Sample records for conducted linear regression

  1. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  2. Linearity versus Nonlinearity of Offspring-Parent Regression: An Experimental Study of Drosophila Melanogaster

    PubMed Central

    Gimelfarb, A.; Willis, J. H.

    1994-01-01

    An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection. PMID:7828818

  3. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  4. Correlation and simple linear regression.

    PubMed

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  5. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    PubMed

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  6. Quality of life in breast cancer patients--a quantile regression analysis.

    PubMed

    Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma

    2008-01-01

    Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.

  7. Ergonomics study on mobile phones for thumb physiology discomfort

    NASA Astrophysics Data System (ADS)

    Bendero, J. M. S.; Doon, M. E. R.; Quiogue, K. C. A.; Soneja, L. C.; Ong, N. R.; Sauli, Z.; Vairavan, R.

    2017-09-01

    The study was conducted on Filipino undergraduate college students and aimed to find out about the significant factors associated with mobile phone usage and its effect on thumb pain.A correlation-prediction analysisand Multiple Linear Regression was adopted and used as the main tool in determining the significant factors and coming up with predictive models on thumb related pain. With the use of the software Statistical Package for the Social Sciences or SPSS in conducting linear regression, 2 significant factors on thumb-related pain (percentage of time using portrait as screen orientation when text messaging, amount of time playing games using one hand in a day) were found.

  8. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  9. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  10. Method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  11. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    PubMed Central

    Jiang, Feng; Han, Ji-zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods. PMID:29623088

  12. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression.

    PubMed

    Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  13. Estimate the contribution of incubation parameters influence egg hatchability using multiple linear regression analysis

    PubMed Central

    Khalil, Mohamed H.; Shebl, Mostafa K.; Kosba, Mohamed A.; El-Sabrout, Karim; Zaki, Nesma

    2016-01-01

    Aim: This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens’ eggs. Materials and Methods: Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. Results: The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. Conclusion: A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens. PMID:27651666

  14. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  15. Growth and yield in Eucalyptus globulus

    Treesearch

    James A. Rinehart; Richard B. Standiford

    1983-01-01

    A study of the major Eucalyptus globulus stands throughout California conducted by Woodbridge Metcalf in 1924 provides a complete and accurate data set for generating variable site-density yield models. Two models were developed using linear regression techniques. Model I depicts a linear relationship between age and yield best used for stands between five and fifteen...

  16. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  17. Anticipating Mathematics Performance: A Cross-Validation Comparison of AID3 and Regression. AIR 1988 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Bloom, Allan M.; And Others

    In response to the increasing importance of student performance in required classes, research was conducted to compare two prediction procedures, linear modeling using multiple regression and nonlinear modeling using AID3. Performance in the first college math course (College Mathematics, Calculus, or Business Calculus Matrices) was the dependent…

  18. Runoff load estimation of particulate and dissolved nitrogen in Lake Inba watershed using continuous monitoring data on turbidity and electric conductivity.

    PubMed

    Kim, J; Nagano, Y; Furumai, H

    2012-01-01

    Easy-to-measure surrogate parameters for water quality indicators are needed for real time monitoring as well as for generating data for model calibration and validation. In this study, a novel linear regression model for estimating total nitrogen (TN) based on two surrogate parameters is proposed based on evaluation of pollutant loads flowing into a eutrophic lake. Based on their runoff characteristics during wet weather, electric conductivity (EC) and turbidity were selected as surrogates for particulate nitrogen (PN) and dissolved nitrogen (DN), respectively. Strong linear relationships were established between PN and turbidity and DN and EC, and both models subsequently combined for estimation of TN. This model was evaluated by comparison of estimated and observed TN runoff loads during rainfall events. This analysis showed that turbidity and EC are viable surrogates for PN and DN, respectively, and that the linear regression model for TN concentration was successful in estimating TN runoff loads during rainfall events and also under dry weather conditions.

  19. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less

  20. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    2004-10-01

    The systematic tests of the gasifier simulator on the clean thermocouple were completed in this reporting period. Within the systematic tests on the clean thermocouple, five (5) factors were considered as the experimental parameters including air flow rate, water flow rate, fine dust particle amount, ammonia addition and high/low frequency device (electric motor). The fractional factorial design method was used in the experiment design with sixteen (16) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the un-balanced motor vibration frequency did not have the significant impact onmore » the temperature changes in the gasifier simulator. For the fine dust particles testing, the amount of fine dust particles has significant impact to the temperature measurements in the gasifier simulator. The effects of the air and water on the temperature measurements show the same results as reported in the previous report. The ammonia concentration was included as an experimental parameter for the reducing environment in this reporting period. The ammonia concentration does not seem to be a significant factor on the temperature changes. The linear regression analysis was applied to the temperature reading with five (5) factors. The accuracy of the linear regression is relatively low, which is less than 10% accuracy. Nonlinear regression was also conducted to the temperature reading with the same factors. Since the experiments were designed in two (2) levels, the nonlinear regression is not very effective with the dataset (16 readings). An extra central point test was conducted. With the data of the center point testing, the accuracy of the nonlinear regression is much better than the linear regression.« less

  1. Comparison of two-concentration with multi-concentration linear regressions: Retrospective data analysis of multiple regulated LC-MS bioanalytical projects.

    PubMed

    Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi

    2013-09-01

    Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Association of comorbid mental health symptoms and physical health conditions with employee productivity.

    PubMed

    Parker, Kristin M; Wilson, Mark G; Vandenberg, Robert J; DeJoy, David M; Orpinas, Pamela

    2009-10-01

    This study tests the hypothesis that employees with comorbid physical health conditions and mental health symptoms are less productive than other employees. Self-reported health status and productivity measures were collected from 1723 employees of a national retail organization. chi2, analysis of variance, and linear contrast analyses were conducted to evaluate whether health status groups differed on productivity measures. Multivariate linear regression and multinomial logistic regression analyses were conducted to analyze how predictive health status was of productivity. Those with comorbidities were significantly less productive on all productivity measures compared with all other health status groups and those with only physical health conditions or mental health symptoms. Health status also significantly predicted levels of employee productivity. These findings provide evidence for the relationship between health statuses and productivity, which has potential programmatic implications.

  3. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.

    2016-02-01

    In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.

  5. Active Travel to School: Findings from the Survey of US Health Behavior in School-Aged Children, 2009-2010

    ERIC Educational Resources Information Center

    Yang, Yong; Ivey, Stephanie S.; Levy, Marian C.; Royne, Marla B.; Klesges, Lisa M.

    2016-01-01

    Background: Whereas children's active travel to school (ATS) has confirmed benefits, only a few large national surveys of ATS exist. Methods: Using data from the Health Behavior in School-aged Children (HBSC) 2009-2010 US survey, we conducted a logistic regression model to estimate the odds ratios of ATS and a linear regression model to estimate…

  6. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

    NASA Astrophysics Data System (ADS)

    Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.

    2007-07-01

    Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach was justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatland sites in Finland and a tundra site in Siberia. The flux measurements were performed using transparent chambers on vegetated surfaces and opaque chambers on bare peat surfaces. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes and even lower for longer closure times. The degree of underestimation increased with increasing CO2 flux strength and is dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.

  7. Robust neural network with applications to credit portfolio data analysis.

    PubMed

    Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun

    2010-01-01

    In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.

  8. Nonlinear isochrones in murine left ventricular pressure-volume loops: how well does the time-varying elastance concept hold?

    PubMed

    Claessens, T E; Georgakopoulos, D; Afanasyeva, M; Vermeersch, S J; Millar, H D; Stergiopulos, N; Westerhof, N; Verdonck, P R; Segers, P

    2006-04-01

    The linear time-varying elastance theory is frequently used to describe the change in ventricular stiffness during the cardiac cycle. The concept assumes that all isochrones (i.e., curves that connect pressure-volume data occurring at the same time) are linear and have a common volume intercept. Of specific interest is the steepest isochrone, the end-systolic pressure-volume relationship (ESPVR), of which the slope serves as an index for cardiac contractile function. Pressure-volume measurements, achieved with a combined pressure-conductance catheter in the left ventricle of 13 open-chest anesthetized mice, showed a marked curvilinearity of the isochrones. We therefore analyzed the shape of the isochrones by using six regression algorithms (two linear, two quadratic, and two logarithmic, each with a fixed or time-varying intercept) and discussed the consequences for the elastance concept. Our main observations were 1) the volume intercept varies considerably with time; 2) isochrones are equally well described by using quadratic or logarithmic regression; 3) linear regression with a fixed intercept shows poor correlation (R(2) < 0.75) during isovolumic relaxation and early filling; and 4) logarithmic regression is superior in estimating the fixed volume intercept of the ESPVR. In conclusion, the linear time-varying elastance fails to provide a sufficiently robust model to account for changes in pressure and volume during the cardiac cycle in the mouse ventricle. A new framework accounting for the nonlinear shape of the isochrones needs to be developed.

  9. Delineating chalk sand distribution of Ekofisk formation using probabilistic neural network (PNN) and stepwise regression (SWR): Case study Danish North Sea field

    NASA Astrophysics Data System (ADS)

    Haris, A.; Nafian, M.; Riyanto, A.

    2017-07-01

    Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.

  10. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

    NASA Astrophysics Data System (ADS)

    Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.

    2007-11-01

    Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach has been justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatlands sites in Finland and a tundra site in Siberia. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. However, a rather large percentage of the exponential regression functions showed curvatures not consistent with the theoretical model which is considered to be caused by violations of the underlying model assumptions. Especially the effects of turbulence and pressure disturbances by the chamber deployment are suspected to have caused unexplainable curvatures. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes. The degree of underestimation increased with increasing CO2 flux strength and was dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.

  11. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features.

    PubMed

    Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara

    2017-01-01

    In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

  12. Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Harlan, J. C.

    1983-01-01

    Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.

  13. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  14. Independent contrasts and PGLS regression estimators are equivalent.

    PubMed

    Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary

    2012-05-01

    We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.

  15. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  16. Time Series Analysis and Forecasting of Wastewater Inflow into Bandar Tun Razak Sewage Treatment Plant in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Abunama, Taher; Othman, Faridah

    2017-06-01

    Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.

  17. High-resolution vertical profiles of groundwater electrical conductivity (EC) and chloride from direct-push EC logs

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah A.; Hermann, Kristian J.; Hendry, M. Jim

    2017-11-01

    Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl-) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl- from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl- concentrations than a power-law relationship (Archie's Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl- concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl- = 1,978 ECa - 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl- as porosity data become available and the site-specific ECw-Cl- relationship is determined.

  18. Higher direct bilirubin levels during mid-pregnancy are associated with lower risk of gestational diabetes mellitus.

    PubMed

    Liu, Chaoqun; Zhong, Chunrong; Zhou, Xuezhen; Chen, Renjuan; Wu, Jiangyue; Wang, Weiye; Li, Xiating; Ding, Huisi; Guo, Yanfang; Gao, Qin; Hu, Xingwen; Xiong, Guoping; Yang, Xuefeng; Hao, Liping; Xiao, Mei; Yang, Nianhong

    2017-01-01

    Bilirubin concentrations have been recently reported to be negatively associated with type 2 diabetes mellitus. We examined the association between bilirubin concentrations and gestational diabetes mellitus. In a prospective cohort study, 2969 pregnant women were recruited prior to 16 weeks of gestation and were followed up until delivery. The value of bilirubin was tested and oral glucose tolerance test was conducted to screen gestational diabetes mellitus. The relationship between serum bilirubin concentration and gestational weeks was studied by two-piecewise linear regression. A subsample of 1135 participants with serum bilirubin test during 16-18 weeks gestation was conducted to research the association between serum bilirubin levels and risk of gestational diabetes mellitus by logistic regression. Gestational diabetes mellitus developed in 8.5 % of the participants (223 of 2969). Two-piecewise linear regression analyses demonstrated that the levels of bilirubin decreased with gestational week up to the turning point 23 and after that point, levels of bilirubin were increased slightly. In multiple logistic regression analysis, the relative risk of developing gestational diabetes mellitus was lower in the highest tertile of direct bilirubin than that in the lowest tertile (RR 0.60; 95 % CI, 0.35-0.89). The results suggested that women with higher serum direct bilirubin levels during the second trimester of pregnancy have lower risk for development of gestational diabetes mellitus.

  19. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  20. Wired: Energy Drinks, Jock Identity, Masculine Norms, and Risk Taking

    ERIC Educational Resources Information Center

    Miller, Kathleen E.

    2008-01-01

    Objective: The author examined gendered links among sport-related identity, endorsement of conventional masculine norms, risk taking, and energy-drink consumption. Participants: The author surveyed 795 undergraduate students enrolled in introductory-level courses at a public university. Methods: The author conducted linear regression analyses of…

  1. Modeling Longitudinal Data Containing Non-Normal Within Subject Errors

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan; Glenn, Nancy L.

    2013-01-01

    The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.

  2. Predictors of postoperative outcomes of cubital tunnel syndrome treatments using multiple logistic regression analysis.

    PubMed

    Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki

    2017-05-01

    This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  3. Testing a single regression coefficient in high dimensional linear models

    PubMed Central

    Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling

    2017-01-01

    In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z-test to assess the significance of each covariate. Based on the p-value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively. PMID:28663668

  4. Testing a single regression coefficient in high dimensional linear models.

    PubMed

    Lan, Wei; Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling

    2016-11-01

    In linear regression models with high dimensional data, the classical z -test (or t -test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z -test to assess the significance of each covariate. Based on the p -value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively.

  5. RELATION OF ENVIRONMENTAL CHARACTERISTICS TO FISH ASSEMBLAGES IN THE UPPER FRENCH BROAD RIVER BASIN, NORTH CAROLINA

    EPA Science Inventory

    Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...

  6. New Zealand Management Students' Perceptions of Communication Technologies in Correspondence Education.

    ERIC Educational Resources Information Center

    Ostman, Ronald E.; Wagner, Graham A.

    1987-01-01

    Describes a survey of 724 management students in New Zealand's Technical Correspondence Institute which was conducted to determine whether the introduction of educational technologies could decrease the dropout rate. The multiple linear regression model that was used to analyze the questionnaire responses is presented, and predictor variables are…

  7. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  8. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  9. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  10. A quasi-Monte-Carlo comparison of parametric and semiparametric regression methods for heavy-tailed and non-normal data: an application to healthcare costs.

    PubMed

    Jones, Andrew M; Lomas, James; Moore, Peter T; Rice, Nigel

    2016-10-01

    We conduct a quasi-Monte-Carlo comparison of the recent developments in parametric and semiparametric regression methods for healthcare costs, both against each other and against standard practice. The population of English National Health Service hospital in-patient episodes for the financial year 2007-2008 (summed for each patient) is randomly divided into two equally sized subpopulations to form an estimation set and a validation set. Evaluating out-of-sample using the validation set, a conditional density approximation estimator shows considerable promise in forecasting conditional means, performing best for accuracy of forecasting and among the best four for bias and goodness of fit. The best performing model for bias is linear regression with square-root-transformed dependent variables, whereas a generalized linear model with square-root link function and Poisson distribution performs best in terms of goodness of fit. Commonly used models utilizing a log-link are shown to perform badly relative to other models considered in our comparison.

  11. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    PubMed Central

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

  12. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  13. The Role of Schools, Families, and Psychological Variables on Math Achievement of Black High School Students

    ERIC Educational Resources Information Center

    Strayhorn, Terrell L.

    2010-01-01

    Using data from the National Education Longitudinal Study (NELS;1988/2000), the author conducted hierarchical linear regression analyses, with a nested design, to estimate the influence of affective variables--parent involvement, teacher perceptions, and school environments--on Black students' math achievement in grade 10. Drawing on…

  14. Prosocial Motivation, Stress and Burnout among Direct Support Workers

    ERIC Educational Resources Information Center

    Hickey, Robert

    2014-01-01

    Aim: This study explores whether the desire to engage in work that is beneficial to others moderates the effects of stress on burnout. Method: Based on a survey of 1570 direct support professionals in Ontario, this study conducted linear regression analyses and tested for the interaction effects of prosocial motivation on occupational stress and…

  15. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    NASA Astrophysics Data System (ADS)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  16. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  17. Linear regression crash prediction models : issues and proposed solutions.

    DOT National Transportation Integrated Search

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  18. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    ERIC Educational Resources Information Center

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  19. Comprehensive ripeness-index for prediction of ripening level in mangoes by multivariate modelling of ripening behaviour

    NASA Astrophysics Data System (ADS)

    Eyarkai Nambi, Vijayaram; Thangavel, Kuladaisamy; Manickavasagan, Annamalai; Shahir, Sultan

    2017-01-01

    Prediction of ripeness level in climacteric fruits is essential for post-harvest handling. An index capable of predicting ripening level with minimum inputs would be highly beneficial to the handlers, processors and researchers in fruit industry. A study was conducted with Indian mango cultivars to develop a ripeness index and associated model. Changes in physicochemical, colour and textural properties were measured throughout the ripening period and the period was classified into five stages (unripe, early ripe, partially ripe, ripe and over ripe). Multivariate regression techniques like partial least square regression, principal component regression and multi linear regression were compared and evaluated for its prediction. Multi linear regression model with 12 parameters was found more suitable in ripening prediction. Scientific variable reduction method was adopted to simplify the developed model. Better prediction was achieved with either 2 or 3 variables (total soluble solids, colour and acidity). Cross validation was done to increase the robustness and it was found that proposed ripening index was more effective in prediction of ripening stages. Three-variable model would be suitable for commercial applications where reasonable accuracies are sufficient. However, 12-variable model can be used to obtain more precise results in research and development applications.

  20. The application of parameter estimation to flight measurements to obtain lateral-directional stability derivatives of an augmented jet-flap STOL airplane

    NASA Technical Reports Server (NTRS)

    Stephenson, J. D.

    1983-01-01

    Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.

  1. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  2. Motor Nerve Conduction Velocity In Postmenopausal Women with Peripheral Neuropathy.

    PubMed

    Singh, Akanksha; Asif, Naiyer; Singh, Paras Nath; Hossain, Mohd Mobarak

    2016-12-01

    The post-menopausal phase is characterized by a decline in the serum oestrogen and progesterone levels. This phase is also associated with higher incidence of peripheral neuropathy. To explore the relationship between the peripheral motor nerve status and serum oestrogen and progesterone levels through assessment of Motor Nerve Conduction Velocity (MNCV) in post-menopausal women with peripheral neuropathy. This cross-sectional study was conducted at Jawaharlal Nehru Medical College during 2011-2013. The study included 30 post-menopausal women with peripheral neuropathy (age: 51.4±7.9) and 30 post-menopausal women without peripheral neuropathy (control) (age: 52.5±4.9). They were compared for MNCV in median, ulnar and common peroneal nerves and serum levels of oestrogen and progesterone estimated through enzyme immunoassays. To study the relationship between hormone levels and MNCV, a stepwise linear regression analysis was done. The post-menopausal women with peripheral neuropathy had significantly lower MNCV and serum oestrogen and progesterone levels as compared to control subjects. Stepwise linear regression analysis showed oestrogen with main effect on MNCV. The findings of the present study suggest that while the post-menopausal age group is at a greater risk of peripheral neuropathy, it is the decline in the serum estrogen levels which is critical in the development of peripheral neuropathy.

  3. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  4. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    PubMed Central

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  5. The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Sinharay, Sandip

    2010-01-01

    Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…

  6. Prevalence of health literacy and its correlates among patients with type II diabetes in Kuwait: A population based study.

    PubMed

    Hussein, Shaimaa H; Almajran, Abdullah; Albatineh, Ahmed N

    2018-05-03

    The purpose of this study is to estimate the prevalence of health literacy among patients with type II diabetes and investigate its association with several covariates. No studies were conducted in the Arabian Gulf region characterizing such factors for this population. A cross sectional study was implemented in which 359 type II diabetes patients were recruited from diabetes centers across Kuwait. Health literacy was measured by STOFHLA. Multivariate linear regression was applied to investigate the relationship between health literacy and several covariates. About 44.5% had inadequate, 19.5% marginal, and 35.5% adequate health literacy. Patients with inadequate health literacy were more likely to be older, females, widowed, low education, with income less than 500 KD/month. Multivariate linear regression indicated residence, nationality, education level, and age were significantly associated with health literacy. Adding marital status and gender, hierarchical linear regression revealed that 43.4% of the variability was accounted for. Inadequate health literacy is high in Kuwait. Interventions should be implemented to improve health literacy. This will reduce the prevalence of diabetes-related complications, produce better diabetes outcomes, and improve patients' quality-of-life. Health literacy should be an integral part to health promotion and chronic diseases' management programs in Kuwait. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Transmission of linear regression patterns between time series: From relationship in time series to complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  9. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    PubMed

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  10. Civic Purpose in Late Adolescence: Factors That Prevent Decline in Civic Engagement after High School

    ERIC Educational Resources Information Center

    Malin, Heather; Han, Hyemin; Liauw, Indrawati

    2017-01-01

    This study investigated the effects of internal and demographic variables on civic development in late adolescence using the construct "civic purpose." We conducted surveys on civic engagement with 480 high school seniors, and surveyed them again 2 years later. Using multivariate regression and linear mixed models, we tested the main…

  11. Thematic Mapper Analysis of Blue Oak (Quercus douglasii) in Central California

    Treesearch

    Paul A. Lefebvre Jr.; Frank W. Davis; Mark Borchert

    1991-01-01

    Digital Thematic Mapper (TM) satellite data from September 1986 and December 1985 were analyzed to determine seasonal reflectance properties of blue oak rangeland in the La Panza mountains of San Luis Obispo County. Linear regression analysis was conducted to examine relationships between TM reflectance and oak canopy cover, basal area, and site topographic variables....

  12. Relationship between Type of Trauma Exposure and Posttraumatic Stress Disorder among Urban Children and Adolescents

    ERIC Educational Resources Information Center

    Luthra, Rohini; Abramovitz, Robert; Greenberg, Rick; Schoor, Alan; Newcorn, Jeffrey; Schmeidler, James; Levine, Paul; Nomura, Yoko; Chemtob, Claude M.

    2009-01-01

    This study examines the association between trauma exposure and posttraumatic stress disorder (PTSD) among 157 help-seeking children (aged 8-17). Structured clinical interviews are carried out, and linear and logistic regression analyses are conducted to examine the relationship between PTSD and type of trauma exposure controlling for age, gender,…

  13. Meta-regression analysis of the effect of trans fatty acids on low-density lipoprotein cholesterol.

    PubMed

    Allen, Bruce C; Vincent, Melissa J; Liska, DeAnn; Haber, Lynne T

    2016-12-01

    We conducted a meta-regression of controlled clinical trial data to investigate quantitatively the relationship between dietary intake of industrial trans fatty acids (iTFA) and increased low-density lipoprotein cholesterol (LDL-C). Previous regression analyses included insufficient data to determine the nature of the dose response in the low-dose region and have nonetheless assumed a linear relationship between iTFA intake and LDL-C levels. This work contributes to the previous work by 1) including additional studies examining low-dose intake (identified using an evidence mapping procedure); 2) investigating a range of curve shapes, including both linear and nonlinear models; and 3) using Bayesian meta-regression to combine results across trials. We found that, contrary to previous assumptions, the linear model does not acceptably fit the data, while the nonlinear, S-shaped Hill model fits the data well. Based on a conservative estimate of the degree of intra-individual variability in LDL-C (0.1 mmoL/L), as an estimate of a change in LDL-C that is not adverse, a change in iTFA intake of 2.2% of energy intake (%en) (corresponding to a total iTFA intake of 2.2-2.9%en) does not cause adverse effects on LDL-C. The iTFA intake associated with this change in LDL-C is substantially higher than the average iTFA intake (0.5%en). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Explanation of the variance in quality of life and activity capacity of patients with heart failure by laboratory data.

    PubMed

    Athanasopoulos, Leonidas V; Dritsas, Athanasios; Doll, Helen A; Cokkinos, Dennis V

    2010-08-01

    This study was conducted to explain the variance in quality of life (QoL) and activity capacity of patients with congestive heart failure from pathophysiological changes as estimated by laboratory data. Peak oxygen consumption (peak VO2) and ventilation (VE)/carbon dioxide output (VCO2) slope derived from cardiopulmonary exercise testing, plasma N-terminal prohormone of B-type natriuretic peptide (NT-proBNP), and echocardiographic markers [left atrium (LA), left ventricular ejection fraction (LVEF)] were measured in 62 patients with congestive heart failure, who also completed the Minnesota Living with Heart Failure Questionnaire and the Specific Activity Questionnaire. All regression models were adjusted for age and sex. On linear regression analysis, peak VO2 with P value less than 0.001, VE/VCO2 slope with P value less than 0.01, LVEF with P value less than 0.001, LA with P=0.001, and logNT-proBNP with P value less than 0.01 were found to be associated with QoL. On stepwise multiple linear regression, peak VO2 and LVEF continued to be predictive, accounting for 40% of the variability in Minnesota Living with Heart Failure Questionnaire score. On linear regression analysis, peak VO2 with P value less than 0.001, VE/VCO2 slope with P value less than 0.001, LVEF with P value less than 0.05, LA with P value less than 0.001, and logNT-proBNP with P value less than 0.001 were found to be associated with activity capacity. On stepwise multiple linear regression, peak VO2 and LA continued to be predictive, accounting for 53% of the variability in Specific Activity Questionnaire score. Peak VO2 is independently associated both with QoL and activity capacity. In addition to peak VO2, LVEF is independently associated with QoL, and LA with activity capacity.

  15. Least median of squares and iteratively re-weighted least squares as robust linear regression methods for fluorimetric determination of α-lipoic acid in capsules in ideal and non-ideal cases of linearity.

    PubMed

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2018-06-01

    This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Digital Image Restoration Under a Regression Model - The Unconstrained, Linear Equality and Inequality Constrained Approaches

    DTIC Science & Technology

    1974-01-01

    REGRESSION MODEL - THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January 1974 Nelson Delfino d’Avila Mascarenha;? Image...Report 520 DIGITAL IMAGE RESTORATION UNDER A REGRESSION MODEL THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January...a two- dimensional form adequately describes the linear model . A dis- cretization is performed by using quadrature methods. By trans

  17. Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data

    NASA Astrophysics Data System (ADS)

    Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher

    2017-05-01

    Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance

  18. Theory of mind and executive function: working-memory capacity and inhibitory control as predictors of false-belief task performance.

    PubMed

    Mutter, Brigitte; Alcorn, Mark B; Welsh, Marilyn

    2006-06-01

    This study of the relationship between theory of mind and executive function examined whether on the false-belief task age differences between 3 and 5 ears of age are related to development of working-memory capacity and inhibitory processes. 72 children completed tasks measuring false belief, working memory, and inhibition. Significant age effects were observed for false-belief and working-memory performance, as well as for the false-alarm and perseveration measures of inhibition. A simultaneous multiple linear regression specified the contribution of age, inhibition, and working memory to the prediction of false-belief performance. This model was significant, explaining a total of 36% of the variance. To examine the independent contributions of the working-memory and inhibition variables, after controlling for age, two hierarchical multiple linear regressions were conducted. These multiple regression analyses indicate that working memory and inhibition make small, overlapping contributions to false-belief performance after accounting for age, but that working memory, as measured in this study, is a somewhat better predictor of false-belief understanding than is inhibition.

  19. Specific factors for prenatal lead exposure in the border area of China.

    PubMed

    Kawata, Kimiko; Li, Yan; Liu, Hao; Zhang, Xiao Qin; Ushijima, Hiroshi

    2006-07-01

    The objectives of this study are to examine the prevalence of increased blood lead concentrations in mothers and their umbilical cords, and to identify risk factors for prenatal lead exposure in Kunming city, Yunnan province, China. The study was conducted at two obstetrics departments, and 100 peripartum women were enrolled. The mean blood lead concentrations of the mothers and the umbilical cords were 67.3microg/l and 53.1microg/l, respectively. In multiple linear regression analysis, maternal occupational exposure, maternal consumption of homemade dehydrated vegetables and maternal habitation period in Kunming city were significantly associated with an increase of umbilical cord blood lead concentration. In addition, logistic regression analysis was used to assess the association of umbilical cord blood lead concentrations that possibly have adverse effects on brain development of newborns with each potential risk factor. Maternal frequent use of tableware with color patterns inside was significantly associated with higher cord blood lead concentration in addition to the three items in the multiple linear regression analysis. These points should be considered as specific recommendations for maternal and fetal lead exposure in this city.

  20. Element enrichment factor calculation using grain-size distribution and functional data regression.

    PubMed

    Sierra, C; Ordóñez, C; Saavedra, A; Gallego, J R

    2015-01-01

    In environmental geochemistry studies it is common practice to normalize element concentrations in order to remove the effect of grain size. Linear regression with respect to a particular grain size or conservative element is a widely used method of normalization. In this paper, the utility of functional linear regression, in which the grain-size curve is the independent variable and the concentration of pollutant the dependent variable, is analyzed and applied to detrital sediment. After implementing functional linear regression and classical linear regression models to normalize and calculate enrichment factors, we concluded that the former regression technique has some advantages over the latter. First, functional linear regression directly considers the grain-size distribution of the samples as the explanatory variable. Second, as the regression coefficients are not constant values but functions depending on the grain size, it is easier to comprehend the relationship between grain size and pollutant concentration. Third, regularization can be introduced into the model in order to establish equilibrium between reliability of the data and smoothness of the solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    ERIC Educational Resources Information Center

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  2. Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia molenock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyer, R.A.; Modica, G.

    1990-01-01

    Acute toxicity tests were conducted to compare estimates of toxicity, as modified by salinity and temperature, based on response surface techniques with those derived using conventional test methods, and to compare effect of a single episodic exposure to cadmium as a function of salinity with that of continuous exposure. Regression analysis indicated that mortality following continuous 96-hr exposure is related to linear and quadratic effects of salinity and cadmium at 20 C, and to the linear and quadratic effects of cadmium only at 25C. LC50s decreased with increases in temperature and decreases in salinity. Based on the regression model developed,more » 96-hr LC50s ranged from 15.5 to 28.0 micro Cd/L at 10 and 30% salinities, respectively, at 25C; and from 47 to 85 microgram Cd/L at these salinities at 20C.« less

  3. The microcomputer scientific software series 2: general linear model--regression.

    Treesearch

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  4. Determination of grain-size characteristics from electromagnetic seabed mapping data: A NW Iberian shelf study

    NASA Astrophysics Data System (ADS)

    Baasch, Benjamin; Müller, Hendrik; von Dobeneck, Tilo; Oberle, Ferdinand K. J.

    2017-05-01

    The electric conductivity and magnetic susceptibility of sediments are fundamental parameters in environmental geophysics. Both can be derived from marine electromagnetic profiling, a novel, fast and non-invasive seafloor mapping technique. Here we present statistical evidence that electric conductivity and magnetic susceptibility can help to determine physical grain-size characteristics (size, sorting and mud content) of marine surficial sediments. Electromagnetic data acquired with the bottom-towed electromagnetic profiler MARUM NERIDIS III were analysed and compared with grain size data from 33 samples across the NW Iberian continental shelf. A negative correlation between mean grain size and conductivity (R=-0.79) as well as mean grain size and susceptibility (R=-0.78) was found. Simple and multiple linear regression analyses were carried out to predict mean grain size, mud content and the standard deviation of the grain-size distribution from conductivity and susceptibility. The comparison of both methods showed that multiple linear regression models predict the grain-size distribution characteristics better than the simple models. This exemplary study demonstrates that electromagnetic benthic profiling is capable to estimate mean grain size, sorting and mud content of marine surficial sediments at a very high significance level. Transfer functions can be calibrated using grains-size data from a few reference samples and extrapolated along shelf-wide survey lines. This study suggests that electromagnetic benthic profiling should play a larger role for coastal zone management, seafloor contamination and sediment provenance studies in worldwide continental shelf systems.

  5. Knowledge, Attitude, and Practices Regarding Vector-borne Diseases in Western Jamaica.

    PubMed

    Alobuia, Wilson M; Missikpode, Celestin; Aung, Maung; Jolly, Pauline E

    2015-01-01

    Outbreaks of vector-borne diseases (VBDs) such as dengue and malaria can overwhelm health systems in resource-poor countries. Environmental management strategies that reduce or eliminate vector breeding sites combined with improved personal prevention strategies can help to significantly reduce transmission of these infections. The aim of this study was to assess the knowledge, attitudes, and practices (KAPs) of residents in western Jamaica regarding control of mosquito vectors and protection from mosquito bites. A cross-sectional study was conducted between May and August 2010 among patients or family members of patients waiting to be seen at hospitals in western Jamaica. Participants completed an interviewer-administered questionnaire on sociodemographic factors and KAPs regarding VBDs. KAP scores were calculated and categorized as high or low based on the number of correct or positive responses. Logistic regression analyses were conducted to identify predictors of KAP and linear regression analysis conducted to determine if knowledge and attitude scores predicted practice scores. In all, 361 (85 men and 276 women) people participated in the study. Most participants (87%) scored low on knowledge and practice items (78%). Conversely, 78% scored high on attitude items. By multivariate logistic regression, housewives were 82% less likely than laborers to have high attitude scores; homeowners were 65% less likely than renters to have high attitude scores. Participants from households with 1 to 2 children were 3.4 times more likely to have high attitude scores compared with those from households with no children. Participants from households with at least 5 people were 65% less likely than those from households with fewer than 5 people to have high practice scores. By multivariable linear regression knowledge and attitude scores were significant predictors of practice score. The study revealed poor knowledge of VBDs and poor prevention practices among participants. It identified specific groups that can be targeted with vector control and personal protection interventions to decrease transmission of the infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Assessment of weather-associated causes of red spruce winter injury and consequences to aboveground carbon sequestration

    Treesearch

    Paul G. Schaberg; Brynne E. Lazarus; Gary J. Hawley; Joshua M. Halman; Catherine H. Borer; Christopher F. Hansen

    2011-01-01

    Despite considerable study, it remains uncertain what environmental factors contribute to red spruce (Picea rubens Sarg.) foliar winter injury and how much this injury influences tree C stores. We used a long-term record of winter injury in a plantation in New Hampshire and conducted stepwise linear regression analyses with local weather and regional...

  7. Using direct current resistivity sounding and geostatistics to aid in hydrogeological studies in the Choshuichi alluvial fan, Taiwan.

    PubMed

    Yang, Chieh-Hou; Lee, Wei-Feng

    2002-01-01

    Ground water reservoirs in the Choshuichi alluvial fan, central western Taiwan, were investigated using direct-current (DC) resistivity soundings at 190 locations, combined with hydrogeological measurements from 37 wells. In addition, attempts were made to calculate aquifer transmissivity from both surface DC resistivity measurements and geostatistically derived predictions of aquifer properties. DC resistivity sounding data are highly correlated to the hydraulic parameters in the Choshuichi alluvial fan. By estimating the spatial distribution of hydraulic conductivity from the kriged well data and the cokriged thickness of the correlative aquifer from both resistivity sounding data and well information, the transmissivity of the aquifer at each location can be obtained from the product of kriged hydraulic conductivity and computed thickness of the geoelectric layer. Thus, the spatial variation of the transmissivities in the study area is obtained. Our work is more comparable to Ahmed et al. (1988) than to the work of Niwas and Singhal (1981). The first "constraint" from Niwas and Singhal's work is a result of their use of linear regression. The geostatistical approach taken here (and by Ahmed et al. [1988]) is a natural improvement on the linear regression approach.

  8. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    NASA Astrophysics Data System (ADS)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  9. Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: case study of Connecticut River at Middle Haddam Station, USA.

    PubMed

    Heddam, Salim

    2014-11-01

    The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott's index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM).

  10. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  11. Quantifying the sensitivity of feedstock properties and process conditions on hydrochar yield, carbon content, and energy content.

    PubMed

    Li, Liang; Wang, Yiying; Xu, Jiting; Flora, Joseph R V; Hoque, Shamia; Berge, Nicole D

    2018-08-01

    Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature. A Sobol analysis was subsequently conducted to identify parameters that most influence hydrochar characteristics. Results from this analysis indicate that for each investigated hydrochar property, the model fit and predictive capability associated with the random forest models is superior to both the linear and regression tree models. Based on results from the Sobol analysis, the feedstock properties and process conditions most influential on hydrochar yield, carbon content, and energy content were identified. In addition, a variational process parameter sensitivity analysis was conducted to determine how feedstock property importance changes with process conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  13. Orthogonal Regression: A Teaching Perspective

    ERIC Educational Resources Information Center

    Carr, James R.

    2012-01-01

    A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…

  14. Practical Session: Simple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).

  15. Morse Code, Scrabble, and the Alphabet

    ERIC Educational Resources Information Center

    Richardson, Mary; Gabrosek, John; Reischman, Diann; Curtiss, Phyliss

    2004-01-01

    In this paper we describe an interactive activity that illustrates simple linear regression. Students collect data and analyze it using simple linear regression techniques taught in an introductory applied statistics course. The activity is extended to illustrate checks for regression assumptions and regression diagnostics taught in an…

  16. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis

    PubMed Central

    Kim, Seong-Gil

    2018-01-01

    Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375

  17. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    PubMed

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  18. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  19. Reversed inverse regression for the univariate linear calibration and its statistical properties derived using a new methodology

    NASA Astrophysics Data System (ADS)

    Kang, Pilsang; Koo, Changhoi; Roh, Hokyu

    2017-11-01

    Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.

  20. Anti-TNF levels in cord blood at birth are associated with anti-TNF type.

    PubMed

    Kanis, Shannon L; de Lima, Alison; van der Ent, Cokkie; Rizopoulos, Dimitris; van der Woude, C Janneke

    2018-05-15

    Pregnancy guidelines for women with Inflammatory Bowel Disease (IBD) provide recommendations regarding anti-TNF cessation during pregnancy, in order to limit fetal exposure. Although infliximab (IFX) leads to higher anti-TNF concentrations in cord blood than adalimumab (ADA), recommendations are similar. We aimed to demonstrate the effect of anti-TNF cessation during pregnancy on fetal exposure, for IFX and ADA separately. We conducted a prospective single center cohort study. Women with IBD, using IFX or ADA, were followed-up during pregnancy. In case of sustained disease remission, anti-TNF was stopped in the third trimester. At birth, anti-TNF concentration was measured in cord blood. A linear regression model was developed to demonstrate anti-TNF concentration in cord blood at birth. In addition, outcomes such as disease activity, pregnancy outcomes and 1-year health outcomes of infants were collected. We included 131 pregnancies that resulted in a live birth (73 IFX, 58 ADA). At birth, 94 cord blood samples were obtained (52 IFX, 42 ADA), showing significantly higher levels of IFX than ADA (p<0.0001). Anti-TNF type and stop week were used in the linear regression model. During the third trimester, IFX transportation over the placenta increases exponentially, however, ADA transportation is limited and increases in a linear fashion. Overall, health outcomes were comparable. Our linear regression model shows that ADA may be continued longer during pregnancy as transportation over the placenta is lower than IFX. This may reduce relapse risk of the mother without increasing fetal anti-TNF exposure.

  1. A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.

    PubMed

    Ferrari, Alberto; Comelli, Mario

    2016-12-01

    In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Interpretation of commonly used statistical regression models.

    PubMed

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  3. Use of probabilistic weights to enhance linear regression myoelectric control

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2015-12-01

    Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  4. Simplified large African carnivore density estimators from track indices.

    PubMed

    Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J

    2016-01-01

    The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y  =  αx  + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P  > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P  < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.

  5. [From clinical judgment to linear regression model.

    PubMed

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  6. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Bi, Peng; Hiller, Janet

    2008-01-01

    This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.

  7. Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual.

    PubMed

    Hemmila, April; McGill, Jim; Ritter, David

    2008-03-01

    To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.

  8. Criteria for the use of regression analysis for remote sensing of sediment and pollutants

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.; Lecroy, S. R.

    1982-01-01

    An examination of limitations, requirements, and precision of the linear multiple-regression technique for quantification of marine environmental parameters is conducted. Both environmental and optical physics conditions have been defined for which an exact solution to the signal response equations is of the same form as the multiple regression equation. Various statistical parameters are examined to define a criteria for selection of an unbiased fit when upwelled radiance values contain error and are correlated with each other. Field experimental data are examined to define data smoothing requirements in order to satisfy the criteria of Daniel and Wood (1971). Recommendations are made concerning improved selection of ground-truth locations to maximize variance and to minimize physical errors associated with the remote sensing experiment.

  9. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    PubMed

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.

  10. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  11. An Expert System for the Evaluation of Cost Models

    DTIC Science & Technology

    1990-09-01

    contrast to the condition of equal error variance, called homoscedasticity. (Reference: Applied Linear Regression Models by John Neter - page 423...normal. (Reference: Applied Linear Regression Models by John Neter - page 125) Click Here to continue -> Autocorrelation Click Here for the index - Index...over time. Error terms correlated over time are said to be autocorrelated or serially correlated. (REFERENCE: Applied Linear Regression Models by John

  12. Detecting influential observations in nonlinear regression modeling of groundwater flow

    USGS Publications Warehouse

    Yager, Richard M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  13. Profile local linear estimation of generalized semiparametric regression model for longitudinal data.

    PubMed

    Sun, Yanqing; Sun, Liuquan; Zhou, Jie

    2013-07-01

    This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.

  14. Compound Identification Using Penalized Linear Regression on Metabolomics

    PubMed Central

    Liu, Ruiqi; Wu, Dongfeng; Zhang, Xiang; Kim, Seongho

    2014-01-01

    Compound identification is often achieved by matching the experimental mass spectra to the mass spectra stored in a reference library based on mass spectral similarity. Because the number of compounds in the reference library is much larger than the range of mass-to-charge ratio (m/z) values so that the data become high dimensional data suffering from singularity. For this reason, penalized linear regressions such as ridge regression and the lasso are used instead of the ordinary least squares regression. Furthermore, two-step approaches using the dot product and Pearson’s correlation along with the penalized linear regression are proposed in this study. PMID:27212894

  15. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  16. Control Variate Selection for Multiresponse Simulation.

    DTIC Science & Technology

    1987-05-01

    M. H. Knuter, Applied Linear Regression Mfodels, Richard D. Erwin, Inc., Homewood, Illinois, 1983. Neuts, Marcel F., Probability, Allyn and Bacon...1982. Neter, J., V. Wasserman, and M. H. Knuter, Applied Linear Regression .fodels, Richard D. Erwin, Inc., Homewood, Illinois, 1983. Neuts, Marcel F...Aspects of J%,ultivariate Statistical Theory, John Wiley and Sons, New York, New York, 1982. dY Neter, J., W. Wasserman, and M. H. Knuter, Applied Linear Regression Mfodels

  17. An Investigation of the Fit of Linear Regression Models to Data from an SAT[R] Validity Study. Research Report 2011-3

    ERIC Educational Resources Information Center

    Kobrin, Jennifer L.; Sinharay, Sandip; Haberman, Shelby J.; Chajewski, Michael

    2011-01-01

    This study examined the adequacy of a multiple linear regression model for predicting first-year college grade point average (FYGPA) using SAT[R] scores and high school grade point average (HSGPA). A variety of techniques, both graphical and statistical, were used to examine if it is possible to improve on the linear regression model. The results…

  18. High correlations between MRI brain volume measurements based on NeuroQuant® and FreeSurfer.

    PubMed

    Ross, David E; Ochs, Alfred L; Tate, David F; Tokac, Umit; Seabaugh, John; Abildskov, Tracy J; Bigler, Erin D

    2018-05-30

    NeuroQuant ® (NQ) and FreeSurfer (FS) are commonly used computer-automated programs for measuring MRI brain volume. Previously they were reported to have high intermethod reliabilities but often large intermethod effect size differences. We hypothesized that linear transformations could be used to reduce the large effect sizes. This study was an extension of our previously reported study. We performed NQ and FS brain volume measurements on 60 subjects (including normal controls, patients with traumatic brain injury, and patients with Alzheimer's disease). We used two statistical approaches in parallel to develop methods for transforming FS volumes into NQ volumes: traditional linear regression, and Bayesian linear regression. For both methods, we used regression analyses to develop linear transformations of the FS volumes to make them more similar to the NQ volumes. The FS-to-NQ transformations based on traditional linear regression resulted in effect sizes which were small to moderate. The transformations based on Bayesian linear regression resulted in all effect sizes being trivially small. To our knowledge, this is the first report describing a method for transforming FS to NQ data so as to achieve high reliability and low effect size differences. Machine learning methods like Bayesian regression may be more useful than traditional methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Quantile Regression in the Study of Developmental Sciences

    PubMed Central

    Petscher, Yaacov; Logan, Jessica A. R.

    2014-01-01

    Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of the outcome’s distribution. Using data from the High School and Beyond and U.S. Sustained Effects Study databases, quantile regression is demonstrated and contrasted with linear regression when considering models with: (a) one continuous predictor, (b) one dichotomous predictor, (c) a continuous and a dichotomous predictor, and (d) a longitudinal application. Results from each example exhibited the differential inferences which may be drawn using linear or quantile regression. PMID:24329596

  20. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    PubMed

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P < 0.05) and fairly linear, although it remains unresolved whether a polynomial fit could provide even stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  1. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing

    PubMed Central

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-01-01

    Aims A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R2), using R2 as the primary metric of assay agreement. However, the use of R2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. Methods We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Results Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. Conclusions The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. PMID:28747393

  2. A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION

    EPA Science Inventory

    We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...

  3. The effects of climate change on harp seals (Pagophilus groenlandicus).

    PubMed

    Johnston, David W; Bowers, Matthew T; Friedlaender, Ari S; Lavigne, David M

    2012-01-01

    Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data.

  4. The Effects of Climate Change on Harp Seals (Pagophilus groenlandicus)

    PubMed Central

    Johnston, David W.; Bowers, Matthew T.; Friedlaender, Ari S.; Lavigne, David M.

    2012-01-01

    Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data. PMID:22238591

  5. Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2006-08-25

    Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.

  6. Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

    DTIC Science & Technology

    2015-07-15

    Long-term effects on cancer survivors’ quality of life of physical training versus physical training combined with cognitive-behavioral therapy ...COMPARISON OF NEURAL NETWORK AND LINEAR REGRESSION MODELS IN STATISTICALLY PREDICTING MENTAL AND PHYSICAL HEALTH STATUS OF BREAST...34Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

  7. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  8. Estimation of Standard Error of Regression Effects in Latent Regression Models Using Binder's Linearization. Research Report. ETS RR-07-09

    ERIC Educational Resources Information Center

    Li, Deping; Oranje, Andreas

    2007-01-01

    Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…

  9. Regression assumptions in clinical psychology research practice-a systematic review of common misconceptions.

    PubMed

    Ernst, Anja F; Albers, Casper J

    2017-01-01

    Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking.

  10. Regression assumptions in clinical psychology research practice—a systematic review of common misconceptions

    PubMed Central

    Ernst, Anja F.

    2017-01-01

    Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking. PMID:28533971

  11. Estimating linear temporal trends from aggregated environmental monitoring data

    USGS Publications Warehouse

    Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.

    2017-01-01

    Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.

  12. Comparing The Effectiveness of a90/95 Calculations (Preprint)

    DTIC Science & Technology

    2006-09-01

    Nachtsheim, John Neter, William Li, Applied Linear Statistical Models , 5th ed., McGraw-Hill/Irwin, 2005 5. Mood, Graybill and Boes, Introduction...curves is based on methods that are only valid for ordinary linear regression. Requirements for a valid Ordinary Least-Squares Regression Model There... linear . For example is a linear model ; is not. 2. Uniform variance (homoscedasticity

  13. High-flow oxygen therapy: pressure analysis in a pediatric airway model.

    PubMed

    Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel

    2012-05-01

    The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.

  14. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing.

    PubMed

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-02-01

    A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. U.S. Army Armament Research, Development and Engineering Center Grain Evaluation Software to Numerically Predict Linear Burn Regression for Solid Propellant Grain Geometries

    DTIC Science & Technology

    2017-10-01

    ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID

  16. Linear regression in astronomy. II

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  17. A Constrained Linear Estimator for Multiple Regression

    ERIC Educational Resources Information Center

    Davis-Stober, Clintin P.; Dana, Jason; Budescu, David V.

    2010-01-01

    "Improper linear models" (see Dawes, Am. Psychol. 34:571-582, "1979"), such as equal weighting, have garnered interest as alternatives to standard regression models. We analyze the general circumstances under which these models perform well by recasting a class of "improper" linear models as "proper" statistical models with a single predictor. We…

  18. On the design of classifiers for crop inventories

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.; Takacs, H. C.

    1986-01-01

    Crop proportion estimators that use classifications of satellite data to correct, in an additive way, a given estimate acquired from ground observations are discussed. A linear version of these estimators is optimal, in terms of minimum variance, when the regression of the ground observations onto the satellite observations in linear. When this regression is not linear, but the reverse regression (satellite observations onto ground observations) is linear, the estimator is suboptimal but still has certain appealing variance properties. In this paper expressions are derived for those regressions which relate the intercepts and slopes to conditional classification probabilities. These expressions are then used to discuss the question of classifier designs that can lead to low-variance crop proportion estimates. Variance expressions for these estimates in terms of classifier omission and commission errors are also derived.

  19. On estimation of linear transformation models with nested case–control sampling

    PubMed Central

    Liu, Mengling

    2011-01-01

    Nested case–control (NCC) sampling is widely used in large epidemiological cohort studies for its cost effectiveness, but its data analysis primarily relies on the Cox proportional hazards model. In this paper, we consider a family of linear transformation models for analyzing NCC data and propose an inverse selection probability weighted estimating equation method for inference. Consistency and asymptotic normality of our estimators for regression coefficients are established. We show that the asymptotic variance has a closed analytic form and can be easily estimated. Numerical studies are conducted to support the theory and an application to the Wilms’ Tumor Study is also given to illustrate the methodology. PMID:21912975

  20. Comparison between light scattering and gravimetric samplers for PM10 mass concentration in poultry and pig houses

    NASA Astrophysics Data System (ADS)

    Cambra-López, María; Winkel, Albert; Mosquera, Julio; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    The objective of this study was to compare co-located real-time light scattering devices and equivalent gravimetric samplers in poultry and pig houses for PM10 mass concentration, and to develop animal-specific calibration factors for light scattering samplers. These results will contribute to evaluate the comparability of different sampling instruments for PM10 concentrations. Paired DustTrak light scattering device (DustTrak aerosol monitor, TSI, U.S.) and PM10 gravimetric cyclone sampler were used for measuring PM10 mass concentrations during 24 h periods (from noon to noon) inside animal houses. Sampling was conducted in 32 animal houses in the Netherlands, including broilers, broiler breeders, layers in floor and in aviary system, turkeys, piglets, growing-finishing pigs in traditional and low emission housing with dry and liquid feed, and sows in individual and group housing. A total of 119 pairs of 24 h measurements (55 for poultry and 64 for pigs) were recorded and analyzed using linear regression analysis. Deviations between samplers were calculated and discussed. In poultry, cyclone sampler and DustTrak data fitted well to a linear regression, with a regression coefficient equal to 0.41, an intercept of 0.16 mg m-3 and a correlation coefficient of 0.91 (excluding turkeys). Results in turkeys showed a regression coefficient equal to 1.1 (P = 0.49), an intercept of 0.06 mg m-3 (P < 0.0001) and a correlation coefficient of 0.98. In pigs, we found a regression coefficient equal to 0.61, an intercept of 0.05 mg m-3 and a correlation coefficient of 0.84. Measured PM10 concentrations using DustTraks were clearly underestimated (approx. by a factor 2) in both poultry and pig housing systems compared with cyclone pre-separators. Absolute, relative, and random deviations increased with concentration. DustTrak light scattering devices should be self-calibrated to investigate PM10 mass concentrations accurately in animal houses. We recommend linear regression equations as animal-specific calibration factors for DustTraks instead of manufacturer calibration factors, especially in heavily dusty environments such as animal houses.

  1. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study

    PubMed Central

    Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert

    2012-01-01

    Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748

  2. Linear regression analysis of survival data with missing censoring indicators.

    PubMed

    Wang, Qihua; Dinse, Gregg E

    2011-04-01

    Linear regression analysis has been studied extensively in a random censorship setting, but typically all of the censoring indicators are assumed to be observed. In this paper, we develop synthetic data methods for estimating regression parameters in a linear model when some censoring indicators are missing. We define estimators based on regression calibration, imputation, and inverse probability weighting techniques, and we prove all three estimators are asymptotically normal. The finite-sample performance of each estimator is evaluated via simulation. We illustrate our methods by assessing the effects of sex and age on the time to non-ambulatory progression for patients in a brain cancer clinical trial.

  3. An Analysis of COLA (Cost of Living Adjustment) Allocation within the United States Coast Guard.

    DTIC Science & Technology

    1983-09-01

    books Applied Linear Regression [Ref. 39], and Statistical Methods in Research and Production [Ref. 40], or any other book on regression. In the event...Indexes, Master’s Thesis, Air Force Institute of Technology, Wright-Patterson AFB, 1976. 39. Weisberg, Stanford, Applied Linear Regression , Wiley, 1980. 40

  4. Testing hypotheses for differences between linear regression lines

    Treesearch

    Stanley J. Zarnoch

    2009-01-01

    Five hypotheses are identified for testing differences between simple linear regression lines. The distinctions between these hypotheses are based on a priori assumptions and illustrated with full and reduced models. The contrast approach is presented as an easy and complete method for testing for overall differences between the regressions and for making pairwise...

  5. Graphical Description of Johnson-Neyman Outcomes for Linear and Quadratic Regression Surfaces.

    ERIC Educational Resources Information Center

    Schafer, William D.; Wang, Yuh-Yin

    A modification of the usual graphical representation of heterogeneous regressions is described that can aid in interpreting significant regions for linear or quadratic surfaces. The standard Johnson-Neyman graph is a bivariate plot with the criterion variable on the ordinate and the predictor variable on the abscissa. Regression surfaces are drawn…

  6. Teaching the Concept of Breakdown Point in Simple Linear Regression.

    ERIC Educational Resources Information Center

    Chan, Wai-Sum

    2001-01-01

    Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…

  7. Estimating monotonic rates from biological data using local linear regression.

    PubMed

    Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R

    2017-03-01

    Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.

  8. A novel multi-target regression framework for time-series prediction of drug efficacy.

    PubMed

    Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin

    2017-01-18

    Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task.

  9. A novel multi-target regression framework for time-series prediction of drug efficacy

    PubMed Central

    Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin

    2017-01-01

    Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task. PMID:28098186

  10. "Mad or bad?": burden on caregivers of patients with personality disorders.

    PubMed

    Bauer, Rita; Döring, Antje; Schmidt, Tanja; Spießl, Hermann

    2012-12-01

    The burden on caregivers of patients with personality disorders is often greatly underestimated or completely disregarded. Possibilities for caregiver support have rarely been assessed. Thirty interviews were conducted with caregivers of such patients to assess illness-related burden. Responses were analyzed with a mixed method of qualitative and quantitative analysis in a sequential design. Patient and caregiver data, including sociodemographic and disease-related variables, were evaluated with regression analysis and regression trees. Caregiver statements (n = 404) were summarized into 44 global statements. The most frequent global statements were worries about the burden on other family members (70.0%), poor cooperation with clinical centers and other institutions (60.0%), financial burden (56.7%), worry about the patient's future (53.3%), and dissatisfaction with the patient's treatment and rehabilitation (53.3%). Linear regression and regression tree analysis identified predictors for more burdened caregivers. Caregivers of patients with personality disorders experience a variety of burdens, some disorder specific. Yet these caregivers often receive little attention or support.

  11. Long-Term Coffee Consumption Is Associated with Decreased Incidence of New-Onset Hypertension: A Dose-Response Meta-Analysis.

    PubMed

    Grosso, Giuseppe; Micek, Agnieszka; Godos, Justyna; Pajak, Andrzej; Sciacca, Salvatore; Bes-Rastrollo, Maira; Galvano, Fabio; Martinez-Gonzalez, Miguel A

    2017-08-17

    To perform a dose-response meta-analysis of prospective cohort studies investigating the association between long-term coffee intake and risk of hypertension. An online systematic search of studies published up to November 2016 was performed. Linear and non-linear dose-response meta-analyses were conducted; potential evidence of heterogeneity, publication bias, and confounding effect of selected variables were investigated through sensitivity and meta-regression analyses. Seven cohorts including 205,349 individuals and 44,120 cases of hypertension were included. In the non-linear analysis, there was a 9% significant decreased risk of hypertension per seven cups of coffee a day, while, in the linear dose-response association, there was a 1% decreased risk of hypertension for each additional cup of coffee per day. Among subgroups, there were significant inverse associations for females, caffeinated coffee, and studies conducted in the US with longer follow-up. Analysis of potential confounders revealed that smoking-related variables weakened the strength of association between coffee consumption and risk of hypertension. Increased coffee consumption is associated with a modest decrease in risk of hypertension in prospective cohort studies. Smoking status is a potential effect modifier on the association between coffee consumption and risk of hypertension.

  12. Locally linear regression for pose-invariant face recognition.

    PubMed

    Chai, Xiujuan; Shan, Shiguang; Chen, Xilin; Gao, Wen

    2007-07-01

    The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.

  13. Missing heritability in the tails of quantitative traits? A simulation study on the impact of slightly altered true genetic models.

    PubMed

    Pütter, Carolin; Pechlivanis, Sonali; Nöthen, Markus M; Jöckel, Karl-Heinz; Wichmann, Heinz-Erich; Scherag, André

    2011-01-01

    Genome-wide association studies have identified robust associations between single nucleotide polymorphisms and complex traits. As the proportion of phenotypic variance explained is still limited for most of the traits, larger and larger meta-analyses are being conducted to detect additional associations. Here we investigate the impact of the study design and the underlying assumption about the true genetic effect in a bimodal mixture situation on the power to detect associations. We performed simulations of quantitative phenotypes analysed by standard linear regression and dichotomized case-control data sets from the extremes of the quantitative trait analysed by standard logistic regression. Using linear regression, markers with an effect in the extremes of the traits were almost undetectable, whereas analysing extremes by case-control design had superior power even for much smaller sample sizes. Two real data examples are provided to support our theoretical findings and to explore our mixture and parameter assumption. Our findings support the idea to re-analyse the available meta-analysis data sets to detect new loci in the extremes. Moreover, our investigation offers an explanation for discrepant findings when analysing quantitative traits in the general population and in the extremes. Copyright © 2011 S. Karger AG, Basel.

  14. Internet gaming disorder in early adolescence: Associations with parental and adolescent mental health.

    PubMed

    Wartberg, L; Kriston, L; Kramer, M; Schwedler, A; Lincoln, T M; Kammerl, R

    2017-06-01

    Internet gaming disorder (IGD) has been included in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Currently, associations between IGD in early adolescence and mental health are largely unexplained. In the present study, the relation of IGD with adolescent and parental mental health was investigated for the first time. We surveyed 1095 family dyads (an adolescent aged 12-14 years and a related parent) with a standardized questionnaire for IGD as well as for adolescent and parental mental health. We conducted linear (dimensional approach) and logistic (categorical approach) regression analyses. Both with dimensional and categorical approaches, we observed statistically significant associations between IGD and male gender, a higher degree of adolescent antisocial behavior, anger control problems, emotional distress, self-esteem problems, hyperactivity/inattention and parental anxiety (linear regression model: corrected R 2 =0.41, logistic regression model: Nagelkerke's R 2 =0.41). IGD appears to be associated with internalizing and externalizing problems in adolescents. Moreover, the findings of the present study provide first evidence that not only adolescent but also parental mental health is relevant to IGD in early adolescence. Adolescent and parental mental health should be considered in prevention and intervention programs for IGD in adolescence. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Multiple regression equations modelling of groundwater of Ajmer-Pushkar railway line region, Rajasthan (India).

    PubMed

    Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra

    2010-01-01

    In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.

  16. Impact of the Japanese 5S management method on patients' and caretakers' satisfaction: a quasi-experimental study in Senegal.

    PubMed

    Kanamori, Shogo; Castro, Marcia C; Sow, Seydou; Matsuno, Rui; Cissokho, Alioune; Jimba, Masamine

    2016-01-01

    The 5S method is a lean management tool for workplace organization, with 5S being an abbreviation for five Japanese words that translate to English as Sort, Set in Order, Shine, Standardize, and Sustain. In Senegal, the 5S intervention program was implemented in 10 health centers in two regions between 2011 and 2014. To identify the impact of the 5S intervention program on the satisfaction of clients (patients and caretakers) who visited the health centers. A standardized 5S intervention protocol was implemented in the health centers using a quasi-experimental separate pre-post samples design (four intervention and three control health facilities). A questionnaire with 10 five-point Likert items was used to measure client satisfaction. Linear regression analysis was conducted to identify the intervention's effect on the client satisfaction scores, represented by an equally weighted average of the 10 Likert items (Cronbach's alpha=0.83). Additional regression analyses were conducted to identify the intervention's effect on the scores of each Likert item. Backward stepwise linear regression ( n= 1,928) indicated a statistically significant effect of the 5S intervention, represented by an increase of 0.19 points in the client satisfaction scores in the intervention group, 6 to 8 months after the intervention ( p= 0.014). Additional regression analyses showed significant score increases of 0.44 ( p= 0.002), 0.14 ( p= 0.002), 0.06 ( p= 0.019), and 0.17 ( p= 0.044) points on four items, which, respectively were healthcare staff members' communication, explanations about illnesses or cases, and consultation duration, and clients' overall satisfaction. The 5S has the potential to improve client satisfaction at resource-poor health facilities and could therefore be recommended as a strategic option for improving the quality of healthcare service in low- and middle-income countries. To explore more effective intervention modalities, further studies need to address the mechanisms by which 5S leads to attitude changes in healthcare staff.

  17. Phytotoxicity and accumulation of chromium in carrot plants and the derivation of soil thresholds for Chinese soils.

    PubMed

    Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Ma, Yibing; Wang, Xingxiang

    2014-10-01

    Soil environmental quality standards in respect of heavy metals for farmlands should be established considering both their effects on crop yield and their accumulation in the edible part. A greenhouse experiment was conducted to investigate the effects of chromium (Cr) on biomass production and Cr accumulation in carrot plants grown in a wide range of soils. The results revealed that carrot yield significantly decreased in 18 of the total 20 soils with Cr addition being the soil environmental quality standard of China. The Cr content of carrot grown in the five soils with pH>8.0 exceeded the maximum allowable level (0.5mgkg(-1)) according to the Chinese General Standard for Contaminants in Foods. The relationship between carrot Cr concentration and soil pH could be well fitted (R(2)=0.70, P<0.0001) by a linear-linear segmented regression model. The addition of Cr to soil influenced carrot yield firstly rather than the food quality. The major soil factors controlling Cr phytotoxicity and the prediction models were further identified and developed using path analysis and stepwise multiple linear regression analysis. Soil Cr thresholds for phytotoxicity meanwhile ensuring food safety were then derived on the condition of 10 percent yield reduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effect of Malmquist bias on correlation studies with IRAS data base

    NASA Technical Reports Server (NTRS)

    Verter, Frances

    1993-01-01

    The relationships between galaxy properties in the sample of Trinchieri et al. (1989) are reexamined with corrections for Malmquist bias. The linear correlations are tested and linear regressions are fit for log-log plots of L(FIR), L(H-alpha), and L(B) as well as ratios of these quantities. The linear correlations for Malmquist bias are corrected using the method of Verter (1988), in which each galaxy observation is weighted by the inverse of its sampling volume. The linear regressions are corrected for Malmquist bias by a new method invented here in which each galaxy observation is weighted by its sampling volume. The results of correlation and regressions among the sample are significantly changed in the anticipated sense that the corrected correlation confidences are lower and the corrected slopes of the linear regressions are lower. The elimination of Malmquist bias eliminates the nonlinear rise in luminosity that has caused some authors to hypothesize additional components of FIR emission.

  19. A primer for biomedical scientists on how to execute model II linear regression analysis.

    PubMed

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  20. Application of LANDSAT to the surveillance and control of lake eutrophication in the Great Lakes basin. [Saginaw Bay, Michigan and Wisconsin

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Computer techniques were developed for mapping water quality parameters from LANDSAT data, using surface samples collected in an ongoing survey of water quality in Saginaw Bay. Chemical and biological parameters were measured on 31 July 1975 at 16 bay stations in concert with the LANDSAT overflight. Application of stepwise linear regression bands to nine of these parameters and corresponding LANDSAT measurements for bands 4 and 5 only resulted in regression correlation coefficients that varied from 0.94 for temperature to 0.73 for Secchi depth. Regression equations expressed with the pair of bands 4 and 5, rather than the ratio band 4/band 5, provided higher correlation coefficients for all the water quality parameters studied (temperature, Secchi depth, chloride, conductivity, total kjeldahl nitrogen, total phosphorus, chlorophyll a, total solids, and suspended solids).

  1. Impact of divorce on the quality of life in school-age children.

    PubMed

    Eymann, Alfredo; Busaniche, Julio; Llera, Julián; De Cunto, Carmen; Wahren, Carlos

    2009-01-01

    To assess psychosocial quality of life in school-age children of divorced parents. A cross-sectional survey was conducted at the pediatric outpatient clinic of a community hospital. Children 5 to 12 years old from married families and divorced families were included. Child quality of life was assessed through maternal reports using a Child Health Questionnaire-Parent Form 50. A multiple linear regression model was constructed including clinically relevant variables significant on univariate analysis (beta coefficient and 95%CI). Three hundred and thirty families were invited to participate and 313 completed the questionnaire. Univariate analysis showed that quality of life was significantly associated with parental separation, child sex, time spent with the father, standard of living, and maternal education. In a multiple linear regression model, quality of life scores decreased in boys -4.5 (-6.8 to -2.3) and increased for time spent with the father 0.09 (0.01 to 0.2). In divorced families, multiple linear regression showed that quality of life scores increased when parents had separated by mutual agreement 6.1 (2.7 to 9.4), when the mother had university level education 5.9 (1.7 to 10.1) and for each year elapsed since separation 0.6 (0.2 to 1.1), whereas scores decreased in boys -5.4 (-9.5 to -1.3) and for each one-year increment of maternal age -0.4 (-0.7 to -0.05). Children's psychosocial quality of life was affected by divorce. The Child Health Questionnaire can be useful to detect a decline in the psychosocial quality of life.

  2. AGSuite: Software to conduct feature analysis of artificial grammar learning performance.

    PubMed

    Cook, Matthew T; Chubala, Chrissy M; Jamieson, Randall K

    2017-10-01

    To simplify the problem of studying how people learn natural language, researchers use the artificial grammar learning (AGL) task. In this task, participants study letter strings constructed according to the rules of an artificial grammar and subsequently attempt to discriminate grammatical from ungrammatical test strings. Although the data from these experiments are usually analyzed by comparing the mean discrimination performance between experimental conditions, this practice discards information about the individual items and participants that could otherwise help uncover the particular features of strings associated with grammaticality judgments. However, feature analysis is tedious to compute, often complicated, and ill-defined in the literature. Moreover, the data violate the assumption of independence underlying standard linear regression models, leading to Type I error inflation. To solve these problems, we present AGSuite, a free Shiny application for researchers studying AGL. The suite's intuitive Web-based user interface allows researchers to generate strings from a database of published grammars, compute feature measures (e.g., Levenshtein distance) for each letter string, and conduct a feature analysis on the strings using linear mixed effects (LME) analyses. The LME analysis solves the inflation of Type I errors that afflicts more common methods of repeated measures regression analysis. Finally, the software can generate a number of graphical representations of the data to support an accurate interpretation of results. We hope the ease and availability of these tools will encourage researchers to take full advantage of item-level variance in their datasets in the study of AGL. We moreover discuss the broader applicability of the tools for researchers looking to conduct feature analysis in any field.

  3. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2013-01-01

    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  4. Analysis of the thermal comfort model in an environment of metal mechanical branch.

    PubMed

    Pinto, N M; Xavier, A A P; do Amaral, Regiane T

    2012-01-01

    This study aims to identify the correlation between the Predicted Mean Vote (PMV) with the thermal sensation (S) of 55 employees, establishing a linear multiple regression equation. The measurement of environmental variables followed established standards. The survey was conducted in a metal industry located in Ponta Grossa of the State of Parana in Brazil. It was applied the physical model of thermal comfort to the environmental variables and also to the subjective data on the thermal sensations of employees. The survey was conducted from May to November, 2010, with 48 measurements. This study will serve as the basis for a dissertation consisting of 72 measurements.

  5. Diphenylhydantoin and lidocaine modification of A-V conduction in halothane-anesthetized dogs.

    PubMed

    Atlee, J L; Homer, L D; Tobey, R E

    1975-07-01

    The effect of halothane on A-V conduction was evaluated in gods during atrial pacing using the technique of His-bundle electrocardiography. In addition, the effects of lidocaine and diphenylkydantoin (DPH) on A-V conuction were examined during halothane anesthesia. Effects of these drugs on three subintervals of A-V conduction were compared. These included the -H (stimulus atifact of His-bundle deflection-atrioventricular conduction), H-Q (His-budnle deflection onset of QRS complex-His-Purkinje conduction), and H-S intervals(His-bundle delfection to end of QRS COmplex-total intraventricular conduction). Linear regression best described the relationship between duration of interval (P-H, H-V,and H-S) and heart rate during incremental increases in the atrial paced rate. Data from these experiments were fitted to a multiple lenear regression model that predicted the effect of increasing concentrations of halothan, lidocaine, and DPH on slope and intercept coefficients. In creasing concentrations of halothan ( 30 and 45 mg/100 ml arterial). Both lidocaine and DPH further depressed conduction at all levels of halothan anesthesia. The P-H interval was particularly sensitive todrug effefts. This may represent potentiation of the normal slowing of conduction through the AVnode in response to incremental increases in heart rate (fatigue response.) We conclude thatboth lidocaine and DPH fail to reverse the depressant effect of halothane on A-V conduction. This may explain their ineffectiveness in treating certain types of arrhythmias during halothane anesthesia.

  6. Analyzing Multilevel Data: An Empirical Comparison of Parameter Estimates of Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2011-01-01

    Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…

  7. Classical Testing in Functional Linear Models.

    PubMed

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.

  8. Classical Testing in Functional Linear Models

    PubMed Central

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155

  9. Analyzing industrial energy use through ordinary least squares regression models

    NASA Astrophysics Data System (ADS)

    Golden, Allyson Katherine

    Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.

  10. A Linear Regression and Markov Chain Model for the Arabian Horse Registry

    DTIC Science & Technology

    1993-04-01

    as a tax deduction? Yes No T-4367 68 26. Regardless of previous equine tax deductions, do you consider your current horse activities to be... (Mark one...E L T-4367 A Linear Regression and Markov Chain Model For the Arabian Horse Registry Accesion For NTIS CRA&I UT 7 4:iC=D 5 D-IC JA" LI J:13tjlC,3 lO...the Arabian Horse Registry, which needed to forecast its future registration of purebred Arabian horses . A linear regression model was utilized to

  11. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  12. Strengthen forensic entomology in court--the need for data exploration and the validation of a generalised additive mixed model.

    PubMed

    Baqué, Michèle; Amendt, Jens

    2013-01-01

    Developmental data of juvenile blow flies (Diptera: Calliphoridae) are typically used to calculate the age of immature stages found on or around a corpse and thus to estimate a minimum post-mortem interval (PMI(min)). However, many of those data sets don't take into account that immature blow flies grow in a non-linear fashion. Linear models do not supply a sufficient reliability on age estimates and may even lead to an erroneous determination of the PMI(min). According to the Daubert standard and the need for improvements in forensic science, new statistic tools like smoothing methods and mixed models allow the modelling of non-linear relationships and expand the field of statistical analyses. The present study introduces into the background and application of these statistical techniques by analysing a model which describes the development of the forensically important blow fly Calliphora vicina at different temperatures. The comparison of three statistical methods (linear regression, generalised additive modelling and generalised additive mixed modelling) clearly demonstrates that only the latter provided regression parameters that reflect the data adequately. We focus explicitly on both the exploration of the data--to assure their quality and to show the importance of checking it carefully prior to conducting the statistical tests--and the validation of the resulting models. Hence, we present a common method for evaluating and testing forensic entomological data sets by using for the first time generalised additive mixed models.

  13. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  14. Transmethylation of homocysteine to methionine: efficiency in the rat and chick.

    PubMed

    Baker, D H; Czarnecki, G L

    1985-10-01

    Experiments were conducted with young chicks and rats to quantify the efficacy of L-homocysteine as a methionine precursor. Linear growth responses were obtained to both L-methionine and L-homocysteine when added to a methionine-deficient intact-protein diet containing a plethora of cystine. Slope-ratio multiple regression methodology indicated L-homocysteine to be 64.5% as efficacious as L-methionine in rats and 62.5% as efficacious in chicks. Plasma-free methionine also increased linearly as graded levels of either L-methionine or L-homocysteine were added to the diet of rats. At higher dosages of L-homocysteine, betaine, but not choline, showed some efficacy in enhancing the conversion of homocysteine to methionine. In the linear response surface of the growth curve, however, supplemental betaine was without effect on L-homocysteine bioefficacy, as was also the case for supplemental sarcosine and N5-methyltetrahydrofolic acid.

  15. Impact of Texas high school science teacher credentials on student performance in high school science

    NASA Astrophysics Data System (ADS)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  16. Biostatistics Series Module 6: Correlation and Linear Regression.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  17. Biostatistics Series Module 6: Correlation and Linear Regression

    PubMed Central

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175

  18. Uveal Melanoma Regression after Brachytherapy: Relationship with Chromosome 3 Monosomy Status.

    PubMed

    Salvi, Sachin M; Aziz, Hassan A; Dar, Suhail; Singh, Nakul; Hayden-Loreck, Brandy; Singh, Arun D

    2017-07-01

    The objective was to evaluate the relationship between the regression rate of ciliary body melanoma and choroidal melanoma after brachytherapy and chromosome 3 monosomy status. We conducted a prospective and consecutive case series of patients who underwent biopsy and brachytherapy for ciliary/choroidal melanoma. Tumor biopsy performed at the time of radiation plaque placement was analyzed with fluorescence in situ hybridization to determine the percentage of tumor cells with chromosome 3 monosomy. The regression rate was calculated as the percent change in tumor height at months 3, 6, and 12. The relationship between regression rate and tumor location, initial tumor height, and chromosome 3 monosomy (percentage) was assessed by univariate linear regression (R version 3.1.0). Of the 75 patients included in the study, 8 had ciliary body melanoma, and 67 were choroidal melanomas. The mean tumor height at the time of diagnosis was 5.2 mm (range: 1.90-13.00). The percentage composition of chromosome 3 monosomy ranged from 0-20% (n = 35) to 81-100% (n = 40). The regression of tumor height at months 3, 6, and 12 did not statistically correlate with tumor location (ciliary or choroidal), initial tumor height, or chromosome 3 monosomy (percentage). The regression rate of choroidal melanoma following brachytherapy did not correlate with chromosome 3 monosomy status.

  19. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    ERIC Educational Resources Information Center

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  20. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

    PubMed

    Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

    2009-11-01

    G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

  1. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  2. Construction accident narrative classification: An evaluation of text mining techniques.

    PubMed

    Goh, Yang Miang; Ubeynarayana, C U

    2017-11-01

    Learning from past accidents is fundamental to accident prevention. Thus, accident and near miss reporting are encouraged by organizations and regulators. However, for organizations managing large safety databases, the time taken to accurately classify accident and near miss narratives will be very significant. This study aims to evaluate the utility of various text mining classification techniques in classifying 1000 publicly available construction accident narratives obtained from the US OSHA website. The study evaluated six machine learning algorithms, including support vector machine (SVM), linear regression (LR), random forest (RF), k-nearest neighbor (KNN), decision tree (DT) and Naive Bayes (NB), and found that SVM produced the best performance in classifying the test set of 251 cases. Further experimentation with tokenization of the processed text and non-linear SVM were also conducted. In addition, a grid search was conducted on the hyperparameters of the SVM models. It was found that the best performing classifiers were linear SVM with unigram tokenization and radial basis function (RBF) SVM with uni-gram tokenization. In view of its relative simplicity, the linear SVM is recommended. Across the 11 labels of accident causes or types, the precision of the linear SVM ranged from 0.5 to 1, recall ranged from 0.36 to 0.9 and F1 score was between 0.45 and 0.92. The reasons for misclassification were discussed and suggestions on ways to improve the performance were provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  4. Computer Mapping of Water Quality in Saginaw Bay with LANDSAT Digital Data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Shah, N. J.; Smith, V. E.; Mckeon, J. B.

    1976-01-01

    The author has identified the following significant results. LANDSAT digital data and ground truth measurements for Saginaw Bay (Lake Huron), Michigan, for 31 July 1975 were correlated by stepwise linear regression and the resulting equations used to estimate invisible water quality parameters in nonsampled areas. Chloride, conductivity, total Kjeldahl nitrogen, total phosphorus, and chlorophyll a were best correlated with the ratio of LANDSAT Band 4 to Band 5. Temperature and Secchi depth correlate best with Band 5.

  5. Passenger comfort during terminal-area flight maneuvers. M.S. Thesis.

    NASA Technical Reports Server (NTRS)

    Schoonover, W. E., Jr.

    1976-01-01

    A series of flight experiments was conducted to obtain passenger subjective responses to closely controlled and repeatable flight maneuvers. In 8 test flights, reactions were obtained from 30 passenger subjects to a wide range of terminal-area maneuvers, including descents, turns, decelerations, and combinations thereof. Analysis of the passenger rating variance indicated that the objective of a repeatable flight passenger environment was achieved. Multiple linear regression models developed from the test data were used to define maneuver motion boundaries for specified degrees of passenger acceptance.

  6. Quality-of-water data and statistical summary for selected coal-mined strip pits in Crawford and Cherokee counties, southeastern Kansas

    USGS Publications Warehouse

    Pope, Larry M.; Diaz, A.M.

    1982-01-01

    Quality-of-water data, collected October 21-23, 1980, and a statistical summary are presented for 42 coal-mined strip pits in Crawford and Cherokee Counties, Southeastern Kansas. The statistical summary includes minimum and maximum observed values , mean, and standard deviation. Simple linear regression equations relating specific conductance, dissolved solids, and acidity to concentrations of dissolved solids, sulfate, calcium, and magnesium, potassium, aluminum, and iron are also presented. (USGS)

  7. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  8. GIS Tools to Estimate Average Annual Daily Traffic

    DOT National Transportation Integrated Search

    2012-06-01

    This project presents five tools that were created for a geographical information system to estimate Annual Average Daily : Traffic using linear regression. Three of the tools can be used to prepare spatial data for linear regression. One tool can be...

  9. Estimating extent of mortality associated with the Douglas-fir beetle in the Central and Northern Rockies

    Treesearch

    Jose F. Negron; Willis C. Schaupp; Kenneth E. Gibson; John Anhold; Dawn Hansen; Ralph Thier; Phil Mocettini

    1999-01-01

    Data collected from Douglas-fir stands infected by the Douglas-fir beetle in Wyoming, Montana, Idaho, and Utah, were used to develop models to estimate amount of mortality in terms of basal area killed. Models were built using stepwise linear regression and regression tree approaches. Linear regression models using initial Douglas-fir basal area were built for all...

  10. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    PubMed

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  11. Shift work schedule and night work load: Effects on body mass index - a four-year longitudinal study.

    PubMed

    Buchvold, Hogne Vikanes; Pallesen, Ståle; Waage, Siri; Bjorvatn, Bjørn

    2018-05-01

    Objectives The aim of this study was to investigate changes in body mass index (BMI) between different work schedules and different average number of yearly night shifts over a four-year follow-up period. Methods A prospective study of Norwegian nurses (N=2965) with different work schedules was conducted: day only, two-shift rotation (day and evening shifts), three-shift rotation (day, evening and night shifts), night only, those who changed towards night shifts, and those who changed away from schedules containing night shifts. Paired student's t-tests were used to evaluate within subgroup changes in BMI. Multiple linear regression analysis was used to evaluate between groups effects on BMI when adjusting for BMI at baseline, sex, age, marital status, children living at home, and years since graduation. The same regression model was used to evaluate the effect of average number of yearly night shifts on BMI change. Results We found that night workers [mean difference (MD) 1.30 (95% CI 0.70-1.90)], two shift workers [MD 0.48 (95% CI 0.20-0.75)], three shift workers [MD 0.46 (95% CI 0.30-0.62)], and those who changed work schedule away from [MD 0.57 (95% CI 0.17-0.84)] or towards night work [MD 0.63 (95% CI 0.20-1.05)] all had significant BMI gain (P<0.01) during the follow-up period. However, day workers had a non-significant BMI gain. Using adjusted multiple linear regressions, we found that night workers had significantly larger BMI gain compared to day workers [B=0.89 (95% CI 0.06-1.72), P<0.05]. We did not find any significant association between average number of yearly night shifts and BMI change using our multiple linear regression model. Conclusions After adjusting for possible confounders, we found that BMI increased significantly more among night workers compared to day workers.

  12. A new approach to correct the QT interval for changes in heart rate using a nonparametric regression model in beagle dogs.

    PubMed

    Watanabe, Hiroyuki; Miyazaki, Hiroyasu

    2006-01-01

    Over- and/or under-correction of QT intervals for changes in heart rate may lead to misleading conclusions and/or masking the potential of a drug to prolong the QT interval. This study examines a nonparametric regression model (Loess Smoother) to adjust the QT interval for differences in heart rate, with an improved fitness over a wide range of heart rates. 240 sets of (QT, RR) observations collected from each of 8 conscious and non-treated beagle dogs were used as the materials for investigation. The fitness of the nonparametric regression model to the QT-RR relationship was compared with four models (individual linear regression, common linear regression, and Bazett's and Fridericia's correlation models) with reference to Akaike's Information Criterion (AIC). Residuals were visually assessed. The bias-corrected AIC of the nonparametric regression model was the best of the models examined in this study. Although the parametric models did not fit, the nonparametric regression model improved the fitting at both fast and slow heart rates. The nonparametric regression model is the more flexible method compared with the parametric method. The mathematical fit for linear regression models was unsatisfactory at both fast and slow heart rates, while the nonparametric regression model showed significant improvement at all heart rates in beagle dogs.

  13. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  14. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    PubMed

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.

  15. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach

    NASA Astrophysics Data System (ADS)

    Bagirov, Adil M.; Mahmood, Arshad; Barton, Andrew

    2017-05-01

    This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889-2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations.

  16. Impact of a New Law to Reduce the Legal Blood Alcohol Concentration Limit - A Poisson Regression Analysis and Descriptive Approach.

    PubMed

    Nistal-Nuño, Beatriz

    2017-03-31

    In Chile, a new law introduced in March 2012 lowered the blood alcohol concentration (BAC) limit for impaired drivers from 0.1% to 0.08% and the BAC limit for driving under the influence of alcohol from 0.05% to 0.03%, but its effectiveness remains uncertain. The goal of this investigation was to evaluate the effects of this enactment on road traffic injuries and fatalities in Chile. A retrospective cohort study. Data were analyzed using a descriptive and a Generalized Linear Models approach, type of Poisson regression, to analyze deaths and injuries in a series of additive Log-Linear Models accounting for the effects of law implementation, month influence, a linear time trend and population exposure. A review of national databases in Chile was conducted from 2003 to 2014 to evaluate the monthly rates of traffic fatalities and injuries associated to alcohol and in total. It was observed a decrease by 28.1 percent in the monthly rate of traffic fatalities related to alcohol as compared to before the law (P<0.001). Adding a linear time trend as a predictor, the decrease was by 20.9 percent (P<0.001).There was a reduction in the monthly rate of traffic injuries related to alcohol by 10.5 percent as compared to before the law (P<0.001). Adding a linear time trend as a predictor, the decrease was by 24.8 percent (P<0.001). Positive results followed from this new 'zero-tolerance' law implemented in 2012 in Chile. Chile experienced a significant reduction in alcohol-related traffic fatalities and injuries, being a successful public health intervention.

  17. Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.

  18. A model for predicting thermal properties of asphalt mixtures from their constituents

    NASA Astrophysics Data System (ADS)

    Keller, Merlin; Roche, Alexis; Lavielle, Marc

    Numerous theoretical and experimental approaches have been developed to predict the effective thermal conductivity of composite materials such as polymers, foams, epoxies, soils and concrete. None of such models have been applied to asphalt concrete. This study attempts to develop a model to predict the thermal conductivity of asphalt concrete from its constituents that will contribute to the asphalt industry by reducing costs and saving time on laboratory testing. The necessity to do the laboratory testing would be no longer required when a mix for the pavement is created with desired thermal properties at the design stage by selecting correct constituents. This thesis investigated six existing predictive models for applicability to asphalt mixtures, and four standard mathematical techniques were used to develop a regression model to predict the effective thermal conductivity. The effective thermal conductivities of 81 asphalt specimens were used as the response variables, and the thermal conductivities and volume fractions of their constituents were used as the predictors. The conducted statistical analyses showed that the measured values of thermal conductivities of the mixtures are affected by the bitumen and aggregate content, but not by the air content. Contrarily, the predicted data for some investigated models are highly sensitive to air voids, but not to bitumen and/or aggregate content. Additionally, the comparison of the experimental with analytical data showed that none of the existing models gave satisfactory results; on the other hand, two regression models (Exponential 1* and Linear 3*) are promising for asphalt concrete.

  19. Scoring and staging systems using cox linear regression modeling and recursive partitioning.

    PubMed

    Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H

    2006-01-01

    Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.

  20. Job strain and resting heart rate: a cross-sectional study in a Swedish random working sample.

    PubMed

    Eriksson, Peter; Schiöler, Linus; Söderberg, Mia; Rosengren, Annika; Torén, Kjell

    2016-03-05

    Numerous studies have reported an association between stressing work conditions and cardiovascular disease. However, more evidence is needed, and the etiological mechanisms are unknown. Elevated resting heart rate has emerged as a possible risk factor for cardiovascular disease, but little is known about the relation to work-related stress. This study therefore investigated the association between job strain, job control, and job demands and resting heart rate. We conducted a cross-sectional survey of randomly selected men and women in Västra Götalandsregionen, Sweden (West county of Sweden) (n = 1552). Information about job strain, job demands, job control, heart rate and covariates was collected during the period 2001-2004 as part of the INTERGENE/ADONIX research project. Six different linear regression models were used with adjustments for gender, age, BMI, smoking, education, and physical activity in the fully adjusted model. Job strain was operationalized as the log-transformed ratio of job demands over job control in the statistical analyses. No associations were seen between resting heart rate and job demands. Job strain was associated with elevated resting heart rate in the unadjusted model (linear regression coefficient 1.26, 95 % CI 0.14 to 2.38), but not in any of the extended models. Low job control was associated with elevated resting heart rate after adjustments for gender, age, BMI, and smoking (linear regression coefficient -0.18, 95 % CI -0.30 to -0.02). However, there were no significant associations in the fully adjusted model. Low job control and job strain, but not job demands, were associated with elevated resting heart rate. However, the observed associations were modest and may be explained by confounding effects.

  1. Multiple imputation for cure rate quantile regression with censored data.

    PubMed

    Wu, Yuanshan; Yin, Guosheng

    2017-03-01

    The main challenge in the context of cure rate analysis is that one never knows whether censored subjects are cured or uncured, or whether they are susceptible or insusceptible to the event of interest. Considering the susceptible indicator as missing data, we propose a multiple imputation approach to cure rate quantile regression for censored data with a survival fraction. We develop an iterative algorithm to estimate the conditionally uncured probability for each subject. By utilizing this estimated probability and Bernoulli sample imputation, we can classify each subject as cured or uncured, and then employ the locally weighted method to estimate the quantile regression coefficients with only the uncured subjects. Repeating the imputation procedure multiple times and taking an average over the resultant estimators, we obtain consistent estimators for the quantile regression coefficients. Our approach relaxes the usual global linearity assumption, so that we can apply quantile regression to any particular quantile of interest. We establish asymptotic properties for the proposed estimators, including both consistency and asymptotic normality. We conduct simulation studies to assess the finite-sample performance of the proposed multiple imputation method and apply it to a lung cancer study as an illustration. © 2016, The International Biometric Society.

  2. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    PubMed

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second degree where the parabola is its graphical representation.

  3. Knowledge, attitudes and self-reported practices toward children oral health among mother's attending maternal and child's units, Salé, Morocco.

    PubMed

    Chala, Sanaa; Houzmali, Soumia; Abouqal, Redouane; Abdallaoui, Faïza

    2018-05-11

    The occurrence of severe dental caries is particularly prevalent and harmful in children. A better understanding of parental factors that may be indicators of children's risk of developing dental caries is important for the development of preventive measures. This study was conducted to assess knowledge, attitudes, and practices (KAP) of mothers in Salé, Morocco regarding oral health and their predictors. A cross-sectional KAP study was conducted of Mother and Child units in Salé, Morocco. Mothers attending the selected units from November 2014 to 29 January 2015 were recruited. Data were collected using a semi-structured questionnaire, administered by face-to-face interviews, to record socio-demographic factors and KAPs. The main outcome measures included knowledge about oral health diseases and preventive measures, and attitudes and practices related to oral health prevention measures and dental care. KAPs scores were then recoded based on responses and scores were determined for each KAP domain. Linear regression analysis was conducted to assess predictors of KAP scores. Among 502 mothers included, 140 (27.8%) were illiterate and 285 (60.9%) were aware that fluoride has a beneficial effect in caries prevention. Mothers' own practices about dental care were statistically related to their children's use of dental care services (p < 0.001). Multiple linear regression analysis revealed that the knowledge score was associated with mother's age (β = 0.05; 95% CI; p < 0.001), education level, and median income (β = 0.38; p = 0.04). Significant predictors of oral health-related practices were mother's education level and children's health status. Limited KAP scores were observed among the studied population. A great emphasis on oral health education and some risk factor modifications are recommended.

  4. Audiometric analyses confirm a cochlear component, disproportional to age, in stapedial otosclerosis.

    PubMed

    Topsakal, Vedat; Fransen, Erik; Schmerber, Sébastien; Declau, Frank; Yung, Matthew; Gordts, Frans; Van Camp, Guy; Van de Heyning, Paul

    2006-09-01

    To report the preoperative audiometric profile of surgically confirmed otosclerosis. Retrospective, multicenter study. Four tertiary referral centers. One thousand sixty-four surgically confirmed patients with otosclerosis. Therapeutic ear surgery for hearing improvement. Preoperative audiometric air conduction (AC) and bone conduction (BC) hearing thresholds were obtained retrospectively for 1064 patients with otosclerosis. A cross-sectional multiple linear regression analysis was performed on audiometric data of affected ears. Influences of age and sex were analyzed and age-related typical audiograms were created. Bone conduction thresholds were corrected for Carhart effect and presbyacusis; in addition, we tested to see if separate cochlear otosclerosis component existed. Corrected thresholds were than analyzed separately for progression of cochlear otosclerosis. The study population consisted of 35% men and 65% women (mean age, 44 yr). The mean pure-tone average at 0.5, 1, and 2 kHz was 57 dB hearing level. Multiple linear regression analysis showed significant progression for all measured AC and BC thresholds. The average annual threshold deterioration for AC was 0.45 dB/yr and the annual threshold deterioration for BC was 0.37 dB/yr. The average annual gap expansion was 0.08 dB/year. The corrected BC thresholds for Carhart effect and presbyacusis remained significantly different from zero, but only showed progression at 2 kHz. The preoperative audiological profile of otosclerosis is described. There is a significant sensorineural component in patients with otosclerosis planned for stapedotomy, which is worse than age-related hearing loss by itself. Deterioration rates of AC and BC thresholds have been reported, which can be helpful in clinical practice and might also guide the characterization of allegedly different phenotypes for familial and sporadic otosclerosis.

  5. SOME STATISTICAL ISSUES RELATED TO MULTIPLE LINEAR REGRESSION MODELING OF BEACH BACTERIA CONCENTRATIONS

    EPA Science Inventory

    As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...

  6. Characterisation of acoustic energy content in an experimental combustion chamber with and without external forcing

    NASA Astrophysics Data System (ADS)

    Webster, S.; Hardi, J.; Oschwald, M.

    2015-03-01

    The influence of injection conditions on rocket engine combustion stability is investigated for a sub-scale combustion chamber with shear coaxial injection elements and the propellant combination hydrogen-oxygen. The experimental results presented are from a series of tests conducted at subcritical and supercritical pressures for oxygen and for both ambient and cryogenic temperature hydrogen. The stability of the system is characterised by the root mean squared amplitude of dynamic combustion chamber pressure in the upper part of the acoustic spectrum relevant for high frequency combustion instabilities. Results are presented for both unforced and externally forced combustion chamber configurations. It was found that, for both the unforced and externally forced configurations, the injection velocity had the strongest influence on combustion chamber stability. Through the use of multivariate linear regression the influence of hydrogen injection temperature and hydrogen injection mass flow rate were best able to explain the variance in stability for dependence on injection velocity ratio. For unforced tests turbulent jet noise from injection was found to dominate the energy content of the signal. For the externally forced configuration a non-linear regression model was better able to predict the variance, suggesting the influence of non-linear behaviour. The response of the system to variation of injection conditions was found to be small; suggesting that the combustion chamber investigated in the experiment is highly stable.

  7. A simplified competition data analysis for radioligand specific activity determination.

    PubMed

    Venturino, A; Rivera, E S; Bergoc, R M; Caro, R A

    1990-01-01

    Non-linear regression and two-step linear fit methods were developed to determine the actual specific activity of 125I-ovine prolactin by radioreceptor self-displacement analysis. The experimental results obtained by the different methods are superposable. The non-linear regression method is considered to be the most adequate procedure to calculate the specific activity, but if its software is not available, the other described methods are also suitable.

  8. Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions

    PubMed Central

    Fernandes, Bruno J. T.; Roque, Alexandre

    2018-01-01

    Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care. PMID:29651366

  9. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  10. Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation

    PubMed Central

    Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman

    2011-01-01

    This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626

  11. Job stress models, depressive disorders and work performance of engineers in microelectronics industry.

    PubMed

    Chen, Sung-Wei; Wang, Po-Chuan; Hsin, Ping-Lung; Oates, Anthony; Sun, I-Wen; Liu, Shen-Ing

    2011-01-01

    Microelectronic engineers are considered valuable human capital contributing significantly toward economic development, but they may encounter stressful work conditions in the context of a globalized industry. The study aims at identifying risk factors of depressive disorders primarily based on job stress models, the Demand-Control-Support and Effort-Reward Imbalance models, and at evaluating whether depressive disorders impair work performance in microelectronics engineers in Taiwan. The case-control study was conducted among 678 microelectronics engineers, 452 controls and 226 cases with depressive disorders which were defined by a score 17 or more on the Beck Depression Inventory and a psychiatrist's diagnosis. The self-administered questionnaires included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, demography, psychosocial factors, health behaviors and work performance. Hierarchical logistic regression was applied to identify risk factors of depressive disorders. Multivariate linear regressions were used to determine factors affecting work performance. By hierarchical logistic regression, risk factors of depressive disorders are high demands, low work social support, high effort/reward ratio and low frequency of physical exercise. Combining the two job stress models may have better predictive power for depressive disorders than adopting either model alone. Three multivariate linear regressions provide similar results indicating that depressive disorders are associated with impaired work performance in terms of absence, role limitation and social functioning limitation. The results may provide insight into the applicability of job stress models in a globalized high-tech industry considerably focused in non-Western countries, and the design of workplace preventive strategies for depressive disorders in Asian electronics engineering population.

  12. Prevalence and risk factors of non-carious cervical lesions related to occupational exposure to acid mists.

    PubMed

    Bomfim, Rafael Aiello; Crosato, Edgard; Mazzilli, Luiz Eugênio Nigro; Frias, Antonio Carlos

    2015-01-01

    This study evaluates the prevalence and risk factors of non-carious cervical lesions (NCCLs) in a Brazilian population of workers exposed and non-exposed to acid mists and chemical products. One hundred workers (46 exposed and 54 non-exposed) were evaluated in a Centro de Referência em Saúde do Trabalhador - CEREST (Worker's Health Reference Center). The workers responded to questionnaires regarding their personal information and about alcohol consumption and tobacco use. A clinical examination was conducted to evaluate the presence of NCCLs, according to WHO parameters. Statistical analyses were performed by unconditional logistic regression and multiple linear regression, with the critical level of p < 0.05. NCCLs were significantly associated with age groups (18-34, 35-44, 45-68 years). The unconditional logistic regression showed that the presence of NCCLs was better explained by age group (OR = 4.04; CI 95% 1.77-9.22) and occupational exposure to acid mists and chemical products (OR = 3.84; CI 95% 1.10-13.49), whereas the linear multiple regression revealed that NCCLs were better explained by years of smoking (p = 0.01) and age group (p = 0.04). The prevalence of NCCLs in the study population was particularly high (76.84%), and the risk factors for NCCLs were age, exposure to acid mists and smoking habit. Controlling risk factors through preventive and educative measures, allied to the use of personal protective equipment to prevent the occupational exposure to acid mists, may contribute to minimizing the prevalence of NCCLs.

  13. Methamphetamine abuse during pregnancy and its health impact on neonates born at Siriraj Hospital, Bangkok, Thailand.

    PubMed

    Chomchai, Chulathida; Na Manorom, Natawadee; Watanarungsan, Pornchai; Yossuck, Panitan; Chomchai, Summon

    2004-03-01

    To ascertain the impact of intrauterine methamphetamine exposure on the overall health of newborn infants at Siriraj Hospital, Bangkok, Thailand, birth records of somatic growth parameters and neonatal withdrawal symptoms of 47 infants born to methamphetamine-abusing women during January 2001 to December 2001 were compared to 49 newborns whose mothers did not use methamphetamines during pregnancy. The data on somatic growth was analyzed using linear regression and multiple linear regression. The association between methamphetamine use and withdrawal symptoms was analyzed using the chi-square. Home visitation and maternal interview records were reviewed in order to assess for child-rearing attitude, and psychosocial parameters. Infants of methamphetamine-abusing mothers were found to have a significantly smaller gestational age-adjusted head circumference (regression coefficient = -1.458, p < 0.001) and birth weight (regression coefficient = -217.9, p < or = 0.001) measurements. Methamphetamine exposure was also associated with symptoms of agitation (5/47), vomiting (11/47) and tachypnea (12/47) when compared to the non-exposed group (p < 0r =0.001). Maternal interviews were conducted in 23 cases and showed that: 96% of the cases had inadequate prenatal care (<5 visits), 48% had at least one parent involved in prostitution, 39% of the mothers were unwilling to take their children home, and government or non-government support were provided in only 30% of the cases. In-utero methamphetamine exposure has been shown to adversely effect somatic growth of newborns and cause a variety of withdrawal-like symptoms. These infants are also psychosocially disadvantaged and are at greater risk for abuse and neglect.

  14. Work stress, asthma control and asthma-specific quality of life: Initial evidence from a cross-sectional study.

    PubMed

    Hartmann, Bettina; Leucht, Verena; Loerbroks, Adrian

    2017-03-01

    Research has suggested that psychological stress is positively associated with asthma morbidity. One major source of stress in adulthood is one's occupation. However, to date, potential links of work stress with asthma control or asthma-specific quality of life have not been examined. We aimed to address this knowledge gap. In 2014/2015, we conducted a cross-sectional study among adults with asthma in Germany (n = 362). For the current analyses that sample was restricted to participants in employment and reporting to have never been diagnosed with chronic obstructive pulmonary disease (n = 94). Work stress was operationalized by the 16-item effort-reward-imbalance (ERI) questionnaire, which measures the subcomponents "effort", "reward" and "overcommitment." Participants further completed the Asthma Control Test and the Asthma Quality of Life Questionnaire-Sydney. Multivariable associations were quantified by linear regression and logistic regression. Effort, reward and their ratio (i.e. ERI ratio) did not show meaningful associations with asthma morbidity. By contrast, increasing levels of overcommitment were associated with poorer asthma control and worse quality of life in both linear regression (ß = -0.26, p = 0.01 and ß = 0.44, p < 0.01, respectively) and logistic regression (odds ratio [OR] = 1.87, 95% confidence interval [CI] = 1.14-3.07 and OR = 2.34, 95% CI = 1.32-4.15, respectively). The present study provides initial evidence of a positive relationship of work-related overcommitment with asthma control and asthma-specific quality of life. Longitudinal studies with larger samples are needed to confirm our findings and to disentangle the potential causality of associations.

  15. Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients

    NASA Astrophysics Data System (ADS)

    Gorgees, HazimMansoor; Mahdi, FatimahAssim

    2018-05-01

    This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.

  16. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    PubMed

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  17. Does herpes zoster predispose to giant cell arteritis: a geo-epidemiologic study.

    PubMed

    Ing, Edsel B; Ing, Royce; Liu, Xinyang; Zhang, Angela; Torun, Nurhan; Sey, Michael; Pagnoux, Christian

    2018-01-01

    Giant cell arteritis (GCA) is the most common systemic vasculitis in the elderly and can cause irreversible blindness and aortitis. Varicella zoster (VZ), which is potentially preventable by vaccination, has been proposed as a possible immune trigger for GCA, but this is controversial. The incidence of GCA varies widely by country. If VZ virus contributes to the immunopathogenesis of GCA we hypothesized that nations with increased incidence of GCA would also have increased incidence of herpes zoster (HZ). We conducted an ecologic analysis to determine the relationship between the incidence of HZ and GCA in different countries. A literature search for the incidence rates (IRs) of GCA and HZ from different countries was conducted. Correlation and linear regression was performed comparing the disease IR of each country for subjects 50 years of age or older. We found the IR for GCA and HZ from 14 countries. Comparing the IRs for GCA and HZ in 50-year-olds, the Pearson product-moment correlation ( r ) was -0.51, with linear regression coefficient (β) -2.92 (95% CI -5.41, -0.43; p =0.025) using robust standard errors. Comparing the IRs for GCA and HZ in 70-year-olds, r was -0.40, with β -1.78, which was not statistically significant (95% CI -4.10, 0.53; p =0.12). Although this geo-epidemiologic study has potential for aggregation and selection biases, there was no positive biologic gradient between the incidence of clinically evident HZ and GCA.

  18. Attitudes Toward Seeking Professional Psychological Help: Factor Structure and Socio-Demographic Predictors

    PubMed Central

    Picco, Louisa; Abdin, Edimanysah; Chong, Siow Ann; Pang, Shirlene; Shafie, Saleha; Chua, Boon Yiang; Vaingankar, Janhavi A.; Ong, Lue Ping; Tay, Jenny; Subramaniam, Mythily

    2016-01-01

    Attitudes toward seeking professional psychological help (ATSPPH) are complex. Help seeking preferences are influenced by various attitudinal and socio-demographic factors and can often result in unmet needs, treatment gaps, and delays in help-seeking. The aims of the current study were to explore the factor structure of the ATSPPH short form (-SF) scale and determine whether any significant socio-demographic differences exist in terms of help-seeking attitudes. Data were extracted from a population-based survey conducted among Singapore residents aged 18–65 years. Respondents provided socio-demographic information and were administered the ATSPPH-SF. Weighted mean and standard error of the mean were calculated for continuous variables, and frequencies and percentages for categorical variables. Confirmatory factor analysis and exploratory factor analysis were performed to establish the validity of the factor structure of the ATSPPH-SF scale. Multivariable linear regressions were conducted to examine predictors of each of the ATSPPH-SF factors. The factor analysis revealed that the ATSPPH-SF formed three distinct dimensions: “Openness to seeking professional help,” “Value in seeking professional help,” and “Preference to cope on one's own.” Multiple linear regression analyses showed that age, ethnicity, marital status, education, and income were significantly associated with the ATSPPH-SF factors. Population subgroups that were less open to or saw less value in seeking psychological help should be targeted via culturally appropriate education campaigns and tailored and supportive interventions. PMID:27199794

  19. Alzheimer's Disease Detection by Pseudo Zernike Moment and Linear Regression Classification.

    PubMed

    Wang, Shui-Hua; Du, Sidan; Zhang, Yin; Phillips, Preetha; Wu, Le-Nan; Chen, Xian-Qing; Zhang, Yu-Dong

    2017-01-01

    This study presents an improved method based on "Gorji et al. Neuroscience. 2015" by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    PubMed

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  1. Prosocial skills may be necessary for better peer functioning in children with symptoms of disruptive behavior disorders

    PubMed Central

    Browne, Dillon T.; Tannock, Rosemary

    2014-01-01

    Children with disruptive behavior disorders experience substantial social challenges; however, the factors that account for (i.e., mediate), or influence (i.e., moderate), peer problems are not well understood. This study tested whether symptoms of Oppositional Defiant Disorder and Conduct Disorder were associated with peer impairment and whether prosocial skills mediated or moderated these associations. Teacher ratings were gathered for 149 children (Mage = 9.09, SD = 1.71, 26% female) referred for behavioral concerns to an urban child psychiatry clinic. Path-analytic linear regressions testing mediation and moderation effects showed that prosocial skills significantly moderated the negative effects of symptoms of Conduct Disorder on peer impairment. Children showed less peer impairment only when they had relatively few conduct symptoms and high prosocial skills. Measurement of prosocial skills, in addition to conduct problems, may best capture factors which contribute to peer problems of children with disruptive behaviors. PMID:25083349

  2. Prosocial skills may be necessary for better peer functioning in children with symptoms of disruptive behavior disorders.

    PubMed

    Andrade, Brendan F; Browne, Dillon T; Tannock, Rosemary

    2014-01-01

    Children with disruptive behavior disorders experience substantial social challenges; however, the factors that account for (i.e., mediate), or influence (i.e., moderate), peer problems are not well understood. This study tested whether symptoms of Oppositional Defiant Disorder and Conduct Disorder were associated with peer impairment and whether prosocial skills mediated or moderated these associations. Teacher ratings were gathered for 149 children (Mage = 9.09, SD = 1.71, 26% female) referred for behavioral concerns to an urban child psychiatry clinic. Path-analytic linear regressions testing mediation and moderation effects showed that prosocial skills significantly moderated the negative effects of symptoms of Conduct Disorder on peer impairment. Children showed less peer impairment only when they had relatively few conduct symptoms and high prosocial skills. Measurement of prosocial skills, in addition to conduct problems, may best capture factors which contribute to peer problems of children with disruptive behaviors.

  3. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal

  4. Lumbar subcutaneous edema and degenerative spinal disease in patients with low back pain: a retrospective MRI study.

    PubMed

    Quattrocchi, C C; Giona, A; Di Martino, A; Gaudino, F; Mallio, C A; Errante, Y; Occhicone, F; Vitali, M A; Zobel, B B; Denaro, V

    2015-08-01

    This study was designed to determine the association between LSE, spondylolisthesis, facet arthropathy, lumbar canal stenosis, BMI, radiculopathy and bone marrow edema at conventional lumbar spine MR imaging. This is a retrospective radiological study; 441 consecutive patients with low back pain (224 men and 217 women; mean age 57.3 years; mean BMI 26) underwent conventional lumbar MRI using a 1.5-T magnet (Avanto, Siemens). Lumbar MR images were reviewed by consensus for the presence of LSE, spondylolisthesis, facet arthropathy, lumbar canal stenosis, radiculopathy and bone marrow edema. Descriptive statistics and association studies were conducted using STATA software 11.0. Association studies have been performed using linear univariate regression analysis and multivariate regression analysis, considering LSE as response variable. The overall prevalence of LSE was 40%; spondylolisthesis (p = 0.01), facet arthropathy (p < 0.001), BMI (p = 0.008) and lumbar canal stenosis (p < 0.001) were included in the multivariate regression model, whereas bone marrow edema, radiculopathy and age were not. LSE is highly associated with spondylolisthesis, facet arthropathy and BMI, suggesting underestimation of its clinical impact as an integral component in chronic lumbar back pain. Longitudinal simultaneous X-ray/MRI studies should be conducted to test the relationship of LSE with lumbar spinal instability and low back pain.

  5. Specialization Agreements in the Council for Mutual Economic Assistance

    DTIC Science & Technology

    1988-02-01

    proportions to stabilize variance (S. Weisberg, Applied Linear Regression , 2nd ed., John Wiley & Sons, New York, 1985, p. 134). If the dependent...27, 1986, p. 3. Weisberg, S., Applied Linear Regression , 2nd ed., John Wiley & Sons, New York, 1985, p. 134. Wiles, P. J., Communist International

  6. Radio Propagation Prediction Software for Complex Mixed Path Physical Channels

    DTIC Science & Technology

    2006-08-14

    63 4.4.6. Applied Linear Regression Analysis in the Frequency Range 1-50 MHz 69 4.4.7. Projected Scaling to...4.4.6. Applied Linear Regression Analysis in the Frequency Range 1-50 MHz In order to construct a comprehensive numerical algorithm capable of

  7. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    EPA Science Inventory

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  8. Data Transformations for Inference with Linear Regression: Clarifications and Recommendations

    ERIC Educational Resources Information Center

    Pek, Jolynn; Wong, Octavia; Wong, C. M.

    2017-01-01

    Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…

  9. USING LINEAR AND POLYNOMIAL MODELS TO EXAMINE THE ENVIRONMENTAL STABILITY OF VIRUSES

    EPA Science Inventory

    The article presents the development of model equations for describing the fate of viral infectivity in environmental samples. Most of the models were based upon the use of a two-step linear regression approach. The first step employs regression of log base 10 transformed viral t...

  10. Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Camilleri, Liberato; Cefai, Carmel

    2013-01-01

    Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…

  11. Simple and multiple linear regression: sample size considerations.

    PubMed

    Hanley, James A

    2016-11-01

    The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.

    PubMed

    Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L

    2011-10-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.

  13. Analysis of Binary Adherence Data in the Setting of Polypharmacy: A Comparison of Different Approaches

    PubMed Central

    Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.

    2009-01-01

    Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358

  14. Genetic Programming Transforms in Linear Regression Situations

    NASA Astrophysics Data System (ADS)

    Castillo, Flor; Kordon, Arthur; Villa, Carlos

    The chapter summarizes the use of Genetic Programming (GP) inMultiple Linear Regression (MLR) to address multicollinearity and Lack of Fit (LOF). The basis of the proposed method is applying appropriate input transforms (model respecification) that deal with these issues while preserving the information content of the original variables. The transforms are selected from symbolic regression models with optimal trade-off between accuracy of prediction and expressional complexity, generated by multiobjective Pareto-front GP. The chapter includes a comparative study of the GP-generated transforms with Ridge Regression, a variant of ordinary Multiple Linear Regression, which has been a useful and commonly employed approach for reducing multicollinearity. The advantages of GP-generated model respecification are clearly defined and demonstrated. Some recommendations for transforms selection are given as well. The application benefits of the proposed approach are illustrated with a real industrial application in one of the broadest empirical modeling areas in manufacturing - robust inferential sensors. The chapter contributes to increasing the awareness of the potential of GP in statistical model building by MLR.

  15. Impact of the Japanese 5S management method on patients’ and caretakers’ satisfaction: a quasi-experimental study in Senegal

    PubMed Central

    Kanamori, Shogo; Castro, Marcia C.; Sow, Seydou; Matsuno, Rui; Cissokho, Alioune; Jimba, Masamine

    2016-01-01

    Background The 5S method is a lean management tool for workplace organization, with 5S being an abbreviation for five Japanese words that translate to English as Sort, Set in Order, Shine, Standardize, and Sustain. In Senegal, the 5S intervention program was implemented in 10 health centers in two regions between 2011 and 2014. Objective To identify the impact of the 5S intervention program on the satisfaction of clients (patients and caretakers) who visited the health centers. Design A standardized 5S intervention protocol was implemented in the health centers using a quasi-experimental separate pre-post samples design (four intervention and three control health facilities). A questionnaire with 10 five-point Likert items was used to measure client satisfaction. Linear regression analysis was conducted to identify the intervention's effect on the client satisfaction scores, represented by an equally weighted average of the 10 Likert items (Cronbach's alpha=0.83). Additional regression analyses were conducted to identify the intervention's effect on the scores of each Likert item. Results Backward stepwise linear regression (n=1,928) indicated a statistically significant effect of the 5S intervention, represented by an increase of 0.19 points in the client satisfaction scores in the intervention group, 6 to 8 months after the intervention (p=0.014). Additional regression analyses showed significant score increases of 0.44 (p=0.002), 0.14 (p=0.002), 0.06 (p=0.019), and 0.17 (p=0.044) points on four items, which, respectively were healthcare staff members’ communication, explanations about illnesses or cases, and consultation duration, and clients’ overall satisfaction. Conclusions The 5S has the potential to improve client satisfaction at resource-poor health facilities and could therefore be recommended as a strategic option for improving the quality of healthcare service in low- and middle-income countries. To explore more effective intervention modalities, further studies need to address the mechanisms by which 5S leads to attitude changes in healthcare staff. PMID:27900932

  16. Naval Research Logistics Quarterly. Volume 28. Number 3,

    DTIC Science & Technology

    1981-09-01

    denotes component-wise maximum. f has antone (isotone) differences on C x D if for cl < c2 and d, < d2, NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28...or negative correlations and linear or nonlinear regressions. Given are the mo- ments to order two and, for special cases, (he regression function and...data sets. We designate this bnb distribution as G - B - N(a, 0, v). The distribution admits only of positive correlation and linear regressions

  17. Automating approximate Bayesian computation by local linear regression.

    PubMed

    Thornton, Kevin R

    2009-07-07

    In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.

  18. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    NASA Astrophysics Data System (ADS)

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  19. The Correlation Between Metacognition Level with Self-Efficacy of Biology Education College Students

    NASA Astrophysics Data System (ADS)

    Ridlo, S.; Lutfiya, F.

    2017-04-01

    Self-efficacy is a strong predictor of academic achievement. Self-efficacy refers to the ability of college students to achieve the desired results. The metacognition level can influence college student’s self-efficacy. This study aims to identify college student’s metacognition level and self-efficacy, as well as determine the relationship between self-efficacy and metacognition level for college students of Biology Education 2013, Semarang State University. The ex-post facto quantitative research was conducted on 99 students Academic Year 2015/2016. Saturation sampling technique determined samples. E-D scale collected data for self-efficacy identification. Data for assess the metacognition level collected by Metacognitive Awareness Inventory. Data were analysed quantitatively by Pearson correlation and linear regression. Most college students have the high level of metacognition and average self-efficacy. Pearson correlation coefficient result was 0.367. This result showed that metacognition level and self-efficacy has a weak relationship. Based on linear regression test, self-efficacy influenced by metacognition level up to 13.5%. The results of the study showed that positive and significant relationships exist between metacognition level and self-efficacy. Therefore, if the metacognition level is high, then self-efficacy will also be high (appropriate).

  20. The Association Between Unintended Births and Poor Child Development in India: Evidence from a Longitudinal Study.

    PubMed

    Singh, Abhishek; Upadhyay, Ashish Kumar; Singh, Ashish; Kumar, Kaushalendra

    2017-03-01

    Evidence on the association between unintended births and poor child development in developing countries is limited. We used data from three waves of the Young Lives study on childhood poverty conducted in Andhra Pradesh in 2002, 2006-07, and 2009 to examine the association between unintended births and poor child development in India. Multivariable linear regression models were used to examine the association between unintended births and four indicators of child development-height-for-age Z-score (HAZ), Peabody Picture Vocabulary Test (PPVT) score, Mathematics Achievement Test (MAT) score, and Early Grade Reading Assessment (EGRA) test score. The Propensity Score Matching (PSM) technique was also used to analyze data. Children who were reported as unintended at birth had significantly lower HAZ, PPVT, and EGRA scores compared with those who were reported as intended. PSM results support the findings from the multivariable linear regressions. Our findings provide evidence on the association between unintended births and poor child development in India. There may be a need to reposition family planning within India's reproductive and child health care programs. Future studies must take into account the unobserved heterogeneity that our study could not address fully. © 2017 The Population Council, Inc.

  1. Predicting terrestrial gamma dose rate based on geological and soil information: case study of Perak state, Malaysia.

    PubMed

    Ramli, A T; Apriantoro, N H; Heryansyah, A; Basri, N A; Sanusi, M S M; Abu Hanifah, N Z H

    2016-03-01

    An extensive terrestrial gamma radiation dose (TGRD) rate survey has been conducted in Perak State, Peninsular Malaysia. The survey has been carried out taking into account geological and soil information, involving 2930 in situ surveys. Based on geological and soil information collected during TGRD rate measurements, TGRD rates have been predicted in Perak State using a statistical regression analysis which would be helpful to focus surveys in areas that are difficult to access. An equation was formulated according to a linear relationship between TGRD rates, geological contexts and soil types. The comparison of in situ measurements and predicted TGRD dose rates was tabulated and showed good agreement with the linear regression equation. The TGRD rates in the study area ranged from 38 nGy h(-1) to 1039 nGy h(-1) with a mean value of 224  ±  138 nGy h(-1). This value is higher than the world average as reported in UNSCEAR 2000. The TGRD rates contribute an average dose rate of 1.37 mSv per year. An isodose map for the study area was developed using a Kriging method based on predicted and in situ TGRD rate values.

  2. Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification.

    PubMed

    Haoliang Yuan; Yuan Yan Tang

    2017-04-01

    Classification of the pixels in hyperspectral image (HSI) is an important task and has been popularly applied in many practical applications. Its major challenge is the high-dimensional small-sized problem. To deal with this problem, lots of subspace learning (SL) methods are developed to reduce the dimension of the pixels while preserving the important discriminant information. Motivated by ridge linear regression (RLR) framework for SL, we propose a spectral-spatial shared linear regression method (SSSLR) for extracting the feature representation. Comparing with RLR, our proposed SSSLR has the following two advantages. First, we utilize a convex set to explore the spatial structure for computing the linear projection matrix. Second, we utilize a shared structure learning model, which is formed by original data space and a hidden feature space, to learn a more discriminant linear projection matrix for classification. To optimize our proposed method, an efficient iterative algorithm is proposed. Experimental results on two popular HSI data sets, i.e., Indian Pines and Salinas demonstrate that our proposed methods outperform many SL methods.

  3. Simple linear and multivariate regression models.

    PubMed

    Rodríguez del Águila, M M; Benítez-Parejo, N

    2011-01-01

    In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  4. Effects of Buffer Size and Shape on Associations between the Built Environment and Energy Balance

    PubMed Central

    Berrigan, David; Hart, Jaime E.; Hipp, J. Aaron; Hoehner, Christine M.; Kerr, Jacqueline; Major, Jacqueline M.; Oka, Masayoshi; Laden, Francine

    2014-01-01

    Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature. PMID:24607875

  5. Estimating the size of an open population using sparse capture-recapture data.

    PubMed

    Huggins, Richard; Stoklosa, Jakub; Roach, Cameron; Yip, Paul

    2018-03-01

    Sparse capture-recapture data from open populations are difficult to analyze using currently available frequentist statistical methods. However, in closed capture-recapture experiments, the Chao sparse estimator (Chao, 1989, Biometrics 45, 427-438) may be used to estimate population sizes when there are few recaptures. Here, we extend the Chao (1989) closed population size estimator to the open population setting by using linear regression and extrapolation techniques. We conduct a small simulation study and apply the models to several sparse capture-recapture data sets. © 2017, The International Biometric Society.

  6. Temperature preference of the white perch, Morone americana, collected in the Wicomico River, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, L.W. Jr.; Hocutt, C.H.; Stauffer, J.R. Jr.

    1979-06-01

    Temperature preference tests were conducted on fresh water white perch (Morone americana), collected from the Wicomico River, Maryland. Collection temperature was 27/sup 0/C and acclimation temperatures used in temperature preference tests were 6, 12, 18, 24, 30, and 33/sup 0/C. The following methods were used to determine the final temperature preference:linear regression, quadratic equation, and eyeball plots. Recorded final temperature preference values were 28.9, 29.3, and 30.6/sup 0/C using each method respectively.

  7. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis.

    PubMed

    Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M

    2017-04-01

    A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. London Measure of Unplanned Pregnancy: guidance for its use as an outcome measure

    PubMed Central

    Hall, Jennifer A; Barrett, Geraldine; Copas, Andrew; Stephenson, Judith

    2017-01-01

    Background The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies. PMID:28435343

  9. Modelling soil salinity in Oued El Abid watershed, Morocco

    NASA Astrophysics Data System (ADS)

    Mouatassime Sabri, El; Boukdir, Ahmed; Karaoui, Ismail; Arioua, Abdelkrim; Messlouhi, Rachid; El Amrani Idrissi, Abdelkhalek

    2018-05-01

    Soil salinisation is a phenomenon considered to be a real threat to natural resources in semi-arid climates. The phenomenon is controlled by soil (texture, depth, slope etc.), anthropogenic factors (drainage system, irrigation, crops types, etc.), and climate factors. This study was conducted in the watershed of Oued El Abid in the region of Beni Mellal-Khenifra, aimed at localising saline soil using remote sensing and a regression model. The spectral indices were extracted from Landsat imagery (30 m resolution). A linear correlation of electrical conductivity, which was calculated based on soil samples (ECs), and the values extracted based on spectral bands showed a high accuracy with an R2 (Root square) of 0.80. This study proposes a new spectral salinity index using Landsat bands B1 and B4. This hydro-chemical and statistical study, based on a yearlong survey, showed a moderate amount of salinity, which threatens dam water quality. The results present an improved ability to use remote sensing and regression model integration to detect soil salinity with high accuracy and low cost, and permit intervention at an early stage of salinisation.

  10. Using Parametric Cost Models to Estimate Engineering and Installation Costs of Selected Electronic Communications Systems

    DTIC Science & Technology

    1994-09-01

    Institute of Technology, Wright- Patterson AFB OH, January 1994. 4. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 5...Technology, Wright-Patterson AFB OH 5 April 1994. 29. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 30. Office of

  11. An Evaluation of the Automated Cost Estimating Integrated Tools (ACEIT) System

    DTIC Science & Technology

    1989-09-01

    residual and it is described as the residual divided by its standard deviation (13:App A,17). Neter, Wasserman, and Kutner, in Applied Linear Regression Models...others. Applied Linear Regression Models. Homewood IL: Irwin, 1983. 19. Raduchel, William J. "A Professional’s Perspective on User-Friendliness," Byte

  12. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    ERIC Educational Resources Information Center

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  13. Conjoint Analysis: A Study of the Effects of Using Person Variables.

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…

  14. Fitting program for linear regressions according to Mahon (1996)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappitsch, Reto G.

    2018-01-09

    This program takes the users' Input data and fits a linear regression to it using the prescription presented by Mahon (1996). Compared to the commonly used York fit, this method has the correct prescription for measurement error propagation. This software should facilitate the proper fitting of measurements with a simple Interface.

  15. How Robust Is Linear Regression with Dummy Variables?

    ERIC Educational Resources Information Center

    Blankmeyer, Eric

    2006-01-01

    Researchers in education and the social sciences make extensive use of linear regression models in which the dependent variable is continuous-valued while the explanatory variables are a combination of continuous-valued regressors and dummy variables. The dummies partition the sample into groups, some of which may contain only a few observations.…

  16. Revisiting the Scale-Invariant, Two-Dimensional Linear Regression Method

    ERIC Educational Resources Information Center

    Patzer, A. Beate C.; Bauer, Hans; Chang, Christian; Bolte, Jan; Su¨lzle, Detlev

    2018-01-01

    The scale-invariant way to analyze two-dimensional experimental and theoretical data with statistical errors in both the independent and dependent variables is revisited by using what we call the triangular linear regression method. This is compared to the standard least-squares fit approach by applying it to typical simple sets of example data…

  17. An Introduction to Graphical and Mathematical Methods for Detecting Heteroscedasticity in Linear Regression.

    ERIC Educational Resources Information Center

    Thompson, Russel L.

    Homoscedasticity is an important assumption of linear regression. This paper explains what it is and why it is important to the researcher. Graphical and mathematical methods for testing the homoscedasticity assumption are demonstrated. Sources of homoscedasticity and types of homoscedasticity are discussed, and methods for correction are…

  18. On the null distribution of Bayes factors in linear regression

    USDA-ARS?s Scientific Manuscript database

    We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...

  19. Common pitfalls in statistical analysis: Linear regression analysis

    PubMed Central

    Aggarwal, Rakesh; Ranganathan, Priya

    2017-01-01

    In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis. PMID:28447022

  20. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    PubMed

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  1. High Loading of Polygenic Risk for ADHD in Children With Comorbid Aggression

    PubMed Central

    Hamshere, Marian L.; Langley, Kate; Martin, Joanna; Agha, Sharifah Shameem; Stergiakouli, Evangelia; Anney, Richard J.L.; Buitelaar, Jan; Faraone, Stephen V.; Lesch, Klaus-Peter; Neale, Benjamin M.; Franke, Barbara; Sonuga-Barke, Edmund; Asherson, Philip; Merwood, Andrew; Kuntsi, Jonna; Medland, Sarah E.; Ripke, Stephan; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Roeyers, Herbert; Biederman, Joseph; Doyle, Alysa E.; Hakonarson, Hakon; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; McGough, James J.; Kent, Lindsey; Williams, Nigel; Owen, Michael J.; Holmans, Peter

    2013-01-01

    Objective Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder. Method Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression. Results Polygenic risk for ADHD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by the aggression items. Conclusions Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity. PMID:23599091

  2. Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Zhen Yu, Jian

    2018-03-01

    Linear regression techniques are widely used in atmospheric science, but they are often improperly applied due to lack of consideration or inappropriate handling of measurement uncertainty. In this work, numerical experiments are performed to evaluate the performance of five linear regression techniques, significantly extending previous works by Chu and Saylor. The five techniques are ordinary least squares (OLS), Deming regression (DR), orthogonal distance regression (ODR), weighted ODR (WODR), and York regression (YR). We first introduce a new data generation scheme that employs the Mersenne twister (MT) pseudorandom number generator. The numerical simulations are also improved by (a) refining the parameterization of nonlinear measurement uncertainties, (b) inclusion of a linear measurement uncertainty, and (c) inclusion of WODR for comparison. Results show that DR, WODR and YR produce an accurate slope, but the intercept by WODR and YR is overestimated and the degree of bias is more pronounced with a low R2 XY dataset. The importance of a properly weighting parameter λ in DR is investigated by sensitivity tests, and it is found that an improper λ in DR can lead to a bias in both the slope and intercept estimation. Because the λ calculation depends on the actual form of the measurement error, it is essential to determine the exact form of measurement error in the XY data during the measurement stage. If a priori error in one of the variables is unknown, or the measurement error described cannot be trusted, DR, WODR and YR can provide the least biases in slope and intercept among all tested regression techniques. For these reasons, DR, WODR and YR are recommended for atmospheric studies when both X and Y data have measurement errors. An Igor Pro-based program (Scatter Plot) was developed to facilitate the implementation of error-in-variables regressions.

  3. Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK

    NASA Astrophysics Data System (ADS)

    Bloomfield, J. P.; Allen, D. J.; Griffiths, K. J.

    2009-06-01

    SummaryLinear regression methods can be used to quantify geological controls on baseflow index (BFI). This is illustrated using an example from the Thames Basin, UK. Two approaches have been adopted. The areal extents of geological classes based on lithostratigraphic and hydrogeological classification schemes have been correlated with BFI for 44 'natural' catchments from the Thames Basin. When regression models are built using lithostratigraphic classes that include a constant term then the model is shown to have some physical meaning and the relative influence of the different geological classes on BFI can be quantified. For example, the regression constants for two such models, 0.64 and 0.69, are consistent with the mean observed BFI (0.65) for the Thames Basin, and the signs and relative magnitudes of the regression coefficients for each of the lithostratigraphic classes are consistent with the hydrogeology of the Basin. In addition, regression coefficients for the lithostratigraphic classes scale linearly with estimates of log 10 hydraulic conductivity for each lithological class. When a regression is built using a hydrogeological classification scheme with no constant term, the model does not have any physical meaning, but it has a relatively high adjusted R2 value and because of the continuous coverage of the hydrogeological classification scheme, the model can be used for predictive purposes. A model calibrated on the 44 'natural' catchments and using four hydrogeological classes (low-permeability surficial deposits, consolidated aquitards, fractured aquifers and intergranular aquifers) is shown to perform as well as a model based on a hydrology of soil types (BFIHOST) scheme in predicting BFI in the Thames Basin. Validation of this model using 110 other 'variably impacted' catchments in the Basin shows that there is a correlation between modelled and observed BFI. Where the observed BFI is significantly higher than modelled BFI the deviations can be explained by an exogenous factor, catchment urban area. It is inferred that this is may be due influences from sewage discharge, mains leakage, and leakage from septic tanks.

  4. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    NASA Technical Reports Server (NTRS)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical link between wavelengths chosen by stepwise regression and the biochemical of interest, and this in turn has cast doubts on the use of imaging spectrometry for the estimation of foliar biochemical concentrations at sites distant from the training sites. To investigate this problem, an analysis was conducted on the variation in canopy biochemical concentrations and reflectance spectra using forced entry linear regression.

  5. A quantitative description of normal AV nodal conduction curve in man.

    PubMed

    Teague, S; Collins, S; Wu, D; Denes, P; Rosen, K; Arzbaecher, R

    1976-01-01

    The AV nodal conduction curve generated by the atrial extrastimulus technique has been described only qualitatively in man, making clinical comparison of known normal curves with those of suspected AV nodal dysfunction difficult. Also, the effects of physiological and pharmacological interventions have not been quantifiable. In 50 patients with normal AV conduction as defined by normal AH (less than 130 ms), normal AV nodal effective and functional refractory periods (less than 380 and less than 500 ms), and absence of demonstrable dual AV nodal pathways, we found that conduction curves (at sinus rhythm or longest paced cycle length) can be described by an exponential equation of the form delta = Ae-Bx. In this equation, delta is the increase in AV nodal conduction time of an extrastimulus compared to that of a regular beat and x is extrastimulus interval. The natural logarithm of this equation is linear in the semilogarithmic plane, thus permitting the constants A and B to be easily determined by a least-squares regression analysis with a hand calculator.

  6. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    PubMed

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  7. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad-scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.

  8. RBF kernel based support vector regression to estimate the blood volume and heart rate responses during hemodialysis.

    PubMed

    Javed, Faizan; Chan, Gregory S H; Savkin, Andrey V; Middleton, Paul M; Malouf, Philip; Steel, Elizabeth; Mackie, James; Lovell, Nigel H

    2009-01-01

    This paper uses non-linear support vector regression (SVR) to model the blood volume and heart rate (HR) responses in 9 hemodynamically stable kidney failure patients during hemodialysis. Using radial bias function (RBF) kernels the non-parametric models of relative blood volume (RBV) change with time as well as percentage change in HR with respect to RBV were obtained. The e-insensitivity based loss function was used for SVR modeling. Selection of the design parameters which includes capacity (C), insensitivity region (e) and the RBF kernel parameter (sigma) was made based on a grid search approach and the selected models were cross-validated using the average mean square error (AMSE) calculated from testing data based on a k-fold cross-validation technique. Linear regression was also applied to fit the curves and the AMSE was calculated for comparison with SVR. For the model based on RBV with time, SVR gave a lower AMSE for both training (AMSE=1.5) as well as testing data (AMSE=1.4) compared to linear regression (AMSE=1.8 and 1.5). SVR also provided a better fit for HR with RBV for both training as well as testing data (AMSE=15.8 and 16.4) compared to linear regression (AMSE=25.2 and 20.1).

  9. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure.

    PubMed

    Jaworski, N W; Liu, D W; Li, D F; Stein, H H

    2016-07-01

    An experiment was conducted to determine effects on DE, ME, and NE for growing pigs of adding 15 or 30% wheat bran to a corn-soybean meal diet and to compare values for DE, ME, and NE calculated using the difference procedure with values obtained using linear regression. Eighteen barrows (54.4 ± 4.3 kg initial BW) were individually housed in metabolism crates. The experiment had 3 diets and 6 replicate pigs per diet. The control diet contained corn, soybean meal, and no wheat bran. Two additional diets were formulated by mixing 15 or 30% wheat bran with 85 or 70% of the control diet, respectively. The experimental period lasted 15 d. During the initial 7 d, pigs were adapted to their experimental diets and housed in metabolism crates and fed 573 kcal ME/kg BW per day. On d 8, metabolism crates with the pigs were moved into open-circuit respiration chambers for measurement of O consumption and CO and CH production. The feeding level was the same as in the adaptation period, and feces and urine were collected during this period. On d 13 and 14, pigs were fed 225 kcal ME/kg BW per day, and pigs were then fasted for 24 h to obtain fasting heat production. Results of the experiment indicated that the apparent total tract digestibility of DM, GE, crude fiber, ADF, and NDF linearly decreased ( ≤ 0.05) as wheat bran inclusion increased in the diets. The daily O consumption and CO and CH production by pigs fed increasing concentrations of wheat bran linearly decreased ( ≤ 0.05), resulting in a linear decrease ( ≤ 0.05) in heat production. The DE (3,454, 3,257, and 3,161 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively for diets containing 0, 15, and 30% wheat bran, respectively), ME (3,400, 3,209, and 3,091 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively), and NE (1,808, 1,575, and 1,458 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively) of diets decreased (linear, ≤ 0.05) as wheat bran inclusion increased. The DE, ME, and NE of wheat bran determined using the difference procedure were 2,168, 2,117, and 896 kcal/kg, respectively, and these values were within the 95% confidence interval of the DE (2,285 kcal/kg), ME (2,217 kcal/kg), and NE (961 kcal/kg) estimated by linear regression. In conclusion, increasing the inclusion of wheat bran in a corn-soybean meal based diet reduced energy and nutrient digestibility and heat production as well as DE, ME, and NE of diets, but values for DE, ME, and NE for wheat bran determined using the difference procedure were not different from values determined using linear regression.

  10. Prediction of Water Quality Parameters Using Statistical Methods: A Case Study in a Specially Protected Area, Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Alp, E.; Yücel, Ö.; Özcan, Z.

    2014-12-01

    Turkey has been making many legal arrangements for sustainable water management during the harmonization process with the European Union. In order to make cost effective and efficient decisions, monitoring network in Turkey has been expanding. However, due to time and budget constraints, desired number of monitoring campaigns can not be carried. Hence, in this study, independent parameters that can be measured easily and quickly are used to estimate water quality parameters in Lake Mogan and Eymir using linear regression. Nonpoint sources are one of the major pollutant components in Eymir and Mogan lakes. In this paper, a correlation between easily measurable parameters, DO, temperature, electrical conductivity, pH, precipitation and dependent variables, TN, TP, COD, Chl-a, TSS, Total Coliform is investigated. Simple regression analysis is performed for each season in Eymir and Mogan lakes by using SPSS Statistical program using the water quality data collected between 2006-2012. Regression analysis demonstrated significant linear relationship between measured and simulated concentrations for TN (R2=0.86), TP (R2=0.85), TSS (R2=0.91), Chl-a (R2=0.94), COD (R2=0.99), T. Coliform (R2=0.97) which are the best results in each season for Eymir and Mogan Lakes. The overall results of this study shows that by using easily measurable parameters even in ungauged situation the water quality of lakes can be predicted. Moreover, the outputs obtained from the regression equations can be used as an input for water quality models such as phosphorus budget model which is used to calculate the required reduction in the external phosphorus load to Lake Mogan to meet the water quality standards.

  11. Burnout does not help predict depression among French school teachers.

    PubMed

    Bianchi, Renzo; Schonfeld, Irvin Sam; Laurent, Eric

    2015-11-01

    Burnout has been viewed as a phase in the development of depression. However, supportive research is scarce. We examined whether burnout predicted depression among French school teachers. We conducted a 2-wave, 21-month study involving 627 teachers (73% female) working in French primary and secondary schools. Burnout was assessed with the Maslach Burnout Inventory and depression with the 9-item depression module of the Patient Health Questionnaire (PHQ-9). The PHQ-9 grades depressive symptom severity and provides a provisional diagnosis of major depression. Depression was treated both as a continuous and categorical variable using linear and logistic regression analyses. We controlled for gender, age, and length of employment. Controlling for baseline depressive symptoms, linear regression analysis showed that burnout symptoms at time 1 (T1) did not predict depressive symptoms at time 2 (T2). Baseline depressive symptoms accounted for about 88% of the association between T1 burnout and T2 depressive symptoms. Only baseline depressive symptoms predicted depressive symptoms at follow-up. Similarly, logistic regression analysis revealed that burnout symptoms at T1 did not predict incident cases of major depression at T2 when depressive symptoms at T1 were included in the predictive model. Only baseline depressive symptoms predicted cases of major depression at follow-up. This study does not support the view that burnout is a phase in the development of depression. Assessing burnout symptoms in addition to "classical" depressive symptoms may not always improve our ability to predict future depression.

  12. The association between a body shape index and cardiovascular risk in overweight and obese children and adolescents.

    PubMed

    Mameli, Chiara; Krakauer, Nir Y; Krakauer, Jesse C; Bosetti, Alessandra; Ferrari, Chiara Matilde; Moiana, Norma; Schneider, Laura; Borsani, Barbara; Genoni, Teresa; Zuccotti, Gianvincenzo

    2018-01-01

    A Body Shape Index (ABSI) and normalized hip circumference (Hip Index, HI) have been recently shown to be strong risk factors for mortality and for cardiovascular disease in adults. We conducted an observational cross-sectional study to evaluate the relationship between ABSI, HI and cardiometabolic risk factors and obesity-related comorbidities in overweight and obese children and adolescents aged 2-18 years. We performed multivariate linear and logistic regression analyses with BMI, ABSI, and HI age and sex normalized z scores as predictors to examine the association with cardiometabolic risk markers (systolic and diastolic blood pressure, fasting glucose and insulin, total cholesterol and its components, transaminases, fat mass % detected by bioelectrical impedance analysis) and obesity-related conditions (including hepatic steatosis and metabolic syndrome). We recruited 217 patients (114 males), mean age 11.3 years. Multivariate linear regression showed a significant association of ABSI z score with 10 out of 15 risk markers expressed as continuous variables, while BMI z score showed a significant correlation with 9 and HI only with 1. In multivariate logistic regression to predict occurrence of obesity-related conditions and above-threshold values of risk factors, BMI z score was significantly correlated to 7 out of 12, ABSI to 5, and HI to 1. Overall, ABSI is an independent anthropometric index that was significantly associated with cardiometabolic risk markers in a pediatric population affected by overweight and obesity.

  13. An interlaboratory comparison study on the measurement of elements in PM10

    NASA Astrophysics Data System (ADS)

    Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna

    2016-01-01

    An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.

  14. The association of longitudinal trend of fasting plasma glucose with retinal microvasculature in people without established diabetes.

    PubMed

    Hu, Yin; Niu, Yong; Wang, Dandan; Wang, Ying; Holden, Brien A; He, Mingguang

    2015-01-22

    Structural changes of retinal vasculature, such as altered retinal vascular calibers, are considered as early signs of systemic vascular damage. We examined the associations of 5-year mean level, longitudinal trend, and fluctuation in fasting plasma glucose (FPG) with retinal vascular caliber in people without established diabetes. A prospective study was conducted in a cohort of Chinese people age ≥40 years in Guangzhou, southern China. The FPG was measured at baseline in 2008 and annually until 2012. In 2012, retinal vascular caliber was assessed using standard fundus photographs and validated software. A total of 3645 baseline nondiabetic participants with baseline and follow-up data on FPG for 3 or more visits was included for statistical analysis. The associations of retinal vascular caliber with 5-year mean FPG level, longitudinal FPG trend (slope of linear regression-FPG), and fluctuation (standard deviation and root mean square error of FPG) were analyzed using multivariable linear regression analyses. Multivariate regression models adjusted for baseline FPG and other potential confounders showed that a 10% annual increase in FPG was associated independently with a 2.65-μm narrowing in retinal arterioles (P = 0.008) and a 3.47-μm widening in venules (P = 0. 0.004). Associations with mean FPG level and fluctuation were not statistically significant. Annual rising trend in FPG, but not its mean level or fluctuation, is associated with altered retinal vasculature in nondiabetic people. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  15. Are School Absences Correlated with Influenza Surveillance Data in England? Results from Decipher My Data—A Research Project Conducted through Scientific Engagement with Schools

    PubMed Central

    Aldridge, Robert W.; Hayward, Andrew C.; Field, Nigel; Warren-Gash, Charlotte; Smith, Colette; Pebody, Richard; Fleming, Declan; McCracken, Shane

    2016-01-01

    Background School aged children are a key link in the transmission of influenza. Most cases have little or no interaction with health services and are therefore missed by the majority of existing surveillance systems. As part of a public engagement with science project, this study aimed to establish a web-based system for the collection of routine school absence data and determine if school absence prevalence was correlated with established surveillance measures for circulating influenza. Methods We collected data for two influenza seasons (2011/12 and 2012/13). The primary outcome was daily school absence prevalence (weighted to make it nationally representative) for children aged 11 to 16. School absence prevalence was triangulated graphically and through univariable linear regression to Royal College of General Practitioners (RCGP) influenza like illness (ILI) episode incidence rate, national microbiological surveillance data on the proportion of samples positive for influenza (A+B) and with Rhinovirus, RSV and laboratory confirmed cases of Norovirus. Results 27 schools submitted data over two respiratory seasons. During the first season, levels of influenza measured by school absence prevalence and established surveillance were low. In the 2012/13 season, a peak of school absence prevalence occurred in week 51, and week 1 in RCGP ILI surveillance data. Linear regression showed a strong association between the school absence prevalence and RCGP ILI (All ages, and 5–14 year olds), laboratory confirmed cases of influenza A & B, and weak evidence for a linear association with Rhinovirus and Norovirus. Interpretation This study provides initial evidence for using routine school illness absence prevalence as a novel tool for influenza surveillance. The network of web-based data collection platforms we established through active engagement provides an innovative model of conducting scientific research and could be used for a wide range of infectious disease studies in the future. PMID:26933880

  16. Are School Absences Correlated with Influenza Surveillance Data in England? Results from Decipher My Data-A Research Project Conducted through Scientific Engagement with Schools.

    PubMed

    Aldridge, Robert W; Hayward, Andrew C; Field, Nigel; Warren-Gash, Charlotte; Smith, Colette; Pebody, Richard; Fleming, Declan; McCracken, Shane

    2016-01-01

    School aged children are a key link in the transmission of influenza. Most cases have little or no interaction with health services and are therefore missed by the majority of existing surveillance systems. As part of a public engagement with science project, this study aimed to establish a web-based system for the collection of routine school absence data and determine if school absence prevalence was correlated with established surveillance measures for circulating influenza. We collected data for two influenza seasons (2011/12 and 2012/13). The primary outcome was daily school absence prevalence (weighted to make it nationally representative) for children aged 11 to 16. School absence prevalence was triangulated graphically and through univariable linear regression to Royal College of General Practitioners (RCGP) influenza like illness (ILI) episode incidence rate, national microbiological surveillance data on the proportion of samples positive for influenza (A+B) and with Rhinovirus, RSV and laboratory confirmed cases of Norovirus. 27 schools submitted data over two respiratory seasons. During the first season, levels of influenza measured by school absence prevalence and established surveillance were low. In the 2012/13 season, a peak of school absence prevalence occurred in week 51, and week 1 in RCGP ILI surveillance data. Linear regression showed a strong association between the school absence prevalence and RCGP ILI (All ages, and 5-14 year olds), laboratory confirmed cases of influenza A & B, and weak evidence for a linear association with Rhinovirus and Norovirus. This study provides initial evidence for using routine school illness absence prevalence as a novel tool for influenza surveillance. The network of web-based data collection platforms we established through active engagement provides an innovative model of conducting scientific research and could be used for a wide range of infectious disease studies in the future.

  17. Post-processing through linear regression

    NASA Astrophysics Data System (ADS)

    van Schaeybroeck, B.; Vannitsem, S.

    2011-03-01

    Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.

  18. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  19. Egg production forecasting: Determining efficient modeling approaches.

    PubMed

    Ahmad, H A

    2011-12-01

    Several mathematical or statistical and artificial intelligence models were developed to compare egg production forecasts in commercial layers. Initial data for these models were collected from a comparative layer trial on commercial strains conducted at the Poultry Research Farms, Auburn University. Simulated data were produced to represent new scenarios by using means and SD of egg production of the 22 commercial strains. From the simulated data, random examples were generated for neural network training and testing for the weekly egg production prediction from wk 22 to 36. Three neural network architectures-back-propagation-3, Ward-5, and the general regression neural network-were compared for their efficiency to forecast egg production, along with other traditional models. The general regression neural network gave the best-fitting line, which almost overlapped with the commercial egg production data, with an R(2) of 0.71. The general regression neural network-predicted curve was compared with original egg production data, the average curves of white-shelled and brown-shelled strains, linear regression predictions, and the Gompertz nonlinear model. The general regression neural network was superior in all these comparisons and may be the model of choice if the initial overprediction is managed efficiently. In general, neural network models are efficient, are easy to use, require fewer data, and are practical under farm management conditions to forecast egg production.

  20. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    PubMed

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P < .001) in eyes with glaucoma and for OCT average thickness (0.888 ± 0.072; P < .001) in eyes with suspected glaucoma. The structure-function relationship was significantly stronger with spectral-domain OCT than with scanning laser polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. A Simulation-Based Comparison of Several Stochastic Linear Regression Methods in the Presence of Outliers.

    ERIC Educational Resources Information Center

    Rule, David L.

    Several regression methods were examined within the framework of weighted structural regression (WSR), comparing their regression weight stability and score estimation accuracy in the presence of outlier contamination. The methods compared are: (1) ordinary least squares; (2) WSR ridge regression; (3) minimum risk regression; (4) minimum risk 2;…

  2. Unit Cohesion and the Surface Navy: Does Cohesion Affect Performance

    DTIC Science & Technology

    1989-12-01

    v. 68, 1968. Neter, J., Wasserman, W., and Kutner, M. H., Applied Linear Regression Models, 2d ed., Boston, MA: Irwin, 1989. Rand Corporation R-2607...Neter, J., Wasserman, W., and Kutner, M. H., Applied Linear Regression Models, 2d ed., Boston, MA: Irwin, 1989. SAS User’s Guide: Basics, Version 5 ed

  3. Comparison of Selection Procedures and Validation of Criterion Used in Selection of Significant Control Variates of a Simulation Model

    DTIC Science & Technology

    1990-03-01

    and M.H. Knuter. Applied Linear Regression Models. Homewood IL: Richard D. Erwin Inc., 1983. Pritsker, A. Alan B. Introduction to Simulation and SLAM...Control Variates in Simulation," European Journal of Operational Research, 42: (1989). Neter, J., W. Wasserman, and M.H. Xnuter. Applied Linear Regression Models

  4. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    ERIC Educational Resources Information Center

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  5. Calibrated Peer Review for Interpreting Linear Regression Parameters: Results from a Graduate Course

    ERIC Educational Resources Information Center

    Enders, Felicity B.; Jenkins, Sarah; Hoverman, Verna

    2010-01-01

    Biostatistics is traditionally a difficult subject for students to learn. While the mathematical aspects are challenging, it can also be demanding for students to learn the exact language to use to correctly interpret statistical results. In particular, correctly interpreting the parameters from linear regression is both a vital tool and a…

  6. What Is Wrong with ANOVA and Multiple Regression? Analyzing Sentence Reading Times with Hierarchical Linear Models

    ERIC Educational Resources Information Center

    Richter, Tobias

    2006-01-01

    Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…

  7. Some Applied Research Concerns Using Multiple Linear Regression Analysis.

    ERIC Educational Resources Information Center

    Newman, Isadore; Fraas, John W.

    The intention of this paper is to provide an overall reference on how a researcher can apply multiple linear regression in order to utilize the advantages that it has to offer. The advantages and some concerns expressed about the technique are examined. A number of practical ways by which researchers can deal with such concerns as…

  8. Using Simple Linear Regression to Assess the Success of the Montreal Protocol in Reducing Atmospheric Chlorofluorocarbons

    ERIC Educational Resources Information Center

    Nelson, Dean

    2009-01-01

    Following the Guidelines for Assessment and Instruction in Statistics Education (GAISE) recommendation to use real data, an example is presented in which simple linear regression is used to evaluate the effect of the Montreal Protocol on atmospheric concentration of chlorofluorocarbons. This simple set of data, obtained from a public archive, can…

  9. Quantum State Tomography via Linear Regression Estimation

    PubMed Central

    Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan

    2013-01-01

    A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519

  10. United States Medical Licensing Examination and American Board of Pediatrics Certification Examination Results: Does the Residency Program Contribute to Trainee Achievement.

    PubMed

    Welch, Thomas R; Olson, Brad G; Nelsen, Elizabeth; Beck Dallaghan, Gary L; Kennedy, Gloria A; Botash, Ann

    2017-09-01

    To determine whether training site or prior examinee performance on the US Medical Licensing Examination (USMLE) step 1 and step 2 might predict pass rates on the American Board of Pediatrics (ABP) certifying examination. Data from graduates of pediatric residency programs completing the ABP certifying examination between 2009 and 2013 were obtained. For each, results of the initial ABP certifying examination were obtained, as well as results on National Board of Medical Examiners (NBME) step 1 and step 2 examinations. Hierarchical linear modeling was used to nest first-time ABP results within training programs to isolate program contribution to ABP results while controlling for USMLE step 1 and step 2 scores. Stepwise linear regression was then used to determine which of these examinations was a better predictor of ABP results. A total of 1110 graduates of 15 programs had complete testing results and were subject to analysis. Mean ABP scores for these programs ranged from 186.13 to 214.32. The hierarchical linear model suggested that the interaction of step 1 and 2 scores predicted ABP performance (F[1,1007.70] = 6.44, P = .011). By conducting a multilevel model by training program, both USMLE step examinations predicted first-time ABP results (b = .002, t = 2.54, P = .011). Linear regression analyses indicated that step 2 results were a better predictor of ABP performance than step 1 or a combination of the two USMLE scores. Performance on the USMLE examinations, especially step 2, predicts performance on the ABP certifying examination. The contribution of training site to ABP performance was statistically significant, though contributed modestly to the effect compared with prior USMLE scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Old and New Ideas for Data Screening and Assumption Testing for Exploratory and Confirmatory Factor Analysis

    PubMed Central

    Flora, David B.; LaBrish, Cathy; Chalmers, R. Philip

    2011-01-01

    We provide a basic review of the data screening and assumption testing issues relevant to exploratory and confirmatory factor analysis along with practical advice for conducting analyses that are sensitive to these concerns. Historically, factor analysis was developed for explaining the relationships among many continuous test scores, which led to the expression of the common factor model as a multivariate linear regression model with observed, continuous variables serving as dependent variables, and unobserved factors as the independent, explanatory variables. Thus, we begin our paper with a review of the assumptions for the common factor model and data screening issues as they pertain to the factor analysis of continuous observed variables. In particular, we describe how principles from regression diagnostics also apply to factor analysis. Next, because modern applications of factor analysis frequently involve the analysis of the individual items from a single test or questionnaire, an important focus of this paper is the factor analysis of items. Although the traditional linear factor model is well-suited to the analysis of continuously distributed variables, commonly used item types, including Likert-type items, almost always produce dichotomous or ordered categorical variables. We describe how relationships among such items are often not well described by product-moment correlations, which has clear ramifications for the traditional linear factor analysis. An alternative, non-linear factor analysis using polychoric correlations has become more readily available to applied researchers and thus more popular. Consequently, we also review the assumptions and data-screening issues involved in this method. Throughout the paper, we demonstrate these procedures using an historic data set of nine cognitive ability variables. PMID:22403561

  12. Applications of statistics to medical science, III. Correlation and regression.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    In this third part of a series surveying medical statistics, the concepts of correlation and regression are reviewed. In particular, methods of linear regression and logistic regression are discussed. Arguments related to survival analysis will be made in a subsequent paper.

  13. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  14. Improved Correction of Atmospheric Pressure Data Obtained by Smartphones through Machine Learning

    PubMed Central

    Kim, Yong-Hyuk; Ha, Ji-Hun; Kim, Na-Young; Im, Hyo-Hyuc; Sim, Sangjin; Choi, Reno K. Y.

    2016-01-01

    A correction method using machine learning aims to improve the conventional linear regression (LR) based method for correction of atmospheric pressure data obtained by smartphones. The method proposed in this study conducts clustering and regression analysis with time domain classification. Data obtained in Gyeonggi-do, one of the most populous provinces in South Korea surrounding Seoul with the size of 10,000 km2, from July 2014 through December 2014, using smartphones were classified with respect to time of day (daytime or nighttime) as well as day of the week (weekday or weekend) and the user's mobility, prior to the expectation-maximization (EM) clustering. Subsequently, the results were analyzed for comparison by applying machine learning methods such as multilayer perceptron (MLP) and support vector regression (SVR). The results showed a mean absolute error (MAE) 26% lower on average when regression analysis was performed through EM clustering compared to that obtained without EM clustering. For machine learning methods, the MAE for SVR was around 31% lower for LR and about 19% lower for MLP. It is concluded that pressure data from smartphones are as good as the ones from national automatic weather station (AWS) network. PMID:27524999

  15. Does herpes zoster predispose to giant cell arteritis: a geo-epidemiologic study

    PubMed Central

    Ing, Edsel B; Ing, Royce; Liu, Xinyang; Zhang, Angela; Torun, Nurhan; Sey, Michael; Pagnoux, Christian

    2018-01-01

    Purpose Giant cell arteritis (GCA) is the most common systemic vasculitis in the elderly and can cause irreversible blindness and aortitis. Varicella zoster (VZ), which is potentially preventable by vaccination, has been proposed as a possible immune trigger for GCA, but this is controversial. The incidence of GCA varies widely by country. If VZ virus contributes to the immunopathogenesis of GCA we hypothesized that nations with increased incidence of GCA would also have increased incidence of herpes zoster (HZ). We conducted an ecologic analysis to determine the relationship between the incidence of HZ and GCA in different countries. Methods A literature search for the incidence rates (IRs) of GCA and HZ from different countries was conducted. Correlation and linear regression was performed comparing the disease IR of each country for subjects 50 years of age or older. Results We found the IR for GCA and HZ from 14 countries. Comparing the IRs for GCA and HZ in 50-year-olds, the Pearson product-moment correlation (r) was −0.51, with linear regression coefficient (β) −2.92 (95% CI −5.41, −0.43; p=0.025) using robust standard errors. Comparing the IRs for GCA and HZ in 70-year-olds, r was −0.40, with β −1.78, which was not statistically significant (95% CI −4.10, 0.53; p=0.12). Conclusion Although this geo-epidemiologic study has potential for aggregation and selection biases, there was no positive biologic gradient between the incidence of clinically evident HZ and GCA. PMID:29391771

  16. Assessing contaminant sensitivity of endangered and threatened aquatic species: part II. Chronic toxicity of copper and pentachlorophenol to two endangered species and two surrogate species.

    PubMed

    Besser, J M; Wang, N; Dwyer, F J; Mayer, F L; Ingersoll, C G

    2005-02-01

    Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at < or = 11 microg/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 microg/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern.

  17. The gynecologic oncology fellowship interview process: Challenges and potential areas for improvement.

    PubMed

    Gressel, Gregory M; Van Arsdale, Anne; Dioun, Shayan M; Goldberg, Gary L; Nevadunsky, Nicole S

    2017-05-01

    The application and interview process for gynecologic oncology fellowship is highly competitive, time-consuming and expensive for applicants. We conducted a survey of successfully matched gynecologic oncology fellowship applicants to assess problems associated with the interview process and identify areas for improvement. All Society of Gynecologic Oncology (SGO) list-serve members who have participated in the match program for gynecologic oncology fellowship were asked to complete an online survey regarding the interview process. Linear regression modeling was used to examine association between year of match, number of programs applied to, cost incurred, and overall satisfaction. Two hundred and sixty-nine eligible participants reported applying to a mean of 20 programs [range 1-45] and were offered a mean of 14 interviews [range 1-43]. They spent an average of $6000 [$0-25,000], using personal savings (54%), credit cards (50%), family support (12%) or personal loans (3%). Seventy percent of respondents identified the match as fair, and 93% were satisfied. Interviewees spent a mean of 15 [0-45] days away from work and 37% reported difficulty arranging coverage. Linear regression showed an increase in number of programs applied to and cost per applicant over time ( p  < 0.001) between 1993 and 2016. Applicants who applied to all available programs spent more ( p  < 0.001) than those who applied to programs based on their location or quality. The current fellowship match was identified as fair and satisfying by most respondents despite being time consuming and expensive. Suggested alternative options included clustering interviews geographically or conducting preliminary interviews at the SGO Annual Meeting.

  18. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part II. chronic toxicity of copper and pentachlorophenol to two endangered species and two surrogate species

    USGS Publications Warehouse

    Besser, J.M.; Wang, N.; Dwyer, F.J.; Mayer, F.L.; Ingersoll, C.G.

    2005-01-01

    Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at ??? 11 ??g/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 ??g/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern. ?? 2005 Springer Science+Business Media, Inc.

  19. Regression of non-linear coupling of noise in LIGO detectors

    NASA Astrophysics Data System (ADS)

    Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.

    2018-03-01

    In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.

  20. QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions.

    PubMed

    Goodarzi, Mohammad; Jensen, Richard; Vander Heyden, Yvan

    2012-12-01

    A Quantitative Structure-Retention Relationship (QSRR) is proposed to estimate the chromatographic retention of 83 diverse drugs on a Unisphere poly butadiene (PBD) column, using isocratic elutions at pH 11.7. Previous work has generated QSRR models for them using Classification And Regression Trees (CART). In this work, Ant Colony Optimization is used as a feature selection method to find the best molecular descriptors from a large pool. In addition, several other selection methods have been applied, such as Genetic Algorithms, Stepwise Regression and the Relief method, not only to evaluate Ant Colony Optimization as a feature selection method but also to investigate its ability to find the important descriptors in QSRR. Multiple Linear Regression (MLR) and Support Vector Machines (SVMs) were applied as linear and nonlinear regression methods, respectively, giving excellent correlation between the experimental, i.e. extrapolated to a mobile phase consisting of pure water, and predicted logarithms of the retention factors of the drugs (logk(w)). The overall best model was the SVM one built using descriptors selected by ACO. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Real-time soil sensing based on fiber optics and spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Minzan

    2005-08-01

    Using NIR spectroscopic techniques, correlation analysis and regression analysis for soil parameter estimation was conducted with raw soil samples collected in a cornfield and a forage field. Soil parameters analyzed were soil moisture, soil organic matter, nitrate nitrogen, soil electrical conductivity and pH. Results showed that all soil parameters could be evaluated by NIR spectral reflectance. For soil moisture, a linear regression model was available at low moisture contents below 30 % db, while an exponential model can be used in a wide range of moisture content up to 100 % db. Nitrate nitrogen estimation required a multi-spectral exponential model and electrical conductivity could be evaluated by a single spectral regression. According to the result above mentioned, a real time soil sensor system based on fiber optics and spectroscopy was developed. The sensor system was composed of a soil subsoiler with four optical fiber probes, a spectrometer, and a control unit. Two optical fiber probes were used for illumination and the other two optical fiber probes for collecting soil reflectance from visible to NIR wavebands at depths around 30 cm. The spectrometer was used to obtain the spectra of reflected lights. The control unit consisted of a data logging device, a personal computer, and a pulse generator. The experiment showed that clear photo-spectral reflectance was obtained from the underground soil. The soil reflectance was equal to that obtained by the desktop spectrophotometer in laboratory tests. Using the spectral reflectance, the soil parameters, such as soil moisture, pH, EC and SOM, were evaluated.

  2. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    ERIC Educational Resources Information Center

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  3. Age-related energy values of bakery meal for broiler chickens determined using the regression method.

    PubMed

    Stefanello, C; Vieira, S L; Xue, P; Ajuwon, K M; Adeola, O

    2016-07-01

    A study was conducted to determine the ileal digestible energy (IDE), ME, and MEn contents of bakery meal using the regression method and to evaluate whether the energy values are age-dependent in broiler chickens from zero to 21 d post hatching. Seven hundred and eighty male Ross 708 chicks were fed 3 experimental diets in which bakery meal was incorporated into a corn-soybean meal-based reference diet at zero, 100, or 200 g/kg by replacing the energy-yielding ingredients. A 3 × 3 factorial arrangement of 3 ages (1, 2, or 3 wk) and 3 dietary bakery meal levels were used. Birds were fed the same experimental diets in these 3 evaluated ages. Birds were grouped by weight into 10 replicates per treatment in a randomized complete block design. Apparent ileal digestibility and total tract retention of DM, N, and energy were calculated. Expression of mucin (MUC2), sodium-dependent phosphate transporter (NaPi-IIb), solute carrier family 7 (cationic amino acid transporter, Y(+) system, SLC7A2), glucose (GLUT2), and sodium-glucose linked transporter (SGLT1) genes were measured at each age in the jejunum by real-time PCR. Addition of bakery meal to the reference diet resulted in a linear decrease in retention of DM, N, and energy, and a quadratic reduction (P < 0.05) in N retention and ME. There was a linear increase in DM, N, and energy as birds' ages increased from 1 to 3 wk. Dietary bakery meal did not affect jejunal gene expression. Expression of genes encoding MUC2, NaPi-IIb, and SLC7A2 linearly increased (P < 0.05) with age. Regression-derived MEn of bakery meal linearly increased (P < 0.05) as the age of birds increased, with values of 2,710, 2,820, and 2,923 kcal/kg DM for 1, 2, and 3 wk, respectively. Based on these results, utilization of energy and nitrogen in the basal diet decreased when bakery meal was included and increased with age of broiler chickens. © 2016 Poultry Science Association Inc.

  4. SEMIPARAMETRIC QUANTILE REGRESSION WITH HIGH-DIMENSIONAL COVARIATES

    PubMed Central

    Zhu, Liping; Huang, Mian; Li, Runze

    2012-01-01

    This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mild conditions, we show that the simple linear quantile regression offers a consistent estimate of the index parameter vector. This is a surprising and interesting result because the single-index model is possibly misspecified under the linear quantile regression. With a root-n consistent estimate of the index vector, one may employ a local polynomial regression technique to estimate the conditional quantile function. This procedure is computationally efficient, which is very appealing in high-dimensional data analysis. We show that the resulting estimator of the quantile function performs asymptotically as efficiently as if the true value of the index vector were known. The methodologies are demonstrated through comprehensive simulation studies and an application to a real dataset. PMID:24501536

  5. Prediction of siRNA potency using sparse logistic regression.

    PubMed

    Hu, Wei; Hu, John

    2014-06-01

    RNA interference (RNAi) can modulate gene expression at post-transcriptional as well as transcriptional levels. Short interfering RNA (siRNA) serves as a trigger for the RNAi gene inhibition mechanism, and therefore is a crucial intermediate step in RNAi. There have been extensive studies to identify the sequence characteristics of potent siRNAs. One such study built a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) to measure the contribution of each siRNA sequence feature. This model is simple and interpretable, but it requires a large number of nonzero weights. We have introduced a novel technique, sparse logistic regression, to build a linear model using single-position specific nucleotide compositions which has the same prediction accuracy of the linear model based on LASSO. The weights in our new model share the same general trend as those in the previous model, but have only 25 nonzero weights out of a total 84 weights, a 54% reduction compared to the previous model. Contrary to the linear model based on LASSO, our model suggests that only a few positions are influential on the efficacy of the siRNA, which are the 5' and 3' ends and the seed region of siRNA sequences. We also employed sparse logistic regression to build a linear model using dual-position specific nucleotide compositions, a task LASSO is not able to accomplish well due to its high dimensional nature. Our results demonstrate the superiority of sparse logistic regression as a technique for both feature selection and regression over LASSO in the context of siRNA design.

  6. A comparison of two adaptive multivariate analysis methods (PLSR and ANN) for winter wheat yield forecasting using Landsat-8 OLI images

    NASA Astrophysics Data System (ADS)

    Chen, Pengfei; Jing, Qi

    2017-02-01

    An assumption that the non-linear method is more reasonable than the linear method when canopy reflectance is used to establish the yield prediction model was proposed and tested in this study. For this purpose, partial least squares regression (PLSR) and artificial neural networks (ANN), represented linear and non-linear analysis method, were applied and compared for wheat yield prediction. Multi-period Landsat-8 OLI images were collected at two different wheat growth stages, and a field campaign was conducted to obtain grain yields at selected sampling sites in 2014. The field data were divided into a calibration database and a testing database. Using calibration data, a cross-validation concept was introduced for the PLSR and ANN model construction to prevent over-fitting. All models were tested using the test data. The ANN yield-prediction model produced R2, RMSE and RMSE% values of 0.61, 979 kg ha-1, and 10.38%, respectively, in the testing phase, performing better than the PLSR yield-prediction model, which produced R2, RMSE, and RMSE% values of 0.39, 1211 kg ha-1, and 12.84%, respectively. Non-linear method was suggested as a better method for yield prediction.

  7. Predictive and mechanistic multivariate linear regression models for reaction development

    PubMed Central

    Santiago, Celine B.; Guo, Jing-Yao

    2018-01-01

    Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711

  8. Adding a Parameter Increases the Variance of an Estimated Regression Function

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2011-01-01

    The linear regression model is one of the most popular models in statistics. It is also one of the simplest models in statistics. It has received applications in almost every area of science, engineering and medicine. In this article, the authors show that adding a predictor to a linear model increases the variance of the estimated regression…

  9. Using nonlinear quantile regression to estimate the self-thinning boundary curve

    Treesearch

    Quang V. Cao; Thomas J. Dean

    2015-01-01

    The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...

  10. Simultaneous spectrophotometric determination of salbutamol and bromhexine in tablets.

    PubMed

    Habib, I H I; Hassouna, M E M; Zaki, G A

    2005-03-01

    Typical anti-mucolytic drugs called salbutamol hydrochloride and bromhexine sulfate encountered in tablets were determined simultaneously either by using linear regression at zero-crossing wavelengths of the first derivation of UV-spectra or by application of multiple linear partial least squares regression method. The results obtained by the two proposed mathematical methods were compared with those obtained by the HPLC technique.

  11. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    PubMed

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  12. Modeling the frequency of opposing left-turn conflicts at signalized intersections using generalized linear regression models.

    PubMed

    Zhang, Xin; Liu, Pan; Chen, Yuguang; Bai, Lu; Wang, Wei

    2014-01-01

    The primary objective of this study was to identify whether the frequency of traffic conflicts at signalized intersections can be modeled. The opposing left-turn conflicts were selected for the development of conflict predictive models. Using data collected at 30 approaches at 20 signalized intersections, the underlying distributions of the conflicts under different traffic conditions were examined. Different conflict-predictive models were developed to relate the frequency of opposing left-turn conflicts to various explanatory variables. The models considered include a linear regression model, a negative binomial model, and separate models developed for four traffic scenarios. The prediction performance of different models was compared. The frequency of traffic conflicts follows a negative binominal distribution. The linear regression model is not appropriate for the conflict frequency data. In addition, drivers behaved differently under different traffic conditions. Accordingly, the effects of conflicting traffic volumes on conflict frequency vary across different traffic conditions. The occurrences of traffic conflicts at signalized intersections can be modeled using generalized linear regression models. The use of conflict predictive models has potential to expand the uses of surrogate safety measures in safety estimation and evaluation.

  13. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  14. Image interpolation via regularized local linear regression.

    PubMed

    Liu, Xianming; Zhao, Debin; Xiong, Ruiqin; Ma, Siwei; Gao, Wen; Sun, Huifang

    2011-12-01

    The linear regression model is a very attractive tool to design effective image interpolation schemes. Some regression-based image interpolation algorithms have been proposed in the literature, in which the objective functions are optimized by ordinary least squares (OLS). However, it is shown that interpolation with OLS may have some undesirable properties from a robustness point of view: even small amounts of outliers can dramatically affect the estimates. To address these issues, in this paper we propose a novel image interpolation algorithm based on regularized local linear regression (RLLR). Starting with the linear regression model where we replace the OLS error norm with the moving least squares (MLS) error norm leads to a robust estimator of local image structure. To keep the solution stable and avoid overfitting, we incorporate the l(2)-norm as the estimator complexity penalty. Moreover, motivated by recent progress on manifold-based semi-supervised learning, we explicitly consider the intrinsic manifold structure by making use of both measured and unmeasured data points. Specifically, our framework incorporates the geometric structure of the marginal probability distribution induced by unmeasured samples as an additional local smoothness preserving constraint. The optimal model parameters can be obtained with a closed-form solution by solving a convex optimization problem. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance with the state-of-the-art interpolation algorithms, especially in image edge structure preservation. © 2011 IEEE

  15. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics

    PubMed Central

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications. PMID:27806075

  16. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics.

    PubMed

    Miguel-Hurtado, Oscar; Guest, Richard; Stevenage, Sarah V; Neil, Greg J; Black, Sue

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications.

  17. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon.

    PubMed

    Kumar, K Vasanth; Porkodi, K; Rocha, F

    2008-01-15

    A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.

  18. Applied Multiple Linear Regression: A General Research Strategy

    ERIC Educational Resources Information Center

    Smith, Brandon B.

    1969-01-01

    Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)

  19. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    PubMed

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Patterns of medicinal plant use: an examination of the Ecuadorian Shuar medicinal flora using contingency table and binomial analyses.

    PubMed

    Bennett, Bradley C; Husby, Chad E

    2008-03-28

    Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.

  1. [International financial cooperation in the fight against AIDS in Latin America and the Caribbean].

    PubMed

    Leyva-Flores, René; Castillo, José Gabriel; Serván-Mori, Edson; Ballesteros, Maria Luisa Gontes; Rodríguez, Juan Francisco Molina

    2014-07-01

    This study analyzed the financial contribution by the Global Fund to Fight HIV/AIDS, Tuberculosis, and Malaria and its relationship to eligibility criteria for funding in Latin America and the Caribbean in 2002-2010. Descriptive analysis (linear regression) was conducted for the Global Fund financial contributions according to eligibility criteria (income level, burden of disease, governmental co-investment). Financial contributions totaled US$ 705 million. Lower-income countries received higher shares; there was no relationship between Global Fund contributions and burden of disease. The Global Fund's international financing complements governmental expenditure, with equity policies for financial allocation.

  2. Dry-heat Resistance of Bacillus Subtilis Var. Niger Spores on Mated Surfaces

    NASA Technical Reports Server (NTRS)

    Simko, G. J.; Devlin, J. D.; Wardle, M. D.

    1971-01-01

    Bacillus subtilis var. niger spores were placed on the surfaces of test coupons manufactured from typical spacecraft materials including stainless steel, magnesium, titanium, and aluminum. These coupons were then juxtaposed at the inoculated surfaces and subjected to test pressures of 0, 1000, 5000, and 10,000 psi. Tests were conducted in ambient, nitrogen, and helium atmospheres. While under the test pressure condition, the spores were exposed to 125 C for intervals of 5, 10, 20, 50, or 80 min. Survivor data were subjected to a linear regression analysis that calculated decimal reduction times.

  3. Effects of buffer size and shape on associations between the built environment and energy balance.

    PubMed

    James, Peter; Berrigan, David; Hart, Jaime E; Hipp, J Aaron; Hoehner, Christine M; Kerr, Jacqueline; Major, Jacqueline M; Oka, Masayoshi; Laden, Francine

    2014-05-01

    Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. An Application to the Prediction of LOD Change Based on General Regression Neural Network

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.

    2011-07-01

    Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.

  5. Functional Capacity and Self-Esteem of People With Cerebral Palsy.

    PubMed

    Espín-Tello, Sandra Martina; Dickinson, Heather Olivia; Bueno-Lozano, Manuel; Jiménez-Bernadó, María Teresa; Caballero-Navarro, Ana Luisa

    We assessed whether functional capacity predicts self-esteem in people with cerebral palsy (CP). We conducted a cross-sectional observational study of 108 people with CP, ages 16-65 yr, who were residents of Spain. Self-esteem was captured using the Rosenberg Self-Esteem Scale (RSES), and functional capacity using the Barthel Index (BI). Sociodemographic characteristics were recorded. The relationship between the RSES score and the BI score was analyzed using linear regression. RSES scores increased significantly as BI scores increased (regression coefficient = 0.047, 95% confidence interval [0.017, 0.078], p = .003). People with a higher level of education, active employment, and independent living arrangements tended to have better functional capacity and higher self-esteem. Greater functional capacity predicted higher self-esteem; this effect is probably partly mediated by education, employment, and living arrangements. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  6. Gender conformity, self-objectification, and body image for sorority and nonsorority women: A closer look.

    PubMed

    Adams, David Francis; Behrens, Erica; Gann, Lianne; Schoen, Eva

    2017-01-01

    Sororities have been identified as placing young women at risk for body image concerns due to a focus on traditional gender role norms and objectification of women. This study assessed the relationship between conformity to feminine gender role norms, self-objectification, and body image surveillance among undergraduate women. In a random sample of undergraduates, the authors examined data from sorority and nonsorority women. In a random sample of undergraduate women, the authors assessed the impact of traditional feminine gender role norms on self-objectification, body image, and feedback regarding physical appearance for sorority and nonsorority undergraduate women. Three linear regressions were conducted, and only conformity to feminine gender role norms contributed significantly in each regression model. Regardless of sorority membership, conformity to feminine gender role norms was found to significantly contribute to increased body consciousness, negative body image, and feedback on physical appearance.

  7. Modeling the language learning strategies and English language proficiency of pre-university students in UMS: A case study

    NASA Astrophysics Data System (ADS)

    Kiram, J. J.; Sulaiman, J.; Swanto, S.; Din, W. A.

    2015-10-01

    This study aims to construct a mathematical model of the relationship between a student's Language Learning Strategy usage and English Language proficiency. Fifty-six pre-university students of University Malaysia Sabah participated in this study. A self-report questionnaire called the Strategy Inventory for Language Learning was administered to them to measure their language learning strategy preferences before they sat for the Malaysian University English Test (MUET), the results of which were utilised to measure their English language proficiency. We attempted the model assessment specific to Multiple Linear Regression Analysis subject to variable selection using Stepwise regression. We conducted various assessments to the model obtained, including the Global F-test, Root Mean Square Error and R-squared. The model obtained suggests that not all language learning strategies should be included in the model in an attempt to predict Language Proficiency.

  8. Association between surgeon volume and hospitalisation costs for patients with oral cancer: a nationwide population base study in Taiwan.

    PubMed

    Lee, C-C; Ho, H-C; Jack, Lee C-C; Su, Y-C; Lee, M-S; Hung, S-K; Chou, Pesus

    2010-02-01

    Oral cancer leads to a considerable use of and expenditure on health care. Wide resection of the tumour and reconstruction with a pedicle flap/free flap is widely used. This study was conducted to explore the relationship between hospitalisation costs and surgeon case volume when this operation was performed. A population-based study. This study uses data for the years 2005-2006 obtained from the National Health Insurance Research Database published in the Taiwanese National Health Research Institute. From this population-based data, the authors selected a total of 2663 oral cancer patients who underwent tumour resection and reconstruction. Case volume relationships were based on the following criteria; low-, medium-, high-, very high-volume surgeons were defined by or= 56 resections with reconstruction, respectively. Hierarchical linear regression analysis was subsequently performed to explore the relationship between surgeon case volume and the cost and length of hospitalisation. The mean hospitalisation cost among the 2663 patients was US$ 9528 (all costs are given in US dollars). After adjusting for physician, hospital, and patient characteristics in a hierarchical linear regression model, the cost per patient for low-volume surgeons was found to be US$ 741 (P = 0.012) higher than that for medium-volume surgeons, US$ 1546 (P < 0.001) higher than that for high-volume surgeons, and US$ 1820 (P < 0.001) higher than that for very-high-volume surgeons. After adjustment for physician, hospital, and patient characteristics, the hierarchical linear regression model revealed that the mean length of stay per patient for low-volume surgeons was the highest (P < 0.001). After adjustment for physician, hospital, and patient characteristics, low-volume surgeons performing wide excision with reconstructive surgery in oral cancer patients incurred significantly higher costs and longer hospital stays per patient than did other surgeons. Treatment strategies adopted by high- and very-high-volume surgeons should be analysed further and utilised more widely.

  9. Caribou distribution during the post-calving period in relation to infrastructure in the Prudhoe Bay oil field, Alaska

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Durner, George M.; Noel, Lynn E.; McDonald, Trent L.; Ballard, Warren B.

    1998-01-01

    There is concern that caribou (Rangifer tarandus) may avoid roads and facilities (i.e., infrastructure) in the Prudhoe Bay oil field (PBOF) in northern Alaska, and that this avoidance can have negative effects on the animals. We quantified the relationship between caribou distribution and PBOF infrastructure during the post-calving period (mid-June to mid-August) with aerial surveys from 1990 to 1995. We conducted four to eight surveys per year with complete coverage of the PBOF. We identified active oil field infrastructure and used a geographic information system (GIS) to construct ten 1 km wide concentric intervals surrounding the infrastructure. We tested whether caribou distribution is related to distance from infrastructure with a chi-squared habitat utilization-availability analysis and log-linear regression. We considered bulls, calves, and total caribou of all sex/age classes separately. The habitat utilization-availability analysis indicated there was no consistent trend of attraction to or avoidance of infrastructure. Caribou frequently were more abundant than expected in the intervals close to infrastructure, and this trend was more pronounced for bulls and for total caribou of all sex/age classes than for calves. Log-linear regression (with Poisson error structure) of numbers of caribou and distance from infrastructure were also done, with and without combining data into the 1 km distance intervals. The analysis without intervals revealed no relationship between caribou distribution and distance from oil field infrastructure, or between caribou distribution and Julian date, year, or distance from the Beaufort Sea coast. The log-linear regression with caribou combined into distance intervals showed the density of bulls and total caribou of all sex/age classes declined with distance from infrastructure. Our results indicate that during the post-calving period: 1) caribou distribution is largely unrelated to distance from infrastructure; 2) caribou regularly use habitats in the PBOF; 3) caribou often occur close to infrastructure; and 4) caribou do not appear to avoid oil field infrastructure.

  10. Validation and correction of rainfall data from the WegenerNet high density network in southeast Austria

    NASA Astrophysics Data System (ADS)

    O, Sungmin; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.

    2018-01-01

    Eight years of daily rainfall data from WegenerNet were analyzed by comparison with data from Austrian national weather stations. WegenerNet includes 153 ground level weather stations in an area of about 15 km × 20 km in the Feldbach region in southeast Austria. Rainfall has been measured by tipping bucket gauges at 150 stations of the network since the beginning of 2007. Since rain gauge measurements are considered close to true rainfall, there are increasing needs for WegenerNet data for the validation of rainfall data products such as remote sensing based estimates or model outputs. Serving these needs, this paper aims at providing a clearer interpretation on WegenerNet rainfall data for users in hydro-meteorological communities. Five clusters - a cluster consists of one national weather station and its four closest WegenerNet stations - allowed us close comparison of datasets between the stations. Linear regression analysis and error estimation with statistical indices were conducted to quantitatively evaluate the WegenerNet daily rainfall data. It was found that rainfall data between the stations show good linear relationships with an average correlation coefficient (r) of 0.97 , while WegenerNet sensors tend to underestimate rainfall according to the regression slope (0.87). For the five clusters investigated, the bias and relative bias were - 0.97 mm d-1 and - 11.5 % on average (except data from new sensors). The average of bias and relative bias, however, could be reduced by about 80 % through a simple linear regression-slope correction, with the assumption that the underestimation in WegenerNet data was caused by systematic errors. The results from the study have been employed to improve WegenerNet data for user applications so that a new version of the data (v5) is now available at the WegenerNet data portal (www.wegenernet.org).

  11. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  12. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation

    NASA Astrophysics Data System (ADS)

    Saylor, Rick D.; Edgerton, Eric S.; Hartsell, Benjamin E.

    A variety of linear regression techniques and simple slope estimators are evaluated for use in the elemental carbon (EC) tracer method of secondary organic carbon (OC) estimation. Linear regression techniques based on ordinary least squares are not suitable for situations where measurement uncertainties exist in both regressed variables. In the past, regression based on the method of Deming [1943. Statistical Adjustment of Data. Wiley, London] has been the preferred choice for EC tracer method parameter estimation. In agreement with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], we find that in the limited case where primary non-combustion OC (OC non-comb) is assumed to be zero, the ratio of averages (ROA) approach provides a stable and reliable estimate of the primary OC-EC ratio, (OC/EC) pri. In contrast with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], however, we find that the optimal use of Deming regression (and the more general York et al. [2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72, 367-375] regression) provides excellent results as well. For the more typical case where OC non-comb is allowed to obtain a non-zero value, we find that regression based on the method of York is the preferred choice for EC tracer method parameter estimation. In the York regression technique, detailed information on uncertainties in the measurement of OC and EC is used to improve the linear best fit to the given data. If only limited information is available on the relative uncertainties of OC and EC, then Deming regression should be used. On the other hand, use of ROA in the estimation of secondary OC, and thus the assumption of a zero OC non-comb value, generally leads to an overestimation of the contribution of secondary OC to total measured OC.

  13. Prediction of intramuscular fat content and major fatty acid groups of lamb M. longissimus lumborum using Raman spectroscopy.

    PubMed

    Fowler, Stephanie M; Ponnampalam, Eric N; Schmidt, Heinar; Wynn, Peter; Hopkins, David L

    2015-12-01

    A hand held Raman spectroscopic device was used to predict intramuscular fat (IMF) levels and the major fatty acid (FA) groups of fresh intact ovine M. longissimus lumborum (LL). IMF levels were determined using the Soxhlet method, while FA analysis was conducted using a rapid (KOH in water, methanol and sulphuric acid in water) extraction procedure. IMF levels and FA values were regressed against Raman spectra using partial least squares regression and against each other using linear regression. The results indicate that there is potential to predict PUFA (R(2)=0.93) and MUFA (R(2)=0.54) as well as SFA values that had been adjusted for IMF content (R(2)=0.54). However, this potential was significantly reduced when correlations between predicted and observed values were determined by cross validation (R(2)cv=0.21-0.00). Overall, the prediction of major FA groups using Raman spectra was more precise (relative reductions in error of 0.3-40.8%) compared to the null models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Psychological factors influence the gastroesophageal reflux disease (GERD) and their effect on quality of life among firefighters in South Korea.

    PubMed

    Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol

    2016-10-01

    The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD - negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. The results suggest that psychological and medical approaches should be combined in GERD assessment.

  15. New machine-learning algorithms for prediction of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Mandal, Indrajit; Sairam, N.

    2014-03-01

    This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.

  16. Reconstruction of missing daily streamflow data using dynamic regression models

    NASA Astrophysics Data System (ADS)

    Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault

    2015-12-01

    River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.

  17. Psychological factors influence the gastroesophageal reflux disease (GERD) and their effect on quality of life among firefighters in South Korea

    PubMed Central

    Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol

    2016-01-01

    Objectives The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Methods Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. Results GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD – negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. Conclusions The results suggest that psychological and medical approaches should be combined in GERD assessment. PMID:27691373

  18. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws

    USGS Publications Warehouse

    Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.

    2011-01-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.

  19. Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data.

    PubMed

    Yang, Xiaowei; Nie, Kun

    2008-03-15

    Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.

  20. Development of non-linear models predicting daily fine particle concentrations using aerosol optical depth retrievals and ground-based measurements at a municipality in the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Gonçalves, Karen dos Santos; Winkler, Mirko S.; Benchimol-Barbosa, Paulo Roberto; de Hoogh, Kees; Artaxo, Paulo Eduardo; de Souza Hacon, Sandra; Schindler, Christian; Künzli, Nino

    2018-07-01

    Epidemiological studies generally use particulate matter measurements with diameter less 2.5 μm (PM2.5) from monitoring networks. Satellite aerosol optical depth (AOD) data has considerable potential in predicting PM2.5 concentrations, and thus provides an alternative method for producing knowledge regarding the level of pollution and its health impact in areas where no ground PM2.5 measurements are available. This is the case in the Brazilian Amazon rainforest region where forest fires are frequent sources of high pollution. In this study, we applied a non-linear model for predicting PM2.5 concentration from AOD retrievals using interaction terms between average temperature, relative humidity, sine, cosine of date in a period of 365,25 days and the square of the lagged relative residual. Regression performance statistics were tested comparing the goodness of fit and R2 based on results from linear regression and non-linear regression for six different models. The regression results for non-linear prediction showed the best performance, explaining on average 82% of the daily PM2.5 concentrations when considering the whole period studied. In the context of Amazonia, it was the first study predicting PM2.5 concentrations using the latest high-resolution AOD products also in combination with the testing of a non-linear model performance. Our results permitted a reliable prediction considering the AOD-PM2.5 relationship and set the basis for further investigations on air pollution impacts in the complex context of Brazilian Amazon Region.

  1. Relationship between Gender Roles and Sexual Assertiveness in Married Women.

    PubMed

    Azmoude, Elham; Firoozi, Mahbobe; Sadeghi Sahebzad, Elahe; Asgharipour, Neghar

    2016-10-01

    Evidence indicates that sexual assertiveness is one of the important factors affecting sexual satisfaction. According to some studies, traditional gender norms conflict with women's capability in expressing sexual desires. This study examined the relationship between gender roles and sexual assertiveness in married women in Mashhad, Iran. This cross-sectional study was conducted on 120 women who referred to Mashhad health centers through convenient sampling in 2014-15. Data were collected using Bem Sex Role Inventory (BSRI) and Hulbert index of sexual assertiveness. Data were analyzed using SPSS 16 by Pearson and Spearman's correlation tests and linear Regression Analysis. The mean scores of sexual assertiveness was 54.93±13.20. According to the findings, there was non-significant correlation between Femininity and masculinity score with sexual assertiveness (P=0.069 and P=0.080 respectively). Linear regression analysis indicated that among the predictor variables, only Sexual function satisfaction was identified as the sexual assertiveness summary predictor variables (P=0.001). Based on the results, sexual assertiveness in married women does not comply with gender role, but it is related to Sexual function satisfaction. So, counseling psychologists need to consider this variable when designing intervention programs for modifying sexual assertiveness and find other variables that affect sexual assertiveness.

  2. Impact of Trichiasis Surgery on Physical Functioning in Ethiopian Patients: STAR Trial

    PubMed Central

    Wolle, Meraf A.; Cassard, Sandra D.; Gower, Emily W.; Munoz, Beatriz E.; Wang, Jiangxia; Alemayehu, Wondu; West, Sheila K.

    2010-01-01

    Purpose To evaluate the physical functioning of Ethiopian trichiasis surgery patients before and six months after surgery. Design Nested Cohort Study Methods This study was nested within the Surgery for Trichiasis, Antibiotics to Prevent Recurrence (STAR) clinical trial conducted in Ethiopia. Demographic information, ocular examinations, and physical functioning assessments were collected before and 6 months after surgery. A single score for patients’ physical functioning was constructed using Rasch analysis. A multivariate linear regression model was used to determine if change in physical functioning was associated with change in visual acuity. Results Of the 438 participants, 411 (93.8%) had both baseline and follow-up questionnaires. Physical functioning scores at baseline ranged from −6.32 (great difficulty) to +6.01 (no difficulty). The percent of participants reporting no difficulty in physical functioning increased by 32.6%; the proportion of participants in the mild/no visual impairment category increased by 8.6%. A multivariate linear regression model showed that for every line of vision gained, physical functioning improves significantly (0.09 units; 95% CI: 0.02–0.16). Conclusions Surgery to correct trichiasis appears to improve patients’ physical functioning as measured at 6 months. More effort in promoting trichiasis surgery is essential, not only to prevent corneal blindness, but also to enable improved functioning in daily life. PMID:21333268

  3. The association between meteorological factors and road traffic injuries: a case analysis from Shantou city, China

    PubMed Central

    Gao, Jinghong; Chen, Xiaojun; Woodward, Alistair; Liu, Xiaobo; Wu, Haixia; Lu, Yaogui; Li, Liping; Liu, Qiyong

    2016-01-01

    Few studies examined the associations of meteorological factors with road traffic injuries (RTIs). The purpose of the present study was to quantify the contributions of meteorological factors to RTI cases treated at a tertiary level hospital in Shantou city, China. A time-series diagram was employed to illustrate the time trends and seasonal variation of RTIs, and correlation analysis and multiple linear regression analysis were conducted to investigate the relationships between meteorological parameters and RTIs. RTIs followed a seasonal pattern as more cases occurred during summer and winter months. RTIs are positively correlated with temperature and sunshine duration, while negatively associated with wind speed. Temperature, sunshine hour and wind speed were included in the final linear model with regression coefficients of 0.65 (t = 2.36, P = 0.019), 2.23 (t = 2.72, P = 0.007) and −27.66 (t = −5.67, P < 0.001), respectively, accounting for 19.93% of the total variation of RTI cases. The findings can help us better understand the associations between meteorological factors and RTIs, and with potential contributions to the development and implementation of regional level evidence-based weather-responsive traffic management system in the future. PMID:27853316

  4. Personal Well-being and Stress Symptoms in Wives of Iranian Martyrs, Prisoners of wars and Disabled Veterans

    PubMed Central

    Sharif, Nasim

    2010-01-01

    Objective This study was conducted to compare the personal well-being among the wives of Iranian veterans living in the city of Qom. Method A sample of 300 was randomly selected from a database containing the addresses of veteran's families at Iran's Veterans Foundation in Qom (Bonyad-e-Shahid va Omoore Isargaran). The veterans' wives were divided into three groups: wives of martyrs (killed veterans), wives of prisoners of war, and wives of disabled veterans. The Persian translation of Personal Well-being Index and Stress Symptoms Checklist (SSC) were administered for data collection. Four women chose not to respond to Personal Well-being Index. Data were then analyzed using linear multivariate regression (stepwise method), analysis of variance, and by computing the correlation between variables. Results Results showed a negative correlation between well-being and stress symptoms. However, each group demonstrated different levels of stress symptoms. Furthermore, multivariate linear regression in the 3 groups showed that overall satisfaction of life and personal well-being (total score and its domains) could be predicted by different symptoms. Conclusion Each group experienced different challenges and thus different stress symptoms. Therefore, although they all need help, each group needs to be helped in a different way. PMID:22952487

  5. Decisional balance and self-efficacy of physical activity among the elderly in Rasht in 2013 based on the transtheoretical model

    PubMed Central

    Abbaspour, Seddigheh; Farmanbar, Rabiollah; Njafi, Fateme; Ghiasvand, Arezoo Mohamadkhani; Dehghankar, Leila

    2017-01-01

    Background Regular physical activity has been considered as health promotion, and identifying different effective psycho-social variables on physical has proven to be essential. Objective To identify the relationship between decisional balance and self-efficacy in physical activities using the transtheoretical model in the members of a retirement center in Rasht, Guillen. Methods A descriptive cross-sectional study was conducted in 2013 by using convenient sampling on 262 elderly people who are the members of retirement centers in Rasht. Data were collected using Stages of change, Decisional balance, Self-efficacy and Physical Activity Scale for the Elderly (PASE). Data was analyzed using SPSS-16 software, descriptive and analytic statistic (Pearson correlation, Spearman, ANOVA, HSD Tukey, linear and ordinal regression). Results The majority of participants were in maintenance stage. Mean and standard deviation physical activity for the elderly was 119.35±51.50. Stages of change and physical activities were significantly associated with decisional balance and self-efficacy (p<0.0001); however, cons had a significant and reverse association. According to linear and ordinal regression the only predicator variable of physical activity behavior was self-efficacy. Conclusion By increase in pros and self-efficacy on doing physical activity, it can be benefited in designing appropriate intervention programs. PMID:28713520

  6. Relationship of breastfeeding self-efficacy with quality of life in Iranian breastfeeding mothers.

    PubMed

    Mirghafourvand, Mojgan; Kamalifard, Mahin; Ranjbar, Fatemeh; Gordani, Nasrin

    2017-07-20

    Due to the importance of breastfeeding, we decided to conduct a study to examine the relationship between breastfeeding self-efficacy and quality of life. This study was a cross-sectional study, which was carried out on 547 breastfeeding mothers that had 2-6 months old infants. The participants were selected randomly, and the sociodemographic characteristics questionnaire, Dennis' breastfeeding self-efficacy scale, and WHO's Quality of Life (WHOQOL) questionnaire were completed through interview. The multivariate linear regression model was used for data analysis. The means (standard deviations) of breastfeeding self-efficacy score and quality of life score were 134.5 (13.3) and 67.7 (13.7), respectively. Quality of life and all of its dimensions were directly and significantly related to breastfeeding self-efficacy. According to the results of multivariate linear regression analysis, there was a relationship between breastfeeding self-efficacy and the following variables: environmental dimension of quality of life, education, spouse's age, spouse's job, average duration of previous breastfeeding period and receiving breastfeeding training. Findings showed that there is direct and significant relationship between breastfeeding self-efficacy and quality of life. Moreover, it seems that the development of appropriate training programs is necessary for improving the quality of life of pregnant women, as it consequently enhances breastfeeding self-efficacy.

  7. Spatial and temporal analysis center of pressure displacement during adolescence: Clinical implications of developmental changes.

    PubMed

    Quatman-Yates, Catherine; Bonnette, Scott; Gupta, Resmi; Hugentobler, Jason A; Wade, Shari L; Glauser, Tracy A; Ittenbach, Richard F; Paterno, Mark V; Riley, Michael A

    2018-04-01

    This study aimed to provide insight into the development of postural control abilities in youth. A total of 276 typically developing adolescents (155 males, 121 females) with a mean age of 13.23 years (range of 7.11-18.80) were recruited for participation. Subjects performed two-minute quiet standing trials in bipedal stance on a force plate. Center of pressure (COP) trajectories were quantified using Sample Entropy (SampEn) in the anterior-posterior direction (SampEn-AP), SampEn in the medial-lateral direction (SampEn-ML), and Path Length (PL) measures. Three separate linear regression analyses were conducted to predict the relationship between age and each of the response variables after adjusting for individuals' physical characteristics. Linear regression models showed an inverse relationship between age and entropy measures after adjusting for body mass index. Results indicated that chronological age was predictive of entropy and path length patterns. Specifically, older adolescents exhibited center of pressure displacement (smaller path length) and less complex, more regular center of pressure displacement patterns (lower SampEn-AP and SampEn-ML values) compared to the younger children. These findings support prior studies suggesting that developmental changes in postural control abilities may continue throughout adolescence and into adulthood. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Analyses of Field Test Data at the Atucha-1 Spent Fuel Pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, S.

    A field test was conducted at the Atucha-1 spent nuclear fuel pools to validate a software package for gross defect detection that is used in conjunction with the inspection tool, Spent Fuel Neutron Counter (SFNC). A set of measurements was taken with the SFNC and the software predictions were compared with these data and analyzed. The data spanned a wide range of cooling times and a set of burnup levels leading to count rates from the several hundreds to around twenty per second. The current calibration in the software using linear fitting required the use of multiple calibration factors tomore » cover the entire range of count rates recorded. The solution to this was to use power regression data fitting to normalize the predicted response and derive one calibration factor that can be applied to the entire set of data. The resulting comparisons between the predicted and measured responses were generally good and provided a quantitative method of detecting missing fuel in virtually all situations. Since the current version of the software uses the linear calibration method, it would need to be updated with the new power regression method to make it more user-friendly for real time verification and fieldable for the range of responses that will be encountered.« less

  9. Virginia flow-ecology modeling results—An initial assessment of flow reduction effects on aquatic biota

    USGS Publications Warehouse

    Rapp, Jennifer L.; Reilly, Pamela A.

    2017-11-14

    BackgroundThe U.S. Geological Survey (USGS), in cooperation with the Virginia Department of Environmental Quality (DEQ), reviewed a previously compiled set of linear regression models to assess their utility in defining the response of the aquatic biological community to streamflow depletion.As part of the 2012 Virginia Healthy Watersheds Initiative (HWI) study conducted by Tetra Tech, Inc., for the U.S. Environmental Protection Agency (EPA) and Virginia DEQ, a database with computed values of 72 hydrologic metrics, or indicators of hydrologic alteration (IHA), 37 fish metrics, and 64 benthic invertebrate metrics was compiled and quality assured. Hydrologic alteration was represented by simulation of streamflow record for a pre-water-withdrawal condition (baseline) without dams or developed land, compared to the simulated recent-flow condition (2008 withdrawal simulation) including dams and altered landscape to calculate a percent alteration of flow. Biological samples representing the existing populations represent a range of alteration in the biological community today.For this study, all 72 IHA metrics, which included more than 7,272 linear regression models, were considered. This extensive dataset provided the opportunity for hypothesis testing and prioritization of flow-ecology relations that have the potential to explain the effect(s) of hydrologic alteration on biological metrics in Virginia streams.

  10. Relationship between Gender Roles and Sexual Assertiveness in Married Women

    PubMed Central

    Azmoude, Elham; Firoozi, Mahbobe; Sadeghi Sahebzad, Elahe; Asgharipour, Neghar

    2016-01-01

    ABSTRACT Background: Evidence indicates that sexual assertiveness is one of the important factors affecting sexual satisfaction. According to some studies, traditional gender norms conflict with women’s capability in expressing sexual desires. This study examined the relationship between gender roles and sexual assertiveness in married women in Mashhad, Iran. Methods: This cross-sectional study was conducted on 120 women who referred to Mashhad health centers through convenient sampling in 2014-15. Data were collected using Bem Sex Role Inventory (BSRI) and Hulbert index of sexual assertiveness. Data were analyzed using SPSS 16 by Pearson and Spearman’s correlation tests and linear Regression Analysis. Results: The mean scores of sexual assertiveness was 54.93±13.20. According to the findings, there was non-significant correlation between Femininity and masculinity score with sexual assertiveness (P=0.069 and P=0.080 respectively). Linear regression analysis indicated that among the predictor variables, only Sexual function satisfaction was identified as the sexual assertiveness summary predictor variables (P=0.001). Conclusion: Based on the results, sexual assertiveness in married women does not comply with gender role, but it is related to Sexual function satisfaction. So, counseling psychologists need to consider this variable when designing intervention programs for modifying sexual assertiveness and find other variables that affect sexual assertiveness. PMID:27713899

  11. Stigma towards mental illness among medical and nursing students in Singapore: a cross-sectional study

    PubMed Central

    Chang, Sherilyn; Ong, Hui Lin; Seow, Esmond; Chua, Boon Yiang; Abdin, Edimansyah; Samari, Ellaisha; Chong, Siow Ann; Subramaniam, Mythily

    2017-01-01

    Objectives To assess stigma towards people with mental illness among Singapore medical and nursing students using the Opening Minds Stigma Scale for Health Care Providers (OMS-HC), and to examine the relationship of students’ stigmatising attitudes with sociodemographic and education factors. Design and setting Cross-sectional study conducted in Singapore Participants The study was conducted among 1002 healthcare (502 medical and 500 nursing) students during April to September 2016. Students had to be Singapore citizens or permanent residents and enrolled in public educational institutions to be included in the study. The mean (SD) age of the participants was 21.3 (3.3) years, with the majority being females (71.1%). 75.2% of the participants were Chinese, 14.1% were Malays, and 10.7% were either Indians or of other ethnicity. Methods Factor analysis was conducted to validate the OMS-HC scale in the study sample and to examine its factor structure. Descriptive statistics and multivariate linear regression were used to examine sociodemographic and education correlates. Results Factor analysis revealed a three-factor structure with 14 items. The factors were labelled as attitudes towards help-seeking and people with mental illness, social distance and disclosure. Multivariable linear regression analysis showed that medical students were found to be associated with lower total OMS-HC scores (P<0.05), less negative attitudes (P<0.001) and greater disclosure (P<0.05) than nursing students. Students who had a monthly household income of below S$4000 had more unfavourable attitudes than those with an income of SGD$10 000 and above (P<0.05). Having attended clinical placement was associated with more negative attitudes (P<0.05) among the students. Conclusion Healthcare students generally possessed positive attitudes towards help-seeking and persons with mental illness, though they preferred not to disclose their own mental health condition. Academic curriculum may need to enhance the component of mental health training, particularly on reducing stigma in certain groups of students. PMID:29208617

  12. Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure.

    PubMed

    Senn, Stephen; Graf, Erika; Caputo, Angelika

    2007-12-30

    Stratifying and matching by the propensity score are increasingly popular approaches to deal with confounding in medical studies investigating effects of a treatment or exposure. A more traditional alternative technique is the direct adjustment for confounding in regression models. This paper discusses fundamental differences between the two approaches, with a focus on linear regression and propensity score stratification, and identifies points to be considered for an adequate comparison. The treatment estimators are examined for unbiasedness and efficiency. This is illustrated in an application to real data and supplemented by an investigation on properties of the estimators for a range of underlying linear models. We demonstrate that in specific circumstances the propensity score estimator is identical to the effect estimated from a full linear model, even if it is built on coarser covariate strata than the linear model. As a consequence the coarsening property of the propensity score-adjustment for a one-dimensional confounder instead of a high-dimensional covariate-may be viewed as a way to implement a pre-specified, richly parametrized linear model. We conclude that the propensity score estimator inherits the potential for overfitting and that care should be taken to restrict covariates to those relevant for outcome. Copyright (c) 2007 John Wiley & Sons, Ltd.

  13. Study on Inland River Vessel Fuel-oil Spillage and Emergency Response Strategies

    NASA Astrophysics Data System (ADS)

    Chen, R. C.; Shi, N.; Wang, K. S.

    2017-12-01

    by making statistics and conducting regression analysis on the carrying volume of vessels navigating on inland rivers and coastal waters, the linear relation between the oil volume carried by a vessel and its gross tonnage (GT) is found. Based on the linear relation, the possible spillage of a 10,000 GT vessel is estimated by using the empirical formula method which is commonly used to measure oil spillage from any vessel spill incident. In the waters downstream of Yangtze River, the trajectory and fates model is used to predict the drifting paths and fates of the spilled oil under three weather scenarios, and then, the emergency response strategies for vessel oil spills are put forth. The results of the research can be used to develop an empirical method to quickly estimate oil spillage and provide recommendations on oil spill emergency response strategies for decision-makers.

  14. Non-Linear Approach in Kinesiology Should Be Preferred to the Linear--A Case of Basketball.

    PubMed

    Trninić, Marko; Jeličić, Mario; Papić, Vladan

    2015-07-01

    In kinesiology, medicine, biology and psychology, in which research focus is on dynamical self-organized systems, complex connections exist between variables. Non-linear nature of complex systems has been discussed and explained by the example of non-linear anthropometric predictors of performance in basketball. Previous studies interpreted relations between anthropometric features and measures of effectiveness in basketball by (a) using linear correlation models, and by (b) including all basketball athletes in the same sample of participants regardless of their playing position. In this paper the significance and character of linear and non-linear relations between simple anthropometric predictors (AP) and performance criteria consisting of situation-related measures of effectiveness (SE) in basketball were determined and evaluated. The sample of participants consisted of top-level junior basketball players divided in three groups according to their playing time (8 minutes and more per game) and playing position: guards (N = 42), forwards (N = 26) and centers (N = 40). Linear (general model) and non-linear (general model) regression models were calculated simultaneously and separately for each group. The conclusion is viable: non-linear regressions are frequently superior to linear correlations when interpreting actual association logic among research variables.

  15. Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression

    PubMed Central

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A.

    2013-01-01

    Background Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. Objective We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Design Using cross-sectional data for children aged 0–24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. Results At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Conclusions Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role. PMID:24223839

  16. Understanding child stunting in India: a comprehensive analysis of socio-economic, nutritional and environmental determinants using additive quantile regression.

    PubMed

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A

    2013-01-01

    Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Using cross-sectional data for children aged 0-24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role.

  17. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.

    PubMed

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-10-01

    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  18. An hourly PM10 diagnosis model for the Bilbao metropolitan area using a linear regression methodology.

    PubMed

    González-Aparicio, I; Hidalgo, J; Baklanov, A; Padró, A; Santa-Coloma, O

    2013-07-01

    There is extensive evidence of the negative impacts on health linked to the rise of the regional background of particulate matter (PM) 10 levels. These levels are often increased over urban areas becoming one of the main air pollution concerns. This is the case on the Bilbao metropolitan area, Spain. This study describes a data-driven model to diagnose PM10 levels in Bilbao at hourly intervals. The model is built with a training period of 7-year historical data covering different urban environments (inland, city centre and coastal sites). The explanatory variables are quantitative-log [NO2], temperature, short-wave incoming radiation, wind speed and direction, specific humidity, hour and vehicle intensity-and qualitative-working days/weekends, season (winter/summer), the hour (from 00 to 23 UTC) and precipitation/no precipitation. Three different linear regression models are compared: simple linear regression; linear regression with interaction terms (INT); and linear regression with interaction terms following the Sawa's Bayesian Information Criteria (INT-BIC). Each type of model is calculated selecting two different periods: the training (it consists of 6 years) and the testing dataset (it consists of 1 year). The results of each type of model show that the INT-BIC-based model (R(2) = 0.42) is the best. Results were R of 0.65, 0.63 and 0.60 for the city centre, inland and coastal sites, respectively, a level of confidence similar to the state-of-the art methodology. The related error calculated for longer time intervals (monthly or seasonal means) diminished significantly (R of 0.75-0.80 for monthly means and R of 0.80 to 0.98 at seasonally means) with respect to shorter periods.

  19. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR).

    PubMed

    O'Leary, Neil; Chauhan, Balwantray C; Artes, Paul H

    2012-10-01

    To establish a method for estimating the overall statistical significance of visual field deterioration from an individual patient's data, and to compare its performance to pointwise linear regression. The Truncated Product Method was used to calculate a statistic S that combines evidence of deterioration from individual test locations in the visual field. The overall statistical significance (P value) of visual field deterioration was inferred by comparing S with its permutation distribution, derived from repeated reordering of the visual field series. Permutation of pointwise linear regression (PoPLR) and pointwise linear regression were evaluated in data from patients with glaucoma (944 eyes, median mean deviation -2.9 dB, interquartile range: -6.3, -1.2 dB) followed for more than 4 years (median 10 examinations over 8 years). False-positive rates were estimated from randomly reordered series of this dataset, and hit rates (proportion of eyes with significant deterioration) were estimated from the original series. The false-positive rates of PoPLR were indistinguishable from the corresponding nominal significance levels and were independent of baseline visual field damage and length of follow-up. At P < 0.05, the hit rates of PoPLR were 12, 29, and 42%, at the fifth, eighth, and final examinations, respectively, and at matching specificities they were consistently higher than those of pointwise linear regression. In contrast to population-based progression analyses, PoPLR provides a continuous estimate of statistical significance for visual field deterioration individualized to a particular patient's data. This allows close control over specificity, essential for monitoring patients in clinical practice and in clinical trials.

  20. A Model Comparison for Count Data with a Positively Skewed Distribution with an Application to the Number of University Mathematics Courses Completed

    ERIC Educational Resources Information Center

    Liou, Pey-Yan

    2009-01-01

    The current study examines three regression models: OLS (ordinary least square) linear regression, Poisson regression, and negative binomial regression for analyzing count data. Simulation results show that the OLS regression model performed better than the others, since it did not produce more false statistically significant relationships than…

  1. Use of AMMI and linear regression models to analyze genotype-environment interaction in durum wheat.

    PubMed

    Nachit, M M; Nachit, G; Ketata, H; Gauch, H G; Zobel, R W

    1992-03-01

    The joint durum wheat (Triticum turgidum L var 'durum') breeding program of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) for the Mediterranean region employs extensive multilocation testing. Multilocation testing produces significant genotype-environment (GE) interaction that reduces the accuracy for estimating yield and selecting appropriate germ plasm. The sum of squares (SS) of GE interaction was partitioned by linear regression techniques into joint, genotypic, and environmental regressions, and by Additive Main effects and the Multiplicative Interactions (AMMI) model into five significant Interaction Principal Component Axes (IPCA). The AMMI model was more effective in partitioning the interaction SS than the linear regression technique. The SS contained in the AMMI model was 6 times higher than the SS for all three regressions. Postdictive assessment recommended the use of the first five IPCA axes, while predictive assessment AMMI1 (main effects plus IPCA1). After elimination of random variation, AMMI1 estimates for genotypic yields within sites were more precise than unadjusted means. This increased precision was equivalent to increasing the number of replications by a factor of 3.7.

  2. FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors.

    PubMed

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2011-03-01

    We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  3. Linear regression based on Minimum Covariance Determinant (MCD) and TELBS methods on the productivity of phytoplankton

    NASA Astrophysics Data System (ADS)

    Gusriani, N.; Firdaniza

    2018-03-01

    The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.

  4. Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars.

    PubMed

    Howard, Jeremy T; Jiao, Shihui; Tiezzi, Francesco; Huang, Yijian; Gray, Kent A; Maltecca, Christian

    2015-05-30

    Feed intake and growth are economically important traits in swine production. Previous genome wide association studies (GWAS) have utilized average daily gain or daily feed intake to identify regions that impact growth and feed intake across time. The use of longitudinal models in GWAS studies, such as random regression, allows for SNPs having a heterogeneous effect across the trajectory to be characterized. The objective of this study is therefore to conduct a single step GWAS (ssGWAS) on the animal polynomial coefficients for feed intake and growth. Corrected daily feed intake (DFI Adj) and average daily weight measurements (DBW Avg) on 8981 (n=525,240 observations) and 5643 (n=283,607 observations) animals were utilized in a random regression model using Legendre polynomials (order=2) and a relationship matrix that included genotyped and un-genotyped animals. A ssGWAS was conducted on the animal polynomials coefficients (intercept, linear and quadratic) for animals with genotypes (DFIAdj: n=855; DBWAvg: n=590). Regions were characterized based on the variance of 10-SNP sliding windows GEBV (WGEBV). A bootstrap analysis (n=1000) was conducted to declare significance. Heritability estimates for the traits trajectory ranged from 0.34-0.52 to 0.07-0.23 for DBWAvg and DFIAdj, respectively. Genetic correlations across age classes were large and positive for both DBWAvg and DFIAdj, albeit age classes at the beginning had a small to moderate genetic correlation with age classes towards the end of the trajectory for both traits. The WGEBV variance explained by significant regions (P<0.001) for each polynomial coefficient ranged from 0.2-0.9 to 0.3-1.01% for DBWAvg and DFIAdj, respectively. The WGEBV variance explained by significant regions for the trajectory was 1.54 and 1.95% for DBWAvg and DFIAdj. Both traits identified candidate genes with functions related to metabolite and energy homeostasis, glucose and insulin signaling and behavior. We have identified regions of the genome that have an impact on the intercept, linear and quadratic terms for DBWAvg and DFIAdj. These results provide preliminary evidence that individual growth and feed intake trajectories are impacted by different regions of the genome at different times.

  5. The Association Between Internet Use and Ambulatory Care-Seeking Behaviors in Taiwan: A Cross-Sectional Study

    PubMed Central

    Chen, Tsung-Fu; Liang, Jyh-Chong; Lin, Tzu-Bin; Tsai, Chin-Chung

    2016-01-01

    Background Compared with the traditional ways of gaining health-related information from newspapers, magazines, radio, and television, the Internet is inexpensive, accessible, and conveys diverse opinions. Several studies on how increasing Internet use affected outpatient clinic visits were inconclusive. Objective The objective of this study was to examine the role of Internet use on ambulatory care-seeking behaviors as indicated by the number of outpatient clinic visits after adjusting for confounding variables. Methods We conducted this study using a sample randomly selected from the general population in Taiwan. To handle the missing data, we built a multivariate logistic regression model for propensity score matching using age and sex as the independent variables. The questionnaires with no missing data were then included in a multivariate linear regression model for examining the association between Internet use and outpatient clinic visits. Results We included a sample of 293 participants who answered the questionnaire with no missing data in the multivariate linear regression model. We found that Internet use was significantly associated with more outpatient clinic visits (P=.04). The participants with chronic diseases tended to make more outpatient clinic visits (P<.01). Conclusions The inconsistent quality of health-related information obtained from the Internet may be associated with patients’ increasing need for interpreting and discussing the information with health care professionals, thus resulting in an increasing number of outpatient clinic visits. In addition, the media literacy of Web-based health-related information seekers may also affect their ambulatory care-seeking behaviors, such as outpatient clinic visits. PMID:27927606

  6. Physical Function in Older Men With Hyperkyphosis

    PubMed Central

    Harrison, Stephanie L.; Fink, Howard A.; Marshall, Lynn M.; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M.; Kado, Deborah M.

    2015-01-01

    Background. Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. Methods. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71–98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. Results. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5–1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Conclusions. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. PMID:25431353

  7. Extension of the Peters–Belson method to estimate health disparities among multiple groups using logistic regression with survey data

    PubMed Central

    Li, Y.; Graubard, B. I.; Huang, P.; Gastwirth, J. L.

    2015-01-01

    Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease. An observed difference in the mean outcome between an advantaged group (AG) and disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters–Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. We focus on applying the PB method to estimate the disparity based on binary/multinomial/proportional odds logistic regression models using data collected from complex surveys with more than one DG. Estimators of the unexplained disparity, an analytic variance–covariance estimator that is based on the Taylor linearization variance–covariance estimation method, as well as a Wald test for testing a joint null hypothesis of zero for unexplained disparities between two or more minority groups and a majority group, are provided. Simulation studies with data selected from simple random sampling and cluster sampling, as well as the analyses of disparity in body mass index in the National Health and Nutrition Examination Survey 1999–2004, are conducted. Empirical results indicate that the Taylor linearization variance–covariance estimation is accurate and that the proposed Wald test maintains the nominal level. PMID:25382235

  8. Genetic Variants in the Hedgehog Interacting Protein Gene Are Associated with the FEV1/FVC Ratio in Southern Han Chinese Subjects with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Zhang, Zili; Wang, Jian; Zheng, Zeguang; Chen, Xindong; Zeng, Xiansheng; Zhang, Yi; Li, Defu; Shu, Jiaze; Yang, Kai; Lai, Ning; Dong, Lian

    2017-01-01

    Background Convincing evidences have demonstrated the associations between HHIP and FAM13a polymorphisms and COPD in non-Asian populations. Here genetic variants in HHIP and FAM13a were investigated in Southern Han Chinese COPD. Methods A case-control study was conducted, including 989 cases and 999 controls. The associations between SNPs genotypes and COPD were performed by a logistic regression model; for SNPs and COPD-related phenotypes such as lung function, COPD severity, pack-year of smoking, and smoking status, a linear regression model was employed. Effects of risk alleles, genotypes, and haplotypes of the 3 significant SNPs in the HHIP gene on FEV1/FVC were also assessed in a linear regression model in COPD. Results The mean FEV1/FVC% value was 46.8 in combined COPD population. None of the 8 selected SNPs apparently related to COPD susceptibility. However, three SNPs (rs12509311, rs13118928, and rs182859) in HHIP were associated significantly with the FEV1/FVC% (Pmax = 4.1 × 10−4) in COPD adjusting for gender, age, and smoking pack-years. Moreover, statistical significance between risk alleles and the FEV1/FVC% (P = 2.3 × 10−4), risk genotypes, and the FEV1/FVC% (P = 3.5 × 10−4) was also observed in COPD. Conclusions Genetic variants in HHIP were related with FEV1/FVC in COPD. Significant relationships between risk alleles and risk genotypes and FEV1/FVC in COPD were also identified. PMID:28929109

  9. A multiple linear regression analysis of factors affecting the simulated Basic Life Support (BLS) performance with Automated External Defibrillator (AED) in Flemish lifeguards.

    PubMed

    Iserbyt, Peter; Schouppe, Gilles; Charlier, Nathalie

    2015-04-01

    Research investigating lifeguards' performance of Basic Life Support (BLS) with Automated External Defibrillator (AED) is limited. Assessing simulated BLS/AED performance in Flemish lifeguards and identifying factors affecting this performance. Six hundred and sixteen (217 female and 399 male) certified Flemish lifeguards (aged 16-71 years) performed BLS with an AED on a Laerdal ResusciAnne manikin simulating an adult victim of drowning. Stepwise multiple linear regression analysis was conducted with BLS/AED performance as outcome variable and demographic data as explanatory variables. Mean BLS/AED performance for all lifeguards was 66.5%. Compression rate and depth adhered closely to ERC 2010 guidelines. Ventilation volume and flow rate exceeded the guidelines. A significant regression model, F(6, 415)=25.61, p<.001, ES=.38, explained 27% of the variance in BLS performance (R2=.27). Significant predictors were age (beta=-.31, p<.001), years of certification (beta=-.41, p<.001), time on duty per year (beta=-.25, p<.001), practising BLS skills (beta=.11, p=.011), and being a professional lifeguard (beta=-.13, p=.029). 71% of lifeguards reported not practising BLS/AED. Being young, recently certified, few days of employment per year, practising BLS skills and not being a professional lifeguard are factors associated with higher BLS/AED performance. Measures should be taken to prevent BLS/AED performances from decaying with age and longer certification. Refresher courses could include a formal skills test and lifeguards should be encouraged to practise their BLS/AED skills. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. E-cigarette Dual Users, Exclusive Users and Perceptions of Tobacco Products.

    PubMed

    Cooper, Maria; Case, Kathleen R; Loukas, Alexandra; Creamer, Melisa R; Perry, Cheryl L

    2016-01-01

    We examined differences in the characteristics of youth non-users, cigarette-only, e-cigarette-only, and dual e-cigarette and cigarette users. Using weighted, representative data, logistic regression analyses were conducted to examine differences in demographic characteristics and tobacco use behaviors across tobacco usage groups. Multiple linear regression analyses were conducted to examine differences in harm perceptions of various tobacco products and perceived peer use of e-cigarettes by tobacco usage group. Compared to non-users, dual users were more likely to be white, male, and high school students. Dual users had significantly higher prevalence of current use of all products (except hookah) than e-cigarette-only users, and higher prevalence of current use of snus and hookah than the cigarette-only group. Dual users had significantly lower harm perceptions for all tobacco products except for e-cigarettes and hookah as compared to e-cigarette-only users. Dual users reported higher peer use of cigarettes as compared to both exclusive user groups. Findings highlight dual users' higher prevalence of use of most other tobacco products, their lower harm perceptions of most tobacco products compared to e-cigarette-only users, and their higher perceived peer use of cigarettes compared to exclusive users.

  11. Orthogonal Projection in Teaching Regression and Financial Mathematics

    ERIC Educational Resources Information Center

    Kachapova, Farida; Kachapov, Ilias

    2010-01-01

    Two improvements in teaching linear regression are suggested. The first is to include the population regression model at the beginning of the topic. The second is to use a geometric approach: to interpret the regression estimate as an orthogonal projection and the estimation error as the distance (which is minimized by the projection). Linear…

  12. Logistic models--an odd(s) kind of regression.

    PubMed

    Jupiter, Daniel C

    2013-01-01

    The logistic regression model bears some similarity to the multivariable linear regression with which we are familiar. However, the differences are great enough to warrant a discussion of the need for and interpretation of logistic regression. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Predicting adult pulmonary ventilation volume and wearing complianceby on-board accelerometry during personal level exposure assessments

    NASA Astrophysics Data System (ADS)

    Rodes, C. E.; Chillrud, S. N.; Haskell, W. L.; Intille, S. S.; Albinali, F.; Rosenberger, M. E.

    2012-09-01

    BackgroundMetabolic functions typically increase with human activity, but optimal methods to characterize activity levels for real-time predictions of ventilation volume (l min-1) during exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated into personal level monitors to define periods of acceptable wearing compliance, and allow the exposures (μg m-3) to be extended to potential doses in μg min-1 kg-1 of body weight? ObjectivesIn a pilot effort, we tested: 1) whether appropriately-processed accelerometer data could be utilized to predict compliance and in linear regressions to predict ventilation volumes in real-time as an on-board component of personal level exposure sensor systems, and 2) whether locating the exposure monitors on the chest in the breathing zone, provided comparable accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.). MethodsPrototype exposure monitors from RTI International and Columbia University were worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all <10 METS), spanning common recumbent, sedentary, and ambulatory activity categories. Referee Wocket accelerometers that were placed at various body locations allowed comparison with the chest-located exposure sensor accelerometers. An Oxycon Mobile mask was used to measure oral-nasal ventilation volumes in-situ. For the subset of participants with complete data (n = 22), linear regressions were constructed (processed accelerometric variable versus ventilation rate) for each participant and exposure monitor type, and Pearson correlations computed to compare across scenarios. ResultsTriaxial accelerometer data were demonstrated to be adequately sensitive indicators for predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77 to 0.99) were observed for all participants for both exposure sensor accelerometer variables against ventilation volume for recumbent, sedentary, and ambulatory activities with MET values ˜<6. The RTI monitors mean R value of 0.91 was slightly higher than the Columbia monitors mean of 0.86 due to utilizing a 20 Hz data rate instead of a slower 1 Hz rate. A nominal mean regression slope was computed for the RTI system across participants and showed a modest RSD of +/-36.6%. Comparison of the correlation values of the exposure monitors with the Wocket accelerometers at various body locations showed statistically identical regressions for all sensors at alternate hip, ankle, upper arm, thigh, and pocket locations, but not for the Wocket accelerometer located at the dominant side wrist location (R = 0.57; p = 0.016). ConclusionsEven with a modest number of adult volunteers, the consistency and linearity of regression slopes for all subjects were very good with excellent within-person Pearson correlations for the accelerometer versus ventilation volume data. Computing accelerometric standard deviations allowed good sensitivity for compliance assessments even for sedentary activities. These pilot findings supported the hypothesis that a common linear regression is likely to be usable for a wider range of adults to predict ventilation volumes from accelerometry data over a range of low to moderate energy level activities. The predicted volumes would then allow real-time estimates of potential dose, enabling more robust panel studies. The poorer correlation in predicting ventilation rate for an accelerometer located on the wrist suggested that this location should not be considered for predictions of ventilation volume.

  14. Analysis of Learning Curve Fitting Techniques.

    DTIC Science & Technology

    1987-09-01

    1986. 15. Neter, John and others. Applied Linear Regression Models. Homewood IL: Irwin, 19-33. 16. SAS User’s Guide: Basics, Version 5 Edition. SAS... Linear Regression Techniques (15:23-52). Random errors are assumed to be normally distributed when using -# ordinary least-squares, according to Johnston...lot estimated by the improvement curve formula. For a more detailed explanation of the ordinary least-squares technique, see Neter, et. al., Applied

  15. On vertical profile of ozone at Syowa

    NASA Technical Reports Server (NTRS)

    Chubachi, Shigeru

    1994-01-01

    The difference in the vertical ozone profile at Syowa between 1966-1981 and 1982-1988 is shown. The month-height cross section of the slope of the linear regressions between ozone partial pressure and 100-mb temperature is also shown. The vertically integrated values of the slopes are in close agreement with the slopes calculated by linear regression of Dobson total ozone on 100-mb temperature in the period of 1982-1988.

  16. Classification of sodium MRI data of cartilage using machine learning.

    PubMed

    Madelin, Guillaume; Poidevin, Frederick; Makrymallis, Antonios; Regatte, Ravinder R

    2015-11-01

    To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data. © 2014 Wiley Periodicals, Inc.

  17. Does Nonlinear Modeling Play a Role in Plasmid Bioprocess Monitoring Using Fourier Transform Infrared Spectra?

    PubMed

    Lopes, Marta B; Calado, Cecília R C; Figueiredo, Mário A T; Bioucas-Dias, José M

    2017-06-01

    The monitoring of biopharmaceutical products using Fourier transform infrared (FT-IR) spectroscopy relies on calibration techniques involving the acquisition of spectra of bioprocess samples along the process. The most commonly used method for that purpose is partial least squares (PLS) regression, under the assumption that a linear model is valid. Despite being successful in the presence of small nonlinearities, linear methods may fail in the presence of strong nonlinearities. This paper studies the potential usefulness of nonlinear regression methods for predicting, from in situ near-infrared (NIR) and mid-infrared (MIR) spectra acquired in high-throughput mode, biomass and plasmid concentrations in Escherichia coli DH5-α cultures producing the plasmid model pVAX-LacZ. The linear methods PLS and ridge regression (RR) are compared with their kernel (nonlinear) versions, kPLS and kRR, as well as with the (also nonlinear) relevance vector machine (RVM) and Gaussian process regression (GPR). For the systems studied, RR provided better predictive performances compared to the remaining methods. Moreover, the results point to further investigation based on larger data sets whenever differences in predictive accuracy between a linear method and its kernelized version could not be found. The use of nonlinear methods, however, shall be judged regarding the additional computational cost required to tune their additional parameters, especially when the less computationally demanding linear methods herein studied are able to successfully monitor the variables under study.

  18. Application of General Regression Neural Network to the Prediction of LOD Change

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Hong; Wang, Qi-Jie; Zhu, Jian-Jun; Zhang, Hao

    2012-01-01

    Traditional methods for predicting the change in length of day (LOD change) are mainly based on some linear models, such as the least square model and autoregression model, etc. However, the LOD change comprises complicated non-linear factors and the prediction effect of the linear models is always not so ideal. Thus, a kind of non-linear neural network — general regression neural network (GRNN) model is tried to make the prediction of the LOD change and the result is compared with the predicted results obtained by taking advantage of the BP (back propagation) neural network model and other models. The comparison result shows that the application of the GRNN to the prediction of the LOD change is highly effective and feasible.

  19. An evaluation of methods for estimating decadal stream loads

    NASA Astrophysics Data System (ADS)

    Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-11-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  20. Assessing the role of pavement macrotexture in preventing crashes on highways.

    PubMed

    Pulugurtha, Srinivas S; Kusam, Prasanna R; Patel, Kuvleshay J

    2010-02-01

    The objective of this article is to assess the role of pavement macrotexture in preventing crashes on highways in the State of North Carolina. Laser profilometer data obtained from the North Carolina Department of Transportation (NCDOT) for highways comprising four corridors are processed to calculate pavement macrotexture at 100-m (approximately 330-ft) sections according to the American Society for Testing and Materials (ASTM) standards. Crash data collected over the same lengths of the corridors were integrated with the calculated pavement macrotexture for each section. Scatterplots were generated to assess the role of pavement macrotexture on crashes and logarithm of crashes. Regression analyses were conducted by considering predictor variables such as million vehicle miles of travel (as a function of traffic volume and length), the number of interchanges, the number of at-grade intersections, the number of grade-separated interchanges, and the number of bridges, culverts, and overhead signs along with pavement macrotexture to study the statistical significance of relationship between pavement macrotexture and crashes (both linear and log-linear) when compared to other predictor variables. Scatterplots and regression analysis conducted indicate a more statistically significant relationship between pavement macrotexture and logarithm of crashes than between pavement macrotexture and crashes. The coefficient for pavement macrotexture, in general, is negative, indicating that the number of crashes or logarithm of crashes decreases as it increases. The relation between pavement macrotexture and logarithm of crashes is generally stronger than between most other predictor variables and crashes or logarithm of crashes. Based on results obtained, it can be concluded that maintaining pavement macrotexture greater than or equal to 1.524 mm (0.06 in.) as a threshold limit would possibly reduce crashes and provide safe transportation to road users on highways.

  1. An evaluation of methods for estimating decadal stream loads

    USGS Publications Warehouse

    Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-01-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  2. Application of the World Health Organization Quality of Life Instrument, Short Form (WHOQOL-BREF) to patients with cataract.

    PubMed

    Gholami, Ali; Araghi, Mahmood Tavakoli; Shamsabadi, Fatemeh; Bayat, Mahdiye; Dabirkhani, Fatemeh; Moradpour, Farhad; Mansori, Kamyar; Moradi, Yousef; Rajabi, Abdolhalim

    2016-01-01

    Cataract is a prevalent disease in the elderly, and negatively influences patients' quality of life. This study was conducted to study the application of the World Health Organization Quality of Life Instrument, Short Form (WHOQOL-BREF) to patients with cataract. In this cross-sectional study, 300 patients with cataract were studied in Neyshabur, Iran from July to October 2014. The Iranian version of the WHOQOL-BREF questionnaire was used to measure their quality of life. Cronbach's alpha coefficient, Pearson's correlation coefficient, the paired t-test, the independent t-test, and a linear regression model were used to analyze the data in SPSS version 16.0 (SPSS Inc., Chicago, IL, USA). The mean age of the participants was 68.11±11.98 years, and most were female (53%). The overall observed Cronbach's alpha coefficient for the WHOQOL-BREF was 0.889, ranging from 0.714 to 0.810 in its four domains. The total mean score of the respondents on the WHOQOL-BREF was 13.19. The highest and lowest mean scores were observed in the social relationship domain (14.11) and the physical health domain (12.29), respectively. A backward multiple linear regression model found that duration of disease and marital status were associated with total WHOQOL scores, while age, duration of disease, marital status, and income level were associated with domains one through four, respectively (p<0.05). The reliability analysis conducted in this study indicated that the WHOQOL-BREF scale exhibited an acceptable degree of internal consistency in the measurement of the quality of life of patients with cataract. It was also found that the patients with cataract who were surveyed reported a relatively moderate quality of life.

  3. The applicability of dental wear in age estimation for a modern American population.

    PubMed

    Faillace, Katie E; Bethard, Jonathan D; Marks, Murray K

    2017-12-01

    Though applied in bioarchaeology, dental wear is an underexplored age indicator in the biological anthropology of contemporary populations, although research has been conducted on dental attrition in forensic contexts (Kim et al., , Journal of Forensic Sciences, 45, 303; Prince et al., , Journal of Forensic Sciences, 53, 588; Yun et al., , Journal of Forensic Sciences, 52, 678). The purpose of this study is to apply and adapt existing techniques for age estimation based on dental wear to a modern American population, with the aim of producing accurate age range estimates for individuals from an industrialized context. Methodologies following Yun and Prince were applied to a random sample from the University of New Mexico (n = 583) and Universidade de Coimbra (n = 50) cast and skeletal collections. Analysis of variance (ANOVA) and linear regression analyses were conducted to examine the relationship between tooth wear scores and age. Application of both Yun et al. () and Prince et al. () methodologies resulted in inaccurate age estimates. Recalibrated sectioning points correctly classified individuals as over or under 50 years for 88% of the sample. Linear regression demonstrated 60% of age estimates fell within ±10 years of the actual age, and accuracy improved for individuals under 45 years, with 74% of predictions within ±10 years. This study demonstrates age estimation from dental wear is possible for modern populations, with comparable age intervals to other established methods. It provides a quantifiable method of seriation into "older" and "younger" adult categories, and provides more reliable age interval estimates than cranial sutures in instances where only the skull is available. © 2017 Wiley Periodicals, Inc.

  4. Distribution of keratometry and its determinants in a general population of 6- to 12-year-old children.

    PubMed

    Hashemi, Hassan; Saatchi, Mohammad; Khabazkhoob, Mehdi; Emamian, Mohammad Hassan; Yekta, Abbasali; Fotouhi, Akbar

    2018-03-01

    To determine the distribution of keratometry and its determinants in Iranian school children. The present cross-sectional study was conducted in 2015 in Shahroud in the north of Iran. The entire rural population of elementary school children was invited to the study. In urban areas, cluster sampling was conducted. Pentacam HR (Oculus Inc., Lynnwood, WA) was used to measure the flat meridian, the steep meridian, and the mean keratometry. Linear regression was used to determine the associated variables with mean keratometry. Of 5620 participated in the study, 5559 children were analyzed after applying the exclusion criteria. Mean keratometry was 43.56 ± 1.96 diopters (D) (95% confidence interval = 43.48-43.64) in the total sample, 43.18 ± 2.23 D (95% confidence interval = 43.09-43.26) in boys, and 44.01 ± 1.46 D (95% confidence interval = 43.95-44.07) in girls (p < 0.001). The highest and lowest mean keratometry was 43.28 ± 1.66 D (95% confidence interval = 43.00-43.55) and 42.89 ±2.70 D (95% confidence interval = 42.68-43.11) in 6-year-old and 10-year-old children, respectively (p = 0.031). The results of multiple linear regression showed that mean keratometry in girls was 0.82 D higher than in boys (p < 0.001), and in groups older than 9 years, it was significantly decreased. Mean keratometry in myopic children was 0.62 D higher than emmetropic children (p < 0.001). This study provided valuable findings from the status of keratometry in Iranian children. In line with other studies, corneal power was higher in girls than in boys, and the cornea becomes flatter with age in children.

  5. Estimating effects of limiting factors with regression quantiles

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Schroeder, R.L.

    1999-01-01

    In a recent Concepts paper in Ecology, Thomson et al. emphasized that assumptions of conventional correlation and regression analyses fundamentally conflict with the ecological concept of limiting factors, and they called for new statistical procedures to address this problem. The analytical issue is that unmeasured factors may be the active limiting constraint and may induce a pattern of unequal variation in the biological response variable through an interaction with the measured factors. Consequently, changes near the maxima, rather than at the center of response distributions, are better estimates of the effects expected when the observed factor is the active limiting constraint. Regression quantiles provide estimates for linear models fit to any part of a response distribution, including near the upper bounds, and require minimal assumptions about the form of the error distribution. Regression quantiles extend the concept of one-sample quantiles to the linear model by solving an optimization problem of minimizing an asymmetric function of absolute errors. Rank-score tests for regression quantiles provide tests of hypotheses and confidence intervals for parameters in linear models with heteroscedastic errors, conditions likely to occur in models of limiting ecological relations. We used selected regression quantiles (e.g., 5th, 10th, ..., 95th) and confidence intervals to test hypotheses that parameters equal zero for estimated changes in average annual acorn biomass due to forest canopy cover of oak (Quercus spp.) and oak species diversity. Regression quantiles also were used to estimate changes in glacier lily (Erythronium grandiflorum) seedling numbers as a function of lily flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data that motivated the query by Thomson et al. for new statistical procedures. Both example applications showed that effects of limiting factors estimated by changes in some upper regression quantile (e.g., 90-95th) were greater than if effects were estimated by changes in the means from standard linear model procedures. Estimating a range of regression quantiles (e.g., 5-95th) provides a comprehensive description of biological response patterns for exploratory and inferential analyses in observational studies of limiting factors, especially when sampling large spatial and temporal scales.

  6. Nondestructive In Situ Measurement Method for Kernel Moisture Content in Corn Ear.

    PubMed

    Zhang, Han-Lin; Ma, Qin; Fan, Li-Feng; Zhao, Peng-Fei; Wang, Jian-Xu; Zhang, Xiao-Dong; Zhu, De-Hai; Huang, Lan; Zhao, Dong-Jie; Wang, Zhong-Yi

    2016-12-20

    Moisture content is an important factor in corn breeding and cultivation. A corn breed with low moisture at harvest is beneficial for mechanical operations, reduces drying and storage costs after harvesting and, thus, reduces energy consumption. Nondestructive measurement of kernel moisture in an intact corn ear allows us to select corn varieties with seeds that have high dehydration speeds in the mature period. We designed a sensor using a ring electrode pair for nondestructive measurement of the kernel moisture in a corn ear based on a high-frequency detection circuit. Through experiments using the effective scope of the electrodes' electric field, we confirmed that the moisture in the corn cob has little effect on corn kernel moisture measurement. Before the sensor was applied in practice, we investigated temperature and conductivity effects on the output impedance. Results showed that the temperature was linearly related to the output impedance (both real and imaginary parts) of the measurement electrodes and the detection circuit's output voltage. However, the conductivity has a non-monotonic dependence on the output impedance (both real and imaginary parts) of the measurement electrodes and the output voltage of the high-frequency detection circuit. Therefore, we reduced the effect of conductivity on the measurement results through measurement frequency selection. Corn moisture measurement results showed a quadric regression between corn ear moisture and the imaginary part of the output impedance, and there is also a quadric regression between corn kernel moisture and the high-frequency detection circuit output voltage at 100 MHz. In this study, two corn breeds were measured using our sensor and gave R ² values for the quadric regression equation of 0.7853 and 0.8496.

  7. On the use and misuse of scalar scores of confounders in design and analysis of observational studies.

    PubMed

    Pfeiffer, R M; Riedl, R

    2015-08-15

    We assess the asymptotic bias of estimates of exposure effects conditional on covariates when summary scores of confounders, instead of the confounders themselves, are used to analyze observational data. First, we study regression models for cohort data that are adjusted for summary scores. Second, we derive the asymptotic bias for case-control studies when cases and controls are matched on a summary score, and then analyzed either using conditional logistic regression or by unconditional logistic regression adjusted for the summary score. Two scores, the propensity score (PS) and the disease risk score (DRS) are studied in detail. For cohort analysis, when regression models are adjusted for the PS, the estimated conditional treatment effect is unbiased only for linear models, or at the null for non-linear models. Adjustment of cohort data for DRS yields unbiased estimates only for linear regression; all other estimates of exposure effects are biased. Matching cases and controls on DRS and analyzing them using conditional logistic regression yields unbiased estimates of exposure effect, whereas adjusting for the DRS in unconditional logistic regression yields biased estimates, even under the null hypothesis of no association. Matching cases and controls on the PS yield unbiased estimates only under the null for both conditional and unconditional logistic regression, adjusted for the PS. We study the bias for various confounding scenarios and compare our asymptotic results with those from simulations with limited sample sizes. To create realistic correlations among multiple confounders, we also based simulations on a real dataset. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Application of third molar development and eruption models in estimating dental age in Malay sub-adults.

    PubMed

    Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc

    2015-08-01

    The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. 40 CFR 1066.220 - Linearity verification for chassis dynamometer systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dynamometer speed and torque at least as frequently as indicated in Table 1 of § 1066.215. The intent of... linear regression and the linearity criteria specified in Table 1 of this section. (b) Performance requirements. If a measurement system does not meet the applicable linearity criteria in Table 1 of this...

  10. A Learning Progression Should Address Regression: Insights from Developing Non-Linear Reasoning in Ecology

    ERIC Educational Resources Information Center

    Hovardas, Tasos

    2016-01-01

    Although ecological systems at varying scales involve non-linear interactions, learners insist thinking in a linear fashion when they deal with ecological phenomena. The overall objective of the present contribution was to propose a hypothetical learning progression for developing non-linear reasoning in prey-predator systems and to provide…

  11. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    ERIC Educational Resources Information Center

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  12. Estimating normative limits of Heidelberg Retina Tomograph optic disc rim area with quantile regression.

    PubMed

    Artes, Paul H; Crabb, David P

    2010-01-01

    To investigate why the specificity of the Moorfields Regression Analysis (MRA) of the Heidelberg Retina Tomograph (HRT) varies with disc size, and to derive accurate normative limits for neuroretinal rim area to address this problem. Two datasets from healthy subjects (Manchester, UK, n = 88; Halifax, Nova Scotia, Canada, n = 75) were used to investigate the physiological relationship between the optic disc and neuroretinal rim area. Normative limits for rim area were derived by quantile regression (QR) and compared with those of the MRA (derived by linear regression). Logistic regression analyses were performed to quantify the association between disc size and positive classifications with the MRA, as well as with the QR-derived normative limits. In both datasets, the specificity of the MRA depended on optic disc size. The odds of observing a borderline or outside-normal-limits classification increased by approximately 10% for each 0.1 mm(2) increase in disc area (P < 0.1). The lower specificity of the MRA with large optic discs could be explained by the failure of linear regression to model the extremes of the rim area distribution (observations far from the mean). In comparison, the normative limits predicted by QR were larger for smaller discs (less specific, more sensitive), and smaller for larger discs, such that false-positive rates became independent of optic disc size. Normative limits derived by quantile regression appear to remove the size-dependence of specificity with the MRA. Because quantile regression does not rely on the restrictive assumptions of standard linear regression, it may be a more appropriate method for establishing normative limits in other clinical applications where the underlying distributions are nonnormal or have nonconstant variance.

  13. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

  14. Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen

    2017-12-01

    Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.

  15. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    NASA Technical Reports Server (NTRS)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  16. Mental chronometry with simple linear regression.

    PubMed

    Chen, J Y

    1997-10-01

    Typically, mental chronometry is performed by means of introducing an independent variable postulated to affect selectively some stage of a presumed multistage process. However, the effect could be a global one that spreads proportionally over all stages of the process. Currently, there is no method to test this possibility although simple linear regression might serve the purpose. In the present study, the regression approach was tested with tasks (memory scanning and mental rotation) that involved a selective effect and with a task (word superiority effect) that involved a global effect, by the dominant theories. The results indicate (1) the manipulation of the size of a memory set or of angular disparity affects the intercept of the regression function that relates the times for memory scanning with different set sizes or for mental rotation with different angular disparities and (2) the manipulation of context affects the slope of the regression function that relates the times for detecting a target character under word and nonword conditions. These ratify the regression approach as a useful method for doing mental chronometry.

  17. Age, Body Mass Index, and Frequency of Sexual Activity are Independent Predictors of Testosterone Deficiency in Men With Erectile Dysfunction.

    PubMed

    Pagano, Matthew J; De Fazio, Adam; Levy, Alison; RoyChoudhury, Arindam; Stahl, Peter J

    2016-04-01

    To identify clinical predictors of testosterone deficiency (TD) in men with erectile dysfunction (ED), thereby identifying subgroups that are most likely to benefit from targeted testosterone screening. Retrospective review was conducted on 498 men evaluated for ED between January 2013 and July 2014. Testing for TD by early morning serum measurement was offered to all eligible men. Patients with history of prostate cancer or testosterone replacement were excluded. Univariable linear regression was conducted to analyze 19 clinical variables for associations with serum total testosterone (TT), calculated free testosterone (cFT), and TD (T <300 ng/dL or cFT <6.5 ng/dL). Variables significant on univariable analysis were included in multiple regression models. A total of 225 men met inclusion criteria. Lower TT levels were associated with greater body mass index (BMI), less frequent sexual activity, and absence of clinical depression on multiple regression analysis. TT decreased by 49.5 ng/dL for each 5-point increase in BMI. BMI and age were the only independent predictors of cFT levels on multivariable analysis. Overall, 62 subjects (27.6%) met criteria for TD. Older age, greater BMI, and less frequent sexual activity were the only independent predictors of TD on multiple regression. We observed a 2.2-fold increase in the odds of TD for every 5-point increase in BMI, and a 1.8-fold increase for every 10 year increase in age. Men with ED and elevated BMI, advanced age, or infrequent sexual activity appear to be at high risk of TD, and such patients represent excellent potential candidates for targeted testosterone screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. [Relationship between Electrical Conductivity and Decomposition Rate of Rat Postmortem Skeletal Muscle].

    PubMed

    Xia, Z Y; Zhai, X D; Liu, B B; Zheng, Z; Zhao, L L; Mo, Y N

    2017-02-01

    To analyze the relationship among electrical conductivity (EC), total volatile basic nitrogen (TVB-N), which is an index of decomposition rate for meat production, and postmortem interval (PMI). To explore the feasibility of EC as an index of cadaveric skeletal muscle decomposition rate and lay the foundation for PMI estimation. Healthy Sprague-Dawley rats were sacrificed by cervical vertebrae dislocation and kept at 28 ℃. Muscle of rear limbs was removed at different PMI, homogenized in deionized water and then skeletal extraction liquid of mass concentration 0.1 g/mL was prepared. EC and TVB-N of extraction liquid were separately determined. The correlation between EC ( x ₁) and TVB-N ( x ₂) was analyzed, and their regression function was established. The relationship between PMI ( y ) and these two parameters were studied, and their regression functions were separately established. The change trends of EC and TVB-N of skeletal extraction liquid at different PMI were almost the same, and there was a linear positive correlation between them. The regression equation was x ₂=0.14 x ₁-164.91( R ²=0.982). EC and TVB-N of skeletal muscle changed significantly with PMI, and the regression functions were y =19.38 x ₁³-370.68 x ₁²+2 526.03 x ₁-717.06( R ²=0.994), and y =2.56 x ₂³-48.39 x ₂²+330.60 x ₂-255.04( R ²=0.997), respectively. EC and TVB-N of rat postmortem skeletal muscle show similar change trends, which can be used as an index for decomposition rate of cadaveric skeletal muscle and provide a method for further study of late PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine

  19. Cocaine Dependence Treatment Data: Methods for Measurement Error Problems With Predictors Derived From Stationary Stochastic Processes

    PubMed Central

    Guan, Yongtao; Li, Yehua; Sinha, Rajita

    2011-01-01

    In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854

  20. Caffeine intake is not associated with serum testosterone levels in adult men: cross-sectional findings from the NHANES 1999-2004 and 2011-2012.

    PubMed

    Lopez, David S; Advani, Shailesh; Qiu, Xueting; Tsilidis, Konstantinos K; Khera, Mohit; Kim, Jeri; Canfield, Steven

    2018-04-25

    The association of caffeine intake with testosterone remains unclear. We evaluated the association of caffeine intake with serum testosterone among American men and determined whether this association varied by race/ethnicity and measurements of adiposity. Data were analyzed for 2581 men (≥20 years old) who participated in the cycles of the NHANES 1999-2004 and 2011-2012, a cross-sectional study. Testosterone (ng/mL) was measured by immunoassay among men who participated in the morning examination session. We analyzed 24-h dietary recall data to estimate caffeine intake (mg/day). Multivariable weighted linear regression models were conducted. We identified no linear relationship between caffeine intake and testosterone levels in the total population, but there was a non-linear association (p nonlinearity  < .01). Similarly, stratified analysis showed nonlinear associations among Mexican-American and Non-Hispanic White men (p nonlinearity  ≤ .03 both) and only among men with waist circumference <102 cm and body mass index <25 kg/m 2 (p nonlinearity  < .01, both). No linear association was identified between levels of caffeine intake and testosterone in US men, but we observed a non-linear association, including among racial/ethnic groups and measurements of adiposity in this cross-sectional study. These associations are warranted to be investigated in larger prospective studies.

  1. Challenge from the simple: some caveats in linearization of the Boyle-van't Hoff and Arrhenius plots.

    PubMed

    Katkov, Igor I

    2008-10-01

    Some aspects of proper linearization of the Boyle-van't Hoff (BVH) relationship for calculation of the osmotically inactive volume v(b), and Arrhenius plot (AP) for the activation energy E(a) are discussed. It is shown that the commonly used determination of the slope and the intercept (v(b)), which are presumed to be independent from each other, is invalid if the initial intracellular molality m(0) is known. Instead, the linear regression with only one independent parameter (v(b)) or the Least Square Method (LSM) with v(b) as the only fitting LSM parameter must be applied. The slope can then be calculated from the BVH relationship as the function of v(b). In case of unknown m(0) (for example, if cells are preloaded with trehalose, or electroporation caused ion leakage, etc.), it is considered as the second independent statistical parameter to be found. In this (and only) scenario, all three methods give the same results for v(b) and m(0). AP can be linearized only for water hydraulic conductivity (L(p)) and solute mobility (omega(s)) while water and solute permeabilities P(w) identical withL(p)RT and P(s) identical withomega(s)RT cannot be linearized because they have pre-exponential factor (RT) that depends on the temperature T.

  2. Distance correction system for localization based on linear regression and smoothing in ambient intelligence display.

    PubMed

    Kim, Dae-Hee; Choi, Jae-Hun; Lim, Myung-Eun; Park, Soo-Jun

    2008-01-01

    This paper suggests the method of correcting distance between an ambient intelligence display and a user based on linear regression and smoothing method, by which distance information of a user who approaches to the display can he accurately output even in an unanticipated condition using a passive infrared VIR) sensor and an ultrasonic device. The developed system consists of an ambient intelligence display and an ultrasonic transmitter, and a sensor gateway. Each module communicates with each other through RF (Radio frequency) communication. The ambient intelligence display includes an ultrasonic receiver and a PIR sensor for motion detection. In particular, this system selects and processes algorithms such as smoothing or linear regression for current input data processing dynamically through judgment process that is determined using the previous reliable data stored in a queue. In addition, we implemented GUI software with JAVA for real time location tracking and an ambient intelligence display.

  3. How is the weather? Forecasting inpatient glycemic control

    PubMed Central

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M

    2017-01-01

    Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125

  4. BFLCRM: A BAYESIAN FUNCTIONAL LINEAR COX REGRESSION MODEL FOR PREDICTING TIME TO CONVERSION TO ALZHEIMER’S DISEASE*

    PubMed Central

    Lee, Eunjee; Zhu, Hongtu; Kong, Dehan; Wang, Yalin; Giovanello, Kelly Sullivan; Ibrahim, Joseph G

    2015-01-01

    The aim of this paper is to develop a Bayesian functional linear Cox regression model (BFLCRM) with both functional and scalar covariates. This new development is motivated by establishing the likelihood of conversion to Alzheimer’s disease (AD) in 346 patients with mild cognitive impairment (MCI) enrolled in the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI-1) and the early markers of conversion. These 346 MCI patients were followed over 48 months, with 161 MCI participants progressing to AD at 48 months. The functional linear Cox regression model was used to establish that functional covariates including hippocampus surface morphology and scalar covariates including brain MRI volumes, cognitive performance (ADAS-Cog), and APOE status can accurately predict time to onset of AD. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFLCRM. PMID:26900412

  5. Liquid electrolyte informatics using an exhaustive search with linear regression.

    PubMed

    Sodeyama, Keitaro; Igarashi, Yasuhiko; Nakayama, Tomofumi; Tateyama, Yoshitaka; Okada, Masato

    2018-06-14

    Exploring new liquid electrolyte materials is a fundamental target for developing new high-performance lithium-ion batteries. In contrast to solid materials, disordered liquid solution properties have been less studied by data-driven information techniques. Here, we examined the estimation accuracy and efficiency of three information techniques, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), by using coordination energy and melting point as test liquid properties. We then confirmed that ES-LiR gives the most accurate estimation among the techniques. We also found that ES-LiR can provide the relationship between the "prediction accuracy" and "calculation cost" of the properties via a weight diagram of descriptors. This technique makes it possible to choose the balance of the "accuracy" and "cost" when the search of a huge amount of new materials was carried out.

  6. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

    PubMed Central

    Huang, Jian; Zhang, Cun-Hui

    2013-01-01

    The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100

  7. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.

    PubMed

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-06-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.

  8. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION

    PubMed Central

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-01-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression. PMID:25598560

  9. Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso.

    PubMed

    Kong, Shengchun; Nan, Bin

    2014-01-01

    We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses.

  10. Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso

    PubMed Central

    Kong, Shengchun; Nan, Bin

    2013-01-01

    We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses. PMID:24516328

  11. Functional Relationships and Regression Analysis.

    ERIC Educational Resources Information Center

    Preece, Peter F. W.

    1978-01-01

    Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…

  12. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression

    ERIC Educational Resources Information Center

    Beckstead, Jason W.

    2012-01-01

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…

  13. Suppression Situations in Multiple Linear Regression

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2006-01-01

    This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…

  14. The Effects of Teacher Efficacy, Teacher Certification Route, Content Hours in the Sciences, Field-Based Experiences and Class Size on Middle School Student Achievement

    NASA Astrophysics Data System (ADS)

    Salgado, Robina

    No Child Left Behind Act (NCLB) was signed into law in 2002 with the idea that all students, no matter the circumstances can learn and that highly qualified teachers should be present in every classrooms (United Stated Department of Education, 2011). The mandates of NCLB also forced states to begin measuring the progress of science proficiency beginning in 2007. The study determined the effects of teacher efficacy, the type of certification route taken by individuals, the number of content hours taken in the sciences, field-based experience and class size on middle school student achievement as measured by the 8th grade STAAR in a region located in South Texas. This data provides knowledge into the effect different teacher training methods have on secondary school science teacher efficacy in Texas and how it impacts student achievement. Additionally, the results of the study determined if traditional and alternative certification programs are equally effective in properly preparing science teachers for the classroom. The study described was a survey design comparing nonequivalent groups. The study utilized the Science Teaching Efficacy Belief Instrument (STEBI). A 25-item efficacy scale made up of two subscales, Personal Science Teaching Efficacy Belief (PSTE) and Science Teaching Outcome Expectancy (STOE) (Bayraktar, 2011). Once the survey was completed a 3-Way ANOVA, MANOVA, and Multiple Linear Regression were performed in SPSS to calculate the results. The results from the study indicated no significant difference between route of certification on student achievement, but a large effect size was reported, 17% of the variances in student achievement can be accounted for by route of certification. A MANOVA was conducted to assess the differences between number of science content hours on a linear combination of personal science teacher efficacy, science teaching outcome expectancy and total science teacher efficacy as measured by the STEBI. No significant difference was found, but a large effect size was reported, 14% of variances in efficacy can be accounted for by number of science content hours. A Multiple Linear Regression analysis was conducted to evaluate how total personal efficacy, total outcome expectancy and total teacher efficacy predict student achievement. A significant regression equation was found, with an R2 of .39. The R 2 reflected a high effect size, where 39% of variances in student achievement can be explained by efficacy. Total efficacy of the teacher was a significant predictor of student achievement.

  15. Depression and Anxiety in Greek Male Veterans After Retirement.

    PubMed

    Kypraiou, Aspa; Sarafis, Pavlos; Tsounis, Andreas; Bitsi, Georgia; Andreanides, Elias; Constantinidis, Theodoros; Kotrotsiou, Evaggelia; Malliarou, Maria

    2017-03-01

    Retirement is a turning point in human life, resulting in changes to physical and mental health status. The aim of this study was to examine the factors that are related with depression and anxiety symptoms in Greek male veterans after retirement. A total of 502 veterans participated in a cross-sectional study. Beck Depression Inventory for depression assessment and Spielberger Trait Anxiety Inventory for anxiety assessment were used. The Ethics Committee of the Technological Educational Institution of Thessaly granted permission for conducting the research, and informed consent was obtained from all the participants. Questionnaires were filled in electronically using a platform that was made for the specific research. Mean values, standard deviations, Student t test, nonparametric cluster analysis of variance, Pearson's and Spearman's coefficients, and linear regression were conducted, using the Statistical Program for Social Services version 19.0. Severe depression was found in 3.8% of veterans with a mean score of 6.78, whereas 23.2% displayed mild-to-moderate symptoms of depression. Mean score of state anxiety was found to be 36.55 and of trait anxiety 33.60. Veterans who were discharged because of stressful working conditions, those who have a high body mass index, consume regularly alcohol, smoke and were not satisfied by changes in their everyday life after retirement had significantly more symptoms of depression and anxiety, although those who retired because of family problems had significantly more symptoms of depression. Multivariate linear regression analyses indicated that dissatisfaction related to lifestyle changes had statistically significant effect on symptoms of depression and anxiety, and stressful working conditions as a leading cause for retirement had statistically significant effect on depression. Finally, according to linear regression analyses results, those who were satisfied with their professional evolution had 1.80 times lower score in depression scale. The sense of satisfaction derived from fulfilling work-related expectations when finishing a career, with changes in everyday life, and smoking and alcohol reduction, may contribute to a better adjustment during the retirement period. To our knowledge, this was the first study examining depression and anxiety levels in Greek veterans, and the sample size was large, covering a randomly chosen veteran population. On the other, it was a convenient sample, although the study results could not focus on direct-term effects of retirement (up to 3 years of retirement from active service). Primitive data may be used for research directions in the future. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  16. Do age and gender contribute to workers' burnout symptoms?

    PubMed

    Marchand, A; Blanc, M-E; Beauregard, N

    2018-06-15

    Despite mounting evidence on the association between work stress and burnout, there is limited knowledge about the extent to which workers' age and gender are associated with burnout. To evaluate the relationship between age, gender and their interaction with burnout in a sample of Canadian workers. Data were collected in 2009-12 from a sample of 2073 Canadian workers from 63 workplaces in the province of Quebec. Data were analysed with multilevel regression models to test for linear and non-linear relationships between age and burnout. Analyses adjusted for marital status, parental status, educational level and number of working hours were conducted on the total sample and stratified by gender. Data were collected from a sample of 2073 Canadian workers (response rate 73%). Age followed a non-linear relationship with emotional exhaustion and total burnout, while it was linearly related to cynicism and reduced professional efficacy. Burnout level reduced with increasing age in men, but the association was bimodal in women, with women aged between 20-35 and over 55 years showing the highest burnout level. These results suggest that burnout symptoms varied greatly according to different life stages of working men and women. Younger men, and women aged between 20-35 and 55 years and over are particularly susceptible and should be targeted for programmes to reduce risk of burnout.

  17. Protein linear indices of the 'macromolecular pseudograph alpha-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor.

    PubMed

    Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Castillo-Garit, Juan A; Romero-Zaldivar, Vicente; Torrens, Francisco; Castro, Eduardo A

    2005-04-15

    A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. A protein's total (whole protein) and local (one or more amino acid) linear indices are a new set of bio-macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level biochemical descriptors are based on the calculation of linear maps on Rn[f k(xmi):Rn-->Rn] in canonical basis. These bio-macromolecular indices are calculated from the kth power of the macromolecular pseudograph alpha-carbon atom adjacency matrix. Total linear indices are linear functional on Rn. That is, the kth total linear indices are linear maps from Rn to the scalar R[f k(xm):Rn-->R]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of all amino acids in the protein molecule. A study of the protein stability effects for a complete set of alanine substitutions in the Arc repressor illustrates this approach. A quantitative model that discriminates near wild-type stability alanine mutants from the reduced-stability ones in a training series was obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of proteins in the training and test set, respectively. It shows a high Matthews correlation coefficient (MCC=0.952) for the training set and an MCC=0.837 for the external prediction set. Additionally, canonical regression analysis corroborated the statistical quality of the classification model (Rcanc=0.824). This analysis was also used to compute biological stability canonical scores for each Arc alanine mutant. On the other hand, the linear piecewise regression model compared favorably with respect to the linear regression one on predicting the melting temperature (tm) of the Arc alanine mutants. The linear model explains almost 81% of the variance of the experimental tm (R=0.90 and s=4.29) and the LOO press statistics evidenced its predictive ability (q2=0.72 and scv=4.79). Moreover, the TOMOCOMD-CAMPS method produced a linear piecewise regression (R=0.97) between protein backbone descriptors and tm values for alanine mutants of the Arc repressor. A break-point value of 51.87 degrees C characterized two mutant clusters and coincided perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutant Arc homodimers. These models also permitted the interpretation of the driving forces of such folding process, indicating that topologic/topographic protein backbone interactions control the stability profile of wild-type Arc and its alanine mutants.

  18. Estimation of factors from natural and anthropogenic radioactivity present in the surface soil and comparison with DCF values.

    PubMed

    Ranade, A K; Pandey, M; Datta, D

    2013-01-01

    A study was conducted to evaluate the absorbed rate coefficient of (238)U, (232)Th, (40)K and (137)Cs present in soil. A total of 31 soil samples and the corresponding terrestrial dose rates at 1 m from different locations were taken around the Anushaktinagar region, where the litho-logy is dominated by red soil. A linear regression model was developed for the estimation of these factors. The estimated coefficients (nGy h(-1) Bq(-1) kg(-1)) were 0.454, 0.586, 0.035 and 0.392, respectively. The factors calculated were in good agreement with the literature values.

  19. Resilience, loneliness, and psychological distress among homeless youth.

    PubMed

    Perron, Jeff L; Cleverley, Kristin; Kidd, Sean A

    2014-08-01

    Extant quantitative research on loneliness among homeless youth has grouped loneliness with other elements of psychological distress. The current study seeks to determine if loneliness has a different relationship with resilience than does psychological distress among street youth. Using data from 47 participants, linear regression was conducted. Results indicate that homeless youth experiencing higher psychological distress reported lower resilience scores. However, levels of resilience are not significantly associated with feelings of loneliness when psychological distress was accounted for. This study has implications for how researchers and clinicians conceptualize and address feelings of loneliness among homeless youth. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Accelerating cross-validation with total variation and its application to super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Ikeda, Shiro; Akiyama, Kazunori; Kabashima, Yoshiyuki

    2017-12-01

    We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ_1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.

  1. Predicting U.S. Army Reserve Unit Manning Using Market Demographics

    DTIC Science & Technology

    2015-06-01

    develops linear regression , classification tree, and logistic regression models to determine the ability of the location to support manning requirements... logistic regression model delivers predictive results that allow decision-makers to identify locations with a high probability of meeting unit...manning requirements. The recommendation of this thesis is that the USAR implement the logistic regression model. 14. SUBJECT TERMS U.S

  2. [Use of multiple regression models in observational studies (1970-2013) and requirements of the STROBE guidelines in Spanish scientific journals].

    PubMed

    Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M

    In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Examining the influence of link function misspecification in conventional regression models for developing crash modification factors.

    PubMed

    Wu, Lingtao; Lord, Dominique

    2017-05-01

    This study further examined the use of regression models for developing crash modification factors (CMFs), specifically focusing on the misspecification in the link function. The primary objectives were to validate the accuracy of CMFs derived from the commonly used regression models (i.e., generalized linear models or GLMs with additive linear link functions) when some of the variables have nonlinear relationships and quantify the amount of bias as a function of the nonlinearity. Using the concept of artificial realistic data, various linear and nonlinear crash modification functions (CM-Functions) were assumed for three variables. Crash counts were randomly generated based on these CM-Functions. CMFs were then derived from regression models for three different scenarios. The results were compared with the assumed true values. The main findings are summarized as follows: (1) when some variables have nonlinear relationships with crash risk, the CMFs for these variables derived from the commonly used GLMs are all biased, especially around areas away from the baseline conditions (e.g., boundary areas); (2) with the increase in nonlinearity (i.e., nonlinear relationship becomes stronger), the bias becomes more significant; (3) the quality of CMFs for other variables having linear relationships can be influenced when mixed with those having nonlinear relationships, but the accuracy may still be acceptable; and (4) the misuse of the link function for one or more variables can also lead to biased estimates for other parameters. This study raised the importance of the link function when using regression models for developing CMFs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Locomotive syndrome is associated not only with physical capacity but also degree of depression.

    PubMed

    Ikemoto, Tatsunori; Inoue, Masayuki; Nakata, Masatoshi; Miyagawa, Hirofumi; Shimo, Kazuhiro; Wakabayashi, Toshiko; Arai, Young-Chang P; Ushida, Takahiro

    2016-05-01

    Reports of locomotive syndrome (LS) have recently been increasing. Although physical performance measures for LS have been well investigated to date, studies including psychiatric assessment are still scarce. Hence, the aim of this study was to investigate both physical and mental parameters in relation to presence and severity of LS using a 25-question geriatric locomotive function scale (GLFS-25) questionnaire. 150 elderly people aged over 60 years who were members of our physical-fitness center and displayed well-being were enrolled in this study. Firstly, using the previously determined GLFS-25 cutoff value (=16 points), subjects were divided into two groups accordingly: an LS and non-LS group in order to compare each parameter (age, grip strength, timed-up-and-go test (TUG), one-leg standing with eye open, back muscle and leg muscle strength, degree of depression and cognitive impairment) between the groups using the Mann-Whitney U-test followed by multiple logistic regression analysis. Secondly, a multiple linear regression was conducted to determine which variables showed the strongest correlation with severity of LS. We confirmed 110 people for non-LS (73%) and 40 people for LS using the GLFS-25 cutoff value. Comparative analysis between LS and non-LS revealed significant differences in parameters in age, grip strength, TUG, one-leg standing, back muscle strength and degree of depression (p < 0.006, after Bonferroni correction). Multiple logistic regression revealed that functional decline in grip strength, TUG and one-leg standing and degree of depression were significantly associated with LS. On the other hand, we observed that the significant contributors towards the GLFS-25 score were TUG and degree of depression in multiple linear regression analysis. The results indicate that LS is associated with not only the capacity of physical performance but also the degree of depression although most participants fell under the criteria of LS. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  5. Mechanisms behind the estimation of photosynthesis traits from leaf reflectance observations

    NASA Astrophysics Data System (ADS)

    Dechant, Benjamin; Cuntz, Matthias; Doktor, Daniel; Vohland, Michael

    2016-04-01

    Many studies have investigated the reflectance-based estimation of leaf chlorophyll, water and dry matter contents of plants. Only few studies focused on photosynthesis traits, however. The maximum potential uptake of carbon dioxide under given environmental conditions is determined mainly by RuBisCO activity, limiting carboxylation, or the speed of photosynthetic electron transport. These two main limitations are represented by the maximum carboxylation capacity, V cmax,25, and the maximum electron transport rate, Jmax,25. These traits were estimated from leaf reflectance before but the mechanisms underlying the estimation remain rather speculative. The aim of this study was therefore to reveal the mechanisms behind reflectance-based estimation of V cmax,25 and Jmax,25. Leaf reflectance, photosynthetic response curves as well as nitrogen content per area, Narea, and leaf mass per area, LMA, were measured on 37 deciduous tree species. V cmax,25 and Jmax,25 were determined from the response curves. Partial Least Squares (PLS) regression models for the two photosynthesis traits V cmax,25 and Jmax,25 as well as Narea and LMA were studied using a cross-validation approach. Analyses of linear regression models based on Narea and other leaf traits estimated via PROSPECT inversion, PLS regression coefficients and model residuals were conducted in order to reveal the mechanisms behind the reflectance-based estimation. We found that V cmax,25 and Jmax,25 can be estimated from leaf reflectance with good to moderate accuracy for a large number of species and different light conditions. The dominant mechanism behind the estimations was the strong relationship between photosynthesis traits and leaf nitrogen content. This was concluded from very strong relationships between PLS regression coefficients, the model residuals as well as the prediction performance of Narea- based linear regression models compared to PLS regression models. While the PLS regression model for V cmax,25 was fully based on the correlation to Narea, the PLS regression model for Jmax,25 was not entirely based on it. Analyses of the contributions of different parts of the reflectance spectrum revealed that the information contributing to the Jmax,25 PLS regression model in addition to the main source of information, Narea, was mainly located in the visible part of the spectrum (500-900 nm). Estimated chlorophyll content could be excluded as potential source of this extra information. The PLS regression coefficients of the Jmax,25 model indicated possible contributions from chlorophyll fluorescence and cytochrome f content. In summary, we found that the main mechanism behind the estimation of V cmax,25 and Jmax,25 from leaf reflectance observations is the correlation to Narea but that there is additional information related to Jmax,25 mainly in the visible part of the spectrum.

  6. Linear regression models for solvent accessibility prediction in proteins.

    PubMed

    Wagner, Michael; Adamczak, Rafał; Porollo, Aleksey; Meller, Jarosław

    2005-04-01

    The relative solvent accessibility (RSA) of an amino acid residue in a protein structure is a real number that represents the solvent exposed surface area of this residue in relative terms. The problem of predicting the RSA from the primary amino acid sequence can therefore be cast as a regression problem. Nevertheless, RSA prediction has so far typically been cast as a classification problem. Consequently, various machine learning techniques have been used within the classification framework to predict whether a given amino acid exceeds some (arbitrary) RSA threshold and would thus be predicted to be "exposed," as opposed to "buried." We have recently developed novel methods for RSA prediction using nonlinear regression techniques which provide accurate estimates of the real-valued RSA and outperform classification-based approaches with respect to commonly used two-class projections. However, while their performance seems to provide a significant improvement over previously published approaches, these Neural Network (NN) based methods are computationally expensive to train and involve several thousand parameters. In this work, we develop alternative regression models for RSA prediction which are computationally much less expensive, involve orders-of-magnitude fewer parameters, and are still competitive in terms of prediction quality. In particular, we investigate several regression models for RSA prediction using linear L1-support vector regression (SVR) approaches as well as standard linear least squares (LS) regression. Using rigorously derived validation sets of protein structures and extensive cross-validation analysis, we compare the performance of the SVR with that of LS regression and NN-based methods. In particular, we show that the flexibility of the SVR (as encoded by metaparameters such as the error insensitivity and the error penalization terms) can be very beneficial to optimize the prediction accuracy for buried residues. We conclude that the simple and computationally much more efficient linear SVR performs comparably to nonlinear models and thus can be used in order to facilitate further attempts to design more accurate RSA prediction methods, with applications to fold recognition and de novo protein structure prediction methods.

  7. Regression Commonality Analysis: A Technique for Quantitative Theory Building

    ERIC Educational Resources Information Center

    Nimon, Kim; Reio, Thomas G., Jr.

    2011-01-01

    When it comes to multiple linear regression analysis (MLR), it is common for social and behavioral science researchers to rely predominately on beta weights when evaluating how predictors contribute to a regression model. Presenting an underutilized statistical technique, this article describes how organizational researchers can use commonality…

  8. Precision Efficacy Analysis for Regression.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.

    When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…

  9. Using Linear Regression To Determine the Number of Factors To Retain in Factor Analysis and the Number of Issues To Retain in Delphi Studies and Other Surveys.

    ERIC Educational Resources Information Center

    Jurs, Stephen; And Others

    The scree test and its linear regression technique are reviewed, and results of its use in factor analysis and Delphi data sets are described. The scree test was originally a visual approach for making judgments about eigenvalues, which considered the relationships of the eigenvalues to one another as well as their actual values. The graph that is…

  10. Parametric Analysis to Study the Influence of Aerogel-Based Renders' Components on Thermal and Mechanical Performance.

    PubMed

    Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge

    2016-05-04

    Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study's objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.

  11. Parametric Analysis to Study the Influence of Aerogel-Based Renders’ Components on Thermal and Mechanical Performance

    PubMed Central

    Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge

    2016-01-01

    Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study’s objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect. PMID:28773460

  12. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

    PubMed

    Madarang, Krish J; Kang, Joo-Hyon

    2014-06-01

    Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R(2) and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method.

    PubMed

    Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza

    2015-11-18

    Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available.

  14. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  15. Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method

    PubMed Central

    Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza

    2016-01-01

    Introduction: Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. Methods: This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. Results: From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). Conclusion: This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available. PMID:26925889

  16. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir.

    PubMed

    Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš

    2018-05-15

    Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can provide a solid basis for a better understanding of processes in freshwater reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Modeling Effects of Temperature, Soil, Moisture, Nutrition and Variety As Determinants of Severity of Pythium Damping-Off and Root Disease in Subterranean Clover

    PubMed Central

    You, Ming P.; Rensing, Kelly; Renton, Michael; Barbetti, Martin J.

    2017-01-01

    Subterranean clover (Trifolium subterraneum) is a critical pasture legume in Mediterranean regions of southern Australia and elsewhere, including Mediterranean-type climatic regions in Africa, Asia, Australia, Europe, North America, and South America. Pythium damping-off and root disease caused by Pythium irregulare is a significant threat to subterranean clover in Australia and a study was conducted to define how environmental factors (viz. temperature, soil type, moisture and nutrition) as well as variety, influence the extent of damping-off and root disease as well as subterranean clover productivity under challenge by this pathogen. Relationships were statistically modeled using linear and generalized linear models and boosted regression trees. Modeling found complex relationships between explanatory variables and the extent of Pythium damping-off and root rot. Linear modeling identified high-level (4 or 5-way) significant interactions for each dependent variable (dry shoot and root weight, emergence, tap and lateral root disease index). Furthermore, all explanatory variables (temperature, soil, moisture, nutrition, variety) were found significant as part of some interaction within these models. A significant five-way interaction between all explanatory variables was found for both dry shoot and root dry weights, and a four way interaction between temperature, soil, moisture, and nutrition was found for both tap and lateral root disease index. A second approach to modeling using boosted regression trees provided support for and helped clarify the complex nature of the relationships found in linear models. All explanatory variables showed at least 5% relative influence on each of the five dependent variables. All models indicated differences due to soil type, with the sand-based soil having either higher weights, greater emergence, or lower disease indices; while lowest weights and less emergence, as well as higher disease indices, were found for loam soil and low temperature. There was more severe tap and lateral root rot disease in higher moisture situations. PMID:29184544

  18. Comparative evaluation of direct plating and most probable number for enumeration of low levels of Listeria monocytogenes in naturally contaminated ice cream products.

    PubMed

    Chen, Yi; Pouillot, Régis; S Burall, Laurel; Strain, Errol A; Van Doren, Jane M; De Jesus, Antonio J; Laasri, Anna; Wang, Hua; Ali, Laila; Tatavarthy, Aparna; Zhang, Guodong; Hu, Lijun; Day, James; Sheth, Ishani; Kang, Jihun; Sahu, Surasri; Srinivasan, Devayani; Brown, Eric W; Parish, Mickey; Zink, Donald L; Datta, Atin R; Hammack, Thomas S; Macarisin, Dumitru

    2017-01-16

    A precise and accurate method for enumeration of low level of Listeria monocytogenes in foods is critical to a variety of studies. In this study, paired comparison of most probable number (MPN) and direct plating enumeration of L. monocytogenes was conducted on a total of 1730 outbreak-associated ice cream samples that were naturally contaminated with low level of L. monocytogenes. MPN was performed on all 1730 samples. Direct plating was performed on all samples using the RAPID'L.mono (RLM) agar (1600 samples) and agar Listeria Ottaviani and Agosti (ALOA; 130 samples). Probabilistic analysis with Bayesian inference model was used to compare paired direct plating and MPN estimates of L. monocytogenes in ice cream samples because assumptions implicit in ordinary least squares (OLS) linear regression analyses were not met for such a comparison. The probabilistic analysis revealed good agreement between the MPN and direct plating estimates, and this agreement showed that the MPN schemes and direct plating schemes using ALOA or RLM evaluated in the present study were suitable for enumerating low levels of L. monocytogenes in these ice cream samples. The statistical analysis further revealed that OLS linear regression analyses of direct plating and MPN data did introduce bias that incorrectly characterized systematic differences between estimates from the two methods. Published by Elsevier B.V.

  19. Figure of merit for macrouniformity based on image quality ruler evaluation and machine learning framework

    NASA Astrophysics Data System (ADS)

    Wang, Weibao; Overall, Gary; Riggs, Travis; Silveston-Keith, Rebecca; Whitney, Julie; Chiu, George; Allebach, Jan P.

    2013-01-01

    Assessment of macro-uniformity is a capability that is important for the development and manufacture of printer products. Our goal is to develop a metric that will predict macro-uniformity, as judged by human subjects, by scanning and analyzing printed pages. We consider two different machine learning frameworks for the metric: linear regression and the support vector machine. We have implemented the image quality ruler, based on the recommendations of the INCITS W1.1 macro-uniformity team. Using 12 subjects at Purdue University and 20 subjects at Lexmark, evenly balanced with respect to gender, we conducted subjective evaluations with a set of 35 uniform b/w prints from seven different printers with five levels of tint coverage. Our results suggest that the image quality ruler method provides a reliable means to assess macro-uniformity. We then defined and implemented separate features to measure graininess, mottle, large area variation, jitter, and large-scale non-uniformity. The algorithms that we used are largely based on ISO image quality standards. Finally, we used these features computed for a set of test pages and the subjects' image quality ruler assessments of these pages to train the two different predictors - one based on linear regression and the other based on the support vector machine (SVM). Using five-fold cross-validation, we confirmed the efficacy of our predictor.

  20. Using the social cognitive theory to understand physical activity among dialysis patients.

    PubMed

    Patterson, Megan S; Umstattd Meyer, M Renée; Beaujean, A Alexander; Bowden, Rodney G

    2014-08-01

    The purpose of this study was to use the social cognitive theory (SCT) constructs self-efficacy, outcome expectations, and self-regulation to better understand associations of physical activity (PA) behaviors among dialysis patients after controlling for demographic and health-related factors. This study was cross-sectional in design. Participants (N = 115; mean age = 61.51 years, SD = 14.01) completed self-report questionnaires during a regularly scheduled dialysis treatment session. Bivariate and hierarchical linear regression analyses were conducted to examine relationships among SCT constructs and PA. Significant relationships between PA and self-efficacy (r = .336), self-regulation (r = .280), and outcome expectations (r = .265) were detected among people on dialysis in bivariate analyses. Hierarchical linear regression revealed significant increases in variance explained for the addition of self-efficacy, self-regulation, and covariates (p < .01). Younger age, self-efficacy, and self-regulation were associated (p < .10) with greater participation in physical activity in the final model (R² = .272). Conclusion/Implication: This research supports the use of SCT in understanding PA among people undergoing dialysis treatment. The findings of this study can help health educators and health care practitioners better understand PA and how to promote it among this population. Future research should further investigate which activities dialysis patients participate in across the life span of their disease. Future PA programs should focus on increasing a patient's self-efficacy and self-regulation.

  1. Impact of the Holocaust on the Rehabilitation Outcome of Older Patients Sustaining a Hip Fracture.

    PubMed

    Mizrahi, Eliyahu H; Lubart, Emilia; Heymann, Anthony; Leibovitz, Arthur

    2017-04-01

    Holocaust survivors report a much higher prevalence of osteoporosis and fracture in the hip joint compared to those who were not Holocaust survivors. To evaluate whether being a Holocaust survivor could affect the functional outcome of hip fracture in patients 64 years of age and older undergoing rehabilitation. A retrospective cohort study compromising 140 consecutive hip fracture patients was conducted in a geriatric and rehabilitation department of a university-affiliated hospital. Being a Holocaust survivor was based on registry data. Functional outcome was assessed by the Functional Independence Measure (FIM)TM at admission and discharge from the rehabilitation ward. Data were analyzed by t-test, chi-square test, and linear regression analysis. Total and motor FIM scores at admission (P = 0.004 and P = 0.006, respectively) and total and motor FIM gain scores at discharge (P = 0.008 and P = 0.004 respectively) were significantly higher in non-Holocaust survivors compared with Holocaust survivors. A linear regression analysis showed that being a Holocaust survivor was predictive of lower total FIM scores at discharge (β = -0.17, P = 0.004). Hip fracture in Holocaust survivors showed lower total, motor FIM and gain scores at discharge compared to non-Holocaust survivor patients. These results suggest that being a Holocaust survivor could adversely affect the rehabilitation outcome following fracture of the hip and internal fixation.

  2. The relationship between praying and life expectancy in cancerous patients.

    PubMed

    Hekmati Pour, N; Hojjati, H

    2015-01-01

    Introduction. Knowing that someone was entangled with cancer is a surprising experience for that person. Being aware of having cancer not only makes the person loose his hopes and ambitions, but also influences his body and mental. Meanwhile, religion can play the proper role of complementary treatment, increasing life expectancy in these patients. Objective. The study was conducted with the aim of determining the relationship between praying and life expectancy in cancerous patients. Method. This descriptive correlation study was performed on 96 malignant patients who were under chemotherapy in Golestan province in 1392. Paloma and Pendleton's Measure of Prayer Type questionnaires and Schneider questionnaire of life expectancy were used to collect this information. Analyses were performed by using SPSS 21.0. Data were analyzed by using the linear regression and the analytical significance was set at p < 0.05. Findings. The linear regression showed a significant relationship between life expectancy and praying (CI95:0.01-0.13), OR = 0.07, Beta = -0.24 P < 0.02) and in the light of previous experience it showed a significant relationship between praying and life expectancy. Conclusion. According to the obtained result of this study, cancerous patients can overcome their illness through praying, and they can also triumph cancer through self-confidence and control it, by getting more knowledge of their disease and become more hopeful about their future.

  3. Does raising type 1 error rate improve power to detect interactions in linear regression models? A simulation study.

    PubMed

    Durand, Casey P

    2013-01-01

    Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.

  4. Internal and external environmental factors affecting the performance of hospital-based home nursing care.

    PubMed

    Noh, J-W; Kwon, Y-D; Yoon, S-J; Hwang, J-I

    2011-06-01

    Numerous studies on HNC services have been carried out by signifying their needs, efficiency and effectiveness. However, no study has ever been performed to determine the critical factors associated with HNC's positive results despite the deluge of positive studies on the service. This study included all of the 89 training hospitals that were practising HNC service in Korea as of November 2006. The input factors affecting the performance were classified as either internal or external environmental factors. This analysis was conducted to understand the impact that the corresponding factors had on performance. Data were analysed by using multiple linear regressions. The internal and external environment variables affected the performance of HNC based on univariate analysis. The meaningful variables were internal environmental factors. Specifically, managerial resource (the number of operating beds and the outpatient/inpatient ratio) were meaningful when the multiple linear regression analysis was performed. Indeed, the importance of organizational culture (the passion of HNC nurses) was significant. This study, considering the limited market size of Korea, illustrates that the critical factor for the development of hospital-led HNC lies with internal environmental factors rather than external ones. Among the internal environmental factors, the hospitals' managerial resource-related factors (specifically, the passion of nurses) were the most important contributing element. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.

  5. A hierarchical model for estimating change in American Woodcock populations

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Kendall, W.L.; Kelley, J.R.; Niven, D.K.

    2008-01-01

    The Singing-Ground Survey (SGS) is a primary source of information on population change for American woodcock (Scolopax minor). We analyzed the SGS using a hierarchical log-linear model and compared the estimates of change and annual indices of abundance to a route regression analysis of SGS data. We also grouped SGS routes into Bird Conservation Regions (BCRs) and estimated population change and annual indices using BCRs within states and provinces as strata. Based on the hierarchical model?based estimates, we concluded that woodcock populations were declining in North America between 1968 and 2006 (trend = -0.9%/yr, 95% credible interval: -1.2, -0.5). Singing-Ground Survey results are generally similar between analytical approaches, but the hierarchical model has several important advantages over the route regression. Hierarchical models better accommodate changes in survey efficiency over time and space by treating strata, years, and observers as random effects in the context of a log-linear model, providing trend estimates that are derived directly from the annual indices. We also conducted a hierarchical model analysis of woodcock data from the Christmas Bird Count and the North American Breeding Bird Survey. All surveys showed general consistency in patterns of population change, but the SGS had the shortest credible intervals. We suggest that population management and conservation planning for woodcock involving interpretation of the SGS use estimates provided by the hierarchical model.

  6. Age is no barrier: predictors of academic success in older learners

    NASA Astrophysics Data System (ADS)

    Imlach, Abbie-Rose; Ward, David D.; Stuart, Kimberley E.; Summers, Mathew J.; Valenzuela, Michael J.; King, Anna E.; Saunders, Nichole L.; Summers, Jeffrey; Srikanth, Velandai K.; Robinson, Andrew; Vickers, James C.

    2017-11-01

    Although predictors of academic success have been identified in young adults, such predictors are unlikely to translate directly to an older student population, where such information is scarce. The current study aimed to examine cognitive, psychosocial, lifetime, and genetic predictors of university-level academic performance in older adults (50-79 years old). Participants were mostly female (71%) and had a greater than high school education level (M = 14.06 years, SD = 2.76), on average. Two multiple linear regression analyses were conducted. The first examined all potential predictors of grade point average (GPA) in the subset of participants who had volunteered samples for genetic analysis (N = 181). Significant predictors of GPA were then re-examined in a second multiple linear regression using the full sample (N = 329). Our data show that the cognitive domains of episodic memory and language processing, in conjunction with midlife engagement in cognitively stimulating activities, have a role in predicting academic performance as measured by GPA in the first year of study. In contrast, it was determined that age, IQ, gender, working memory, psychosocial factors, and common brain gene polymorphisms linked to brain function, plasticity and degeneration (APOE, BDNF, COMT, KIBRA, SERT) did not influence academic performance. These findings demonstrate that ageing does not impede academic achievement, and that discrete cognitive skills as well as lifetime engagement in cognitively stimulating activities can promote academic success in older adults.

  7. Some comparisons of complexity in dictionary-based and linear computational models.

    PubMed

    Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello

    2011-03-01

    Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    PubMed

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.

  9. Continuous infusion of low-dose unfractionated heparin after aneurysmal subarachnoid hemorrhage: a preliminary study of cognitive outcomes.

    PubMed

    James, Robert F; Khattar, Nicolas K; Aljuboori, Zaid S; Page, Paul S; Shao, Elaine Y; Carter, Lacey M; Meyer, Kimberly S; Daniels, Michael W; Craycroft, John; Gaughen, John R; Chaudry, M Imran; Rai, Shesh N; Everhart, D Erik; Simard, J Marc

    2018-05-11

    OBJECTIVE Cognitive dysfunction occurs in up to 70% of aneurysmal subarachnoid hemorrhage (aSAH) survivors. Low-dose intravenous heparin (LDIVH) infusion using the Maryland protocol was recently shown to reduce clinical vasospasm and vasospasm-related infarction. In this study, the Montreal Cognitive Assessment (MoCA) was used to evaluate cognitive changes in aSAH patients treated with the Maryland LDIVH protocol compared with controls. METHODS A retrospective analysis of all patients treated for aSAH between July 2009 and April 2014 was conducted. Beginning in 2012, aSAH patients were treated with LDIVH in the postprocedural period. The MoCA was administered to all aSAH survivors prospectively during routine follow-up visits, at least 3 months after aSAH, by trained staff blinded to treatment status. Mean MoCA scores were compared between groups, and regression analyses were performed for relevant factors. RESULTS No significant differences in baseline characteristics were observed between groups. The mean MoCA score for the LDIVH group (n = 25) was 26.4 compared with 22.7 in controls (n = 22) (p = 0.013). Serious cognitive impairment (MoCA ≤ 20) was observed in 32% of controls compared with 0% in the LDIVH group (p = 0.008). Linear regression analysis demonstrated that only LDIVH was associated with a positive influence on MoCA scores (β = 3.68, p =0.019), whereas anterior communicating artery aneurysms and fevers were negatively associated with MoCA scores. Multivariable linear regression analysis resulted in all 3 factors maintaining significance. There were no treatment complications. CONCLUSIONS This preliminary study suggests that the Maryland LDIVH protocol may improve cognitive outcomes in aSAH patients. A randomized controlled trial is needed to determine the safety and potential benefit of unfractionated heparin in aSAH patients.

  10. Associations between maternal long-chain polyunsaturated fatty acid concentrations and child cognition at 7 years of age: The MEFAB birth cohort.

    PubMed

    Brouwer-Brolsma, E M; van de Rest, O; Godschalk, R; Zeegers, M P A; Gielen, M; de Groot, R H M

    2017-11-01

    Concentrations of the fish fatty acids EPA and DHA are low among Dutch women of reproductive age. As the human brain incorporates high concentrations of these fatty acids in utero, particularly during third trimester of gestation, these low EPA and DHA concentrations may have adverse consequences for fetal brain development and functioning. Analyses were conducted using longitudinal observational data of 292 mother-child pairs participating in the MEFAB cohort. Maternal AA, DHA, and EPA were determined in plasma phospholipids - obtained in three trimesters - by gas-liquid chromatography. Cognitive function was assessed at 7 years of age, using the Kaufman Assessment Battery for Children, resulting in three main outcome parameters: sequential processing (short-term memory), simultaneous processing (problem-solving skills), and the mental processing composite score. Spline regression and linear regression analyses were used to analyse the data, while adjusting for potential relevant covariates. Only 2% of the children performed more than one SD below the mental processing composite norm score. Children with lower test scores (<25%) were more likely to have a younger mother with a higher pre-gestational BMI, less likely to be breastfed, and more likely to be born with a lower birth weight, compared to children with higher test scores (≥25%). Fully-adjusted linear regression models did not show associations of maternal AA, DHA, or EPA status during any of the pregnancy trimesters with childhood sequential and simultaneous processing. Maternal fatty acid status during pregnancy was not associated with cognitive performance in Dutch children at age 7. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Aboveground biomass of three conifers in Qianyanzhou plantation].

    PubMed

    Li, Xuanran; Liu, Qijing; Chen, Yongrui; Hu, Lile; Yang, Fengting

    2006-08-01

    In this paper, the regressive models of the aboveground biomass of Pinus elliottii, P. massoniana and Cunninghamia lanceolata in Qianyanzhou of subtropical China were established, and the regression analysis on the dry weight of leaf biomass and total biomass against branch diameter (d), branch length (L), d3 and d2L was conducted with linear, power and exponent functions. Power equation with single parameter (d) was proved to be better than the rests for P. massoniana and C. lanceolata, and linear equation with parameter (d3) was better for P. elliottii. The canopy biomass was derived by the regression equations for all branches. These equations were also used to fit the relationships of total tree biomass, branch biomass and foliage biomass with tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. For foliage-and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P <0.001) for foliage-, branch-and total biomass, with the highest for total biomass. By these equations, the aboveground biomass and its allocation were estimated, with the aboveground biomass of P. massoniana, P. elliottii, and C. lanceolata forests being 83.6, 72. 1 and 59 t x hm(-2), respectively, and more stem biomass than foliage-and branch biomass. According to the previous studies, the underground biomass of these three forests was estimated to be 10.44, 9.42 and 11.48 t x hm(-2), and the amount of fixed carbon was 47.94, 45.14 and 37.52 t x hm(-2), respectively.

  12. The Association of Fever with Total Mechanical Ventilation Time in Critically Ill Patients.

    PubMed

    Park, Dong Won; Egi, Moritoki; Nishimura, Masaji; Chang, Youjin; Suh, Gee Young; Lim, Chae Man; Kim, Jae Yeol; Tada, Keiichi; Matsuo, Koichi; Takeda, Shinhiro; Tsuruta, Ryosuke; Yokoyama, Takeshi; Kim, Seon Ok; Koh, Younsuck

    2016-12-01

    This research aims to investigate the impact of fever on total mechanical ventilation time (TVT) in critically ill patients. Subgroup analysis was conducted using a previous prospective, multicenter observational study. We included mechanically ventilated patients for more than 24 hours from 10 Korean and 15 Japanese intensive care units (ICU), and recorded maximal body temperature under the support of mechanical ventilation (MAX(MV)). To assess the independent association of MAX(MV) with TVT, we used propensity-matched analysis in a total of 769 survived patients with medical or surgical admission, separately. Together with multiple linear regression analysis to evaluate the association between the severity of fever and TVT, the effect of MAX(MV) on ventilator-free days was also observed by quantile regression analysis in all subjects including non-survivors. After propensity score matching, a MAX(MV) ≥ 37.5°C was significantly associated with longer mean TVT by 5.4 days in medical admission, and by 1.2 days in surgical admission, compared to those with MAX(MV) of 36.5°C to 37.4°C. In multivariate linear regression analysis, patients with three categories of fever (MAX(MV) of 37.5°C to 38.4°C, 38.5°C to 39.4°C, and ≥ 39.5°C) sustained a significantly longer duration of TVT than those with normal range of MAX(MV) in both categories of ICU admission. A significant association between MAX(MV) and mechanical ventilator-free days was also observed in all enrolled subjects. Fever may be a detrimental factor to prolong TVT in mechanically ventilated patients. These findings suggest that fever in mechanically ventilated patients might be associated with worse mechanical ventilation outcome.

  13. The Association Between Internet Use and Ambulatory Care-Seeking Behaviors in Taiwan: A Cross-Sectional Study.

    PubMed

    Hsieh, Ronan Wenhan; Chen, Likwang; Chen, Tsung-Fu; Liang, Jyh-Chong; Lin, Tzu-Bin; Chen, Yen-Yuan; Tsai, Chin-Chung

    2016-12-07

    Compared with the traditional ways of gaining health-related information from newspapers, magazines, radio, and television, the Internet is inexpensive, accessible, and conveys diverse opinions. Several studies on how increasing Internet use affected outpatient clinic visits were inconclusive. The objective of this study was to examine the role of Internet use on ambulatory care-seeking behaviors as indicated by the number of outpatient clinic visits after adjusting for confounding variables. We conducted this study using a sample randomly selected from the general population in Taiwan. To handle the missing data, we built a multivariate logistic regression model for propensity score matching using age and sex as the independent variables. The questionnaires with no missing data were then included in a multivariate linear regression model for examining the association between Internet use and outpatient clinic visits. We included a sample of 293 participants who answered the questionnaire with no missing data in the multivariate linear regression model. We found that Internet use was significantly associated with more outpatient clinic visits (P=.04). The participants with chronic diseases tended to make more outpatient clinic visits (P<.01). The inconsistent quality of health-related information obtained from the Internet may be associated with patients' increasing need for interpreting and discussing the information with health care professionals, thus resulting in an increasing number of outpatient clinic visits. In addition, the media literacy of Web-based health-related information seekers may also affect their ambulatory care-seeking behaviors, such as outpatient clinic visits. ©Ronan Wenhan Hsieh, Likwang Chen, Tsung-Fu Chen, Jyh-Chong Liang, Tzu-Bin Lin, Yen-Yuan Chen, Chin-Chung Tsai. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 07.12.2016.

  14. Impact of Delayed Time to Advanced Imaging on Missed Appointments Across Different Demographic and Socioeconomic Factors.

    PubMed

    Daye, Dania; Carrodeguas, Emmanuel; Glover, McKinley; Guerrier, Claude Emmanuel; Harvey, H Benjamin; Flores, Efrén J

    2018-05-01

    The aim of this study was to investigate the impact of wait days (WDs) on missed outpatient MRI appointments across different demographic and socioeconomic factors. An institutional review board-approved retrospective study was conducted among adult patients scheduled for outpatient MRI during a 12-month period. Scheduling data and demographic information were obtained. Imaging missed appointments were defined as missed scheduled imaging encounters. WDs were defined as the number of days from study order to appointment. Multivariate logistic regression was applied to assess the contribution of race and socioeconomic factors to missed appointments. Linear regression was performed to assess the relationship between missed appointment rates and WDs stratified by race, income, and patient insurance groups with analysis of covariance statistics. A total of 42,727 patients met the inclusion criteria. Mean WDs were 7.95 days. Multivariate regression showed increased odds ratio for missed appointments for patients with increased WDs (7-21 days: odds ratio [OR], 1.39; >21 days: OR, 1.77), African American patients (OR, 1.71), Hispanic patients (OR, 1.30), patients with noncommercial insurance (OR, 2.00-2.55), and those with imaging performed at the main hospital campus (OR, 1.51). Missed appointment rate linearly increased with WDs, with analysis of covariance revealing underrepresented minorities and Medicaid insurance as significant effect modifiers. Increased WDs for advanced imaging significantly increases the likelihood of missed appointments. This effect is most pronounced among underrepresented minorities and patients with lower socioeconomic status. Efforts to reduce WDs may improve equity in access to and utilization of advanced diagnostic imaging for all patients. Copyright © 2018. Published by Elsevier Inc.

  15. Physical function in older men with hyperkyphosis.

    PubMed

    Katzman, Wendy B; Harrison, Stephanie L; Fink, Howard A; Marshall, Lynn M; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M; Kado, Deborah M

    2015-05-01

    Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71-98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5-1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Diagnosis of Enzyme Inhibition Using Excel Solver: A Combined Dry and Wet Laboratory Exercise

    ERIC Educational Resources Information Center

    Dias, Albino A.; Pinto, Paula A.; Fraga, Irene; Bezerra, Rui M. F.

    2014-01-01

    In enzyme kinetic studies, linear transformations of the Michaelis-Menten equation, such as the Lineweaver-Burk double-reciprocal transformation, present some constraints. The linear transformation distorts the experimental error and the relationship between "x" and "y" axes; consequently, linear regression of transformed data…

  17. Body burden levels of dioxin, furans, and PCBs among frequent consumers of Great Lakes sport fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, C.; Hanrahan, L.; Anderson, H.A.

    1999-02-01

    Dioxins, furans, and polychlorinated biphenyls (PCBs) are toxic, persist in the environment, and bioaccumulate to concentrations that can be harmful to humans. The Health Departments of five GL states, Wisconsin, Michigan, Ohio, Illinois, and Indiana, formed a consortium to study body burden levels of chemical residues in fish consumers of Lakes Michigan, Huron, and Erie. In Fall 1993, a telephone survey was administered to sport angler households to obtain fish consumption habits and demographics. A blood sample was obtained from a portion of the study subjects. One hundred serum samples were analyzed for 8 dioxin, 10 furan, and 4 coplanarmore » PCB congeners. Multiple linear regression was conducted to assess the predictability of the following covariates: GL sport fish species, age, BMI, gender, years sport fish consumed, and lake. Median total dioxin toxic equivalents (TEq), total furan TEq, and total coplanar PCB TEq were higher among all men than all women (P = 0.0001). Lake trout, salmon, age, BMI, and gender were significant regression predictors of log (total coplanar PCBs). Lake trout, age, gender, and lake were significant regression predictors of log (total furans). Age was the only significant predictor of total dioxin levels.« less

  18. An evaluation of supervised classifiers for indirectly detecting salt-affected areas at irrigation scheme level

    NASA Astrophysics Data System (ADS)

    Muller, Sybrand Jacobus; van Niekerk, Adriaan

    2016-07-01

    Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.

  19. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  20. Clustering performance comparison using K-means and expectation maximization algorithms.

    PubMed

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  1. Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Schwartz, C. S.

    2017-12-01

    Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.

  2. Kinetic microplate bioassays for relative potency of antibiotics improved by partial Least Square (PLS) regression.

    PubMed

    Francisco, Fabiane Lacerda; Saviano, Alessandro Morais; Almeida, Túlia de Souza Botelho; Lourenço, Felipe Rebello

    2016-05-01

    Microbiological assays are widely used to estimate the relative potencies of antibiotics in order to guarantee the efficacy, safety, and quality of drug products. Despite of the advantages of turbidimetric bioassays when compared to other methods, it has limitations concerning the linearity and range of the dose-response curve determination. Here, we proposed to use partial least squares (PLS) regression to solve these limitations and to improve the prediction of relative potencies of antibiotics. Kinetic-reading microplate turbidimetric bioassays for apramacyin and vancomycin were performed using Escherichia coli (ATCC 8739) and Bacillus subtilis (ATCC 6633), respectively. Microbial growths were measured as absorbance up to 180 and 300min for apramycin and vancomycin turbidimetric bioassays, respectively. Conventional dose-response curves (absorbances or area under the microbial growth curve vs. log of antibiotic concentration) showed significant regression, however there were significant deviation of linearity. Thus, they could not be used for relative potency estimations. PLS regression allowed us to construct a predictive model for estimating the relative potencies of apramycin and vancomycin without over-fitting and it improved the linear range of turbidimetric bioassay. In addition, PLS regression provided predictions of relative potencies equivalent to those obtained from agar diffusion official methods. Therefore, we conclude that PLS regression may be used to estimate the relative potencies of antibiotics with significant advantages when compared to conventional dose-response curve determination. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Note on the Relationship between the Number of Indicators and Their Reliability in Detecting Regression Coefficients in Latent Regression Analysis

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Wicherts, Jelte M.; Molenaar, Peter C. M.

    2004-01-01

    We consider the question of how variation in the number and reliability of indicators affects the power to reject the hypothesis that the regression coefficients are zero in latent linear regression analysis. We show that power remains constant as long as the coefficient of determination remains unchanged. Any increase in the number of indicators…

  4. Improving mass-univariate analysis of neuroimaging data by modelling important unknown covariates: Application to Epigenome-Wide Association Studies.

    PubMed

    Guillaume, Bryan; Wang, Changqing; Poh, Joann; Shen, Mo Jun; Ong, Mei Lyn; Tan, Pei Fang; Karnani, Neerja; Meaney, Michael; Qiu, Anqi

    2018-06-01

    Statistical inference on neuroimaging data is often conducted using a mass-univariate model, equivalent to fitting a linear model at every voxel with a known set of covariates. Due to the large number of linear models, it is challenging to check if the selection of covariates is appropriate and to modify this selection adequately. The use of standard diagnostics, such as residual plotting, is clearly not practical for neuroimaging data. However, the selection of covariates is crucial for linear regression to ensure valid statistical inference. In particular, the mean model of regression needs to be reasonably well specified. Unfortunately, this issue is often overlooked in the field of neuroimaging. This study aims to adopt the existing Confounder Adjusted Testing and Estimation (CATE) approach and to extend it for use with neuroimaging data. We propose a modification of CATE that can yield valid statistical inferences using Principal Component Analysis (PCA) estimators instead of Maximum Likelihood (ML) estimators. We then propose a non-parametric hypothesis testing procedure that can improve upon parametric testing. Monte Carlo simulations show that the modification of CATE allows for more accurate modelling of neuroimaging data and can in turn yield a better control of False Positive Rate (FPR) and Family-Wise Error Rate (FWER). We demonstrate its application to an Epigenome-Wide Association Study (EWAS) on neonatal brain imaging and umbilical cord DNA methylation data obtained as part of a longitudinal cohort study. Software for this CATE study is freely available at http://www.bioeng.nus.edu.sg/cfa/Imaging_Genetics2.html. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Is chloroquine chemoprophylaxis still effective to prevent low birth weight? Results of a study in Benin

    PubMed Central

    Denoeud, Lise; Fievet, Nadine; Aubouy, Agnès; Ayemonna, Paul; Kiniffo, Richard; Massougbodji, Achille; Cot, Michel

    2007-01-01

    Background In areas of stable transmission, malaria during pregnancy is associated with severe maternal and foetal outcomes, especially low birth weight (LBW). To prevent these complications, weekly chloroquine (CQ) chemoprophylaxis is now being replaced by intermittent preventive treatment with sulfadoxine-pyrimethamine in West Africa. The prevalence of placental malaria and its burden on LBW were assessed in Benin to evaluate the efficacy of weekly CQ chemoprophylaxis, prior to its replacement by intermittent preventive treatment. Methods In two maternity clinics in Ouidah, an observational study was conducted between April 2004 and April 2005. At each delivery, placental blood smears were examined for malaria infection and women were interviewed on their pregnancy history including CQ intake and dosage. CQ was measured in the urine of a sub-sample (n = 166). Multiple logistic and linear regression were used to assess factors associated with LBW and placental malaria. Results Among 1090 singleton live births, prevalence of placental malaria and LBW were 16% and 17% respectively. After adjustment, there was a non-significant association between placental malaria and LBW (adjusted OR = 1.43; P = 0.10). Multiple linear regression showed a positive association between placental malaria and decreased birth weight in primigravidae. More than 98% of the women reported regular chemoprophylaxis and CQ was detectable in 99% of urine samples. Protection from LBW was high in women reporting regular CQ prophylaxis, with a strong duration-effect relationship (test for linear trend: P < 0,001). Conclusion Despite high parasite resistance and limited effect on placental malaria, a CQ chemoprophylaxis taken at adequate doses showed to be still effective in reducing LBW in Benin. PMID:17341298

  6. [Association between distribution of bacillary dysentery and meteorological factors in Beijing, 2004-2015].

    PubMed

    Du, Z; Zhang, J; Lu, J X; Lu, L P

    2018-05-10

    Objective: To analyze the distribution characteristics of bacillary dysentery in Beijing during 2004-2015 and evaluate the influence of meteorological factors on the temporal and spatial distribution of bacillary dysentery. Methods: The incidence data of bacterial dysentery and meteorological data in Beijing from 2004 to 2015 were collected. Descriptive epidemiological analysis was conducted to study the distribution characteristics of bacterial dysentery. Linear correlation analysis and multiple linear regression analysis were carried out to investigate the relationship between the incidence of bacillary dysentery and average precipitation, average air temperature, sunshine hours, average wind speed, average air pressure, gale and rain days. Results: A total of 280 704 cases of bacterial dysentery, including 36 deaths, were reported from 2004 to 2015 in Beijing, the average annual incidence was 130.15/100 000. The annual incidence peak was mainly between May and October, the cases occurred during this period accounted for 80.75 % of the total, and the incidence was highest in age group 0 year. The population distribution showed that most cases were children outside child care settings and students, and the sex ratio of the cases was 1.22∶1. The reported incidence of bacillary dysentery was positively associated with average precipitation, average air temperature and rain days with the correlation coefficients of 0.931, 0.878 and 0.888, but it was negatively associated with the average pressure, the correlation coefficient was -0.820. Multiple linear regression equation for fitting analysis of bacillary dysentery and meteorological factors was Y =3.792+0.162 X (1). Conclusion: The reported incidence of bacillary dysentery in Beijing was much higher than national level. The annual incidence peak was during July to August, and the average precipitation was an important meteorological factor influencing the incidence of bacillary dysentery.

  7. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, M.J.; Addis, R.P.

    1991-04-04

    The Department of Energy (DOE) Environment, Safety and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0--25 mph regression equations than 0--50 mphmore » regression equations. Higher wind speeds were slightly overpredicted by the 0--25 mph regression equations when compared to 0--50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweight the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0--25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.« less

  8. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    NASA Astrophysics Data System (ADS)

    Parker, M. J.; Addis, R. P.

    1991-04-01

    The Department of Energy (DOE) Environment, Safety, and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0-25 mph regression equations than 0-50 mph regression equations. Higher wind speeds were slightly overpredicted by the 0-25 mph regression equations when compared to 0-50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweigh the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0-25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.

  9. Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne lidar with Radarsat-2 imagery via geostatistical models

    NASA Astrophysics Data System (ADS)

    Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng

    2014-11-01

    Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.

  10. Manipulation of peripheral neural feedback loops alters human corticomuscular coherence

    PubMed Central

    Riddle, C Nicholas; Baker, Stuart N

    2005-01-01

    Sensorimotor EEG shows ∼20 Hz coherence with contralateral EMG. This could involve efferent and/or afferent components of the sensorimotor loop. We investigated the pathways responsible for coherence genesis by manipulating nervous conduction delays using cooling. Coherence between left sensorimotor EEG and right EMG from three hand and two forearm muscles was assessed in healthy subjects during the hold phase of a precision grip task. The right arm was then cooled to 10°C for ∼90 min, increasing peripheral motor conduction time (PMCT) by ∼35% (assessed by F-wave latency). EEG and EMG recordings were repeated, and coherence recalculated. Control recordings revealed a heterogeneous subject population. In 6/15 subjects (Group A), the corticomuscular coherence phase increased linearly with frequency, as expected if oscillations were propagated along efferent pathways from cortex to muscle. The mean corticomuscular conduction delay for intrinsic hand muscles calculated from the phase–frequency regression slope was 10.4 ms; this is smaller than the delay expected for conduction over fast corticospinal pathways. In 8/15 subjects (Group B), the phase showed no dependence with frequency. One subject showed both Group A and Group B patterns over different frequency ranges. Following cooling, averaged corticomuscular coherence was decreased in Group A subjects, but unchanged for Group B, even though both groups showed comparable slowing of nervous conduction. The delay calculated from the slope of the phase–frequency regression was increased following cooling. However, the size of this increase was around twice the rise in PMCT measured using the F-wave (regression slope 2.33, 95% confidence limits 1.30–3.36). Both afferent and efferent peripheral nerves will be slowed by similar amounts following cooling. The change in delay calculated from the coherence phase therefore better matches the rise in total sensorimotor feedback loop time caused by cooling, rather than just the change in the efferent limb. A model of corticomuscular coherence which assumes that only efferent pathways contribute cannot be reconciled to these results. The data rather suggest that afferent feedback pathways may also play a role in the genesis of corticomuscular coherence. PMID:15919711

  11. Alcohol Consumption as a Risk Factor for Acute and Chronic Pancreatitis: A Systematic Review and a Series of Meta-analyses.

    PubMed

    Samokhvalov, Andriy V; Rehm, Jürgen; Roerecke, Michael

    2015-12-01

    Pancreatitis is a highly prevalent medical condition associated with a spectrum of endocrine and exocrine pancreatic insufficiencies. While high alcohol consumption is an established risk factor for pancreatitis, its relationship with specific types of pancreatitis and a potential threshold have not been systematically examined. We conducted a systematic literature search for studies on the association between alcohol consumption and pancreatitis based on PRISMA guidelines. Non-linear and linear random-effect dose-response meta-analyses using restricted cubic spline meta-regressions and categorical meta-analyses in relation to abstainers were conducted. Seven studies with 157,026 participants and 3618 cases of pancreatitis were included into analyses. The dose-response relationship between average volume of alcohol consumption and risk of pancreatitis was monotonic with no evidence of non-linearity for chronic pancreatitis (CP) for both sexes (p = 0.091) and acute pancreatitis (AP) in men (p = 0.396); it was non-linear for AP in women (p = 0.008). Compared to abstention, there was a significant decrease in risk (RR = 0.76, 95%CI: 0.60-0.97) of AP in women below the threshold of 40 g/day. No such association was found in men (RR = 1.1, 95%CI: 0.69-1.74). The RR for CP at 100 g/day was 6.29 (95%CI: 3.04-13.02). The dose-response relationships between alcohol consumption and risk of pancreatitis were monotonic for CP and AP in men, and non-linear for AP in women. Alcohol consumption below 40 g/day was associated with reduced risk of AP in women. Alcohol consumption beyond this level was increasingly detrimental for any type of pancreatitis. The work was financially supported by a grant from the National Institute on Alcohol Abuse and Alcoholism (R21AA023521) to the last author.

  12. Alcohol Consumption as a Risk Factor for Acute and Chronic Pancreatitis: A Systematic Review and a Series of Meta-analyses

    PubMed Central

    Samokhvalov, Andriy V.; Rehm, Jürgen; Roerecke, Michael

    2015-01-01

    Background Pancreatitis is a highly prevalent medical condition associated with a spectrum of endocrine and exocrine pancreatic insufficiencies. While high alcohol consumption is an established risk factor for pancreatitis, its relationship with specific types of pancreatitis and a potential threshold have not been systematically examined. Methods We conducted a systematic literature search for studies on the association between alcohol consumption and pancreatitis based on PRISMA guidelines. Non-linear and linear random-effect dose–response meta-analyses using restricted cubic spline meta-regressions and categorical meta-analyses in relation to abstainers were conducted. Findings Seven studies with 157,026 participants and 3618 cases of pancreatitis were included into analyses. The dose–response relationship between average volume of alcohol consumption and risk of pancreatitis was monotonic with no evidence of non-linearity for chronic pancreatitis (CP) for both sexes (p = 0.091) and acute pancreatitis (AP) in men (p = 0.396); it was non-linear for AP in women (p = 0.008). Compared to abstention, there was a significant decrease in risk (RR = 0.76, 95%CI: 0.60–0.97) of AP in women below the threshold of 40 g/day. No such association was found in men (RR = 1.1, 95%CI: 0.69–1.74). The RR for CP at 100 g/day was 6.29 (95%CI: 3.04–13.02). Interpretation The dose–response relationships between alcohol consumption and risk of pancreatitis were monotonic for CP and AP in men, and non-linear for AP in women. Alcohol consumption below 40 g/day was associated with reduced risk of AP in women. Alcohol consumption beyond this level was increasingly detrimental for any type of pancreatitis. Funding The work was financially supported by a grant from the National Institute on Alcohol Abuse and Alcoholism (R21AA023521) to the last author. PMID:26844279

  13. Development of a Multiple Linear Regression Model to Forecast Facility Electrical Consumption at an Air Force Base.

    DTIC Science & Technology

    1981-09-01

    corresponds to the same square footage that consumed the electrical energy. 3. The basic assumptions of multiple linear regres- sion, as enumerated in...7. Data related to the sample of bases is assumed to be representative of bases in the population. Limitations Basic limitations on this research were... Ratemaking --Overview. Rand Report R-5894, Santa Monica CA, May 1977. Chatterjee, Samprit, and Bertram Price. Regression Analysis by Example. New York: John

  14. Study on power grid characteristics in summer based on Linear regression analysis

    NASA Astrophysics Data System (ADS)

    Tang, Jin-hui; Liu, You-fei; Liu, Juan; Liu, Qiang; Liu, Zhuan; Xu, Xi

    2018-05-01

    The correlation analysis of power load and temperature is the precondition and foundation for accurate load prediction, and a great deal of research has been made. This paper constructed the linear correlation model between temperature and power load, then the correlation of fault maintenance work orders with the power load is researched. Data details of Jiangxi province in 2017 summer such as temperature, power load, fault maintenance work orders were adopted in this paper to develop data analysis and mining. Linear regression models established in this paper will promote electricity load growth forecast, fault repair work order review, distribution network operation weakness analysis and other work to further deepen the refinement.

  15. Interpreting Regression Results: beta Weights and Structure Coefficients are Both Important.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    Various realizations have led to less frequent use of the "OVA" methods (analysis of variance--ANOVA--among others) and to more frequent use of general linear model approaches such as regression. However, too few researchers understand all the various coefficients produced in regression. This paper explains these coefficients and their…

  16. Spatial Assessment of Model Errors from Four Regression Techniques

    Treesearch

    Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove

    2005-01-01

    Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...

  17. Quantile Regression in the Study of Developmental Sciences

    ERIC Educational Resources Information Center

    Petscher, Yaacov; Logan, Jessica A. R.

    2014-01-01

    Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of…

  18. Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)

    DTIC Science & Technology

    1987-10-01

    Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE

  19. Experimental and computational prediction of glass transition temperature of drugs.

    PubMed

    Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S

    2014-12-22

    Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.

  20. Multiresponse semiparametric regression for modelling the effect of regional socio-economic variables on the use of information technology

    NASA Astrophysics Data System (ADS)

    Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania

    2017-03-01

    Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.

  1. Regression analysis using dependent Polya trees.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Investigation of pajama properties on skin under mild cold conditions: the interaction between skin and clothing.

    PubMed

    Yao, Lei; Gohel, Mayur D I; Li, Yi; Chung, Waiyee J

    2011-07-01

    Clothing is considered the second skin of the human body. The aim of this study was to determine clothing-wearer interaction on skin physiology under mild cold conditions. Skin physiological parameters, subjective sensory response, stress level, and physical properties of clothing fabric from two longitude parallel-designed wear trials were studied. The wear trials involved four kinds of pajamas made from cotton or polyester material that had hydrophilic or hydrophobic treatment, conducted for three weeks under mild cold conditions. Statistical tools, factor analysis, hierarchical linear regression, and logistic regression were applied to analyze the strong predictors of skin physiological parameters, stress level, and sensory response. A framework was established to illustrate clothing-wearer interactions with clothing fabric properties, skin physiology, stress level, and sensory response under mild cold conditions. Fabric has various effects on the human body under mild cold conditions. A fabric's properties influence skin physiology, sensation, and psychological response. © 2011 The International Society of Dermatology.

  3. Relationship of negative self-schemas and attachment styles with appearance schemas.

    PubMed

    Ledoux, Tracey; Winterowd, Carrie; Richardson, Tamara; Clark, Julie Dorton

    2010-06-01

    The purpose was to test, among women, the relationship between negative self-schemas and styles of attachment with men and women and two types of appearance investment (Self-evaluative and Motivational Salience). Predominantly Caucasian undergraduate women (N=194) completed a modified version of the Relationship Questionnaire, the Young Schema Questionnaire-Short Form, and the Appearance Schemas Inventory-Revised. Linear multiple regression analyses were conducted with Motivational Salience and Self-evaluative Salience of appearance serving as dependent variables and relevant demographic variables, negative self-schemas, and styles of attachment to men serving as independent variables. Styles of attachment to women were not entered into these regression models because Pearson correlations indicated they were not related to either dependent variable. Self-evaluative Salience of appearance was related to impaired autonomy and performance negative self-schema and the preoccupation style of attachment with men, while Motivational Salience of appearance was related only to the preoccupation style of attachment with men. 2010 Elsevier Ltd. All rights reserved.

  4. Effect of a fall prevention program on balance maintenance using a quasi-experimental design in real-world settings.

    PubMed

    Robitaille, Yvonne; Fournier, Michel; Laforest, Sophie; Gauvin, Lise; Filiatrault, Johanne; Corriveau, Hélène

    2012-08-01

    To examine the effect of a fall prevention program offered under real-world conditions on balance maintenance several months after the program. To explore the program's impact on falls. A quasi-experimental study was conducted among community-dwelling seniors, with pre- and postintervention measures of balance performance and self-reported falls. Ten community-based organizations offered the intervention (98 participants) and 7 recruited participants to the study's control arm (102 participants). An earlier study examined balance immediately after the 12-week program. The present study focuses on the 12-month effect. Linear regression (balance) and negative binomial regression (falls) procedures were performed.falls. During the 12-month study period, experimental participants improved and maintained their balance as reflected by their scores on three performance tests. There was no evidence of an effect on falls.falls. Structured group exercise programs offered in community-based settings can maintain selected components of balance for several months after the program's end.

  5. Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure.

    PubMed

    Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C

    2015-01-01

    We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    PubMed

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  7. A New SEYHAN's Approach in Case of Heterogeneity of Regression Slopes in ANCOVA.

    PubMed

    Ankarali, Handan; Cangur, Sengul; Ankarali, Seyit

    2018-06-01

    In this study, when the assumptions of linearity and homogeneity of regression slopes of conventional ANCOVA are not met, a new approach named as SEYHAN has been suggested to use conventional ANCOVA instead of robust or nonlinear ANCOVA. The proposed SEYHAN's approach involves transformation of continuous covariate into categorical structure when the relationship between covariate and dependent variable is nonlinear and the regression slopes are not homogenous. A simulated data set was used to explain SEYHAN's approach. In this approach, we performed conventional ANCOVA in each subgroup which is constituted according to knot values and analysis of variance with two-factor model after MARS method was used for categorization of covariate. The first model is a simpler model than the second model that includes interaction term. Since the model with interaction effect has more subjects, the power of test also increases and the existing significant difference is revealed better. We can say that linearity and homogeneity of regression slopes are not problem for data analysis by conventional linear ANCOVA model by helping this approach. It can be used fast and efficiently for the presence of one or more covariates.

  8. The Influential Effect of Blending, Bump, Changing Period, and Eclipsing Cepheids on the Leavitt Law

    NASA Astrophysics Data System (ADS)

    García-Varela, A.; Muñoz, J. R.; Sabogal, B. E.; Vargas Domínguez, S.; Martínez, J.

    2016-06-01

    The investigation of the nonlinearity of the Leavitt law (LL) is a topic that began more than seven decades ago, when some of the studies in this field found that the LL has a break at about 10 days. The goal of this work is to investigate a possible statistical cause of this nonlinearity. By applying linear regressions to OGLE-II and OGLE-IV data, we find that to obtain the LL by using linear regression, robust techniques to deal with influential points and/or outliers are needed instead of the ordinary least-squares regression traditionally used. In particular, by using M- and MM-regressions we establish firmly and without doubt the linearity of the LL in the Large Magellanic Cloud, without rejecting or excluding Cepheid data from the analysis. This implies that light curves of Cepheids suggesting blending, bumps, eclipses, or period changes do not affect the LL for this galaxy. For the Small Magellanic Cloud, when including Cepheids of this kind, it is not possible to find an adequate model, probably because of the geometry of the galaxy. In that case, a possible influence of these stars could exist.

  9. Multiple regression technique for Pth degree polynominals with and without linear cross products

    NASA Technical Reports Server (NTRS)

    Davis, J. W.

    1973-01-01

    A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.

  10. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-10-11

    Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.

  11. Adjusted variable plots for Cox's proportional hazards regression model.

    PubMed

    Hall, C B; Zeger, S L; Bandeen-Roche, K J

    1996-01-01

    Adjusted variable plots are useful in linear regression for outlier detection and for qualitative evaluation of the fit of a model. In this paper, we extend adjusted variable plots to Cox's proportional hazards model for possibly censored survival data. We propose three different plots: a risk level adjusted variable (RLAV) plot in which each observation in each risk set appears, a subject level adjusted variable (SLAV) plot in which each subject is represented by one point, and an event level adjusted variable (ELAV) plot in which the entire risk set at each failure event is represented by a single point. The latter two plots are derived from the RLAV by combining multiple points. In each point, the regression coefficient and standard error from a Cox proportional hazards regression is obtained by a simple linear regression through the origin fit to the coordinates of the pictured points. The plots are illustrated with a reanalysis of a dataset of 65 patients with multiple myeloma.

  12. Selection of a Geostatistical Method to Interpolate Soil Properties of the State Crop Testing Fields using Attributes of a Digital Terrain Model

    NASA Astrophysics Data System (ADS)

    Sahabiev, I. A.; Ryazanov, S. S.; Kolcova, T. G.; Grigoryan, B. R.

    2018-03-01

    The three most common techniques to interpolate soil properties at a field scale—ordinary kriging (OK), regression kriging with multiple linear regression drift model (RK + MLR), and regression kriging with principal component regression drift model (RK + PCR)—were examined. The results of the performed study were compiled into an algorithm of choosing the most appropriate soil mapping technique. Relief attributes were used as the auxiliary variables. When spatial dependence of a target variable was strong, the OK method showed more accurate interpolation results, and the inclusion of the auxiliary data resulted in an insignificant improvement in prediction accuracy. According to the algorithm, the RK + PCR method effectively eliminates multicollinearity of explanatory variables. However, if the number of predictors is less than ten, the probability of multicollinearity is reduced, and application of the PCR becomes irrational. In that case, the multiple linear regression should be used instead.

  13. Why are we regressing?

    PubMed

    Jupiter, Daniel C

    2012-01-01

    In this first of a series of statistical methodology commentaries for the clinician, we discuss the use of multivariate linear regression. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. E-cigarette Dual Users, Exclusive Users and Perceptions of Tobacco Products

    PubMed Central

    Cooper, Maria; Case, Kathleen R.; Loukas, Alexandra; Creamer, MeLisa R.; Perry, Cheryl L.

    2016-01-01

    Objectives We examined differences in the characteristics of youth non-users, cigarette-only, e-cigarette-only, and dual e-cigarette and cigarette users. Methods Using weighted, representative data, logistic regression analyses were conducted to examine differences in demographic characteristics and tobacco use behaviors across tobacco usage groups. Multiple linear regression analyses were conducted to examine differences in harm perceptions of various tobacco products and perceived peer use of e-cigarettes by tobacco usage group. Results Compared to non-users, dual users were more likely to be white, male, and high school students. Dual users had significantly higher prevalence of current use of all products (except hookah) than e-cigarette-only users, and higher prevalence of current use of snus and hookah than the cigarette-only group. Dual users had significantly lower harm perceptions for all tobacco products except for e-cigarettes and hookah as compared to e-cigarette-only users. Dual users reported higher peer use of cigarettes as compared to both exclusive user groups. Conclusion Findings highlight dual users’ higher prevalence of use of most other tobacco products, their lower harm perceptions of most tobacco products compared to e-cigarette-only users, and their higher perceived peer use of cigarettes compared to exclusive users. PMID:26685819

  15. No association of smoke-free ordinances with profits from bingo and charitable games in Massachusetts.

    PubMed

    Glantz, S A; Wilson-Loots, R

    2003-12-01

    Because it is widely played, claims that smoking restrictions will adversely affect bingo games is used as an argument against these policies. We used publicly available data from Massachusetts to assess the impact of 100% smoke-free ordinances on profits from bingo and other gambling sponsored by charitable organisations between 1985 and 2001. We conducted two analyses: (1) a general linear model implementation of a time series analysis with net profits (adjusted to 2001 dollars) as the dependent variable, and community (as a fixed effect), year, lagged net profits, and the length of time the ordinance had been in force as the independent variables; (2) multiple linear regression of total state profits against time, lagged profits, and the percentage of the entire state population in communities that allow charitable gaming but prohibit smoking. The general linear model analysis of data from individual communities showed that, while adjusted profits fell over time, this effect was not related to the presence of an ordinance. The analysis in terms of the fraction of the population living in communities with ordinances yielded the same result. Policymakers can implement smoke-free policies without concern that these policies will affect charitable gaming.

  16. Technical note: Evaluation of urinary purine derivatives in comparison with duodenal purines for estimating rumen microbial protein supply in sheep.

    PubMed

    Kozloski, G V; Stefanello, C M; Oliveira, L; Filho, H M N Ribeiro; Klopfenstein, T J

    2017-02-01

    A data set of individual observations was compiled from digestibility trials to examine the relationship between the duodenal purine bases (PB) flow and urinary purine derivatives (PD) excretion and the validity of different equations for estimating rumen microbial N (Nm) supply based on urinary PD in comparison with estimates based on duodenal PB. Trials (8 trials, = 185) were conducted with male sheep fitted with a duodenal T-type cannula, housed in metabolic cages, and fed forage alone or with supplements. The amount of PD excreted in urine was linearly related to the amount of PB flowing to the duodenum ( < 0.05). The intercept of the linear regression was 0.180 mmol/(d·kg), representing the endogenous excretion of PD, and the slope was lower than 1 ( < 0.05), indicating that only 0.43% of the PB in the duodenum was excreted as PD in urine. The Nm supply estimated by either approach was linearly related ( < 0.05) to the digestible OM intake. However, the Nm supply estimated through either of 3 published PD-based equations probably underestimated the Nm supply in sheep.

  17. Estimation of stature using anthropometry of feet and footprints in a Western Australian population.

    PubMed

    Hemy, Naomi; Flavel, Ambika; Ishak, Nur-Intaniah; Franklin, Daniel

    2013-07-01

    The aim of the study is to develop accurate stature estimation models for a contemporary Western Australian population from measurements of the feet and footprints. The sample comprises 200 adults (90 males, 110 females). A stature measurement, three linear measurements from each foot and bilateral footprints were collected from each subject. Seven linear measurements were then extracted from each print. Prior to data collection, a precision test was conducted to determine the repeatability of measurement acquisition. The primary data were then analysed using a range of parametric statistical tests. Results show that all foot and footprint measurements were significantly (P < 0.01-0.001) correlated with stature and estimation models were formulated with a prediction accuracy of ± 4.673 cm to ± 6.926 cm. Left foot length was the most accurate single variable in the simple linear regressions (males: ± 5.065 cm; females: ± 4.777 cm). This study provides viable alternatives for estimating stature in a Western Australian population that are equivalent to established standards developed from foot bones. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. An evaluation of bias in propensity score-adjusted non-linear regression models.

    PubMed

    Wan, Fei; Mitra, Nandita

    2018-03-01

    Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.

  19. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran

    NASA Astrophysics Data System (ADS)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth

    2016-11-01

    The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p < 0.05) between the estimated K from multiple linear regression and measured K indicates that the use of calcium carbonate equivalent as a predictor variable gives a better estimation of K in areas with calcareous soils.

  20. Postmolar gestational trophoblastic neoplasia: beyond the traditional risk factors.

    PubMed

    Bakhtiyari, Mahmood; Mirzamoradi, Masoumeh; Kimyaiee, Parichehr; Aghaie, Abbas; Mansournia, Mohammd Ali; Ashrafi-Vand, Sepideh; Sarfjoo, Fatemeh Sadat

    2015-09-01

    To investigate the slope of linear regression of postevacuation serum hCG as an independent risk factor for postmolar gestational trophoblastic neoplasia (GTN). Multicenter retrospective cohort study. Academic referral health care centers. All subjects with confirmed hydatidiform mole and at least four measurements of β-hCG titer. None. Type and magnitude of the relationship between the slope of linear regression of β-hCG as a new risk factor and GTN using Bayesian logistic regression with penalized log-likelihood estimation. Among the high-risk and low-risk molar pregnancy cases, 11 (18.6%) and 19 cases (13.3%) had GTN, respectively. No significant relationship was found between the components of a high-risk pregnancy and GTN. The β-hCG return slope was higher in the spontaneous cure group. However, the initial level of this hormone in the first measurement was higher in the GTN group compared with in the spontaneous recovery group. The average time for diagnosing GTN in the high-risk molar pregnancy group was 2 weeks less than that of the low-risk molar pregnancy group. In addition to slope of linear regression of β-hCG (odds ratio [OR], 12.74, confidence interval [CI], 5.42-29.2), abortion history (OR, 2.53; 95% CI, 1.27-5.04) and large uterine height for gestational age (OR, 1.26; CI, 1.04-1.54) had the maximum effects on GTN outcome, respectively. The slope of linear regression of β-hCG was introduced as an independent risk factor, which could be used for clinical decision making based on records of β-hCG titer and subsequent prevention program. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

Top