Sample records for conduct large scale

  1. Case Study: Commercialization of sweet sorghum juice clarification for large-scale syrup manufacture

    USDA-ARS?s Scientific Manuscript database

    The precipitation and burning of insoluble granules of starch from sweet sorghum juice on heating coils prevented the large scale manufacture of syrup at a new industrial plant in Missouri, USA. To remove insoluble starch granules, a series of small and large-scale experiments were conducted at the...

  2. Framing Innovation: The Impact of the Superintendent's Technology Infrastructure Decisions on the Acceptance of Large-Scale Technology Initiatives

    ERIC Educational Resources Information Center

    Arnold, Erik P.

    2014-01-01

    A multiple-case qualitative study of five school districts that had implemented various large-scale technology initiatives was conducted to describe what superintendents do to gain acceptance of those initiatives. The large-scale technology initiatives in the five participating districts included 1:1 District-Provided Device laptop and tablet…

  3. Performance of lap splices in large-scale column specimens affected by ASR and/or DEF.

    DOT National Transportation Integrated Search

    2012-06-01

    This research program conducted a large experimental program, which consisted of the design, construction, : curing, deterioration, and structural load testing of 16 large-scale column specimens with a critical lap splice : region, and then compared ...

  4. Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models

    NASA Technical Reports Server (NTRS)

    Yadlin, Yoram; Monnig, Jaime T.; Malone, Adam M.; Paul, Bernard P.

    2018-01-01

    The work summarized in this report is a continuation of NASA's Large-Scale, Swept-Wing Test Articles Fabrication; Research and Test Support for NASA IRT contract (NNC10BA05 -NNC14TA36T) performed by Boeing under the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) contract. In the study conducted under RTAPS, a series of icing tests in the Icing Research Tunnel (IRT) have been conducted to characterize ice formations on large-scale swept wings representative of modern commercial transport airplanes. The outcome of that campaign was a large database of ice-accretion geometries that can be used for subsequent aerodynamic evaluation in other experimental facilities and for validation of ice-accretion prediction codes.

  5. ESRI applications of GIS technology: Mineral resource development

    NASA Technical Reports Server (NTRS)

    Derrenbacher, W.

    1981-01-01

    The application of geographic information systems technology to large scale regional assessment related to mineral resource development, identifying candidate sites for related industry, and evaluating sites for waste disposal is discussed. Efforts to develop data bases were conducted at scales ranging from 1:3,000,000 to 1:25,000. In several instances, broad screening was conducted for large areas at a very general scale with more detailed studies subsequently undertaken in promising areas windowed out of the generalized data base. Increasingly, the systems which are developed are structured as the spatial framework for the long-term collection, storage, referencing, and retrieval of vast amounts of data about large regions. Typically, the reconnaissance data base for a large region is structured at 1:250,000 scale, data bases for smaller areas being structured at 1:25,000, 1:50,000 or 1:63,360. An integrated data base for the coterminous US was implemented at a scale of 1:3,000,000 for two separate efforts.

  6. Backscattering from a Gaussian distributed, perfectly conducting, rough surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1977-01-01

    The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.

  7. Transfer of movement sequences: bigger is better.

    PubMed

    Dean, Noah J; Kovacs, Attila J; Shea, Charles H

    2008-02-01

    Experiment 1 was conducted to determine if proportional transfer from "small to large" scale movements is as effective as transferring from "large to small." We hypothesize that the learning of larger scale movement will require the participant to learn to manage the generation, storage, and dissipation of forces better than when practicing smaller scale movements. Thus, we predict an advantage for transfer of larger scale movements to smaller scale movements relative to transfer from smaller to larger scale movements. Experiment 2 was conducted to determine if adding a load to a smaller scale movement would enhance later transfer to a larger scale movement sequence. It was hypothesized that the added load would require the participants to consider the dynamics of the movement to a greater extent than without the load. The results replicated earlier findings of effective transfer from large to small movements, but consistent with our hypothesis, transfer was less effective from small to large (Experiment 1). However, when a load was added during acquisition transfer from small to large was enhanced even though the load was removed during the transfer test. These results are consistent with the notion that the transfer asymmetry noted in Experiment 1 was due to factors related to movement dynamics that were enhanced during practice of the larger scale movement sequence, but not during the practice of the smaller scale movement sequence. The findings that the movement structure is unaffected by transfer direction but the movement dynamics are influenced by transfer direction is consistent with hierarchal models of sequence production.

  8. Shear-driven dynamo waves at high magnetic Reynolds number.

    PubMed

    Tobias, S M; Cattaneo, F

    2013-05-23

    Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.

  9. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  10. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors.

    PubMed

    Yu, Minghao; Zhang, Yangfan; Zeng, Yinxiang; Balogun, Muhammad-Sadeeq; Mai, Kancheng; Zhang, Zishou; Lu, Xihong; Tong, Yexiang

    2014-07-16

    A kind of multiwalled carbon-nanotube (MWCNT)/polydimethylsiloxane (PDMS) film with excellent conductivity and mechanical properties is developed using a facile and large-scale water surface assisted synthesis method. The film can act as a conductive support for electrochemically active PANI nano fibers. A device based on these PANI/MWCNT/PDMS electrodes shows good and stable capacitive behavior, even under static and dynamic stretching conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lateral assembly of oxidized graphene flakes into large-scale transparent conductive thin films with a three-dimensional surfactant 4-sulfocalix[4]arene

    PubMed Central

    Sundramoorthy, Ashok K.; Wang, Yilei; Wang, Jing; Che, Jianfei; Thong, Ya Xuan; Lu, Albert Chee W.; Chan-Park, Mary B.

    2015-01-01

    Graphene is a promising candidate material for transparent conductive films because of its excellent conductivity and one-carbon-atom thickness. Graphene oxide flakes prepared by Hummers method are typically several microns in size and must be pieced together in order to create macroscopic films. We report a macro-scale thin film fabrication method which employs a three-dimensional (3-D) surfactant, 4-sulfocalix[4]arene (SCX), as a lateral aggregating agent. After electrochemical exfoliation, the partially oxidized graphene (oGr) flakes are dispersed with SCX. The SCX forms micelles, which adsorb on the oGr flakes to enhance their dispersion, also promote aggregation into large-scale thin films under vacuum filtration. A thin oGr/SCX film can be shaved off from the aggregated oGr/SCX cake by immersing the cake in water. The oGr/SCX thin-film floating on the water can be subsequently lifted from the water surface with a substrate. The reduced oGr (red-oGr) films can be as thin as 10−20 nm with a transparency of >90% and sheet resistance of 890 ± 47 kΩ/sq. This method of electrochemical exfoliation followed by SCX-assisted suspension and hydrazine reduction, avoids using large amounts of strong acid (unlike Hummers method), is relatively simple and can easily form a large scale conductive and transparent film from oGr/SCX suspension. PMID:26040436

  12. Physiological Regulation of Stomatal Conductance in Boreal Forest Species: Do Species Differ and Does it Matter?

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Wolf, A.; Vygodskaya, N. N.

    2004-12-01

    Measurements of energy and water balance over Boreal forest ecosystems have generally shown very large ratios of sensible heat flux to latent heat flux (Bowen ratio) - especially on fine summer days. This strong control on evaporation at the plant scale can restrict precipitation and effect hydrometeorlogy at the regional scale. The large Bowen ratio is, in part, explained by the low maximum stomatal conductance of Boreal forest tree species and is probably related to their very low photosynthetic capacity. However, mid-day conductance can be much lower than expected on this basis and reflects the additional effect of a dynamic feedback system between stomatal conductance and the properties of the atmospheric boundary layer. Low stomatal conductance leads to a large sensible heat flux which, in turn, leads to a deeper, warmer and dryer atmospheric boundary layer and to a greater evaporative demand on the plant, causing the stomata close still more. Predicting the response of this non-linear system presents a major challenge. Physiological studies conducted in the Canadian Boreal forest show very large differences in the tendency of species to experience mid day stomatal closure. Jack pine was found to be quite susceptible while black spruce the most resistant to mid day stomatal closure. These species had very similar photosynthetic capacity (Vmax) and Ball-Berry stomatal sensitivity coefficients. Jack pine was, however, more sensitive to inhibition of photosynthesis by elevated temperatures and, as a consequence, stomata closed as temperature and the vapor pressure deficit increased during mid day. In contrast, black spruce was much less effected. These differences could have profound implications for simulating regional scale hydrometeorology over large areas dominated by monospecific stands in the NEESPI domain.

  13. Evaluating the Effectiveness of a Large-Scale Professional Development Programme

    ERIC Educational Resources Information Center

    Main, Katherine; Pendergast, Donna

    2017-01-01

    An evaluation of the effectiveness of a large-scale professional development (PD) programme delivered to 258 schools in Queensland, Australia is presented. Formal evaluations were conducted at two stages during the programme using a tool developed from Desimone's five core features of effective PD. Descriptive statistics of 38 questions and…

  14. Cohort Profile of the Goals Study: A Large-Scale Research of Physical Activity in Dutch Students

    ERIC Educational Resources Information Center

    de Groot, Renate H. M.; van Dijk, Martin L.; Kirschner, Paul A.

    2015-01-01

    The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and mental well-being. It was conducted at a…

  15. Linking Large-Scale Reading Assessments: Measuring International Trends over 40 Years

    ERIC Educational Resources Information Center

    Strietholt, Rolf; Rosén, Monica

    2016-01-01

    Since the start of the new millennium, international comparative large-scale studies have become one of the most well-known areas in the field of education. However, the International Association for the Evaluation of Educational Achievement (IEA) has already been conducting international comparative studies for about half a century. The present…

  16. Very Large Scale Aerial (VLSA) imagery for assessing postfire bitterbrush recovery

    Treesearch

    Corey A. Moffet; J. Bret Taylor; D. Terrance Booth

    2008-01-01

    Very large scale aerial (VLSA) imagery is an efficient tool for monitoring bare ground and cover on extensive rangelands. This study was conducted to determine whether VLSA images could be used to detect differences in antelope bitterbrush (Purshia tridentata Pursh DC) cover and density among similar ecological sites with varying postfire recovery...

  17. Measures of Agreement Between Many Raters for Ordinal Classifications

    PubMed Central

    Nelson, Kerrie P.; Edwards, Don

    2015-01-01

    Screening and diagnostic procedures often require a physician's subjective interpretation of a patient's test result using an ordered categorical scale to define the patient's disease severity. Due to wide variability observed between physicians’ ratings, many large-scale studies have been conducted to quantify agreement between multiple experts’ ordinal classifications in common diagnostic procedures such as mammography. However, very few statistical approaches are available to assess agreement in these large-scale settings. Existing summary measures of agreement rely on extensions of Cohen's kappa [1 - 5]. These are prone to prevalence and marginal distribution issues, become increasingly complex for more than three experts or are not easily implemented. Here we propose a model-based approach to assess agreement in large-scale studies based upon a framework of ordinal generalized linear mixed models. A summary measure of agreement is proposed for multiple experts assessing the same sample of patients’ test results according to an ordered categorical scale. This measure avoids some of the key flaws associated with Cohen's kappa and its extensions. Simulation studies are conducted to demonstrate the validity of the approach with comparison to commonly used agreement measures. The proposed methods are easily implemented using the software package R and are applied to two large-scale cancer agreement studies. PMID:26095449

  18. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge

    NASA Astrophysics Data System (ADS)

    Park, Heon-Joon; Lee, Changyeol

    2017-04-01

    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  19. The use of data from national and other large-scale user experience surveys in local quality work: a systematic review.

    PubMed

    Haugum, Mona; Danielsen, Kirsten; Iversen, Hilde Hestad; Bjertnaes, Oyvind

    2014-12-01

    An important goal for national and large-scale surveys of user experiences is quality improvement. However, large-scale surveys are normally conducted by a professional external surveyor, creating an institutionalized division between the measurement of user experiences and the quality work that is performed locally. The aim of this study was to identify and describe scientific studies related to the use of national and large-scale surveys of user experiences in local quality work. Ovid EMBASE, Ovid MEDLINE, Ovid PsycINFO and the Cochrane Database of Systematic Reviews. Scientific publications about user experiences and satisfaction about the extent to which data from national and other large-scale user experience surveys are used for local quality work in the health services. Themes of interest were identified and a narrative analysis was undertaken. Thirteen publications were included, all differed substantially in several characteristics. The results show that large-scale surveys of user experiences are used in local quality work. The types of follow-up activity varied considerably from conducting a follow-up analysis of user experience survey data to information sharing and more-systematic efforts to use the data as a basis for improving the quality of care. This review shows that large-scale surveys of user experiences are used in local quality work. However, there is a need for more, better and standardized research in this field. The considerable variation in follow-up activities points to the need for systematic guidance on how to use data in local quality work. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  20. Large scale particle image velocimetry with helium filled soap bubbles

    NASA Astrophysics Data System (ADS)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  1. Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template.

    PubMed

    Yang, Xia; Hu, Xiaotian; Wang, Qingxia; Xiong, Jian; Yang, Hanjun; Meng, Xiangchuan; Tan, Licheng; Chen, Lie; Chen, Yiwang

    2017-08-09

    With recent emergence of wearable electronic devices, flexible and stretchable transparent electrodes are the core components to realize innovative devices. The copper nanowire (CuNW) network is commonly chosen because of its high conductivity and transparency. However, the junction resistances and low aspect ratios still limit its further stretchable performance. Herein, a large-scale stretchable semiembedded CuNW transparent conductive film (TCF) was fabricated by electrolessly depositing Cu on the electrospun poly(4-vinylpyridine) polymer template semiembedded in polydimethylsiloxane. Compared with traditional CuNWs, which are as-coated on the flexible substrate, the semiembedded CuNW TCFs showed low sheet resistance (15.6 Ω·sq -1 at ∼82% transmittance) as well as outstanding stretchability and mechanical stability. The light-emitting diode connected the stretchable semiembedded CuNW TCFs in the electric circuit still lighted up even after stretching with 25% strain. Moreover, this semiembedded CuNW TCF was successfully applied in polymer solar cells as a stretchable conductive electrode, which yielded a power conversion efficiency of 4.6% with 0.1 cm 2 effective area. The large-scale stretchable CuNW TCFs show potential for the development of wearable electronic devices.

  2. Full-scale flammability test data for validation of aircraft fire mathematical models

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Bricker, R. W.

    1982-01-01

    Twenty-five large scale aircraft flammability tests were conducted in a Boeing 737 fuselage at the NASA Johnson Space Center (JSC). The objective of this test program was to provide a data base on the propagation of large scale aircraft fires to support the validation of aircraft fire mathematical models. Variables in the test program included cabin volume, amount of fuel, fuel pan area, fire location, airflow rate, and cabin materials. A number of tests were conducted with jet A-1 fuel only, while others were conducted with various Boeing 747 type cabin materials. These included urethane foam seats, passenger service units, stowage bins, and wall and ceiling panels. Two tests were also included using special urethane foam and polyimide foam seats. Tests were conducted with each cabin material individually, with various combinations of these materials, and finally, with all materials in the cabin. The data include information obtained from approximately 160 locations inside the fuselage.

  3. Large Scale Laser Crystallization of Solution-based Alumina-doped Zinc Oxide (AZO) Nanoinks for Highly Transparent Conductive Electrode

    PubMed Central

    Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.

    2015-01-01

    A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films. PMID:26515670

  4. Entropy Production of Emerging Turbulent Scales in a Temporal Supercritical N-Neptane/Nitrogen Three-Dimensional Mixing Layer

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okongo, N.

    2000-01-01

    A study of emerging turbulent scales entropy production is conducted for a supercritical shear layer as a precursor to the eventual modeling of Subgrid Scales (from a turbulent state) leading to Large Eddy Simulations.

  5. Applying the Pseudo-Panel Approach to International Large-Scale Assessments: A Methodology for Analyzing Subpopulation Trend Data

    ERIC Educational Resources Information Center

    Hooper, Martin

    2017-01-01

    TIMSS and PIRLS assess representative samples of students at regular intervals, measuring trends in student achievement and student contexts for learning. Because individual students are not tracked over time, analysis of international large-scale assessment data is usually conducted cross-sectionally. Gustafsson (2007) proposed examining the data…

  6. Integrating land and resource management plans and applied large-scale research on two national forests

    Treesearch

    Callie Jo Schweitzer; Stacy Clark; Glen Gaines; Paul Finke; Kurt Gottschalk; David Loftis

    2008-01-01

    Researchers working out of the Southern and Northern Research Stations have partnered with two National Forests to conduct two large-scale studies designed to assess the effectiveness of silvicultural techniques used to restore and maintain upland oak (Quercus spp.)-dominated ecosystems in the Cumberland Plateau Region of the southeastern United...

  7. Explore the Usefulness of Person-Fit Analysis on Large-Scale Assessment

    ERIC Educational Resources Information Center

    Cui, Ying; Mousavi, Amin

    2015-01-01

    The current study applied the person-fit statistic, l[subscript z], to data from a Canadian provincial achievement test to explore the usefulness of conducting person-fit analysis on large-scale assessments. Item parameter estimates were compared before and after the misfitting student responses, as identified by l[subscript z], were removed. The…

  8. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE COD, MASSACHUSETTS - 1. EXPERIMENTAL DESIGN AND OBSERVED TRACER MOVEMENT

    EPA Science Inventory

    A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse i...

  9. Status of JUPITER Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, T.; Shirakata, K.; Kinjo, K.

    To obtain the data necessary for evaluating the nuclear design method of a large-scale fast breeder reactor, criticality tests with a large- scale homogeneous reactor were conducted as part of a joint research program by Japan and the U.S. Analyses of the tests are underway in both countries. The purpose of this paper is to describe the status of this project.

  10. Influencing Public School Policy in the United States: The Role of Large-Scale Assessments

    ERIC Educational Resources Information Center

    Schmidt, William H.; Burroughs, Nathan A.

    2016-01-01

    The authors review the influence of state, national and international large-scale assessments (LSAs) on education policy and research. They distinguish between two main uses of LSAs: as a means for conducting research that informs educational reform and LSAs as a tool for implementing standards and enforcing accountability. The authors discuss the…

  11. Large-Scale Investigation of the Role of Trait Activation Theory for Understanding Assessment Center Convergent and Discriminant Validity

    ERIC Educational Resources Information Center

    Lievens, Filip; Chasteen, Christopher S.; Day, Eric Anthony; Christiansen, Neil D.

    2006-01-01

    This study used trait activation theory as a theoretical framework to conduct a large-scale test of the interactionist explanation of the convergent and discriminant validity findings obtained in assessment centers. Trait activation theory specifies the conditions in which cross-situationally consistent and inconsistent candidate performances are…

  12. Boarding School, Academic Motivation and Engagement, and Psychological Well-Being: A Large-Scale Investigation

    ERIC Educational Resources Information Center

    Martin, Andrew J.; Papworth, Brad; Ginns, Paul; Liem, Gregory Arief D.

    2014-01-01

    Boarding school has been a feature of education systems for centuries. Minimal large-scale quantitative data have been collected to examine its association with important educational and other outcomes. The present study represents one of the largest studies into boarding school conducted to date. It investigates boarding school and students'…

  13. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction

    NASA Astrophysics Data System (ADS)

    Goltz, Mark N.; Huang, Junqi; Close, Murray E.; Flintoft, Mark J.; Pang, Liping

    2008-09-01

    Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.

  14. Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Orlov, A. V.; Brazhnikov, M. Yu.; Levchenko, A. A.

    2018-04-01

    The evolution of a vortex flow excited by an electromagnetic technique in a thin layer of a conducting liquid was studied experimentally. Small-scale vortices, excited at the pumping scale, merge with time due to the nonlinear interaction and produce large-scale structures—the inverse energy cascade is formed. The dependence of the energy spectrum in the developed inverse cascade is well described by the Kraichnan law k -5/3. At large scales, the inverse cascade is limited by cell sizes, and a large-scale coherent vortex flow is formed, which occupies almost the entire area of the experimental cell. The radial profile of the azimuthal velocity of the coherent vortex immediately after the pumping was switched off has been established for the first time. Inside the vortex core, the azimuthal velocity grows linearly along a radius and reaches a constant value outside the core, which agrees well with the theoretical prediction.

  15. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    PubMed

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    NASA Technical Reports Server (NTRS)

    Scholl, R. E. (Editor)

    1979-01-01

    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.

  17. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens

    NASA Astrophysics Data System (ADS)

    Madaria, Anuj R.; Kumar, Akshay; Zhou, Chongwu

    2011-06-01

    The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σDC/σOp, for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, ΦTE. Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.

  18. Discovery of Newer Therapeutic Leads for Prostate Cancer

    DTIC Science & Technology

    2009-06-01

    promising plant extracts and then prepare large-scale quantities of the plant extracts using supercritical fluid extraction techniques and use this...quantities of the plant extracts using supercritical fluid extraction techniques. Large scale plant collections were conducted for 14 of the top 20...material for bioassay-guided fractionation of the biologically active constituents using modern chromatography techniques. The chemical structures of

  19. Studying Teacher Selection of Resources in an Ultra-Large Scale Interactive System: Does Metadata Guide the Way?

    ERIC Educational Resources Information Center

    Abramovich, Samuel; Schunn, Christian

    2012-01-01

    Ultra-large-scale interactive systems on the Internet have begun to change how teachers prepare for instruction, particularly in regards to resource selection. Consequently, it is important to look at how teachers are currently selecting resources beyond content or keyword search. We conducted a two-part observational study of an existing popular…

  20. Measurement repeatability of a large-scale inventory of forest fuels

    Treesearch

    J.A. Westfall; C.W. Woodall

    2007-01-01

    An efficient and accurate inventory of forest fuels at large scales is critical for assessment of forest fire hazards across landscapes. The Forest Inventory and Analysis (FIA) program of the USDA Forest Service conducts a national inventory of fuels along with blind remeasurement of a portion of inventory plots to monitor and improve data quality. The goal of this...

  1. On Matrix Sampling and Imputation of Context Questionnaires with Implications for the Generation of Plausible Values in Large-Scale Assessments

    ERIC Educational Resources Information Center

    Kaplan, David; Su, Dan

    2016-01-01

    This article presents findings on the consequences of matrix sampling of context questionnaires for the generation of plausible values in large-scale assessments. Three studies are conducted. Study 1 uses data from PISA 2012 to examine several different forms of missing data imputation within the chained equations framework: predictive mean…

  2. The Use of Online Social Networks by Polish Former Erasmus Students: A Large-Scale Survey

    ERIC Educational Resources Information Center

    Bryla, Pawel

    2014-01-01

    There is an increasing role of online social networks in the life of young Poles. We conducted a large-scale survey among Polish former Erasmus students. We have received 2450 completed questionnaires from alumni of 115 higher education institutions all over Poland. 85.4% of our respondents reported they kept in touch with their former Erasmus…

  3. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    NASA Astrophysics Data System (ADS)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  4. Amplification of large scale magnetic fields in a decaying MHD system

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2017-10-01

    Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.

  5. Effects of Interim Assessments on Student Achievement: Evidence from a Large-Scale Experiment

    ERIC Educational Resources Information Center

    Konstantopoulos, Spyros; Miller, Shazia R.; van der Ploeg, Arie; Li, Wei

    2016-01-01

    We use data from a large-scale, school-level randomized experiment conducted in 2010-2011 in public schools in Indiana. Our sample includes more than 30,000 students in 70 schools. We examine the impact of two interim assessment programs (i.e., mCLASS in Grades K-2 and Acuity in Grades 3--8) on mathematics and reading achievement. Two-level models…

  6. Recent Developments in Language Assessment and the Case of Four Large-Scale Tests of ESOL Ability

    ERIC Educational Resources Information Center

    Stoynoff, Stephen

    2009-01-01

    This review article surveys recent developments and validation activities related to four large-scale tests of L2 English ability: the iBT TOEFL, the IELTS, the FCE, and the TOEIC. In addition to describing recent changes to these tests, the paper reports on validation activities that were conducted on the measures. The results of this research…

  7. International Large-Scale Assessment Studies and Educational Policy-Making in Chile: Contexts and Dimensions of Influence

    ERIC Educational Resources Information Center

    Cox, Cristián; Meckes, Lorena

    2016-01-01

    Since the 1990s, Chile has participated in all major international large-scale assessment studies (ILSAs) of the IEA and OECD, as well as the regional ones conducted by UNESCO in Latin America, after it had been involved in the very first international Science Study in 1970-1971. This article examines the various ways in which these studies have…

  8. Personality Assessment Inventory scale characteristics and factor structure in the assessment of alcohol dependency.

    PubMed

    Schinka, J A

    1995-02-01

    Individual scale characteristics and the inventory structure of the Personality Assessment Inventory (PAI; Morey, 1991) were examined by conducting internal consistency and factor analyses of item and scale score data from a large group (N = 301) of alcohol-dependent patients. Alpha coefficients, mean inter-item correlations, and corrected item-total scale correlations for the sample paralleled values reported by Morey for a large clinical sample. Minor differences in the scale factor structure of the inventory from Morey's clinical sample were found. Overall, the findings support the use of the PAI in the assessment of personality and psychopathology of alcohol-dependent patients.

  9. Evaluating the implementation of a national disclosure policy for large-scale adverse events in an integrated health care system: identification of gaps and successes.

    PubMed

    Maguire, Elizabeth M; Bokhour, Barbara G; Wagner, Todd H; Asch, Steven M; Gifford, Allen L; Gallagher, Thomas H; Durfee, Janet M; Martinello, Richard A; Elwy, A Rani

    2016-11-11

    Many healthcare organizations have developed disclosure policies for large-scale adverse events, including the Veterans Health Administration (VA). This study evaluated VA's national large-scale disclosure policy and identifies gaps and successes in its implementation. Semi-structured qualitative interviews were conducted with leaders, hospital employees, and patients at nine sites to elicit their perceptions of recent large-scale adverse events notifications and the national disclosure policy. Data were coded using the constructs of the Consolidated Framework for Implementation Research (CFIR). We conducted 97 interviews. Insights included how to handle the communication of large-scale disclosures through multiple levels of a large healthcare organization and manage ongoing communications about the event with employees. Of the 5 CFIR constructs and 26 sub-constructs assessed, seven were prominent in interviews. Leaders and employees specifically mentioned key problem areas involving 1) networks and communications during disclosure, 2) organizational culture, 3) engagement of external change agents during disclosure, and 4) a need for reflecting on and evaluating the policy implementation and disclosure itself. Patients shared 5) preferences for personal outreach by phone in place of the current use of certified letters. All interviewees discussed 6) issues with execution and 7) costs of the disclosure. CFIR analysis reveals key problem areas that need to be addresses during disclosure, including: timely communication patterns throughout the organization, establishing a supportive culture prior to implementation, using patient-approved, effective communications strategies during disclosures; providing follow-up support for employees and patients, and sharing lessons learned.

  10. Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries

    DOE PAGES

    Ma, Cheng; Cheng, Yongqiang; Chen, Kai; ...

    2016-03-29

    In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlookedmore » mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li 0.33La 0.56)TiO 3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li 0.33La 0.56)TiO 3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.« less

  11. Criminological research in contemporary China: challenges and lessons learned from a large-scale criminal victimization survey.

    PubMed

    Zhang, Lening; Messner, Steven F; Lu, Jianhong

    2007-02-01

    This article discusses research experience gained from a large-scale survey of criminal victimization recently conducted in Tianjin, China. The authors review some of the more important challenges that arose in the research, their responses to these challenges, and lessons learned that might be beneficial to other scholars who are interested in conducting criminological research in China. Their experience underscores the importance of understanding the Chinese political, cultural, and academic context, and the utility of collaborating with experienced and knowledgeable colleagues "on site." Although there are some special difficulties and barriers, their project demonstrates the feasibility of original criminological data collection in China.

  12. Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model--when shake flasks mimic 15,000-L bioreactors better.

    PubMed

    Ahuja, Sanjeev; Jain, Shilpa; Ram, Kripa

    2015-01-01

    Characterization of manufacturing processes is key to understanding the effects of process parameters on process performance and product quality. These studies are generally conducted using small-scale model systems. Because of the importance of the results derived from these studies, the small-scale model should be predictive of large scale. Typically, small-scale bioreactors, which are considered superior to shake flasks in simulating large-scale bioreactors, are used as the scale-down models for characterizing mammalian cell culture processes. In this article, we describe a case study where a cell culture unit operation in bioreactors using one-sided pH control and their satellites (small-scale runs conducted using the same post-inoculation cultures and nutrient feeds) in 3-L bioreactors and shake flasks indicated that shake flasks mimicked the large-scale performance better than 3-L bioreactors. We detail here how multivariate analysis was used to make the pertinent assessment and to generate the hypothesis for refining the existing 3-L scale-down model. Relevant statistical techniques such as principal component analysis, partial least square, orthogonal partial least square, and discriminant analysis were used to identify the outliers and to determine the discriminatory variables responsible for performance differences at different scales. The resulting analysis, in combination with mass transfer principles, led to the hypothesis that observed similarities between 15,000-L and shake flask runs, and differences between 15,000-L and 3-L runs, were due to pCO2 and pH values. This hypothesis was confirmed by changing the aeration strategy at 3-L scale. By reducing the initial sparge rate in 3-L bioreactor, process performance and product quality data moved closer to that of large scale. © 2015 American Institute of Chemical Engineers.

  13. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh

    USGS Publications Warehouse

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.

  14. NCI Cohort Consortium

    Cancer.gov

    The NCI Cohort Consortium is an extramural-intramural partnership formed by the National Cancer Institute to address the need for large-scale collaborations to pool the large quantity of data and biospecimens necessary to conduct a wide range of cancer studies.

  15. Limited accessibility to designs and results of Japanese large-scale clinical trials for cardiovascular diseases.

    PubMed

    Sawata, Hiroshi; Ueshima, Kenji; Tsutani, Kiichiro

    2011-04-14

    Clinical evidence is important for improving the treatment of patients by health care providers. In the study of cardiovascular diseases, large-scale clinical trials involving thousands of participants are required to evaluate the risks of cardiac events and/or death. The problems encountered in conducting the Japanese Acute Myocardial Infarction Prospective (JAMP) study highlighted the difficulties involved in obtaining the financial and infrastructural resources necessary for conducting large-scale clinical trials. The objectives of the current study were: 1) to clarify the current funding and infrastructural environment surrounding large-scale clinical trials in cardiovascular and metabolic diseases in Japan, and 2) to find ways to improve the environment surrounding clinical trials in Japan more generally. We examined clinical trials examining cardiovascular diseases that evaluated true endpoints and involved 300 or more participants using Pub-Med, Ichushi (by the Japan Medical Abstracts Society, a non-profit organization), websites of related medical societies, the University Hospital Medical Information Network (UMIN) Clinical Trials Registry, and clinicaltrials.gov at three points in time: 30 November, 2004, 25 February, 2007 and 25 July, 2009. We found a total of 152 trials that met our criteria for 'large-scale clinical trials' examining cardiovascular diseases in Japan. Of these, 72.4% were randomized controlled trials (RCTs). Of 152 trials, 9.2% of the trials examined more than 10,000 participants, and 42.8% examined between 1,000 and 10,000 participants. The number of large-scale clinical trials markedly increased from 2001 to 2004, but suddenly decreased in 2007, then began to increase again. Ischemic heart disease (39.5%) was the most common target disease. Most of the larger-scale trials were funded by private organizations such as pharmaceutical companies. The designs and results of 13 trials were not disclosed. To improve the quality of clinical trials, all sponsors should register trials and disclose the funding sources before the enrolment of participants, and publish their results after the completion of each study.

  16. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  17. Temporal transferability of soil moisture calibration equations

    USDA-ARS?s Scientific Manuscript database

    Several large-scale field campaigns have been conducted over the last 20 years that require accurate estimates of soil moisture conditions. These measurements are manually conducted using soil moisture probes which require calibration. The calibration process involves the collection of hundreds of...

  18. Selective control of small versus large diameter axons using infrared laser light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.

    2016-03-01

    Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.

  19. Primary Teachers Conducting Inquiry Projects: Effects on Attitudes towards Teaching Science and Conducting Inquiry

    ERIC Educational Resources Information Center

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious…

  20. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations

    PubMed Central

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts. PMID:25993414

  1. Seismic safety in conducting large-scale blasts

    NASA Astrophysics Data System (ADS)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  2. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations.

    PubMed

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts.

  3. Aft-End Flow of a Large-Scale Lifting Body During Free-Flight Tests

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fisher, David F.

    2006-01-01

    Free-flight tests of a large-scale lifting-body configuration, the X-38 aircraft, were conducted using tufts to characterize the flow on the aft end, specifically in the inboard region of the vertical fins. Pressure data was collected on the fins and base. Flow direction and movement were correlated with surface pressure and flight condition. The X-38 was conceived to be a rescue vehicle for the International Space Station. The vehicle shape was derived from the U.S. Air Force X-24 lifting body. Free-flight tests of the X-38 configuration were conducted at the NASA Dryden Flight Research Center at Edwards Air Force Base, California from 1997 to 2001.

  4. Electrodynamics of the middle atmosphere: Superpressure balloon program

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1987-01-01

    In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.

  5. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  6. Safety Testing of Ammonium Nitrate Based Mixtures

    NASA Astrophysics Data System (ADS)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  7. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors

    USGS Publications Warehouse

    Knapp, Roland A.; Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Vrendenburg, Vance T.; Rosenblum, Erica Bree; Briggs, Cheryl J.

    2016-01-01

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.

  8. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors.

    PubMed

    Knapp, Roland A; Fellers, Gary M; Kleeman, Patrick M; Miller, David A W; Vredenburg, Vance T; Rosenblum, Erica Bree; Briggs, Cheryl J

    2016-10-18

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth's amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species' adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.

  9. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors

    PubMed Central

    Knapp, Roland A.; Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Rosenblum, Erica Bree; Briggs, Cheryl J.

    2016-01-01

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale. PMID:27698128

  10. Inverse problem to constrain the controlling parameters of large-scale heat transport processes: The Tiberias Basin example

    NASA Astrophysics Data System (ADS)

    Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien

    2015-04-01

    Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer- Verlag Berlin Heidelberg ,996p. Doherty J., 2010, PEST: Model-Independent Parameter Estimation. user manual 5th Edition. Watermark, Brisbane, Australia Magri, F., Inbar, N., Siebert C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520(0), 342-355.

  11. Scaled Lunar Module Jet Erosion Experiments

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Scholl, Harland F.

    1966-01-01

    An experimental research program was conducted on the erosion of particulate surfaces by a jet exhaust. These experiments were scaled to represent the lunar module (LM) during landing. A conical cold-gas nozzle simulating the lunar module nozzle was utilized. The investigation was conducted within a large vacuum chamber by using gravel or glass beads as a simulated soil. The effects of thrust, descent speed, nozzle terminal height, particle size on crater size, and visibility during jet erosion were determined.

  12. EPA'S LANDSCAPE SCIENCES RESEARCH: NUTRIENT POLLUTION, FLOODING, AND HABITAT

    EPA Science Inventory

    There is a growing need to understand the pattern of landscape change at regional scales and to determine how such changes affect environmental values. Key to conducting these assessments is the development of land-cover databases that permit large-scale analyses, such as an exam...

  13. Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Addy, Harold; Broeren, Andy P.; Orchard, David M.

    2017-01-01

    A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two scaling methods based on Weber number were compared against a method based on the Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel. The Weber number based scaling methods resulted in smaller runback ice mass than the Reynolds number based scaling method. The ice accretions from the Weber number based scaling method also formed farther upstream. However there were large differences in the accreted ice mass between the two Weber number based scaling methods. The difference became greater when the speed was increased. This indicated that there may be some Reynolds number effects that isnt fully accounted for and warrants further study.

  14. Achieving online consent to participation in large-scale gene-environment studies: a tangible destination.

    PubMed

    Wood, Fiona; Kowalczuk, Jenny; Elwyn, Glyn; Mitchell, Clive; Gallacher, John

    2011-08-01

    Population based genetics studies are dependent on large numbers of individuals in the pursuit of small effect sizes. Recruiting and consenting a large number of participants is both costly and time consuming. We explored whether an online consent process for large-scale genetics studies is acceptable for prospective participants using an example online genetics study. We conducted semi-structured interviews with 42 members of the public stratified by age group, gender and newspaper readership (a measure of social status). Respondents were asked to use a website designed to recruit for a large-scale genetic study. After using the website a semi-structured interview was conducted to explore opinions and any issues they would have. Responses were analysed using thematic content analysis. The majority of respondents said they would take part in the research (32/42). Those who said they would decline to participate saw fewer benefits from the research, wanted more information and expressed a greater number of concerns about the study. Younger respondents had concerns over time commitment. Middle aged respondents were concerned about privacy and security. Older respondents were more altruistic in their motivation to participate. Common themes included trust in the authenticity of the website, security of personal data, curiosity about their own genetic profile, operational concerns and a desire for more information about the research. Online consent to large-scale genetic studies is likely to be acceptable to the public. The online consent process must establish trust quickly and effectively by asserting authenticity and credentials, and provide access to a range of information to suit different information preferences.

  15. The relationship between reference canopy conductance and simplified hydraulic architecture

    NASA Astrophysics Data System (ADS)

    Novick, Kimberly; Oren, Ram; Stoy, Paul; Juang, Jehn-Yih; Siqueira, Mario; Katul, Gabriel

    2009-06-01

    Terrestrial ecosystems are dominated by vascular plants that form a mosaic of hydraulic conduits to water movement from the soil to the atmosphere. Together with canopy leaf area, canopy stomatal conductance regulates plant water use and thereby photosynthesis and growth. Although stomatal conductance is coordinated with plant hydraulic conductance, governing relationships across species has not yet been formulated at a practical level that can be employed in large-scale models. Here, combinations of published conductance measurements obtained with several methodologies across boreal to tropical climates were used to explore relationships between canopy conductance rates and hydraulic constraints. A parsimonious hydraulic model requiring sapwood-to-leaf area ratio and canopy height generated acceptable agreement with measurements across a range of biomes (r2=0.75). The results suggest that, at long time scales, the functional convergence among ecosystems in the relationship between water-use and hydraulic architecture eclipses inter-specific variation in physiology and anatomy of the transport system. Prognostic applicability of this model requires independent knowledge of sapwood-to-leaf area. In this study, we did not find a strong relationship between sapwood-to-leaf area and physical or climatic variables that are readily determinable at coarse scales, though the results suggest that climate may have a mediating influence on the relationship between sapwood-to-leaf area and height. Within temperate forests, canopy height alone explained a large amount of the variance in reference canopy conductance (r2=0.68) and this relationship may be more immediately applicable in the terrestrial ecosystem models.

  16. Solution-Processed Metal Coating to Nonwoven Fabrics for Wearable Rechargeable Batteries.

    PubMed

    Lee, Kyulin; Choi, Jin Hyeok; Lee, Hye Moon; Kim, Ki Jae; Choi, Jang Wook

    2017-12-27

    Wearable rechargeable batteries require electrode platforms that can withstand various physical motions, such as bending, folding, and twisting. To this end, conductive textiles and paper have been highlighted, as their porous structures can accommodate the stress built during various physical motions. However, fabrics with plain weaves or knit structures have been mostly adopted without exploration of nonwoven counterparts. Also, the integration of conductive materials, such as carbon or metal nanomaterials, to achieve sufficient conductivity as current collectors is not well-aligned with large-scale processing in terms of cost and quality control. Here, the superiority of nonwoven fabrics is reported in electrochemical performance and bending capability compared to currently dominant woven counterparts, due to smooth morphology near the fiber intersections and the homogeneous distribution of fibers. Moreover, solution-processed electroless deposition of aluminum and nickel-copper composite is adopted for cathodes and anodes, respectively, demonstrating the large-scale feasibility of conductive nonwoven platforms for wearable rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An experimental study of large-scale vortices over a blunt-faced flat plate in pulsating flow

    NASA Astrophysics Data System (ADS)

    Hwang, K. S.; Sung, H. J.; Hyun, J. M.

    Laboratory measurements are made of flow over a blunt flat plate of finite thickness, which is placed in a pulsating free stream, U=Uo(1+Aocos 2πfpt). Low turbulence-intensity wind tunnel experiments are conducted in the ranges of Stp<=1.23 and Ao<=0.118 at ReH=560. Pulsation is generated by means of a woofer speaker. Variations of the time-mean reattachment length xR as functions of Stp and Ao are scrutinized by using the forward-time fraction and surface pressure distributions (Cp). The shedding frequency of large-scale vortices due to pulsation is measured. Flow visualizations depict the behavior of large-scale vortices. The results for non-pulsating flows (Ao=0) are consistent with the published data. In the lower range of Ao, as Stp increases, xR attains a minimum value at a particular pulsation frequency. For large Ao, the results show complicated behaviors of xR. For Stp>=0.80, changes in xR are insignificant as Ao increases. The shedding frequency of large-scale vortices is locked-in to the pulsation frequency. A vortex-pairing process takes place between two neighboring large-scale vortices in the separated shear layer.

  18. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  19. Effects of Large-Scale Releases on the Genetic Structure of Red Sea Bream (Pagrus major, Temminck et Schlegel) Populations in Japan.

    PubMed

    Blanco Gonzalez, Enrique; Aritaki, Masato; Knutsen, Halvor; Taniguchi, Nobuhiko

    2015-01-01

    Large-scale hatchery releases are carried out for many marine fish species worldwide; nevertheless, the long-term effects of this practice on the genetic structure of natural populations remains unclear. The lack of knowledge is especially evident when independent stock enhancement programs are conducted simultaneously on the same species at different geographical locations, as occurs with red sea bream (Pagrus major, Temminck et Schlegel) in Japan. In this study, we examined the putative effects of intensive offspring releases on the genetic structure of red sea bream populations along the Japanese archipelago by genotyping 848 fish at fifteen microsatellite loci. Our results suggests weak but consistent patterns of genetic divergence (F(ST) = 0.002, p < 0.001). Red sea bream in Japan appeared spatially structured with several patches of distinct allelic composition, which corresponded to areas receiving an important influx of fish of hatchery origin, either released intentionally or from unintentional escapees from aquaculture operations. In addition to impacts upon local populations inhabiting semi-enclosed embayments, large-scale releases (either intentionally or from unintentional escapes) appeared also to have perturbed genetic structure in open areas. Hence, results of the present study suggest that independent large-scale marine stock enhancement programs conducted simultaneously on one species at different geographical locations may compromise native genetic structure and lead to patchy patterns in population genetic structure.

  20. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal

    DOT National Transportation Integrated Search

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  1. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal : Technical Summary

    DOT National Transportation Integrated Search

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  2. 5 CFR 9301.7 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and that operates solely for the purpose of conducting scientific research the results of which are... employees who perform the work and costs of conducting large-scale computer searches. (c) Duplicate means to... education, that operates a program or programs of scholarly research. (e) Fee category means one of the...

  3. 5 CFR 9301.7 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and that operates solely for the purpose of conducting scientific research the results of which are... employees who perform the work and costs of conducting large-scale computer searches. (c) Duplicate means to... education, that operates a program or programs of scholarly research. (e) Fee category means one of the...

  4. Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Stompor, Radoslaw; Juszkiewicz, Roman

    1993-01-01

    We conduct a Monte Carlo simulation of the cosmic microwave background (CMB) anisotropy in the UCSB South Pole 1991 degree-scale experiment. We examine cold dark matter cosmology with large-scale structure seeded by the Harrison-Zel'dovich hierarchy of Gaussian-distributed primordial inhomogeneities normalized to the COBE-DMR measurement of large-angle CMB anisotropy. We find it statistically implausible (in the sense of low cumulative probability F lower than 5 percent, of not measuring a cosmological delta-T/T signal) that the degree-scale cosmological CMB anisotropy predicted in such models could have escaped a detection at the level of sensitivity achieved in the South Pole 1991 experiment.

  5. Large-scale block adjustment without use of ground control points based on the compensation of geometric calibration for ZY-3 images

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Wang, Mi; Xu, Wen; Li, Deren; Gong, Jianya; Pi, Yingdong

    2017-12-01

    The potential of large-scale block adjustment (BA) without ground control points (GCPs) has long been a concern among photogrammetric researchers, which is of effective guiding significance for global mapping. However, significant problems with the accuracy and efficiency of this method remain to be solved. In this study, we analyzed the effects of geometric errors on BA, and then developed a step-wise BA method to conduct integrated processing of large-scale ZY-3 satellite images without GCPs. We first pre-processed the BA data, by adopting a geometric calibration (GC) method based on the viewing-angle model to compensate for systematic errors, such that the BA input images were of good initial geometric quality. The second step was integrated BA without GCPs, in which a series of technical methods were used to solve bottleneck problems and ensure accuracy and efficiency. The BA model, based on virtual control points (VCPs), was constructed to address the rank deficiency problem caused by lack of absolute constraints. We then developed a parallel matching strategy to improve the efficiency of tie points (TPs) matching, and adopted a three-array data structure based on sparsity to relieve the storage and calculation burden of the high-order modified equation. Finally, we used the conjugate gradient method to improve the speed of solving the high-order equations. To evaluate the feasibility of the presented large-scale BA method, we conducted three experiments on real data collected by the ZY-3 satellite. The experimental results indicate that the presented method can effectively improve the geometric accuracies of ZY-3 satellite images. This study demonstrates the feasibility of large-scale mapping without GCPs.

  6. A convenient method for large-scale STM mapping of freestanding atomically thin conductive membranes

    NASA Astrophysics Data System (ADS)

    Uder, B.; Hartmann, U.

    2017-06-01

    Two-dimensional atomically flat sheets with a high flexibility are very attractive as ultrathin membranes but are also inherently challenging for microscopic investigations. We report on a method using Scanning Tunneling Microscopy (STM) under ultra-high vacuum conditions for large-scale mapping of several-micrometer-sized freestanding single and multilayer graphene membranes. This is achieved by operating the STM at unusual parameters. We found that large-scale scanning on atomically thin membranes delivers valuable results using very high tip-scan speeds combined with high feedback-loop gain and low tunneling currents. The method ultimately relies on the particular behavior of the freestanding membrane in the STM which is much different from that of a solid substrate.

  7. Studies on combined model based on functional objectives of large scale complex engineering

    NASA Astrophysics Data System (ADS)

    Yuting, Wang; Jingchun, Feng; Jiabao, Sun

    2018-03-01

    As various functions were included in large scale complex engineering, and each function would be conducted with completion of one or more projects, combined projects affecting their functions should be located. Based on the types of project portfolio, the relationship of projects and their functional objectives were analyzed. On that premise, portfolio projects-technics based on their functional objectives were introduced, then we studied and raised the principles of portfolio projects-technics based on the functional objectives of projects. In addition, The processes of combined projects were also constructed. With the help of portfolio projects-technics based on the functional objectives of projects, our research findings laid a good foundation for management of large scale complex engineering portfolio management.

  8. Additional Results of Glaze Icing Scaling in SLD Conditions

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2016-01-01

    New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 inches and the scale model had a chord of 21 inches. Reference tests were run with airspeeds of 100 and 130.3 knots and with MVD's of 85 and 170 microns. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number W (sub eL). The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the non-dimensional water-film thickness expression and the film Weber number W (sub ef). All tests were conducted at 0 degrees angle of arrival. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For non-dimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-dimensional ice shape profiles at any selected span-wise location from the high fidelity 3-dimensional scanned ice shapes obtained in the IRT.

  9. Additional Results of Glaze Icing Scaling in SLD Conditions

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2016-01-01

    New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 in. and the scale model had a chord of 21 in. Reference tests were run with airspeeds of 100 and 130.3 kn and with MVD's of 85 and 170 micron. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number WeL. The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the nondimensional water-film thickness expression and the film Weber number Wef. All tests were conducted at 0 deg AOA. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For nondimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-D ice shape profiles at any selected span-wise location from the high fidelity 3-D scanned ice shapes obtained in the IRT.

  10. Role of substrate quality on IC performance and yields

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1981-01-01

    The development of silicon and gallium arsenide crystal growth for the production of large diameter substrates are discussed. Large area substrates of significantly improved compositional purity, dopant distribution and structural perfection on a microscopic as well as macroscopic scale are important requirements. The exploratory use of magnetic fields to suppress convection effects in Czochralski crystal growth is addressed. The growth of large crystals in space appears impractical at present however the efforts to improve substrate quality could benefit from the experiences gained in smaller scale growth experiments conducted in the zero gravity environment of space.

  11. Profitability and sustainability of small - medium scale palm biodiesel plant

    NASA Astrophysics Data System (ADS)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  12. Three Dimensional Distribution of Sensitive Field and Stress Field Inversion of Force Sensitive Materials under Constant Current Excitation.

    PubMed

    Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei

    2018-02-28

    Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.

  13. Deployment Pulmonary Health

    DTIC Science & Technology

    2015-02-11

    A similar risk-based approach may be appropriate for deploying military personnel. e) If DoD were to consider implementing a large- scale pre...quality of existing spirometry programs prior to considering a larger scale pre-deployment effort. Identifying an accelerated decrease in spirometry...baseline spirometry on a wider scale . e) Conduct pre-deployment baseline spirometry if there is a significant risk of exposure to a pulmonary hazard based

  14. Brain Drain, Brain Gain, and Mobility: Theories and Prospective Methods

    ERIC Educational Resources Information Center

    Jalowiecki, Bohdan; Gorzelak, Grzegorz Jerzy

    2004-01-01

    This paper presents some theoretical and methodological considerations associated with the geographical and professional mobility of science professionals, including the conduct by the authors of a large scale survey questionnaire in Poland in 1994. It does not directly relate to research conducted elsewhere in the region, but does reflect…

  15. An Introduction to the Safe Schools/Healthy Students Initiative

    ERIC Educational Resources Information Center

    Modzeleski, William; Mathews-Younes, Anne; Arroyo, Carmen G.; Mannix, Danyelle; Wells, Michael E.; Hill, Gary; Yu, Ping; Murray, Stephen

    2012-01-01

    The Safe Schools/Healthy Students (SS/HS) Initiative offers a unique opportunity to conduct large-scale, multisite, multilevel program evaluation in the context of a federal environment that places many requirements and constraints on how the grants are conducted and managed. Federal programs stress performance-based outcomes, valid and reliable…

  16. Transitioning a home telehealth project into a sustainable, large-scale service: a qualitative study.

    PubMed

    Wade, Victoria A; Taylor, Alan D; Kidd, Michael R; Carati, Colin

    2016-05-16

    This study was a component of the Flinders Telehealth in the Home project, which tested adding home telehealth to existing rehabilitation, palliative care and geriatric outreach services. Due to the known difficulty of transitioning telehealth projects services, a qualitative study was conducted to produce a preferred implementation approach for sustainable and large-scale operations, and a process model that offers practical advice for achieving this goal. Initially, semi-structured interviews were conducted with senior clinicians, health service managers and policy makers, and a thematic analysis of the interview transcripts was undertaken to identify the range of options for ongoing operations, plus the factors affecting sustainability. Subsequently, the interviewees and other decision makers attended a deliberative forum in which participants were asked to select a preferred model for future implementation. Finally, all data from the study was synthesised by the researchers to produce a process model. 19 interviews with senior clinicians, managers, and service development staff were conducted, finding strong support for home telehealth but a wide diversity of views on governance, models of clinical care, technical infrastructure operations, and data management. The deliberative forum worked through these options and recommended a collaborative consortium approach for large-scale implementation. The process model proposes that the key factor for large-scale implementation is leadership support, which is enabled by 1) showing solutions to the problems of service demand, budgetary pressure and the relationship between hospital and primary care, 2) demonstrating how home telehealth aligns with health service policies, and 3) achieving clinician acceptance through providing evidence of benefit and developing new models of clinical care. Two key actions to enable change were marketing telehealth to patients, clinicians and policy-makers, and building a community of practice. The implementation of home telehealth services is still in an early stage. Change agents and a community of practice can contribute by marketing telehealth, demonstrating policy alignment and providing potential solutions for difficult health services problems. This should assist health leaders to move from trials to large-scale services.

  17. Embarking on large-scale qualitative research: reaping the benefits of mixed methods in studying youth, clubs and drugs

    PubMed Central

    Hunt, Geoffrey; Moloney, Molly; Fazio, Adam

    2012-01-01

    Qualitative research is often conceptualized as inherently small-scale research, primarily conducted by a lone researcher enmeshed in extensive and long-term fieldwork or involving in-depth interviews with a small sample of 20 to 30 participants. In the study of illicit drugs, traditionally this has often been in the form of ethnographies of drug-using subcultures. Such small-scale projects have produced important interpretive scholarship that focuses on the culture and meaning of drug use in situated, embodied contexts. Larger-scale projects are often assumed to be solely the domain of quantitative researchers, using formalistic survey methods and descriptive or explanatory models. In this paper, however, we will discuss qualitative research done on a comparatively larger scale—with in-depth qualitative interviews with hundreds of young drug users. Although this work incorporates some quantitative elements into the design, data collection, and analysis, the qualitative dimension and approach has nevertheless remained central. Larger-scale qualitative research shares some of the challenges and promises of smaller-scale qualitative work including understanding drug consumption from an emic perspective, locating hard-to-reach populations, developing rapport with respondents, generating thick descriptions and a rich analysis, and examining the wider socio-cultural context as a central feature. However, there are additional challenges specific to the scale of qualitative research, which include data management, data overload and problems of handling large-scale data sets, time constraints in coding and analyzing data, and personnel issues including training, organizing and mentoring large research teams. Yet large samples can prove to be essential for enabling researchers to conduct comparative research, whether that be cross-national research within a wider European perspective undertaken by different teams or cross-cultural research looking at internal divisions and differences within diverse communities and cultures. PMID:22308079

  18. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  19. Design and implementation of a distributed large-scale spatial database system based on J2EE

    NASA Astrophysics Data System (ADS)

    Gong, Jianya; Chen, Nengcheng; Zhu, Xinyan; Zhang, Xia

    2003-03-01

    With the increasing maturity of distributed object technology, CORBA, .NET and EJB are universally used in traditional IT field. However, theories and practices of distributed spatial database need farther improvement in virtue of contradictions between large scale spatial data and limited network bandwidth or between transitory session and long transaction processing. Differences and trends among of CORBA, .NET and EJB are discussed in details, afterwards the concept, architecture and characteristic of distributed large-scale seamless spatial database system based on J2EE is provided, which contains GIS client application, web server, GIS application server and spatial data server. Moreover the design and implementation of components of GIS client application based on JavaBeans, the GIS engine based on servlet, the GIS Application server based on GIS enterprise JavaBeans(contains session bean and entity bean) are explained.Besides, the experiments of relation of spatial data and response time under different conditions are conducted, which proves that distributed spatial database system based on J2EE can be used to manage, distribute and share large scale spatial data on Internet. Lastly, a distributed large-scale seamless image database based on Internet is presented.

  20. Landscape permeability for large carnivores in Washington: a geographic information system weighted-distance and least-cost corridor assessment.

    Treesearch

    Peter H. Singleton; William L. Gaines; John F. Lehmkuhl

    2002-01-01

    We conducted a regional-scale evaluation of landscape permeability for large carnivores in Washington and adjacent portions of British Columbia and Idaho. We developed geographic information system based landscape permeability models for wolves (Canis lupus), wolverine (Gulo gulo), lynx (Lynx canadensis),...

  1. Project BALLOTS: Bibliographic Automation of Large Library Operations Using a Time-Sharing System. Progress Report (3/27/69 - 6/26/69).

    ERIC Educational Resources Information Center

    Veaner, Allen B.

    Project BALLOTS is a large-scale library automation development project of the Stanford University Libraries which has demonstrated the feasibility of conducting on-line interactive searches of complex bibliographic files, with a large number of users working simultaneously in the same or different files. This report documents the continuing…

  2. Multi-level discriminative dictionary learning with application to large scale image classification.

    PubMed

    Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua

    2015-10-01

    The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.

  3. NREL, California Independent System Operator, and First Solar | Energy

    Science.gov Websites

    Solar NREL, California Independent System Operator, and First Solar Demonstrate Essential Reliability Services with Utility-Scale Solar NREL, the California Independent System Operator (CAISO), and First Solar conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to

  4. MONITORING COASTAL RESOURCES AT MULTIPLE SPATIAL AND TEMPORAL SCALES: LESSONS FROM EMAP 2001 EMAP SYMPOSIUM, APRIL 24-27, PENSACOLA BEACH, FL

    EPA Science Inventory

    In 1990, EMAP's Coastal Monitoring Program conducted its first regional sampling program in the Virginian Province. This first effort focused only at large spatial scales (regional) with some stratification to examine estuarine types. In the ensuing decade, EMAP-Coastal has condu...

  5. The Role of Teacher Leaders in Scaling Up Standards-Based Reform.

    ERIC Educational Resources Information Center

    Swanson, Judy; Snell, Jean; Koency, Gina; Berns, Barbara

    This study examined 10 urban middle school teacher leaders who played significant roles in their districts' and states' large-scale standards reform efforts. Interviews, observations, and shadowing were conducted during the first year to examine the teachers' scope of work. Observations focused on teachers working with a range of students and with…

  6. A Composite Network Approach for Assessing Multi-Species Connectivity: An Application to Road Defragmentation Prioritisation

    PubMed Central

    Saura, Santiago; Rondinini, Carlo

    2016-01-01

    One of the biggest challenges in large-scale conservation is quantifying connectivity at broad geographic scales and for a large set of species. Because connectivity analyses can be computationally intensive, and the planning process quite complex when multiple taxa are involved, assessing connectivity at large spatial extents for many species turns to be often intractable. Such limitation results in that conducted assessments are often partial by focusing on a few key species only, or are generic by considering a range of dispersal distances and a fixed set of areas to connect that are not directly linked to the actual spatial distribution or mobility of particular species. By using a graph theory framework, here we propose an approach to reduce computational effort and effectively consider large assemblages of species in obtaining multi-species connectivity priorities. We demonstrate the potential of the approach by identifying defragmentation priorities in the Italian road network focusing on medium and large terrestrial mammals. We show that by combining probabilistic species graphs prior to conducting the network analysis (i) it is possible to analyse connectivity once for all species simultaneously, obtaining conservation or restoration priorities that apply for the entire species assemblage; and that (ii) those priorities are well aligned with the ones that would be obtained by aggregating the results of separate connectivity analysis for each of the individual species. This approach offers great opportunities to extend connectivity assessments to large assemblages of species and broad geographic scales. PMID:27768718

  7. Reliability of plasma polar metabolite concentrations in a large-scale cohort study using capillary electrophoresis-mass spectrometry.

    PubMed

    Harada, Sei; Hirayama, Akiyoshi; Chan, Queenie; Kurihara, Ayako; Fukai, Kota; Iida, Miho; Kato, Suzuka; Sugiyama, Daisuke; Kuwabara, Kazuyo; Takeuchi, Ayano; Akiyama, Miki; Okamura, Tomonori; Ebbels, Timothy M D; Elliott, Paul; Tomita, Masaru; Sato, Asako; Suzuki, Chizuru; Sugimoto, Masahiro; Soga, Tomoyoshi; Takebayashi, Toru

    2018-01-01

    Cohort studies with metabolomics data are becoming more widespread, however, large-scale studies involving 10,000s of participants are still limited, especially in Asian populations. Therefore, we started the Tsuruoka Metabolomics Cohort Study enrolling 11,002 community-dwelling adults in Japan, and using capillary electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass spectrometry. The CE-MS method is highly amenable to absolute quantification of polar metabolites, however, its reliability for large-scale measurement is unclear. The aim of this study is to examine reproducibility and validity of large-scale CE-MS measurements. In addition, the study presents absolute concentrations of polar metabolites in human plasma, which can be used in future as reference ranges in a Japanese population. Metabolomic profiling of 8,413 fasting plasma samples were completed using CE-MS, and 94 polar metabolites were structurally identified and quantified. Quality control (QC) samples were injected every ten samples and assessed throughout the analysis. Inter- and intra-batch coefficients of variation of QC and participant samples, and technical intraclass correlation coefficients were estimated. Passing-Bablok regression of plasma concentrations by CE-MS on serum concentrations by standard clinical chemistry assays was conducted for creatinine and uric acid. In QC samples, coefficient of variation was less than 20% for 64 metabolites, and less than 30% for 80 metabolites out of the 94 metabolites. Inter-batch coefficient of variation was less than 20% for 81 metabolites. Estimated technical intraclass correlation coefficient was above 0.75 for 67 metabolites. The slope of Passing-Bablok regression was estimated as 0.97 (95% confidence interval: 0.95, 0.98) for creatinine and 0.95 (0.92, 0.96) for uric acid. Compared to published data from other large cohort measurement platforms, reproducibility of metabolites common to the platforms was similar to or better than in the other studies. These results show that our CE-MS platform is suitable for conducting large-scale epidemiological studies.

  8. Environmental impact assessment and environmental audit in large-scale public infrastructure construction: the case of the Qinghai-Tibet Railway.

    PubMed

    He, Guizhen; Zhang, Lei; Lu, Yonglong

    2009-09-01

    Large-scale public infrastructure projects have featured in China's modernization course since the early 1980s. During the early stages of China's rapid economic development, public attention focused on the economic and social impact of high-profile construction projects. In recent years, however, we have seen a shift in public concern toward the environmental and ecological effects of such projects, and today governments are required to provide valid environmental impact assessments prior to allowing large-scale construction. The official requirement for the monitoring of environmental conditions has led to an increased number of debates in recent years regarding the effectiveness of Environmental Impact Assessments (EIAs) and Governmental Environmental Audits (GEAs) as environmental safeguards in instances of large-scale construction. Although EIA and GEA are conducted by different institutions and have different goals and enforcement potential, these two practices can be closely related in terms of methodology. This article cites the construction of the Qinghai-Tibet Railway as an instance in which EIA and GEA offer complementary approaches to environmental impact management. This study concludes that the GEA approach can serve as an effective follow-up to the EIA and establishes that the EIA lays a base for conducting future GEAs. The relationship that emerges through a study of the Railway's construction calls for more deliberate institutional arrangements and cooperation if the two practices are to be used in concert to optimal effect.

  9. Choices and Trade-Offs: Reply to McGaw

    ERIC Educational Resources Information Center

    Wagemaker, Hans

    2008-01-01

    This paper contrasts the role and approach taken by the International Association for the Evaluation of Educational Achievement (IEA) with that of the OECD in the conduct of their respective large-scale assessment programmes. It is argued that the differences in the approaches taken in the conduct of the respective assessments are not merely…

  10. Exploring the Challenges of Conducting Respectful Research: Seen and Unforeseen Factors within Urban School Research

    ERIC Educational Resources Information Center

    Samaroo, Julia; Dahya, Negin; Alidina, Shahnaaz

    2013-01-01

    This paper discusses the significance of conducting respectful research within urban schools, using the example of one large-scale university-school board partnership in northwestern Toronto. The authors, three research assistants on the project, use their experiences within three of the participating schools to interrogate the research approach…

  11. High Reynolds Number Investigation of a Flush-Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.

  12. Low Cost Manufacturing of Composite Cryotanks

    NASA Technical Reports Server (NTRS)

    Meredith, Brent; Palm, Tod; Deo, Ravi; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation reviews research and development of cryotank manufacturing conducted by Northrup Grumman. The objectives of the research and development included the development and validation of manufacturing processes and technology for fabrication of large scale cryogenic tanks, the establishment of a scale-up and facilitization plan for full scale cryotanks, the development of non-autoclave composite manufacturing processes, the fabrication of subscale tank joints for element tests, the performance of manufacturing risk reduction trials for the subscale tank, and the development of full-scale tank manufacturing concepts.

  13. The Modified Abbreviated Math Anxiety Scale: A Valid and Reliable Instrument for Use with Children.

    PubMed

    Carey, Emma; Hill, Francesca; Devine, Amy; Szűcs, Dénes

    2017-01-01

    Mathematics anxiety (MA) can be observed in children from primary school age into the teenage years and adulthood, but many MA rating scales are only suitable for use with adults or older adolescents. We have adapted one such rating scale, the Abbreviated Math Anxiety Scale (AMAS), to be used with British children aged 8-13. In this study, we assess the scale's reliability, factor structure, and divergent validity. The modified AMAS (mAMAS) was administered to a very large ( n = 1746) cohort of British children and adolescents. This large sample size meant that as well as conducting confirmatory factor analysis on the scale itself, we were also able to split the sample to conduct exploratory and confirmatory factor analysis of items from the mAMAS alongside items from child test anxiety and general anxiety rating scales. Factor analysis of the mAMAS confirmed that it has the same underlying factor structure as the original AMAS, with subscales measuring anxiety about Learning and Evaluation in math. Furthermore, both exploratory and confirmatory factor analysis of the mAMAS alongside scales measuring test anxiety and general anxiety showed that mAMAS items cluster onto one factor (perceived to represent MA). The mAMAS provides a valid and reliable scale for measuring MA in children and adolescents, from a younger age than is possible with the original AMAS. Results from this study also suggest that MA is truly a unique construct, separate from both test anxiety and general anxiety, even in childhood.

  14. Experimental Study of Homogeneous Isotropic Slowly-Decaying Turbulence in Giant Grid-Wind Tunnel Set Up

    NASA Astrophysics Data System (ADS)

    Aliseda, Alberto; Bourgoin, Mickael; Eswirp Collaboration

    2014-11-01

    We present preliminary results from a recent grid turbulence experiment conducted at the ONERA wind tunnel in Modane, France. The ESWIRP Collaboration was conceived to probe the smallest scales of a canonical turbulent flow with very high Reynolds numbers. To achieve this, the largest scales of the turbulence need to be extremely big so that, even with the large separation of scales, the smallest scales would be well above the spatial and temporal resolution of the instruments. The ONERA wind tunnel in Modane (8 m -diameter test section) was chosen as a limit of the biggest large scales achievable in a laboratory setting. A giant inflatable grid (M = 0.8 m) was conceived to induce slowly-decaying homogeneous isotropic turbulence in a large region of the test section, with minimal structural risk. An international team or researchers collected hot wire anemometry, ultrasound anemometry, resonant cantilever anemometry, fast pitot tube anemometry, cold wire thermometry and high-speed particle tracking data of this canonical turbulent flow. While analysis of this large database, which will become publicly available over the next 2 years, has only started, the Taylor-scale Reynolds number is estimated to be between 400 and 800, with Kolmogorov scales as large as a few mm . The ESWIRP Collaboration is formed by an international team of scientists to investigate experimentally the smallest scales of turbulence. It was funded by the European Union to take advantage of the largest wind tunnel in Europe for fundamental research.

  15. Simultaneous head tissue conductivity and EEG source location estimation.

    PubMed

    Akalin Acar, Zeynep; Acar, Can E; Makeig, Scott

    2016-01-01

    Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm(2)-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm(2)-scale accurate 3-D functional cortical imaging modality. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Simultaneous head tissue conductivity and EEG source location estimation

    PubMed Central

    Acar, Can E.; Makeig, Scott

    2015-01-01

    Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3 cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15 cm2-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical imaging modality. PMID:26302675

  17. Meta-analysis on Macropore Flow Velocity in Soils

    NASA Astrophysics Data System (ADS)

    Liu, D.; Gao, M.; Li, H. Y.; Chen, X.; Leung, L. R.

    2017-12-01

    Macropore flow is ubiquitous in the soils and an important hydrologic process that is not well explained using traditional hydrologic theories. Macropore Flow Velocity (MFV) is an important parameter used to describe macropore flow and quantify its effects on runoff generation and solute transport. However, the dominant factors controlling MFV are still poorly understood and the typical ranges of MFV measured at the field are not defined clearly. To address these issues, we conducted a meta-analysis based on a database created from 246 experiments on MFV collected from 76 journal articles. For a fair comparison, a conceptually unified definition of MFV is introduced to convert the MFV measured with different approaches and at various scales including soil core, field, trench or hillslope scales. The potential controlling factors of MFV considered include scale, travel distance, hydrologic conditions, site factors, macropore morphologies, soil texture, and land use. The results show that MFV is about 2 3 orders of magnitude larger than the corresponding values of saturated hydraulic conductivity. MFV is much larger at the trench and hillslope scale than at the field profile and soil core scales and shows a significant positive correlation with the travel distance. Generally, higher irrigation intensity tends to trigger faster MFV, especially at field profile scale, where MFV and irrigation intensity have significant positive correlation. At the trench and hillslope scale, the presence of large macropores (diameter>10 mm) is a key factor determining MFV. The geometric mean of MFV for sites with large macropores was found to be about 8 times larger than those without large macropores. For sites with large macropores, MFV increases with the macropore diameter. However, no noticeable difference in MFV has been observed among different soil texture and land use. Comparing the existing equations to describe MFV, the Poiseuille equation significantly overestimated the observed values, while the Manning-type equations generate reasonable values. The insights from this study will shed light on future field campaigns and modeling of macropore flow.

  18. The Child Play Behavior and Activity Questionnaire: A Parent-Report Measure of Childhood Gender-Related Behavior in China

    PubMed Central

    Winter, Sam; Xie, Dong

    2008-01-01

    Boys and girls establish relatively stable gender stereotyped behavior patterns by middle childhood. Parent-report questionnaires measuring children’s gender-related behavior enable researchers to conduct large-scale screenings of community samples of children. For school-aged children, two parent-report instruments, the Child Game Participation Questionnaire (CGPQ) and the Child Behavior and Attitude Questionnaire (CBAQ), have long been used for measuring children’s sex-dimorphic behaviors in Western societies, but few studies have been conducted using these measures for Chinese populations. The current study aimed to empirically examine and modify the two instruments for their applications to Chinese society. Parents of 486 Chinese boys and 417 Chinese girls (6–12 years old) completed a questionnaire comprising items from the CGPQ and CBAQ, and an additional 14 items specifically related to Chinese gender-specific games. Items revealing gender differences in a Chinese sample were identified and used to construct a Child Play Behavior and Activity Questionnaire (CPBAQ). Four new scales were generated through factor analysis: a Gender Scale, a Girl Typicality Scale, a Boy Typicality Scale, and a Cross-Gender Scale (CGS). These scales had satisfactory internal reliabilities and large effect sizes for gender. The CPBAQ is believed to be a promising instrument for measuring children’s gender-related behavior in China. PMID:18719986

  19. Banana production systems: identification of alternative systems for more sustainable production.

    PubMed

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  20. US EPA - ToxCast and the Tox21 program: perspectives

    EPA Science Inventory

    ToxCast is a large-scale project being conducted by the U.S. EPA to screen ~2000 chemicals against a large battery of in vitro high-throughput screening (HTS) assays. ToxCast is complemented by the Tox21 project being jointly carried out by the U.S. NIH Chemical Genomics Center (...

  1. Monitoring conservation success in a large oak woodland landscape

    Treesearch

    Rich Reiner; Emma Underwood; John-O Niles

    2002-01-01

    Monitoring is essential in understanding the success or failure of a conservation project and provides the information needed to conduct adaptive management. Although there is a large body of literature on monitoring design, it fails to provide sufficient information to practitioners on how to organize and apply monitoring when implementing landscape-scale conservation...

  2. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  3. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE PAGES

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.; ...

    2017-07-26

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  4. The Development and Initial Validation of the Work Volition Scale-Student Version

    ERIC Educational Resources Information Center

    Duffy, Ryan D.; Diemer, Matthew A.; Jadidian, Alex

    2012-01-01

    The present study sought to develop and validate an instrument to measure work volition, defined as the perceived capacity to make occupational choices despite constraints, among college students. In Study 1, an exploratory factor analysis was conducted with a large and diverse sample of college students, finding a reliable scale with two factors,…

  5. Vegetation response to stand structure and prescribed fire in an interior ponderosa pine ecosystem

    Treesearch

    Jianwei Zhang; Martin W. Ritchie; William W. Oliver

    2008-01-01

    A large-scale interior ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) study was conducted at the Blacks Mountain Experimental Forest in northeastern California. The primary purpose of the study was to determine the influence of structural diversity on the dynamics of interior pine forests at the landscape scale. High structural...

  6. 75 FR 61521 - NUREG/CR-7010, Cable Heat Release, Ignition, and Spread in Tray Installations During Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... tray configurations. The experiments conducted range from micro-scale, in which very small (5 mg... burned under a large oxygen- depletion calorimeter. Other experiments include cone calorimetry, smoke and... tray of cables underneath a bank of radiant panels. The results of the small-scale experiments are to...

  7. Impact of Accumulated Error on Item Response Theory Pre-Equating with Mixed Format Tests

    ERIC Educational Resources Information Center

    Keller, Lisa A.; Keller, Robert; Cook, Robert J.; Colvin, Kimberly F.

    2016-01-01

    The equating of tests is an essential process in high-stakes, large-scale testing conducted over multiple forms or administrations. By adjusting for differences in difficulty and placing scores from different administrations of a test on a common scale, equating allows scores from these different forms and administrations to be directly compared…

  8. Effects of individual, community and landscape drivers on the dynamics of a wildland forest epidemic

    Treesearch

    Sarah E. Haas; J. Hall Cushman; Whalen W. Dillon; Nathan E. Rank; David M. Rizzo; Ross K. Meentemeyer

    2016-01-01

    The challenges posed by observing host-pathogen-environment interactions across large geographic extents and over meaningful time scales limit our ability to understand and manage wildland epidemics. We conducted a landscape-scale, longitudinal study designed to analyze the dynamics of sudden oak death (an emerging forest disease caused by Phytophthora...

  9. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    NASA Astrophysics Data System (ADS)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  10. Precomputing upscaled hydraulic conductivity for complex geological structures

    NASA Astrophysics Data System (ADS)

    Mariethoz, G.; Jha, S. K.; George, M.; Maheswarajah, S.; John, V.; De Re, D.; Smith, M.

    2013-12-01

    3D geological models are built to capture the geological heterogeneity at a fine scale. However groundwater modellers are often interested in the hydraulic conductivity (K) values at a much coarser scale to reduce the numerical burden. Upscaling is used to assign conductivity to large volumes, which necessarily causes a loss of information. Recent literature has shown that the connectivity in the channelized structures is an important feature that needs to be taken into account for accurate upscaling. In this work we study the effect of channel parameters, e.g. width, sinuosity, connectivity etc. on the upscaled values of the hydraulic conductivity and the associated uncertainty. We devise a methodology that derives correspondences between a lithological description and the equivalent hydraulic conductivity at a larger scale. The method uses multiple-point geostatistics simulations (MPS) and parameterizes the 3D structures by introducing continuous rotation and affinity parameters. Additional statistical characterization is obtained by transition probabilities and connectivity measures. Equivalent hydraulic conductivity is then estimated by solving a flow problem for the entire heterogeneous domain by applying steady state flow in horizontal and vertical directions. This is systematically performed for many random realisations of the small scale structures to enable a probability distribution for the equivalent upscaled hydraulic conductivity. This process allows deriving systematic relationships between a given depositional environment and precomputed equivalent parameters. A modeller can then exploit the prior knowledge of the depositional environment and expected geological heterogeneity to bypass the step of generating small-scale models, and directly work with upscaled values.

  11. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling

    PubMed Central

    Ahn, Ho Seon; Kim, Jin Man; Kim, TaeJoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, HangJin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan

    2014-01-01

    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF. PMID:25182076

  12. Application and research of block caving in Pulang copper mine

    NASA Astrophysics Data System (ADS)

    Ge, Qifa; Fan, Wenlu; Zhu, Weigen; Chen, Xiaowei

    2018-01-01

    The application of block caving in mines shows significant advantages in large scale, low cost and high efficiency, thus block caving is worth promoting in the mines that meets the requirement of natural caving. Due to large scale of production and low ore grade in Pulang copper mine in China, comprehensive analysis and research were conducted on rock mechanics, mining sequence, undercutting and stability of bottom structure in terms of raising mine benefit and maximizing the recovery mineral resources. Finally this study summarizes that block caving is completely suitable for Pulang copper mine.

  13. The JEDBURGHS: Combat Operations Conducted in the Finistere Region of Brittany, France from July-September 1944

    DTIC Science & Technology

    1990-06-01

    commence large scale operations on 2 August 1944. Napoleon’s hat was the local name of a famous rose-red granite rock at the holiday resort of Perros ...SFHQ that the BBC message authorizing large-scale attacks on the Germans in Brittany be "Le Chapeau de Napoleon est-il 40 TouJours a Perros -Guirec...Napoleon eat-il touJours a Perros -Guirec?" Francis, along with teams Hilary, Horace, and Gilbert, (discussed later In Chapters 7, 6, and 5

  14. Large-scale experimental technology with remote sensing in land surface hydrology and meteorology

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Schmugge, Thomas J.; Sellers, Piers J.; Hall, Forrest G.

    1988-01-01

    Two field experiments to study atmospheric and land surface processes and their interactions are summarized. The Hydrologic-Atmospheric Pilot Experiment, which tested techniques for measuring evaporation, soil moisture storage, and runoff at scales of about 100 km, was conducted over a 100 X 100 km area in France from mid-1985 to early 1987. The first International Satellite Land Surface Climatology Program field experiment was conducted in 1987 to develop and use relationships between current satellite measurements and hydrologic, climatic, and biophysical variables at the earth's surface and to validate these relationships with ground truth. This experiment also validated surface parameterization methods for simulation models that describe surface processes from the scale of vegetation leaves up to scales appropriate to satellite remote sensing.

  15. 5. Credit BG. This interior view shows the weigh room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Credit BG. This interior view shows the weigh room, looking west (240°): Electric lighting and scale read-outs (boxes with circular windows on the wall) are fitted with explosion-proof enclosures; these enclosures prevent malfunctioning electrical parts from sparking and starting fires or explosions. One marble table and scale have been removed at the extreme left of the view. Two remaining scales handle small and large quantities of propellants and additives. Marble tables do not absorb chemicals or conduct electricity; their mass also prevents vibration from upsetting the scales. The floor has an electrically conductive coating to dissipate static electric charges, thus preventing sparks which might ignite propellants. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  16. Scaling of the Urban Water Footprint: An Analysis of 65 Mid- to Large-Sized U.S. Metropolitan Areas

    NASA Astrophysics Data System (ADS)

    Mahjabin, T.; Garcia, S.; Grady, C.; Mejia, A.

    2017-12-01

    Scaling laws have been shown to be relevant to a range of disciplines including biology, ecology, hydrology, and physics, among others. Recently, scaling was shown to be important for understanding and characterizing cities. For instance, it was found that urban infrastructure (water supply pipes and electrical wires) tends to scale sublinearly with city population, implying that large cities are more efficient. In this study, we explore the scaling of the water footprint of cities. The water footprint is a measure of water appropriation that considers both the direct and indirect (virtual) water use of a consumer or producer. Here we compute the water footprint of 65 mid- to large-sized U.S. metropolitan areas, accounting for direct and indirect water uses associated with agricultural and industrial commodities, and residential and commercial water uses. We find that the urban water footprint, computed as the sum of the water footprint of consumption and production, exhibits sublinear scaling with an exponent of 0.89. This suggests the possibility of large cities being more water-efficient than small ones. To further assess this result, we conduct additional analysis by accounting for international flows, and the effects of green water and city boundary definition on the scaling. The analysis confirms the scaling and provides additional insight about its interpretation.

  17. Nonlinear conductivity of a holographic superconductor under constant electric field

    NASA Astrophysics Data System (ADS)

    Zeng, Hua Bi; Tian, Yu; Fan, Zheyong; Chen, Chiang-Mei

    2017-02-01

    The dynamics of a two-dimensional superconductor under a constant electric field E is studied by using the gauge-gravity correspondence. The pair breaking current induced by E first increases to a peak value and then decreases to a constant value at late times, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as ˜E-2 /3 when the system is close to the critical temperature Tc, which agrees with predictions from solving the time-dependent Ginzburg-Landau equation. Away from Tc, the E-2 /3 scaling of the conductivity still holds when E is large.

  18. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    DOE PAGES

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; ...

    2016-11-16

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. Here, a set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  19. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  20. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    PubMed Central

    Fujisaki, Keisuke; Ikeda, Tomoyuki

    2013-01-01

    To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395

  1. Role of optometry school in single day large scale school vision testing

    PubMed Central

    Anuradha, N; Ramani, Krishnakumar

    2015-01-01

    Background: School vision testing aims at identification and management of refractive errors. Large-scale school vision testing using conventional methods is time-consuming and demands a lot of chair time from the eye care professionals. A new strategy involving a school of optometry in single day large scale school vision testing is discussed. Aim: The aim was to describe a new approach of performing vision testing of school children on a large scale in a single day. Materials and Methods: A single day vision testing strategy was implemented wherein 123 members (20 teams comprising optometry students and headed by optometrists) conducted vision testing for children in 51 schools. School vision testing included basic vision screening, refraction, frame measurements, frame choice and referrals for other ocular problems. Results: A total of 12448 children were screened, among whom 420 (3.37%) were identified to have refractive errors. 28 (1.26%) children belonged to the primary, 163 to middle (9.80%), 129 (4.67%) to secondary and 100 (1.73%) to the higher secondary levels of education respectively. 265 (2.12%) children were referred for further evaluation. Conclusion: Single day large scale school vision testing can be adopted by schools of optometry to reach a higher number of children within a short span. PMID:25709271

  2. Interplanetary field and plasma during initial phase of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.; Wiskerchen, M. J.

    1975-01-01

    A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.

  3. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  4. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres.

    PubMed

    Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D

    2008-02-01

    Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.

  5. Plasmonic resonances of nanoparticles from large-scale quantum mechanical simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Xiang, Hongping; Zhang, Mingliang; Lu, Gang

    2017-09-01

    Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn-Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.

  6. Large-scale 3D inversion of marine controlled source electromagnetic data using the integral equation method

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.

    2009-12-01

    The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.

  7. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  8. Deflagrations, Detonations, and the Deflagration-to-Detonation Transition in Methane-Air Mixtures

    DTIC Science & Technology

    2011-04-27

    we attempt to answer the question: Given a large enough volume of flammable mixture of NG and air, can a weak spark ignition develop into a...detonation? Large -scale numerical simulations, in conjunction with experimental work conducted at the National Institute for Occupational Safety and...12 2.3.3. Flame Acceleration and DDT in Channels with Obstacles . . . . . . . . . . . . . 14 2.3.4. DDT in Large Spaces

  9. Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng

    2017-01-01

    Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.

  10. Dispersion and Cluster Scales in the Ocean

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D., Jr.; Chang, H.; Huntley, H.; Carlson, D. F.; Mensa, J. A.; Poje, A. C.; Fox-Kemper, B.

    2017-12-01

    Ocean flow space scales range from centimeters to thousands of kilometers. Because of their large Reynolds number these flows are considered turbulent. However, because of rotation and stratification constraints they do not conform to classical turbulence scaling theory. Mesoscale and large-scale motions are well described by geostrophic or "2D turbulence" theory, however extending this theory to submesoscales has proved to be problematic. One obvious reason is the difficulty in obtaining reliable data over many orders of magnitude of spatial scales in an ocean environment. The goal of this presentation is to provide a preliminary synopsis of two recent experiments that overcame these obstacles. The first experiment, the Grand LAgrangian Deployment (GLAD) was conducted during July 2012 in the eastern half of the Gulf of Mexico. Here approximately 300 GPS-tracked drifters were deployed with the primary goal to determine whether the relative dispersion of an initially densely clustered array was driven by processes acting at local pair separation scales or by straining imposed by mesoscale motions. The second experiment was a component of the LAgrangian Submesoscale Experiment (LASER) conducted during the winter of 2016. Here thousands of bamboo plates were tracked optically from an Aerostat. Together these two deployments provided an unprecedented data set on dispersion and clustering processes from 1 to 106 meter scales. Calculations of statistics such as two point separations, structure functions, and scale dependent relative diffusivities showed: inverse energy cascade as expected for scales above 10 km, a forward energy cascade at scales below 10 km with a possible energy input at Langmuir circulation scales. We also find evidence from structure function calculations for surface flow convergence at scales less than 10 km that account for material clustering at the ocean surface.

  11. Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

    1987-01-01

    The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

  12. Carbon pools and fluxes in small temperate forest landscapes: Variability and implications for sampling design

    Treesearch

    John B. Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan

    2010-01-01

    Assessing forest carbon storage and cycling over large areas is a growing challenge that is complicated by the inherent heterogeneity of forest systems. Field measurements must be conducted and analyzed appropriately to generate precise estimates at scales large enough for mapping or comparison with remote sensing data. In this study we examined...

  13. Implementation of Personal Response Units in Very Large Lecture Classes: Student Perceptions

    ERIC Educational Resources Information Center

    Barnett, John

    2006-01-01

    This article reports on a large scale implementation of personal response units in three introductory science courses at the University of Western Ontario in Canada. An online survey of students was conducted to gather their perceptions on the uses of the devices, triangulated by participant observation of the classes and email interviews with the…

  14. A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China

    Treesearch

    Yihe Lu; Bojie Fu; Xiaoming Feng; Yuan Zeng; Yu Liu; Ruiying Chang; Ge Sun; Bingfang Wu

    2012-01-01

    As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of...

  15. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments.

    PubMed

    Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen

    2015-08-01

    Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.

  16. Pyrotechnic hazards classification and evaluation program. Run-up reaction testing in pyrotechnic dust suspensions

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A preliminary investigation of the parameters included in run-up dust reactions is presented. Two types of tests were conducted: (1) ignition criteria of large bulk pyrotechnic dusts, and (2) optimal run-up conditions of large bulk pyrotechnic dusts. These tests were used to evaluate the order of magnitude and gross scale requirements needed to induce run-up reactions in pyrotechnic dusts and to simulate at reduced scale an accident that occurred in a manufacturing installation. Test results showed that propagation of pyrotechnic dust clouds resulted in a fireball of relatively long duration and large size. In addition, a plane wave front was observed to travel down the length of the gallery.

  17. A new way to protect privacy in large-scale genome-wide association studies.

    PubMed

    Kamm, Liina; Bogdanov, Dan; Laur, Sven; Vilo, Jaak

    2013-04-01

    Increased availability of various genotyping techniques has initiated a race for finding genetic markers that can be used in diagnostics and personalized medicine. Although many genetic risk factors are known, key causes of common diseases with complex heritage patterns are still unknown. Identification of such complex traits requires a targeted study over a large collection of data. Ideally, such studies bring together data from many biobanks. However, data aggregation on such a large scale raises many privacy issues. We show how to conduct such studies without violating privacy of individual donors and without leaking the data to third parties. The presented solution has provable security guarantees. Supplementary data are available at Bioinformatics online.

  18. Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks.

    PubMed

    Rangan, Aaditya V; Cai, David

    2007-02-01

    We discuss numerical methods for simulating large-scale, integrate-and-fire (I&F) neuronal networks. Important elements in our numerical methods are (i) a neurophysiologically inspired integrating factor which casts the solution as a numerically tractable integral equation, and allows us to obtain stable and accurate individual neuronal trajectories (i.e., voltage and conductance time-courses) even when the I&F neuronal equations are stiff, such as in strongly fluctuating, high-conductance states; (ii) an iterated process of spike-spike corrections within groups of strongly coupled neurons to account for spike-spike interactions within a single large numerical time-step; and (iii) a clustering procedure of firing events in the network to take advantage of localized architectures, such as spatial scales of strong local interactions, which are often present in large-scale computational models-for example, those of the primary visual cortex. (We note that the spike-spike corrections in our methods are more involved than the correction of single neuron spike-time via a polynomial interpolation as in the modified Runge-Kutta methods commonly used in simulations of I&F neuronal networks.) Our methods can evolve networks with relatively strong local interactions in an asymptotically optimal way such that each neuron fires approximately once in [Formula: see text] operations, where N is the number of neurons in the system. We note that quantifications used in computational modeling are often statistical, since measurements in a real experiment to characterize physiological systems are typically statistical, such as firing rate, interspike interval distributions, and spike-triggered voltage distributions. We emphasize that it takes much less computational effort to resolve statistical properties of certain I&F neuronal networks than to fully resolve trajectories of each and every neuron within the system. For networks operating in realistic dynamical regimes, such as strongly fluctuating, high-conductance states, our methods are designed to achieve statistical accuracy when very large time-steps are used. Moreover, our methods can also achieve trajectory-wise accuracy when small time-steps are used.

  19. Optimization of Nickel Nanocomposite for Large Strain Sensing Applications

    DTIC Science & Technology

    2011-01-01

    piezoresistive response of the material. As part of this study the effect of the addition of a second conductive filler particle of a distinct length scale...corresponding increase in the overall conductivity of the composite. The composite conductivity is increased about an order of magnitude for each additional ...strain at which the mean resis - Fig. 10. Schematic representation of how εerr was calculated from the range of the volume resistivity for a given strain

  20. Crater size estimates for large-body terrestrial impact

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.; Housen, Kevin R.

    1988-01-01

    Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.

  1. Massive superclusters as a probe of the nature and amplitude of primordial density fluctuations

    NASA Technical Reports Server (NTRS)

    Kaiser, N.; Davis, M.

    1985-01-01

    It is pointed out that correlation studies of galaxy positions have been widely used in the search for information about the large-scale matter distribution. The study of rare condensations on large scales provides an approach to extend the existing knowledge of large-scale structure into the weakly clustered regime. Shane (1975) provides a description of several apparent massive condensations within the Shane-Wirtanen catalog, taking into account the Serpens-Virgo cloud and the Corona cloud. In the present study, a description is given of a model for estimating the frequency of condensations which evolve from initially Gaussian fluctuations. This model is applied to the Corona cloud to estimate its 'rareness' and thereby estimate the rms density contrast on this mass scale. An attempt is made to find a conflict between the density fluctuations derived from the Corona cloud and independent constraints. A comparison is conducted of the estimate and the density fluctuations predicted to arise in a universe dominated by cold dark matter.

  2. URBAN SCALE VARIABILITY OF PM 2.5 COMPONENTS

    EPA Science Inventory

    This study is being conducted in a large city in the mid-west U.S. The preliminary spatial analyses for particulate nitrate, selected trace elements, and organic and elemental carbon (OC/EC) will be presented.

  3. Photogrammetric Technique for Center of Gravity Determination

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Johnson, Thomas H.; Shemwell, Dave; Shreves, Christopher M.

    2012-01-01

    A new measurement technique for determination of the center of gravity (CG) for large scale objects has been demonstrated. The experimental method was conducted as part of an LS-DYNA model validation program for the Max Launch Abort System (MLAS) crew module. The test was conducted on the full scale crew module concept at NASA Langley Research Center. Multi-camera photogrammetry was used to measure the test article in several asymmetric configurations. The objective of these measurements was to provide validation of the CG as computed from the original mechanical design. The methodology, measurement technique, and measurement results are presented.

  4. A Model of the Turbulent Electric Dynamo in Multi-Phase Media

    NASA Astrophysics Data System (ADS)

    Dementyeva, Svetlana; Mareev, Evgeny

    2016-04-01

    Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the electrification process determined by the turbulence intensity and particles sizes is strong enough. The electric field strength grows exponentially. For the non-inductive mechanism we have found the conditions when the electric field strength grows but linearly in time. Our results show that turbulent electric dynamo could play a substantial role in the electrification processes for different mechanisms of charge generation and separation. Thunderstorms and lightning are the most frequent and spectacular manifestations of electric dynamo in the atmosphere, but turbulent electric dynamo may also be the reason of electric discharges occurring in dust and snow storms or even in technological setups with intense mixing of small particles.

  5. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  6. Large-Scale Structure of Subauroral Polarization Streams During the Main Phase of a Severe Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    He, Fei; Zhang, Xiao-Xin; Wang, Wenbin; Liu, Libo; Ren, Zhi-Peng; Yue, Xinan; Hu, Lianhuan; Wan, Weixing; Wang, Hui

    2018-04-01

    In this study, we present multisatellite observations of the large-scale structures of subauroral polarization streams (SAPS) during the main phase of a severe geomagnetic storm that occurred on 31 March 2001. Observations by the Defense Meteorological Satellite Program F12 to F15 satellites indicate that the SAPS were first generated around the dusk sector at the beginning of the main phase. The SAPS channel then expanded toward the midnight sector and moved to lower latitudes as the main phase progressed. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channel were highly dynamic during the storm main phase. The large westward velocities of the SAPS were located in the region of low electron densities, associated with low ionospheric conductivity. The large-scale structures of the SAPS also corresponded closely to those of the region-2 field-aligned currents, which were mainly determined by the azimuthal pressure gradient of the ring current.

  7. Measuring Cosmic Expansion and Large Scale Structure with Destiny

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Lauer, Tod R.

    2007-01-01

    Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram and by measuring the large-scale mass power spectrum over time. Its science instrument is a 1.65m space telescope, featuring a near-infrared survey camera/spectrometer with a large field of view. During its first two years, Destiny will detect, observe, and characterize 23000 SN Ia events over the redshift interval 0.4lo00 square degrees to measure the large-scale mass power spectrum. The combination of surveys is much more powerful than either technique on its own, and will have over an order of magnitude greater sensitivity than will be provided by ongoing ground-based projects.

  8. CONSORT to community: translation of an RCT to a large-scale community intervention and learnings from evaluation of the upscaled program.

    PubMed

    Moores, Carly Jane; Miller, Jacqueline; Perry, Rebecca Anne; Chan, Lily Lai Hang; Daniels, Lynne Allison; Vidgen, Helen Anna; Magarey, Anthea Margaret

    2017-11-29

    Translation encompasses the continuum from clinical efficacy to widespread adoption within the healthcare service and ultimately routine clinical practice. The Parenting, Eating and Activity for Child Health (PEACH™) program has previously demonstrated clinical effectiveness in the management of child obesity, and has been recently implemented as a large-scale community intervention in Queensland, Australia. This paper aims to describe the translation of the evaluation framework from a randomised controlled trial (RCT) to large-scale community intervention (PEACH™ QLD). Tensions between RCT paradigm and implementation research will be discussed along with lived evaluation challenges, responses to overcome these, and key learnings for future evaluation conducted at scale. The translation of evaluation from PEACH™ RCT to the large-scale community intervention PEACH™ QLD is described. While the CONSORT Statement was used to report findings from two previous RCTs, the REAIM framework was more suitable for the evaluation of upscaled delivery of the PEACH™ program. Evaluation of PEACH™ QLD was undertaken during the project delivery period from 2013 to 2016. Experiential learnings from conducting the evaluation of PEACH™ QLD to the described evaluation framework are presented for the purposes of informing the future evaluation of upscaled programs. Evaluation changes in response to real-time changes in the delivery of the PEACH™ QLD Project were necessary at stages during the project term. Key evaluation challenges encountered included the collection of complete evaluation data from a diverse and geographically dispersed workforce and the systematic collection of process evaluation data in real time to support program changes during the project. Evaluation of large-scale community interventions in the real world is challenging and divergent from RCTs which are rigourously evaluated within a more tightly-controlled clinical research setting. Constructs explored in an RCT are inadequate in describing the enablers and barriers of upscaled community program implementation. Methods for data collection, analysis and reporting also require consideration. We present a number of experiential reflections and suggestions for the successful evaluation of future upscaled community programs which are scarcely reported in the literature. PEACH™ QLD was retrospectively registered with the Australian New Zealand Clinical Trials Registry on 28 February 2017 (ACTRN12617000315314).

  9. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.

    PubMed

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-21

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.

  10. Improving Unipolar Resistive Switching Uniformity with Cone-Shaped Conducting Filaments and Its Logic-In-Memory Application.

    PubMed

    Gao, Shuang; Liu, Gang; Chen, Qilai; Xue, Wuhong; Yang, Huali; Shang, Jie; Chen, Bin; Zeng, Fei; Song, Cheng; Pan, Feng; Li, Run-Wei

    2018-02-21

    Resistive random access memory (RRAM) with inherent logic-in-memory capability exhibits great potential to construct beyond von-Neumann computers. Particularly, unipolar RRAM is more promising because its single polarity operation enables large-scale crossbar logic-in-memory circuits with the highest integration density and simpler peripheral control circuits. However, unipolar RRAM usually exhibits poor switching uniformity because of random activation of conducting filaments and consequently cannot meet the strict uniformity requirement for logic-in-memory application. In this contribution, a new methodology that constructs cone-shaped conducting filaments by using chemically a active metal cathode is proposed to improve unipolar switching uniformity. Such a peculiar metal cathode will react spontaneously with the oxide switching layer to form an interfacial layer, which together with the metal cathode itself can act as a load resistor to prevent the overgrowth of conducting filaments and thus make them more cone-like. In this way, the rupture of conducting filaments can be strictly limited to the tip region, making their residual parts favorable locations for subsequent filament growth and thus suppressing their random regeneration. As such, a novel "one switch + one unipolar RRAM cell" hybrid structure is capable to realize all 16 Boolean logic functions for large-scale logic-in-memory circuits.

  11. Internationalization Measures in Large Scale Research Projects

    NASA Astrophysics Data System (ADS)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  12. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  13. Kinematic dynamo action in square and hexagonal patterns.

    PubMed

    Favier, B; Proctor, M R E

    2013-11-01

    We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.

  14. Disordered Nuclear Pasta, Magnetic Field Decay, and Crust Cooling in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-01-01

    Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Qimp . Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).

  15. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars.

    PubMed

    Horowitz, C J; Berry, D K; Briggs, C M; Caplan, M E; Cumming, A; Schneider, A S

    2015-01-23

    Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Q_{imp}. Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Q_{imp}, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).

  16. Solar-induced chlorophyll fluorescence tracks the trend of canopy stomatal conductance and transpiration at diurnal and seasonal scales

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shan, N.; Ju, W.; Chen, J.

    2017-12-01

    Transpiration is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface. Plant stomata function as a control interface for regulating photosynthetic uptake of CO2 and transpiration, strongly linked to plant productivity. Stomatal conductance is fundamental to larger-scale regional prediction of carbon-water cycles and their feedbacks to climate. The widely used Ball-Berry model coupled photosynthesis to a semi-empirical model of stomatal conductance. However large uncertainties remain in simulation of carbon assimilation rate in ecosystem and regional scales. The strong correlations of solar-induced fluorescence (SIF) and GPP have been demonstrated and provides an important opportunity to accurately monitor photosynthetic activity and water exchange. In this presentation, we compared both canopy-observed SIF and satellite-derived SIF with tower-based canopy stomatal conductance from hourly to 8-day scales in forest and cropland ecosystem. Using the model of stomatal conductance based on SIF, the transpiration was estimated at hourly and daily scales and compared with flux tower measurements. The results showed that the seasonal pattern of canopy stomatal conductance agreed better with SIF compared to NDVI and their relationship was higher during sunny days for forest ecosystem. Canopy stomatal conductance correlated with both tower-observed SIF and SIF from the Global Ozone Monitoring Experiment-2. Estimation of transpiration from SIF performed well in both forest and cropland ecosystem. This remotely sensed approaches from SIF for modelling stomatal conductance opens a new era to analysis and simulation of coupled carbon and water cycles under climate change.

  17. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  18. Self-Reacting Friction Stir Welding for Aluminum Complex Curvature Applications

    NASA Technical Reports Server (NTRS)

    Brown, Randy J.; Martin, W.; Schneider, J.; Hartley, P. J.; Russell, Carolyn; Lawless, Kirby; Jones, Chip

    2003-01-01

    This viewgraph representation provides an overview of sucessful research conducted by Lockheed Martin and NASA to develop an advanced self-reacting friction stir technology for complex curvature aluminum alloys. The research included weld process development for 0.320 inch Al 2219, sucessful transfer from the 'lab' scale to the production scale tool and weld quality exceeding strenght goals. This process will enable development and implementation of large scale complex geometry hardware fabrication. Topics covered include: weld process development, weld process transfer, and intermediate hardware fabrication.

  19. Imbalance in Multiple Sclerosis: A Result of Slowed Spinal Somatosensory Conduction

    PubMed Central

    Cameron, Michelle H.; Horak, Fay B.; Herndon, Robert R.; Bourdette, Dennis

    2009-01-01

    Balance problems and falls are common in people with multiple sclerosis (MS) but their cause and nature are not well understood. It is known that MS affects many areas of the central nervous system that can impact postural responses to maintain balance, including the cerebellum and the spinal cord. Cerebellar balance disorders are associated with normal latencies but reduced scaling of postural responses. We therefore examined the latency and scaling of automatic postural responses, and their relationship to somatosensory evoked potentials (SSEPs), in 10 people with MS and imbalance and 10 age-, sex-matched, healthy controls. The latency and scaling of postural responses to backward surface translations of 5 different velocities and amplitudes, and the latency of spinal and supraspinal somatosensory conduction, were examined. Subjects with MS had large, but very delayed automatic postural response latencies compared to controls (161ms ± 31 vs 102 ± 21, p < 0.01) and these postural response latencies correlated with the latencies of their spinal SSEPs (r=0.73, p< 0.01). Subjects with MS also had normal or excessive scaling of postural response amplitude to perturbation velocity and amplitude. Longer latency postural responses were associated with less velocity scaling and more amplitude scaling. Balance deficits in people with MS appear to be caused by slowed spinal somatosensory conduction and not by cerebellar involvement. People with MS appear to compensate for their slowed spinal somatosensory conduction by increasing the amplitude scaling and the magnitude of their postural responses. PMID:18570015

  20. A Review of Biological Agent Sampling Methods and ...

    EPA Pesticide Factsheets

    Report This study was conducted to evaluate current sampling and analytical capabilities, from a time and resource perspective, for a large-scale biological contamination incident. The analysis will be useful for strategically directing future research investment.

  1. Racking Response of Reinforced Concrete Cut and Cover Tunnel

    DOT National Transportation Integrated Search

    2016-01-01

    Currently, the knowledge base and quantitative data sets concerning cut and cover tunnel seismic response are scarce. In this report, a large-scale experimental program is conducted to assess: i) stiffness, capacity, and potential seismically-induced...

  2. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations.

    PubMed

    Tučník, Petr; Bureš, Vladimír

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.

  3. Low-speed wind-tunnel investigation of the longitudinal characteristics of a large-scale variable wing-sweep fighter model in the high-lift configuration

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Maki, R. L.

    1973-01-01

    The low-speed characteristics of a large-scale model of the U. S. Navy/Grumman F-14A aircraft were studied in tests conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel. The primary purpose of the program was the determination of lift and stability levels and landing approach attitude of the aircraft in its high-lift configuration. Tests were conducted at wing angles of attack between minus 2 deg and 30 deg with zero yaw. Data were taken at Reynolds numbers ranging from 3.48 million to 9.64 million based on a wing mean aerodynamic chord of 7.36 ft. The model configuration was changed as required to show the effects of glove slat, wing slat leading-edge radius, cold flow ducting, flap deflection, direct lift control (spoilers), horizontal tail, speed brake, landing gear and missiles.

  4. Low-speed wind tunnel investigation of the lateral-directional characterisitcs of a large-scale variable wing-sweep fighter model in the high-lift configuration

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Maki, R. L.

    1973-01-01

    The low-speed characteristics of a large-scale model of the F-14A aircraft were studied in tests conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel. The primary purpose of the present tests was the determination of lateral-directional stability levels and control effectiveness of the aircraft in its high-lift configuration. Tests were conducted at wing angles of attack between minus 2 deg and 30 deg and with sideslip angles between minus 12 deg and 12 deg. Data were taken at a Reynolds number of 8.0 million based on a wing mean aerodynamic chord of 2.24 m (7.36 ft). The model configuration was changed as required to show the effects of direct lift control (spoilers) at yaw, yaw angle with speed brake deflected, and various amounts and combinations of roll control.

  5. Impact of Chromosome 4p- Syndrome on Communication and Expressive Language Skills: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Marshall, Althea T.

    2010-01-01

    Purpose: The purpose of this investigation was to examine the impact of Chromosome 4p- syndrome on the communication and expressive language phenotype of a large cross-cultural population of children, adolescents, and adults. Method: A large-scale survey study was conducted and a descriptive research design was used to analyze quantitative and…

  6. Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study

    NASA Astrophysics Data System (ADS)

    Jae-Ou, Chae; Young-Jun, Jeong; V, M. Shmelev; A, A. Denicaev; V, M. Poutchkov; V, Ravi

    2006-07-01

    A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly.

  7. The consequences of landscape change on ecological resources: An assessment of the United States Mid-Atlantic region, 1973-1993

    Treesearch

    K. Bruce Jones; Anne C. Neale; Timothy G. Wade; James D. Wickham; Chad L. Cross; Curtis M. Edmonds; Thomas R. Loveland; Maliha S. Nash; Kurt H. Riitters; Elizabeth R. Smith

    2001-01-01

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioitizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have...

  8. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    Treesearch

    Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston

    2017-01-01

    We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...

  9. Mean Field Analysis of Large-Scale Interacting Populations of Stochastic Conductance-Based Spiking Neurons Using the Klimontovich Method

    NASA Astrophysics Data System (ADS)

    Gandolfo, Daniel; Rodriguez, Roger; Tuckwell, Henry C.

    2017-03-01

    We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean-Vlasov-Fokker-Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh-Nagumo model neurons, which are often used to approximate Hodgkin-Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.

  10. Varying the forcing scale in low Prandtl number dynamos

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.; Haugen, N. E. L.; Li, Xiang-Yu; Subramanian, K.

    2018-06-01

    Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with large-scale dynamos. However, the possibility of small-scale dynamos being excited at small and intermediate ratios of viscosity to magnetic diffusivity (the magnetic Prandtl number) has been debated, and the possibility of them depending on the large-scale forcing wavenumber has been raised. Here we show, using four values of the forcing wavenumber, that the small-scale dynamo does not depend on the scale-separation between the size of the simulation domain and the integral scale of the turbulence, i.e., the forcing scale. Moreover, the spectral bottleneck in turbulence, which has been implied as being responsible for raising the excitation conditions of small-scale dynamos, is found to be invariant under changing the forcing wavenumber. However, when forcing at the lowest few wavenumbers, the effective forcing wavenumber that enters in the definition of the magnetic Reynolds number is found to be about twice the minimum wavenumber of the domain. Our work is relevant to future studies of small-scale dynamos, of which several applications are being discussed.

  11. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Part 4: Aerodynamic data tabulation

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Joslyn, H. D.; Blair, M. F.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.

  12. OpenMP parallelization of a gridded SWAT (SWATG)

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin

    2017-12-01

    Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.

  13. Upscaling Self-Sustaining Treatment for Active Remediation (STAR): Experimental Study of Scaling Relationships for Smouldering Combustion to Remediate Soil

    NASA Astrophysics Data System (ADS)

    Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.

    2013-12-01

    Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large scale experiments, including: peak temperatures, velocities and thicknesses of the smouldering front, rates of mass destruction of the contaminant, and rates of gaseous emissions during combustion. Additionally, upward and downward smouldering experiments were compared at the column scale to assess the significance of buoyant flow effects. An understanding of these scaling relationships will provide important information to aid in the design of field-scale applications of STAR.

  14. Large Eddy Simulation of Gravitational Effects on Transitional and Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Jaberi, Farhad A.

    2001-01-01

    The basic objective of this work is to assess the influence of gravity on "the compositional and the spatial structures" of transitional and turbulent diffusion flames via large eddy simulation (LES), and direct numerical simulation (DNS). The DNS is conducted for appraisal of the various closures employed in LES, and to study the effect of buoyancy on the small scale flow features. The LES is based on our "filtered mass density function"' (FMDF) model. The novelty of the methodology is that it allows for reliable simulations with inclusion of "realistic physics." It also allows for detailed analysis of the unsteady large scale flow evolution and compositional flame structure which is not usually possible via Reynolds averaged simulations.

  15. Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan.

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey

    2017-04-01

    Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this research. Hopefully, all results developed from this research can be used as a warning system for Predicting Large Scale Landslides in the southern Taiwan. Keywords:Heavy Rainfall, Large Scale, landslides, Critical Rainfall Value

  16. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. © The Author(s) 2015.

  17. Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA)

    NASA Technical Reports Server (NTRS)

    Lichtwardt, Jonathan; Paciano, Eric; Jameson, Tina; Fong, Robert; Marshall, David

    2012-01-01

    With the very recent advent of NASA's Environmentally Responsible Aviation Project (ERA), which is dedicated to designing aircraft that will reduce the impact of aviation on the environment, there is a need for research and development of methodologies to minimize fuel burn, emissions, and reduce community noise produced by regional airliners. ERA tackles airframe technology, propulsion technology, and vehicle systems integration to meet performance objectives in the time frame for the aircraft to be at a Technology Readiness Level (TRL) of 4-6 by the year of 2020 (deemed N+2). The proceeding project that investigated similar goals to ERA was NASA's Subsonic Fixed Wing (SFW). SFW focused on conducting research to improve prediction methods and technologies that will produce lower noise, lower emissions, and higher performing subsonic aircraft for the Next Generation Air Transportation System. The work provided in this investigation was a NASA Research Announcement (NRA) contract #NNL07AA55C funded by Subsonic Fixed Wing. The project started in 2007 with a specific goal of conducting a large-scale wind tunnel test along with the development of new and improved predictive codes for the advanced powered-lift concepts. Many of the predictive codes were incorporated to refine the wind tunnel model outer mold line design. The large scale wind tunnel test goal was to investigate powered lift technologies and provide an experimental database to validate current and future modeling techniques. Powered-lift concepts investigated were Circulation Control (CC) wing in conjunction with over-the-wing mounted engines to entrain the exhaust to further increase the lift generated by CC technologies alone. The NRA was a five-year effort; during the first year the objective was to select and refine CESTOL concepts and then to complete a preliminary design of a large-scale wind tunnel model for the large scale test. During the second, third, and fourth years the large-scale wind tunnel model design would be completed, manufactured, and calibrated. During the fifth year the large scale wind tunnel test was conducted. This technical memo will describe all phases of the Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA) project and provide a brief summary of the background and modeling efforts involved in the NRA. The conceptual designs considered for this project and the decision process for the selected configuration adapted for a wind tunnel model will be briefly discussed. The internal configuration of AMELIA, and the internal measurements chosen in order to satisfy the requirements of obtaining a database of experimental data to be used for future computational model validations. The external experimental techniques that were employed during the test, along with the large-scale wind tunnel test facility are covered in great detail. Experimental measurements in the database include forces and moments, and surface pressure distributions, local skin friction measurements, boundary and shear layer velocity profiles, far-field acoustic data and noise signatures from turbofan propulsion simulators. Results and discussion of the circulation control performance, over-the-wing mounted engines, and the combined performance are also discussed in great detail.

  18. High-yield production of graphene by liquid-phase exfoliation of graphite.

    PubMed

    Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa; Blighe, Fiona M; Sun, Zhenyu; De, Sukanta; McGovern, I T; Holland, Brendan; Byrne, Michele; Gun'Ko, Yurii K; Boland, John J; Niraj, Peter; Duesberg, Georg; Krishnamurthy, Satheesh; Goodhue, Robbie; Hutchison, John; Scardaci, Vittorio; Ferrari, Andrea C; Coleman, Jonathan N

    2008-09-01

    Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

  19. Large-scale laboratory observations of wave forces on a highway bridge superstructure.

    DOT National Transportation Integrated Search

    2011-10-01

    The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. Here, a set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  1. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Zhihao; Chen, Zhengqing; Wang, Jianhui

    2012-09-01

    Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.

  2. Comparison of geoelectrical/tectonic models for suture zones in the western U.S.A. and eastern Europe: are black shales a possible source of high conductivities?

    USGS Publications Warehouse

    Stanley, W.D.

    1989-01-01

    Large-scale geoelectrical anomalies have been mapped with geomagnetic depth sounding (GDS) and magnetotelluric (MT) surveys in the Carpathian Mountains region. These anomalies are associated with the zone of closure between stable Europe and a complex of microplates in front of the converging African plate. The zone of closure, or suture zone, is largely occupied by an extensive deformed flysch belt. The models derived to fit the observed geoelectrical data are useful in the study of other suture zones, and Carpathian structures have been compared with areas currently being studied in the western Cordillera of the U.S.A. Models derived for a smaller-scale suture zone mapped in western Washington State have features that are similar to the Carpathian models. The geoelectrical models for both the Carpathian and Washington anomalies require dipping conductive slabs of 1-5 ?? m material that extends to depths > 20 km. In both instances there is evidence that these materials may merge with lower crustal-mantle conductors along the down-dip margins of the slab. The main conductive units are interpreted to be sedimentary rocks that have been partially subducted due to collisional processes. Heat flow is low in both regions and it is difficult to explain fully the deep conduction mechanisms; however, evidence suggests that the conduction at depth may include electronic conduction in sulfide mineral or carbon films as well as ionic conduction in fluids or partial melt. ?? 1989.

  3. Ground-Handling Forces on a 1/40-scale Model of the U. S. Airship "Akron."

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Gulick, B G

    1937-01-01

    This report presents the results of full-scale wind tunnel tests conducted to determine the ground-handling forces on a 1/40-scale model of the U. S. Airship "Akron." Ground-handling conditions were simulated by establishing a velocity gradient above a special ground board in the tunnel comparable with that encountered over a landing field. The tests were conducted at Reynolds numbers ranging from 5,000,000 to 19,000,000 at each of six angles of yaw between 0 degree and 180 degrees and at four heights of the model above the ground board. The ground-handling forces vary greatly with the angle of yaw and reach large values at appreciable angles of yaw. Small changes in height, pitch, or roll did not critically affect the forces on the model. In the range of Reynolds numbers tested, no significant variation of the forces with the scale was disclosed.

  4. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses

    PubMed Central

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-01-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. PMID:24462600

  5. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    PubMed

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  6. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    PubMed Central

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  7. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    PubMed

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Teacher Beliefs, Teacher Concerns, and School Leadership Support as Influences on School Readiness for Implementing a Research-Based Reform Model

    ERIC Educational Resources Information Center

    Carhart, Elizabeth Hoag

    2013-01-01

    Federal policy makers and school leaders increasingly recognize middle school math as a turning point in students' academic success. An i3 scale-up grant allowed grant partners to conduct a large-scale implementation of PowerTeaching (PT), a research-based reform to increase student math achievement. In a mixed-methods study during the pilot phase…

  9. Large-scale fiber release and equipment exposure experiments. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    Outdoor tests were conducted to determine the amount of fiber released in a full scale fire and trace its dissemination away from the fire. Equipment vulnerability to fire released fibers was assessed through shock tests. The greatest fiber release was observed in the shock tube where the composite was burned with a continuous agitation to total consumption. The largest average fiber length obtained outdoors was 5 mm.

  10. Wind tunnel investigation of aerodynamic characteristics of scale models of three rectangular shaped cargo containers

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1972-01-01

    Wind tunnel tests were conducted on scale models of three rectangular shaped cargo containers to determine the aerodynamic characteristics of these typical externally-suspended helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.8 x one million. The aerodynamic data obtained from the tests are presented.

  11. Uncertainty of large-area estimates of indicators of forest structural gamma diversity: A study based on national forest inventory data

    Treesearch

    Susanne Winter; Andreas Böck; Ronald E. McRoberts

    2012-01-01

    Tree diameter and height are commonly measured forest structural variables, and indicators based on them are candidates for assessing forest diversity. We conducted our study on the uncertainty of estimates for mostly large geographic scales for four indicators of forest structural gamma diversity: mean tree diameter, mean tree height, and standard deviations of tree...

  12. MULTISPECIES REACTIVE TRACER TEST IN A SAND AND GRAVEL AQUIFER, CAPE COD, MASSACHUSETTS: PART 1: EXPERIMENTAL DESIGN AND TRANSPORT OF BROMIDE AND NICKEL-EDTA TRACERS

    EPA Science Inventory

    In this report, we summarize a portion of the results of a large-scale tracer test conducted at the U. S. Geological Survey research site on Cape Cod, Massachusetts. The site is located on a large sand and gravel glacial outwash plain in an unconfined aquifer. In April 1993, ab...

  13. On Scaling Relations of Organic Antiferromagnets with Magnetic Anions

    NASA Astrophysics Data System (ADS)

    Shimahara, Hiroshi; Kono, Yuki

    2017-04-01

    We study a recently reported scaling relation of the specific heat of the organic compounds λ-(BETS)2FexGa1-xCl4. This relation suggests that the sublattice magnetization m of the π electrons and the antiferromagnetic transition temperature TN are proportional to x. Note that the scaling relation for TN can be explained by considering the effective interaction between the π electrons via the localized 3d spins on the FeCl4 anions. The effective interaction is analogous to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, but the roles of the conductive electrons and the localized spins are interchanged. Using available energy scales, it is shown that the TN scaling relation indicates that the system is in the vicinity of the quantum critical point. It is argued that the scaling relation for m at low temperatures, i.e., below TN but excluding temperatures in the vicinity of TN, indicates that the mismatch between the Fermi surface and that shifted by the nesting vector is large, at least for a large part of the Fermi surface. We also discuss the scaling relation near TN.

  14. Social welfare as small-scale help: evolutionary psychology and the deservingness heuristic.

    PubMed

    Petersen, Michael Bang

    2012-01-01

    Public opinion concerning social welfare is largely driven by perceptions of recipient deservingness. Extant research has argued that this heuristic is learned from a variety of cultural, institutional, and ideological sources. The present article provides evidence supporting a different view: that the deservingness heuristic is rooted in psychological categories that evolved over the course of human evolution to regulate small-scale exchanges of help. To test predictions made on the basis of this view, a method designed to measure social categorization is embedded in nationally representative surveys conducted in different countries. Across the national- and individual-level differences that extant research has used to explain the heuristic, people categorize welfare recipients on the basis of whether they are lazy or unlucky. This mode of categorization furthermore induces people to think about large-scale welfare politics as its presumed ancestral equivalent: small-scale help giving. The general implications for research on heuristics are discussed.

  15. Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient.

    PubMed

    Guidetti, P; Dulcić, J

    2007-03-01

    Previous studies conducted on a local scale emphasised the potential of trophic cascades in Mediterranean rocky reefs (involving predatory fish, sea urchins and macroalgae) in affecting the transition between benthic communities dominated by erected macroalgae and barrens (i.e., bare rock with partial cover of encrusting algae). Distribution patterns of fish predators of sea urchins (Diplodus sargus sargus, Diplodus vulgaris, Coris julis and Thalassoma pavo), sea urchins (Paracentrotus lividus and Arbacia lixula) and barrens, and fish predation rates upon sea urchins, were assessed in shallow (3-6m depth) sublittoral rocky reefs in the northern, central and southern sectors of the eastern Adriatic Sea, i.e., on a large spatial scale of hundreds of kilometres. No dramatic differences were observed in predatory fish density across latitude, except for a lower density of small D. sargus sargus in the northern Adriatic and an increasing density of T. pavo from north to south. P. lividus did not show any significant difference across latitude, whereas A. lixula was more abundant in the southern than in the central Adriatic. Barrens were more extended in the southern than in the central and northern sectors, and were related with sea urchin density. Fish predation upon adult sea urchins did not change on a large scale, whereas it was slightly higher in the southern sector for juveniles when predation rates of both urchins were pooled. Results show that: (1) assemblages of predatory fish and sea urchins, and barren extent change across latitude in the eastern Adriatic Sea, (2) the weak relations between predatory fish density and predation rates on urchins reveal that factors other than top-down control can be important over large scale (with the caveat that the study was conducted in fished areas) and (3) patterns of interaction among strongly interacting taxa could change on large spatial scales and the number of species involved.

  16. Measurement of the spatial dependence of temperature and gas and soot concentrations within large open hydrocarbon fuel fires

    NASA Technical Reports Server (NTRS)

    Johnson, H. T.; Linley, L. J.; Mansfield, J. A.

    1982-01-01

    A series of large-scale JP-4 fuel pool fire tests was conducted to refine existing mathematical models of large fires. Seven tests were conducted to make chemical concentration and temperature measurements in 7.5 and 15 meter-diameter pool fires. Measurements were made at heights of 0.7, 1.4, 2.9, 5.7, 11.4, and 21.3 meters above the fires. Temperatures were measured at up to 50 locations each second during the fires. Chemistry samples were taken at up to 23 locations within the fires and analyzed for combustion chemistry and soot concentration. Temperature and combustion chemistry profiles obtained during two 7.5 meter-diameter and two 15 meter-diameter fires are included.

  17. Behavioral self-organization underlies the resilience of a coastal ecosystem.

    PubMed

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan

    2017-07-25

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.

  18. Behavioral self-organization underlies the resilience of a coastal ecosystem

    PubMed Central

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.

    2017-01-01

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313

  19. Crowdsourcing for large-scale mosquito (Diptera: Culicidae) sampling

    USDA-ARS?s Scientific Manuscript database

    Sampling a cosmopolitan mosquito (Diptera: Culicidae) species throughout its range is logistically challenging and extremely resource intensive. Mosquito control programmes and regional networks operate at the local level and often conduct sampling activities across much of North America. A method f...

  20. Hydrothermal carbonization of food waste for nutrient recovery and resuse

    USDA-ARS?s Scientific Manuscript database

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition ...

  1. Experimental painting of the I-64 Riverside Parkway in Louisville, KY.

    DOT National Transportation Integrated Search

    2009-02-01

    The Kentucky Transportation Cabinet conducted a large-scale zone maintenance painting operation on 13 elevated steel bridges along the I-64 Riverside Parkway in Louisville, KY in 2007. That work included abrasive blast-cleaning and painting of steel ...

  2. Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing

    NASA Technical Reports Server (NTRS)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1976-01-01

    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  3. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  4. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE PAGES

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    2016-07-26

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  5. The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.

    1985-01-01

    Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.

  6. A survey on routing protocols for large-scale wireless sensor networks.

    PubMed

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. "Large-scale" means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed.

  7. Emissions of nitrous oxide from biomass burning

    NASA Technical Reports Server (NTRS)

    Winstead, Edward L.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    A study has been conducted which compared N2O results obtained over large prescribed fires or wildfires, in which 'grab-sampling' with storage had been used with N2O measurements made in near-real time. CO2-normalized emission ratios obtained initially from the laboratory fires are substantially lower than those obtained over large-scale biomass fires. Combustion may not be the only source of N2O in large fire smoke plumes; physical, chemical, and biochemical processes in the soil may be altered by large biomass fires, leading to large N2O releases.

  8. Evaluation of Large-scale Data to Detect Irregularity in Payment for Medical Services. An Extended Use of Benford's Law.

    PubMed

    Park, Junghyun A; Kim, Minki; Yoon, Seokjoon

    2016-05-17

    Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data. Based on mathematical theory, this study proposes a new approach to using Benford's Law in that we closely examined the individual-level data to identify specific fees for in-depth analysis. We extended the mathematical theory to demonstrate the manner in which large-scale data conform to Benford's Law. Then, we empirically tested its applicability using actual large-scale healthcare data from Korea's Health Insurance Review and Assessment (HIRA) National Patient Sample (NPS). For Benford's Law, we considered the mean absolute deviation (MAD) formula to test the large-scale data. We conducted our study on 32 diseases, comprising 25 representative diseases and 7 DRG-regulated diseases. We performed an empirical test on 25 diseases, showing the applicability of Benford's Law to large-scale data in the healthcare industry. For the seven DRG-regulated diseases, we examined the individual-level data to identify specific fees to carry out an in-depth analysis. Among the eight categories of medical costs, we considered the strength of certain irregularities based on the details of each DRG-regulated disease. Using the degree of abnormality, we propose priority action to be taken by government health departments and private insurance institutions to bring unnecessary medical expenses under control. However, when we detect deviations from Benford's Law, relatively high contamination ratios are required at conventional significance levels.

  9. A Universal Model for Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Wyper, Peter; Antiochos, Spiro K.; DeVore, C. Richard

    2017-08-01

    We present a universal model for solar eruptions that encompasses coronal mass ejections (CMEs) at one end of the scale, to coronal jets at the other. The model is a natural extension of the Magnetic Breakout model for large-scale fast CMEs. Using high-resolution adaptive mesh MHD simulations conducted with the ARMS code, we show that so-called blowout or mini-filament coronal jets can be explained as one realisation of the breakout process. We also demonstrate the robustness of this “breakout-jet” model by studying three realisations in simulations with different ambient field inclinations. We conclude that magnetic breakout supports both large-scale fast CMEs and small-scale coronal jets, and by inference eruptions at scales in between. Thus, magnetic breakout provides a unified model for solar eruptions. P.F.W was supported in this work by an award of a RAS Fellowship and an appointment to the NASA Postdoctoral Program. C.R.D and S.K.A were supported by NASA’s LWS TR&T and H-SR programs.

  10. A pilot rating scale for evaluating failure transients in electronic flight control systems

    NASA Technical Reports Server (NTRS)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  11. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    PubMed

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (<50%). In the current study, we hypothesized that ionic strengths of IEC buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Symposium Z: Materials Challenges for Energy Storage Across Multiple Scales

    DTIC Science & Technology

    2015-04-02

    materials significantly improve the conductivity of the S and effectively buffer the structural strain/stress caused by the large volume change during...UNCD coating provide effective conduction channels for both electrons and Li-ions and protect the integrity of SiNWs by featuring electrochemical...approach circumvents the need to apply coatings to the carbon or for thermal infusion of the sulfur into a porous carbon host. Preliminary thermodynamic

  13. Talking About The Smokes: a large-scale, community-based participatory research project.

    PubMed

    Couzos, Sophia; Nicholson, Anna K; Hunt, Jennifer M; Davey, Maureen E; May, Josephine K; Bennet, Pele T; Westphal, Darren W; Thomas, David P

    2015-06-01

    To describe the Talking About The Smokes (TATS) project according to the World Health Organization guiding principles for conducting community-based participatory research (PR) involving indigenous peoples, to assist others planning large-scale PR projects. The TATS project was initiated in Australia in 2010 as part of the International Tobacco Control Policy Evaluation Project, and surveyed a representative sample of 2522 Aboriginal and Torres Strait Islander adults to assess the impact of tobacco control policies. The PR process of the TATS project, which aimed to build partnerships to create equitable conditions for knowledge production, was mapped and summarised onto a framework adapted from the WHO principles. Processes describing consultation and approval, partnerships and research agreements, communication, funding, ethics and consent, data and benefits of the research. The TATS project involved baseline and follow-up surveys conducted in 34 Aboriginal community-controlled health services and one Torres Strait community. Consistent with the WHO PR principles, the TATS project built on community priorities and strengths through strategic partnerships from project inception, and demonstrated the value of research agreements and trusting relationships to foster shared decision making, capacity building and a commitment to Indigenous data ownership. Community-based PR methodology, by definition, needs adaptation to local settings and priorities. The TATS project demonstrates that large-scale research can be participatory, with strong Indigenous community engagement and benefits.

  14. High Reynolds Number Investigation of a Flush Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.This CD-ROM supplement contains inlet data including: Boundary layer data, Duct static pressure data, performance-AIP (fan face) data, Photos, Tunnel wall P-PTO data and definitions.

  15. XPAT: a toolkit to conduct cross-platform association studies with heterogeneous sequencing datasets.

    PubMed

    Yu, Yao; Hu, Hao; Bohlender, Ryan J; Hu, Fulan; Chen, Jiun-Sheng; Holt, Carson; Fowler, Jerry; Guthery, Stephen L; Scheet, Paul; Hildebrandt, Michelle A T; Yandell, Mark; Huff, Chad D

    2018-04-06

    High-throughput sequencing data are increasingly being made available to the research community for secondary analyses, providing new opportunities for large-scale association studies. However, heterogeneity in target capture and sequencing technologies often introduce strong technological stratification biases that overwhelm subtle signals of association in studies of complex traits. Here, we introduce the Cross-Platform Association Toolkit, XPAT, which provides a suite of tools designed to support and conduct large-scale association studies with heterogeneous sequencing datasets. XPAT includes tools to support cross-platform aware variant calling, quality control filtering, gene-based association testing and rare variant effect size estimation. To evaluate the performance of XPAT, we conducted case-control association studies for three diseases, including 783 breast cancer cases, 272 ovarian cancer cases, 205 Crohn disease cases and 3507 shared controls (including 1722 females) using sequencing data from multiple sources. XPAT greatly reduced Type I error inflation in the case-control analyses, while replicating many previously identified disease-gene associations. We also show that association tests conducted with XPAT using cross-platform data have comparable performance to tests using matched platform data. XPAT enables new association studies that combine existing sequencing datasets to identify genetic loci associated with common diseases and other complex traits.

  16. Nudging and predictability in regional climate modelling: investigation in a nested quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2010-05-01

    In this work, we consider the effect of indiscriminate and spectral nudging on the large and small scales of an idealized model simulation. The model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by the « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. The effect of large-scale nudging is studied by using the "perfect model" approach. Two sets of experiments are performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic Limited Area Model (LAM) where the size of the LAM domain comes into play in addition to the first set of simulations. The study shows that the indiscriminate nudging time that minimizes the error at both the large and small scales is reached for a nudging time close to the predictability time, for spectral nudging, the optimum nudging time should tend to zero since the best large scale dynamics is supposed to be given by the driving large-scale fields are generally given at much lower frequency than the model time step(e,g, 6-hourly analysis) with a basic interpolation between the fields, the optimum nudging time differs from zero, however remaining smaller than the predictability time.

  17. Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells.

    PubMed

    Bussian, David A; O'Dea, James R; Metiu, Horia; Buratto, Steven K

    2007-02-01

    The electrochemically active area of a proton exchange membrane fuel cell (PEMFC) is investigated using conductive probe atomic force microscopy (CP-AFM). A platinum-coated AFM tip is used as a nanoscale cathode in an operating PEMFC. We present results that show highly inhomogeneous distributions of conductive surface domains at several length scales. At length scales on the order of the aqueous domains of the membrane, approximately 50 nm, we observe single channel electrochemistry. I-V curves for single conducting channels are obtained, which yield insight into the nature of conductive regions across the PEM. In addition, we demonstrate a new characterization technique, phase current correlation microscopy, which gives a direct measure of the electrochemical activity for each aqueous domain. This shows that a large number ( approximately 60%) of the aqueous domains present at the surface of an operating Nafion membrane are inactive. We attribute this to a combination of limited aqueous domain connectivity and catalyst accessibility.

  18. TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS

    EPA Science Inventory

    A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...

  19. GPS-based household interview survey for the Cincinnati, Ohio Region.

    DOT National Transportation Integrated Search

    2012-02-01

    Methods for Conducting a Large-Scale GPS-Only Survey of Households: Past Household Travel Surveys (HTS) in the United States have only piloted small subsamples of Global Positioning Systems (GPS) completes compared with 1-2 day self-reported travel i...

  20. Evaluating Green/Gray Infrastructure for CSO/Stormwater Control

    EPA Science Inventory

    The NRMRL is conducting this project to evaluate the water quality and quantity benefits of a large-scale application of green infrastructure (low-impact development/best management practices) retrofits in an entire subcatchment. It will document ORD's effort to demonstrate the e...

  1. Analysis of Three-Dimensional, Nonlinear Development of Wave-Like Structure in a Compressible Round Jet

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Mankbadi, Reda R.

    2002-01-01

    An analysis of the nonlinear development of the large-scale structures or instability waves in compressible round jets was conducted using the integral energy method. The equations of motion were decomposed into two sets of equations; one set governing the mean flow motion and the other set governing the large-scale structure motion. The equations in each set were then combined to derive kinetic energy equations that were integrated in the radial direction across the jet after the boundary-layer approximations were applied. Following the application of further assumptions regarding the radial shape of the mean flow and the large structures, equations were derived that govern the nonlinear, streamwise development of the large structures. Using numerically generated mean flows, calculations show the energy exchanges and the effects of the initial amplitude on the coherent structure development in the jet.

  2. Large-eddy simulation of a boundary layer with concave streamwise curvature

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1994-01-01

    Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.

  3. Recent Suicidal Ideation and Suicide Attempts in a Large-Scale Survey of the U.S. Air Force: Prevalences and Demographic Risk Factors

    ERIC Educational Resources Information Center

    Snarr, Jeffery D.; Heyman, Richard E.; Slep, Amy M. Smith

    2010-01-01

    One-year prevalences of self-reported noteworthy suicidal ideation and nonfatal suicide attempts were assessed in a large sample of U.S. Air Force active duty members (N = 52,780). Participants completed the 2006 Community Assessment, which was conducted online. Over 3% of male and 5.5% of female participants reported having experienced noteworthy…

  4. Conducting Automated Test Assembly Using the Premium Solver Platform Version 7.0 with Microsoft Excel and the Large-Scale LP/QP Solver Engine Add-In

    ERIC Educational Resources Information Center

    Cor, Ken; Alves, Cecilia; Gierl, Mark J.

    2008-01-01

    This review describes and evaluates a software add-in created by Frontline Systems, Inc., that can be used with Microsoft Excel 2007 to solve large, complex test assembly problems. The combination of Microsoft Excel 2007 with the Frontline Systems Premium Solver Platform is significant because Microsoft Excel is the most commonly used spreadsheet…

  5. Study of stress-strain and volume change behavior of emplaced municipal solid waste using large-scale triaxial testing.

    PubMed

    Ramaiah, B J; Ramana, G V

    2017-05-01

    The article presents the stress-strain and volume change behavior, shear strength and stiffness parameters of landfilled municipal solid waste (MSW) collected from two dump sites located in Delhi, India. Over 30 drained triaxial compression (TXC) tests were conducted on reconstituted large-scale specimens of 150mm diameter to study the influence of fiber content, age, density and confining pressure on the shear strength of MSW. In addition, a few TXC tests were also conducted on 70mm diameter specimen to examine the effect of specimen size on the mobilized shear strength. It is observed that the fibrous materials such as textiles and plastics, and their percentage by weight have a significant effect on the stress-strain-volume change behavior, shear strength and stiffness of solid waste. The stress-strain-volume change behavior of MSW at Delhi is qualitatively in agreement with the behavior reported for MSW from different countries. Results of large-scale direct shear tests conducted on MSW with an identical composition used for TXC tests revealed the cross-anisotropic behavior as reported by previous researchers. Effective shear strength parameters of solid waste evaluated from this study is best characterized by ϕ'=39° and c'=0kPa for the limiting strain-based failure criteria of K 0 =0.3+5% axial strain and are in the range of the data reported for MSW from different countries. Data presented in this article is useful for the stress-deformation and stability analysis of the dump sites during their operation as well as closure plans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Spatial patterns of native freshwater mussels in the Upper Mississippi River

    USGS Publications Warehouse

    Ries, Patricia R.; DeJager, Nathan R.; Zigler, Steven J.; Newton, Teresa

    2016-01-01

    Multiple physical and biological factors structure freshwater mussel communities in large rivers, and their distributions have been described as clumped or patchy. However, few surveys of mussel populations have been conducted over areas large enough and at resolutions fine enough to quantify spatial patterns in their distribution. We used global and local indicators of spatial autocorrelation (i.e., Moran’s I) to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on survey data from 4 reaches (navigation pools 3, 5, 6, and 18) of the Upper Mississippi River, USA. Native mussel densities were sampled at a resolution of ∼300 m and across distances ranging from 21 to 37 km, making these some of the most spatially extensive surveys conducted in a large river. Patch density and the degree and scale of patchiness varied by river reach, age group, and the scale of analysis. In all 4 pools, some patches of adults overlapped patches of juveniles, suggesting spatial and temporal persistence of adequate habitat. In pools 3 and 5, patches of juveniles were found where there were few adults, suggesting recent emergence of positive structuring mechanisms. Last, in pools 3, 5, and 6, some patches of adults were found where there were few juveniles, suggesting that negative structuring mechanisms may have replaced positive ones, leading to a lack of localized recruitment. Our results suggest that: 1) the detection of patches of freshwater mussels requires a multiscaled approach, 2) insights into the spatial and temporal dynamics of structuring mechanisms can be gained by conducting independent analyses of adults and juveniles, and 3) maps of patch distributions can be used to guide restoration and management actions and identify areas where mussels are most likely to influence ecosystem function.

  7. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo

    2017-06-01

    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  8. Medical image classification based on multi-scale non-negative sparse coding.

    PubMed

    Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar

    2017-11-01

    With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations

    PubMed Central

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061

  10. Evaluation of biochar powder on oxygen supply efficiency and global warming potential during mainstream large-scale aerobic composting.

    PubMed

    He, Xueqin; Chen, Longjian; Han, Lujia; Liu, Ning; Cui, Ruxiu; Yin, Hongjie; Huang, Guangqun

    2017-12-01

    This study investigated the effects of biochar powder on oxygen supply efficiency and global warming potential (GWP) in the large-scale aerobic composting pattern which includes cyclical forced-turning with aeration at the bottom of composting tanks in China. A 55-day large-scale aerobic composting experiment was conducted in two different groups without and with 10% biochar powder addition (by weight). The results show that biochar powder improves the holding ability of oxygen, and the duration time (O 2 >5%) is around 80%. The composting process with above pattern significantly reduce CH 4 and N 2 O emissions compared to the static or turning-only styles. Considering the average GWP of the BC group was 19.82% lower than that of the CK group, it suggests that rational addition of biochar powder has the potential to reduce the energy consumption of turning, improve effectiveness of the oxygen supply, and reduce comprehensive greenhouse effects. Copyright © 2017. Published by Elsevier Ltd.

  11. Evaluating the Health Impact of Large-Scale Public Policy Changes: Classical and Novel Approaches

    PubMed Central

    Basu, Sanjay; Meghani, Ankita; Siddiqi, Arjumand

    2018-01-01

    Large-scale public policy changes are often recommended to improve public health. Despite varying widely—from tobacco taxes to poverty-relief programs—such policies present a common dilemma to public health researchers: how to evaluate their health effects when randomized controlled trials are not possible. Here, we review the state of knowledge and experience of public health researchers who rigorously evaluate the health consequences of large-scale public policy changes. We organize our discussion by detailing approaches to address three common challenges of conducting policy evaluations: distinguishing a policy effect from time trends in health outcomes or preexisting differences between policy-affected and -unaffected communities (using difference-in-differences approaches); constructing a comparison population when a policy affects a population for whom a well-matched comparator is not immediately available (using propensity score or synthetic control approaches); and addressing unobserved confounders by utilizing quasi-random variations in policy exposure (using regression discontinuity, instrumental variables, or near-far matching approaches). PMID:28384086

  12. Seismic and source characteristics of large chemical explosions. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adushkin, V.V.; Kostuchenko, V.N.; Pernik, L.M.

    From the very beginning of its arrangement in 1947, the Institute for Dynamics of the Geospheres RAS (former Special Sector of the Institute for physics of the Earth, RAS) was providing scientific observations of effects of nuclear explosions, as well as large-scale detonations of HE, on environment. This report presents principal results of instrumental observations obtained from various large-scale chemical explosions conducted in the Former-Soviet Union in the period of time from 1957 to 1989. Considering principal aim of the work, tamped and equivalent chemical explosions have been selected with total weights from several hundreds to several thousands ton. Inmore » particular, the selected explosions were aimed to study scaling law from excavation explosions, seismic effect of tamped explosions, and for dam construction for hydropower stations and soil melioration. Instrumental data on surface explosions of total weight in the same range aimed to test military technics and special objects are not included.« less

  13. Large-Scale Low-Boom Inlet Test Overview

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie

    2011-01-01

    This presentation provides a high level overview of the Large-Scale Low-Boom Inlet Test and was presented at the Fundamental Aeronautics 2011 Technical Conference. In October 2010 a low-boom supersonic inlet concept with flow control was tested in the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). The primary objectives of the test were to evaluate the inlet stability and operability of a large-scale low-boom supersonic inlet concept by acquiring performance and flowfield validation data, as well as evaluate simple, passive, bleedless inlet boundary layer control options. During this effort two models were tested: a dual stream inlet intended to model potential flight hardware and a single stream design to study a zero-degree external cowl angle and to permit surface flow visualization of the vortex generator flow control on the internal centerbody surface. The tests were conducted by a team of researchers from NASA GRC, Gulfstream Aerospace Corporation, University of Illinois at Urbana-Champaign, and the University of Virginia

  14. Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia

    NASA Astrophysics Data System (ADS)

    Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.

    2017-12-01

    Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.

  15. Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada.

    PubMed

    Knispel, Alexis L; McLachlan, Stéphane M

    2010-01-01

    Genetically modified herbicide-tolerant (GMHT) oilseed rape (OSR; Brassica napus L.) was approved for commercial cultivation in Canada in 1995 and currently represents over 95% of the OSR grown in western Canada. After a decade of widespread cultivation, GMHT volunteers represent an increasing management problem in cultivated fields and are ubiquitous in adjacent ruderal habitats, where they contribute to the spread of transgenes. However, few studies have considered escaped GMHT OSR populations in North America, and even fewer have been conducted at large spatial scales (i.e. landscape scales). In particular, the contribution of landscape structure and large-scale anthropogenic dispersal processes to the persistence and spread of escaped GMHT OSR remains poorly understood. We conducted a multi-year survey of the landscape-scale distribution of escaped OSR plants adjacent to roads and cultivated fields. Our objective was to examine the long-term dynamics of escaped OSR at large spatial scales and to assess the relative importance of landscape and localised factors to the persistence and spread of these plants outside of cultivation. From 2005 to 2007, we surveyed escaped OSR plants along roadsides and field edges at 12 locations in three agricultural landscapes in southern Manitoba where GMHT OSR is widely grown. Data were analysed to examine temporal changes at large spatial scales and to determine factors affecting the distribution of escaped OSR plants in roadside and field edge habitats within agricultural landscapes. Additionally, we assessed the potential for seed dispersal between escaped populations by comparing the relative spatial distribution of roadside and field edge OSR. Densities of escaped OSR fluctuated over space and time in both roadside and field edge habitats, though the proportion of GMHT plants was high (93-100%). Escaped OSR was positively affected by agricultural landscape (indicative of cropping intensity) and by the presence of an adjacent field planted to OSR. Within roadside habitats, escaped OSR was also strongly associated with large-scale variables, including road surface (indicative of traffic intensity) and distance to the nearest grain elevator. Conversely, within field edges, OSR density was affected by localised crop management practices such as mowing, soil disturbance and herbicide application. Despite the proximity of roadsides and field edges, there was little evidence of spatial aggregation among escaped OSR populations in these two habitats, especially at very fine spatial scales (i.e. <100 m), suggesting that natural propagule exchange is infrequent. Escaped OSR populations were persistent at large spatial and temporal scales, and low density in a given landscape or year was not indicative of overall extinction. As a result of ongoing cultivation and transport of OSR crops, escaped GMHT traits will likely remain predominant in agricultural landscapes. While escaped OSR in field edge habitats generally results from local seeding and management activities occurring at the field-scale, distribution patterns within roadside habitats are determined in large part by seed transport occurring at the landscape scale and at even larger regional scales. Our findings suggest that these large-scale anthropogenic dispersal processes are sufficient to enable persistence despite limited natural seed dispersal. This widespread dispersal is likely to undermine field-scale management practices aimed at eliminating escaped and in-field GMHT OSR populations. Agricultural transport and landscape-scale cropping patterns are important determinants of the distribution of escaped GM crops. At the regional level, these factors ensure ongoing establishment and spread of escaped GMHT OSR despite limited local seed dispersal. Escaped populations thus play an important role in the spread of transgenes and have substantial implications for the coexistence of GM and non-GM production systems. Given the large-scale factors driving the spread of escaped transgenes, localised co-existence measures may be impracticable where they are not commensurate with regional dispersal mechanisms. To be effective, strategies aimed at reducing contamination from GM crops should be multi-scale in approach and be developed and implemented at both farm and landscape levels of organisation. Multiple stakeholders should thus be consulted, including both GM and non-GM farmers, as well as seed developers, processors, transporters and suppliers. Decisions to adopt GM crops require thoughtful and inclusive consideration of the risks and responsibilities inherent in this new technology.

  16. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-04-01

    Nuclear pasta, with non-spherical shapes, is expected near the base of the crust in neutron stars. Large scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low conductivity pasta layer by increasing an impurity parameter Qimp. Predictions of light curves for the low mass X-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust). This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  17. Force test of a 0.88 percent scale 142-inch diameter solid rocket booster (MSFC model number 461) in the NASA/MSFC high Reynolds number wind tunnel (SA13F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Winkler, G. W.

    1976-01-01

    The results are presented of a force test of a .88 percent scale model of the 142 inch solid rocket booster without protuberances, conducted in the MSFC high Reynolds number wind tunnel. The objective of this test was to obtain aerodynamic force data over a large range of Reynolds numbers. The test was conducted over a Mach number range from 0.4 to 3.5. Reynolds numbers based on model diameter (1.25 inches) ranged from .75 million to 13.5 million. The angle of attack range was from 35 to 145 degrees.

  18. Factors Influencing College Science Success

    ERIC Educational Resources Information Center

    Tai, Robert H.; Sadler, Philip M.; Mintzes, Joel J.

    2006-01-01

    In this paper, the authors report some of the salient findings of a large-scale, four-year national study, conducted at the Harvard-Smithsonian Center for Astrophysics, entitled "Factors Influencing College Science Success" (FICSS), which surveyed college students who enrolled in first-year biology, chemistry, and physics courses…

  19. Diverse phytoplasmas associated with leguminus crops in Russia

    USDA-ARS?s Scientific Manuscript database

    A large scale survey of diseased legume plants (mainly clover and alfalfa in the Fabaceae family) was conducted from 2009-2013 in four Economic Regions of Russia - Northern (Arkhangelsk and Vologda oblast), Central (Moscow oblast), Volga (Samara oblast) and West Siberian (Novosibirsk oblast). The m...

  20. SITE DEMONSTRATION BULLETIN: SOIL RECYCLING TREATMENT TRAIN - THE TORONTO HARBOUR COMMISSIONERS

    EPA Science Inventory

    The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port...

  1. TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port ...

  2. Efficient design of clinical trials and epidemiological research: is it possible?

    PubMed

    Lauer, Michael S; Gordon, David; Wei, Gina; Pearson, Gail

    2017-08-01

    Randomized clinical trials and large-scale, cohort studies continue to have a critical role in generating evidence in cardiovascular medicine; however, the increasing concern is that ballooning costs threaten the clinical trial enterprise. In this Perspectives article, we discuss the changing landscape of clinical research, and clinical trials in particular, focusing on reasons for the increasing costs and inefficiencies. These reasons include excessively complex design, overly restrictive inclusion and exclusion criteria, burdensome regulations, excessive source-data verification, and concerns about the effect of clinical research conduct on workflow. Thought leaders have called on the clinical research community to consider alternative, transformative business models, including those models that focus on simplicity and leveraging of digital resources. We present some examples of innovative approaches by which some investigators have successfully conducted large-scale, clinical trials at relatively low cost. These examples include randomized registry trials, cluster-randomized trials, adaptive trials, and trials that are fully embedded within digital clinical care or administrative platforms.

  3. Rucio, the next-generation Data Management system in ATLAS

    NASA Astrophysics Data System (ADS)

    Serfon, C.; Barisits, M.; Beermann, T.; Garonne, V.; Goossens, L.; Lassnig, M.; Nairz, A.; Vigne, R.; ATLAS Collaboration

    2016-04-01

    Rucio is the next-generation of Distributed Data Management (DDM) system benefiting from recent advances in cloud and ;Big Data; computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quixote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 160 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio addresses these issues by relying on new technologies to ensure system scalability, cover new user requirements and employ new automation framework to reduce operational overheads. This paper shows the key concepts of Rucio, details the Rucio design, and the technology it employs, the tests that were conducted to validate it and finally describes the migration steps that were conducted to move from DQ2 to Rucio.

  4. Assessing field-scale biogeophysical signatures of bioremediation over a mature crude oil spill

    USGS Publications Warehouse

    Slater, Lee; Ntarlagiannis, Dimitrios; Atekwana, Estella; Mewafy, Farag; Revil, Andre; Skold, Magnus; Gorby, Yuri; Day-Lewis, Frederick D.; Lane, John W.; Trost, Jared J.; Werkema, Dale D.; Delin, Geoffrey N.; Herkelrath, William N.; Rectanus, H.V.; Sirabian, R.

    2011-01-01

    We conducted electrical geophysical measurements at the National Crude Oil Spill Fate and Natural Attenuation Research Site (Bemidji, MN). Borehole and surface self-potential measurements do not show evidence for the existence of a biogeobattery mechanism in response to the redox gradient resulting from biodegradation of oil. The relatively small self potentials recorded are instead consistent with an electrodiffusion mechanism driven by differences in the mobility of charge carriers associated with biodegradation byproducts. Complex resistivity measurements reveal elevated electrical conductivity and interfacial polarization at the water table where oil contamination is present, extending into the unsaturated zone. This finding implies that the effect of microbial cell growth/attachment, biofilm formation, and mineral weathering accompanying hydrocarbon biodegradation on complex interfacial conductivity imparts a sufficiently large electrical signal to be measured using field-scale geophysical techniques.

  5. The spatial and temporal domains of modern ecology.

    PubMed

    Estes, Lyndon; Elsen, Paul R; Treuer, Timothy; Ahmed, Labeeb; Caylor, Kelly; Chang, Jason; Choi, Jonathan J; Ellis, Erle C

    2018-05-01

    To understand ecological phenomena, it is necessary to observe their behaviour across multiple spatial and temporal scales. Since this need was first highlighted in the 1980s, technology has opened previously inaccessible scales to observation. To help to determine whether there have been corresponding changes in the scales observed by modern ecologists, we analysed the resolution, extent, interval and duration of observations (excluding experiments) in 348 studies that have been published between 2004 and 2014. We found that observational scales were generally narrow, because ecologists still primarily use conventional field techniques. In the spatial domain, most observations had resolutions ≤1 m 2 and extents ≤10,000 ha. In the temporal domain, most observations were either unreplicated or infrequently repeated (>1 month interval) and ≤1 year in duration. Compared with studies conducted before 2004, observational durations and resolutions appear largely unchanged, but intervals have become finer and extents larger. We also found a large gulf between the scales at which phenomena are actually observed and the scales those observations ostensibly represent, raising concerns about observational comprehensiveness. Furthermore, most studies did not clearly report scale, suggesting that it remains a minor concern. Ecologists can better understand the scales represented by observations by incorporating autocorrelation measures, while journals can promote attentiveness to scale by implementing scale-reporting standards.

  6. Managing Large Scale Project Analysis Teams through a Web Accessible Database

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.

    2008-01-01

    Large scale space programs analyze thousands of requirements while mitigating safety, performance, schedule, and cost risks. These efforts involve a variety of roles with interdependent use cases and goals. For example, study managers and facilitators identify ground-rules and assumptions for a collection of studies required for a program or project milestone. Task leaders derive product requirements from the ground rules and assumptions and describe activities to produce needed analytical products. Disciplined specialists produce the specified products and load results into a file management system. Organizational and project managers provide the personnel and funds to conduct the tasks. Each role has responsibilities to establish information linkages and provide status reports to management. Projects conduct design and analysis cycles to refine designs to meet the requirements and implement risk mitigation plans. At the program level, integrated design and analysis cycles studies are conducted to eliminate every 'to-be-determined' and develop plans to mitigate every risk. At the agency level, strategic studies analyze different approaches to exploration architectures and campaigns. This paper describes a web-accessible database developed by NASA to coordinate and manage tasks at three organizational levels. Other topics in this paper cover integration technologies and techniques for process modeling and enterprise architectures.

  7. How Can the Evidence from Global Large-scale Clinical Trials for Cardiovascular Diseases be Improved?

    PubMed

    Sawata, Hiroshi; Tsutani, Kiichiro

    2011-06-29

    Clinical investigations are important for obtaining evidence to improve medical treatment. Large-scale clinical trials with thousands of participants are particularly important for this purpose in cardiovascular diseases. Conducting large-scale clinical trials entails high research costs. This study sought to investigate global trends in large-scale clinical trials in cardiovascular diseases. We searched for trials using clinicaltrials.gov (URL: http://www.clinicaltrials.gov/) using the key words 'cardio' and 'event' in all fields on 10 April, 2010. We then selected trials with 300 or more participants examining cardiovascular diseases. The search revealed 344 trials that met our criteria. Of 344 trials, 71% were randomized controlled trials, 15% involved more than 10,000 participants, and 59% were funded by industry. In RCTs whose results were disclosed, 55% of industry-funded trials and 25% of non-industry funded trials reported statistically significant superiority over control (p = 0.012, 2-sided Fisher's exact test). Our findings highlighted concerns regarding potential bias related to funding sources, and that researchers should be aware of the importance of trial information disclosures and conflicts of interest. We should keep considering management and training regarding information disclosures and conflicts of interest for researchers. This could lead to better clinical evidence and further improvements in the development of medical treatment worldwide.

  8. Wing force and surface pressure data from a hover test of a 0.658-scale V-22 rotor and wing

    NASA Technical Reports Server (NTRS)

    Felker, Fort F.; Shinoda, Patrick R.; Heffernan, Ruth M.; Sheehy, Hugh F.

    1990-01-01

    A hover test of a 0.658-scale V-22 rotor and wing was conducted in the 40 x 80 foot wind tunnel at Ames Research Center. The principal objective of the test was to measure the surface pressures and total download on a large scale V-22 wing in hover. The test configuration consisted of a single rotor and semispan wing on independent balance systems. A large image plane was used to represent the aircraft plane of symmetry. Wing flap angles ranging from 45 to 90 degrees were examined. Data were acquired for both directions of the rotor rotation relative to the wing. Steady and unsteady wing surface pressures, total wing forces, and rotor performance data are presented for all of the configurations that were tested.

  9. Observational and modeling studies of heat, moisture, precipitation, and global-scale circulation patterns

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Robertson, Franklin

    1993-01-01

    The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.

  10. Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.

    PubMed

    Barako, Michael T; Sood, Aditya; Zhang, Chi; Wang, Junjie; Kodama, Takashi; Asheghi, Mehdi; Zheng, Xiaolin; Braun, Paul V; Goodson, Kenneth E

    2016-04-13

    Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.

  11. Control-Structure-Interaction (CSI) technologies and trends to future NASA missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Control-structure-interaction (CSI) issues which are relevant for future NASA missions are reviewed. This goal was achieved by: (1) reviewing large space structures (LSS) technologies to provide a background and survey of the current state of the art (SOA); (2) analytically studying a focus mission to identify opportunities where CSI technology may be applied to enhance or enable future NASA spacecraft; and (3) expanding a portion of the focus mission, the large antenna, to provide in-depth trade studies, scaling laws, and methodologies which may be applied to other NASA missions. Several sections are presented. Section 1 defines CSI issues and presents an overview of the relevant modeling and control issues for LLS. Section 2 presents the results of the three phases of the CSI study. Section 2.1 gives the results of a CSI study conducted with the Geostationary Platform (Geoplat) as the focus mission. Section 2.2 contains an overview of the CSI control design methodology available in the technical community. Included is a survey of the CSI ground-based experiments which were conducted to verify theoretical performance predictions. Section 2.3 presents and demonstrates a new CSI scaling law methodology for assessing potential CSI with large antenna systems.

  12. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.

    2017-05-01

    Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.

  13. A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    PubMed Central

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed. PMID:22163808

  14. Large-scale Growth and Simultaneous Doping of Molybdenum Disulfide Nanosheets

    PubMed Central

    Kim, Seong Jun; Kang, Min-A; Kim, Sung Ho; Lee, Youngbum; Song, Wooseok; Myung, Sung; Lee, Sun Sook; Lim, Jongsun; An, Ki-Seok

    2016-01-01

    A facile method that uses chemical vapor deposition (CVD) for the simultaneous growth and doping of large-scale molybdenum disulfide (MoS2) nanosheets was developed. We employed metalloporphyrin as a seeding promoter layer for the uniform growth of MoS2 nanosheets. Here, a hybrid deposition system that combines thermal evaporation and atomic layer deposition (ALD) was utilized to prepare the promoter. The doping effect of the promoter was verified by X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the carrier density of the MoS2 nanosheets was manipulated by adjusting the thickness of the metalloporphyrin promoter layers, which allowed the electrical conductivity in MoS2 to be manipulated. PMID:27044862

  15. Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions

    NASA Technical Reports Server (NTRS)

    Hart, J.; Toomre, J.

    1980-01-01

    Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres.

  16. Collecting verbal autopsies: improving and streamlining data collection processes using electronic tablets.

    PubMed

    Flaxman, Abraham D; Stewart, Andrea; Joseph, Jonathan C; Alam, Nurul; Alam, Sayed Saidul; Chowdhury, Hafizur; Mooney, Meghan D; Rampatige, Rasika; Remolador, Hazel; Sanvictores, Diozele; Serina, Peter T; Streatfield, Peter Kim; Tallo, Veronica; Murray, Christopher J L; Hernandez, Bernardo; Lopez, Alan D; Riley, Ian Douglas

    2018-02-01

    There is increasing interest in using verbal autopsy to produce nationally representative population-level estimates of causes of death. However, the burden of processing a large quantity of surveys collected with paper and pencil has been a barrier to scaling up verbal autopsy surveillance. Direct electronic data capture has been used in other large-scale surveys and can be used in verbal autopsy as well, to reduce time and cost of going from collected data to actionable information. We collected verbal autopsy interviews using paper and pencil and using electronic tablets at two sites, and measured the cost and time required to process the surveys for analysis. From these cost and time data, we extrapolated costs associated with conducting large-scale surveillance with verbal autopsy. We found that the median time between data collection and data entry for surveys collected on paper and pencil was approximately 3 months. For surveys collected on electronic tablets, this was less than 2 days. For small-scale surveys, we found that the upfront costs of purchasing electronic tablets was the primary cost and resulted in a higher total cost. For large-scale surveys, the costs associated with data entry exceeded the cost of the tablets, so electronic data capture provides both a quicker and cheaper method of data collection. As countries increase verbal autopsy surveillance, it is important to consider the best way to design sustainable systems for data collection. Electronic data capture has the potential to greatly reduce the time and costs associated with data collection. For long-term, large-scale surveillance required by national vital statistical systems, electronic data capture reduces costs and allows data to be available sooner.

  17. Reclamation with trees in Illinois

    Treesearch

    Brad Evilsizer

    1980-01-01

    Thru private initiative, Illinois citizens historically have invented and conducted large-scale tree planting programs, starting with hedgerow fences and farmstead windbreaks and continuing with surface mine reclamation and farm woodlands. With invaluable help from public and private scientific personnel, the old and new programs hold promise of enlargement and...

  18. Soil carbon change in reconstructed tallgrass prairies

    USDA-ARS?s Scientific Manuscript database

    Reconstructing former cropland to tallgrass prairie can increase soil carbon (C) and enhance C sequestration to mitigate increases in atmospheric CO2. This large-scale study was conducted at Neal Smith National Wildlife Refuge (NSNWR) in Jasper County, south-central IA. Tracts of cropped land at NSN...

  19. EVALUATION OF ANALYTICAL METHODS FOR DETERMINING PESTICIDES IN BABY FOOD AND ADULT DUPLICATE-DIET SAMPLES

    EPA Science Inventory

    Determinations of pesticides in food are often complicated by the presence of fats and require multiple cleanup steps before analysis. Cost-effective analytical methods are needed for conducting large-scale exposure studies. We examined two extraction methods, supercritical flu...

  20. The effects of load history and design variables on performance limit states of circular bridge columns - volume 1.

    DOT National Transportation Integrated Search

    2015-01-01

    This report is the first of three volumes and presents interpretation of all experimental and numerical data and recommendations. In : total, 30 large scale reinforced concrete columns tests were conducted under a variety of loading conditions. Using...

  1. APEX Model Simulation for Row Crop Watersheds with Agroforestry and Grass Buffers

    USDA-ARS?s Scientific Manuscript database

    Watershed model simulation has become an important tool in studying ways and means to reduce transport of agricultural pollutants. Conducting field experiments to assess buffer influences on water quality are constrained by the large-scale nature of watersheds, high experimental costs, private owner...

  2. A semiparametric graphical modelling approach for large-scale equity selection.

    PubMed

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

  3. Assessing the weighted multi-objective adaptive surrogate model optimization to derive large-scale reservoir operating rules with sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Wang, Xu; Liu, Pan; Lei, Xiaohui; Li, Zejun; Gong, Wei; Duan, Qingyun; Wang, Hao

    2017-01-01

    The optimization of large-scale reservoir system is time-consuming due to its intrinsic characteristics of non-commensurable objectives and high dimensionality. One way to solve the problem is to employ an efficient multi-objective optimization algorithm in the derivation of large-scale reservoir operating rules. In this study, the Weighted Multi-Objective Adaptive Surrogate Model Optimization (WMO-ASMO) algorithm is used. It consists of three steps: (1) simplifying the large-scale reservoir operating rules by the aggregation-decomposition model, (2) identifying the most sensitive parameters through multivariate adaptive regression splines (MARS) for dimensional reduction, and (3) reducing computational cost and speeding the searching process by WMO-ASMO, embedded with weighted non-dominated sorting genetic algorithm II (WNSGAII). The intercomparison of non-dominated sorting genetic algorithm (NSGAII), WNSGAII and WMO-ASMO are conducted in the large-scale reservoir system of Xijiang river basin in China. Results indicate that: (1) WNSGAII surpasses NSGAII in the median of annual power generation, increased by 1.03% (from 523.29 to 528.67 billion kW h), and the median of ecological index, optimized by 3.87% (from 1.879 to 1.809) with 500 simulations, because of the weighted crowding distance and (2) WMO-ASMO outperforms NSGAII and WNSGAII in terms of better solutions (annual power generation (530.032 billion kW h) and ecological index (1.675)) with 1000 simulations and computational time reduced by 25% (from 10 h to 8 h) with 500 simulations. Therefore, the proposed method is proved to be more efficient and could provide better Pareto frontier.

  4. Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments

    NASA Astrophysics Data System (ADS)

    Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas

    2018-03-01

    Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Linfeng

    A literature survey has been conducted to collect information on the International R&D activities in the extraction of uranium from seawater for the period from the 1960s till the year of 2010. The reported activities, on both the laboratory scale bench experiments and the large scale marine experiments, were summarized by country/region in this report. Among all countries where such activities have been reported, Japan has carried out the most advanced large scale marine experiments with the amidoxime-based system, and achieved the collection efficiency (1.5 g-U/kg-adsorbent for 30 days soaking in the ocean) that could justify the development of industrialmore » scale marine systems to produce uranium from seawater at the price competitive with those from conventional uranium resources. R&D opportunities are discussed for improving the system performance (selectivity for uranium, loading capacity, chemical stability and mechanical durability in the sorption-elution cycle, and sorption kinetics) and making the collection of uranium from seawater more economically competitive.« less

  6. Mapping Submarine Groundwater Discharge - how to investigate spatial discharge variability on coastal and beach scales

    NASA Astrophysics Data System (ADS)

    Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.

    2008-12-01

    Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e.g. in Florida, Brazil, Mauritius and Australia's Great Barrier Reef lagoon. From shore-parallel transects along the Central Great Barrier Reef coastline, numerous processes and locations of SGD were identified, including terrestrially-derived fresh SGD and the recirculation of seawater in mangrove forests, as well as riverine sources. From variations in the inverse relationship of the two tracers radon and salinity, some aspects of regional freshwater input into the lagoon during the tropical wet season could be assessed. Such surveys on coastal scales can be a useful tool to obtain an overview of locations and processes of SGD on an unknown coastline.

  7. Scale-dependency of effective hydraulic conductivity on fire-affected hillslopes

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Lane, Patrick N. J.; Nyman, Petter; Noske, Philip J.; Cawson, Jane G.; Oono, Akiko; Sheridan, Gary J.

    2016-07-01

    Effective hydraulic conductivity (Ke) for Hortonian overland flow modeling has been defined as a function of rainfall intensity and runon infiltration assuming a distribution of saturated hydraulic conductivities (Ks). But surface boundary condition during infiltration and its interactions with the distribution of Ks are not well represented in models. As a result, the mean value of the Ks distribution (KS¯), which is the central parameter for Ke, varies between scales. Here we quantify this discrepancy with a large infiltration data set comprising four different methods and scales from fire-affected hillslopes in SE Australia using a relatively simple yet widely used conceptual model of Ke. Ponded disk (0.002 m2) and ring infiltrometers (0.07 m2) were used at the small scales and rainfall simulations (3 m2) and small catchments (ca 3000 m2) at the larger scales. We compared KS¯ between methods measured at the same time and place. Disk and ring infiltrometer measurements had on average 4.8 times higher values of KS¯ than rainfall simulations and catchment-scale estimates. Furthermore, the distribution of Ks was not clearly log-normal and scale-independent, as supposed in the conceptual model. In our interpretation, water repellency and preferential flow paths increase the variance of the measured distribution of Ks and bias ponding toward areas of very low Ks during rainfall simulations and small catchment runoff events while areas with high preferential flow capacity remain water supply-limited more than the conceptual model of Ke predicts. The study highlights problems in the current theory of scaling runoff generation.

  8. Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    NASA Technical Reports Server (NTRS)

    Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.

    1991-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.

  9. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review

    PubMed Central

    Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G.

    2013-01-01

    Background: Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. Objectives: We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. Methods: We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as “factors” relating to one of seven domains—fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms—and also recorded issues that impacted equity. Results: We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Conclusions: Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness. Citation: Rehfuess EA, Puzzolo E, Stanistreet D, Pope D, Bruce NG. 2014. Enablers and barriers to large-scale uptake of improved solid fuel stoves: a systematic review. Environ Health Perspect 122:120–130; http://dx.doi.org/10.1289/ehp.1306639 PMID:24300100

  10. Regional Simulations of Stratospheric Lofting of Smoke Plumes

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Fromm, M.; Robock, A.

    2006-12-01

    The lifetime and spatial distribution of sooty aerosols from multiple fires that would cause major climate impact were debated in studies of climatic and environmental consequences of a nuclear war in the 1980s. The Kuwait oil fires in 1991 did not show a cumulative effect of multiple smoke plumes on large-scale circulation systems and smoke was mainly dispersed in the middle troposphere. However, recent observations show that smoke from large forest fires can be directly injected into the lower stratosphere by strong pyro-convective storms. Smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the same heating and lofting effect that was simulated in large-scale nuclear winter simulations with interactive aerosols. However nuclear winter simulations were conducted using climate models with grid spacing of more than 100 km, which do not account for the fine-scale dynamic processes. Therefore in this study we conduct fine-scale regional simulations of the aerosol plume using the Regional Atmospheric Modeling System (RAMS) mesoscale model which was modified to account for radiatively interactive tracers. To resolve fine-scale dynamic processes we use horizontal grid spacing of 25 km and 60 vertical layers, and initiate simulations with the NCEP reanalysis fields. We find that dense aerosol layers could be lofted from 1 to a few km per day, but this critically depends on the optical depth of aerosol layer, single scatter albedo, and how fast the plume is being diluted. Kuwaiti plumes from different small-area fires reached only 5-6 km altitude and were probably diffused and diluted in the lower and middle troposphere. A plume of 100 km spatial scale initially developed in the upper troposphere tends to penetrate into the stratosphere. Short-term cloud resolving simulations of such a plume show that aerosol heating intensifies small-scale motions that tend to mix smoke polluted air into the lower stratosphere. Regional simulations allow us to more accurately estimate the rate of lifting and spreading of aerosol clouds. But they do not reveal any dynamic processes that could prevent heating and lofting of absorbing aerosols.

  11. Combined heat and power systems: economic and policy barriers to growth.

    PubMed

    Kalam, Adil; King, Abigail; Moret, Ellen; Weerasinghe, Upekha

    2012-04-23

    Combined Heat and Power (CHP) systems can provide a range of benefits to users with regards to efficiency, reliability, costs and environmental impact. Furthermore, increasing the amount of electricity generated by CHP systems in the United States has been identified as having significant potential for impressive economic and environmental outcomes on a national scale. Given the benefits from increasing the adoption of CHP technologies, there is value in improving our understanding of how desired increases in CHP adoption can be best achieved. These obstacles are currently understood to stem from regulatory as well as economic and technological barriers. In our research, we answer the following questions: Given the current policy and economic environment facing the CHP industry, what changes need to take place in this space in order for CHP systems to be competitive in the energy market? We focus our analysis primarily on Combined Heat and Power Systems that use natural gas turbines. Our analysis takes a two-pronged approach. We first conduct a statistical analysis of the impact of state policies on increases in electricity generated from CHP system. Second, we conduct a Cost-Benefit analysis to determine in which circumstances funding incentives are necessary to make CHP technologies cost-competitive. Our policy analysis shows that regulatory improvements do not explain the growth in adoption of CHP technologies but hold the potential to encourage increases in electricity generated from CHP system in small-scale applications. Our Cost-Benefit analysis shows that CHP systems are only cost competitive in large-scale applications and that funding incentives would be necessary to make CHP technology cost-competitive in small-scale applications. From the synthesis of these analyses we conclude that because large-scale applications of natural gas turbines are already cost-competitive, policy initiatives aimed at a CHP market dominated primarily by large-scale (and therefore already cost-competitive) systems have not been effectively directed. Our recommendation is that for CHP technologies using natural gas turbines, policy focuses should be on increasing CHP growth in small-scale systems. This result can be best achieved through redirection of state and federal incentives, research and development, adoption of smart grid technology, and outreach and education.

  12. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    EPA Science Inventory

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  13. Teaching English Critically to Mexican Children

    ERIC Educational Resources Information Center

    López-Gopar, Mario E.

    2014-01-01

    The purpose of this article is to present one significant part of a large-scale critical-ethnographic-action-research project (CEAR Project) carried out in Oaxaca, Mexico. The overall CEAR Project has been conducted since 2007 in different Oaxacan elementary schools serving indigenous and mestizo (mixed-race) children. In the CEAR Project, teacher…

  14. Non-invasive Prediction of Pork Loin Tenderness

    USDA-ARS?s Scientific Manuscript database

    The present experiment was conducted to develop a non-invasive method to predict tenderness of pork loins. Boneless pork loins (n = 901) were evaluated either on line on the loin boning and trimming line of large-scale commercial plants (n = 465) or at the U.S. Meat Animal Research Center abattoir ...

  15. Understanding Student Voices about Assessment: Links to Learning and Motivation

    ERIC Educational Resources Information Center

    McMillan, James H.; Turner, Amanda B.

    2014-01-01

    This qualitative study examined elementary and middle school students' perceptions of assessment. Individual interviews were conducted with 64 students, with questions focused on their emotional reactions and thinking about classroom and large-scale assessment as related to goal orientation, self-regulation, attributions, and self-efficacy.…

  16. What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum?

    Treesearch

    Jeanne C. Chambers; Bruce A. Roundy; Robert R. Blank; Susan E. Meyer; A. Whittaker

    2007-01-01

    Ecosystem susceptibility to invasion by nonnative species is poorly understood, but evidence is increasing that spatial and temporal variability in resources has large-scale effects. We conducted a study in Artemisia tridentata ecosystems at two Great Basin locations examining differences in resource availability and invasibility of Bromus...

  17. Moderation and Consistency of Teacher Judgement: Teachers' Views

    ERIC Educational Resources Information Center

    Connolly, Stephen; Klenowski, Valentina; Wyatt-Smith, Claire Maree

    2012-01-01

    Major curriculum and assessment reforms in Australia have generated research interest in issues related to standards, teacher judgement and moderation. This article is based on one related inquiry of a large-scale Australian Research Council Linkage project conducted in Queensland. This qualitative study analysed interview data to identify…

  18. Variation in Swedish Address Practices

    ERIC Educational Resources Information Center

    Norrby, Catrin

    2006-01-01

    This article explores variation in address in contemporary Swedish in Sweden-Swedish and Finland-Swedish. The research is part of a large-scale Australian project on changes in the address systems of French, German and Swedish. The present article focuses on results from 72 social network interviews conducted in Sweden (Gothenburg) and Finland…

  19. Developing a Drosophila Model of Schwannomatosis

    DTIC Science & Technology

    2012-08-01

    the entire Drosophila melanogaster genome and compared...et al., 2009; Hanahan and Weinberg, 2011). Over the last decade, the fruit fly Drosophila melanogaster has become an important model system for cancer...studies. Reduced redundancy in the Drosophila genome compared with that of humans, coupled with the ability to conduct large-scale genetic screens

  20. Early stage litter decomposition across biomes

    Treesearch

    Ika Djukic; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alberto Humber; Alejandro Valdecantos; Alessandro Petraglia; Heather Alexander; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; André-Jean Francez; Andrea Fischer; Andreas Bohner; Andrey Malyshev; Andrijana Andrić; Andy Smith; Angela Stanisci; Anikó Seres; Anja Schmidt; Anna Avila; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Arely N. Palabral-Aguilera; Artur Stefanski; Aurora Gaxiola; Bart Muys; Bernard Bosman; Bernd Ahrends; Bill Parker; Birgit Sattler; Bo Yang; Bohdan Juráni; Brigitta Erschbamer; Carmen Eugenia Rodriguez Ortiz; Casper T. Christiansen; E. Carol Adair; Céline Meredieu; Cendrine Mony; Charles A. Nock; Chi-Ling Chen; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dana Polyanskaya; David Fuentes Delgado; Dirk Wundram; Diyaa Radeideh; Eduardo Ordóñez-Regil; Edward Crawford; Elena Preda; Elena Tropina; Elli Groner; Eric Lucot; Erzsébet Hornung; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Evy Ampoorter; Fabio Padilha Bolzan; Felipe Varela; Ferdinand Kristöfel; Fernando T. Maestre; Florence Maunoury-Danger; Florian Hofhansl; Florian Kitz; Flurin Sutter; Francisco Cuesta; Francisco de Almeida Lobo; Franco Leandro de Souza; Frank Berninger; Franz Zehetner; Georg Wohlfahrt; George Vourlitis; Geovana Carreño-Rocabado; Gina Arena; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Hanna Lee; Hans Verbeeck; Harald Auge; Harald Pauli; Hassan Bismarck Nacro; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena C. Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hideaki Shibata; Hiroko Kurokawa; Hugo López Rosas; Hugo L. Rojas Villalobos; Ian Yesilonis; Inara Melece; Inge Van Halder; Inmaculada García Quirós; Isaac Makelele; Issaka Senou; István Fekete; Ivan Mihal; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Shoqeir; Jean-Christophe Lata; Jean-Paul Theurillat; Jean-Luc Probst; Jess Zimmerman; Jeyanny Vijayanathan; Jianwu Tang; Jill Thompson; Jiří Doležal; Joan-Albert Sanchez-Cabeza; Joël Merlet; Joh Henschel; Johan Neirynck; Johannes Knops; John Loehr; Jonathan von Oppen; Jónína Sigríður Þorláksdóttir; Jörg Löffler; José-Gilberto Cardoso-Mohedano; José-Luis Benito-Alonso; Jose Marcelo Torezan; Joseph C. Morina; Juan J. Jiménez; Juan Dario Quinde; Juha Alatalo; Julia Seeber; Jutta Stadler; Kaie Kriiska; Kalifa Coulibaly; Karibu Fukuzawa; Katalin Szlavecz; Katarína Gerhátová; Kate Lajtha; Kathrin Käppeler; Katie A. Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Lambiénou Yé; Laryssa Helena Ribeiro Pazianoto; Laura Dienstbach; Laura Williams; Laura Yahdjian; Laurel M. Brigham; Liesbeth van den Brink; Lindsey Rustad; al. et

    2018-01-01

    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies...

  1. Infusing Creativity into Eastern Classrooms: Evaluations from Student Perspectives

    ERIC Educational Resources Information Center

    Cheng, Vivian M. Y.

    2011-01-01

    Infusing creativity elements into regular classroom was an important movement in recent Asian educational reforms. A large-scale research study was conducted in Hong Kong to explore the possibilities, outcomes and difficulties of this kind of curriculum change from students' perspectives. Based mainly on Western creativity literature, this study…

  2. Initiating a National Coaching Curriculum: A Paradigmatic Shift?

    ERIC Educational Resources Information Center

    Cassidy, Tania; Kidman, Lynn

    2010-01-01

    Background: A number of countries have heavily invested in the provision of large scale coach education programmes, often framed by elaborate qualification frameworks. Despite this investment, scant research has been conducted on coach education programmes. Given the limited amount of literature on coach education, and the relatively recent…

  3. Large Eddy Simulation of jets laden with evaporating drops

    NASA Technical Reports Server (NTRS)

    Leboissetier, A.; Okong'o, N.; Bellan, J.

    2004-01-01

    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  4. Preschool Children, Painting and Palimpsest: Collaboration as Pedagogy, Practice and Learning

    ERIC Educational Resources Information Center

    Cutcher, Alexandra; Boyd, Wendy

    2018-01-01

    This article describes a small, collaborative, arts-based research project conducted in two rural early childhood centres in regional Australia, where the children made large-scale collaborative paintings in partnership with teachers and researchers. Observation of young children's artistic practices, in order to inform the development of…

  5. Data management in large-scale collaborative toxicity studies: how to file experimental data for automated statistical analysis.

    PubMed

    Stanzel, Sven; Weimer, Marc; Kopp-Schneider, Annette

    2013-06-01

    High-throughput screening approaches are carried out for the toxicity assessment of a large number of chemical compounds. In such large-scale in vitro toxicity studies several hundred or thousand concentration-response experiments are conducted. The automated evaluation of concentration-response data using statistical analysis scripts saves time and yields more consistent results in comparison to data analysis performed by the use of menu-driven statistical software. Automated statistical analysis requires that concentration-response data are available in a standardised data format across all compounds. To obtain consistent data formats, a standardised data management workflow must be established, including guidelines for data storage, data handling and data extraction. In this paper two procedures for data management within large-scale toxicological projects are proposed. Both procedures are based on Microsoft Excel files as the researcher's primary data format and use a computer programme to automate the handling of data files. The first procedure assumes that data collection has not yet started whereas the second procedure can be used when data files already exist. Successful implementation of the two approaches into the European project ACuteTox is illustrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A global probabilistic tsunami hazard assessment from earthquake sources

    USGS Publications Warehouse

    Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana

    2017-01-01

    Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.

  7. The operations manual: a mechanism for improving the research process.

    PubMed

    Bowman, Ann; Wyman, Jean F; Peters, Jennifer

    2002-01-01

    The development and use of an operations manual has the potential to improve the capacity of nurse scientists to address the complex, multifaceted issues associated with conducting research in today's healthcare environment. An operations manual facilitates communication, standardizes training and evaluation, and enhances the development and standard implementation of clear policies, processes, and protocols. A 10-year review of methodology articles in relevant nursing journals revealed no attention to this topic. This article will discuss how an operations manual can improve the conduct of research methods and outcomes for both small-scale and large-scale research studies. It also describes the purpose and components of a prototype operations manual for use in quantitative research. The operations manual increases reliability and reproducibility of the research while improving the management of study processes. It can prevent costly and untimely delays or errors in the conduct of research.

  8. Grain-scale supercharging and breakdown on airless regoliths

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C. M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-10-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  9. Grain-Scale Supercharging and Breakdown on Airless Regoliths

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C.M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-01-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  10. Reducing computational costs in large scale 3D EIT by using a sparse Jacobian matrix with block-wise CGLS reconstruction.

    PubMed

    Yang, C L; Wei, H Y; Adler, A; Soleimani, M

    2013-06-01

    Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, S.; Yokosawa, M.; Matsuyama, M.

    To study the practical application of a tritium separation process using Self-Developing Gas Chromatography (SDGC) using a Pd-Pt alloy, intermediate scale-up experiments (22 mm ID x 2 m length column) and the development of a computational simulation method have been conducted. In addition, intermediate scale production of Pd-Pt powder has been developed for the scale-up experiments.The following results were obtained: (1) a 50-fold scale-up from 3 mm to 22 mm causes no significant impact on the SDGC process; (2) the Pd-Pt alloy powder is applicable to a large size SDGC process; and (3) the simulation enables preparation of a conceptualmore » design of a SDGC process for tritium separation.« less

  12. First-principles electron transport with phonon coupling: Large scale at low cost

    NASA Astrophysics Data System (ADS)

    Gunst, Tue; Markussen, Troels; Palsgaard, Mattias L. N.; Stokbro, Kurt; Brandbyge, Mads

    2017-10-01

    Phonon-assisted tunneling plays a crucial role for electronic device performance and even more so with future size down-scaling. We show how one can include this effect in large-scale first-principles calculations using a single "special thermal displacement" (STD) of the atomic coordinates at almost the same cost as elastic transport calculations, by extending the recent method of Zacharias et al. [Phys. Rev. B 94, 075125 (2016), 10.1103/PhysRevB.94.075125] to the important case of Landauer conductance. We apply the method to ultrascaled silicon devices and demonstrate the importance of phonon-assisted band-to-band and source-to-drain tunneling. In a diode the phonons lead to a rectification ratio suppression in good agreement with experiments, while in an ultrathin body transistor the phonons increase off currents by four orders of magnitude, and the subthreshold swing by a factor of 4, in agreement with perturbation theory.

  13. Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals.

    PubMed

    Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Tanaka, Hiroshi; Kataoka, Takahiro; Sakoda, Akihiro

    2011-07-01

    A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behaviour of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects.

  14. The effects of magnetic fields on the growth of thermal instabilities in cooling flows

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Bregman, Joel N.

    1989-01-01

    The effects of heat conduction and magnetic fields on the growth of thermal instabilities in cooling flows are examined using a time-dependent hydrodynamics code. It is found that, for magnetic field strengths of roughly 1 micro-Gauss, magnetic pressure forces can completely suppress shocks from forming in thermally unstable entropy perturbations with initial length scales as large as 20 kpc, even for initial amplitudes as great as 60 percent. Perturbations with initial amplitudes of 50 percent and initial magnetic field strengths of 1 micro-Gauss cool to 10,000 K on a time scale which is only 22 percent of the initial instantaneous cooling time. Nonlinear perturbations can thus condense out of cooling flows on a time scale substantially less than the time required for linear perturbations and produce significant mass deposition of cold gas while the accreting intracluster gas is still at large radii.

  15. Cosmological Ohm's law and dynamics of non-minimal electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R., E-mail: lukas.hollenstein@cea.fr, E-mail: jain@cp3.dias.sdu.dk, E-mail: furban@ulb.ac.be

    2013-01-01

    The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizeablemore » conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios. Even at scales well beyond a Mpc, any departure from flux freezing behaviour is inhibited.« less

  16. Modeling Relevant to Safe Operations of U.S. Navy Vessels in Arctic Conditions: Physical Modeling of Ice Loads

    DTIC Science & Technology

    2016-06-01

    zones with ice concentrations up to 40%. To achieve this goal, the Navy must determine safe operational speeds as a function of ice concen- tration...and full-scale experience with ice-capable hull forms that have shallow entry angles to promote flexural ice failure preferentially over crushing...plan view) of the proposed large-scale ice–hull impact experiment to be conducted in CRREL’s refrigerated towing basin. Shown here is a side-panel

  17. Parameter Uncertainty Analysis Using Monte Carlo Simulations for a Regional-Scale Groundwater Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pohlmann, K.

    2016-12-01

    Regional-scale grid-based groundwater models for flow and transport often contain multiple types of parameters that can intensify the challenge of parameter uncertainty analysis. We propose a Monte Carlo approach to systematically quantify the influence of various types of model parameters on groundwater flux and contaminant travel times. The Monte Carlo simulations were conducted based on the steady-state conversion of the original transient model, which was then combined with the PEST sensitivity analysis tool SENSAN and particle tracking software MODPATH. Results identified hydrogeologic units whose hydraulic conductivity can significantly affect groundwater flux, and thirteen out of 173 model parameters that can cause large variation in travel times for contaminant particles originating from given source zones.

  18. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    PubMed

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  19. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    NASA Astrophysics Data System (ADS)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-09-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

  20. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    PubMed Central

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-01-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated. PMID:26333520

  1. The Australian Longitudinal Study on Women's Health: Using Focus Groups to Inform Recruitment

    PubMed Central

    2016-01-01

    Background Recruitment and retention of participants to large-scale, longitudinal studies can be a challenge, particularly when trying to target young women. Qualitative inquiries with members of the target population can prove valuable in assisting with the development of effective recruiting techniques. Researchers in the current study made use of focus group methodology to identify how to encourage young women aged 18-23 to participate in a national cohort online survey. Objective Our objectives were to gain insight into how to encourage young women to participate in a large-scale, longitudinal health survey, as well as to evaluate the survey instrument and mode of administration. Methods The Australian Longitudinal Study on Women’s Health used focus group methodology to learn how to encourage young women to participate in a large-scale, longitudinal Web-based health survey and to evaluate the survey instrument and mode of administration. Nineteen groups, involving 75 women aged 18-23 years, were held in remote, regional, and urban areas of New South Wales and Queensland. Results Focus groups were held in 2 stages, with discussions lasting from 19 minutes to over 1 hour. The focus groups allowed concord to be reached regarding survey promotion using social media, why personal information was needed, strategies to ensure confidentiality, how best to ask sensitive questions, and survey design for ease of completion. Recruitment into the focus groups proved difficult: the groups varied in size between 1 and 8 participants, with the majority conducted with 2 participants. Conclusions Intense recruitment efforts and variation in final focus group numbers highlights the “hard to reach” character of young women. However, the benefits of conducting focus group discussions as a preparatory stage to the recruitment of a large cohort for a longitudinal Web-based health survey were upheld. PMID:26902160

  2. Assessment of safety and immunogenicity of two different lots of diphtheria, tetanus, pertussis, hepatitis B and Haemophilus influenzae type b vaccine manufactured using small and large scale manufacturing process.

    PubMed

    Sharma, Hitt J; Patil, Vishwanath D; Lalwani, Sanjay K; Manglani, Mamta V; Ravichandran, Latha; Kapre, Subhash V; Jadhav, Suresh S; Parekh, Sameer S; Ashtagi, Girija; Malshe, Nandini; Palkar, Sonali; Wade, Minal; Arunprasath, T K; Kumar, Dinesh; Shewale, Sunil D

    2012-01-11

    Hib vaccine can be easily incorporated in EPI vaccination schedule as the immunization schedule of Hib is similar to that of DTP vaccine. To meet the global demand of Hib vaccine, SIIL scaled up the Hib conjugate manufacturing process. This study was conducted in Indian infants to assess and compare the immunogenicity and safety of DTwP-HB+Hib (Pentavac(®)) vaccine of SIIL manufactured at large scale with the 'same vaccine' manufactured at a smaller scale. 720 infants aged 6-8 weeks were randomized (2:1 ratio) to receive 0.5 ml of Pentavac(®) vaccine from two different lots one produced at scaled up process and the other at a small scale process. Serum samples obtained before and at one month after the 3rd dose of vaccine from both the groups were tested for IgG antibody response by ELISA and compared to assess non-inferiority. Neither immunological interference nor increased reactogenicity was observed in either of the vaccine groups. All infants developed protective antibody titres to diphtheria, tetanus and Hib disease. For hepatitis B antigen, one child from each group remained sero-negative. The response to pertussis was 88% in large scale group vis-à-vis 87% in small scale group. Non-inferiority was concluded for all five components of the vaccine. No serious adverse event was reported in the study. The scale up vaccine achieved comparable response in terms of the safety and immunogenicity to small scale vaccine and therefore can be easily incorporated in the routine childhood vaccination programme. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Domain-Adapted Convolutional Networks for Satellite Image Classification: A Large-Scale Interactive Learning Workflow

    DOE PAGES

    Lunga, Dalton D.; Yang, Hsiuhan Lexie; Reith, Andrew E.; ...

    2018-02-06

    Satellite imagery often exhibits large spatial extent areas that encompass object classes with considerable variability. This often limits large-scale model generalization with machine learning algorithms. Notably, acquisition conditions, including dates, sensor position, lighting condition, and sensor types, often translate into class distribution shifts introducing complex nonlinear factors and hamper the potential impact of machine learning classifiers. Here, this article investigates the challenge of exploiting satellite images using convolutional neural networks (CNN) for settlement classification where the class distribution shifts are significant. We present a large-scale human settlement mapping workflow based-off multiple modules to adapt a pretrained CNN to address themore » negative impact of distribution shift on classification performance. To extend a locally trained classifier onto large spatial extents areas we introduce several submodules: First, a human-in-the-loop element for relabeling of misclassified target domain samples to generate representative examples for model adaptation; second, an efficient hashing module to minimize redundancy and noisy samples from the mass-selected examples; and third, a novel relevance ranking module to minimize the dominance of source example on the target domain. The workflow presents a novel and practical approach to achieve large-scale domain adaptation with binary classifiers that are based-off CNN features. Experimental evaluations are conducted on areas of interest that encompass various image characteristics, including multisensors, multitemporal, and multiangular conditions. Domain adaptation is assessed on source–target pairs through the transfer loss and transfer ratio metrics to illustrate the utility of the workflow.« less

  4. Domain-Adapted Convolutional Networks for Satellite Image Classification: A Large-Scale Interactive Learning Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunga, Dalton D.; Yang, Hsiuhan Lexie; Reith, Andrew E.

    Satellite imagery often exhibits large spatial extent areas that encompass object classes with considerable variability. This often limits large-scale model generalization with machine learning algorithms. Notably, acquisition conditions, including dates, sensor position, lighting condition, and sensor types, often translate into class distribution shifts introducing complex nonlinear factors and hamper the potential impact of machine learning classifiers. Here, this article investigates the challenge of exploiting satellite images using convolutional neural networks (CNN) for settlement classification where the class distribution shifts are significant. We present a large-scale human settlement mapping workflow based-off multiple modules to adapt a pretrained CNN to address themore » negative impact of distribution shift on classification performance. To extend a locally trained classifier onto large spatial extents areas we introduce several submodules: First, a human-in-the-loop element for relabeling of misclassified target domain samples to generate representative examples for model adaptation; second, an efficient hashing module to minimize redundancy and noisy samples from the mass-selected examples; and third, a novel relevance ranking module to minimize the dominance of source example on the target domain. The workflow presents a novel and practical approach to achieve large-scale domain adaptation with binary classifiers that are based-off CNN features. Experimental evaluations are conducted on areas of interest that encompass various image characteristics, including multisensors, multitemporal, and multiangular conditions. Domain adaptation is assessed on source–target pairs through the transfer loss and transfer ratio metrics to illustrate the utility of the workflow.« less

  5. Philippine Academy of Rehabilitation Medicine emergency basic relief and medical aid mission project (November 2013-February 2014): the role of physiatrists in Super Typhoon Haiyan.

    PubMed

    Ganchoon, Filipinas; Bugho, Rommel; Calina, Liezel; Dy, Rochelle; Gosney, James

    2017-06-09

    Physiatrists have provided humanitarian assistance in recent large-scale global natural disasters. Super Typhoon Haiyan, the deadliest and most costly typhoon in modern Philippine history, made landfall on 8 November 2013 resulting in significant humanitarian needs. Philippine Academy of Rehabilitation Medicine physiatrists conducted a project of 23 emergency basic relief and medical aid missions in response to Super Typhoon Haiyan from November 2013 to February 2014. The final mission was a medical aid mission to the inland rural community of Burauen, Leyte. Summary data were collected, collated, and tabulated; project and mission evaluation was performed. During the humanitarian assistance project, 31,254 basic relief kits containing a variety of food and non-food items were distributed and medical services including consultation, treatment, and medicines were provided to 7255 patients. Of the 344 conditions evaluated in the medical aid mission to Burauen, Leyte 85 (59%) were physical and rehabilitation medicine conditions comprised of musculoskeletal (62 [73%]), neurological (17 [20%]), and dermatological (6 [7%]) diagnoses. Post-mission and project analysis resulted in recommendations and programmatic changes to strengthen response in future disasters. Physiatrists functioned as medical providers, mission team leaders, community advocates, and in other roles. This physiatrist-led humanitarian assistance project met critical basic relief and medical aid needs of persons impacted by Super Typhoon Haiyan, demonstrating significant roles performed by physiatrists in response to a large-scale natural disaster. Resulting disaster programing changes and recommendations may inform a more effective response by PARM mission teams in the Philippines as well as by other South-Eastern Asia teams comprising rehabilitation professionals to large-scale, regional natural disasters. Implications for rehabilitation Large-scale natural disasters including tropical cyclones can have a catastrophic impact on the affected population. In response to Super Typhoon Haiyan, physiatrists representing the Philippine Academy of Rehabilitation Medicine conducted a project of 23 emergency basic relief and medical aid missions from November 2013 to February 2014. Project analysis indicates that medical mission teams responding in similar settings may expect to evaluate a significant number of physical medicine and rehabilitation conditions. Medical rehabilitation with participation by rehabilitation professionals including rehabilitation doctors is essential to the emergency medical response in large-scale natural disasters.

  6. Facilitating large-scale clinical trials: in Asia.

    PubMed

    Choi, Han Yong; Ko, Jae-Wook

    2010-01-01

    The number of clinical trials conducted in Asian countries has started to increase as a result of expansion of the pharmaceutical market in this area. There is a growing opportunity for large-scale clinical trials because of the large number of patients, significant market potential, good quality of data, and the cost effective and qualified medical infrastructure. However, for carrying out large-scale clinical trials in Asia, there are several major challenges, including the quality control of data, budget control, laboratory validation, monitoring capacity, authorship, staff training, and nonstandard treatment that need to be considered. There are also several difficulties in collaborating on international trials in Asia because Asia is an extremely diverse continent. The major challenges are language differences, diversity of patterns of disease, and current treatments, a large gap in the experience with performing multinational trials, and regulatory differences among the Asian countries. In addition, there are also differences in the understanding of global clinical trials, medical facilities, indemnity assurance, and culture, including food and religion. To make regional and local data provide evidence for efficacy through the standardization of these differences, unlimited effort is required. At this time, there are no large clinical trials led by urologists in Asia, but it is anticipated that the role of urologists in clinical trials will continue to increase. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Automatic three-dimensional measurement of large-scale structure based on vision metrology.

    PubMed

    Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng

    2014-01-01

    All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods.

  8. Longitudinal aerodynamic characteristics of a large scale model with a swept wing and augmented jet flap in ground effect

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Koenig, D. G.

    1972-01-01

    The investigation of the in-ground-effect, longitudinal aerodynamic characteristics of a large scale swept augmentor wing model is presented, using 40 x 80 ft wind tunnel. The investigation was conducted at three ground heights; h/c equals 2.01, 1.61, and 1.34. The induced effect of underwing nacelles, was studied with two powered nacelle configurations. One configuration used four JT-15D turbofans while the other used two J-85 turbojet engines. Two conical nozzles on each J-85 were used to deflect the thrust at angles from 0 to 120 deg. Tests were also performed without nacelles to allow comparison with previous data from ground effect.

  9. An outdoor test facility for the large-scale production of microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.A.; Weissman, J.; Goebel, R.

    The goal of the US Department of EnergySolar Energy Research Institute's Aquatic Species Program is to develop the technology base to produce liquid fuels from microalgae. This technology is being initially developed for the desert Southwest. As part of this program an outdoor test facility has been designed and constructed in Roswell, New Mexico. The site has a large existing infrastructure, a suitable climate, and abundant saline groundwater. This facility will be used to evaluate productivity of microalgae strains and conduct large-scale experiments to increase biomass productivity while decreasing production costs. Six 3-m/sup 2/ fiberglass raceways were constructed. Several microalgaemore » strains were screened for growth, one of which had a short-term productivity rate of greater than 50 g dry wt m/sup /minus/2/ d/sup /minus/1/. Two large-scale, 0.1-ha raceways have also been built. These are being used to evaluate the performance trade-offs between low-cost earthen liners and higher cost plastic liners. A series of hydraulic measurements is also being carried out to evaluate future improved pond designs. Future plans include a 0.5-ha pond, which will be built in approximately 2 years to test a scaled-up system. This unique facility will be available to other researchers and industry for studies on microalgae productivity. 6 refs., 9 figs., 1 tab.« less

  10. Characteristics of medium- and large-scale TIDs over Japan derived from OI 630-nm nightglow observation

    NASA Astrophysics Data System (ADS)

    Kubota, M.; Fukunishi, H.; Okano, S.

    2001-07-01

    A new optical instrument for studying upper atmospheric dynamics, called the Multicolor All-sky Imaging System (MAIS), has been developed. The MAIS can obtain all-sky images of airglow emission at two different wavelengths simultaneously with a time resolution of several minutes. Since December 1991, imaging observations with the MAIS have been conducted at the Zao observatory (38.09°N, 140.56°E). From these observations, two interesting events with wave structures have been detected in OI 630-nm nightglow images. The first event was observed on the night of June 2/3, 1992 during a geomagnetically quiet period. Simultaneous data of ionospheric parameters showed that they are caused by propagation of the medium-scale traveling ionospheric disturbance (TID). Phase velocity and horizontal wavelength determined from the image data are 45-100 m/s and ~280 km, and the propagation direction is south-westward. The second event was observed on the night of February 27/28, 1992 during a geomagnetic storm. It is found that a large enhancement of OI 630-nm emission is caused by a propagation of the large-scale TID. Meridional components of phase velocities and wavelengths determined from ionospheric data are 305-695 m/s (southward) and 930-5250 km. The source of this large-scale TID appears to be auroral processes at high latitudes.

  11. paraGSEA: a scalable approach for large-scale gene expression profiling

    PubMed Central

    Peng, Shaoliang; Yang, Shunyun

    2017-01-01

    Abstract More studies have been conducted using gene expression similarity to identify functional connections among genes, diseases and drugs. Gene Set Enrichment Analysis (GSEA) is a powerful analytical method for interpreting gene expression data. However, due to its enormous computational overhead in the estimation of significance level step and multiple hypothesis testing step, the computation scalability and efficiency are poor on large-scale datasets. We proposed paraGSEA for efficient large-scale transcriptome data analysis. By optimization, the overall time complexity of paraGSEA is reduced from O(mn) to O(m+n), where m is the length of the gene sets and n is the length of the gene expression profiles, which contributes more than 100-fold increase in performance compared with other popular GSEA implementations such as GSEA-P, SAM-GS and GSEA2. By further parallelization, a near-linear speed-up is gained on both workstations and clusters in an efficient manner with high scalability and performance on large-scale datasets. The analysis time of whole LINCS phase I dataset (GSE92742) was reduced to nearly half hour on a 1000 node cluster on Tianhe-2, or within 120 hours on a 96-core workstation. The source code of paraGSEA is licensed under the GPLv3 and available at http://github.com/ysycloud/paraGSEA. PMID:28973463

  12. Development of a Shipboard Remote Control and Telemetry Experimental System for Large-Scale Model’s Motions and Loads Measurement in Realistic Sea Waves

    PubMed Central

    Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe

    2017-01-01

    Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379

  13. Development of 5123 Intron-Length Polymorphic Markers for Large-Scale Genotyping Applications in Foxtail Millet

    PubMed Central

    Muthamilarasan, Mehanathan; Venkata Suresh, B.; Pandey, Garima; Kumari, Kajal; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei's average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species. PMID:24086082

  14. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.

    2013-01-01

    NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

  15. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  16. A semiparametric graphical modelling approach for large-scale equity selection

    PubMed Central

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption. PMID:28316507

  17. Nonlinear penetration of whistler pulses into collisional plasmas via conductivity modifications

    NASA Technical Reports Server (NTRS)

    Urrutia, J. M.; Stenzel, R. L.

    1991-01-01

    A strong electromagnetic impulse (about 0.2 microsec) with central frequency in the whistler-wave regime is applied to a large laboratory plasma dominated by Coulomb collisions. Local electron heating at the antenna and transport along B0 create a channel of high conductivity along which the whistler pulse penetrates with little damping. Because of its rapid temporal evolution, this new form of modulational instability does not involve ducting by density gradients which require ion time scales to develop.

  18. ‘Natural experiment’ Demonstrates Top-Down Control of Spiders by Birds on a Landscape Level

    PubMed Central

    Rogers, Haldre; Hille Ris Lambers, Janneke; Miller, Ross; Tewksbury, Joshua J.

    2012-01-01

    The combination of small-scale manipulative experiments and large-scale natural experiments provides a powerful approach for demonstrating the importance of top-down trophic control on the ecosystem scale. The most compelling natural experiments have come from studies examining the landscape-scale loss of apex predators like sea otters, wolves, fish and land crabs. Birds are dominant apex predators in terrestrial systems around the world, yet all studies on their role as predators have come from small-scale experiments; the top-down impact of bird loss on their arthropod prey has yet to be examined at a landscape scale. Here, we use a unique natural experiment, the extirpation of insectivorous birds from nearly all forests on the island of Guam by the invasive brown tree snake, to produce the first assessment of the impacts of bird loss on their prey. We focused on spiders because experimental studies showed a consistent top-down effect of birds on spiders. We conducted spider web surveys in native forest on Guam and three nearby islands with healthy bird populations. Spider web densities on the island of Guam were 40 times greater than densities on islands with birds during the wet season, and 2.3 times greater during the dry season. These results confirm the general trend from manipulative experiments conducted in other systems however, the effect size was much greater in this natural experiment than in most manipulative experiments. In addition, bird loss appears to have removed the seasonality of spider webs and led to larger webs in at least one spider species in the forests of Guam than on nearby islands with birds. We discuss several possible mechanisms for the observed changes. Overall, our results suggest that effect sizes from smaller-scale experimental studies may significantly underestimate the impact of bird loss on spider density as demonstrated by this large-scale natural experiment. PMID:22970126

  19. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-11-01

    The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  20. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

    PubMed Central

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-01-01

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT’s stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility. PMID:26940301

  1. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Volume 2: Heat transfer data tabulation. 15 percent axial spacing

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.

    1986-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.

  2. On the energy scale involved in the metal to insulator transition of quadruple perovskite EuCu3Fe4O12: infrared spectroscopy and ab-initio calculations.

    PubMed

    Brière, B; Kalinko, A; Yamada, I; Roy, P; Brubach, J B; Sopracase, R; Zaghrioui, M; Phuoc, V Ta

    2016-06-27

    Optical measurements were carried out by infrared spectroscopy on AA'3B4O12 A-site ordered quadruple perovskite EuCu3Fe4O12 (microscopic sample) as function of temperature. At 240 K (=TMI), EuCu3Fe4O12 undergoes a very abrupt metal to insulator transition, a paramagnetic to antiferromagnetic transition and an isostructural transformation with an abrupt large volume expansion. Above TMI, optical conductivity reveals a bad metal behavior and below TMI, an insulating phase with an optical gap of 125 meV is observed. As temperature is decreased, a large and abrupt spectral weight transfer toward an energy scale larger than 1 eV is detected. Concurrently, electronic structure calculations for both high and low temperature phases were compared to the optical conductivity results giving a precise pattern of the transition. Density of states and computed optical conductivity analysis identified Cu3dxy, Fe3d and O2p orbitals as principal actors of the spectral weight transfer. The present work constitutes a first step to shed light on EuCu3Fe4O12 electronic properties with optical measurements and ab-initio calculations.

  3. On the energy scale involved in the metal to insulator transition of quadruple perovskite EuCu3Fe4O12: infrared spectroscopy and ab-initio calculations

    PubMed Central

    Brière, B.; Kalinko, A.; Yamada, I.; Roy, P.; Brubach, J. B.; Sopracase, R.; Zaghrioui, M.; Phuoc, V. Ta

    2016-01-01

    Optical measurements were carried out by infrared spectroscopy on AA′3B4O12 A-site ordered quadruple perovskite EuCu3Fe4O12 (microscopic sample) as function of temperature. At 240 K (=TMI), EuCu3Fe4O12 undergoes a very abrupt metal to insulator transition, a paramagnetic to antiferromagnetic transition and an isostructural transformation with an abrupt large volume expansion. Above TMI, optical conductivity reveals a bad metal behavior and below TMI, an insulating phase with an optical gap of 125 meV is observed. As temperature is decreased, a large and abrupt spectral weight transfer toward an energy scale larger than 1 eV is detected. Concurrently, electronic structure calculations for both high and low temperature phases were compared to the optical conductivity results giving a precise pattern of the transition. Density of states and computed optical conductivity analysis identified Cu3dxy, Fe3d and O2p orbitals as principal actors of the spectral weight transfer. The present work constitutes a first step to shed light on EuCu3Fe4O12 electronic properties with optical measurements and ab-initio calculations. PMID:27346212

  4. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furushima, Yuho; Nakamura, Atsutomo, E-mail: nakamura@numse.nagoya-u.ac.jp; Toyoura, Kazuaki

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO{sub 3} bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tiltmore » angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO{sub 3} is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.« less

  5. Methodenvergleich zur Bestimmung der hydraulischen Durchlässigkeit

    NASA Astrophysics Data System (ADS)

    Storz, Katharina; Steger, Hagen; Wagner, Valentin; Bayer, Peter; Blum, Philipp

    2017-06-01

    Knowing the hydraulic conductivity (K) is a precondition for understanding groundwater flow processes in the subsurface. Numerous laboratory and field methods for the determination of hydraulic conductivity exist, which can lead to significantly different results. In order to quantify the variability of these various methods, the hydraulic conductivity was examined for an industrial silica sand (Dorsilit) using four different methods: (1) grain-size analysis, (2) Kozeny-Carman approach, (3) permeameter tests and (4) flow rate experiments in large-scale tank experiments. Due to the large volume of the artificially built aquifer, the tank experiment results are assumed to be the most representative. Hydraulic conductivity values derived from permeameter tests show only minor deviation, while results of the empirically evaluated grain-size analysis are about one magnitude higher and show great variances. The latter was confirmed by the analysis of several methods for the determination of K-values found in the literature, thus we generally question the suitability of grain-size analyses and strongly recommend the use of permeameter tests.

  6. Swept-Wing Ice Accretion Characterization and Aerodynamics

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.

    2013-01-01

    NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65% scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20%, 64% and 83% semispan stations of the baseline-reference wing. Three-dimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date. 1

  7. Swept-Wing Ice Accretion Characterization and Aerodynamics

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.

    2013-01-01

    NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65 percent scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20, 64 and 83 percent semispan stations of the baseline-reference wing. Threedimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date.

  8. Do Interim Assessments Reduce the Race and SES Achievement Gaps?

    ERIC Educational Resources Information Center

    Konstantopoulos, Spyros; Li, Wei; Miller, Shazia R.; van der Ploeg, Arie

    2017-01-01

    The authors examined differential effects of interim assessments on minority and low socioeconomic status students' achievement in Grades K-6. They conducted a large-scale cluster randomized experiment in 2009-2010 to evaluate the impact of Indiana's policy initiative introducing interim assessments statewide. The authors used 2-level models to…

  9. Breaking down the Bilingual Cost in Speech Production

    ERIC Educational Resources Information Center

    Sadat, Jasmin; Martin, Clara D.; Magnuson, James S.; Alario, François-Xavier; Costa, Albert

    2016-01-01

    Bilinguals have been shown to perform worse than monolinguals in a variety of verbal tasks. This study investigated this bilingual verbal cost in a large-scale picture-naming study conducted in Spanish. We explored how individual characteristics of the participants and the linguistic properties of the words being spoken influence this performance…

  10. Uncovering the Hidden Meaning of Cross-Curriculum Comparison Results on the Force Concept Inventory

    ERIC Educational Resources Information Center

    Ding, Lin; Caballero, Marcos D.

    2014-01-01

    In a recent study, Caballero and colleagues conducted a large-scale evaluation using the Force Concept Inventory (FCI) to compare student learning outcomes between two introductory physics curricula: the Matter and Interactions (M&I) mechanics course and a pedagogically-reformed-traditional-content (PRTC) mechanics course. Using a conventional…

  11. Process and Learning Outcomes from Remotely-Operated, Simulated, and Hands-on Student Laboratories

    ERIC Educational Resources Information Center

    Corter, James E.; Esche, Sven K.; Chassapis, Constantin; Ma, Jing; Nickerson, Jeffrey V.

    2011-01-01

    A large-scale, multi-year, randomized study compared learning activities and outcomes for hands-on, remotely-operated, and simulation-based educational laboratories in an undergraduate engineering course. Students (N = 458) worked in small-group lab teams to perform two experiments involving stress on a cantilever beam. Each team conducted the…

  12. Integrating social, economic, and ecological values across large landscapes

    Treesearch

    Jessica E. Halofsky; Megan K. Creutzburg; Miles A. Hemstrom

    2014-01-01

    The Integrated Landscape Assessment Project (ILAP) was a multiyear effort to produce information, maps, and models to help land managers, policymakers, and others conduct mid- to broad-scale (e.g., watersheds to states and larger areas) prioritization of land management actions, perform landscape assessments, and estimate cumulative effects of management actions for...

  13. Spatial application of WEPS for estimating wind erosion in the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) is used to simulate soil erosion on cropland and was originally designed to run simulations on a field-scale size. This study extended WEPS to run on multiple fields (grids) independently to cover a large region and to conduct an initial investigation to ass...

  14. North American isolates of Fusarium graminearum produce a novel type A trichothecene

    USDA-ARS?s Scientific Manuscript database

    Deoxynivalenol (DON) is a virulence factor of Fusarium graminearum on wheat and most likely on other host plants. A large scale survey of F. graminearum (sensu strictu) conducted in the northern United States revealed the existence of strains which - based on molecular markers - belong to the 3-acet...

  15. Discovery and toxicity assessment of a novel type A trichothecene produced by US isolates of Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    The filamentous fungus Fusarium graminearum shows a widespread occurrence across temperate regions of the world and can produce several mycotoxins on almost every cereal. A large-scale survey of F. graminearum (sensu stricto) on wheat in the northern United States was conducted to investigate the po...

  16. The Roles of Teacher Efficacy in Instructional Innovation: Its Predictive Relations to Constructivist and Didactic Instruction

    ERIC Educational Resources Information Center

    Nie, Youyan; Tan, Gim Hoon; Liau, Albert Kienfie; Lau, Shun; Chua, Bee Leng

    2013-01-01

    Constructivist instruction has been implemented in the current instructional innovation in Singapore. Large scale survey study was conducted to examine the roles of teacher efficacy in implementing the innovative constructivist instruction. The results showed that the positive correlation between teacher efficacy and constructivist instruction was…

  17. Data Cleaning in Mathematics Education Research: The Overlooked Methodological Step

    ERIC Educational Resources Information Center

    Hubbard, Aleata

    2017-01-01

    The results of educational research studies are only as accurate as the data used to produce them. Drawing on experiences conducting large-scale efficacy studies of classroom-based algebra interventions for community college and middle school students, I am developing practice-based data cleaning procedures to support scholars in conducting…

  18. Evaluation of Point of Use Water Treatment Devices for Removal of Mine Wastes from Well Water

    EPA Science Inventory

    U.S. EPA Region VII and the Office of Research and Development (ORD) are conducting a large-scale study to identify the prevalence of lead (Pb) and other contaminants in drinking water at four mine waste areas in Washington County, Missouri. Numerous households in Potosi, Richwoo...

  19. Effective CPD on a Large Scale: Examining the Development of Multipliers

    ERIC Educational Resources Information Center

    Roesken-Winter, Bettina; Schüler, Sven; Stahnke, Rebekka; Blömeke, Sigrid

    2015-01-01

    Much research has been conducted on exploring teacher learning and constituting Continuous Professional Development (CPD) designs for teachers. Yet, little is known about appropriate design principles of CPD for teacher trainers/multipliers who in turn are supposed to provide CPD for teachers. The German Center for Mathematics Teacher Education…

  20. Composition of the Fusarium graminearum species complex populations in wheat cropping environments in Southern Brazil

    USDA-ARS?s Scientific Manuscript database

    The Fusarium graminearum species complex (FGSC) comprises several toxigenic species that cause Fusarium head blight (FHB) in wheat. In this study, high number (n=671 isolates) of pathogenic isolates (isolated from infected spikes) was obtained from a 3-year large-scale survey (2009-2011) conducted o...

  1. Rater Severity in Large-Scale Assessment: Is It Invariant?

    ERIC Educational Resources Information Center

    McQueen, Joy; Congdon, Peter J.

    A study was conducted to investigate the stability of rater severity over an extended rating period. Multifaceted Rasch analysis was applied to ratings of writing performances of 8,285 primary school (elementary) students. Each performance was rated on two performance dimensions by two trained raters over a period of 7 rating days. Performances…

  2. Nitrogen availability alters macrofungal basidiomycete Blackwell Publishing, Ltd. community structure in optimally fertilized loblolly pine forests

    Treesearch

    Ivan P. Edwards; Jennifer L. Cripliver; Andrew R. Gillespie; Kurt H. Johnsen; M. Scholler; Ronald F. Turco

    2004-01-01

    We investigated the effect of an optimal nutrition strategy designed to maximize loblolly pine (Pinus taeda) growth on the rank abundance structure and diversity of associated basidiomycete communities.We conducted both small- and large-scale below-ground surveys 10 years after the initiation of optimal...

  3. Using National Education Longitudinal Data Sets in School Counseling Research

    ERIC Educational Resources Information Center

    Bryan, Julia A.; Day-Vines, Norma L.; Holcomb-McCoy, Cheryl; Moore-Thomas, Cheryl

    2010-01-01

    National longitudinal databases hold much promise for school counseling researchers. Several of the more frequently used data sets, possible professional implications, and strategies for acquiring training in the use of large-scale national data sets are described. A 6-step process for conducting research with the data sets is explicated:…

  4. Diagnosing Competency Mastery in Science: An Application of GDM to TIMSS 2011 Data

    ERIC Educational Resources Information Center

    Kabiri, Masoud; Ghazi-Tabatabaei, Mahmood; Bazargan, Abbas; Shokoohi-Yekta, Mohsen; Kharrazi, Kamal

    2017-01-01

    Numerous diagnostic studies have been conducted on large-scale assessments to illustrate the students' mastery profile in the areas of math and reading; however, for science a limited number of investigations are reported. This study investigated Iranian eighth graders' competency mastery of science and examined the utility of the General…

  5. Child Development and Childcare in Japan

    ERIC Educational Resources Information Center

    Anme, Tokie; Segal, Uma A.

    2010-01-01

    With increasing numbers of women joining the workforce, there is a need for quality childcare. This project, conducted in Japan and using a large number of participants, sought to standardize an evaluation scale to measure the development of children. The development of children under six years of age (N = 22,819) who are enrolled in childcare…

  6. Evaluating Federal Social Programs: Finding out What Works and What Does Not

    ERIC Educational Resources Information Center

    Muhlhausen, David B.

    2012-01-01

    Federal social programs are rarely evaluated to determine whether they are actually accomplishing their intended purposes. As part of its obligation to spend taxpayers' dollars wisely, Congress should mandate that experimental evaluations of every federal social program be conducted. The evaluations should be large-scale, multisite studies to…

  7. An Account of Studies of Organizational Development in Schools.

    ERIC Educational Resources Information Center

    Runkel, Philip J.; Schmuck, Richard A.

    Most organizational development (OD) projects in schools are never reported in the literature. This paper discusses benefits, outcomes, and success factors disclosed by the first large-scale quantitative survey of OD in schoools conducted by Fullan, Miles, and Taylor in 1978. The paper also explores other relevant studies published through early…

  8. Is Single Gender Schooling Viable in the Public Sector? Lessons from Californias Pilot Program. Final Report.

    ERIC Educational Resources Information Center

    Datnow, Amanda; Hubbard, Lea; Woody, Elisabeth

    In 1997, California became the first state to conduct large-scale experimentation with single gender public education. This longitudinal study examined the impact of single gender academies in six California districts, focusing on equity implications. Data from observations and interviews with educators, policymakers, and students indicated that…

  9. A multi-scale analysis of streamflow response to changes in evapotranspiration and soil hydrology in the Blue Ridge Mountains

    EPA Science Inventory

    A large amount of research exploring the relationship between watershed forest cover and streamflow quantity has been conducted in the southern Blue Ridge Mountains, particularly in association with the USFS Coweeta Hydrologic Laboratory and the Coweeta LTER. However, a clear ans...

  10. Explaining Variation in Instructional Time: An Application of Quantile Regression

    ERIC Educational Resources Information Center

    Corey, Douglas Lyman; Phelps, Geoffrey; Ball, Deborah Loewenberg; Demonte, Jenny; Harrison, Delena

    2012-01-01

    This research is conducted in the context of a large-scale study of three nationally disseminated comprehensive school reform projects (CSRs) and examines how school- and classroom-level factors contribute to variation in instructional time in English language arts and mathematics. When using mean-based OLS regression techniques such as…

  11. Measuring the Immeasurable: A Pilot Study of Museum Effectiveness.

    ERIC Educational Resources Information Center

    Borun, Minda

    The report describes a one-year pilot study of museum effectiveness conducted at the Franklin Institute Science Museum and Planetarium in Philadelphia. The study was intended to develop models for testing visitor response, provide useable information to museum staff, and test the feasibility of a large-scale investigation of science museums.…

  12. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE CODE, MASSACHUSETTS 3. HYDRAULIC CONDUCTI- VITY AND CALCULATED MACRODISPERSIVITIES

    EPA Science Inventory

    Hydraulic conductivity (K) variability in a sand and gravel aquifer on Cape Cod, Massachusetts, was measured and subsequently used in stochastic transport theories to estimate macrodispersivities. Nearly 1500 K measurements were obtained by borehole flowmeter tests ...

  13. Marine biomass: New York State species and site studies. Annual report 1 Dec 80-30 Nov 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squires, D.F.; McKay, L.; Peterson, J.M.

    1982-03-01

    This report presents the results of laboratory and field tests conducted on nine indigenous New York seaweeds surveyed as potential feedstocks for methanogenesis. In addition, various offshore locations near Long Island were valuated for their potential use as sites for large-scale marine biomass experiments.

  14. Gaps between Beliefs, Perceptions, and Practices: The Every Teacher Project on LGBTQ-Inclusive Education in Canadian Schools

    ERIC Educational Resources Information Center

    Taylor, Catherine G.; Meyer, Elizabeth J.; Peter, Tracey; Ristock, Janice; Short, Donn; Campbell, Christopher

    2016-01-01

    The Every Teacher Project involved large-scale survey research conducted to identify the beliefs, perspectives, and practices of Kindergarten to Grade 12 educators in Canadian public schools regarding lesbian, gay, bisexual, transgender, and queer (LGBTQ)-inclusive education. Comparisons are made between LGBTQ and cisgender heterosexual…

  15. Approaches to advancescientific understanding of macrosystems ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Ofir; Ball, Becky; Bond-Lamberty, Benjamin

    Macrosystem ecological studies inherently investigate processes that interact across multiple spatial and temporal scales, requiring intensive sampling and massive amounts of data from diverse sources to incorporate complex cross-scale and hierarchical interactions. Inherent challenges associated with these characteristics include high computational demands, data standardization and assimilation, identification of important processes and scales without prior knowledge, and the need for large, cross-disciplinary research teams that conduct long-term studies. Therefore, macrosystem ecology studies must utilize a unique set of approaches that are capable of encompassing these methodological characteristics and associated challenges. Several case studies demonstrate innovative methods used in current macrosystem ecologymore » studies.« less

  16. The growth of radiative filamentation modes in sheared magnetic fields

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1986-01-01

    Observations of prominences show them to require well-developed magnetic shear and to have complex small-scale structure. Researchers show here that these features are reflected in the results of the theory of radiative condensation. Researchers studied, in particular, the influence of the nominally negligible contributions of perpendicular (to B) thermal conduction. They find a large number of unstable modes, with closely spaced growth rates. Their scale widths across B show a wide range of longitudinal and transverse sizes, ranging from much larger than to much smaller than the magnetic shear scale, the latter characterization applying particularly in the direction of shear variation.

  17. Supervised graph hashing for histopathology image retrieval and classification.

    PubMed

    Shi, Xiaoshuang; Xing, Fuyong; Xu, KaiDi; Xie, Yuanpu; Su, Hai; Yang, Lin

    2017-12-01

    In pathology image analysis, morphological characteristics of cells are critical to grade many diseases. With the development of cell detection and segmentation techniques, it is possible to extract cell-level information for further analysis in pathology images. However, it is challenging to conduct efficient analysis of cell-level information on a large-scale image dataset because each image usually contains hundreds or thousands of cells. In this paper, we propose a novel image retrieval based framework for large-scale pathology image analysis. For each image, we encode each cell into binary codes to generate image representation using a novel graph based hashing model and then conduct image retrieval by applying a group-to-group matching method to similarity measurement. In order to improve both computational efficiency and memory requirement, we further introduce matrix factorization into the hashing model for scalable image retrieval. The proposed framework is extensively validated with thousands of lung cancer images, and it achieves 97.98% classification accuracy and 97.50% retrieval precision with all cells of each query image used. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of Sampling Methods for Bacillus Spore ...

    EPA Pesticide Factsheets

    Journal Article Following a wide area release of biological materials, mapping the extent of contamination is essential for orderly response and decontamination operations. HVAC filters process large volumes of air and therefore collect highly representative particulate samples in buildings. HVAC filter extraction may have great utility in rapidly estimating the extent of building contamination following a large-scale incident. However, until now, no studies have been conducted comparing the two most appropriate sampling approaches for HVAC filter materials: direct extraction and vacuum-based sampling.

  19. Compiler-directed cache management in multiprocessors

    NASA Technical Reports Server (NTRS)

    Cheong, Hoichi; Veidenbaum, Alexander V.

    1990-01-01

    The necessity of finding alternatives to hardware-based cache coherence strategies for large-scale multiprocessor systems is discussed. Three different software-based strategies sharing the same goals and general approach are presented. They consist of a simple invalidation approach, a fast selective invalidation scheme, and a version control scheme. The strategies are suitable for shared-memory multiprocessor systems with interconnection networks and a large number of processors. Results of trace-driven simulations conducted on numerical benchmark routines to compare the performance of the three schemes are presented.

  20. Bridging the gap between small and large scale sediment budgets? - A scaling challenge in the Upper Rhone Basin, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar

    2016-04-01

    A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub-regions cover all three litho-tectonic units of the URB (Helvetic nappes, Penninic nappes, External massifs) and different catchment sizes to capture the inherent variability. Different parameters characterizing topography, surface characteristics, and vegetation cover are analyzed for each storage type. The data is then used in geostatistical models (PCA, stepwise logistic regression) to predict the spatial distribution of sediment storage for the whole URB. We further conduct morphometric analyses of the URB to gain information on the varying degree of glacial imprint and postglacial landscape evolution and their control on the spatial distribution of sediment storage in a large scale drainage basin. Geophysical methods (ground penetrating radar and electrical resistivity tomography) are applied on different sediment storage types on the local scale to estimate mean thicknesses. Additional data from published studies are used to complement our dataset. We integrate the local data in the statistical model on the spatial distribution of sediment storages for the whole URB. Hence, we can extrapolate the stored sediment volumes to the regional scale in order to bridge the gap between small and large scale studies.

  1. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  2. Development of the Large-Scale Forcing Data to Support MC3E Cloud Modeling Studies

    NASA Astrophysics Data System (ADS)

    Xie, S.; Zhang, Y.

    2011-12-01

    The large-scale forcing fields (e.g., vertical velocity and advective tendencies) are required to run single-column and cloud-resolving models (SCMs/CRMs), which are the two key modeling frameworks widely used to link field data to climate model developments. In this study, we use an advanced objective analysis approach to derive the required forcing data from the soundings collected by the Midlatitude Continental Convective Cloud Experiment (MC3E) in support of its cloud modeling studies. MC3E is the latest major field campaign conducted during the period 22 April 2011 to 06 June 2011 in south-central Oklahoma through a joint effort between the DOE ARM program and the NASA Global Precipitation Measurement Program. One of its primary goals is to provide a comprehensive dataset that can be used to describe the large-scale environment of convective cloud systems and evaluate model cumulus parameterizations. The objective analysis used in this study is the constrained variational analysis method. A unique feature of this approach is the use of domain-averaged surface and top-of-the atmosphere (TOA) observations (e.g., precipitation and radiative and turbulent fluxes) as constraints to adjust atmospheric state variables from soundings by the smallest possible amount to conserve column-integrated mass, moisture, and static energy so that the final analysis data is dynamically and thermodynamically consistent. To address potential uncertainties in the surface observations, an ensemble forcing dataset will be developed. Multi-scale forcing will be also created for simulating various scale convective systems. At the meeting, we will provide more details about the forcing development and present some preliminary analysis of the characteristics of the large-scale forcing structures for several selected convective systems observed during MC3E.

  3. Conducting polymer nanowire arrays for high performance supercapacitors.

    PubMed

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Drag and Propulsive Characteristics of Air-Cooled Engine-Nacelle Installations for Large Airplane

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Wilson, Herbert A , Jr

    1942-01-01

    An investigation was conducted in the NACA full-scale wind tunnel to determine the drag and the propulsive efficiency of nacelle-propeller arrangements for a large range of nacelle sizes. In contrast with usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a four-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplanes weighing from about 20 to 100 tons. The results show the drag, the propulsive efficiency, and the over-all efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model is shown for both propeller-removed and propeller-operating conditions.

  5. Large-scale disruptions in a current-carrying magnetofluid

    NASA Technical Reports Server (NTRS)

    Dahlburg, J. P.; Montgomery, D.; Doolen, G. D.; Matthaeus, W. H.

    1986-01-01

    Internal disruptions in a strongly magnetized electrically conducting fluid contained within a rigid conducting cylinder of square cross section are investigated theoretically, both with and without an externally applied axial electric field, by means of computer simulations using the pseudospectral three-dimensional Strauss-equations code of Dahlburg et al. (1985). Results from undriven inviscid, driven inviscid, and driven viscid simulations are presented graphically, and the significant effects of low-order truncations on the modeling accuracy are considered. A helical current filament about the cylinder axis is observed. The ratio of turbulent kinetic energy to total poloidal magnetic energy is found to undergo cyclic bounces in the undriven inviscid case, to exhibit one large bounce followed by decay to a quasi-steady state with poloidal fluid velocity flow in the driven inviscid case, and to show one large bounce followed by further sawtoothlike bounces in the driven viscid case.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji-Hui; Yuan, Qinghong; Deng, Huixiong

    Current thermoelectric (TE) materials often have low performance or contain less abundant and/or toxic elements, thus limiting their large-scale applications. Therefore, new TE materials with high efficiency and low cost are strongly desirable. Here we demonstrate that SiS and SiSe monolayers made from nontoxic and earth-abundant elements intrinsically have low thermal conductivities arising from their low-frequency optical phonon branches with large overlaps with acoustic phonon modes, which is similar to the state-of-the-art experimentally demonstrated material SnSe with a layered structure. Together with high thermal power factors due to their two-dimensional nature, they show promising TE performances with large figure ofmore » merit (ZT) values exceeding 1 or 2 over a wide range of temperatures. We establish some basic understanding of identifying layered materials with low thermal conductivities, which can guide and stimulate the search and study of other layered materials for TE applications.« less

  7. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  8. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  9. Taking the first step towards entrenching mental health in the workplace: insights from a pilot study among HR personnel in Nigeria.

    PubMed

    Atilola, O; Akinyemi, O; Atilola, B

    2014-01-01

    The continued relevance of optimal employee mental health to sustainable human capital development in the workplace underscores the need to start harnessing all resources that can be mobilized to promote the entrenchment of workplace mental health. The strategic place of workplace Human Resource (HR) units in formulating and implementing workplace welfare schemes makes them potential partners. To actualize this, it is important to initially assess the preparedness of HR personnel for, and the possible barriers to entrenching mental health in the workplace. To suggest the initial course of action and to serve as a template for a robust large-scale study, we conduct a pilot assessment of the experience with, attitudes towards, and level of prioritization of mental health in the workplace among a cohort of HR personnel in Nigeria. Participants were recruited in the course of a seminar/workshop and questionnaires were developed by authors to assess variables of interest. Attitudes were examined using an adapted form of the Link's Discrimination-Devaluation (LD-D) scale. A total of 90 human-resource personnel completed the questionnaires. Only 16% of the participants reported having handled the case of an employee with a suspected mental health problem in the preceding 2 years. Attitudes toward employees and prospective employees with mental illness were largely poor. For instance, more than 70% were likely to consider for employment someone with a pre-existing physical disability than for someone with a history of mental illness. In terms of workplace health promotion priorities, physical health seminars took wide precedence over mental health seminars. The preliminary findings of this pilot study justify a need to conduct a large scale study. Significant challenges encountered in the course of this pilot study were highlighted while insights were drawn for the conduct of the main study/project.

  10. Enablers and barriers to large-scale uptake of improved solid fuel stoves: a systematic review.

    PubMed

    Rehfuess, Eva A; Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G

    2014-02-01

    Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as "factors" relating to one of seven domains-fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms-and also recorded issues that impacted equity. We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness.

  11. Recurrent patterning in the daily foraging routes of hamadryas baboons (Papio hamadryas): spatial memory in large-scale versus small-scale space.

    PubMed

    Schreier, Amy L; Grove, Matt

    2014-05-01

    The benefits of spatial memory for foraging animals can be assessed on two distinct spatial scales: small-scale space (travel within patches) and large-scale space (travel between patches). While the patches themselves may be distributed at low density, within patches resources are likely densely distributed. We propose, therefore, that spatial memory for recalling the particular locations of previously visited feeding sites will be more advantageous during between-patch movement, where it may reduce the distances traveled by animals that possess this ability compared to those that must rely on random search. We address this hypothesis by employing descriptive statistics and spectral analyses to characterize the daily foraging routes of a band of wild hamadryas baboons in Filoha, Ethiopia. The baboons slept on two main cliffs--the Filoha cliff and the Wasaro cliff--and daily travel began and ended on a cliff; thus four daily travel routes exist: Filoha-Filoha, Filoha-Wasaro, Wasaro-Wasaro, Wasaro-Filoha. We use newly developed partial sum methods and distribution-fitting analyses to distinguish periods of area-restricted search from more extensive movements. The results indicate a single peak in travel activity in the Filoha-Filoha and Wasaro-Filoha routes, three peaks of travel activity in the Filoha-Wasaro routes, and two peaks in the Wasaro-Wasaro routes; and are consistent with on-the-ground observations of foraging and ranging behavior of the baboons. In each of the four daily travel routes the "tipping points" identified by the partial sum analyses indicate transitions between travel in small- versus large-scale space. The correspondence between the quantitative analyses and the field observations suggest great utility for using these types of analyses to examine primate travel patterns and especially in distinguishing between movement in small versus large-scale space. Only the distribution-fitting analyses are inconsistent with the field observations, which may be due to the scale at which these analyses were conducted. © 2013 Wiley Periodicals, Inc.

  12. Evaluation of an index of biotic integrity approach used to assess biological condition in western U.S. streams and rivers at varying spatial scales

    USGS Publications Warehouse

    Meador, M.R.; Whittier, T.R.; Goldstein, R.M.; Hughes, R.M.; Peck, D.V.

    2008-01-01

    Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data collection, analyses, and interpretation. The index of biotic integrity (IBI) has been widely used in eastern and central North America, where fish assemblages are complex and largely composed of native species, but IBI development has been hindered in the western United States because of relatively low fish species richness and greater relative abundance of alien fishes. Approaches to developing IBIs rarely provide a consistent means of assessing biological condition across multiple ecoregions. We conducted an evaluation of IBIs recently proposed for three ecoregions of the western United States using an independent data set covering a large geographic scale. We standardized the regional IBIs and developed biological condition criteria, assessed the responsiveness of IBIs to basin-level land uses, and assessed their precision and concordance with basin-scale IBIs. Standardized IBI scores from 318 sites in the western United States comprising mountain, plains, and xeric ecoregions were significantly related to combined urban and agricultural land uses. Standard deviations and coefficients of variation revealed relatively low variation in IBI scores based on multiple sampling reaches at sites. A relatively high degree of corroboration with independent, locally developed IBIs indicates that the regional IBIs are robust across large geographic scales, providing precise and accurate assessments of biological condition for western U.S. streams. ?? Copyright by the American Fisheries Society 2008.

  13. Low-Temperature Postfunctionalization of Highly Conductive Oxide Thin-Films toward Solution-Based Large-Scale Electronics.

    PubMed

    Ban, Seok-Gyu; Kim, Kyung-Tae; Choi, Byung Doo; Jo, Jeong-Wan; Kim, Yong-Hoon; Facchetti, Antonio; Kim, Myung-Gil; Park, Sung Kyu

    2017-08-09

    Although transparent conducting oxides (TCOs) have played a key role in a wide range of solid-state electronics from conventional optoelectronics to emerging electronic systems, the processing temperature and conductivity of solution-processed materials seem to be far exceeding the thermal limitations of soft materials and insufficient for high-perfomance large-area systems, respectively. Here, we report a strategy to form highly conductive and scalable solution-processed oxide materials and their successful translation into large-area electronic applications, which is enabled by photoassisted postfunctionalization at low temperature. The low-temperature fabrication of indium-tin-oxide (ITO) thin films was achieved by using photoignited combustion synthesis combined with photoassisted reduction process under hydrogen atmosphere. It was noteworthy that the photochemically activated hydrogens on ITO surface could be triggered to facilitate highly crystalline oxygen deficient structure allowing significant increase of carrier concentration and mobility through film microstructure modifications. The low-temperature postfunctionalized ITO films demonstrated conductivity of >1607 S/cm and sheet resistance of <104 Ω/□ under the process temperature of less than 300 °C, which are comparable to those of vacuum-deposited and high-temperature annealed ITO films. Based on the photoassisted postfunctionalization route, all-solution-processed transparent metal-oxide thin-film-transistors and large-area integrated circuits with the ITO bus lines were demonstrated, showing field-effect mobilities of >6.5 cm 2 V -1 s -1 with relatively good operational stability and oscillation frequency of more than 1 MHz in 7-stage ring oscillators, respectively.

  14. Freezing Injury in Onion Bulb Cells

    PubMed Central

    Palta, Jiwan P.; Levitt, Jacob; Stadelmann, Eduard J.

    1977-01-01

    Onion (Allium cepa L.) bulbs were frozen to −4 and −11 C and kept frozen for up to 12 days. After slow thawing, a 2.5-cm square from a bulb scale was transferred to 25 ml deionized H2O. After shaking for standard times, measurements were made on the effusate and on the effused cells. The results obtained were as follows. Even when the scale tissue was completely infiltrated, and when up to 85% of the ions had diffused out, all of the cells were still alive, as revealed by cytoplasmic streaming and ability to plasmolyze. The osmotic concentration of the cell sap, as measured plasmolytically, decreased in parallel to the rise in conductivity of the effusate. The K+ content of the effusate, plus its assumed counterion, accounted for only 20% of the total solutes, but for 100% of the conductivity. A large part of the nonelectrolytes in the remaining 80% of the solutes was sugars. The increased cell injury and infiltration in the −11 C treatment, relative to the −4 C and control (unfrozen) treatments, were paralleled by increases in conductivity, K+ content, sugar content, and pH of the effusate. In spite of the 100% infiltration of the tissue and the large increase in conductivity of the effusate following freezing, no increase in permeability of the cells to water could be detected. The above observations may indicate that freezing or thawing involves a disruption of the active transport system before the cells reveal any injury microscopically. PMID:16660100

  15. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.

  16. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  17. Assessing the importance of internal tide scattering in the deep ocean

    NASA Astrophysics Data System (ADS)

    Haji, Maha; Peacock, Thomas; Carter, Glenn; Johnston, T. M. Shaun

    2014-11-01

    Tides are one of the main sources of energy input to the deep ocean, and the pathways of energy transfer from barotropic tides to turbulent mixing scales via internal tides are not well understood. Large-scale (low-mode) internal tides account for the bulk of energy extracted from barotropic tides and have been observed to propagate over 1000 km from their generation sites. We seek to examine the fate of these large-scale internal tides and the processes by which their energy is transferred, or ``scattered,'' to small-scale (high-mode) internal tides, which dissipate locally and are responsible for internal tide driven mixing. The EXperiment on Internal Tide Scattering (EXITS) field study conducted in 2010-2011 sought to examine the role of topographic scattering at the Line Islands Ridge. The scattering process was examined via data from three moorings equipped with moored profilers, spanning total depths of 3000--5000 m. The results of our field data analysis are rationalized via comparison to data from two- and three-dimensional numerical models and a two-dimensional analytical model based on Green function theory.

  18. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) modelmore » estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.« less

  19. Very large scale monoclonal antibody purification: the case for conventional unit operations.

    PubMed

    Kelley, Brian

    2007-01-01

    Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.

  20. Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machicoane, Nathanaël; Volk, Romain

    We investigate the response of large inertial particle to turbulent fluctuations in an inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding particle dynamics and may permit stochastic process modelization using two-time models (for instance, Sawford’s). As particles are tracked over long timesmore » in the quasi-totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.« less

  1. Small-scale behavior in distorted turbulent boundary layers at low Reynolds number

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.

    1994-01-01

    During the last three years we have conducted high- and low-Reynolds-number experiments, including hot-wire measurements of the velocity fluctuations, in the test-section-ceiling boundary layer of the 80- by 120-foot Full-Scale Aerodynamics Facility at NASA Ames Research Center, to test the local-isotropy predictions of Kolmogorov's universal equilibrium theory. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods such as large-eddy simulation; however, its range of validity in shear flows has been a subject of controversy. The present experiments were planned to enhance our understanding of the local-isotropy hypothesis. Our experiments were divided into two sets. First, measurements were taken at different Reynolds numbers in a plane boundary layer, which is a 'simple' shear flow. Second, experiments were designed to address this question: will our criteria for the existence of local isotropy hold for 'complex' nonequilibrium flows in which extra rates of mean strain are added to the basic mean shear?

  2. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.

  3. Exploration–exploitation trade-off features a saltatory search behaviour

    PubMed Central

    Volchenkov, Dimitri; Helbach, Jonathan; Tscherepanow, Marko; Kühnel, Sina

    2013-01-01

    Searching experiments conducted in different virtual environments over a gender-balanced group of people revealed a gender irrelevant scale-free spread of searching activity on large spatio-temporal scales. We have suggested and solved analytically a simple statistical model of the coherent-noise type describing the exploration–exploitation trade-off in humans (‘should I stay’ or ‘should I go’). The model exhibits a variety of saltatory behaviours, ranging from Lévy flights occurring under uncertainty to Brownian walks performed by a treasure hunter confident of the eventual success. PMID:23782535

  4. Community health worker programs in India: a rights-based review.

    PubMed

    Bhatia, Kavita

    2014-09-01

    This article presents a historical review of national community health worker (CHW) programs in India using a gender- and rights-based lens. The aim is to derive relevant policy implications to stem attrition and enable sustenance of large-scale CHW programs. For the literature review, relevant government policies, minutes of meetings, reports, newspaper articles and statistics were accessed through official websites and a hand search was conducted for studies on the rights-based aspects of large-scale CHW programs. The analysis shows that the CHWs in three successive Indian national CHW programs have consistently asked for reforms in their service conditions, including increased remuneration. Despite an evolution in stakeholder perspectives regarding the rights of CHWs, service reforms are slow. Performance-based payments do not provide the financial security expected by CHWs as demonstrated in the recent Accredited Social Health Activist (ASHA) program. In most countries, CHWs, who are largely women, have never been integrated into the established, salaried team of health system workers. The two hallmark characteristics of CHWs, namely, their volunteer status and the flexibility of their tasks and timings, impede their rights. The consequences of initiating or neglecting standardization should be considered by all countries with large-scale CHW programs like the ASHA program. © Royal Society for Public Health 2014.

  5. Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress

    PubMed Central

    Rayapuram, Channabasavangowda; Idänheimo, Niina; Hunter, Kerri; Kimura, Sachie; Merilo, Ebe; Vaattovaara, Aleksia; Oracz, Krystyna; Kaufholdt, David; Pallon, Andres; Anggoro, Damar Tri; Glów, Dawid; Lowe, Jennifer; Zhou, Ji; Mohammadi, Omid; Puukko, Tuomas; Albert, Andreas; Lang, Hans; Ernst, Dieter; Kollist, Hannes; Brosché, Mikael; Durner, Jörg; Borst, Jan Willem; Collinge, David B.; Karpiński, Stanisław; Lyngkjær, Michael F.; Robatzek, Silke; Wrzaczek, Michael; Kangasjärvi, Jaakko

    2015-01-01

    Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance. PMID:26197346

  6. Implementation of the Agitated Behavior Scale in the Electronic Health Record.

    PubMed

    Wilson, Helen John; Dasgupta, Kritis; Michael, Kathleen

    The purpose of the study was to implement an Agitated Behavior Scale through an electronic health record and to evaluate the usability of the scale in a brain injury unit at a rehabilitation hospital. A quality improvement project was conducted in the brain injury unit at a large rehabilitation hospital with registered nurses as participants using convenience sampling. The project consisted of three phases and included education, implementation of the scale in the electronic health record, and administration of the survey questionnaire, which utilized the system usability scale. The Agitated Behavior Scale was found to be usable, and there was 92.2% compliance with the use of the electronic Electronic Agitated Behavior Scale. The Agitated Behavior Scale was effectively implemented in the electronic health record and was found to be usable in the assessment of agitation. Utilization of the scale through the electronic health record on a daily basis will allow for an early identification of agitation in patients with traumatic brain injury and enable prompt interventions to manage agitation.

  7. Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning.

    PubMed

    Zhu, Fengbo; Lin, Ji; Wu, Zi Liang; Qu, Shaoxing; Yin, Jun; Qian, Jin; Zheng, Qiang

    2018-04-25

    Conductive polymer hydrogels (CPHs) that combine the unique properties of hydrogels and electronic properties of conductors have shown their great potentials in wearable/implantable electronic devices, where materials with remarkable mechanical properties, high conductivity, and easy processability are demanding. Here, we have developed a new type of polyion complex/polyaniline (PIC/PAni) hybrid hydrogels that are tough, conductive, and can be facilely patterned. The incorporation of conductive phase (PAni) into PIC matrix through phytic acid resulted in hybrid gels with ∼65 wt % water; high conductivity while maintaining the key viscoelasticity of the tough matrix. The gel prepared from 1 M aniline (Ani) exhibited the breaking strain, fracture stress, tensile modulus, and electrical conductivity of 395%, 1.15 MPa, 5.31 MPa, and 0.7 S/m, respectively, superior to the most existing CPHs. The mechanical and electrical performance of PIC/PAni hybrid hydrogels exhibited pronounced rate-dependent and self-recovery behaviors. The hybrid gels can effectively detect subtle human motions as strain sensors. Alternating conductive/nonconductive patterns can be readily achieved by selective Ani polymerization using stencil masks. This facile patterning method based on PIC/PAni gels can be readily scaled up for fast fabrication of wavy gel circuits and multichannel sensor arrays, enabling real-time monitoring of the large-extent and large-area deformations with various sensitivities.

  8. A Proposal for Six Sigma Integration for Large-Scale Production of Penicillin G and Subsequent Conversion to 6-APA.

    PubMed

    Nandi, Anirban; Pan, Sharadwata; Potumarthi, Ravichandra; Danquah, Michael K; Sarethy, Indira P

    2014-01-01

    Six Sigma methodology has been successfully applied to daily operations by several leading global private firms including GE and Motorola, to leverage their net profits. Comparatively, limited studies have been conducted to find out whether this highly successful methodology can be applied to research and development (R&D). In the current study, we have reviewed and proposed a process for a probable integration of Six Sigma methodology to large-scale production of Penicillin G and its subsequent conversion to 6-aminopenicillanic acid (6-APA). It is anticipated that the important aspects of quality control and quality assurance will highly benefit from the integration of Six Sigma methodology in mass production of Penicillin G and/or its conversion to 6-APA.

  9. A Proposal for Six Sigma Integration for Large-Scale Production of Penicillin G and Subsequent Conversion to 6-APA

    PubMed Central

    Nandi, Anirban; Danquah, Michael K.

    2014-01-01

    Six Sigma methodology has been successfully applied to daily operations by several leading global private firms including GE and Motorola, to leverage their net profits. Comparatively, limited studies have been conducted to find out whether this highly successful methodology can be applied to research and development (R&D). In the current study, we have reviewed and proposed a process for a probable integration of Six Sigma methodology to large-scale production of Penicillin G and its subsequent conversion to 6-aminopenicillanic acid (6-APA). It is anticipated that the important aspects of quality control and quality assurance will highly benefit from the integration of Six Sigma methodology in mass production of Penicillin G and/or its conversion to 6-APA. PMID:25057428

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrinan, Thomas; Leigh, Jason; Renambot, Luc

    Mixed presence collaboration involves remote collaboration between multiple collocated groups. This paper presents the design and results of a user study that focused on mixed presence collaboration using large-scale tiled display walls. The research was conducted in order to compare data synchronization schemes for multi-user visualization applications. Our study compared three techniques for sharing data between display spaces with varying constraints and affordances. The results provide empirical evidence that using data sharing techniques with continuous synchronization between the sites lead to improved collaboration for a search and analysis task between remotely located groups. We have also identified aspects of synchronizedmore » sessions that result in increased remote collaborator awareness and parallel task coordination. It is believed that this research will lead to better utilization of large-scale tiled display walls for distributed group work.« less

  11. Biohazards Assessment in Large-Scale Zonal Centrifugation

    PubMed Central

    Baldwin, C. L.; Lemp, J. F.; Barbeito, M. S.

    1975-01-01

    A study was conducted to determine the biohazards associated with use of the large-scale zonal centrifuge for purification of moderate risk oncogenic viruses. To safely and conveniently assess the hazard, coliphage T3 was substituted for the virus in a typical processing procedure performed in a National Cancer Institute contract laboratory. Risk of personnel exposure was found to be minimal during optimal operation but definite potential for virus release from a number of centrifuge components during mechanical malfunction was shown by assay of surface, liquid, and air samples collected during the processing. High concentration of phage was detected in the turbine air exhaust and the seal coolant system when faulty seals were employed. The simulant virus was also found on both centrifuge chamber interior and rotor surfaces. Images PMID:1124921

  12. [Japanese epidemiologic investigation for non-steroidal anti-inflammatory drugs-induced ulcers].

    PubMed

    Miyake, Kazumasa; Sakamoto, Choitsu

    2011-06-01

    This review summaried epidemiologic investigation for non-steroidal anti-inflammatory drugs (NSAIDs)-induced ulcers to focus on the Japanese evidence. In Japan, national health insurance does not cover procedures that prevent or lower the risk for NSAIDs-induced ulcer. In NSAIDs treatment to patients with risk factors, it is desirable to administer antiulcer agents. However, in Japan, there are no large-scale studies on the efficacy of co-medication such as proton pump inhibitors, prostaglandin analogs (misoprostol) or histamine-H2 receptor antagonists or on the effectiveness of H. pylori eradication or selective COX-2 antagonists. In the future, large-scale clinical studies should be conducted to accumulate high quality evidence including cost-effectiveness and overall safety including cardiovascular events, because Japanese differ from Westerners in several genetical or acquired factors.

  13. Transport Coefficients from Large Deviation Functions

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  14. Massively parallel electrical conductivity imaging of the subsurface: Applications to hydrocarbon exploration

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.; Commer, Michael

    2009-07-01

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.

  15. Cost estimate for a proposed GDF Suez LNG testing program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.

    2014-02-01

    At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire,more » and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.« less

  16. Multi-scale controls on spatial variability in river biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jennifer; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Excessive nutrient concentrations are common in surface waters and groundwaters in agricultural catchments worldwide. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical cycling rates can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are largely unknown. Here, we aimed to assess: 1) how differences in river geomorphological heterogeneity control solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small scale targeted management interventions to alter geomorphic heterogeneity may be effective in creating hotspots of river biogeochemical cycling and nutrient load attenuation.

  17. Low-Energy Theory of Disordered Graphene

    NASA Astrophysics Data System (ADS)

    Altland, Alexander

    2006-12-01

    At low values of external doping, graphene displays a wealth of unconventional transport properties. Perhaps most strikingly, it supports a robust “metallic” regime, with universal conductance of the order of the conductance quantum. We here apply a combination of mean-field and bosonization methods to explore the large scale transport properties of the system. We find that, irrespective of the doping level, disordered graphene is subject to the common mechanisms of Anderson localization. However, at low doping a number of renormalization mechanisms conspire to protect the conductivity of the system, to an extend that strong localization may not be seen even at temperatures much smaller than those underlying present experimental work.

  18. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    NASA Astrophysics Data System (ADS)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.

  19. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele

    2017-01-01

    SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS reproduced the observations well (temperature RMSE equal to 0.11 °C). Furthermore, SANIFS simulations were compared with hourly time series of temperature, sea level and velocity measured on the coastal-harbour scale, showing a good agreement. Simulations in the Gulf of Taranto described a circulation mainly characterized by an anticyclonic gyre with the presence of cyclonic vortexes in shelf-coastal areas. A surface water inflow from the open sea to Mar Grande characterizes the coastal-harbour scale.

  20. A pilot study to examine the relationship between boredom and spirituality in cancer patients.

    PubMed

    Inman, Alice; Kirsh, Kenneth L; Passik, Steven D

    2003-06-01

    Spirituality has been neglected when assessing the well-being of cancer patients. Traditionally, researchers have focused on areas such as physical, social, and emotional functioning. However, there is a potential for spirituality to have a large impact on quality of life in patients with cancer. The current study was conducted to investigate the relationship between spirituality and boredom, constraint, social contact, and depression. A total of 100 oncology patients completed several assessment instruments, including the Purposelessness, Under-stimulation, and Boredom (PUB) Scale, Functional Assessment of Cancer Therapy Scale-Anemia, Brief Zung Self-Rating Depression Scale (BZSDS), Cancer Behavior Inventory, Systems of Belief Inventory, and Eastern Cooperative Oncology Group Performance Status Scale. The average age of the sample was 62.37 years (SD = 13.43) and was comprised of 60 women (60%) and 40 men (40%). A regression analysis conducted to explore the impact of the variables on quality of life found only the BZSDS (R2 delta = .650, F = 180.392, p < .001) and the PUB Scale (R2 delta = .077, F = 26.885, p < .001) were significant predictors of quality of life. Another set of regression analyses were conducted to explore whether spirituality had a mediating effect on this relationship, but the mediated model was not supported. We conclude that spirituality and boredom are difficult concepts to define, operationalize, and measure, but crucial to our understanding of quality of life in advanced cancer. More research is needed to clarify the nature of the interrelationships between these important concepts.

  1. Exploring the Adult Learning Research Field by Analysing Who Cites Whom

    ERIC Educational Resources Information Center

    Nylander, Erik; Österlund, Lovisa; Fejes, Andreas

    2018-01-01

    In this article we report on findings from a large-scale bibliographic study conducted based on the citation practices within the field of research on adult learning. Our data consist of 151,261 citation links between more than 33,000 different authors whose papers were published in five leading international journals in the field of adult…

  2. Support Systems for Poor Readers: Empirical Data from Six EU Member States

    ERIC Educational Resources Information Center

    Ise, Elena; Blomert, Leo; Bertrand, Daisy; Faisca, Luis; Puolakanaho, Anne; Saine, Nina L.; Suranyi, Zsuzsanna; Vaessen, Anniek; Csepe, Valeria; Lyytinen, Heikki; Reis, Alexandra; Ziegler, Johannes C.; Schulte-Korne, Gerd

    2011-01-01

    This study surveyed and compared support systems for poor readers in six member states of the European Union (EU). The goal was to identify features of effective support systems. A large-scale questionnaire survey was conducted among mainstream teachers (n = 4,210) and remedial teachers (n = 2,395). Results indicate that the six support systems…

  3. What Did We Learn about Our Teachers and Principals? Results of the TALIS-2013 International Comparative Study

    ERIC Educational Resources Information Center

    Pinskaya, M. A.; Lenskaya, E. A.; Ponomareva, A. A.; Brun, I. V.; Kosaretsky, S. G.; Savelyeva, M. B.

    2016-01-01

    The Teaching and Learning International Survey (TALIS) is a large-scale and authoritative international study of teachers. It is conducted by the Organization for Economic Cooperation and Development (OECD) to collect and compare information about teachers and principals in different countries in such key areas as the training and professional…

  4. Use of Direct and Indirect Estimates of Crown Dimensions to Predict One Seed Juniper Woody Biomass Yield for Alternative Energy Uses

    USDA-ARS?s Scientific Manuscript database

    Throughout the western United States there is increased interest in utilizing woodland biomass as an alternative energy source. We conducted a pilot study to predict one seed juniper (Juniperus monosperma) chip yield from tree-crown dimensions measured on the ground or derived from Very Large Scale ...

  5. A Cross-Cultural Comparison of Student Learning Patterns in Higher Education

    ERIC Educational Resources Information Center

    Marambe, Kosala N.; Vermunt, Jan D.; Boshuizen, Henny P. A.

    2012-01-01

    The aim of this study was to compare student learning patterns in higher education across different cultures. A meta-analysis was performed on three large-scale studies that had used the same research instrument: the Inventory of learning Styles (ILS). The studies were conducted in the two Asian countries Sri Lanka and Indonesia and the European…

  6. Discussing the Flynn Effect: From Causes and Interpretation to Implications

    ERIC Educational Resources Information Center

    Kanaya, Tomoe

    2016-01-01

    Clark, Lawlor-Savage, and Goghari (this issue) point out that evidence of IQ rises had been documented decades before it was named the Flynn effect. These previous studies, however, were conducted sporadically and in isolated samples. Flynn (1984, 1987) examined them in a large-scale manner and was able to show their systematic and global nature.…

  7. Remote analysis of biological invasion and the impact of enemy release

    Treesearch

    James R. Kellner; Gregory P. Asner; Kealoha M. Kinney; Scott R. Loarie; David E. Knapp; Ty Kennedy-Bowdoin; Erin J. Questad; Susan Cordell; Jarrod M. Thaxton

    2011-01-01

    Escape from natural enemies is a widely held generalization for the success of exotic plants. We conducted a large-scale experiment in Hawaii (USA) to quantify impacts of ungulate removal on plant growth and performance, and to test whether elimination of an exotic generalist herbivore facilitated exotic success. Assessment of impacted and control sites before and...

  8. Written Parental Consent and the Use of Incentives in a Youth Smoking Prevention Trial: A Case Study from Project SPLASH

    ERIC Educational Resources Information Center

    Leakey, Tricia; Lunde, Kevin B.; Koga, Karin; Glanz, Karen

    2004-01-01

    More Institutional Review Boards (IRBs) are requiring written parental consent in school health intervention trials. Because this requirement presents a formidable challenge in conducting large-scale research, it is vital for investigators to share effective strategies learned from completed trials. Investigators for the recently completed Project…

  9. WHK Interns Highlight the Importance of Their Work | Poster

    Cancer.gov

    The Werner H. Kirsten (WHK) student interns at the National Cancer Institute (NCI) at Frederick are participating in groundbreaking cancer research, along with large-scale projects and technological advancements, during their senior year of high school. The interns at NCI at Frederick are given more than the opportunity to watch the research; they participate in and conduct

  10. What Students Say about Bullying

    ERIC Educational Resources Information Center

    Davis, Stan; Nixon, Charisse

    2011-01-01

    Educators striving to create safe, respectful, bully-free school climates have many programs and approaches to choose from--but it's difficult to know which will work best. The experiences of students who have been bullied can help educators decide what works and what doesn't. The authors conducted a large-scale survey of students, and asked 3,000…

  11. Differences in Access to Care among Students Using School-Based Health Centers

    ERIC Educational Resources Information Center

    Parasuraman, Sarika Rane; Shi, Leiyu

    2015-01-01

    Health care reform has changed the landscape for the nation's health safety net, and school-based health centers (SBHCs) remain an important part of this system. However, few large-scale studies have been conducted to assess their impact on access to care. This study investigated differences in access among a nationally representative sample of…

  12. Modeling Nonignorable Missing Data with Item Response Theory (IRT). Research Report. ETS RR-10-11

    ERIC Educational Resources Information Center

    Rose, Norman; von Davier, Matthias; Xu, Xueli

    2010-01-01

    Large-scale educational surveys are low-stakes assessments of educational outcomes conducted using nationally representative samples. In these surveys, students do not receive individual scores, and the outcome of the assessment is inconsequential for respondents. The low-stakes nature of these surveys, as well as variations in average performance…

  13. Field Efficacy and application timing of methoxyfenozide, a reduced risk treatment for control of navel orangeworm (Lepidpotera: Pyralidae) in almonds

    USDA-ARS?s Scientific Manuscript database

    Large-scale field efficacy trials of methoxyfenozide (Intrepid®), a reduced-risk molting agonist insecticide, were conducted in 2004 and 2005 in an orchard containing ‘Nonpareil’ and ‘Sonora’ variety almonds located in Kern County, California. Methoxyfenozide applied one to three times, and the orga...

  14. Preschool Center Quality and School Readiness: Quality Effects and Variation by Demographic and Child Characteristics

    ERIC Educational Resources Information Center

    Keys, Tran D.; Farkas, George; Burchinal, Margaret R.; Duncan, Greg J.; Vandell, Deborah L.; Li, Weilin; Ruzek, Erik A.; Howes, Carollee

    2013-01-01

    This article examines associations between observed quality in preschool center classrooms for approximately 6,250 three- to five-year-olds and their school readiness skills at kindergarten entry. Secondary analyses were conducted using data from four large-scale studies to estimate the effects of preschool center quality and interactions between…

  15. Low power signal processing research at Stanford

    NASA Technical Reports Server (NTRS)

    Burr, J.; Williamson, P. R.; Peterson, A.

    1991-01-01

    This paper gives an overview of the research being conducted at Stanford University's Space, Telecommunications, and Radioscience Laboratory in the area of low energy computation. It discusses the work we are doing in large scale digital VLSI neural networks, interleaved processor and pipelined memory architectures, energy estimation and optimization, multichip module packaging, and low voltage digital logic.

  16. Investigating the Effect of Academic Procrastination on the Frequency and Variety of Academic Misconduct: A Panel Study

    ERIC Educational Resources Information Center

    Patrzek, Justine; Sattler, Sebastian; van Veen, Floris; Grunschel, Carola; Fries, Stefan

    2015-01-01

    In prior studies, academic procrastination has been discussed as an influencing factor of academic misconduct. However, empirical studies were conducted solely cross-sectionally and investigated only a few forms of academic misconduct. This large scale web-based study examined the responses of between 1359 and 2207 participants from different…

  17. Education Researchers as Bricoleurs in the Creation of Sustainable Learning Environments

    ERIC Educational Resources Information Center

    Mahlomaholo, Sechaba

    2014-01-01

    Higher education has, to date, been unable to provide effective and lasting solutions to challenges of education, because large sections thereof continue to search for knowledge for its own sake. At best, they conduct responsive research, but on a small scale they reduce the complexity that is education to a neat unilinear process which can be…

  18. Multisite Randomized Controlled Trial Examining Intelligent Tutoring of Structure Strategy for Fifth-Grade Readers

    ERIC Educational Resources Information Center

    Wijekumar, Kausalai; Meyer, Bonnie J. F.; Lei, Pui-Wa; Lin, Yu-Chu; Johnson, Lori A.; Spielvogel, James A.; Shurmatz, Kathryn M.; Ray, Melissa; Cook, Michael

    2014-01-01

    This article reports on a large scale randomized controlled trial to study the efficacy of a web-based intelligent tutoring system for the structure strategy designed to improve content area reading comprehension. The research was conducted with 128 fifth-grade classrooms within 12 school districts in rural and suburban settings. Classrooms within…

  19. Understanding and Supporting Online Communities of Practice: Lessons Learned from Wikipedia

    ERIC Educational Resources Information Center

    Zhao, Xiaoli; Bishop, M. J.

    2011-01-01

    In order to seek more effective ways to design and support online communities of practice, we examined how Wikipedia, a large-scale online community of practice, is developed and emerges over time. We conducted a Delphi study to explore the social, organizational, and technical factors that Wikipedia experts believe have supported the evolution of…

  20. Classroom Activity Connections: Demonstrating Various Flame Tests Using Common Household Materials

    ERIC Educational Resources Information Center

    Baldwin, Bruce W.; Hasbrouck, Scott; Smith, Jordan; Kuntzleman, Thomas S.

    2010-01-01

    In "JCE" Activity #67, "Flame Tests: Which Ion Causes the Color?", Michael Sanger describes how to conduct flame tests with household items. We have used this activity in outreach settings, and have extended it in a variety of ways. For example, we have demonstrated large-scale strontium (red), copper (green), and carbon (blue) flames using only…

  1. Designing, Building, and Connecting Networks to Support Distributed Collaborative Empirical Writing Research

    ERIC Educational Resources Information Center

    Brunk-Chavez, Beth; Pigg, Stacey; Moore, Jessie; Rosinski, Paula; Grabill, Jeffrey T.

    2018-01-01

    To speak to diverse audiences about how people learn to write and how writing works inside and outside the academy, we must conduct research across geographical, institutional, and cultural contexts as well as research that enables comparison when appropriate. Large-scale empirical research is useful for both of these moves; however, we must…

  2. A Unique Design for High-Impact Safety and Awareness Training

    ERIC Educational Resources Information Center

    Calandra, Brendan; Harmon, Stephen W.

    2012-01-01

    The authors were asked to design and develop a large-scale, web-based learning environment that would effectively assist international aid workers in conducting their daily tasks in the field, at home and in the office in a safer and more secure fashion. The design, development and dissemination of the training needed to be done quickly,…

  3. A Model of Foreign Language Anxiety in the Saudi EFL Context

    ERIC Educational Resources Information Center

    Alrabai, Fakieh

    2014-01-01

    Feelings of anxiety are commonly expressed by Saudi learners in their English as a foreign language (EFL) classes. These feelings typically exert detrimental effects on these learners' foreign language attainment. This paper reports on the findings of a large-scale study for which three data collection iterations were conducted over three years to…

  4. Northeastern Oregon bark beetle control project 1910-11.

    Treesearch

    H.E. Burke

    1990-01-01

    This history, from the memoirs of the entomologist in charge, describes the first large-scale cooperative bark beetle control project funded by Congress in the Western United States. It describes relations between the Forest Service, Bureau of Entomology, and private timber owners, how the project was organized and conducted, and results of the control measures. The...

  5. Rings Around the Sun and Moon: Coronae and Diffraction

    ERIC Educational Resources Information Center

    Cowley, Les; Laven, Philip; Vollmer, Michael

    2005-01-01

    Atmospheric optical effects can teach much about physics and especially optics. Coronae--coloured rings around the sun or moon--are large-scale consequences of diffraction, which is often thought of as only a small effect confined to the laboratory. We describe coronae, how they are formed and experiments that can be conducted on ones in the sky.…

  6. Keeping Teachers in the Center: A Framework of Data-Driven Decision-Making

    ERIC Educational Resources Information Center

    Light, Daniel; Wexler, Dara H.; Heinze, Juliette

    2004-01-01

    The Education Development Center's Center for Children and Technology (CCT) conducted a three year study of a large-scale data reporting system, developed by the Grow Network for New York City's Department of Education. This paper presents a framework based on two years of research exploring the intersection of decision-support technologies,…

  7. An Investigation into E-Tool Use for Formative Assignment Assessment--Status and Recommendations

    ERIC Educational Resources Information Center

    Heinrich, Eva; Milne, John; Moore, Maurice

    2009-01-01

    This article reports on a comprehensive study, investigating the use of e-tools for formative assignment assessment. The study conducted a large-scale literature review and interviews with 90 academics at five New Zealand tertiary institutions. The focus of the study was on formative assessment provided in assignments, an area in which educational…

  8. Evaluating Educational Programs. ETS R&D Scientific and Policy Contributions Series. ETS SPC-11-01. ETS Research Report No. RR-11-15

    ERIC Educational Resources Information Center

    Ball, Samuel

    2011-01-01

    Since its founding in 1947, ETS has conducted a significant and wide-ranging research program that has focused on, among other things, psychometric and statistical methodology; educational evaluation; performance assessment and scoring; large-scale assessment and evaluation; cognitive, developmental, personality, and social psychology; and…

  9. A NASTRAN Model of a Large Flexible Swing-Wing Bomber. Volume 1: NASTRAN Model Plane

    NASA Technical Reports Server (NTRS)

    Mock, W. D.

    1982-01-01

    A review was conducted of B-1 aircraft no. 2 (A/C-2) internal loads models to determine the minimum model complexity necessary to fulfill all of the airloads research study objectives. Typical model sizings were tabulated at selected vehicle locations, and scale layouts were prepared of the NASTRAN structural analysis model.

  10. The EpiSLI Database: A Publicly Available Database on Speech and Language

    ERIC Educational Resources Information Center

    Tomblin, J. Bruce

    2010-01-01

    Purpose: This article describes a database that was created in the process of conducting a large-scale epidemiologic study of specific language impairment (SLI). As such, this database will be referred to as the EpiSLI database. Children with SLI have unexpected and unexplained difficulties learning and using spoken language. Although there is no…

  11. Iron, zinc, folate, and vitamin B12 status increased among women and children in Yaounde and Douala, Cameroon, one year after introducing fortified wheat flour

    USDA-ARS?s Scientific Manuscript database

    Background: Few data, to our knowledge, are available on the effectiveness of large-scale food fortification programs. Objective: We assessed the impact of mandatory wheat flour fortification on micronutrient status in Yaounde and Douala, Cameroon. Methods: We conducted representative surveys 2 y ...

  12. Assessment of forest fuel loadings in Puerto Rico and the US Virgin Islands

    Treesearch

    Thomas J. Brandeis; Christopher W. Woodall

    2008-01-01

    Quantification of the downed woody materials that comprise forest fuels has gained importance in Caribbean forest ecosystems due to the increasing incidence and severity of wildfires on island ecosystems. Because large-scale assessments of forest fuels have rarely been conducted for these ecosystems, forest fuels were assessed at 121 US Department of Agriculture forest...

  13. Remediating Reading Difficulties in a Response to Intervention Model with Secondary Students

    ERIC Educational Resources Information Center

    Pyle, Nicole; Vaughn, Sharon

    2012-01-01

    The research on Response to Intervention (RtI) with secondary students is scant; however, a recently conducted, multiyear, large-scale implementation of RtI with middle-school students provides findings that inform practices and future directions for research. This article provides an overview of the findings from each of the 3 years of an…

  14. Evaluation of a Resource Discovery Service: FindIt@Bham

    ERIC Educational Resources Information Center

    Bull, Stephen; Craft, Edward; Dodds, Andrew

    2014-01-01

    In autumn 2012, the University of Birmingham launched FindIt@Bham, a Primo-based Resource Discovery Service, after a series of focus groups with students and staff to help determine its initial configuration and customization. This article presents the results from a large-scale online survey and focus groups that were conducted to poll users'…

  15. Validation of the RAGE Hydrocode for Impacts into Volatile-Rich Targets

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Asphaug, E.; Coker, R. F.; Wohletz, K. H.; Korycansky, D. G.; Gisler, G. R.

    2007-12-01

    In preparation for a detailed study of large-scale impacts into the Martian surface, we have validated the RAGE hydrocode (Gittings et al., in press, CSD) against a suite of experiments and statistical models. We present comparisons of hydrocode models to centimeter-scale gas gun impacts (Nakazawa et al. 2002), an underground nuclear test (Perret, 1971), and crater scaling laws (Holsapple 1993, O'Keefe and Ahrens 1993). We have also conducted model convergence and uncertainty analyses which will be presented. Results to date are encouraging for our current model goals, and indicate areas where the hydrocode may be extended in the future. This validation work is focused on questions related to the specific problem of large impacts into volatile-rich targets. The overall goal of this effort is to be able to realistically model large-scale Noachian, and possibly post- Noachian, impacts on Mars not so much to model the crater morphology as to understand the evolution of target volatiles in the post-impact regime, to explore how large craters might set the stage for post-impact hydro- geologic evolution both locally (in the crater subsurface) and globally, due to the redistribution of volatiles from the surface and subsurface into the atmosphere. This work is performed under the auspices of IGPP and the DOE at LANL under contracts W-7405-ENG-36 and DE-AC52-06NA25396. Effort by DK and EA is sponsored by NASA's Mars Fundamental Research Program.

  16. SECARB Commercial Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperna, George J.; Pashin, Jack; Walsh, Peter

    The Commercial Scale Project is a US DOE/NETL funded initiative aimed at enhancing the knowledge-base and industry’s ability to geologically store vast quantities of anthropogenic carbon. In support of this goal, a large-scale, stacked reservoir geologic model was developed for Gulf Coast sediments centered on the Citronelle Dome in southwest Alabama, the site of the SECARB Phase III Anthropogenic Test. Characterization of regional geology to construct the model consists of an assessment of the entire stratigraphic continuum at Citronelle Dome, from surface to the depth of the Donovan oil-bearing formation. This project utilizes all available geologic data available, which includes:more » modern geophysical well logs from three new wells drilled for SECARB’s Anthropogenic Test; vintage logs from the Citronelle oilfield wells; porosity and permeability data from whole core and sidewall cores obtained from the injection and observation wells drilled for the Anthropogenic Test; core data obtained from the SECARB Phase II saline aquifer injection test; regional core data for relevant formations from the Geological Survey of Alabama archives. Cross sections, isopach maps, and structure maps were developed to validate the geometry and architecture of the Citronelle Dome for building the model, and assuring that no major structural defects exist in the area. A synthetic neural network approach was used to predict porosity using the available SP and resistivity log data for the storage reservoir formations. These data are validated and applied to extrapolate porosity data over the study area wells, and to interpolate permeability amongst these data points. Geostatistical assessments were conducted over the study area. In addition to geologic characterization of the region, a suite of core analyses was conducted to construct a depositional model and constrain caprock integrity. Petrographic assessment of core was conducted by OSU and analyzed to build a depositional framework for the region and provide modern day analogues. Stability of the caprock over several test parameters was conducted by UAB to yield comprehensive measurements on long term stability of caprocks. The detailed geologic model of the full earth volume from surface thru the Donovan oil reservoir is incorporated into a state-of-the-art reservoir simulation conducted by the University of Alabama at Birmingham (UAB) to explore optimization of CO 2 injection and storage under different characterizations of reservoir flow properties. The application of a scaled up geologic modeling and reservoir simulation provides a proof of concept for the large scale volumetric modeling of CO 2 injection and storage the subsurface.« less

  17. Ecological succession, hydrology and carbon acquisition of biological soil crusts measured at the micro-scale.

    PubMed

    Tighe, Matthew; Haling, Rebecca E; Flavel, Richard J; Young, Iain M

    2012-01-01

    The hydrological characteristics of biological soil crusts (BSCs) are not well understood. In particular the relationship between runoff and BSC surfaces at relatively large (>1 m(2)) scales is ambiguous. Further, there is a dearth of information on small scale (mm to cm) hydrological characterization of crust types which severely limits any interpretation of trends at larger scales. Site differences and broad classifications of BSCs as one soil surface type rather than into functional form exacerbate the problem. This study examines, for the first time, some hydrological characteristics and related surface variables of a range of crust types at one site and at a small scale (sub mm to mm). X-ray tomography and fine scale hydrological measurements were made on intact BSCs, followed by C and C isotopic analyses. A 'hump' shaped relationship was found between the successional stage/sensitivity to physical disturbance classification of BSCs and their hydrophobicity, and a similar but 'inverse hump' relationship exists with hydraulic conductivity. Several bivariate relationships were found between hydrological variables. Hydraulic conductivity and hydrophobicity of BSCs were closely related but this association was confounded by crust type. The surface coverage of crust and the microporosity 0.5 mm below the crust surface were closely associated irrespective of crust type. The δ (13)C signatures of the BSCs were also related to hydraulic conductivity, suggesting that the hydrological characteristics of BSCs alter the chemical processes of their immediate surroundings via the physiological response (C acquisition) of the crust itself. These small scale results illustrate the wide range of hydrological properties associated with BSCs, and suggest associations between the ecological successional stage/functional form of BSCs and their ecohydrological role that needs further examination.

  18. Combined heat and power systems: economic and policy barriers to growth

    PubMed Central

    2012-01-01

    Background Combined Heat and Power (CHP) systems can provide a range of benefits to users with regards to efficiency, reliability, costs and environmental impact. Furthermore, increasing the amount of electricity generated by CHP systems in the United States has been identified as having significant potential for impressive economic and environmental outcomes on a national scale. Given the benefits from increasing the adoption of CHP technologies, there is value in improving our understanding of how desired increases in CHP adoption can be best achieved. These obstacles are currently understood to stem from regulatory as well as economic and technological barriers. In our research, we answer the following questions: Given the current policy and economic environment facing the CHP industry, what changes need to take place in this space in order for CHP systems to be competitive in the energy market? Methods We focus our analysis primarily on Combined Heat and Power Systems that use natural gas turbines. Our analysis takes a two-pronged approach. We first conduct a statistical analysis of the impact of state policies on increases in electricity generated from CHP system. Second, we conduct a Cost-Benefit analysis to determine in which circumstances funding incentives are necessary to make CHP technologies cost-competitive. Results Our policy analysis shows that regulatory improvements do not explain the growth in adoption of CHP technologies but hold the potential to encourage increases in electricity generated from CHP system in small-scale applications. Our Cost-Benefit analysis shows that CHP systems are only cost competitive in large-scale applications and that funding incentives would be necessary to make CHP technology cost-competitive in small-scale applications. Conclusion From the synthesis of these analyses we conclude that because large-scale applications of natural gas turbines are already cost-competitive, policy initiatives aimed at a CHP market dominated primarily by large-scale (and therefore already cost-competitive) systems have not been effectively directed. Our recommendation is that for CHP technologies using natural gas turbines, policy focuses should be on increasing CHP growth in small-scale systems. This result can be best achieved through redirection of state and federal incentives, research and development, adoption of smart grid technology, and outreach and education. PMID:22540988

  19. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one can obtain a dramatic reduction in the contact resistances of alloy oxidized surfaces as compared with those of the pure base metals.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, G.A.; Commer, M.

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/Lmore » supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.« less

  1. Fast large-scale object retrieval with binary quantization

    NASA Astrophysics Data System (ADS)

    Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi

    2015-11-01

    The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.

  2. Interfacial film formation: influence on oil spreading rates in lab basin tests and dispersant effectiveness testing in a wave tank.

    PubMed

    King, Thomas L; Clyburne, Jason A C; Lee, Kenneth; Robinson, Brian J

    2013-06-15

    Test facilities such as lab basins and wave tanks are essential when evaluating the use of chemical dispersants to treat oil spills at sea. However, these test facilities have boundaries (walls) that provide an ideal environment for surface (interfacial) film formation on seawater. Surface films may form from surfactants naturally present in crude oil as well as dispersant drift/overspray when applied to an oil spill. The objective of this study was to examine the impact of surface film formation on oil spreading rates in a small scale lab basin and on dispersant effectiveness conducted in a large scale wave tank. The process of crude oil spreading on the surface of the basin seawater was influenced in the presence of a surface film as shown using a 1st order kinetic model. In addition, interfacial film formation can greatly influence chemically dispersed crude oil in a large scale dynamic wave tank. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Parallel Computing for Probabilistic Response Analysis of High Temperature Composites

    NASA Technical Reports Server (NTRS)

    Sues, R. H.; Lua, Y. J.; Smith, M. D.

    1994-01-01

    The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations.

  4. Effects of Structural Deformation and Tube Chirality on Electronic Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    A combination of large scale classical force-field (UFF), density functional theory (DFT), and tight-binding Green's function transport calculations is used to study the electronic properties of carbon nanotubes under the twist, bending, and atomic force microscope (AFM)-tip deformation. We found that in agreement with experiment a significant change in electronic conductance can be induced by AFM-tip deformation of metallic zigzag tubes and by twist deformation of armchair tubes. The effect is explained in terms of bandstructure change under deformation.

  5. Hierarchical Parallelism in Finite Difference Analysis of Heat Conduction

    NASA Technical Reports Server (NTRS)

    Padovan, Joseph; Krishna, Lala; Gute, Douglas

    1997-01-01

    Based on the concept of hierarchical parallelism, this research effort resulted in highly efficient parallel solution strategies for very large scale heat conduction problems. Overall, the method of hierarchical parallelism involves the partitioning of thermal models into several substructured levels wherein an optimal balance into various associated bandwidths is achieved. The details are described in this report. Overall, the report is organized into two parts. Part 1 describes the parallel modelling methodology and associated multilevel direct, iterative and mixed solution schemes. Part 2 establishes both the formal and computational properties of the scheme.

  6. Power and Thermal Technologies for Air and Space - Scientific Research Program. Delivery Order 0020: Advanced Conductors and Thermal Science

    DTIC Science & Technology

    2014-03-01

    4.31. Thermal conductivity of CNT/Carbon foam substrate 4.4.3.3 Post-growth Nickel Coating Plating CNTs/carbon foam samples with nickel provides a...will be necessary to conduct large scale synthesis of textured Ca-Co-O on the amorphous- buffered n-type oxide substrate using sol-gel spin- coating and... Conductors and Thermal Science Evan L. Thomas, Qiuhong N. Zhang, Helen Shen, Serhiy N. Leontsev, John P. Murphy, Jack L. Burke, Lyle Brunke, and

  7. Scaling effects in the impact response of graphite-epoxy composite beams

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    1989-01-01

    In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.

  8. MRMPROBS: a data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics.

    PubMed

    Tsugawa, Hiroshi; Arita, Masanori; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-05-21

    We developed a new software program, MRMPROBS, for widely targeted metabolomics by using the large-scale multiple reaction monitoring (MRM) mode. The strategy became increasingly popular for the simultaneous analysis of up to several hundred metabolites at high sensitivity, selectivity, and quantitative capability. However, the traditional method of assessing measured metabolomics data without probabilistic criteria is not only time-consuming but is often subjective and makeshift work. Our program overcomes these problems by detecting and identifying metabolites automatically, by separating isomeric metabolites, and by removing background noise using a probabilistic score defined as the odds ratio from an optimized multivariate logistic regression model. Our software program also provides a user-friendly graphical interface to curate and organize data matrices and to apply principal component analyses and statistical tests. For a demonstration, we conducted a widely targeted metabolome analysis (152 metabolites) of propagating Saccharomyces cerevisiae measured at 15 time points by gas and liquid chromatography coupled to triple quadrupole mass spectrometry. MRMPROBS is a useful and practical tool for the assessment of large-scale MRM data available to any instrument or any experimental condition.

  9. Global maps of the magnetic thickness and magnetization of the Earth's lithosphere

    NASA Astrophysics Data System (ADS)

    Vervelidou, Foteini; Thébault, Erwan

    2015-10-01

    We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth's lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth's lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho.

  10. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films.

    PubMed

    Li, Jinsong; Lu, Weibang; Suhr, Jonghwan; Chen, Hang; Xiao, John Q; Chou, Tsu-Wei

    2017-05-24

    Graphene has sparked extensive research interest for its excellent physical properties and its unique potential for application in absorption of electromagnetic waves. However, the processing of stable large-scale graphene and magnetic particles on a micrometer-thick conductive support is a formidable challenge for achieving high reflection loss and impedance matching between the absorber and free space. Herein, a novel and simple approach for the processing of a CNT film-Fe 3 O 4 -large scale graphene composite is studied. The Fe 3 O 4 particles with size in the range of 20-200 nm are uniformly aligned along the axial direction of the CNTs. The composite exhibits exceptionally high wave absorption capacity even at a very low thickness. Minimum reflection loss of -44.7 dB and absorbing bandwidth of 4.7 GHz at -10 dB are achieved in composites with one-layer graphene in six-layer CNT film-Fe 3 O 4 prepared from 0.04 M FeCl 3 . Microstructural and theoretical studies of the wave-absorbing mechanism reveal a unique Debye dipolar relaxation with an Eddy current effect in the absorbing bandwidth.

  11. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    PubMed

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster.

    PubMed

    Jackin, Boaz Jessie; Watanabe, Shinpei; Ootsu, Kanemitsu; Ohkawa, Takeshi; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu

    2018-04-20

    A parallel computation method for large-size Fresnel computer-generated hologram (CGH) is reported. The method was introduced by us in an earlier report as a technique for calculating Fourier CGH from 2D object data. In this paper we extend the method to compute Fresnel CGH from 3D object data. The scale of the computation problem is also expanded to 2 gigapixels, making it closer to real application requirements. The significant feature of the reported method is its ability to avoid communication overhead and thereby fully utilize the computing power of parallel devices. The method exhibits three layers of parallelism that favor small to large scale parallel computing machines. Simulation and optical experiments were conducted to demonstrate the workability and to evaluate the efficiency of the proposed technique. A two-times improvement in computation speed has been achieved compared to the conventional method, on a 16-node cluster (one GPU per node) utilizing only one layer of parallelism. A 20-times improvement in computation speed has been estimated utilizing two layers of parallelism on a very large-scale parallel machine with 16 nodes, where each node has 16 GPUs.

  13. Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water

    PubMed Central

    Engström, Ann-Christine; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Olin, Håkan

    2016-01-01

    The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process. PMID:27128841

  14. Implementing large-scale programmes to optimise the health workforce in low- and middle-income settings: a multicountry case study synthesis.

    PubMed

    Gopinathan, Unni; Lewin, Simon; Glenton, Claire

    2014-12-01

    To identify factors affecting the implementation of large-scale programmes to optimise the health workforce in low- and middle-income countries. We conducted a multicountry case study synthesis. Eligible programmes were identified through consultation with experts and using Internet searches. Programmes were selected purposively to match the inclusion criteria. Programme documents were gathered via Google Scholar and PubMed and from key informants. The SURE Framework - a comprehensive list of factors that may influence the implementation of health system interventions - was used to organise the data. Thematic analysis was used to identify the key issues that emerged from the case studies. Programmes from Brazil, Ethiopia, India, Iran, Malawi, Venezuela and Zimbabwe were selected. Key system-level factors affecting the implementation of the programmes were related to health worker training and continuing education, management and programme support structures, the organisation and delivery of services, community participation, and the sociopolitical environment. Existing weaknesses in health systems may undermine the implementation of large-scale programmes to optimise the health workforce. Changes in the roles and responsibilities of cadres may also, in turn, impact the health system throughout. © 2014 John Wiley & Sons Ltd.

  15. Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.

    A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications to the definitions of the local FE model boundary conditions is proposed and developed to address several issues related to the scalability of progressive damage modeling concepts, especially in regards to full-scale fuselage structures. Notable improvements were observed in the ability of the FE models to predict the strength of damaged composite fuselage structures. Excellent agreement has been established between the FE model predictions and the experimental results recorded by DIC, AE, FR, and visual observations.

  16. Cost-effectiveness comparison of response strategies to a large-scale anthrax attack on the chicago metropolitan area: impact of timing and surge capacity.

    PubMed

    Kyriacou, Demetrios N; Dobrez, Debra; Parada, Jorge P; Steinberg, Justin M; Kahn, Adam; Bennett, Charles L; Schmitt, Brian P

    2012-09-01

    Rapid public health response to a large-scale anthrax attack would reduce overall morbidity and mortality. However, there is uncertainty about the optimal cost-effective response strategy based on timing of intervention, public health resources, and critical care facilities. We conducted a decision analytic study to compare response strategies to a theoretical large-scale anthrax attack on the Chicago metropolitan area beginning either Day 2 or Day 5 after the attack. These strategies correspond to the policy options set forth by the Anthrax Modeling Working Group for population-wide responses to a large-scale anthrax attack: (1) postattack antibiotic prophylaxis, (2) postattack antibiotic prophylaxis and vaccination, (3) preattack vaccination with postattack antibiotic prophylaxis, and (4) preattack vaccination with postattack antibiotic prophylaxis and vaccination. Outcomes were measured in costs, lives saved, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios (ICERs). We estimated that postattack antibiotic prophylaxis of all 1,390,000 anthrax-exposed people beginning on Day 2 after attack would result in 205,835 infected victims, 35,049 fulminant victims, and 28,612 deaths. Only 6,437 (18.5%) of the fulminant victims could be saved with the existing critical care facilities in the Chicago metropolitan area. Mortality would increase to 69,136 if the response strategy began on Day 5. Including postattack vaccination with antibiotic prophylaxis of all exposed people reduces mortality and is cost-effective for both Day 2 (ICER=$182/QALY) and Day 5 (ICER=$1,088/QALY) response strategies. Increasing ICU bed availability significantly reduces mortality for all response strategies. We conclude that postattack antibiotic prophylaxis and vaccination of all exposed people is the optimal cost-effective response strategy for a large-scale anthrax attack. Our findings support the US government's plan to provide antibiotic prophylaxis and vaccination for all exposed people within 48 hours of the recognition of a large-scale anthrax attack. Future policies should consider expanding critical care capacity to allow for the rescue of more victims.

  17. Cost-Effectiveness Comparison of Response Strategies to a Large-Scale Anthrax Attack on the Chicago Metropolitan Area: Impact of Timing and Surge Capacity

    PubMed Central

    Dobrez, Debra; Parada, Jorge P.; Steinberg, Justin M.; Kahn, Adam; Bennett, Charles L.; Schmitt, Brian P.

    2012-01-01

    Rapid public health response to a large-scale anthrax attack would reduce overall morbidity and mortality. However, there is uncertainty about the optimal cost-effective response strategy based on timing of intervention, public health resources, and critical care facilities. We conducted a decision analytic study to compare response strategies to a theoretical large-scale anthrax attack on the Chicago metropolitan area beginning either Day 2 or Day 5 after the attack. These strategies correspond to the policy options set forth by the Anthrax Modeling Working Group for population-wide responses to a large-scale anthrax attack: (1) postattack antibiotic prophylaxis, (2) postattack antibiotic prophylaxis and vaccination, (3) preattack vaccination with postattack antibiotic prophylaxis, and (4) preattack vaccination with postattack antibiotic prophylaxis and vaccination. Outcomes were measured in costs, lives saved, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios (ICERs). We estimated that postattack antibiotic prophylaxis of all 1,390,000 anthrax-exposed people beginning on Day 2 after attack would result in 205,835 infected victims, 35,049 fulminant victims, and 28,612 deaths. Only 6,437 (18.5%) of the fulminant victims could be saved with the existing critical care facilities in the Chicago metropolitan area. Mortality would increase to 69,136 if the response strategy began on Day 5. Including postattack vaccination with antibiotic prophylaxis of all exposed people reduces mortality and is cost-effective for both Day 2 (ICER=$182/QALY) and Day 5 (ICER=$1,088/QALY) response strategies. Increasing ICU bed availability significantly reduces mortality for all response strategies. We conclude that postattack antibiotic prophylaxis and vaccination of all exposed people is the optimal cost-effective response strategy for a large-scale anthrax attack. Our findings support the US government's plan to provide antibiotic prophylaxis and vaccination for all exposed people within 48 hours of the recognition of a large-scale anthrax attack. Future policies should consider expanding critical care capacity to allow for the rescue of more victims. PMID:22845046

  18. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  19. Investigating Crustal Scale Fault Systems Controlling Volcanic and Hydrothermal Fluid Processes in the South-Central Andes, First Results from a Magnetotelluric Survey

    NASA Astrophysics Data System (ADS)

    Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.

    2017-12-01

    At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault systems that act as magmatic and hydrothermal fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault system. These large scale reverse faults are characterized by 500 - 1000m wide hydrothermally altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault systems, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault system and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault system. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and hydrothermal fluid migration processes in this region of the Andes.

  20. Enhancing the spatial coverage of a regional high-quality hydraulic conductivity dataset with estimates made from domestic water-well specific-capacity tests

    NASA Astrophysics Data System (ADS)

    Priebe, Elizabeth H.; Neville, C. J.; Rudolph, D. L.

    2018-03-01

    The spatial coverage of hydraulic conductivity ( K) values for large-scale groundwater investigations is often poor because of the high costs associated with hydraulic testing and the large areas under investigation. Domestic water wells are ubiquitous and their well logs represent an untapped resource of information that includes mandatory specific-capacity tests, from which K can be estimated. These specific-capacity tests are routinely conducted at such low pumping rates that well losses are normally insignificant. In this study, a simple and practical approach to augmenting high-quality K values with reconnaissance-level K values from water-well specific-capacity tests is assessed. The integration of lesser quality K values from specific-capacity tests with a high-quality K data set is assessed through comparisons at two different scales: study-area-wide (a 600-km2 area in Ontario, Canada) and in a single geological formation within a portion of the broader study area (200 km2). Results of the comparisons demonstrate that reconnaissance-level K estimates from specific-capacity tests approximate the ranges and distributions of the high-quality K values. Sufficient detail about the physical basis and assumptions that are invoked in the development of the approach are presented here so that it can be applied with confidence by practitioners seeking to enhance their spatial coverage of K values with specific-capacity tests.

  1. New Method for Solving Inductive Electric Fields in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  2. Conduct of Occupational Health During Major Disasters: A Comparison of Literature on Occupational Health Issues in the World Trade Center Terrorist Attack and the Fukushima Nuclear Power Plant Accident.

    PubMed

    Toyoda, Hiroyuki; Mori, Koji

    2017-01-01

    Workers who respond to large-scale disasters can be exposed to health hazards that do not exist in routine work. It is assumed that learning from past cases is effective for preparing for and responding to such problems, but published information is still insufficient. Accordingly, we conducted a literature review about the health issues and occupational health activities at the World Trade Center (WTC) terrorist attack and at the Fukushima Nuclear Power Plant accident to investigate how occupational health activities during disasters should be conducted. Seven studies about the WTC attack were extracted and categorized into the following topics: "in relation to emergency systems including occupational health management"; "in relation to improvement and prevention of health effects and occupational hygiene"; and "in relation to care systems aimed at mitigating health effects." Studies about the Fukushima Nuclear Power Plant accident have been used in a previous review. We conclude that, to prevent health effects in workers who respond to large-scale disasters, it is necessary to incorporate occupational health regulations into the national response plan, and to develop practical support functions that enable support to continue for an extended period, training systems for workers with opportunities to report accidents, and care systems to mitigate the health effects.

  3. Large-scale lateral nanowire arrays nanogenerators

    DOEpatents

    Wang, Zhong L; Xu, Chen; Qin, Yong; Zhu, Guang; Yang, Rusen; Hu, Youfan; Zhang, Yan

    2014-01-07

    In a method of making a generating device, a plurality of spaced apart elongated seen members are deposited onto a surface of a flexible non-conductive substrate. An elongated conductive layer is applied to a top surface and a first side of each seed member, thereby leaving an exposed second side opposite the first side. A plurality of elongated piezoelectric nanostructures is grown laterally from the second side of each seed layer. A second conductive material is deposited onto the substrate adjacent each elongated first conductive layer so as to be soupled the distal end of each of the plurality of elongated piezoelectric nanostructures. The second conductive material is selected so as to form a Schottky barrier between the second conductive material and the distal end of each of the plurality of elongated piezoelectric nanostructures and so as to form an electrical contact with the first conductive layer.

  4. Efficient feature extraction from wide-area motion imagery by MapReduce in Hadoop

    NASA Astrophysics Data System (ADS)

    Cheng, Erkang; Ma, Liya; Blaisse, Adam; Blasch, Erik; Sheaff, Carolyn; Chen, Genshe; Wu, Jie; Ling, Haibin

    2014-06-01

    Wide-Area Motion Imagery (WAMI) feature extraction is important for applications such as target tracking, traffic management and accident discovery. With the increasing amount of WAMI collections and feature extraction from the data, a scalable framework is needed to handle the large amount of information. Cloud computing is one of the approaches recently applied in large scale or big data. In this paper, MapReduce in Hadoop is investigated for large scale feature extraction tasks for WAMI. Specifically, a large dataset of WAMI images is divided into several splits. Each split has a small subset of WAMI images. The feature extractions of WAMI images in each split are distributed to slave nodes in the Hadoop system. Feature extraction of each image is performed individually in the assigned slave node. Finally, the feature extraction results are sent to the Hadoop File System (HDFS) to aggregate the feature information over the collected imagery. Experiments of feature extraction with and without MapReduce are conducted to illustrate the effectiveness of our proposed Cloud-Enabled WAMI Exploitation (CAWE) approach.

  5. Potential climatic impacts and reliability of large-scale offshore wind farms

    NASA Astrophysics Data System (ADS)

    Wang, Chien; Prinn, Ronald G.

    2011-04-01

    The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land-based installations. However, the intermittency caused by the significant seasonal wind variations over several major offshore sites is substantial, and demands further options to ensure the reliability of large-scale offshore wind power. The method that we used to simulate the offshore wind turbine effect on the lower atmosphere involved simply increasing the ocean surface drag coefficient. While this method is consistent with several detailed fine-scale simulations of wind turbines, it still needs further study to ensure its validity. New field observations of actual wind turbine arrays are definitely required to provide ultimate validation of the model predictions presented here.

  6. Spatiotemporal patterns of plant water isotope values from a continental-scale sample network in Europe as a tool to improve hydroclimate proxies

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2016-12-01

    The hydrogen and oxygen isotopic composition of water available for biosynthetic processes in vascular plants plays an important role in shaping the isotopic composition of organic compounds that these organisms produce, including leaf waxes and cellulose in leaves and tree rings. Characterizing changes in large scale spatial patterns of precipitation, soil water, stem water, and leaf water isotope values over time is therefore useful for evaluating how plants reflect changes in the isotopic composition of these source waters in different environments. This information can, in turn, provide improved calibration targets for understanding the environmental signals that plants preserve. The pathway of water through this continuum can include several isotopic fractionations, but the extent to which the isotopic composition of each of these water pools varies under normal field conditions and over space and time has not been systematically and concurrently evaluated at large spatial scales. Two season-long sampling campaigns were conducted at nineteen sites throughout Europe over the 2014 and 2015 growing seasons to track changes in the isotopic composition of plant-relevant waters. Samples of precipitation, soil water, stem water, and leaf water were collected over more than 200 field days and include more than 500 samples from each water pool. Measurements were used to validate continent-wide gridded estimates of leaf water isotope values derived from a combination of mechanistic and statistical modeling conducted with temperature, precipitation, and relative humidity data. Data-model comparison shows good agreement for summer leaf waters, and substantiates the incorporation of modeled leaf waters in evaluating how plants respond to hydroclimate changes at large spatial scales. These results also suggest that modeled leaf water isotope values might be used in future studies in similar ecosystems to improve the coverage density of spatial or temporal data.

  7. Intermountain Cyclogenesis: a Climatology and Multiscale Case Studies

    NASA Astrophysics Data System (ADS)

    Lee, Tiros Peijiun

    1995-11-01

    A detailed study of Intermountain cyclones over the western United States is conducted through climatological and case studies. An eleven-year (1976-1986) statistical survey shows that the Nevada cyclogenesis is mainly a springtime (March, April) event while a secondary maximum of cyclogenesis frequency is found in November. Nearly 75% of the Nevada cyclogenesis events (177 out of 237 cases) take place under large-scale westerly to southerly flow aloft across the Sierra Nevada Mountains, while 24% of the events (57 out of 237 cases) occur under northwesterly flow aloft. A composite study of these two types of the flow is shown to demonstrate how differences in large-scale topography affect Intermountain cyclogenesis processes. The result from a case study of 9-11 February 1984 reveals that an antecedent Nevada lee trough formed as a result of large-scale southwesterly flow aloft interacting with the underlying terrain well before the surface and upper-level troughs moved onshore. Subsequent cyclogenesis took place in situ with the axis of the trough as the center of large-scale quasi-geostrophic ascent/positive potential vorticity advection began to spread across the Sierra Nevada Mountains. As the cyclone moved downstream, it was observed to weaken well before reaching the Continental Divide while a new cyclonic development occurred east of the Rocky Mountains. It is shown that the weakening of the Intermountain cyclone was associated with the ongoing interaction between the Intermountain cyclone and large-scale topography and the progressive outrunning of the large-scale dynamical forcing aloft away from the surface cyclone center. An investigation of the large-scale evolution for the 26-29 January 1980 case, which developed beneath the northwesterly flow aloft, further reveals that the underlying topography plays two major roles in contributing to the initial cyclogenesis: (1) to block and to retard cold, stable air east of the Continental Divide from rushing into the Great Basin region, and (2) to produce differential pressure falls across the Sierra Nevada Mountains (more along the eastern slopes) in response to increasing cross -mountain flow. Numerous transient shortwaves in the midtroposphere rapidly move across the GB and the Rocky Mountains into the Plains States, while the Intermountain cyclone moves slower than to the disturbances aloft. There is no downstream lee trough/cyclogenesis to the east of the Rockies during the investigation period since the leeside is characterized by cold, stable air. The third case study is made of an 11-14 December 1987 Intermountain cyclogenesis case which took place in an area of relatively warm and less stable environment near the Arizona-New Mexico border beneath northwesterly flow aloft. The ensuing interaction between the large -scale flow and underlying terrain allowed the surface cyclone to remain quasi-stationary for its entire 36 h life span. We also document a cold-season small-scale Catalina eddy development in the coastal southern California waters in this case. The eddy formed as the equatorward and northeasterly flow upstream of the coastal (San Rafael and Saint Ynez) mountains increased in the lower troposphere. Weak large-scale ascent in the mid- and upper-troposphere over the incipient eddy environment provided evidence of the orographic nature of the small -scale cyclone. The eddy was eventually displaced seaward and weakened with the arrival of powerful large-scale subsidence and increasing northeasterly downslope flow at the lower levels that reached the coastal waters.

  8. The PANDA tests for SBWR certification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varadi, G.; Dreier, J.; Bandurski, Th.

    1996-03-01

    The ALPHA project is centered around the experimental and analytical investigation of the long-term decay heat removal from the containments of the next generation of {open_quotes}passive{close_quotes} ALWRs. The project includes integral system tests in the large-scale (1:25 in volume) PANDA facility as well as several other series of tests and supporting analytical work. The first series of experiments to be conducted in PANDA have become a required experimental element in the certification process for the General Electric Simplified Boiling Water Reactor (SBWR). The PANDA general experimental philosophy, facility design, scaling, and instrumentation are described. Steady-state PCCS condenser performance tests andmore » extensive facility characterization tests were already conducted. The transient system behavior tests are underway; preliminary results from the first transient test M3 are reviewed.« less

  9. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    NASA Astrophysics Data System (ADS)

    Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca

    2014-08-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.

  10. Evaluation of urethane for feasibility of use in wind turbine blade design

    NASA Technical Reports Server (NTRS)

    Lieblein, S.; Ross, R. S.; Fertis, D. G.

    1979-01-01

    A preliminary evaluation was conducted of the use of cast urethane as a possible material for low-cost blades for wind turbines. Specimen test data are presented for ultimate tensile strength, elastic modulus, flexural strain, creep, and fatigue properties of a number of urethane formulations. Data are also included for a large-scale urethane blade section composed of cast symmetrical half-profiles tested as a cantilever beam. Based on these results, an analysis was conducted of a full-scale blade design of cast urethane that meets the design specifications of the rotor blades for the NASA/DOE experimental 100-kW MOD-0 wind turbine. Because of the low value of elastic modulus for urethane (around 457 000 psi), the design loads would have to be carried by metal reinforcement. Considerations for further evaluation are noted.

  11. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xiaodong; Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903; Wang, Yang

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-voidmore » composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.« less

  12. Psychopathology in 7-year-old children: Differences in maternal and paternal ratings and the genetic epidemiology.

    PubMed

    Wesseldijk, Laura W; Fedko, Iryna O; Bartels, Meike; Nivard, Michel G; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; Middeldorp, Christel M

    2017-04-01

    The assessment of children's psychopathology is often based on parental report. Earlier studies have suggested that rater bias can affect the estimates of genetic, shared environmental and unique environmental influences on differences between children. The availability of a large dataset of maternal as well as paternal ratings of psychopathology in 7-year old children enabled (i) the analysis of informant effects on these assessments, and (ii) to obtain more reliable estimates of the genetic and non-genetic effects. DSM-oriented measures of affective, anxiety, somatic, attention-deficit/hyperactivity, oppositional-defiant, conduct, and obsessive-compulsive problems were rated for 12,310 twin pairs from the Netherlands Twin Register by mothers (N = 12,085) and fathers (N = 8,516). The effects of genetic and non-genetic effects were estimated on the common and rater-specific variance. For all scales, mean scores on maternal ratings exceeded paternal ratings. Parents largely agreed on the ranking of their child's problems (r 0.60-0.75). The heritability was estimated over 55% for maternal and paternal ratings for all scales, except for conduct problems (44-46%). Unbiased shared environmental influences, i.e., on the common variance, were significant for affective (13%), oppositional (13%), and conduct problems (37%). In clinical settings, different cutoffs for (sub)clinical scores could be applied to paternal and maternal ratings of their child's psychopathology. Only for conduct problems, shared environmental and genetic influences explain an equal amount in differences between children. For the other scales, genetic factors explain the majority of the variance, especially for the common part that is free of rater bias. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  13. Conditions for Aeronomic Applicability of the Classical Electron Heat Conduction Formula

    NASA Technical Reports Server (NTRS)

    Cole, K. D.; Hoegy, W. R.

    1998-01-01

    Conditions for the applicability of the classical formula for heat conduction in the electrons in ionized gas are investigated. In a fully ionised gas ( V(sub en) much greater than V(sub ei)), when the mean free path for electron-electron (or electron-ion) collisions is much larger than the characteristic thermal scale length of the observed system, the conditions for applicability break down. In the case of the Venus ionosphere this breakdown is indicated for a large fraction of the electron temperature data from altitudes greater than 180 km, for electron densities less than 10(exp 4)/cc cm. In a partially ionised gas such that V(sub en) much greater than V(sub ei) there is breakdown of the formula not only when the mean free path of electrons greatly exceeds the thermal scale length, but also when the gradient of neutral particle density exceeds the electron thermal gradient. It is shown that electron heat conduction may be neglected in estimating the temperature of joule heated electrons by observed strong 100 Hz electric fields when the conduction flux is limited by the saturation flux. The results of this paper support our earlier aeronomical arguments against the hypothesis of planetary scale whistlers for the 100 Hz electric field signal. In turn this means that data from the 100 Hz signal may not be used to support the case for lightning on Venus.

  14. Translation and cultural adaptation of the Brazilian Portuguese version of the Behavioral Pain Scale.

    PubMed

    Morete, Márcia Carla; Mofatto, Sarah Camargo; Pereira, Camila Alves; Silva, Ana Paula; Odierna, Maria Tereza

    2014-01-01

    The objective of this study was to translate and culturally adapt the Behavioral Pain Scale to Brazilian Portuguese and to evaluate the psychometric properties of this scale. This study was conducted in two phases: the Behavioral Pain Scale was translated and culturally adapted to Brazilian Portuguese and the psychometric properties of this scale were subsequently assessed (reliability and clinical utility). The study sample consisted of 100 patients who were older than 18 years of age, admitted to an intensive care unit, intubated, mechanically ventilated, and subjected or not to sedation and analgesia from July 2012 to December 2012. Pediatric and non-intubated patients were excluded. The study was conducted at a large private hospital that was situated in the city of São Paulo (SP). Regarding reproducibility, the results revealed that the observed agreement between the two evaluators was 92.08% for the pain descriptor "adaptation to mechanical ventilation", 88.1% for "upper limbs", and 90.1% for "facial expression". The kappa coefficient of agreement for "adaptation to mechanical ventilation" assumed a value of 0.740. Good agreement was observed between the evaluators with an intraclass correlation coefficient of 0.807 (95% confidence interval: 0.727-0.866). The Behavioral Pain Scale was easy to administer and reproduce. Additionally, this scale had adequate internal consistency. The Behavioral Pain Scale was satisfactorily adapted to Brazilian Portuguese for the assessment of pain in critically ill patients.

  15. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  16. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  17. Large-scale monitoring of shorebird populations using count data and N-mixture models: Black Oystercatcher (Haematopus bachmani) surveys by land and sea

    USGS Publications Warehouse

    Lyons, James E.; Andrew, Royle J.; Thomas, Susan M.; Elliott-Smith, Elise; Evenson, Joseph R.; Kelly, Elizabeth G.; Milner, Ruth L.; Nysewander, David R.; Andres, Brad A.

    2012-01-01

    Large-scale monitoring of bird populations is often based on count data collected across spatial scales that may include multiple physiographic regions and habitat types. Monitoring at large spatial scales may require multiple survey platforms (e.g., from boats and land when monitoring coastal species) and multiple survey methods. It becomes especially important to explicitly account for detection probability when analyzing count data that have been collected using multiple survey platforms or methods. We evaluated a new analytical framework, N-mixture models, to estimate actual abundance while accounting for multiple detection biases. During May 2006, we made repeated counts of Black Oystercatchers (Haematopus bachmani) from boats in the Puget Sound area of Washington (n = 55 sites) and from land along the coast of Oregon (n = 56 sites). We used a Bayesian analysis of N-mixture models to (1) assess detection probability as a function of environmental and survey covariates and (2) estimate total Black Oystercatcher abundance during the breeding season in the two regions. Probability of detecting individuals during boat-based surveys was 0.75 (95% credible interval: 0.42–0.91) and was not influenced by tidal stage. Detection probability from surveys conducted on foot was 0.68 (0.39–0.90); the latter was not influenced by fog, wind, or number of observers but was ~35% lower during rain. The estimated population size was 321 birds (262–511) in Washington and 311 (276–382) in Oregon. N-mixture models provide a flexible framework for modeling count data and covariates in large-scale bird monitoring programs designed to understand population change.

  18. DISCOVERY OF A WANDERING RADIO JET BASE AFTER A LARGE X-RAY FLARE IN THE BLAZAR MARKARIAN 421

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niinuma, K.; Kino, M.; Doi, A.

    2015-07-01

    We investigate the location of the radio jet bases (“radio cores”) of blazars in radio images and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted a 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time,we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale correspondsmore » to the de-projected length of a scale of 10{sup 5} Schwarzschild radii (R{sub s}) at the distance of Markarian 421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.« less

  19. Applying the 15 Public Health Emergency Preparedness Capabilities to Support Large-Scale Tuberculosis Investigations in Complex Congregate Settings

    PubMed Central

    Toren, Katelynne Gardner; Elsenboss, Carina; Narita, Masahiro

    2017-01-01

    Public Health—Seattle and King County, a metropolitan health department in western Washington, experiences rates of tuberculosis (TB) that are 1.6 times higher than are state and national averages. The department’s TB Control Program uses public health emergency management tools and capabilities sustained with Centers for Disease Control and Prevention grant funding to manage large-scale complex case investigations. We have described 3 contact investigations in large congregate settings that the TB Control Program conducted in 2015 and 2016. The program managed the investigations using public health emergency management tools, with support from the Preparedness Program. The 3 investigations encompassed medical evaluation of more than 1600 people, used more than 100 workers, identified nearly 30 individuals with latent TB infection, and prevented an estimated 3 cases of active disease. These incidents exemplify how investments in public health emergency preparedness can enhance health outcomes in traditional areas of public health. PMID:28892445

  20. Search for contact interactions and large extra dimensions in the dilepton channel using proton–proton collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2014-12-11

    Research is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton–proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb –1 at √s = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the ℓℓqq contact interaction scale Λ between 15.4 TeV and 26.3 TeV, at the 95% credibilitymore » level. For large extra spatial dimensions, lower limits are set on the string scale MS between 3.2 TeV to 5.0 TeV.« less

Top