coupling the 2-site sorption model with the 2-region transport model, except of the kinetic sorption parameters, the soil column datasets enable us to estimate the mass-transfer coefficients associated with solute diffusion between mobile and immobile regions. In order to improve the reliability of models and kinetic parameter values, a stepwise strategy that combines batch and continuous flow tests with adequate true-to-the mechanism analytical of numerical models, and decouples the kinetics of purely reactive steps of sorption from physical mass-transfer processes is required.
Andrade do Canto, Catarina Simone; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Zaiat, Marcelo; Foresti, Eugênio
2008-02-01
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.
Whiting, I M; Pirgozliev, V; Rose, S P; Wilson, J; Amerah, A M; Ivanova, S G; Staykova, G P; Oluwatosin, O O; Oso, A O
2017-03-01
Wheat distillers' dried grains with solubles (DDGS) are being used increasingly in the poultry feed industry but their nutritional value is variable. The aim of this experiment was to examine the effect of batch to batch variation of wheat DDGS produced by the same manufacturer on the growth performance, dietary N corrected apparent metabolizable energy (AMEn), energy conversion ratio (ECR), total tract dry matter retention (DMR), nitrogen retention (NR) and fat digestibility (FD) coefficients when fed to broilers in complete diets with and without enzyme supplementation. Six UK wheat DDGS samples, produced by a single manufacturer, were used in a broiler experiment. Six diets containing 150 g/kg of each selected wheat DDGS sample were mixed. Each diet was then split into two batches and one of them was supplemented with commercial enzyme preparation, providing 1220 units xylanase and 152 units of β-glucanase/kg diet, resulting in 12 experimental diets. Each diet was fed ad libitum to five pens of two male Ross 308 broilers from 7 to 21 d old. Enzyme supplementation improved dietary AMEn, DMR, NR (P < 0.001) and FD (P < 0.05) compared to non-supplemented diets. There was DDGS sample by enzyme interaction (P < 0.05) on daily weight gain and ECR. The results suggest that the variability in AMEn of DDGS samples produced from a single manufacturer is greater than expected compared to the variability of whole wheat samples but substantially lower than expected from wheat DDGS samples from different EU manufacturers. This experiment has shown that the variation in feeding value of wheat DDGS may be explained by the variability in polysaccharide contents. © 2016 Poultry Science Association Inc.
Safety Testing of AGR-2 UCO Compacts 5-2-2, 2-2-2, and 5-4-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.
2016-08-01
Post-irradiation examination (PIE) is being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). This effort builds upon the understanding acquired throughout the AGR-1 PIE campaign, and is establishing a database for the different AGR-2 fuel designs. The AGR-2 irradiation experiment included TRISO fuel particles coated at BWX Technologies (BWXT) with a 150-mm-diameter engineering-scale coater. Two coating batches were tested in the AGR-2 irradiation experiment. Batch 93085 had 508-μm-diameter uranium dioxide (UO 2) kernels. Batch 93073 had 427-μm-diameter UCO kernels, which is a kernel design where somemore » of the uranium oxide is converted to uranium carbide during fabrication to provide a getter for oxygen liberated during fission and limit CO production. Fabrication and property data for the AGR-2 coating batches have been compiled and compared to those for AGR-1. The AGR-2 TRISO coatings were most like the AGR-1 Variant 3 TRISO deposited in the 50-mm-diameter ORNL lab-scale coater. In both cases argon-dilution of the hydrogen and methyltrichlorosilane coating gas mixture employed to deposit the SiC was used to produce a finer-grain, more equiaxed SiC microstructure. In addition to the fact that AGR-1 fuel had smaller, 350-μm-diameter UCO kernels, notable differences in the TRISO particle properties included the pyrocarbon anisotropy, which was slightly higher in the particles coated in the engineering-scale coater, and the exposed kernel defect fraction, which was higher for AGR-2 fuel due to the detected presence of particles with impact damage introduced during TRISO particle handling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qureshi, N.; Blaschek, H.P.
1999-07-01
A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88--68.32 and flux values of 158.7--215.4 g m{sup {minus}2} h{sup {minus}1} were achieved. Higher flux values were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation--recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, whilemore » in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2--3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol, it is suggested that distillation be used for further purification.« less
Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4.
Han, Sung-Hyuk; Lee, Jung-Eun; Park, Kyungmoon; Park, Yong-Cheol
2013-01-25
2,3-Butanediol (2,3-BDO) is a value-added chemical with great potential for the industrial production of synthetic rubber, plastic and solvent. For microbial production of 2,3-BDO, in this study, Klebsiella oxytoca NBRF4 was constructed by chemical mutation and screening against NaBr, NaBrO(3) and fluoroacetate. Among metabolic enzymes involved in the production of lactate, acetate and 2,3-BDO, K. oxytoca NBRF4 possessed 1.2 times lower specific activities of lactate dehydrogenase and phosphotransacetylase, and 22% higher specific acetoin reductase activity than the K. oxytoca ATCC43863 control strain. A series of batch fermentations in a defined medium and application of a statistical tool of response surface method led to the determination of optimal culture conditions: 10% dissolved oxygen level, pH 4.3 and 38°C. The actual results of batch fermentation at the optimal conditions using 44 g/L glucose were coincident with the predetermined values: 14.4 g/L 2,3-BDO concentration, 0.32 g/g yield. To increase 2,3-BDO titer, fed-batch fermentation of K. oxytoca NBRF4 was performed by an intermittent feeding of 800 g/L glucose to control its concentration around 5-20 g/L in the culture broth. Finally, 34.2g/L 2,3-BDO concentration and 0.35 g/g yield were obtained without organic acid production in 70 hours of the fed-batch culture, which were 2.4 and 1.2 times higher than those of the batch fermentation using 44 g/L glucose. Copyright © 2012 Elsevier B.V. All rights reserved.
Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira
2014-01-01
Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.
The influence of sorbitol on the production of cellulases and xylanases in an airlift bioreactor.
Ritter, Carla Eliana Todero; Fontana, Roselei Claudete; Camassola, Marli; da Silveira, Maurício Moura; Dillon, Aldo José Pinheiro
2013-11-01
The production of cellulases and xylanases by Penicillium echinulatum in an airlift bioreactor was evaluated. In batch production, we tested media with isolated or associated cellulose and sorbitol. In fed-batch production, we tested cellulose addition at two different times, 30 h and 48 h. Higher liquid circulation velocities in the downcomer were observed in sorbitol 10 g L(-1) medium. In batch production, higher FPA (filter paper activity) and endoglucanase activities were obtained with cellulose (7.5 g L(-1)) and sorbitol (2.5 g L(-1)), 1.0 U mL(-1) (120 h) and 6.4 U m L(-1) (100 h), respectively. For xylanases, the best production condition was cellulose 10 g L(-1), which achieved 5.5 U mL(-1) in 64 h. The fed-batch process was favorable for obtaining xylanases, but not for FPA and endoglucanases, suggesting that in the case of cellulases, the inducer must be added early in the process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kim, Hyun-Woo; Nam, Joo-Youn; Kang, Seok-Tae; Kim, Dong-Hoon; Jung, Kyung-Won; Shin, Hang-Sik
2012-04-01
Extracellular enzymes offer active catalysis for hydrolysis of organic solid wastes in anaerobic digestion. To evidence the quantitative significance of hydrolytic enzyme activities for major waste components, track studies of thermophilic and mesophilic anaerobic sequencing-batch reactors (TASBR and MASBR) were conducted using a co-substrate of real organic wastes. During 1day batch cycle, TASBR showed higher amylase activity for carbohydrate (46%), protease activity for proteins (270%), and lipase activity for lipids (19%) than MASBR. In particular, the track study of protease identified that thermophilic anaerobes degraded protein polymers much more rapidly. Results revealed that differences in enzyme activities eventually affected acidogenic and methanogenic performances. It was demonstrated that the superior nature of enzymatic capability at thermophilic condition led to successive high-rate acidogenesis and 32% higher CH(4) recovery. Consequently, these results evidence that the coupling thermophilic digestion with sequencing-batch operation is a viable option to promote enzymatic hydrolysis of organic particulates. Copyright © 2012 Elsevier Ltd. All rights reserved.
GICHD Mine Dog Testing Project - Soil Sample Results No.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHELAN, JAMES M.; BARNETT, JAMES L.; BENDER, SUSAN FAE ANN
2003-03-01
A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performancemore » and seasonal weather conditions. This report documents the analytical chemical methods and results from the third batch of soils received. This batch contained samples from Kharga, Afghanistan collected in October 2002.« less
GICHD mine dog testing project : soil sample results #5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, James L.; Phelan, James M.; Archuleta, Luisa M.
2004-01-01
A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonalmore » weather conditions. This report documents the analytical chemical methods and results from the fifth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in June 2003.« less
Hao, Liping; Lü, Fan; Mazéas, Laurent; Desmond-Le Quéméner, Elie; Madigou, Céline; Guenne, Angéline; Shao, Liming; Bouchez, Théodore; He, Pinjing
2015-02-01
Ammonia inhibition represents a major operational issue for anaerobic digestion. In order to refine our understanding of the terminal catabolic steps in thermophilic anaerobic digestion under ammonia stress, we studied batch thermophilic acetate fed experiments at low (0.26 g L(-1)) and high (7.00 g L(-1)) Total Ammonia Nitrogen concentrations (TAN). Although methane production started immediately for all incubations and resulted in methane yields close to stoichiometric expectations, a 62-72% decrease of methanogenic rate was observed throughout the incubation at 7.00 g L(-1) of TAN compared to 0.26 g L(-1). Stable Isotope Probing analysis of active microbial communities in (13)C-acetate fed experiments coupled to automated ribosomal intergenic spacer analysis and 16S rDNA pyrotag sequencing confirmed that microbial communities were similar for both TAN conditions. At both TAN levels, the (13)C-labeled bacterial community was mainly affiliated to Clostridia-relatives, with OPB54 bacteria being the most abundant sequence in the heavy DNA 16S rDNA pyrotag library. Sequences closely related to Methanosarcina thermophila were also abundantly retrieved in the heavy DNA fractions, showing that this methanogen was still actively assimilating labeled carbon from acetate at free ammonia nitrogen concentrations up to 916 mg L(-1). Stable isotopic signature analysis of biogas, measured in unlabeled acetate fed experiments that were conducted in parallel, confirmed that acetoclastic methanogenic pathway was dominant at both ammonia concentrations. Our work demonstrates that, besides the syntrophic acetate oxidation pathway, acetoclastic methanogenesis catalyzed by Methanosarcina can also play a major role in methane production at high ammonia levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Li; Li, Yanli; Wang, Shidong; Wang, Xinyi; Meng, Hongqi; Luo, Shaohe
2016-09-01
Adsorption kinetics and transformation process of ammonium ion (NH4(+)) were investigated to advance the understanding of N cycle in a low-temperature loose-pore geothermal reservoir. Firstly, batch experiments were performed in order to determine the sorption capacity and the kinetic mechanism of NH4(+) onto a loose-pore geothermal reservoir matrix. Then column experiments were carried out at temperatures from 20°C to 60°C in order to determine the transport parameters and transformation mechanism of NH4(+) in the studied matrix. The results showed that the adsorption process of NH4(+) onto the porous media well followed the pseudo-second-order model. No obvious variation of hydrodynamic dispersion coefficient (D) and retardation factor (R) was observed at different transport distances at a Darcy's flux of 2.27cm/h, at which nitrification could be neglected. The simulated D obtained by the CDE model in CXTFIT2.1 increased with temperature while R decreased with temperature, indicating that the adsorption capacity of NH4(+) onto the matrix decreased with the increasing of temperature. When the Darcy's flux was decreased to 0.014cm/h, only a little part of NH4(+) could be transformed to nitrate, suggesting that low density of nitrifiers existed in the simulated loose-pore geothermal reservoir. Although nitrification rate increased with temperature in the range of 20°C to 60°C, it was extremely low and no accumulation of nitrite was observed under the simulated low-temperature geothermal conditions without addition of biomass and oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.
Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.
Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce
2014-03-15
Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.
del Agua, Isabel; Usack, Joseph G; Angenent, Largus T
2015-01-01
The objective of this work was to compare two different high-rate anaerobic bioreactor configurations--the anaerobic sequencing batch reactor (ASBR) and the upflow anaerobic solid removal (UASR) reactor--for the treatment of a solid-rich organic wastewater with a high strength. The two, 4.5-L reactors were operated in parallel for close to 100 days under mesophilic conditions (37°C) with non-granular biomass by feeding a pumpkin wastewater with ∼4% solids. The organic loading rate of pumpkin wastewater was increased periodically to a maximum of 8 g COD L(-1) d(-1) by shortening the hydraulic retention time to 5.3 days. Compositional analysis of pumpkin wastewater revealed deficiencies in the trace metal cobalt and alkalinity. With supplementation, the ASBR outperformed the UASR reactor with total chemical oxygen demand (COD) removal efficiencies of 64% and 53%, respectively, achieving a methane yield of 0.27 and 0.20 L CH4 g(-1) COD fed to the ASBR and UASR, respectively. The better performance realized with the ASBR and this specific wastewater was attributed to its semi-batch, dynamic operating conditions rather than the continuous operating conditions of the UASR reactor.
Füchslin, Hans Peter; Schneider, Christian; Egli, Thomas
2012-01-01
The competition for glucose between Escherichia coli ML30, a typical copiotrophic enterobacterium and Chelatobacter heintzii ATCC29600, an environmentally successful strain, was studied in a carbon-limited culture at low dilution rates. First, as a base for modelling, the kinetic parameters μmax and Ks were determined for growth with glucose. For both strains, μmax was determined in batch culture after different precultivation conditions. In the case of C. heintzii, μmax was virtually independent of precultivation conditions. When inoculated into a glucose-excess batch culture medium from a glucose-limited chemostat run at a dilution rate of 0.075 h−1 C. heintzii grew immediately with a μmax of 0.17±0.03 h−1. After five transfers in batch culture, μmax had increased only slightly to 0.18±0.03 h−1. A different pattern was observed in the case of E. coli. Inoculated from a glucose-limited chemostat at D=0.075 h−1 into glucose-excess batch medium E. coli grew only after an acceleration phase of ∼3.5 h with a μmax of 0.52 h−1. After 120 generations and several transfers into fresh medium, μmax had increased to 0.80±0.03 h−1. For long-term adapted chemostat-cultivated cells, a Ks for glucose of 15 μg l−1 for C. heintzii, and of 35 μg l−1 for E. coli, respectively, was determined in 14C-labelled glucose uptake experiments. In competition experiments, the population dynamics of the mixed culture was determined using specific surface antibodies against C. heintzii and a specific 16S rRNA probe for E. coli. C. heintzii outcompeted E. coli in glucose-limited continuous culture at the low dilution rates of 0.05 and 0.075 h−1. Using the determined pure culture parameter values for Ks and μmax, it was only possible to simulate the population dynamics during competition with an extended form of the Monod model, which includes a finite substrate concentration at zero growth rate (smin). The values estimated for smin were dependent on growth rate; at D=0.05 h−1, it was 12.6 and 0 μg l−1 for E. coli and C. heintzii, respectively. To fit the data at D=0.075 h−1, smin for E. coli had to be raised to 34.9 μg l−1 whereas smin for C. heintzii remained zero. The results of the mathematical simulation suggest that it is not so much the higher Ks value, which is responsible for the unsuccessful competition of E. coli at low residual glucose concentration, but rather the existence of a significant smin. PMID:22030672
Concrete Mixing Methods and Concrete Mixers: State of the Art
Ferraris, Chiara F.
2001-01-01
As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029
Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf
2015-01-20
Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Limin; Shen, Yiteng; Yu, Jingxian; Li, Ping; Zhang, Ridong; Gao, Furong
2018-01-01
In order to cope with system disturbances in multi-phase batch processes with different dimensions, a hybrid robust control scheme of iterative learning control combined with feedback control is proposed in this paper. First, with a hybrid iterative learning control law designed by introducing the state error, the tracking error and the extended information, the multi-phase batch process is converted into a two-dimensional Fornasini-Marchesini (2D-FM) switched system with different dimensions. Second, a switching signal is designed using the average dwell-time method integrated with the related switching conditions to give sufficient conditions ensuring stable running for the system. Finally, the minimum running time of the subsystems and the control law gains are calculated by solving the linear matrix inequalities. Meanwhile, a compound 2D controller with robust performance is obtained, which includes a robust extended feedback control for ensuring the steady-state tracking error to converge rapidly. The application on an injection molding process displays the effectiveness and superiority of the proposed strategy.
Stadler, Lauren B; Love, Nancy G
2016-11-01
Operation at low dissolved oxygen (DO) concentrations (<1 mg/L) in wastewater treatment could save utilities significantly by reducing aeration energy costs. However, few studies have evaluated the impact of low DO on pharmaceutical biotransformations during treatment. DO concentration can impact pharmaceutical biotransformation rates during wastewater treatment both directly and indirectly: directly by acting as a limiting substrate that slows the activity of the microorganisms involved in biotransformation; and indirectly by shaping the microbial community and selecting for a community that performs pharmaceutical biotransformation faster (or slower). In this study, nitrifying bioreactors were operated at low (∼0.3 mg/L) and high (>4 mg/L) DO concentrations to understand how DO growth conditions impacted microbial community structure. Short-term batch experiments using the biomass from the parent reactors were performed under low and high DO conditions to understand how DO concentration impacts microbial physiology. Although the low DO parent biomass had a lower specific activity with respect to ammonia oxidation than the high DO parent reactor biomass, it had faster biotransformation rates of ibuprofen, sulfamethoxazole, 17α-ethinylestradiol, acetaminophen, and atenolol in high DO batch conditions. This was likely because the low DO reactor had a 2x higher biomass concentration, was enriched for ammonia oxidizers (4x higher concentration), and harbored a more diverse microbial community (3x more unique taxa) as compared to the high DO parent reactor. Overall, the results show that there can be indirect benefits from low DO operation over high DO operation that support pharmaceutical biotransformation during wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid determination of tartaric acid in wines.
Bastos, Sandra S T; Tafulo, Paula A R; Queirós, Raquel B; Matos, Cristina D; Sales, M Goreti F
2009-08-01
A flow-spectrophotometric method is proposed for the routine determination of tartaric acid in wines. The reaction between tartaric acid and vanadate in acetic media is carried out in flowing conditions and the subsequent colored complex is monitored at 475 nm. The stability of the complex and the corresponding formation constant are presented. The effect of wavelength and pH was evaluated by batch experiments. The selected conditions were transposed to a flow-injection analytical system. Optimization of several flow parameters such as reactor lengths, flow-rate and injection volume was carried out. Using optimized conditions, a linear behavior was observed up to 1000 microg mL(-1) tartaric acid, with a molar extinction coefficient of 450 L mg(-1) cm(-1) and +/- 1 % repeatability. Sample throughput was 25 samples per hour. The flow-spectrophotometric method was satisfactorily applied to the quantification of TA in wines from different sources. Its accuracy was confirmed by statistical comparison to the conventional Rebelein procedure and to a certified analytical method carried out in a routine laboratory.
Treatment of hazardous waste landfill leachate using Fenton oxidation process
NASA Astrophysics Data System (ADS)
Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei
2018-03-01
The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.
Chou, K W; Norli, I; Anees, A
2010-11-01
In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.
Analytic model to estimate thermonuclear neutron yield in z-pinches using the magnetic Noh problem
NASA Astrophysics Data System (ADS)
Allen, Robert C.
The objective was to build a model which could be used to estimate neutron yield in pulsed z-pinch experiments, benchmark future z-pinch simulation tools and to assist scaling for breakeven systems. To accomplish this, a recent solution to the magnetic Noh problem was utilized which incorporates a self-similar solution with cylindrical symmetry and azimuthal magnetic field (Velikovich, 2012). The self-similar solution provides the conditions needed to calculate the time dependent implosion dynamics from which batch burn is assumed and used to calculate neutron yield. The solution to the model is presented. The ion densities and time scales fix the initial mass and implosion velocity, providing estimates of the experimental results given specific initial conditions. Agreement is shown with experimental data (Coverdale, 2007). A parameter sweep was done to find the neutron yield, implosion velocity and gain for a range of densities and time scales for DD reactions and a curve fit was done to predict the scaling as a function of preshock conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Chinthaka M; Lindemer, Terrence; Voit, Stewart L
2014-11-01
Three sets of different experimental conditions by changing the cover gases during the sample preparation were tested to synthesize uranium carbonitride (UC1-xNx) microparticles. In the first two sets of experiments using (N2 to N2-4%H2 to Ar) and (Ar to N2 to Ar) environments, single phase UC1-xNx was synthesized. When reducing environments (Ar-4%H2 to N2-4%H2 to Ar-4%H2) were utilized, theoretical densities up to 97% of single phase UC1-xNx kernels were obtained. Physical and chemical characteristics such as density, phase purity, and chemical compositions of the synthesized UC1-xNx materials for the diferent experimental conditions used are provided. In-depth analysis of the microstruturesmore » of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.« less
Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions
NASA Astrophysics Data System (ADS)
Muller, K.; Chapra, S. C.; Ramsburg, A.
2014-12-01
Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated using a transport code containing the linear-driving-force expression evaluated in the batch experiments. In these simulations the lumped mass transfer coefficient was fit and compared with values predicted using existing correlations for liquid-liquid and solid-liquid interfaces in porous media.
Anderson, Linda Davis; Kent, Douglas B.; Davis, James A.
1994-01-01
Batch experiments were conducted with sand collected from a shallow sand and gravel aquifer to identify the principal chemical reactions influencing the reduction of Cr(VI), so that field-observed Cr(V1) reduction could be described. The reduction appeared to be heterogeneous and occurred primarily on Fe(I1)-bearing minerals. At only 1 wt % , the fine fraction (<64 μm diameter) of the sediments dominated the amount of aqueous Cr(V1) reduction because of its greater reactivity and surface area. Although reduction of Cr(V1) increased with decreasing pH, small variations in the abundance of fine fraction among the replicate samples obscured pH trends in the batch experiments. Consistent results could only be obtained by separating the fine material from the sand and running parallel experiments on each fraction. As pH decreased (6.4 to 4.5), Cr(V1) reduction increased from 30 to 50 nmol/m2 for the sand fraction (64-1000 μm) and from 130 to 200 nmol/m2 for the fine fraction. The amount of Cr(V1) reduced in both the sand-sized and fine material increased from 35 to 80 and from 130 to 1000 nmol/m2, respectively, for a 10-fold increase in Cr(VI)initial. A consistent description of the rate data was achieved by assuming that intraparticle diffusion limited the observed rate of reduction.
Integration of Grid and Local Batch Resources at DESY
NASA Astrophysics Data System (ADS)
Beyer, Christoph; Finnern, Thomas; Gellrich, Andreas; Hartmann, Thomas; Kemp, Yves; Lewendel, Birgit
2017-10-01
As one of the largest resource centres DESY has to support differing work flows of users from various scientific backgrounds. Users can be for one HEP experiments in WLCG or Belle II as well as local HEP users but also physicists from other fields as photon science or accelerator development. By abandoning specific worker node setups in favour of generic flat nodes with middleware resources provided via CVMFS, we gain flexibility to subsume different use cases in a homogeneous environment. Grid jobs and the local batch system are managed in a HTCondor based setup, accepting pilot, user and containerized jobs. The unified setup allows dynamic re-assignment of resources between the different use cases. Monitoring is implemented on global batch system metrics as well as on a per job level utilizing corresponding cgroup information.
NASA Astrophysics Data System (ADS)
Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN
2017-03-01
In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.
Tsintavi, E; Pontillo, N; Dareioti, M A; Kornaros, M
2013-01-01
The possibility of coupling a physicochemical pretreatment (ozonation) with a biological treatment (anaerobic digestion) was investigated for the case of olive mill wastewaters (OMW). Batch ozonation experiments were performed in a glass bubble reactor. The parameters which were tested included the ozone concentration in the inlet gas stream, the reactor temperature and the composition of the liquid medium in terms of raw or fractionated OMW used. In the sequel, ozone-pretreated OMW samples were tested for their biochemical methane potential (BMP) under mesophilic conditions and these results were compared to the BMP of untreated OMW. The ozonation process alone resulted in a 57-76% decrease of total phenols and a 5-18% decrease of total carbohydrates contained in OMW, depending on the experimental conditions. Nevertheless, the ozone-pretreated OMW exhibited lower chemical oxygen demand removal and methane production during BMP testing compared to the untreated OMW.
Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R
2005-01-01
Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.
NASA Astrophysics Data System (ADS)
Heerspink, B. P.; Wang, D.; Ware, D.; Marina, O.; Perkins, G.; WoldeGabriel, G. W.; Goering, T.; Boukhalfa, H.
2017-12-01
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL) in Los Alamos, NM. Liquid effluents containing RDX released at LANL's Technical Area 16 (TA-16) resulted in the contamination of alluvial, perched-intermediate, and regional groundwater bodies. Past investigations have shown persistent RDX contamination in the perched-intermediate zone located between 225 to 311 m below ground surface, where transport studies have shown that RDX and its degradation products transport conservatively. In this study, we compared RDX degradation by chemical treatments using reduction by sodium dithionite, oxidation by potassium permanganate, and alkaline hydrolysis by carbonate/bicarbonate buffering, with microbial degradation under biostimulated conditions. The experiments were conducted using groundwater and sediments representative of the contaminated aquifer beneath TA-16. Batch testing showed that all chemical treatments degraded RDX very rapidly, with half-lives ranging from 50 minutes to 22 hours. Comparatively, RDX degradation in biostimulated reactors under strict anaerobic conditions was significantly slower, with half-lives of about 3 weeks. Results from column experiments with chemically treated sediments deviated from the results of the batch testing. Dithionite treated sediments reduced RDX with no breakthrough observed before clogging occurred at 50 pour volumes. Treatments by oxidation using potassium permanganate, and hydrolysis under buffered alkaline conditions, were less effective with complete RDX breakthrough after 2 pore volumes. No known degradation products were observed in the column effluents. RDX degradation in biostimulated columns was very effective initially for both treatments. However, the column biostimulated with safflower oil clogged very rapidly. The column biostimulated with molasses was very effective when molasses was continuously supplied but less effective after molasses injection stopped. Degradation products (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine [MNX]; hexahydro-1,3-dinitro-5-nitro-1,3,5-triazine [DNX]; 2,4,6-trinitroxylene [TNX]) were visible in the effluents from the biostimulated columns.
Virus elimination in activated sludge systems: from batch tests to mathematical modeling.
Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz
2014-01-01
A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.
Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma
2017-02-01
The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L -1 were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L -1 ) at higher surface photosynthetic active radiation (250 and 500 μmol m -2 s -1 ). Additionally, the rate approached a saturation phase at low MAAS (110 mg L -1 ) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L -1 . The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L -1 . The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h -1 and sludge volume index of 31-43 ml g -1 in the studied cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Farrell, Michael J.; Finkel, Steven E.
2003-01-01
Escherichia coli cells that are aged in batch culture display an increased fitness referred to as the growth advantage in stationary phase, or GASP, phenotype. A common early adaptation to this culture environment is a mutant rpoS allele, such as rpoS819, that results in attenuated RpoS activity. However, it is important to note that during long-term batch culture, environmental conditions are in flux. To date, most studies of the GASP phenotype have focused on identifying alleles that render an advantage in a specific environment, Luria-Bertani broth (LB) batch culture. To determine what role environmental conditions play in rendering relative fitness advantages to E. coli cells carrying either the wild-type or rpoS819 alleles, we performed competitions under a variety of culture conditions in which either the available nutrients, the pH, or both were manipulated. In LB medium, we found that while the rpoS819 allele confers a strong competitive fitness advantage at basic pH, it confers a reduced advantage under neutral conditions, and it is disadvantageous under acidic conditions. Similar results were found using other media. rpoS819 conferred its greatest advantage in basic minimal medium in which either glucose or Casamino Acids were the sole source of carbon and energy. In acidic medium supplemented with either Casamino Acids or glucose, the wild-type allele conferred a slight advantage. In addition, populations were dynamic under all pH conditions tested, with neither the wild-type nor mutant rpoS alleles sweeping a culture. We also found that the strength of the fitness advantage gained during a 10-day incubation is pH dependent. PMID:14645263
Active Job Monitoring in Pilots
NASA Astrophysics Data System (ADS)
Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas
2015-12-01
Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.
NASA Astrophysics Data System (ADS)
Ebrahimi, P.; Vilcaez, J.
2017-12-01
Hydraulic fracturing wastewater (HFW) containing high concentrations of Ba, is commonly disposed into the deep saline aquifers. We investigate the effect of brine salinity, competing cations (Ca and Mg), and guar gum (most common fracturing viscosifier) on the sorption and transport of Ba through dolomite rocks. To this aim, we have conducted batch sorption and core-flooding experiments at both ambient (22°C) and deep subsurface (60°C) temperature conditions. The effect of mineral composition is assessed by comparing batch and core-flooding experimental results obtained with sandstone and dolomite rocks. Batch sorption experiments conducted using powdered dolomite rocks (500-600 µm particle size) revealed that Ba sorption on dolomite greatly decreases with increasing brine salinity (0 - 180,000 mg-NaCl/L), and that at brine salinities of HFW, chloro-complexation reactions between Ba and Cl ions and changes in pH (that results from dolomite dissolution) are the controlling factors of Ba sorption on dolomite. Organo-complexation reactions between Ba and guar gum, and competition of Ba with common cations (Ca and Mg) for hydration sites of dolomite, play a secondary role. This finding is in accordance with core-flooding experimental results, showing that the transport of Ba through synthetic dolomite rocks of high flow properties (25-29.6% porosity, 9.6-13.7 mD permeability), increases with increasing brine salinity (0-180,000 mg-NaCl/L), while the presence of guar gum (50-500 mg/L) does not affect the transport of Ba. On the other hand, core-flooding experiments conducted using natural dolomite core plugs (6.5-8.6% porosity, 0.06-0.3 mD permeability), indicates that guar gum can clog the pore throats of tight dolomite rocks retarding the transport of Ba. Results of our numerical simulation studies indicate that the mechanism of Ba sorption on dolomite can be represented by a sorption model that accounts for both surface complexation reactions on three distinct hydration sites (>CaOHo, >MgOHo, and >CO3Ho), and the kinetic dissolution of dolomite. The presented results are important in understanding the fate of heavy metals present in HFW disposed into deep saline aquifers.
NASA Astrophysics Data System (ADS)
Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.
2018-03-01
Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic conductivity of aquifer and reactive materials within the wells, the mass of Fe0 in the NPRWs, and the orientation of NPRWs adopted. A trade-off between these factors should be considered to increase the efficiency of remediation using the NPRWs system.
Butyltin sorption onto freshwater sediments: from batch experiments to the field values
NASA Astrophysics Data System (ADS)
Bancon-Montingy, C.; Aubert, G.; Chahinian, N.; Meyer, J.; Brunel, V.; Tournoud, M. G.
2009-04-01
Butyltins, and most particularly TBT were widely used by the industry in the 1970s and 1980s, namely as anti-fouling paints on ships. Although banned since 2003 in Europe, surveys still point out the presence of these compounds both in coastal and terrestrial environments. The resilience of organotin (OT) compounds can be explained by their high adsorption capacity. OTs can bond easily to particulate matter and "migrate" from the water column unto the sediments where their half-life can extend to a few decades. Consequently sediments can become important organotin stores and release OT compounds during dredging operations, storms, tides or floods. Studies on OT behavior in freshwater environments, mainly sediments, are scarce in the literature compared with marine sediments. However, it is known that sorption behaviour of organotin compounds on sediments is governed by the constituents of sediments, and the composition of interstitial water in the sediments and overlying water, i.e. grain size distribution, clay minerals, organic matter, iron, aluminium (hydr)oxides and carbonate in the sediments; salinity, ionic composition, and pH of interstitial water in the sediments and overlying water. The main objective of this work is to assess butyltin adsorption into the sediments of an intermittent river located in southern France: The Vène. Sediments were collected during high and low flow conditions and batch experiments were set up using "natural" and "crushed" sediments to assess the adsorption kinetics. Classical batch experiments and GC-ICP-MS analysis were carried out to measure the distribution coefficient (Kd). The influence of organic substances on sorption processes for organotin species was studied and the role of grain size distribution assessed by comparing natural and crushed sediments. The results indicated that organotin compounds are sorbed easily and quickly on freshwater sediments. The adsorption isotherm for butyltins follows the Freundlich equation which is used to describe the adsorption behaviour of non-polar organic matters. This is due to their organic substituent groups. The presence of organic matter modifies the sorption process: less OT is adsorbed onto the sediments. This leads to increased OT concentrations in solution and consequently a higher probability for assimilation by freshwater organisms. The comparison of our results to those reported in the literature for marine environments could not be carried out because of the wide differences in salinity and grain size distribution between the two environments.
Imoto, Yukari; Yasutaka, Tetsuo; Someya, Masayuki; Higashino, Kazuo
2018-05-15
Soil leaching tests are commonly used to evaluate the leachability of hazardous materials, such as heavy metals, from the soil. Batch leaching tests often enhance soil colloidal mobility and may require solid-liquid separation procedures to remove excess soil particles. However, batch leaching test results depend on particles that can pass through a 0.45μm membrane filter and are influenced by test parameters such as centrifugal intensity and filtration volume per filter. To evaluate these parameters, we conducted batch leaching experiments using metal-contaminated soils and focused on the centrifugal intensity and filtration volume per filter used in solid-liquid separation methods currently employed in standard leaching tests. Our experiments showed that both centrifugal intensity and filtration volume per filter affected the reproducibility of batch leaching tests for some soil types. The results demonstrated that metal concentrations in the filtrates significantly differed according to the centrifugal intensity when it was 3000 g for 2h or less. Increased filtration volume per filter led to significant decreases in filtrate metal concentrations when filter cakes formed during filtration. Comparison of the filtration tests using 0.10 and 0.45μm membrane filters showed statistically significant differences in turbidity and metal concentration. These findings suggest that colloidal particles were not adequately removed from the extract and contributed substantially to the apparent metal concentrations in the leaching test of soil containing colloidal metals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Trasi, Niraj S; Purohit, Hitesh S; Taylor, Lynne S
2017-10-01
Tacrolimus, an immunosuppressant, is a poorly water soluble compound whereby the commercially available capsule formulations contain the drug in amorphous form. The goal of this study was to evaluate the robustness of the innovator product and five generic formulations to crystallization following storage at stress conditions. Products were purchased from a pharmacy and stored at 40°C/75% relative humidity (RH), open dish conditions. Crystallinity was determined using X-ray diffraction. The quantity of the ingredients in the formulations were determined using different approaches and the various factors that might cause instability in the formulations were studied. After 4 weeks of open dish storage at 40°C/75% RH, one of the generic formulations showed evidence of tacrolimus crystallization. Further investigations revealed batch-to-batch variations in crystallization tendency with the extent of crystallinity varying between 50 and 100% for different batches. Crystallization was also observed at lower storage temperatures (30°C) when the RH was maintained at 75%. It was found that crystallization could be induced in a model formulation by wet granulating an ethanolic solution of the drug with lactose and drying at 60-70°C followed by exposure to stress conditions. It seems probable that the generic that was susceptible to crystallization contains amorphous drug physically mixed with polymeric excipients, rather than as an amorphous solid dispersion. This study highlights the importance of considering the manufacturing process on the stability of the resultant amorphous product.
Buhule, Olive D; Minster, Ryan L; Hawley, Nicola L; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T; Weeks, Daniel E
2014-01-01
Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After "removing" batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects.
Buhule, Olive D.; Minster, Ryan L.; Hawley, Nicola L.; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T.; Weeks, Daniel E.
2014-01-01
Background: Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Methods: Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Results: Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After “removing” batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Conclusion: Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects. PMID:25352862
Gjoka, Xhorxhi; Gantier, Rene; Schofield, Mark
2017-01-20
The goal of this study was to adapt a batch mAb purification chromatography platform for continuous operation. The experiments and rationale used to convert from batch to continuous operation are described. Experimental data was used to design chromatography methods for continuous operation that would exceed the threshold for critical quality attributes and minimize the consumables required as compared to batch mode of operation. Four unit operations comprising of Protein A capture, viral inactivation, flow-through anion exchange (AEX), and mixed-mode cation exchange chromatography (MMCEX) were integrated across two Cadence BioSMB PD multi-column chromatography systems in order to process a 25L volume of harvested cell culture fluid (HCCF) in less than 12h. Transfer from batch to continuous resulted in an increase in productivity of the Protein A step from 13 to 50g/L/h and of the MMCEX step from 10 to 60g/L/h with no impact on the purification process performance in term of contaminant removal (4.5 log reduction of host cell proteins, 50% reduction in soluble product aggregates) and overall chromatography process yield of recovery (75%). The increase in productivity, combined with continuous operation, reduced the resin volume required for Protein A and MMCEX chromatography by more than 95% compared to batch. The volume of AEX membrane required for flow through operation was reduced by 74%. Moreover, the continuous process required 44% less buffer than an equivalent batch process. This significant reduction in consumables enables cost-effective, disposable, single-use manufacturing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Chusova, Olga; Nolvak, Hiie; Nehrenheim, Emma; Truu, Jaak; Odlare, Monica; Oopkaup, Kristjan; Truu, Marika
2014-01-01
Pine bark, a low-cost industrial residue, has been suggested as a promising substitute for granular activated carbon in the on-site treatment of water contaminated with 2,4,6-trinitrotoluene (TNT). However, the complex organic structure and indigenous microbial community of pine bark have thus far not been thoroughly described in the context of TNT-contaminated water treatment. This two-week batch study examined the removal efficiency ofTNT from water by (1) adsorption on pine bark and (2) simultaneous adsorption on pine bark and biotransformation by specialized TNT-biotransforming microbial inocula. The bacterial community composition of experimental batches, inocula and pine bark, was profiled by Illumina sequencing of the V6 region of the 16S rRNA gene. The results revealed that the inocula and experimental batches were dominated by phylotypes belonging to the Enterobacteriaceae family and that the tested inocula had good potential for TNT biotransformation. The type of applied inocula had the most profound effect on the TNT-transforming bacterial community structure in the experimental batches. The indigenous microbial community of pine bark harboured phylotypes that also have a potential to degrade TNT. Altogether, the combination of a specialized inoculum and pine bark proved to be the most efficient treatment option for TNT-contaminated water.
Sun, Li-Hui; Li, Ming-Gang; Wang, Yuan-Shan; Zheng, Yu-Guo
2012-06-01
Acarbose, a pseudo-oligosaccharide, is widely used clinically in therapies for non-insulin-dependent diabetes. In the present study, S-adenosylmethionine (SAM) was added to selected media in order to investigate its effect on acarbose fermentation by Actinoplanes utahensis ZJB- 08196. Acarbose titer was seen to increase markedly when concentrations of SAM were added over a period of time. The effects of glucose and maltose on the production of acarbose were investigated in both batch and fed-batch fermentation. Optimal acarbose production was observed at relatively low glucose levels and high maltose levels. Based on these results, a further fed-batch experiment was designed so as to enhance the production of acarbose. Fed-batch fermentation was carried out at an initial glucose level of 10 g/l and an initial maltose level of 60 g/l. Then, 12 h post inoculation, 100 micromol/l SAM was added. In addition, 8 g/l of glucose was added every 24 h, and 20 g/l of maltose was added at 96 h. By way of this novel feeding strategy, the maximum titer of acarbose achieved was 6,113 mg/l at 192 h. To our knowledge, the production level of acarbose achieved in this study is the highest ever reported.
Removal of Cesium From Acidic Radioactive Tank Waste Using IONSIV IE-911 (CST)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Nicholas Robert; Todd, Terry Allen
2004-10-01
IONSIV IE-911, or the engineered form of crystalline silicotitanate (CST), manufactured by UOP Molecular Sieves, has been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) acidic radioactive tank waste. A series of batch contacts and column tests were performed by using three separate batches of CST. Batch contacts were performed to evaluate the concentration effects of nitric acid, sodium, and potassium ions on cesium sorption. Additional batch tests were performed to determine if americium, mercury, and plutonium would sorb onto IONSIV IE-911. An equilibrium isotherm was generated by using a concentrated tank waste simulant.more » Column tests using a 1.5 cm 3 column and flow rates of 3, 5, 10, 20, and 30 bed volumes (BV)/hr were performed to elucidate dynamic cesium sorption capacities and sorption kinetics. Additional experiments investigated the effect of CST batch and pretreatment on cesium sorption. The thermal stability of IONSIV IE-911 was evaluated by performing thermal gravimetric analysis/differential thermal analysis. Overall, IONSIV IE-911 was shown to be effective for cesium sorption from complex, highly acidic solutions; however, sorbent stability in these solutions may have a deleterious effect on cesium sorption.« less
ERIC Educational Resources Information Center
Haji, Shaker; Erkey, Can
2005-01-01
A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…
Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan
2011-07-01
To observe the bioleaching effect on sewage sludge dewaterability, three consecutive batch bioleaching experiments were conducted through a bioleaching bio-reactor with 700 L of working volume. Subsequently, the bioleached sludge was dewatered by using chamber filter press. The results show that the 1st batch bioleaching process can be finished within 90 hours if the aeration amount was 1.2 m3/h with the 1: 15 mixing ratio of bioleached sludge to raw sludge. The pH of sludge declines from initial 6.11 to 2.33 while ORP increased from initial -134 mV to finial 507 mV. The specific resistance to filtration (SRF) of the tested sludge was decreased from original 1.00 x 10(13) m/kg to final 0.09 x 10(13) m/kg after bioleaching. For the subsequent two batch trials, the bioleaching process can be finished in 40 hours and 46 hours, respectively. Likewise, sludge SRF is also significantly decreased to 0.19 x 10(13) m/kg and 0.36 x 10(13) m/kg if the mixing ratio of bioleached sludge to fresh sludge is 1:1 although the microbial nutrient substance dosage is reduced by 25% and 50% for 2nd, and 3rd batch experiments, respectively. The harvested bioleached sludge from three batch trails is dewatered by chamber filter press with 0.3-0.4 MPa working pressure for 2 hours. It is found that the moisture of dewatered sludge cake can be reduced to 58%, and that the dewatered sludge cake is of khaki appearance and didn't emit any offensive odor. In addition, it is also observes that sludge organic matter only changed a bit from 52.9% to 48.0%, but 58% of sludge-borne Cu and 88% of sludge-borne Zn can be removed from sludge by bioleaching process. Therefore, dual goals for sludge-borne heavy metal removal and sludge dewatering of high efficiency can be achieved simultaneously through the approach mentioned above. Therefore, bioleaching technique is of great engineering application for the treatment of sewage sludge.
Casquete, Rocío; Benito, María J; Martín, Alberto; Ruiz-Moyano, Santiago; Aranda, Emilio; Córdoba, María G
2012-01-01
The present study determined how the different ripening conditions affected the growth and development of 3 autochthonous starter cultures, and the physico-chemical and sensory characteristics of chorizo. Each of 3 strains of Pediococcus acidilactici (MC184, MS198, and MS200) and one of Staphylococcus vitulus (RS34) were associated to prepare the starter cultures, P184S34, P198S34, and P200S34. Then, chorizo was prepared following 2 manufacturing procedures. The autochthonous starter cultures were able to compete and colonize the sausages in both ripening procedures. The use of the starter cultures showed evident differences by the texture analysis, with the control batches being generally tougher than the starter culture batches. Also, the highest biogenic amine (BA) levels were found in control batches and the lowest in P200S34 batches. While the use of these starter cultures does not change the sensory characteristics of these traditional fermented sausages, it improves their homogeneity and safety, except for P184S34 batch in which more BAs are detected in industry 2. The 3 autochthonous starter cultures selected could be used in traditional industries because they are able to compete well and colonize the dry fermented sausages "chorizo." The use of these starter cultures improves the texture and homogeneity of traditional fermented sausages. Biogenic amines decreased in the starter cultures batches improving the safety. © 2011 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Q; Zavarin, M; Rose, T P
Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions used during these experiments were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, the radionuclide distribution coefficients varied with the mineralogical composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases formore » {sup 99}Tc and {sup 237}Np in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for {sup 99}Tc, which tends to be mobile under oxidizing conditions. Unlike other redox-sensitive radionuclides, iodine sorption may decrease under reducing conditions when I{sup -} is the predominant species. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing redox conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH){sub 4}. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides {sup 99}Tc and {sup 237}Np, which are commonly identified as long-term dose contributors in the risk assessment in various nuclear facilities.« less
GICHD mine dog testing project - soil sample results #4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, James L.; Phelan, James M.; Archuleta, Luisa M.
2003-08-01
A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performancemore » and seasonal weather conditions. This report documents the analytical chemical methods and results from the fourth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in April 2003 and Sarajevo, Bosnia collected in May 2003.« less
Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphat...
Experimental validation of Swy-2 clay standard's PHREEQC model
NASA Astrophysics Data System (ADS)
Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György
2017-04-01
One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast reactions under the studied conditions and increased reactivity in presence of scCO2. A model sensitivity analysis has pointed out that the continuously changing solution composition results cannot be described by the change of the uncertain reactive surface area of mineral phases in the model and still several orders of magnitude different ion-concentrations are predicted. However, by considering the clay standard's cation exchange capacity divided proportionally among interlayer cations of Na-montmorillonite, the measured variation can be described on an order of magnitude level. It is furthermore indicated that not only the interlayer cations take part in this process but a minor proportion of other, structural ions as well, differently in the reference and scCO2 environments. Experimental methodological aspects of the work, such as solution sampling, solid sample post-experimental treatment, solution and solid sample analysis sensitivity, expected experimental by-products etc. are also to be addressed.
Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.
Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter
2010-11-01
The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baums, I. B.; Devlin-Durante, M. K.; Polato, N. R.; Xu, D.; Giri, S.; Altman, N. S.; Ruiz, D.; Parkinson, J. E.; Boulay, J. N.
2013-09-01
The branching coral Acropora palmata is a foundation species of Caribbean reefs that has been decimated in recent decades by anthropogenic and natural stressors. Declines in population density and genotypic diversity likely reduce successful sexual reproduction in this self-incompatible hermaphrodite and might impede recovery. We investigated variation among genotypes in larval development under thermally stressful conditions. Six two-parent crosses and three four-parent batches were reared under three temperatures and sampled over time. Fertilization rates differed widely with two-parent crosses having lower fertilization rates (5-56 %, mean 22 % ± 22 SD) than batches (from 31 to 87 %, mean 59 % ± 28 SD). Parentage analysis of larvae in batch cultures showed differences in gamete compatibility among parents, coinciding with significant variation in both sperm morphology and egg size. While all larval batches developed more rapidly at increased water temperatures, rate of progression through developmental stages varied among batches, as did swimming speed. Together, these results indicate that loss of genotypic diversity exacerbates already severe limitations in sexual reproductive success of A. palmata. Nevertheless, surviving parental genotypes produce larvae that do vary in their phenotypic response to thermal stress, with implications for adaptation, larval dispersal and population connectivity in the face of warming sea surface temperatures.
Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.
Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S
2005-03-01
Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.
Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol
2017-05-01
The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.