A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aicheler, M; Burrows, P.; Draper, M.
This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less
Latina, Andrea
2017-12-11
The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.
Silicon technologies for the CLIC vertex detector
NASA Astrophysics Data System (ADS)
Spannagel, S.
2017-06-01
CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.
CLIC CDR - physics and detectors: CLIC conceptual design report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, E.; Demarteau, M.; Repond, J.
This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximizemore » the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are
Inherent flexibility of CLIC6 revealed by crystallographic and solution studies.
Ferofontov, Alisa; Strulovich, Roi; Marom, Milit; Giladi, Moshe; Haitin, Yoni
2018-05-02
Chloride intracellular channels (CLICs) are a family of unique proteins, that were suggested to adopt both soluble and membrane-associated forms. Moreover, following this unusual metamorphic change, CLICs were shown to incorporate into membranes and mediate ion conduction in vitro, suggesting multimerization upon membrane insertion. Here, we present a 1.8 Å resolution crystal structure of the CLIC domain of mouse CLIC6 (mCLIC6). The structure reveals a monomeric arrangement and shows a high degree of structural conservation with other CLICs. Small-angle X-ray scattering (SAXS) analysis of mCLIC6 demonstrated that the overall solution structure is similar to the crystallographic conformation. Strikingly, further analysis of the SAXS data using ensemble optimization method unveiled additional elongated conformations, elucidating high structural plasticity as an inherent property of the protein. Moreover, structure-guided perturbation of the inter-domain interface by mutagenesis resulted in a population shift towards elongated conformations of mCLIC6. Additionally, we demonstrate that oxidative conditions induce an increase in mCLIC6 hydrophobicity along with mild oligomerization, which was enhanced by the presence of membrane mimetics. Together, these results provide mechanistic insights into the metamorphic nature of mCLIC6.
Development and testing of a double length pets for the CLIC experimental area
NASA Astrophysics Data System (ADS)
Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.
2014-05-01
CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.
NASA Astrophysics Data System (ADS)
Munker, M.
2017-01-01
Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+ e- Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2% X0 per layer in the vertex detector and 1-2% X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25×25 μm2 and 55×55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm-500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.
Tilapia and human CLIC2 structures are highly conserved.
Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam
2018-01-08
Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.
Lichtner, Valentina; Cornford, Tony; Klecun, Ela
2013-01-01
Successful health information technology (HIT) implementations need to be informed on the context of use and on users' attitudes. To this end, we developed the CLinical Computer Systems Survey (CLICS) instrument. CLICS reflects a socio-technical view of HIT adoption, and is designed to encompass all members of the clinical team. We used the survey in a large English hospital as part of its internal evaluation of the implementation of an electronic patient record system (EPR). The survey revealed extent and type of use of the EPR; how it related to and integrated with other existing systems; and people's views on its use, usability and emergent safety issues. Significantly, participants really appreciated 'being asked'. They also reminded us of the wider range of administrative roles engaged with EPR. This observation reveals pertinent questions as to our understanding of the boundaries between administrative tasks and clinical medicine - what we propose as the field of 'administrative medicine'.
Overview of the CLIC detector and its physics potential
NASA Astrophysics Data System (ADS)
Ström, Rickard
2017-12-01
The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.
CLIC4 regulates cell adhesion and β1 integrin trafficking.
Argenzio, Elisabetta; Margadant, Coert; Leyton-Puig, Daniela; Janssen, Hans; Jalink, Kees; Sonnenberg, Arnoud; Moolenaar, Wouter H
2014-12-15
Chloride intracellular channel protein 4 (CLIC4) exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here, we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signaling, whereas it increases cell motility. LPA stimulates the recruitment of CLIC4 to β1 integrin at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum- or LPA-induced recycling of β1 integrin, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of β1 integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum- and LPA-dependent integrin trafficking. © 2014. Published by The Company of Biologists Ltd.
Functional Role of CLIC1 Ion Channel in Glioblastoma-Derived Stem/Progenitor Cells
2013-01-01
Background Chloride channels are physiologically involved in cell division and motility. Chloride intracellular channel 1 (CLIC1) is overexpressed in a variety of human solid tumors compared with normal tissues, suggesting a potential involvement of CLIC1 in the regulation of tumorigenesis. This led us to investigate the role of CLIC1 in gliomagenesis. Methods We used the neurosphere system to isolate stem/progenitor cells from human glioblastomas (GBMs). CLIC1 targeting in GBM neurospheres was achieved by both lentiviral-mediated short-hairpin RNA transduction and CLIC1 antibody treatment, and its effect on stem-like properties was analyzed in vitro by proliferation and clonogenic assays and in vivo by orthotopic injection in immunocompromised mice. Channel activity was studied by perforated patch clamp technique. Differences in expression were analyzed by analysis of variance with Tamhane’s multiple comparison test. Kaplan–Meier analyses and log-rank test were used to assess survival. All statistical tests were two-sided. Results CLIC1 was statistically significantly overexpressed in GBMs compared with normal brain tissues (P < .001) with a better survival of patients with CLIC1 low-expressing tumors (CLIC1low vs CLIC1high survival: χ2 = 74.35; degrees of freedom = 1; log-rank P < .001). CLIC1 was variably expressed in patient-derived GBM neurospheres and was found enriched in the stem/progenitor compartment. CLIC1 silencing reduced proliferative (P < .01), clonogenic (P < .01), and tumorigenic capacity (P < .05) of stem/progenitor cells. The reduction of CLIC1 chloride currents with a specific CLIC1 antibody mirrored the biological effects of CLIC1 silencing in GBM patient–derived neurospheres. Conclusions Reduced gliomagenesis after CLIC1 targeting in tumoral stem/progenitor cells and the finding that CLIC1 expression is inversely associated with patient survival suggest CLIC1 as a potential target and prognostic biomarker. PMID:24115360
Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane.
Goodchild, Sophia C; Howell, Michael W; Cordina, Nicole M; Littler, Dene R; Breit, Samuel N; Curmi, Paul M G; Brown, Louise Jennifer
2009-12-01
Members of the chloride intracellular channel (CLIC) family exist primarily as soluble proteins but can also auto-insert into cellular membranes to form ion channels. While little is known about the process of CLIC membrane insertion, a unique feature of mammalian CLIC1 is its ability to undergo a dramatic structural metamorphosis between a monomeric glutathione-S-transferase homolog and an all-helical dimer upon oxidation in solution. Whether this oxidation-induced metamorphosis facilitates CLIC1 membrane insertion is unclear. In this work, we have sought to characterise the role of oxidation in the process of CLIC1 membrane insertion. We examined how redox conditions modify the ability of CLIC1 to associate with and insert into the membrane using fluorescence quenching studies and a sucrose-loaded vesicle sedimentation assay to measure membrane binding. Our results suggest that oxidation of monomeric CLIC1, in the presence of membranes, promotes insertion into the bilayer more effectively than the oxidised CLIC1 dimer.
Submicron multi-bunch BPM for CLIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmickler, H.; Soby, L.; /CERN
2010-08-01
A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied tomore » measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.« less
ERIC Educational Resources Information Center
Academy for Educational Development, 2005
2005-01-01
The purpose of the Community Learning and Information Center (CLIC) project was "to accelerate economic, social and political growth by providing residents in twelve underserved Malian communities with access to easily accessible development information and affordable access to information and communication technology (ICT), high-value…
CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets
Li, Yang; Liu, Jun S.; Mootha, Vamsi K.
2017-01-01
In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs), while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR) score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets) within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays) or 1887 human microarray datasets (45158 microarrays). CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1) and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active. PMID:28719601
Online Resources for High School Teachers--A CLIC Away
NASA Astrophysics Data System (ADS)
Holmes, Jon L.
2000-04-01
"I'm a high school teacher. I don't have time to sift through all of JCE to find what I need. I don't have enough time as it is!" If you need to find things in a hurry, go to JCE HS CLIC, the JCE High School Chemed Learning Information Center, http://JChemEd.chem.wisc.edu/HS/. You will find good solid, reliable information, and you will find it fast. CLIC is open 24 hours every day, all over the world. What You Will Find at JCE CLIC We know teachers are pressed for time. During the few minutes between classes or at the end of the day, information needs to be found very quickly. Perhaps you are looking for a demo that illustrates electrochemistry using Cu, Mg, orange juice, and a clock; or a student activity on chromatography that is ready to copy and hand out; or a video to illustrate the action of aqua regia on gold, because you can't use aqua regia and can't afford gold. You can find each of these quickly at CLIC. The Journal has always provided lots of articles designed with high school teachers in mind. What the new JCE HS CLIC does is collect the recent materials at one address on JCE Online, making it quicker and easier for you to find them. Information has been gathered from both print and online versions of the Journal, from JCE Software, and from JCE Internet. It is organized as shown at the bottom of the page. Getting Access to Information You have located something that interests you, perhaps a list of tested demonstrations that pertain to consumer chemistry. Now it is time to get it. JCE subscribers (individuals and libraries) can read, download, and print the full versions of the articles as well as all supplemental materials, including student handouts and instructor's notes. You will need the username and password that are on the mailing label that comes with your Journaleach month. JCE HS CLIC home page: http://JChemEd.chem.wisc.edu/HS/ Your Suggestions, Please Our plans for JCE HS CLIC do not end with what you find now. Other resources and features
A high resolution cavity BPM for the CLIC Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chritin, N.; Schmickler, H.; Soby, L.
2010-08-01
In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.
Drive beam stabilisation in the CLIC Test Facility 3
NASA Astrophysics Data System (ADS)
Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.
2018-06-01
The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.
Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity
Hernandez-Fernaud, Juan R.; Ruengeler, Elena; Casazza, Andrea; Neilson, Lisa J.; Pulleine, Ellie; Santi, Alice; Ismail, Shehab; Lilla, Sergio; Dhayade, Sandeep; MacPherson, Iain R.; McNeish, Iain; Ennis, Darren; Ali, Hala; Kugeratski, Fernanda G.; Al Khamici, Heba; van den Biggelaar, Maartje; van den Berghe, Peter V.E.; Cloix, Catherine; McDonald, Laura; Millan, David; Hoyle, Aoisha; Kuchnio, Anna; Carmeliet, Peter; Valenzuela, Stella M.; Blyth, Karen; Yin, Huabing; Mazzone, Massimiliano; Norman, Jim C.; Zanivan, Sara
2017-01-01
The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion. PMID:28198360
2014-01-01
Background CLIC4, a member of the CLIC family of proteins, was recently demonstrated to translocate to the nucleus in differentiating keratinocytes where it potentiates TGFβ-driven gene regulation. Since TGFβ signaling is known to play important roles in the fibrotic response to acute kidney injury, and since CLIC4 is abundantly expressed in kidney, we hypothesized that CLIC4 may play a role in the response to acute kidney injury. Methods Previously described Clic4 null mice were analyzed for the effect of absence of CLIC4 on growth, development and response to kidney injury. Kidney size, glomerular counts and density of peritubular capillaries of matched WT and Clic4 null mice were determined. Cohorts of WT and Clic4 null mice were subjected to the folic acid model of acute kidney injury. Extent of acute injury and long term functional recovery were assessed by plasma blood urea nitrogen (BUN); long term fibrosis/scarring was determined by histochemical assessment of kidney sections and by residual renal mass. Activation of the TGFβ signaling pathway was assessed by semi-quantitative western blots of phosphorylated SMADs 2 and 3. Results CLIC4 is abundantly expressed in the apical pole of renal proximal tubule cells, and in endothelial cells of glomerular and peritubular capillaries. CLIC4 null mice are small, have smaller kidneys with fewer glomeruli and less dense peritubular capillary networks, and have increased proteinuria. The Clic4 null mice show increased susceptibility to folic acid-induced acute kidney injury but no difference in recovery from acute injury, no nuclear redistribution of CLIC4 following injury, and no significant difference in activation of the TGFβ-signaling pathway as reflected in the level of phosphorylation of SMADs 2 and 3. Conclusions Absence of CLIC4 results in morphologic changes consistent with its known role in angiogenesis. These changes may be at least partially responsible for the increased susceptibility to acute kidney
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelletti, A.; /CERN; Dolgashev, V.
A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less
Higgs physics at the CLIC electron-positron linear collider.
Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S
2017-01-01
The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
Okudela, Koji; Katayama, Akira; Woo, Tetsukan; Mitsui, Hideaki; Suzuki, Takehisa; Tateishi, Yoko; Umeda, Shigeaki; Tajiri, Michihiko; Masuda, Munetaka; Nagahara, Noriyuki; Kitamura, Hitoshi; Ohashi, Kenichi
2014-01-01
This study investigated the proteome modulated by oncogenic KRAS in immortalized airway epithelial cells. Chloride intracellular channel protein 4 (CLIC4), S100 proteins (S100A2 and S100A11), tropomyosin 2, cathepsin L1, integrinsα3, eukaryotic elongation factor 1, vimentin, and others were discriminated. We here focused on CLIC4 to investigate its potential involvement in carcinogenesis in the lung because previous studies suggested that some chloride channels and chloride channel regulators could function as tumor suppressors. CILC4 protein levels were reduced in some lung cancer cell lines. The restoration of CLIC4 in lung cancer cell lines in which CLIC4 expression was reduced attenuated their growth activity. The immunohistochemical expression of the CLIC4 protein was weaker in primary lung cancer cells than in non-tumorous airway epithelial cells and was occasionally undetectable in some tumors. CLIC4 protein levels were significantly lower in a subtype of mucinous ADC than in others, and were also significantly lower in KRAS-mutated ADC than in EGFR-mutated ADC. These results suggest that the alteration in CLIC4 could be involved in restrictedly the development of a specific fraction of lung adenocarcinomas. The potential benefit of the proteome modulated by oncogenic KRAS to lung cancer research has been demonstrated. PMID:24503901
Signals for Extra Dimensions at CLIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Thomas G.
A brief overview is presented of the signatures for several different models with extra dimensions at CLIC, an e{sup +}e{sup -} linear collider with a center of mass energy of 3-5 TeV and an integrated luminosity of order 1 ab{sup -1}. In all cases the search reach for the resulting new physic signatures is found to be in the range of {approx} 15-80 TeV.
Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin
2017-08-04
The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.
Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M.G.; Mazzanti, Michele; Florio, Tullio
2014-01-01
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment. PMID:25361004
Gritti, Marta; Würth, Roberto; Angelini, Marina; Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M G; Mazzanti, Michele; Florio, Tullio
2014-11-30
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.
Conceptual Design for CLIC Gun Pulser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Tao
The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.
Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juwen; /SLAC; Lewandowski, James
A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less
Peretti, Marta; Angelini, Marina; Savalli, Nicoletta; Florio, Tullio; Yuspa, Stuart H; Mazzanti, Michele
2015-10-01
In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers." Copyright © 2015 Elsevier B.V. All rights reserved.
Beam dynamic simulations of the CLIC crab cavity and implications on the BDS
NASA Astrophysics Data System (ADS)
Shinton, I. R. R.; Burt, G.; Glasman, C. J.; Jones, R. M.; Wolski, A.
2011-11-01
The Compact Linear Collider (CLIC) is a proposed electron positron linear collider design aiming to achieve a centre of mass energy of up to 3 TeV. The main accelerating structures in CLIC operate at an X-band frequency of 11.994 GHz with an accelerating gradient of 100 MV/m. The present design requires the beams to collide at a small crossing angle of 10 mrad per line giving a resultant overall crossing angle of 20 mrad. Transverse deflecting cavities, referred to as "Crab cavities", are installed in the beam delivery system (BDS) of linear collider designs in order to ensure the final luminosity at the interaction point (IP) is comparable to that in a head on collision. We utilise the beam tracking code PLACET combined with the beam-beam code GUINEA-PIG to calculate the resulting luminosity at the IP. We follow a similar tuning procedure to that used for the design of the ILC crab cavities and anitcrab cavities. However an unexpected loss in luminosity of 10% was observed for the 20 mrad design was observed. It was discovered that the action of the crab cavities can affect the geometric aberrations resulting from the sextupoles used to correct chromatic effects in the beam delivery system. This has direct consequences regarding the design of the present CLIC BDS.
Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)
NASA Astrophysics Data System (ADS)
Doebert, Steffen; Sicking, Eva
2018-02-01
The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.
Yu, Qiu-Yun; Zhou, Xin-Feng; Xia, Qing; Shen, Jia; Yan, Jia; Zhu, Jiu-Ting; Li, Xiang; Shu, Ming
2018-01-01
This study explored the effects involved in silencing CLIC4 on apoptosis and proliferation of mouse liver cancer Hca-F and Hca-P cells. A CLIC4-target small interfering RNA (siRNA) was designed to compound into two individual complementary oligonucleotide chains. A process of annealing and connection to a pSilencer vector was followed by transfection with Hca-F and Hca-P cells. Quantitative real-time polymerase chain reaction and Western blotting techniques were used to determine CLIC4 mRNA and protein expressions. CCK8 assay and flow cytometry were employed for analysis of the survival and apoptosis rate as well as the cell cycle in an octreotide-induced apoptosis model. Expressions of caspase 3, caspase 9, and cleaved PARP were measured using Western blotting. The CLIC4 mRNA and protein expressions in Hca-F and Hca-P cells transfected by pSilencer-CLIC4 siRNA plasmid in the blank group displayed remarkably decreased levels of expression, when compared with both the control and negative control (NC) groups. Decreased survival rates and cleaved PARP expression, increased cell apoptosis rate,expressions of caspase 3 and caspase 9 in Hca-F and Hca-P cells were detected in groups that had been cultured in a medium containing octreotide. The pSilencer-CLIC4 siRNA-2 group when compared with the control and NC groups exhibited decreased survival rates, cleaved PARP expression, increased cell apoptosis rates, and increased expressions of caspase 3 and caspase 9 of Hca-F and Hca-P cells. The results demonstrated that siRNA-induced down-regulation of CLIC4 could proliferation, while in turn promoting apoptosis of mouse liver cancer Hca-F and Hca-P cells. J. Cell. Biochem. 119: 659-668, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
CLIC RF High Power Production Testing Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syratchev, I.; Riddone, G.; /CERN
The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation.more » The testing program overview and test results available to date are presented.« less
Correction of beam-beam effects in luminosity measurement in the forward region at CLIC
NASA Astrophysics Data System (ADS)
Lukić, S.; Božović-Jelisavčić, I.; Pandurović, M.; Smiljanić, I.
2013-05-01
Procedures for correcting the beam-beam effects in luminosity measurements at CLIC at 3 TeV center-of-mass energy are described and tested using Monte Carlo simulations. The angular counting loss due to the combined Beamstrahlung and initial-state radiation effects is corrected based on the reconstructed velocity of the collision frame of the Bhabha scattering. The distortion of the luminosity spectrum due to the initial-state radiation is corrected by deconvolution. At the end, the counting bias due to the finite calorimeter energy resolution is numerically corrected. To test the procedures, BHLUMI Bhabha event generator, and Guinea-Pig beam-beam simulation were used to generate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. The systematic effects of the beam-beam interaction on the luminosity measurement are corrected with precision of 1.4 permille in the upper 5% of the energy, and 2.7 permille in the range between 80 and 90% of the nominal center-of-mass energy.
Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research
NASA Astrophysics Data System (ADS)
Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.
2009-12-01
The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent
Silicon pixel-detector R&D for CLIC
NASA Astrophysics Data System (ADS)
Nürnberg, A.
2016-11-01
The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.
NASA Astrophysics Data System (ADS)
Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred
2015-09-01
The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.
Variable conductance heat pipe technology
NASA Technical Reports Server (NTRS)
Marcus, B. D.; Edwards, D. K.; Anderson, W. T.
1973-01-01
Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.
Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A.; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).
Investigation of the technology of conductive yarns manufacturing
NASA Astrophysics Data System (ADS)
Ryklin, Dzmitry; Medvetski, Sergey
2017-10-01
The paper is devoted to development of technology of electrically conductive yarn production. This technology allows manufacturing conductive yarns of copper wire and polyester filament yarns. Method of the predicting of the conductive yarn breaking force was developed on the base of analysing of load-elongation curves of each strand of the yarn. Also the method of the predicting of the conductive yarn diameter was offered. Investigation shows that conductive yarns can be integrated into the textiles structure using sewing or embroidery equipment. Application of developed conductive yarn is wearable electronics creating with wide range of functions, for example, for specific health issue monitoring, navigation tools or communication gadgets.
Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector
NASA Astrophysics Data System (ADS)
Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.
2016-07-01
The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.
Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.
Beam dynamic simulation and optimization of the CLIC positron source and the capture linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayar, C., E-mail: cafer.bayar@cern.ch; CERN, Geneva; Doebert, S., E-mail: Steffen.Doebert@cern.ch
2016-03-25
The CLIC Positron Source is based on the hybrid target composed of a crystal and an amorphous target. Simulations have been performed from the exit of the amorphous target to the end of pre-injector linac which captures and accelerates the positrons to an energy of 200 MeV. Simulations are performed by the particle tracking code PARMELA. The magnetic field of the AMD is represented in PARMELA by simple coils. Two modes are applied in this study. The first one is accelerating mode based on acceleration after the AMD. The second one is decelerating mode based on deceleration in the first acceleratingmore » structure. It is shown that the decelerating mode gives a higher yield for the e{sup +} beam in the end of the Pre-Injector Linac.« less
Application of nonlocal plasma technology for controlling plasma conductivity
NASA Astrophysics Data System (ADS)
Yuan, Chengxun; Demidov, V. I.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Rudakova, T. V.; Zhou, Z. X.
2017-10-01
A promising approach for better control of the plasma parameters involves the exploitation of peculiarities of plasmas with a nonlocal electron energy distribution. Nonlocal plasma technology (NLP-technology) is based on the effect of energetic electrons in the plasma volume. In this work, an experimental study of influence of the chemo-ionization processes on non-stationary plasma conductivity has been conducted. Due to energetic, supra-thermal electrons, which appear in the chemo-ionization reactions, the highly non-equilibrium and time dependent nonlocal electron energy distribution function is formed. In such a plasma thermal electrons always have positive conductivity (mobility), while supra-thermal, energetic electrons may have negative conductivity in heavy (argon, krypton and xenon) noble gases dependently on conditions. Experiments demonstrate that this effect may lead to the non-monotonic temporal behavior of plasma conductivity and may potentially create the negative electron mobility.
Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector
NASA Astrophysics Data System (ADS)
Kremastiotis, I.
2017-12-01
The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.
NASA Astrophysics Data System (ADS)
Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.
2017-09-01
The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.
ERIC Educational Resources Information Center
Flaherty, William
2011-01-01
Technology is a critical component in the success of any high-functioning school district, thus it is important that education leaders should examine it closely. Simply put, the purpose of a technology audit is to assess the effectiveness of the technology for administrative or instructional use. Rogers Public Schools in Rogers, Arkansas, recently…
Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted
NASA Technical Reports Server (NTRS)
Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.
2004-01-01
The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.
Beam parameter optimization at CLIC using the process e+e- → HZ → Hq q bar at 380 GeV
NASA Astrophysics Data System (ADS)
Andrianala, F.; Raboanary, R.; Roloff, P.; Schulte, D.
2017-01-01
At CLIC and the ILC beam-beam forces lead to the emission of beamstrahlung photons and a reduction of the effective center-of-mass energy. This degradation is controlled by the choice of the horizontal beam size. A reduction of this parameter would increase the luminosity but also the beamstrahlung. In this paper the optimum choice for the horizontal beam size is investigated for one of the most important physics processes. The Higgsstrahlung process e+e- → HZ is identified in a model-independent manner by observing the Z boson and determining the mass against which it is recoiling. The physics analysis for this process is performed for constant running times, assuming different beam size and taking into account the resulting levels of integrated luminosity and the associated luminosity spectra.
Niknam, B; Bebic, Z; Roseman, A
2018-05-26
We present a case report involving two sequential, surgically uneventful, laparoscopic cholecystectomies using the same anesthesia machine (Drager Apollo©) for which the level of inspired carbon dioxide was noted to be elevated following various diagnostic interventions including replacing the sodalime, increasing fresh gas flows, and a full inspection of equipment for malfunction. Eventually it was discovered that a rubber ring seal connecting the Dragersorb CLIC system© to the sodalime canister was inadvertently removed during the initial canister exchange resulting in an apparent bypassing of the absorbent and thus an inability of the exhaled gas to contact the sodalime. To our knowledge this is the first such description of this potential cause of elevated inspired carbon dioxide and should warrant consideration when other conventional interventions have failed.
WCRP's Climate and Cryosphere (CliC) Project: Climate Change and Middle and Low Latitude Glaciers
NASA Astrophysics Data System (ADS)
Dick, C. A.; Clic Project, W.
2004-12-01
The newest World Climate Research Programme (WCRP) Core Project, the Climate and Cryosphere (CliC) Project, is concerned with all aspects of the interactions between the cryosphere and climate. The cryosphere, defined as those portions of the Earth's surface where water exists in solid form, is an integral part of the climate system, both responding to, and influencing climate change. The cryosphere also provides many of the best indicators of climate variability and change. In addition to a range of direct physical indicators (e.g., snow/sea ice/glacier extent and thickness, river and lake freeze-up/break-up dates, etc.), ice cores from glaciers, ice caps and ice sheets have been shown to contain a wealth of information about past climate and environmental conditions. Ice cores are of particular value, since they often come from areas that are remote and poorly observed, yet have a major effect on the climate of the rest of the globe. General Circulation Models (GCMs) usually predict that the Earth's polar regions will warm fastest with the increasing levels of atmospheric greenhouse gases. However, models also indicate that continental interiors should warm more quickly than marine areas at non-polar latitudes. In fact, while some areas in the Arctic and Antarctic have warmed rapidly over the last few decades, it has generally been in the middle and low latitudes that the greatest effects of climate change have been observed. Particularly obvious has been the widespread retreat of glaciers. This retreat, and the warming which it implies, will have not only important scientific consequences but also socio-economic consequences in areas where glacier melt-water is an important component of the water supply. Glaciers preserve records of climate and the environment through both the isotopic composition of the water molecules, and through the chemicals 'trapped' in the snow, firn and ice layers. In polythermal (i.e., cold) glaciers where only limited melt occurs, the
Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.
Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet
2016-03-01
Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Tasiopoulou, Vasiliki; Magouliotis, Dimitrios; Solenov, Evgeniy I; Vavougios, Georgios; Molyvdas, Paschalis-Adam; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G
2015-12-01
Chloride Intracellular Channels (CLICs) are contributing to the regulation of multiple cellular functions. CLICs have been found over-expressed in several malignancies, and therefore they are currently considered as potential drug targets. The goal of our study was to assess the gene expression levels of the CLIC's 1-6 in malignant pleural mesothelioma (MPM) as compared to controls. We used gene expression data from a publicly available microarray dataset comparing MPM versus healthy tissue in order to investigate the differential expression profile of CLIC 1-6. False discovery rates were calculated and the interactome of the significantly differentially expressed CLICs was constructed and Functional Enrichment Analysis for Gene Ontologies (FEAGO) was performed. In MPM, the gene expressions of CLIC3 and CLIC4 were significantly increased compared to controls (p=0.001 and p<0.001 respectively). A significant positive correlation between the gene expressions of CLIC3 and CLIC4 (p=0.0008 and Pearson's r=0.51) was found. Deming regression analysis provided an association equation between the CLIC3 and CLIC4 gene expressions: CLIC3=4.42CLIC4-10.07. Our results indicate that CLIC3 and CLIC4 are over-expressed in human MPM. Moreover, their expressions correlate suggesting that they either share common gene expression inducers or that their products act synergistically. FAEGO showed that CLIC interactome might contribute to TGF beta signaling and water transport. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zernic, Michael J.
2002-01-01
Broadband satellite communications for aeronautics marries communication and network technologies to address NASA's goals in information technology base research and development, thereby serving the safety and capacity needs of the National Airspace System. This marriage of technology increases the interactivity between airborne vehicles and ground systems. It improves decision-making and efficiency, reduces operation costs, and improves the safety and capacity of the National Airspace System. To this end, a collaborative project called the Aeronautical Satellite Assisted Process for Information Exchange through Network Technologies, or Aero-SAPIENT, was conducted out of Tinker AFB, Oklahoma, during November and December 2000.
Potential and challenges of the physics measurements with very forward detectors at linear colliders
NASA Astrophysics Data System (ADS)
Božović Jelisavčić, Ivanka; Kačarević, G.; Lukić, S.; Poss, S.; Sailer, A.; Smiljanić, I.; FCAL Collaboration
2016-04-01
The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R&D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the σHWW ṡBR (H →μ+μ-) measurement at 1.4 TeV CLIC.
NASA Successfully Conducts Wallops Rocket Launch with Technology Experiments
2015-07-07
NASA successfully launched a NASA Black Brant IX suborbital sounding rocket carrying two space technology demonstration projects at 6:15 a.m. today. The rocket carried the SOAREX-8 Exo-Brake Flight Test from NASA’s Ames Research Center in California and the Radial Core Heat Spreader from NASA’s Glenn Research Center in Ohio. Preliminary analysis shows that data was received on both projects. The payload flew to an altitude of 206 miles and impacted in the Atlantic Ocean approximately 10 minutes after launch. The payload will not be recovered. The flight was conducted through NASA’s Space Technology Mission Directorate. The next launch from NASA’s Wallops Flight Facility is a Terrier-Improved Malemute suborbital sounding rocket early in the morning on August 11 carrying the RockSat-X university student payload. For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Technology Commercialization Effects on the Conduct of Research in Higher Education
Powers, Joshua B.; Campbell, Eric G.
2012-01-01
The objective of this study was to investigate the effects of technology commercialization on researcher practice and productivity at U.S. universities. Using data drawn from licensing contract documents and databases of university-industry linkages and faculty research output, the study findings suggest that the common practice of licensing technologies exclusively to singular firms may have a dampening effect on faculty inventor propensity to conduct published research and to collaborate with others on research. Furthermore, faculty who are more actively engaged in patenting may be less likely to collaborate with outsiders on research while faculty at public universities may experience particularly strong norms to engage in commercialization vis-à-vis traditional routes to research dissemination. These circumstances appear to be hindering innovation via the traditional mechanisms (research publication and collaboration), questioning the success of policymaking to date for the purpose of speeding the movement of research from the lab bench to society. PMID:22427717
Evaluation of the Washington nighttime seat belt enforcement program.
DOT National Transportation Integrated Search
2017-04-01
The Washington Traffic Safety Commission (WTSC) and the National Highway Traffic Safety Administration (NHTSA) : conducted a high-visibility Nighttime Seat Belt Enforcement (NTSBE) program in Washington. The two-year program : followed the basic Clic...
Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology
NASA Technical Reports Server (NTRS)
Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah
2013-01-01
Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... information technology. FOR FURTHER INFORMATION CONTACT: To request more information on the proposed project... Interview by Computer Study (iCLIC) (NCI) SUMMARY: In compliance with the requirement of Section 3506(c)(2... collection projects, the National Cancer Institute (NCI), the National Institutes of Health (NIH) will...
Visualizing Chemical Interaction Dynamics of Confined DNA Molecules
NASA Astrophysics Data System (ADS)
Henkin, Gilead; Berard, Daniel; Stabile, Frank; Leslie, Sabrina
We present a novel nanofluidic approach to controllably introducing reagent molecules to interact with confined biopolymers and visualizing the reaction dynamics in real time. By dynamically deforming a flow cell using CLiC (Convex Lens-induced Confinement) microscopy, we are able to tune reaction chamber dimensions from micrometer to nanometer scales. We apply this gentle deformation to load and extend DNA polymers within embedded nanotopographies and visualize their interactions with other molecules in solution. Quantifying the change in configuration of polymers within embedded nanotopographies in response to binding/unbinding of reagent molecules provides new insights into their consequent change in physical properties. CLiC technology enables an ultra sensitive, massively parallel biochemical analysis platform which can acces a broader range of interaction parameters than existing devices.
NASA Astrophysics Data System (ADS)
Yoshida, Yasunori; Wada, Hikaru; Izumi, Konami; Tokito, Shizuo
2017-05-01
In this work, we demonstrate that highly conductive metal interconnects can be fabricated on the surface of three-dimensional objects using “omnidirectional ink jet” (OIJ) printing technology. OIJ printing technology makes it possible to perform ink jet printing in all directions by combining the motion of a 6-axis vertically articulated robot with precise positioning and a thermal drying process, which allows for the printing of stacked layers. By using OIJ technology, we were the first to successfully fabricate printed interconnect layers having a very low electrical resistance of 12 mΩ over a 10 mm length. Moreover, the results of the high-current test demonstrated that the printed interconnects can withstand high-current-flow of 5 A for 30 min or more.
Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana
2017-08-01
Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.
Ancient genomic architecture for mammalian olfactory receptor clusters
Aloni, Ronny; Olender, Tsviya; Lancet, Doron
2006-01-01
Background Mammalian olfactory receptor (OR) genes reside in numerous genomic clusters of up to several dozen genes. Whole-genome sequence alignment nets of five mammals allow their comprehensive comparison, aimed at reconstructing the ancestral olfactory subgenome. Results We developed a new and general tool for genome-wide definition of genomic gene clusters conserved in multiple species. Syntenic orthologs, defined as gene pairs showing conservation of both genomic location and coding sequence, were subjected to a graph theory algorithm for discovering CLICs (clusters in conservation). When applied to ORs in five mammals, including the marsupial opossum, more than 90% of the OR genes were found within a framework of 48 multi-species CLICs, invoking a general conservation of gene order and composition. A detailed analysis of individual CLICs revealed multiple differences among species, interpretable through species-specific genomic rearrangements and reflecting complex mammalian evolutionary dynamics. One significant instance involves CLIC #1, which lacks a human member, implying the human-specific deletion of an OR cluster, whose mouse counterpart has been tentatively associated with isovaleric acid odorant detection. Conclusion The identified multi-species CLICs demonstrate that most of the mammalian OR clusters have a common ancestry, preceding the split between marsupials and placental mammals. However, only two of these CLICs were capable of incorporating chicken OR genes, parsimoniously implying that all other CLICs emerged subsequent to the avian-mammalian divergence. PMID:17010214
A Computer-Assisted Approach for Conducting Information Technology Applied Instructions
ERIC Educational Resources Information Center
Chu, Hui-Chun; Hwang, Gwo-Jen; Tsai, Pei Jin; Yang, Tzu-Chi
2009-01-01
The growing popularity of computer and network technologies has attracted researchers to investigate the strategies and the effects of information technology applied instructions. Previous research has not only demonstrated the benefits of applying information technologies to the learning process, but has also revealed the difficulty of applying…
Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis
Chaudhary, Natasha; Gomez, Guillermo A.; Howes, Mark T.; Lo, Harriet P.; McMahon, Kerrie-Ann; Rae, James A.; Schieber, Nicole L.; Hill, Michelle M.; Gaus, Katharina; Yap, Alpha S.; Parton, Robert G.
2014-01-01
Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to
Valaitis, Ruta; Martin-Misener, Ruth; Wong, Sabrina T; MacDonald, Marjorie; Meagher-Stewart, Donna; Austin, Patricia; Kaczorowski, Janusz; O-Mara, Linda; Savage, Rachel
2012-07-01
This paper describes the methods, strategies and technologies used to conduct a scoping literature review examining primary care (PC) and public health (PH) collaboration. It presents challenges encountered as well as recommendations and 'lessons learned' from conducting the review with a large geographically distributed team comprised of researchers and decision-makers using an integrated knowledge translation approach. Scoping studies comprehensively map literature in a specific area guided by general research questions. This methodology is especially useful in researching complex topics. Thus, their popularity is growing. Stakeholder consultations are an important strategy to enhance study results. Therefore, information about how best to involve stakeholders throughout the process is necessary to improve quality and uptake of reviews. This review followed Arksey and O'Malley's five stages: identifying research questions; identifying relevant studies; study selection; charting the data; and collating, summarizing and reporting results. Technological tools and strategies included: citation management software (Reference Manager®), qualitative data analysis software (NVivo 8), web conferencing (Elluminate Live!) and a PH portal (eHealthOntario), teleconferences, email and face-to-face meetings. Of 6125 papers identified, 114 were retained as relevant. Most papers originated in the United Kingdom (38%), the United States (34%) and Canada (19%). Of 80 papers that reported on specific collaborations, most were descriptive reports (51.3%). Research studies represented 34 papers: 31% were program evaluations, 9% were literature reviews and 9% were discussion papers. Key strategies to ensure rigor in conducting a scoping literature review while engaging a large geographically dispersed team are presented for each stage. The use of enabling technologies was essential to managing the process. Leadership in championing the use of technologies and a clear governance
Tang, Hsin-Yao; Beer, Lynn A; Tanyi, Janos L; Zhang, Rugang; Liu, Qin; Speicher, David W
2013-08-26
New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. This manuscript addresses the importance of distinguishing between protein homologs and isoforms when identifying and validating cancer biomarkers in plasma or serum. Specifically, it describes the use of targeted in-depth LC-MS/MS analysis to determine the members of two protein families, chloride intracellular channel (CLIC) and tropomyosin (TPM) proteins that are detectable in sera of ovarian cancer patients. It then establishes a multiplexed isoform- and homology-specific MRM assay to quantify all observed gene products in these two protein
NASA Astrophysics Data System (ADS)
Mudzakir, A.; Widhiyanti, T.; Hernani, Arifin, M.; Lestari, A. N.; Jauhariansyah, S.
2017-08-01
The study was conducted to address the problems related to low Indonesian students' scientific literacy as revealed in the PISA (Program for International Student Assessment) since 2000-2015. Science teachers (e.g. chemistry teacher) must recognize the nature of science (NOS) to assist their students in preparing an explanation of a phenomenon scientifically correctly. Teachers also need to understand critically about nature of technology (NOT) and it relationship with science as well as society. To integrate those two kinds of knowledge (NOS and NOT), we can conduct a techno-science activity, which integrate the technology to science course in pre-service teacher education program, so that they can improve their knowledge about nature of science and technology (NOST) and pedagogical content knowledge related to NOST. The purpose of this study was to construct an inquiry based laboratory activity worksheet for making conductive glass so that the pre-service teacher could explain how the structure of the semiconductor Fluor doped Tin Oxide (SnO2.F) affect their performance. This study we conducted, described how to design a pre-service chemistry teacher education course that can improve recognizing view of NOST by using a framework called model of educational reconstruction (MER). The scientific activities in the course were guided inquiry based techno-chemistry experiments involving "From Stannum Metallicum to Conductive Glass". Conductive glasses are interesting subject research for several reason. The application of this technology could be found on solar cell, OLED, and display panel. The doped Tin dioxide has been deposited on glass substrate using the spray pyrolysis technique at 400-550°C substrate temperature, 4-5 times, 20 cm gap between glass and sprayer and 450 angle to form a thin film which will act as electrical contact. The resistivity is about 0.5 - 15Ω. The product resulted on this study was rated by several expert to find if the worksheet could
Wan, Minghui; Liao, Dongjiang; Peng, Guilin; Xu, Xin; Yin, Weiqiang; Guo, Guixin; Jiang, Funeng; Zhong, Weide
2017-01-01
Chloride intracellular channel 1 (CLIC1) is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM) database using structure-based virtual screening and molecular dynamics (MD) simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition. PMID:29147652
Howes, Mark T.; Kirkham, Matthew; Riches, James; Cortese, Katia; Walser, Piers J.; Simpson, Fiona; Hill, Michelle M.; Jones, Alun; Lundmark, Richard; Lindsay, Margaret R.; Hernandez-Deviez, Delia J.; Hadzic, Gordana; McCluskey, Adam; Bashir, Rumasia; Liu, Libin; Pilch, Paul; McMahon, Harvey; Robinson, Phillip J.; Hancock, John F.; Mayor, Satyajit
2010-01-01
Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells. PMID:20713605
NASA Astrophysics Data System (ADS)
Young, Kelsey; Hurtado, José M.; Bleacher, Jacob E.; Brent Garry, W.; Bleisath, Scott; Buffington, Jesse; Rice, James W.
2013-10-01
The tools used by crews while on extravehicular activity during future missions to other bodies in the Solar System will be a combination of traditional geologic field tools (e.g. hammers, rakes, sample bags) and state-of-the-art technologies (e.g. high definition cameras, digital situational awareness devices, and new geologic tools). In the 2010 Desert Research and Technology Studies (RATS) field test, four crews, each consisting of an astronaut/engineer and field geologist, tested and evaluated various technologies during two weeks of simulated spacewalks in the San Francisco volcanic field, Arizona. These tools consisted of both Apollo-style field geology tools and modern technological equipment not used during the six Apollo lunar landings. The underlying exploration driver for this field test was to establish the protocols and technology needed for an eventual manned mission to an asteroid, the Moon, or Mars. The authors of this paper represent Desert RATS geologist crewmembers as well as two engineers who worked on technology development. Here we present an evaluation and assessment of these tools and technologies based on our first-hand experience of using them during the analog field test. We intend this to serve as a basis for continued development of technologies and protocols used for conducting planetary field geology as the Solar System exploration community moves forward into the next generation of planetary surface exploration.
Aithal, Venkatesh; Kei, Joseph; Driscoll, Carlie; Murakoshi, Michio; Wada, Hiroshi
2018-02-01
Diagnosing conductive conditions in newborns is challenging for both audiologists and otolaryngologists. Although high-frequency tympanometry (HFT), acoustic stapedial reflex tests, and wideband absorbance measures are useful diagnostic tools, there is performance measure variability in their detection of middle ear conditions. Additional diagnostic sensitivity and specificity measures gained through new technology such as sweep frequency impedance (SFI) measures may assist in the diagnosis of middle ear dysfunction in newborns. The purpose of this study was to determine the test performance of SFI to predict the status of the outer and middle ear in newborns against commonly used reference standards. Automated auditory brainstem response (AABR), HFT (1000 Hz), transient evoked otoacoustic emission (TEOAE), distortion product otoacoustic emission (DPOAE), and SFI tests were administered to the study sample. A total of 188 neonates (98 males and 90 females) with a mean gestational age of 39.4 weeks were included in the sample. Mean age at the time of testing was 44.4 hr. Diagnostic accuracy of SFI was assessed in terms of its ability to identify conductive conditions in neonates when compared with nine different reference standards (including four single tests [AABR, HFT, TEOAE, and DPOAE] and five test batteries [HFT + DPOAE, HFT + TEOAE, DPOAE + TEOAE, DPOAE + AABR, and TEOAE + AABR]), using receiver operating characteristic (ROC) analysis and traditional test performance measures such as sensitivity and specificity. The test performance of SFI against the test battery reference standard of HFT + DPOAE and single reference standard of HFT was high with an area under the ROC curve (AROC) of 0.87 and 0.82, respectively. Although the HFT + DPOAE test battery reference standard performed better than the HFT reference standard in predicting middle ear conductive conditions in neonates, the difference in AROC was not significant. Further analysis revealed that the
MICROROC: MICRO-mesh gaseous structure Read-Out Chip
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Chefdeville, M.; Dalmaz, A.; Drancourt, C.; Dulucq, F.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Martin-Chassard, G.; Prast, J.; Seguin-Moreau, N.; de La Taille, Ch; Vouters, G.
2012-01-01
MICRO MEsh GAseous Structure (MICROMEGAS) and Gas Electron Multipliers (GEM) detectors are two candidates for the active medium of a Digital Hadronic CALorimeter (DHCAL) as part of a high energy physics experiment at a future linear collider (ILC/CLIC). Physics requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital readout calorimeter). To validate the concept of digital hadronic calorimetry with such small cell size, the construction and test of a cubic meter technological prototype, made of 40 planes of one square meter each, is necessary. This technological prototype would contain about 400 000 electronic channels, thus requiring the development of front-end ASIC. Based on the experience gained with previous ASIC that were mounted on detectors and tested in particle beams, a new ASIC called MICROROC has been developped. This paper summarizes the caracterisation campaign that was conducted on this new chip as well as its integration into a large area Micromegas chamber of one square meter.
Does Technology Acceptance Affect E-Learning in a Non-Technology-Intensive Course?
ERIC Educational Resources Information Center
Buche, Mari W.; Davis, Larry R.; Vician, Chelley
2012-01-01
Prior research suggests that individuals' technology acceptance levels may affect their work and learning performance outcomes when activities are conducted through information technology usage. Most previous research investigating the relationship between individual attitudes towards technology and learning has been conducted in…
Civic Engagement in the Community: Undergraduate Clinical Legal Education
ERIC Educational Resources Information Center
Allen, Mahalley D.; Parker, Sally A.; DeLorenzo, Teodora C.
2012-01-01
The Community Legal Information Center (CLIC) of California State University, Chico, provides a unique civic engagement program designed to serve the legal service needs of Northern California. Founded in 1969, CLIC is now a 12-program, on-campus law clinic staffed by up to 125 undergraduate students each semester and is the most extensive…
Measuring cognitive load during procedural skills training with colonoscopy as an exemplar.
Sewell, Justin L; Boscardin, Christy K; Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S
2016-06-01
Few studies have investigated cognitive factors affecting learning of procedural skills in medical education. Cognitive load theory, which focuses on working memory, is highly relevant, but methods for measuring cognitive load during procedural training are not well understood. Using colonoscopy as an exemplar, we used cognitive load theory to develop a self-report instrument to measure three types of cognitive load (intrinsic, extraneous and germane load) and to provide evidence for instrument validity. We developed the instrument (the Cognitive Load Inventory for Colonoscopy [CLIC]) using a multi-step process. It included 19 items measuring three types of cognitive load, three global rating items and demographics. We then conducted a cross-sectional survey that was administered electronically to 1061 gastroenterology trainees in the USA. Participants completed the CLIC following a colonoscopy. The two study phases (exploratory and confirmatory) each lasted for 10 weeks during the 2014-2015 academic year. Exploratory factor analysis determined the most parsimonious factor structure; confirmatory factor analysis assessed model fit. Composite measures of intrinsic, extraneous and germane load were compared across years of training and with global rating items. A total of 477 (45.0%) invitees participated (116 in the exploratory study and 361 in the confirmatory study) in 154 (95.1%) training programmes. Demographics were similar to national data from the USA. The most parsimonious factor structure included three factors reflecting the three types of cognitive load. Confirmatory factor analysis verified that a three-factor model was the best fit. Intrinsic, extraneous and germane load items had high internal consistency (Cronbach's alpha 0.90, 0.87 and 0.96, respectively) and correlated as expected with year in training and global assessment of cognitive load. The CLIC measures three types of cognitive load during colonoscopy training. Evidence of validity is
Philosophy of Technology Assumptions in Educational Technology Leadership
ERIC Educational Resources Information Center
Webster, Mark David
2017-01-01
A qualitative study using grounded theory methods was conducted to (a) examine what philosophy of technology assumptions are present in the thinking of K-12 technology leaders, (b) investigate how the assumptions may influence technology decision making, and (c) explore whether technological determinist assumptions are present. Subjects involved…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin Bluhm; James Coffey; Roman Korotkov
2011-01-02
Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources ofmore » elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This
High-Thermal-Conductivity Fabrics
NASA Technical Reports Server (NTRS)
Chibante, L. P. Felipe
2012-01-01
Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be
Detection of Off-Flavor in Catfish Using a Conducting Polymer Electronic-Nose Technology
Wilson, Alphus D.; Oberle, Charisse S.; Oberle, Daniel F.
2013-01-01
The Aromascan A32S conducting polymer electronic nose was evaluated for the capability of detecting the presence of off-flavor malodorous compounds in catfish meat fillets to assess meat quality for potential merchantability. Sensor array outputs indicated that the aroma profiles of good-flavor (on-flavor) and off-flavor fillets were strongly different as confirmed by a Principal Component Analysis (PCA) and a Quality Factor value (QF > 7.9) indicating a significant difference at (P < 0.05). The A32S e-nose effectively discriminated between good-flavor and off-flavor catfish at high levels of accuracy (>90%) and with relatively low rates (≤5%) of unknown or indecisive determinations in three trials. This A32S e-nose instrument also was capable of detecting the incidence of mild off-flavor in fillets at levels lower than the threshold of human olfactory detection. Potential applications of e-nose technologies for pre- and post-harvest management of production and meat-quality downgrade problems associated with catfish off-flavor are discussed. PMID:24287526
Printed Wiring Board Cleaner Technologies Substitutes Assessment: Making Holes Conductive
This document presents comparative risk, competitiveness, and resource requirements on technologies for performing the “making holes conductive” function during printed wiring board manufacturing.
Building a Case for Conducting Technology Surveys On-Line.
ERIC Educational Resources Information Center
Denton, Jon J.; Strader, Arlen
A Technology in Texas Public Schools 1998 Survey instrument was integrated into a Web-based response system enabling the instrument to be accessed, completed, submitted, and instantaneously analyzed over the Internet. A mark-sense or optical scan paper version of the instrument was also developed for mail-out distribution to each school district…
Collaborating at a Regional Scale for Climate Literacy and Action
NASA Astrophysics Data System (ADS)
Carlton, C.; Shcherba, O.
2016-12-01
Since 2014, the Bay Area Climate Literacy Impact Collaborative (Bay-CLIC) has been the leading regional consortium dedicated to improving climate education and action. Collectively, Bay-CLIC members reach over 3 million individuals through their educational programming, serve counties all throughout the Bay Area, offer multiple methods of climate communication like place-based school programs and visitor centers, and serve audiences representing all age groups. With over 30 organizations ranging from park agencies to science museums and nonprofits promoting energy efficiency, Bay-CLIC is preparing to push out climate change messaging through a suite of projects. Currently, Bay-CLIC's work is centered on building connections between educators and local scientists and region-specific climate data, implementing joint campaigns to promote the social norming of sustainable behavior change, and developing a toolkit and trainings targeted to the needs of Bay Area environmental educators. Meeting the needs of this diverse group offers many opportunities for increasing impact, growing new, strategic partnerships, as well as overcoming a few challenges along the way. Come learn more about what we've accomplished so far and what new, exciting projects are coming down the pike.
Disruptive Conduct: The Impact of Disruptive Technologies on Social Relations in Higher Education
ERIC Educational Resources Information Center
Flavin, Michael
2016-01-01
Higher education institutions (HEIs) have invested significantly in digital technologies for learning and teaching. However, technologies provided by HEIs have not been universally successful in terms of adoption and usage. Meanwhile, both students and lecturers use disruptive technologies to support learning and teaching. This article examines…
Electrical Conductivity in Textiles
NASA Technical Reports Server (NTRS)
2006-01-01
Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.
Preparing Informal Bay Area Educators for Climate Education Success
NASA Astrophysics Data System (ADS)
Romero, M.
2016-12-01
The Bay Area Climate Literacy Impact Collaborative (Bay-CLIC) joins informal science educators from over 30 environmental education organizations with the common goal of increasing climate literacy and action. Over this past year, the collaborative has been gathering existing tools and resources that will allow informal educators in the Bay Area to communicate on climate change with confidence. Bay-CLIC's work plans to bring climate science to life by equipping educators with climate data that resonates best with local audiences, which is data that is place-based and personal. Bay-CLIC is also researching effective sustainability campaigns focused on behavior change that can be crafted to fit our unique regional context and rolled out across multiple Bay-CLIC member organizations. This session will focus on sharing our findings from our six month information gathering phase. The overarching discussion will focus on the needs that Bay Area educators identified as necessary to address in order for them to provide the best quality climate education programming. We will also discuss the data we gathered on what local educators are already using in their work and share out on how this diverse array of informal educators will be implementing our research into their programs.
Tang, Hsin-Yao; Beer, Lynn A.; Tanyi, Janos L.; Zhang, Rugang; Liu, Qin; Speicher, David W.
2013-01-01
New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. PMID:23792823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, Gary S.; Bluhm, Martin; Coffey, James
2011-01-02
Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources ofmore » elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This
Roy, Amanda L
2017-12-01
Mobile technology is increasingly being used to measure individuals' moods, thoughts, and behaviors in real time. Current examples include the use of smartphones to collect ecological momentary assessments (EMAs; assessments delivered "in the moment"); wearable technology to passively collect objective measures of participants' movement, physical activity, sleep, and physiological response; and smartphones and wearable devices with global positioning system (GPS) capabilities to collect precise information about where participants spend their time. Although advances in mobile technology offer exciting opportunities for measuring and modeling individuals' experiences in their natural environments, they also introduce new ethical issues. Drawing on lessons learned while collecting GPS coordinates and EMAs measuring mood, companionship, and health-risk behavior with a sample of low-income, predominantly racial/ethnic minority youth living in Chicago, this manuscript discusses ethical challenges specific to the methodology (e.g., unanticipated access to personal information) and broader concerns related to data conceptualization and interpretation (e.g., the ethics of "monitoring" low-income youth of color). While encouraging researchers to embrace innovations offered by mobile technology, this discussion highlights some of the many ethical issues that also need to be considered. © Society for Community Research and Action 2017.
Confinement-induced Molecular Templating and Controlled Ligation
NASA Astrophysics Data System (ADS)
Berard, Daniel; Shayegan, Marjan; Michaud, François; Henkin, Gil; Scott, Shane; Leith, Jason; Leslie, Sabrina; Leslie Lab Team
Loading and manipulating long DNA molecules within sub-50 nm cross-section nanostructures for genomic and biochemical analyses, while retaining their structural integrity, present key technological challenges to the biotechnology sector, such as device clogging and molecular breakage. We overcome these challenges by using Convex Lens-induced Confinement (CLiC) technology to gently load DNA into nanogrooves from above. Here, we demonstrate single-fluorophore visualization of custom DNA barcodes as well as efficient top-loading of DNA into sub-50 nm nanogrooves of variable topographies. We study confinement-enhanced self-ligation of polymers loaded in circular nanogrooves. Further, we use concentric, circular nanogrooves to eliminate confinement gradient-induced drift of stretched DNA.
NASA Astrophysics Data System (ADS)
Bourdo, Shawn Edward
Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure. The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating. The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee
2013-01-01
Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee
2013-12-01
Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method
Training Briefing for the Conduct of Technology Readiness Assessments
2009-04-01
th t b i i d d d thi t h l− e sys em e ng acqu re epen s on s ec no ogy element to meet operational requirements • Within acceptable cost and...the technology expected to operate in an environment and/or achieve a performance beyond its original design A t l e m intention or...behavior of the CTE under these conditions? What is unique or different about the proposed operations environment? D t t d t t l i th t th• o es a a
Achilonu, Ikechukwu; Fanucchi, Sylvia; Cross, Megan; Fernandes, Manuel; Dirr, Heini W
2012-02-07
Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.
Perceptions of Company Employees on Technology and Office Technologies Training.
ERIC Educational Resources Information Center
Mellan, James R.
A study was conducted to determine the impact technology would have on the developing scenario of a competitive market for the training and retraining of both the unemployed and employed. The objective was to identify the perceptions of employees concerning technology and the effectiveness and efficiency of office technology training. The study…
15 CFR 270.200 - Technical conduct of investigation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.200 Technical conduct of investigation. (a... hours of the event, if possible. The Director may establish and deploy a Team to conduct the preliminary...
15 CFR 270.200 - Technical conduct of investigation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.200 Technical conduct of investigation. (a... hours of the event, if possible. The Director may establish and deploy a Team to conduct the preliminary...
15 CFR 270.200 - Technical conduct of investigation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.200 Technical conduct of investigation. (a... hours of the event, if possible. The Director may establish and deploy a Team to conduct the preliminary...
15 CFR 270.200 - Technical conduct of investigation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.200 Technical conduct of investigation. (a... hours of the event, if possible. The Director may establish and deploy a Team to conduct the preliminary...
15 CFR 270.200 - Technical conduct of investigation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.200 Technical conduct of investigation. (a... hours of the event, if possible. The Director may establish and deploy a Team to conduct the preliminary...
Experimental Investigation of Thermal Conductivity of Meat During Freezing
NASA Astrophysics Data System (ADS)
Shinbayeva, A.; Arkharov, I.; Aldiyarov, A.; Drobyshev, A.; Zhubaniyazova, M.; Kurnosov, V.
2017-04-01
The cryogenic technologies of processing and storage of agricultural products are becoming increasingly indispensable in the food industry as an important factor of ensuring food safety. One of such technologies is the shock freezing of meat, which provides a higher degree of preservation of the quality of frozen products in comparison with traditional technologies. The thermal conductivity of meat is an important parameter influencing the energy consumption in the freezing process. This paper presents the results of an experimental investigation of the temperature dependence of the thermal conductivity of beef. The measurements were taken by using a specially designed measurement cell, which allows covering the temperature range from 80 to 300 K.
This report summarizes the results of a field demonstration conducted under the SITE program. The technology which was demonstrated was a solvent extraction technology developed by Terra-Kleen Response Group. Inc. to remove organic contaminants from soil. The technology employs...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgashev, Valery; Tantawi, Sami
The goal of this project was to perform engineering design studies of three extremely high efficiency electron accelerators with the following parameters [1]: 2 MeV output beam energy and 1 MW average beam power; 10 MeV output energy and 10 MW; 10 MeV output energy and 1 MW. These linacs are intended for energy and environmental applications [2]. We based our designs on normal conducting radio-frequency technology. We have successfully reached this goal where we show rf-to-beam efficiency of 96.7 %, 97.2 %, and 79.6 % for these linacs.
Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.
2006-01-01
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration
Space technology research plans
NASA Technical Reports Server (NTRS)
Hook, W. Ray
1992-01-01
Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs
Andersen, Erica F; Baldwin, Erin E; Ellingwood, Sara; Smith, Rosemarie; Lamb, Allen N
2014-07-01
Duplications involving terminal Xq28 are a known cause of intellectual disability (ID) in males and in females with unfavorable X-inactivation patterns. Within Xq28, functional disomy of MECP2 causes a severe ID syndrome, however the dosage sensitivity of other Xq28 duplicated genes is less certain. Duplications involving the int22h-1/int22h-2 LCR-flanked region in distal Xq28 have recently been linked to a novel ID-associated phenotype. While evidence for the dosage sensitivity of this region is emerging, the phenotypic contribution of individual genes within the int22h-1/int22h-2-flanked region has yet to be determined. We report a familial case of a novel 774 kb Xq28-qter duplication, detected by cytogenomic microarray analysis, that partially overlaps the int22h-1/int22h-2-flanked region. This duplication and a 570 kb Xpter-p22.33 loss within the pseudoautosomal region were identified in three siblings, one female and two males, who presented with developmental delays/intellectual disability, mild dysmorphic features and short stature. Although unconfirmed, these results are suggestive of maternal inheritance of a recombinant X. We compare our clinical findings to patients with int22h-1/int22h-2-mediated duplications and discuss the potential pathogenicity of genes within the duplicated region, including those within the shared region of overlap, RAB39B and CLIC2. © 2014 Wiley Periodicals, Inc.
This report summarizes the findings of an evaluation of the Unterdruck-Verdampfer-Brunnen (UVB) technology developed by IEG Technologies and demonstrated in association with Roy F. Weston, Inc. This evaluation was conducted under the U.S. Environmental Protection Agency (EPA) Su...
International Workshop on Linear Colliders 2010
Lebrun, Ph.
2018-06-20
IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.
International Workshop on Linear Colliders 2010
Yamada, Sakue
2018-05-24
IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN
Technology Management within Product Lines in High Technology Markets
ERIC Educational Resources Information Center
Sarangee, Kumar R.
2009-01-01
Understanding the nuances of product line management has been of great interest to business scholars and practitioners. This assumes greater significance for firms conducting business in technologically dynamic industries, where they face certain challenges regarding the management of multiple, overlapping technologies within their product lines.…
ERIC Educational Resources Information Center
Hasni, Abdelkrim; Potvin, Patrice; Belletête, Vincent
2017-01-01
In recent decades, many studies have examined students' interest in science and technology (S&T) at school. However, few investigations have studied this interest in a manner that accounts for the status that students assign to this subject relative to other subjects in the curriculum. The main objective of this article is to conduct such an…
Development and validation of a multilateration test bench for particle accelerator pre-alignment
NASA Astrophysics Data System (ADS)
Kamugasa, Solomon William; Rothacher, Markus; Gayde, Jean-Christophe; Mainaud Durand, Helene
2018-03-01
The development and validation of a portable coordinate measurement solution for fiducialization of compact linear collider (CLIC) components is presented. This new solution addresses two limitations of high-accuracy state-of-the-art coordinate measuring machines, i.e. lack of portability and limited measurement volume. The solution is based on frequency scanning interferometry (FSI) distances and the multilateration coordinate measurement technique. The developments include a reference sphere for localizing the FSI optical fiber tip and a kinematic mount for repositioning the reference sphere with sub-micrometric repeatability. This design enables absolute distance measurements in different directions from the same point, which is essential for multilateration. A multilateration test bench built using these prototypes has been used to fiducialize a CLIC cavity beam position monitor and 420 mm-long main beam quadrupole magnet. The combined fiducialization uncertainty achieved is 3.5 μm (k = 1), which is better than the CLIC 5 μm (k = 1) uncertainty specification.
Nakamura, Yoshiaki
2018-01-01
Abstract The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies. PMID:29371907
Nakamura, Yoshiaki
2018-01-01
The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P.
We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which providesmore » (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.« less
The Childhood Leukemia International Consortium
Metayer, Catherine; Milne, Elizabeth; Clavel, Jacqueline; Infante-Rivard, Claire; Petridou, Eleni; Taylor, Malcolm; Schüz, Joachim; Spector, Logan G.; Dockerty, John D.; Magnani, Corrado; Pombo-de-Oliveira, Maria S.; Sinnett, Daniel; Murphy, Michael; Roman, Eve; Monge, Patricia; Ezzat, Sameera; Mueller, Beth A.; Scheurer, Michael E.; Armstrong, Bruce K.; Birch, Jill; Kaatsch, Peter; Koifman, Sergio; Lightfoot, Tracy; Bhatti, Parveen; Bondy, Melissa L.; Rudant, Jérémie; O’Neill, Kate; Miligi, Lucia; Dessypris, Nick; Kang, Alice Y.; Buffler, Patricia A.
2013-01-01
Background Acute leukemia is the most common cancer in children under 15 years of age; 80% are acute lymphoblastic leukemia (ALL) and 17% are acute myeloid leukemia (AML). Childhood leukemia shows further diversity based on cytogenetic and molecular characteristics, which may relate to distinct etiologies. Case–control studies conducted worldwide, particularly of ALL, have collected a wealth of data on potential risk factors and in some studies, biospecimens. There is growing evidence for the role of infectious/immunologic factors, fetal growth, and several environmental factors in the etiology of childhood ALL. The risk of childhood leukemia, like other complex diseases, is likely to be influenced both by independent and interactive effects of genes and environmental exposures. While some studies have analyzed the role of genetic variants, few have been sufficiently powered to investigate gene–environment interactions. Objectives The Childhood Leukemia International Consortium (CLIC) was established in 2007 to promote investigations of rarer exposures, gene–environment interactions and subtype-specific associations through the pooling of data from independent studies. Methods By September 2012, CLIC included 22 studies (recruitment period: 1962–present) from 12 countries, totaling approximately 31 000 cases and 50 000 controls. Of these, 19 case–control studies have collected detailed epidemiologic data, and DNA samples have been collected from children and child–parent trios in 15 and 13 of these studies, respectively. Two registry-based studies and one study comprising hospital records routinely obtained at birth and/or diagnosis have limited interview data or biospecimens. Conclusions CLIC provides a unique opportunity to fill gaps in knowledge about the role of environmental and genetic risk factors, critical windows of exposure, the effects of gene–environment interactions and associations among specific leukemia subtypes in different ethnic
NASA Astrophysics Data System (ADS)
Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin
2012-04-01
To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.
Introducing Current Technologies
NASA Technical Reports Server (NTRS)
Mitchell, Tiffany
1995-01-01
The objective of the study was a continuation of the 'technology push' activities that the Technology Transfer Team conducts at this time. It was my responsibility to research current technologies at Langley Research Center and find a commercial market for these technologies in the private industry. After locating a market for the technologies, a mailing package was put together which informed the companies of the benefits of NASA Langley's technologies. The mailing package included articles written about the technology, patent material, abstracts from technical papers, and one-pagers which were used at the Technology Opportunities Showcase (TOPS) exhibitions. The companies were encouraged to consult key team members for further information on the technologies.
Noise and Ionic Conductivity in Glass Nanochannels
NASA Astrophysics Data System (ADS)
Wiener, Benjamin; Siria, Alessandro; Bocquet, Lydéric; Stein, Derek
2015-03-01
Ion transport in nanochannels is relevant to processes in biology and has technological applications like batteries, fuel cells, and water desalination. We report experimental studies of the ionic conductance and noise characteristics of pulled glass capillaries with openings on the order of 200 nanometers. We employed an AC measurement technique to probe very low frequency fluctuations in the conductivity and to test a theory attributing these to chemical fluctuations in the surface charge density of the glass. We also investigate Hooge's empirical description of the noise power spectrum and its relationship to current rectification observed in nanochannels in the surface dominated ``Dukhin'' regime. Finally, we test the effects of anion and cation mobility on the direction and magnitude of the observed rectification. Research supported by NSF Grant DMR-1409577 and Oxford Nanopore Technologies.
Stretchable, porous, and conductive energy textiles.
Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi
2010-02-10
Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.
Technology Commercialization Effects on the Conduct of Research in Higher Education
ERIC Educational Resources Information Center
Powers, Joshua B.; Campbell, Eric G.
2011-01-01
The objective of this study was to investigate the effects of technology commercialization on researcher practice and productivity at U.S. universities. Using data drawn from licensing contract documents and databases of university-industry linkages and faculty research output, the study findings suggest that the common practice of licensing…
Highly Thermal Conductive Nanocomposites
NASA Technical Reports Server (NTRS)
Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)
2015-01-01
Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.
Highly Thermal Conductive Nanocomposites
NASA Technical Reports Server (NTRS)
Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)
2017-01-01
Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.
Technology transfer and international development: Materials and manufacturing technology
NASA Technical Reports Server (NTRS)
1982-01-01
Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.
Basic materials physics of transparent conducting oxides.
Edwards, P P; Porch, A; Jones, M O; Morgan, D V; Perks, R M
2004-10-07
Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of the doping process to generate n-type conductivity in transparent conducting oxides, the associated transition to the metallic (conducting) state and the detailed properties of the degenerate itinerant electron gas. The aim is to fully understand the origins of the basic performance limits of known materials and to set the scene for new or improved materials which will breach those limits for new-generation transparent conducting materials, either oxides, or beyond oxides.
Quantum-limited heat conduction over macroscopic distances
NASA Astrophysics Data System (ADS)
Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko
2016-05-01
The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.
Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)
Thomson, Mark
2018-05-21
In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.
Technology Development Center at NICT
NASA Technical Reports Server (NTRS)
Takefuji, Kazuhiro; Ujihara, Hideki
2013-01-01
The National Institute of Information and Communications Technology (NICT) is developing and testing VLBI technologies and conducts observations with this new equipment. This report gives an overview of the Technology Development Center (TDC) at NICT and summarizes recent activities.
1977-07-01
would appear to be enginee-I ring or design of refrigeration systems, since nature already has taken care of that aspect. "Institute for Cold Technology... Design ,.3, 1966, pp. 373-381. M. Beran: Use of the Vibrational Approach to Determine Bounds for the Effective Permittivity in Random Media. Nuovo...1959, pp. 289-292. E. Brendeng and P.E. Frivik: New Development in Design of Equipment for Measur•.a Thermal Conductivity and Heat Flow. Institutt for
ERIC Educational Resources Information Center
Baris, Mehmet Fatih
2015-01-01
Several studies have been conducted on technological, pedagogical content knowledge and web-based education. In this study, the Technological Pedagogical Content Knowledge and Educational Use of Web Technologies (TPCK-W) were analyzed in addition to the self-efficacy and attitudes of 33 teachers from eight different branches carrying out their…
INNOVATIVE TECHNOLOGY EVALUATION REPORT: RADIO FREQUENCY HEATING, KAI TECHNOLOGIES, INC.
A demonstration of KAI Technologies in-situ radio frequency heating system for soil treatment was conducted from January 1994 to July 1994 at Kelly Air Force Base in San Antonio, Texas. This demonstration was conducted as a joint effort between the USEPA and the USAF. The technol...
Theory and design of variable conductance heat pipes
NASA Technical Reports Server (NTRS)
Marcus, B. D.
1972-01-01
A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.
Technology Readiness Level Guidebook
DOT National Transportation Integrated Search
2017-09-01
This guidebook provides the necessary information for conducting a Technology Readiness Level (TRL) Assessment. TRL Assessments are a tool for determining the maturity of technologies and identifying next steps in the research process. This guidebook...
Effect of technology on aging perception.
Juárez, Ma Rodrigo; González, Víctor M; Favela, Jesús
2018-06-01
Technology can assist older adults to maintain an active lifestyle. To better understand the effect that technology has on aging perception, we conducted two studies. In the first study, through supraliminal priming, we analyzed the effects of aging- and technology-related stimuli on age estimation. In the second study, we conducted a technological intervention with a group of elders who used four interactive devices and analyzed effects on perceived aging. Results showed that technology-related stimuli did not affect estimated age. From the second study, we generated a sociotechnical model that explains the processes connecting technology use with successful aging. We concluded that the use of technology affects aging perception, although it depends on whether the elder people have a proactive attitude toward their aging process a priori.
This report summarizes the results of a field demonstration conducted under the SITE Program. The technology which was demonstrated was a wastewater treatment technology developed by Zenon Environmental Inc. The process, named ZenoGem™, integrates biological treatment with memb...
Time for Technology: Successfully Integrating Technology in Elementary School Classrooms.
ERIC Educational Resources Information Center
English, Susan J.
This study, conducted in March 2001, surveyed 142 grades 2-4 classroom teachers regarding their use of educational technology. The purpose of the study was to demonstrate the importance of providing teachers with the necessary time to investigate, implement, and fully integrate technology into their classrooms. While it is imperative that schools…
SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY: TNT
The J.R. Simplot Ex-Situ Bioremediation Technology is designed to degrade nitroaromatic compounds anaerobically, with total destruction of toxic intermediates at the completion of treatment. An evaluation of this technology was conducted under the SITE Program on TNT-contaminated...
Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena
2015-03-01
efforts of a group of six researchers in the fields of electromagnetics , radar and antenna technology. Research was conducted during this reporting...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering...Scattering-Matrix Theory Based on Gaussian Beams………...65 4.5.3 Array realization of complex-source beam……………………………85 4.5.4 Electromagnetic Scattering
Monitoring Technological Change.
ERIC Educational Resources Information Center
Brinkworth, B. J.; Eckersall, K. E.
A project was conducted to design and pilot a scheme for monitoring trade/industry/commerce technological changes and reporting them to Technical and Further Education (TAFE) teachers and authorities. A matrix of information categories was used to facilitate the collection and storage of information relative to technological advancements in the…
RF pulse shape control in the compact linear collider test facility
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Corsini, Roberto
2018-07-01
The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.
SITE TECHNOLOGY CAPSULE: GEOTECH DEVELOPMENT CORPORATION COLD TOP EX-SITU VITRIFICATION TECHNOLOGY
A SITE technology demonstration was conducted in 1997 to evaluate the potential applicability and effectiveness of the Geotech Cold Top ex-situ vitrification technology on chromium-contaminated soils. The primary objective was to develop test data to evaluate whether the waste a...
Quantum-limited heat conduction over macroscopic distances
Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko
2016-01-01
The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26. PMID:27239219
Utilzing Networked Computer Workstations To Conduct Electronic Focus Groups.
ERIC Educational Resources Information Center
Lowery, Catherine; Franklin, Kathy K.
Researchers at the University of Arkansas at Little Rock conducted a study of faculty attitudes about the use of technology in the college classroom using electronic focus group sessions. This paper examines the electronic focus group data collection procedure. The electronic sessions were conducted in a decision-support center on campus with 13…
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
NOVOCS TECHNOLOGY EVALUATION REPORT
An evaluation of the MACTEC Inc., NoVOCs(TM) technology ws conducted under the SITE Program, in partnership with the Naval Facilities Engineering Command SW Division, the Navy Environmental Leadership Program, the EPA Technology Innovation Office and Clean Sites, Inc. Specificall...
School-Based Technology Use Planning.
ERIC Educational Resources Information Center
Cradler, John
1994-01-01
Describes how to conduct systematic planning for technology use. The components of an effective technology use plan, derived from a comprehensive study of school-based technology, are given. Planning development, implementation, and evaluation steps are provided. Ten planning resource books are listed. (Contains five references.) (KRN)
Thermal conductivity of metals
NASA Technical Reports Server (NTRS)
Kazem, Sayyed M.
1990-01-01
The objective is to familiarize students with steady and unsteady heat transfer by conduction and with the effect of thermal conductivity upon temperature distribution through a homogeneous substance. The elementary heat conduction experiment presented is designed for associate degree technology students in a simple manner to enhance their intuition and to clarify many confusing concepts such as temperature, thermal energy, thermal conductivity, heat, transient and steady flows. The equipment set is safe, small, portable (10 kg) and relatively cheap (about $1200): the electric hot plate 2 kg (4.4 lb) for $175: the 24 channel selector and Thermocouple Digital Readout (Trendicator) 4.5 kg (10 lb) for about $1000; the three metal specimens (each of 2.5 cm diameter and 11 cm length), base plate and the bucket all about 3 kg (7 lb) for about $25. The experiment may take from 60 to 70 minutes. Although the hot plate surface temperature could be set from 90 to 370 C (maximum of 750 watts) it is a good practice to work with temperatures of 180 to 200 C (about 400 watts). They may experiment in squads of 2, 3 or even 4, or the instructor may demonstrate it for the whole class.
Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena
2015-04-06
a group of six researchers in the fields of electromagnetics , radar and antenna technology. Research was conducted during this reporting period in...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering Phenomena...Matrix Theory Based on Gaussian Beams………...65 4.5.3 Array realization of complex-source beam……………………………85 4.5.4 Electromagnetic Scattering-Matrix
Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider
NASA Astrophysics Data System (ADS)
Han, Y.; Latina, A.; Ma, L.; Schulte, D.
2017-06-01
The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.
75 FR 38086 - Technology Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... COMMODITY FUTURES TRADING COMMISSION Technology Advisory Committee Meeting The Commodity Futures Trading Commission's (``Commission'') Technology Advisory Committee will conduct a meeting on Wednesday... Technology Advisory Committee, which will inform the Commission of technological issues and developments...
LOCATION AND CHARACTERIZATION OF SUBSURFACE ANOMALIES USING A SOIL CONDUCTIVITY PROBE
An electrical conductivity probe, designed for use with "direct push" technology, has been successfully used to locate buried drums, contaminant plumes, and to precisely locate and characterize a previously installed permeable reactive iron wall. The conductivity probe was desig...
FCS Technology Investigation Overview
NASA Technical Reports Server (NTRS)
Budinger, James; Gilbert, Tricia
2007-01-01
This working paper provides an overview of the Future Communication Study (FCS) technology investigation progress. It includes a description of the methodology applied to technology evaluation; evaluation criteria; and technology screening (down select) results. A comparison of screening results with other similar technology screening activities is provided. Additional information included in this working paper is a description of in-depth studies (including characterization of the L-band aeronautical channel; L-band deployment cost assessment; and performance assessments of candidate technologies in the applicable aeronautical channel) that have been conducted to support technology evaluations. The paper concludes with a description on-going activities leading to conclusion of the technology investigation and the development of technology recommendations.
Downey, Laura; Rao, Neethi; Guinness, Lorna; Asaria, Miqdad; Prinja, Shankar; Sinha, Anju; Kant, Rajni; Pandey, Arvind; Cluzeau, Francoise; Chalkidou, Kalipso
2018-01-01
Background: Health technology assessment (HTA) provides a globally-accepted and structured approach to synthesising evidence for cost and clinical effectiveness alongside ethical and equity considerations to inform evidence-based priorities. India is one of the most recent countries to formally commit to institutionalising HTA as an integral component of the heath resource allocation decision-making process. The effective conduct of HTA depends on the availability of reliable data. Methods: We draw from our experience of collecting, synthesizing, and analysing health-related datasets in India and internationally, to highlight the complex requirements for undertaking HTA, and explore the availability of such data in India. We first outlined each of the core data components required for the conduct of HTA, and their availability in India, drawing attention to where data can be accessed, and different ways in which researchers can overcome the challenges of missing or low quality data. Results: We grouped data into the following categories: clinical efficacy; cost; epidemiology; quality of life; service use/consumption; and equity. We identified numerous large local data sources containing epidemiological information. There was a marked absence of other locally-collected data necessary for informing HTA, particularly data relating to cost, service use, and quality of life. Conclusions: The introduction of HTA into the health policy space in India provides an opportunity to comprehensively assess the availability and quality of health data capture across the country. While epidemiological information is routinely collected across India, other data inputs necessary for HTA are not readily available. This poses a significant bottleneck to the efficient generation and deployment of HTA into the health decision space. Overcoming these data gaps by strengthening the routine collection of comprehensive and verifiable health data will have important implications not only
Recent Development of Nanomaterial-Doped Conductive Polymers
NASA Astrophysics Data System (ADS)
Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.
2017-12-01
Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.
Evaluation of New Thermally Conductive Geopolymer in Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Černý, Matěj; Uhlík, Jan; Nosek, Jaroslav; Lachman, Vladimír; Hladký, Radim; Franěk, Jan; Brož, Milan
This paper describes an evaluation of a newly developed thermally conductive geopolymer (TCG), consisting of a mixture of sodium silicate and carbon micro-particles. The TCG is intended to be used as a component of high temperature energy storage (HTTES) to improve its thermal diffusivity. Energy storage is crucial for both ecological and economical sustainability. HTTES plays a vital role in solar energy technologies and in waste heat recovery. The most advanced HTTES technologies are based on phase change materials or molten salts, but suffer with economic and technological limitations. Rock or concrete HTTES are cheaper, but they have low thermal conductivity without incorporation of TCG. It was observed that TCG is stable up to 400 °C. The thermal conductivity was measured in range of 20-23 W m-1 K-1. The effect of TCG was tested by heating a granite block with an artificial fissure. One half of the fissure was filled with TCG and the other with ballotini. 28 thermometers, 5 dilatometers and strain sensors were installed on the block. The heat transport experiment was evaluated with COMSOL Multiphysics software.
ERIC Educational Resources Information Center
Pretto, Gabriella; Curró, Gina
2017-01-01
Since 1980s the rate of technological change has been phenomenal, creating an impact on the information-seeking behaviors of doctoral students and other researchers. When searching the three fields of Information Technology (IT), Information and Communication Technology (ICT), and Educational Technology (EdTech), it is like opening a Pandora's…
Controlling Thermal Conduction by Graded Materials
NASA Astrophysics Data System (ADS)
Ji, Qin; Huang, Ji-Ping
2018-04-01
Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace’s equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat. Support by the National Natural Science Foundation of China under Grant No. 11725521, by the Science and Technology Commission of Shanghai Municipality under Grant No. 16ZR1445100
Public Attitudes to Technological Progress.
ERIC Educational Resources Information Center
Marshall, Eliot
1979-01-01
Discusses the probable changes in public attitudes toward science and technology as a result of the engineering accidents of 1979. Results of national polls conducted to identify public confidence in technological progress are included. (HM)
NASA Astrophysics Data System (ADS)
Peng, Gangrou; Ge, Yu; Ding, Jie; Wang, Caiyun; Wallace, Gordon G.; Li, Weihua
2018-03-01
Ionogels are a new class of hybrid materials where ionic liquids are immobilized by macromolecular support. The excessive amount of crosslinking polymer enhances the mechanical strength but compromises the conductivity. Here, we report an elastomeric magnetorheological (MR) ionogel with an enhanced conductivity and mechanical strength as well. Following the application of magnetic nanoparticles into an ionic liquid containing minimum cross-linking agent, the formation, thus physical properties, of MR ionogels are co-controlled by simultaneously applied UV light and external magnetic field. The application of MR ionogels as solid electrolytes in supercapacitors is also demonstrated to study electrochemical performance. This work opens a new avenue to synthesize robust ionogels with the desired conductivity and controllable mechanical properties for soft flexible electronic devices. Besides, as a new class of conductive MR elastomers, the proposed MR ionogel also possesses the potential for engineering applications, such as sensors and actuators.
ERIC Educational Resources Information Center
Oak Ridge Associated Universities, TN. Manpower Development Div.
The report is a description of the program activities carried on by Training and Technology (TAT) during the first six months of 1973. In the general category of manpower research and development, brief but detailed descriptions are given of each of the projects conducted in the development and extension of the TAT training model in Albuquerque,…
Securing Information Technology in Healthcare
Anthony, Denise; Campbell, Andrew T.; Candon, Thomas; Gettinger, Andrew; Kotz, David; Marsch, Lisa A.; Molina-Markham, Andrés; Page, Karen; Smith, Sean W.; Gunter, Carl A.; Johnson, M. Eric
2014-01-01
Dartmouth College’s Institute for Security, Technology, and Society conducted three workshops on securing information technology in healthcare, attended by a diverse range of experts in the field. This article summarizes the three workshops. PMID:25379030
Harness the Power of Technology
ERIC Educational Resources Information Center
Duncan, Arne
2011-01-01
Today, U.S. educators are teaching in the midst of a technological revolution. Technology promises to provide innovative solutions in the nation's classrooms, just as it has transformed the way people communicate, socialize, and conduct business. In this article, the author argues that now is the time to harness technology to revolutionize the way…
Development of Inflatable Entry Systems Technologies
NASA Technical Reports Server (NTRS)
Player, Charles J.; Cheatwood, F. McNeil; Corliss, James
2005-01-01
Achieving the objectives of NASA s Vision for Space Exploration will require the development of new technologies, which will in turn require higher fidelity modeling and analysis techniques, and innovative testing capabilities. Development of entry systems technologies can be especially difficult due to the lack of facilities and resources available to test these new technologies in mission relevant environments. This paper discusses the technology development process to bring inflatable aeroshell technology from Technology Readiness Level 2 (TRL-2) to TRL-7. This paper focuses mainly on two projects: Inflatable Reentry Vehicle Experiment (IRVE), and Inflatable Aeroshell and Thermal Protection System Development (IATD). The objectives of IRVE are to conduct an inflatable aeroshell flight test that demonstrates exoatmospheric deployment and inflation, reentry survivability and stability, and predictable drag performance. IATD will continue the development of the technology by conducting exploration specific trade studies and feeding forward those results into three more flight tests. Through an examination of these projects, and other potential projects, this paper discusses some of the risks, issues, and unexpected benefits associated with the development of inflatable entry systems technology.
1990-06-01
AN ANNOTATED BIBLIOGRAPHY OF HYPOBARIC DECOMPRESSION SICKNESS RESEARCH CONDUCTED AT THE CREW TECHNOLOGY DIVISION, USAF SCHOOL OF AEROSPACE MEDICINE...190 man-flights to four selected altitudes (30000, 27500, 25000, and 22500 ft pressure equivalent) in a hypobaric chamber. The subjects’ ages ranged...conditions and two of these developed delayed sy~rtcms. Three of these five subjects underwent hyperbaric oxygen treatment. Conclusion. Female subjects
Advanced sensors technology survey
NASA Technical Reports Server (NTRS)
Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert
1992-01-01
This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.
DOT National Transportation Integrated Search
2015-01-01
As mobile technology becomes widely available and affordable, transportation agencies can use this : technology to streamline operations involved within project inspection. This research, conducted in two : phases, identified opportunities for proces...
EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY
A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...
Cab technology integration laboratory demonstration with moving map technology
DOT National Transportation Integrated Search
2013-03-31
A human performance study was conducted at the John A. Volpe National Transportation Systems Center (Volpe Center) using a locomotive research simulatorthe Cab Technology Integration Laboratory (CTIL)that was acquired by the Federal Railroad Ad...
Ethical Applications of Technology in HRD
ERIC Educational Resources Information Center
Lin, Hong
2006-01-01
Human resource development (HRD) professionals are increasingly incorporating technology into their work activities. However, research that examines the ethics in the use of technology by HRD professionals is still underrepresented in the literature. This article first conducts a PEST (political, economic, social-cultural, and technological)…
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Li, Z.; Ng, C.
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less
Reichenbach, Stephen E; Kottapalli, Visweswara; Ni, Mingtian; Visvanathan, Arvind
2005-04-15
This paper describes a language for expressing criteria for chemical identification with comprehensive two-dimensional gas chromatography paired with mass spectrometry (GC x GC-MS) and presents computer-based tools implementing the language. The Computer Language for Indentifying Chemicals (CLIC) allows expressions that describe rules (or constraints) for selecting chemical peaks or data points based on multi-dimensional chromatographic properties and mass spectral characteristics. CLIC offers chromatographic functions of retention times, functions of mass spectra, numbers for quantitative and relational evaluation, and logical and arithmetic operators. The language is demonstrated with the compound-class selection rules described by Welthagen et al. [W. Welthagen, J. Schnelle-Kreis, R. Zimmermann, J. Chromatogr. A 1019 (2003) 233-249]. A software implementation of CLIC provides a calculator-like graphical user-interface (GUI) for building and applying selection expressions. From the selection calculator, expressions can be used to select chromatographic peaks that meet the criteria or create selection chromatograms that mask data points inconsistent with the criteria. Selection expressions can be combined with graphical, geometric constraints in the retention-time plane as a powerful component for chemical identification with template matching or used to speed and improve mass spectrum library searches.
NASA Astrophysics Data System (ADS)
Holmes, Jon L.
2001-08-01
The JCE High School ChemEd Learning Information Center (CLIC) and Buyers Guide continue to be updated with each issue of the print Journal. Every month, links to articles of interest to high school teachers are added to CLIC. Links to all new book and media reviews are added to the Buyers Guide. Additions to the Biographical Snapshots of Famous Women and Minority Chemists (March 2001) and the updated WWW Site Review feature (July 2001) have been previously noted in this column. The Conceptual Questions and Challenge Problems feature has a useful, new tool, Chemical Concepts Inventory, that can be used to assess the level of chemistry misconceptions held by students.
A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...
Laser patterning of highly conductive flexible circuits
NASA Astrophysics Data System (ADS)
Ji, Seok Young; Muhammed Ajmal, C.; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun
2017-04-01
There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.
Laser patterning of highly conductive flexible circuits.
Ji, Seok Young; Ajmal, C Muhammed; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun
2017-04-21
There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s -1 ). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm -1 . The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.
Synthesis of Conductive Polymeric Nanocomposites for Applications in Responsive Materials
NASA Astrophysics Data System (ADS)
Chavez, Jessica
The development of next generation "smart" textiles has emerged with significant interest due to the immense demand for high-performance wearable technology. The economic market for wearable technologies is predicted to increase significantly in both volume and value. In the next four years, the wearable technology market will be valued at $34 billion. This large demand has opened up a new research area involving smart wearable devices and conductive fabrics. Many research groups have taken various paths to study and ultimately fabricate wearable devices. Due to the limiting capabilities of conventional conductors, researchers have centered their research on the integration of conductive polymers into textile materials for applications involving responsive material. Conducive polymers are very unique organic molecules that have the ability to transfer electrons across their molecular structure due to the excess presence of pi-electrons. Conductive polymers are favored over conventional conductors because they can be easily manipulated and integrated into flexible material. Two very common conductive polymers are polyaniline (PANI) and polypyrrole (PPY) because of their large favorability in literature, high conductance values, and environmental stability. Common commercial fibers were coated via the chemical polymerization of PANI or PPY. A series of reactions were done to study the polymerization process of each polymer. The conductive efficiency of each conducting polymer is highly dependent on the type of reactants used, the acidic nature of the reaction, and the temperature of the reaction. The coated commercial fiber nanocomposites produced higher conductivity values when the polymerization reaction was run using ammonium peroxydisulfate (APS) as the oxidizing agent, run in an acidic environment, and run at very low temperatures. Other factors that improved the overall efficiency of the coated commercial fiber nanocomposites was the increase in polymer
Ion conduction in crystalline superionic solids and its applications
NASA Astrophysics Data System (ADS)
Chandra, Angesh
2014-06-01
Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.
10 CFR 110.46 - Conduct resulting in termination of nuclear exports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2010-01-01 2010-01-01 false Conduct resulting in termination of nuclear exports. 110...
10 CFR 110.46 - Conduct resulting in termination of nuclear exports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2011-01-01 2011-01-01 false Conduct resulting in termination of nuclear exports. 110...
ERIC Educational Resources Information Center
Kara, Nuri; Cagiltay, Kursat
2017-01-01
The purpose of this study is to understand in-service preschool teachers' thoughts about technology and technology use in early educational settings. Semi-structured interviews were conducted with 18 in-service preschool teachers. These teachers were selected from public and private preschools. Convenient sampling was applied because teachers who…
ERIC Educational Resources Information Center
Barratt, Will
This pilot study looks into how information technology practices are being conducted in student affairs. It compares common practices against which exemplary programs and best practices can be measured. After gathering information from five universities, a model was created that encompassed policy, staffing, technology, and practice as the best…
Thermal Conductivity of Carbon Nanotube Composite Films
NASA Technical Reports Server (NTRS)
Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.
2004-01-01
State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.
NASA Technical Reports Server (NTRS)
1998-01-01
This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.
On-orbit technology experiment facility definition
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.
1988-01-01
A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.
Learning the Hard Way? Issues in the Adoption of New Technology in Small Technology Oriented Firms
ERIC Educational Resources Information Center
Chibelushi, Caroline
2008-01-01
Purpose: The purpose of this paper is to explore, through a survey and two short case studies, the issues smaller firms face with the adoption of new technologies. Design/methodology/approach: A survey of the pressures to adopt new technologies and the existence of specialist technology skills was conducted of small ICT oriented firms in the West…
Printable Transparent Conductive Films for Flexible Electronics.
Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei
2018-03-01
Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
Objectives Health information technology (HIT) research findings suggested that new healthcare technologies could reduce some types of medical errors while at the same time introducing classes of medical errors (i.e., technology-induced errors). Technology-induced errors have their origins in HIT, and/or HIT contribute to their occurrence. The objective of this paper is to review current trends in the published literature on HIT safety. Methods A review and synthesis of the medical and life sciences literature focusing on the area of technology-induced error was conducted. Results There were four main trends in the literature on technology-induced error. The following areas were addressed in the literature: definitions of technology-induced errors; models, frameworks and evidence for understanding how technology-induced errors occur; a discussion of monitoring; and methods for preventing and learning about technology-induced errors. Conclusions The literature focusing on technology-induced errors continues to grow. Research has focused on the defining what an error is, models and frameworks used to understand these new types of errors, monitoring of such errors and methods that can be used to prevent these errors. More research will be needed to better understand and mitigate these types of errors. PMID:23882411
Highly Conductive Nano-Silver Circuits by Inkjet Printing
NASA Astrophysics Data System (ADS)
Zhu, Dongbin; Wu, Minqiang
2018-06-01
Inkjet technology has become popular in the field of printed electronics due to its superior properties such as simple processes and printable complex patterns. Electrical conductivity of the circuits is one of the key factors in measuring the performance of printed electronics, which requires great material properties and a manufactured process. With excellent conductivity and ductility, silver is an ideal material as the wire connecting components. This review summarizes the progress of conductivity studies on inkjet printed nano-silver lines, including ink composition and nanoparticle morphology, deposition of nano-silver lines with uniform and high aspect ratios, sintering mechanisms and alternative methods of thermal sintering. Finally, the research direction on inkjet printed electronics is proposed.
GEOTECH, INC., COLD TOP EX-SITU VITRIFICATION SYSTEM; INNOVATIVE TECHNOLOGY EVALUATION REPORT
A Superfund Innovative Technology Evaluation (SITE) technology demonstration was conducted in February and March 1997 to evaluate the Geotech Development Corporation (Geotech) Cold Top ex-situ vitrification technology in chromium-contaminated soils. The demonstration was conduct...
A demonstration of the Zenon cross-flow pervaporation technology was conducted under the Superfund Innovative Technology Evaluation (SITE) program in February 1995 to determine the removal efficiency of trichloroethylene (TCE) from groundwaters at the Naval Air Station North Isla...
ERIC Educational Resources Information Center
Smith, Ryan Cummings
2010-01-01
Prior research on students' uses of technology has suggested it can be used to support students' development of formal justifications and proofs. The ways in which these technologies influence the construction of arguments and proofs remain uncertain. Furthermore, research has not been conducted that compares the arguments students develop while…
ERIC Educational Resources Information Center
Dincyurek, Sibel; Uygarer, Gulen
2012-01-01
Technology brings novelties among human beings' lives and human psychology is also influenced by these novelties in positive and negative way. In the study, positive contribution of the technology and the importance of counseling services were wished to be indicated. School counseling services were conducted to illustrate the importance of online…
Cyber security evaluation of II&C technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Ken
The Light Water Reactor Sustainability (LWRS) Program is a research and development program sponsored by the Department of Energy, which is conducted in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) tomore » address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. The II&C Pathway is conducted by Idaho National Laboratory (INL). Cyber security is a common concern among nuclear utilities and other nuclear industry stakeholders regarding the digital technologies that are being developed under this program. This concern extends to the point of calling into question whether these types of technologies could ever be deployed in nuclear plants given the possibility that the information in them can be compromised and the technologies themselves can potentially be exploited to serve as attack vectors for adversaries. To this end, a cyber security evaluation has been conducted of these technologies to determine whether they constitute a threat beyond what the nuclear plants already manage within their regulatory-required cyber security programs. Specifically, the evaluation is based on NEI 08-09, which is the industry’s template for cyber security programs and evaluations, accepted by the Nuclear Regulatory Commission (NRC) as responsive to the requirements of the nuclear power plant cyber security regulation found in 10 CFR 73.54. The evaluation was conducted
As part of the Superfund Innovative Technology Evaluation (SITE) program, the U.S. Environmental Protection Agency (EPA) demonstrated the Chemical Waste Management, Inc. (CWM), PO*WW*ER™ technology. The SITE demonstration was conducted in September 1992 at CWM's Lake Charles Tre...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... Process To Develop Consumer Data Privacy Code of Conduct Concerning Facial Recognition Technology AGENCY... technology. This Notice announces the meetings to be held in February, March, April, May, and June 2014. The... promote trust regarding facial recognition technology in the commercial context.\\4\\ NTIA encourages...
Technology Transfer: Marketing Tomorrow's Technology
NASA Technical Reports Server (NTRS)
Tcheng, Erene
1995-01-01
The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers
Preservice Teachers' Technology Self-Efficacy
ERIC Educational Resources Information Center
Kent, Andrea M.; Giles, Rebecca M.
2017-01-01
Since efficacy of experienced teachers is difficult to change (Hoy, 2000), preservice teachers' technology self-efficacy is a creditable indicator of graduates' likelihood to use instructional technology throughout their careers. A study was conducted with elementary preservice teachers (n = 62) who completed a 5-item, Likert-type survey measuring…
Teen pregnancy prevention: a rural model using school and community collaboration.
Barnes, N D; Harrod, S E
1993-11-01
From 1980 to 1989 there were 2069 babies born to teenage mothers in northeastern Connecticut, accounting for more than 10% of all births in this region. A Connecticut model program that combats teen pregnancy and emphasizes a collaborative venture between a state-funded community-based pregnancy prevention program and a regional vocational-technical high school located in a rural setting is described. Beginning in the fall of 1987, a group of local providers and concerned citizens formed a steering committee which was given funding to initiate services in early 1988. The objectives of the Northeast Connecticut Teen Pregnancy Prevention Program were (a) to enhance the capacity of parents to prevent teen pregnancy, (b) to increase public education concerning the prevention of teenage pregnancy, (c) to increase the coordinated planning of teen pregnancy prevention resources, and (d) to mobilize additional teen pregnancy prevention resources. At the regional vocational-technical high school in rural north eastern Connecticut a pregnancy prevention program for students in grades 9 through 12 was designed called Contemporary Life Issues Clinic (CLIC). This voluntary experiential program lasted 8 weeks for male and female students. Each week, one session operated during regular school hours. Students preregistered for each week's activity or clinic in the guidance office. CLIC's consisted of eight topics with accompanying activities aimed at improving sexual responsibility; increasing the decision-making skills of students; encouraging the development of coping skills; fostering emotional growth; cultivating success-oriented attitudes; providing information in pregnancy prevention, sexually transmitted disease including AIDS; and providing information regarding the financial and legal implications of parenthood. During the fall of 1990, CLIC had 98 participants. The majority of the students were young women. The most heavily attended session dealt with contraception; the
Lalancette, Pascal; Racine, Alexandre
2017-01-01
In this paper, we test the hypothesis that health technology assessment units located in hospitals tend to be more optimistic toward technologies that are currently in use in their organization than technologies that are not. The data include 108 health technologies assessed in 87 full-scale health technology assessment reports produced by the four main local health technology assessment units in Quebec (Canada) on behalf of decision makers from the same facility. We found that 58 (53.7 percent) of the 108 technologies were currently in use within the hospital during their assessment. Based on the assessors' interpretation of the scientific evidence regarding the efficacy of the technologies, 67.3 percent of the technologies that were in use in the hospital during the evaluation were effective (56 percent for those that were not currently being used), but the difference is not statistically significant (chi-square 1.38; p = 0.24). Controlling for the efficacy judgment, the type of technologies (i.e. preventive, diagnostic, therapeutic or organizational), the number of technologies assessed in the report and the assessment unit, we found that the technologies that were currently in use in the facility during the evaluation were 62 percent more likely to be recommended favorably by the assessment unit than the technologies that were not currently being used (RR = 1.62; 95 percent CI = 1.06–1.88). This suggests that the local health technology units that were examined in the study tended to be more optimistic toward technologies that were currently in use in their hospital at the time of the evaluation. PMID:28945772
Space and Industrial Brine Drying Technologies
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali
2014-01-01
This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.
Technology needs for high-speed rotorcraft
NASA Technical Reports Server (NTRS)
Rutherford, John; Orourke, Matthew; Martin, Christopher; Lovenguth, Marc; Mitchell, Clark
1991-01-01
A study to determine the technology development required for high-speed rotorcraft development was conducted. The study begins with an initial assessment of six concepts capable of flight at, or greater than 450 knots with helicopter-like hover efficiency (disk loading less than 50 pfs). These concepts were sized and evaluated based on measures of effectiveness and operational considerations. Additionally, an initial assessment of the impact of technology advances on the vehicles attributes was made. From these initial concepts a tilt wing and rotor/wing concepts were selected for further evaluation. A more detailed examination of conversion and technology trade studies were conducted on these two vehicles, each sized for a different mission.
Messina, Elena; Leone, Nancy; Foti, Antonino; Di Marco, Gaetano; Riccucci, Cristina; Di Carlo, Gabriella; Di Maggio, Francesco; Cassata, Antonio; Gargano, Leonardo; D'Andrea, Cristiano; Fazio, Barbara; Maragò, Onofrio Maria; Robba, Benedetto; Vasi, Cirino; Ingo, Gabriel Maria; Gucciardi, Pietro Giuseppe
2016-09-07
Improving the electrical and thermal properties of conductive adhesives is essential for the fabrication of compact microelectronic and optoelectronic power devices. Here we report on the addition of a commercially available conductive resin with double-wall carbon nanotubes and graphene nanoplatelets that yields simultaneously improved thermal and electrical conductivity. Using isopropanol as a common solvent for the debundling of nanotubes, exfoliation of graphene, and dispersion of the carbon nanostructures in the epoxy resin, we obtain a nanostructured conducting adhesive with thermal conductivity of ∼12 W/mK and resistivity down to 30 μΩ cm at very small loadings (1% w/w for nanotubes and 0.01% w/w for graphene). The low filler content allows one to keep almost unchanged the glass-transition temperature, the viscosity, and the curing parameters. Die shear measurements show that the nanostructured resins fulfill the MIL-STD-883 requirements when bonding gold-metalized SMD components, even after repeated thermal cycling. The same procedure has been validated on a high-conductivity resin characterized by a higher viscosity, on which we have doubled the thermal conductivity and quadrupled the electrical conductivity. Graphene yields better performances with respect to nanotubes in terms of conductivity and filler quantity needed to improve the resin. We have finally applied the nanostructured resins to bond GaN-based high-electron-mobility transistors in power-amplifier circuits. We observe a decrease of the GaN peak and average temperatures of, respectively, ∼30 °C and ∼10 °C, with respect to the pristine resin. The obtained results are important for the fabrication of advanced packaging materials in power electronic and microwave applications and fit the technological roadmap for CNTs, graphene, and hybrid systems.
Ubiquitous Computing Technologies in Education
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Ting-Ting; Chen, Yen-Jung
2007-01-01
The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world.…
Technology and public policy: The process of technology assessment in the federal government
NASA Technical Reports Server (NTRS)
Coates, V. T.
1975-01-01
A study was conducted to provide a descriptive and analytical review of the concept of technology assessment and the current status of its applications in the work of the federal executive agencies. The origin of the term technology assessment was examined along with a brief history of its discussion and development since 1966 and some of the factors influencing that development.
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This report, the fourth in a series of six, describes the evaluative studies conducted during Phase II of the California Educational Technology Assessment Program, the California Technology Project (CTP), and the CTP Regional Consortia. The report begins with background information on the CTP, starting with the earlier statewide network of…
Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms
Yan, Haijing; Zhang, Xiangnan; Hu, Weiwei; Ma, Jing; Hou, Weiwei; Zhang, Xingzhou; Wang, Xiaofen; Gao, Jieqiong; Shen, Yao; Lv, Jianxin; Ohtsu, Hiroshi; Han, Feng; Wang, Guanghui; Chen, Zhong
2014-01-01
The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia. PMID:24566390
NASA Astrophysics Data System (ADS)
Prasher, Ravi
2006-09-01
Nanoporous and microporous materials made from aligned cylindrical pores play important roles in present technologies and will play even bigger roles in future technologies. The insight into the phonon thermal conductivity of these materials is important and relevant in many technologies and applications. Since the mean free path of phonons can be comparable to the pore size and interpore distance, diffusion-approximation based effective medium models cannot be used to predict the thermal conductivity of these materials. Strictly speaking, the Boltzmann transport equation (BTE) must be solved to capture the ballistic nature of thermal transport; however, solving BTE in such a complex network of pores is impractical. As an alternative, we propose an approximate ballistic-diffusive microscopic effective medium model for predicting the thermal conductivity of phonons in two-dimensional nanoporous and microporous materials made from aligned cylindrical pores. The model captures the size effects due to the pore diameter and the interpore distance and reduces to diffusion-approximation based models for macroporous materials. The results are in good agreement with experimental data.
Thermal Conductivity of Diamond Composites
Kidalov, Sergey V.; Shakhov, Fedor M.
2009-01-01
A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon); one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K). Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.
Making Complex Electrically Conductive Patterns on Cloth
NASA Technical Reports Server (NTRS)
Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert
2008-01-01
A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.
Introducing Mobile Technology in Graduate Professional Education
ERIC Educational Resources Information Center
Anand, Gopesh; Chhajed, Dilip; Hong, Seung Won; Scagnoli, Norma
2014-01-01
The insertion of mobile technology in educational settings is becoming more prevalent, making it important to understand the effectiveness of such technology in enhancing students' learning and engagement. This article is based on research conducted to study the effects of the use of mobile technology--specifically iPads--by students in a graduate…
Carbon nanotube based transparent conductive films: progress, challenges, and perspectives
Zhou, Ying; Azumi, Reiko
2016-01-01
Abstract Developments in the manufacturing technology of low-cost, high-quality carbon nanotubes (CNTs) are leading to increased industrial applications for this remarkable material. One of the most promising applications, CNT based transparent conductive films (TCFs), are an alternative technology in future electronics to replace traditional TCFs, which use indium tin oxide. Despite significant price competition among various TCFs, CNT-based TCFs have good potential for use in emerging flexible, stretchable and wearable optoelectronics. In this review, we summarize the recent progress in the fabrication, properties, stability and applications of CNT-based TCFs. The challenges of current CNT-based TCFs for industrial use, in comparison with other TCFs, are considered. We also discuss the potential of CNT-based TCFs, and give some possible strategies to reduce the production cost and improve their conductivity and transparency. PMID:27877899
An Assessment of Integrated Flywheel System Technology
NASA Technical Reports Server (NTRS)
Keckler, C. R. (Editor); Bechtel, R. T. (Editor); Groom, N. J. (Editor)
1984-01-01
The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented.
Evaluation of conductive concrete for anti-static flooring applications
NASA Astrophysics Data System (ADS)
Yehia, Sherif; Qaddoumi, Nasser; Hassan, Mohamed; Swaked, Bassam
2015-04-01
Static electricity, exchange of electrons, and retention of charge between any two materials due to contact and separation are affected by the condition of the materials being nonconductive or insulated from ground. Several work environments, such as electronics industry, hospitals, offices, and computer rooms all require electro-static discharge (ESD) mitigation. Carpet Tile, Carpet Broadloom, Vinyl Tile, Vinyl sheet, Epoxy and Rubber are examples of existing flooring systems in the market. However, each system has its advantages and limitations. Conductive concrete is a relatively new material technology developed to achieve high electrical conductivity and high mechanical strength. The conductive concrete material can be an economical alternative for these ESD flooring systems. In this paper, the effectiveness of conductive concrete as an anti-static flooring system was evaluated. The initial results indicated that the proposed conductive concrete flooring and ground system met the acceptance criteria stated by ASTM F150.
Proton conduction in metal-organic frameworks and related modularly built porous solids.
Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan; Kim, Kimoon
2013-03-04
Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metal-organic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compilation of LIC (Low Intensity Conflict) References and Bibliography, Volume 2. CLIC Papers
1988-09-01
Mexico . It reviews these nations’ historical and institutional settings, the characteristics of their political culture, the style of their negotiators...invitations, body language, world view, time, machismo , success, and manual labor. It explains teaching and training Latins in terms of the personal...30, Mexico , 14 31, 37 Morocco-Polisario, 15. Summers, 11, 21 Motley, 7 Swenarski, 11 Murray, 8 Taylor, 12 Nails, 13 Technological, 2, 16, 30
Rover and Telerobotics Technology Program
NASA Technical Reports Server (NTRS)
Weisbin, Charles R.
1998-01-01
The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.
Potential of thermally conductive polymers for the cooling of mechatronic parts
NASA Astrophysics Data System (ADS)
Heinle, C.; Drummer, D.
Adding thermally conductive fillers to polymers the thermal conductivity can be raised significantly. Thermal conductive polymers (TC-plastics) open up a vast range of options to set up novel concepts of polymer technological system solutions in the area of mechatronics. Heating experiment of cooling ribs show the potential in thermal management of mechatronic parts with TC-polymers in comparison with widely used reference materials copper and aluminum. The results demonstrate that especially for certain thermal boundary conditions comparable performance between these two material grades can be measured.
Middle School Technology Integration Study.
ERIC Educational Resources Information Center
Hall, Grey; Mantz, Chris
This paper is a report on the development and findings of an on-going study being conducted on 126 middle schools in rural eastern North Carolina. An analysis of the technological readiness of each school is being followed with a program to offer school leaders a technology design and teacher training that will work in their schools. This includes…
Health technology assessment: Off-site sterilization
Dehnavieh, Reza; Mirshekari, Nadia; Ghasemi, Sara; Goudarzi, Reza; Haghdoost, AliAkbar; Mehrolhassani, Mohammad Hossain; Moshkani, Zahra; Noori Hekmat, Somayeh
2016-01-01
Background: Every year millions of dollars are expended to equip and maintain the hospital sterilization centers, and our country is not an exception of this matter. According to this, it is important to use more effective technologies and methods in health system in order to reach more effectiveness and saving in costs. This study was conducted with the aim of evaluating the technology of regional sterilization centers. Methods: This study was done in four steps. At the first step, safety and effectiveness of technology was studied via systematic study of evidence. The next step was done to evaluate the economical aspect of off-site sterilization technology using gathered data from systematic review of the texts which were related to the technology and costs of off-site and in-site hospital sterilization. Third step was conducted to collect experiences of using technology in some selected hospitals around the world. And in the last step different aspects of acceptance and use of this technology in Iran were evaluated. Results: Review of the selected articles indicated that efficacy and effectiveness of this technology is Confirmed. The results also showed that using this method is not economical in Iran. Conclusion: According to the revealed evidences and also cost analysis, due to shortage of necessary substructures and economical aspect, installing the off-site sterilization health technology in hospitals is not possible currently. But this method can be used to provide sterilization services for clinics and outpatients centers. PMID:27390714
Conductive Channel for Energy Transmission
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.
2011-11-01
For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of "Impulsar" represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The "Impulsar"—laser jet engine vehicle—propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO2—laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.
The State of Water in Proton Conducting Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.
2010-08-27
The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of themore » design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.« less
Use of Educational Technology in Promoting Distance Education
ERIC Educational Resources Information Center
Rashid, Muhammad; Elahi, Uzma
2012-01-01
Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between…
A Model for Conducting and Assessing Interdisciplinary Undergraduate Dissertations
ERIC Educational Resources Information Center
Engström, Henrik
2015-01-01
This paper presents an effort to create a unified model for conducting and assessing undergraduate dissertations, shared by all disciplines involved in computer game development at a Swedish university. Computer game development includes technology-oriented disciplines as well as disciplines with aesthetical traditions. The challenge has been to…
Intelligent Conduct of Fire Trainer: Intelligent Technology Applied to Simulator-Based Training.
ERIC Educational Resources Information Center
Newman, Denis; And Others
1989-01-01
Describes an intelligent tutoring system (ITS) that demonstrates how intelligent feedback can enhance conventional simulation-based training. An explanation is given of the Intelligent Conduct of Fire Trainer (INCOFT), which was designed to provide training exercises for soldiers operating the PATRIOT missile system, and its implications for…
NASA Technical Reports Server (NTRS)
Engler, N. A.; Nash, J. F.; Strange, J. D.
1978-01-01
Approximately 453 reports, papers, and articles catalogued into an information retrieval system, covering communications experiments and demonstrations conducted, utilizing the Communications Technology Satellite and the Applications Technology Satellites 1, 3, 5, and 6 are listed.
NASA Technical Reports Server (NTRS)
Allario, F.; Taylor, L. V.
1986-01-01
Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.
DOT National Transportation Integrated Search
2013-08-01
As mobile technology becomes widely available and affordable, transportation agencies can use this technology to : streamline operations involved within project inspection. This research, conducted in two phases, identified : opportunities for proces...
Technology Transfer and Commercialization
NASA Technical Reports Server (NTRS)
Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin
2001-01-01
During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.
In-pile Thermal Conductivity Characterization with Time Resolved Raman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xinwei; Hurley, David H.
The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heatingmore » of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.« less
This task seeks to identify high priority needs of the Regions and Program Offices for innovative field sampling, characterization, monitoring, and measurement technologies. When an appropriate solution to a specific problem is identified, a field demonstration is conducted to d...
Using bibliographic databases in technology transfer
NASA Technical Reports Server (NTRS)
Huffman, G. David
1987-01-01
When technology developed for a specific purpose is used in another application, the process is called technology transfer--the application of an existing technology to a new use or user for purposes other than those for which the technology was originally intended. Using Bibliographical Databases in Technology Transfer deals with demand-pull transfer, technology transfer that arises from need recognition, and is a guide for conducting demand-pull technology transfer studies. It can be used by a researcher as a self-teaching manual or by an instructor as a classroom text. A major problem of technology transfer is finding applicable technology to transfer. Described in detail is the solution to this problem, the use of computerized, bibliographic databases, which currently contain virtually all documented technology of the past 15 years. A general framework for locating technology is described. NASA technology organizations and private technology transfer firms are listed for consultation.
Modified Brewster angle on conducting 2D materials
NASA Astrophysics Data System (ADS)
Majérus, Bruno; Cormann, Mirko; Reckinger, Nicolas; Paillet, Matthieu; Henrard, Luc; Lambin, Philippe; Lobet, Michaël
2018-04-01
Insertion of two-dimensional (2D) materials in optical systems modifies their electrodynamical response. In particular, the Brewster angle undergoes an up-shift if a substrate is covered with a conducting 2D material. This work theoretically and experimentally investigates this effect related to the 2D induced current at the interface. The shift is predicted for all conducting 2D materials and tunability with respect to the Fermi level of graphene is evidenced. Analytical approximations for high and low 2D conductivities are proposed and avoid cumbersome numerical analysis of experimental data. Experimental demonstration using spectroscopic ellipsometry has been performed in the UV to NIR range on mono-, bi- and trilayer graphene samples. The non-contact measurement of this modified Brewster angle allows to deduce the optical conductivity of 2D materials. Applications to telecommunication technologies can be considered thanks to the tunability of the shift at 1.55 μm.
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
OAST Technology for the Future. Volume 3 - Critical Technologies, Themes 5-8
NASA Technical Reports Server (NTRS)
1988-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the 5 ace environment. A secondary objective was to review the current NASA (In-Reach and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.
OAST Technology for the Future. Volume 2 - Critical Technologies, Themes 1-4
NASA Technical Reports Server (NTRS)
1988-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which. require validation in the space environment. A secondary objective was to review the current NASA (InReach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.
Application of Technology to Cognitive Development.
ERIC Educational Resources Information Center
Wilson, Louise
This report presents a summary of research being conducted at the University of Minnesota in which new technologies are being applied to development of cognition in hearing impaired learners. The study involved an application of concept analysis, information-processing theories, and group-based interactive technology in the teaching of…
Thermally Conductive-Silicone Composites with Thermally Reversible Cross-links.
Wertz, J T; Kuczynski, J P; Boday, D J
2016-06-08
Thermally conductive-silicone composites that contain thermally reversible cross-links were prepared by blending diene- and dienophile-functionalized polydimethylsiloxane (PDMS) with an aluminum oxide conductive filler. This class of thermally conductive-silicones are useful as thermal interface materials (TIMs) within Information Technology (IT) hardware applications to allow rework of valuable components. The composites were rendered reworkable via retro Diels-Alder cross-links when temperatures were elevated above 130 °C and required little mechanical force to remove, making them advantageous over other TIM materials. Results show high thermal conductivity (0.4 W/m·K) at low filler loadings (45 wt %) compared to other TIM solutions (>45 wt %). Additionally, the adhesion of the material was found to be ∼7 times greater at lower temperatures (25 °C) and ∼2 times greater at higher temperatures (120 °C) than commercially available TIMs.
SITE TECHNOLOGY CAPSULE: ROCHEM SEPARATION SYSTEMS, INC. - DISC TUBE MODULE TECHNOLOGY
SITE Program demonstration of the Rochem Disc Tube Module™(DTM) developed by Rochem Separations Systems, Inc. The demonstration test was conducted at the central landfill superfund site in Johnston, Rhode island in August, 1994. The DTM technology is an innovative membrane filt...
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
EVALUATION OF THE BIOGENESIS SOIL WASHING TECHNOLOGY
The BioGenesis Enterprises, Inc. (BioGenesis) soil washing technology was demonstrated as part of the US Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) program in November 1992. The demonstration was conducted over three days at a petrol...
#2) Sensor Technology-State of the Science
Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as othe...
Indigenous Learning Preferences and Interactive Technologies
ERIC Educational Resources Information Center
Kitchenham, Andrew
2017-01-01
This three-year research study examined the influence of interactive technologies on the math achievement of Indigenous students in Years 4, 5, 6 and 7 technology-equipped classrooms in a rural elementary school in British Columbia, Canada. Using a mixed-methods approach, the researcher conducted semistructured interviews and collected math…
Historiography in Graduate Technology Teacher Education
ERIC Educational Resources Information Center
Flowers, Jim; Hunt, Brian
2012-01-01
A proposal is made suggesting the inclusion of historiography (i.e., historical research and the writing of history) into graduate technology teacher education. In particular, a strategy is forwarded to have graduate students in technology teacher education, who are working at schools in different locations, conduct historical research and write…
Conductivity Analysis of Membranes for High-Temperature PEMFC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, R.; Turner, J.A.
2005-01-01
Low-temperature operation requirements for per-fluorinated membranes are one factor that limits the viability of current fuel cell technology for transportation and other uses. Because of this, high-temperature membrane materials are being researched. The protonic conductivity of organic/inorganic hybrid composites, Nafion® analog material, and heteropoly acid doped Nafion membranes were studied using a BekkTech® conductivity test cell as a hydrogen pump. The goal was to find a high-temperature membrane with sufficient enough conductive properties to replace the currently implemented low-temperature membranes, such as Nafion. Four-point conductivity measurements were taken using a hydrogen pump experiment. Results showed that one of the organic/inorganicmore » membranes that we tested had similar protonic conductivity to Nafion. Nafion analog membranes were shown to have similar to slightly better conductivity than Nafion at high-temperatures. However, like Nafion, performance dropped upon dehydration of the membrane at higher temperatures. Of the heteropoly acid doped Nafion membranes studied, silicotungstic acid was found to be, overall, the most promising for use as a dopant.« less
Using Digital Classrooms to Conduct 4-H Club Meetings
ERIC Educational Resources Information Center
West, Patricia; Fuhrman, Nicholas E.; Morgan, A. Christian; Duncan, Dennis W.
2012-01-01
Using computer technology and digital classrooms to conduct 4-H Club meetings is an efficient way to continue delivering quality 4-H programming during times of limited resources and staff. Nineteen Junior and Senior 4-H'ers participated in seven digital classroom workshops using the Wimba Classroom application. These digital classroom sessions…
The Superfund Innovative Technology Evaluation Program SUMMARY AND CLOSURE REPORT
The Superfund Innovative Technology Evaluation (SITE) Program promoted the development, commercialization, and implementation of innovative hazardous waste treatment technologies for 20 years. SITE offered a mechanism for conducting joint technology demonstration and evaluation ...
The integration of technology into the middle and high school science curriculum
NASA Astrophysics Data System (ADS)
Corbin, Jan Frederic
This study was to determine the level of technology implementation into the middle and high school science curriculum by beginning teachers. Research was conducted in two phases. The first phase was a survey that provided demographic data and determined the Level of Technology Implementation, Personal Computer Use, and Current Instructional Practice. Dr. Christopher Moersch developed the survey, Level of Technology Implementation (LoTi(c) ). The data provided insight into what technology teachers use, barriers associated with technology integration, teacher training and development, and technical support. Follow-up interviews were conducted to gather additional qualitative data and information. Analysis of the data found beginning teachers have not received enough technology training to integrate technology seamlessly into the science curriculum. Conclusions cite the need for more technology courses during preservice education, more time during the day for beginning teachers to learn to use the technology available at their schools, consolidation of inservice staff development offerings, and more technical support staff readily available. Recommendations were made to expand the study group to all science teachers, assess the technology capacity of all schools, and conduct needs assessment of inservice staff development.
A feasibility study for advanced technology integration for general aviation
NASA Technical Reports Server (NTRS)
Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.
1980-01-01
An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.
CHASE Survey of Technology Needs
2017-03-01
CHASE Survey of Technology Needs Shahed Enamul Quadir ECE Department University of Connecticut Storrs, CT, USA Daniel DiMase Honeywell, Inc...based on a survey conducted in late 2015. Counterfeits and Hardware Trojans have been identified as areas needing continued research and focus... survey of its advisory board and industry professionals to determine the technology needs in the area of IC counterfeits, hardware assurance
Maulik, Pallab K; Kallakuri, Sudha; Devarapalli, Siddhardha
2018-01-01
Background: There are large gaps in the delivery of mental health care in low- and middle-income countries such as India, and the problems are even more acute in rural settings due to lack of resources, remoteness, and lack of infrastructure, amongst other factors. The Systematic Medical Appraisal Referral and Treatment (SMART) Mental Health Project was conceived as a mental health services delivery model using technology-based solutions for rural India. This paper reports on the operational strategies used to facilitate the implementation of the intervention. Method: Key components of the SMART Mental Health Project included delivering an anti-stigma campaign, training of primary health workers in screening, diagnosing and managing stress, depression and increased suicide risk and task sharing of responsibilities in delivering care; and using mobile technology based electronic decision support systems to support delivery of algorithm based care for such disorders. The intervention was conducted in 42 villages across two sites in the state of Andhra Pradesh in south India. A pre-post mixed methods evaluation was done, and in this paper operational challenges are reported. Results: Both quantitative and qualitative results from the evaluation from one site covering about 5000 adults showed that the intervention was feasible and acceptable, and initial results indicated that it was beneficial in increasing access to mental health care and reducing depression and anxiety symptoms. A number of strategies were initiated in response to operational challenges to ensure smoother conduct of the project and facilitated the project to be delivered as envisaged. Conclusions: The operational strategies initiated for this project were successful in ensuring the delivery of the intervention. Those, coupled with other more systematic processes have informed the researchers to understand key processes that need to be in place to develop a more robust study, that could eventually be
Ares Project Technology Assessment: Approach and Tools
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Tyson, Richard
2010-01-01
Technology assessments provide a status of the development maturity of specific technologies. Along with benefit analysis, the risks the project assumes can be quantified. Normally due to budget constraints, the competing technologies are prioritized and decisions are made which ones to fund. A detailed technology development plan is produced for the selected technologies to provide a roadmap to reach the desired maturity by the project s critical design review. Technology assessments can be conducted for both technology only tasks or for product development programs. This paper is primarily biased toward the product development programs. The paper discusses the Ares Project s approach to technology assessment. System benefit analysis, risk assessment, technology prioritization, and technology readiness assessment are addressed. A description of the technology readiness level tool being used is provided.
NASA Technical Reports Server (NTRS)
Ogletree, Glenn (Editor)
1984-01-01
The results of a technology survey conducted for the NASA/JSC by the CSDL during Phase 1 of the NASA Advanced Information Processing System (AIPS) program at the CSDL are discussed. The purpose of the survey was to ensure that all technology relevant to the configuration, design, development, verification, implementation, and validation of an advanced information processing system, whether existing or under development and soon to be available, would be duly considered in the development of the AIPS. The emphasis in the survey was on technology items which were clearly relevant to the AIPS. Requirements were developed which guided the planning of contacts with the outside sources to be surveyed, and established practical limits on the scope and content of the Technology Survey. Subjects surveyed included architecture, software, hardware, methods for evaluation of reliability and performance, and methods for the verification of the AIPS design and the validation of the AIPS implementation. Survey requirements and survey results in each of these areas are presented, including analyses of the potential effects on the AIPS development process of using or not using the surveyed technology items. Another output of the survey was the identification of technology areas of particular relevance to the AIPS and for which further development, in some cases by the CSDL and in some cases by the NASA, would be fruitful. Appendices are provided in which are presented: (1) reports of some of the actual survey interactions with industrial and other outside information sources; (2) the literature list from the comprehensive literature survey which was conducted; (3) reduced-scale images of an excerpt ('Technology Survey' viewgraphs) from the set of viewgraphs used at the 14 April 1983 Preliminary Requirements Review by the CSDL for the NASA; and (4) reduced-scale images of the set of viewgraphs used in the AIPS Technology Survey Review presentation to the NASA monitors by the CSDL at
Educational technology in care management: technological profile of nurses in Portuguese hospitals.
Landeiro, Maria José Lumini; Freire, Rosa Maria Albuquerque; Martins, Maria Manuela; Martins, Teresa Vieira; Peres, Heloísa Helena Ciqueto
2015-12-01
Objective To identify the technological profile of nurses in Portuguese hospitals. Method A quantitative exploratory study conducted in two hospitals in the northern region and one in the central region of Portugal. The sample was randomly selected and included 960 nurses. Results Of the participants, 420 (46.1%) used computers, 196 (23.4%) reported having knowledge about using computers for teaching, 174 (21.1%) used computers to teach, 112 (15.1%) recognized that using computers can be a technological means to supplement classroom training, 477 (61.6%) would like to receive training on using computers, and 382 (40.9%) reported self-learning of information technology. In relation to distance education, 706 (74.9%) reported they were familiar with it and 752 (76.4%) indicated an interest in participating in training using this modality. Conclusion Organizations should be mindful of the technological profile shown by this group of nurses and look for ways to introduce educational technologies in the management of care.
ERIC Educational Resources Information Center
Hsu, Pi-Sui
2012-01-01
The purpose of this qualitative study was to examine the impact of educational technology courses on pre-service teachers' development of knowledge of technology integration in a teacher preparation program in the USA. The present study was conducted with eight pre-service teachers enrolled in the elementary teacher education program at a large…
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This report, the second in a series of six, presents the findings of evaluative studies of six Level I Model Technology School sites which were conducted as part of Phase II of the California Educational Technology Assessment Program. The project sites are: Alhambra City School District (two schools); Cupertino Union Elementary District and…
The Site Program demonstration of CF Systems' organics extraction technology was conducted to obtain specific operating and cost information that could be used in evaluating the potential applicability of the technology to Superfund sites. The demonstration was conducted concurr...
SRNL Atmospheric Technologies Group
Viner, Brian; Parker, Matthew J.
2018-01-16
The Savannah River National Laboratory, Atmospheric Technologies Group, conducts a best-in class Applied Meteorology Program to ensure the Department of Energyâs Savannah River Site is operated safely and complies with stringent environmental regulations.
NASA Technical Reports Server (NTRS)
1994-01-01
During the past 30 years as NASA has conducted technology transfer programs, it has gained considerable experience - particularly pertaining to the processes. However, three areas have not had much scrutiny: the examination of the contributions of the individuals who have developed successful spinoffs, the commercial success of the spinoffs themselves, and the degree to which they are understood by the public. In short, there has been limited evaluation to measure the success of technology transfer efforts mandated by Congress. Research conducted during the first year of a three-year NASA grant to the United States Space Foundation has taken the initial steps toward measuring the success of methodologies to accomplish that Congressionally-mandated technology transfer. In particular, the US Space Foundation, in cooperation with ARAC, technology transfer experts; JKA, a nationally recognized themed entertainment design company; and top evaluation consultants, inaugurated and evaluated a fresh approach including commercial practices to encourage, motivate, and energize technology transfer by: recognizing already successful efforts (Space Technology Hall of Fame Award), drawing potential business and industrial players into the process (Space Commerce Expo), and informing and motivating the general public (Space Technology Hall of Fame public venues). The first year's efforts are documented and directions for the future are outlined.
ERIC Educational Resources Information Center
Arnold, Erik P.
2014-01-01
A multiple-case qualitative study of five school districts that had implemented various large-scale technology initiatives was conducted to describe what superintendents do to gain acceptance of those initiatives. The large-scale technology initiatives in the five participating districts included 1:1 District-Provided Device laptop and tablet…
SITE program demonstration of the Rochem Disc Tube™ Module (DTM) developed by Rochem Separation systems Inc. The demonstration test was conducted at the central landfill Superfund site in Johnston, Rhode Island in August 1994. The DTM technology is an innovative membrane filtra...
Transparent Conducting Oxides—An Up-To-Date Overview
Stadler, Andreas
2012-01-01
Transparent conducting oxides (TCOs) are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and circuitries. Here, based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides are sketched, and references for detailed information are given. As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO) and the reasonably priced aluminum-doped zinc oxide (ZnO:Al), are discussed with view on preparation, characterization and special occurrences. For completion, the recently frequently mentioned typical p-type delafossite TCOs are described as well, providing a variety of references, as a detailed discussion is not reasonable within an overview publication. PMID:28817002
NASA Astrophysics Data System (ADS)
Guzey, Siddika Selcen
Technology has become a vital part of our professional and personal lives. Today we cannot imagine living without many technological tools such as computers. For the last two decades technology has become inseparable from several areas, such as science. However, it has not been fully integrated into the field of education. The integration of technology in teaching and learning is still challenging even though there has been a historical growth of Internet access and available technology tools in schools (U.S. Department of Education, National Center for Education Statistics, 2006). Most teachers have not incorporated technology into their teaching for various reasons such as lack of knowledge of educational technology tools and having unfavorable beliefs about the effectiveness of technology on student learning. In this study, three beginning science teachers who have achieved successful technology integration were followed to investigate how their beliefs, knowledge, and identity contribute to their uses of technology in their classroom instruction. Extensive classroom observations and interviews were conducted. The findings demonstrate that the participating teachers are all intrinsically motivated to use technology in their teaching and this motivation allows them to enjoy using technology in their instruction and keeps them engaged in technology use. These teachers use a variety of technology tools in their instruction while also allowing students to use them, and they posit a belief set in favor of technology. The major findings of the study are displayed in a model which indicates that teachers' use of technology in classroom instruction was constructed jointly by their technology, pedagogy, and content knowledge; identity; beliefs; and the resources that are available to them and that the internalization of the technology use comes from reflection. The study has implications for teachers, teacher educators, and school administrators for successful technology
Ground Water Remediation Technologies
The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...
ERIC Educational Resources Information Center
Higgins, William J.; Luczynski, Kevin C.; Carroll, Regina A.; Fisher, Wayne W.; Mudford, Oliver C.
2017-01-01
Recent advancements in telecommunication technologies make it possible to conduct a variety of healthcare services remotely (e.g., behavioral-analytic intervention services), thereby bridging the gap between qualified providers and consumers in isolated locations. In this study, web-based telehealth technologies were used to remotely train…
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaedel, K.L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success ismore » changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.« less
NASA Astrophysics Data System (ADS)
Blaedel, K. L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to do the following: (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the U.S. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.
NASA Astrophysics Data System (ADS)
Amils, Ricardo I.; Gallego, Juan Daniel; Sebastián, José Luis; Muñoz, Sagrario; Martín, Agustín; Leuther, Arnulf
2016-06-01
The pressure to increase the sensitivity of instrumentation has pushed the use of cryogenic Low Noise Amplifier (LNA) technology into a growing number of fields. These areas range from radio astronomy and deep space communications to fundamental physics. In this context manufacturing for cryogenic environments requires a proper thermal knowledge of the materials to be able to achieve adequate design behavior. In this work, we present experimental measurements of the thermal conductivity of a silver filled conductive epoxy (EPO-TEK H20E) which is widely used in cryogenic electronics applications. The characterization has been made using a sample preparation which mimics the practical use of this adhesive in the fabrication of cryogenic devices. We apply the data obtained to a detailed analysis of the effects of the conductive epoxy in a monolithic thermal noise source used for high accuracy cryogenic microwave noise measurements. In this application the epoxy plays a fundamental role since its limited thermal conductivity allows heating the chip with relatively low power. To our knowledge, the cryogenic thermal conductivity data of this epoxy has not been reported before in the literature in the 4-300 K temperature range. A second non-conductive epoxy (Gray Scotch-Weld 2216 B/A), also widely used in cryogenic applications, has been measured in order to validate the method by comparing with previous published data.
Technology utilization office data base analysis and design
NASA Technical Reports Server (NTRS)
Floyd, Stephen A.
1993-01-01
NASA Headquarters is placing a high priority on the transfer of NASA and NASA contractor developed technologies and expertise to the private sector and to other federal, state and local government organizations. The ultimate objective of these efforts is positive economic impact, an improved quality of life, and a more competitive U.S. posture in international markets. The Technology Utilization Office (TUO) currently serves seven states with its technology transfer efforts. Since 1989, the TUO has handled over one-thousand formal requests for NASA related technologies assistance. The technology transfer process requires promoting public awareness of NASA related soliciting requests for assistance, matching technologies to specific needs, assuring appropriate technology transfer, and monitoring and evaluating the process. Each of these activities have one very important aspect in common: the success of each is dissemination of appropriate high quality information. The purpose of the research was to establish the requirements and develop a preliminary design for a database system to increase the effectiveness and efficiency of the TUO's technology transfer function. The research was conducted following the traditional systems development life cycle methodology and was supported through the use of modern structured analysis techniques. The next section will describe the research and findings as conducted under the life cycle approach.
Conductance Quantization in Resistive Random Access Memory
NASA Astrophysics Data System (ADS)
Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming
2015-10-01
The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.
Conductance Quantization in Resistive Random Access Memory.
Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming
2015-12-01
The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.
Airborne Systems Technology Application to the Windshear Threat
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.
1996-01-01
The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.
NASA Technical Reports Server (NTRS)
Bullock, Kimberly R.
1995-01-01
The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.
Montague, Enid
2011-01-01
In order to design effective health technologies and systems, it is important to understand how patients learn and make decisions about health technologies used in their care. The objective of this study was to examine patients' source of learning about technologies used in their care and how the source related to their trust in the technology used. Individual face-to-face and telephone interviews were conducted with 24 patients. Thirteen unique sources of information about technology were identified and three major themes emerged; outside of the work system versus inside the work system, when the health information was provided, and the medium used. Patients used multiple sources outside of the health care work system to learn about technologies that will be used in their care. Results showed a relationship between learning about technologies from web sources and trust in technologies but no relationship between learning about technologies from health care providers and trust in technologies. PMID:20967654
Strudwick, Gillian
2015-05-01
The benefits of healthcare technologies can only be attained if nurses accept and intend to fully use them. One of the most common models utilized to understand user acceptance of technology is the Technology Acceptance Model. This model and modified versions of it have only recently been applied in the healthcare literature among nurse participants. An integrative literature review was conducted on this topic. Ovid/MEDLINE, PubMed, Google Scholar, and CINAHL were searched yielding a total of 982 references. Upon eliminating duplicates and applying the inclusion and exclusion criteria, the review included a total of four dissertations, three symposium proceedings, and 13 peer-reviewed journal articles. These documents were appraised and reviewed. The results show that a modified Technology Acceptance Model with added variables could provide a better explanation of nurses' acceptance of healthcare technology. These added variables to modified versions of the Technology Acceptance Model are discussed, and the studies' methodologies are critiqued. Limitations of the studies included in the integrative review are also examined.
Adoption of Information Technology by Advertising Agencies.
ERIC Educational Resources Information Center
Herling, Thomas J.; Merskin, Debra
Since little empirical research has been conducted on adoption of currently available information technology by the advertising industry, a study explored the extent of advertising agencies' adoption of selected information technologies such as online database services and electronic mail. The study discussed data from earlier studies and analyzed…
Effect of Traffic Position Accuracy for Conducting Safe Airport Surface Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.
2014-01-01
The Next Generation Air Transportation System (NextGen) concept proposes many revolutionary operational concepts and technologies, such as display of traffic information and movements, airport moving maps (AMM), and proactive alerts of runway incursions and surface traffic conflicts, to deliver an overall increase in system capacity and safety. A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center to evaluate the ability to conduct safe and efficient airport surface operations while utilizing an AMM displaying traffic of various position accuracies as well as the effect of traffic position accuracy on airport conflict detection and resolution (CD&R) capability. Nominal scenarios and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The data suggest that all traffic should be shown on the airport moving map, whether qualified or unqualified, and conflict detection and resolution technologies provide significant safety benefits. Despite the presence of traffic information on the map, collisions or near collisions still occurred; when indications or alerts were generated in these same scenarios, the incidences were averted.
NREL Helps Industry Partner Commercialize Promising Technology For Forest
development agreement (CRADA) with Minerals Technologies, Inc. of Bethlehem, Penn. to conduct research to -shared research agreement is designed to provide Minerals Technologies, Inc. access to NREL's research
Health technology reassessment of non-drug technologies: current practices.
Leggett, Laura; Noseworthy, Tom W; Zarrabi, Mahmood; Lorenzetti, Diane; Sutherland, Lloyd R; Clement, Fiona M
2012-07-01
Obsolescence is a natural phase of the lifecycle of health technologies. Given increasing cost of health expenditures worldwide, health organizations have little choice but to engage in health technology reassessment (HTR); a structured, evidence-based assessment of the medical, social, ethical, and economic effects of a technology, currently used within the healthcare system, to inform optimal use of that technology in comparison to its alternatives. This research was completed to identify and summarize international HTR initiatives for non-drug technologies. A systematic review was performed using the terms disinvestment, obsolescence, obsolete technology, ineffective, reassessment, reinvestment, reallocation, program budgeting, and marginal analysis to search PubMED, MEDLINE, EMBASE, and CINAHL until November 2011. Websites of organizations listed as members of INAHTA and HTAi were hand-searched for gray literature. Documents were excluded if they were unavailable in English, if the title/abstract was irrelevant to HTR, and/or if the document made no mention of current practices. All citations were screened in duplicate with disagreements resolved by consensus. Sixty full-text documents were reviewed and forty were included. One model for reassessment was identified; however, it has never been put into practice. Eight countries have some evidence of past or current work related to reassessment; seven have shown evidence of continued work in HTR. There is negligible focus on monitoring and implementation. HTR is in its infancy. Although health technology reassessments are being conducted, there is no standardized approach. Future work should focus on developing and piloting a comprehensive methodology for completing HTR.
Quantum technology: from research to application
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.; Ranade, Kedar S.; Anton, Christian; Arndt, Markus; Aspelmeyer, Markus; Bayer, Manfred; Berg, Gunnar; Calarco, Tommaso; Fuchs, Harald; Giacobino, Elisabeth; Grassl, Markus; Hänggi, Peter; Heckl, Wolfgang M.; Hertel, Ingolf-Volker; Huelga, Susana; Jelezko, Fedor; Keimer, Bernhard; Kotthaus, Jörg P.; Leuchs, Gerd; Lütkenhaus, Norbert; Maurer, Ueli; Pfau, Tilman; Plenio, Martin B.; Rasel, Ernst Maria; Renn, Ortwin; Silberhorn, Christine; Schiedmayer, Jörg; Schmitt-Landsiedel, Doris; Schönhammer, Kurt; Ustinov, Alexey; Walther, Philip; Weinfurter, Harald; Welzl, Emo; Wiesendanger, Roland; Wolf, Stefan; Zeilinger, Anton; Zoller, Peter
2016-05-01
The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research.
Development of a direct push based in-situ thermal conductivity measurement system
NASA Astrophysics Data System (ADS)
Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan
2016-04-01
Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct
Burke, Mary S
2009-01-01
The concept of technology-related stress was first introduced in the 1980s when computers became more prevalent in the business and academic world. Nurse educators have been impacted by the rapid changes in technology in recent years. A review of the literature revealed no research studies that have been conducted to investigate the incidence of technological stress among nurse educators. The purpose of this descriptive-correlational study was to describe the technological stressors that Louisiana baccalaureate nurse educators experienced while teaching nursing theory courses. A researcher-developed questionnaire, the nurse educator technostress scale (NETS) was administered to a census sample of 311 baccalaureate nurse educators in Louisiana. Findings revealed that Louisiana baccalaureate nurse educators are experiencing technological stress. The variable, perceived administrative support for use of technology in the classroom, was a significant predictor in a regression model predicting Louisiana baccalaureate nurse educators' technological stress (F=14.157, p<.001).
A Systematic Review of the Use of LENA Technology
ERIC Educational Resources Information Center
Wang, Ye; Hartman, Maria; Aziz, Nurul Akmar Abdul; Arora, Sonia; Shi, Lingyun; Tunison, Ellie
2017-01-01
The authors systematically reviewed peer-reviewed studies done with LENA (Language ENvironment Analysis) technology, guided by three research questions: (a) What types of studies have been conducted, and with which populations, since the launch of LENA technology?; (b) What challenges related to use of LENA technology were identified?; and (c)…
WIP and WIT-Women in Physics and Technology
NASA Astrophysics Data System (ADS)
Iga, Kenichi
We review the status of Japanese women researchers in science and technology. Although the ratio of women working in science and technology has not necessarily been large in Japan, some active programs have been conducted to promote gender equalization by government, universities, research organizations, industries, and academic societies. Some examples in Tokyo Institute of Technology and Japan Women's University will be introduced.
A Senior Teacher's Implementation of Technology Integration
ERIC Educational Resources Information Center
Tsai, Hsien-Chang
2015-01-01
This study investigated whether a senior teacher with many years of teaching experience, despite lacking adequate technology skills or contending with other barriers, can sufficiently implement technology integration in the classroom. The research was conducted between October 2013 and January 2014 and was focused on a junior high school biology…
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) PROGRAM ANNUAL REPORT TO CONGRESS 2003
The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 17 years. SITE offers a mechanism for conducting joint technology demonstration a...
The mechanism of proton conduction in phosphoric acid
NASA Astrophysics Data System (ADS)
Vilčiauskas, Linas; Tuckerman, Mark E.; Bester, Gabriel; Paddison, Stephen J.; Kreuer, Klaus-Dieter
2012-06-01
Neat liquid phosphoric acid (H3PO4) has the highest intrinsic proton conductivity of any known substance and is a useful model for understanding proton transport in other phosphate-based systems in biology and clean energy technologies. Here, we present an ab initio molecular dynamics study that reveals, for the first time, the microscopic mechanism of this high proton conductivity. Anomalously fast proton transport in hydrogen-bonded systems involves a structural diffusion mechanism in which intramolecular proton transfer is driven by specific hydrogen bond rearrangements in the surrounding environment. Aqueous media transport excess charge defects through local hydrogen bond rearrangements that drive individual proton transfer reactions. In contrast, strong, polarizable hydrogen bonds in phosphoric acid produce coupled proton motion and a pronounced protic dielectric response of the medium, leading to the formation of extended, polarized hydrogen-bonded chains. The interplay between these chains and a frustrated hydrogen-bond network gives rise to the high proton conductivity.
Chrysochou, Polymeros; Chryssochoidis, George; Kehagia, Olga
2009-12-01
The implementation of traceability in the food supply chain has reinforced adoption of technologies with the ability to track forward and trace back product-related information. Based on the premise that these technologies can be used as a means to provide product-related information to consumers, this paper explores the perceived benefits and drawbacks of such technologies. The aim is to identify factors that influence consumers' perceptions of such technologies, and furthermore to advise the agri-food business on issues that they should consider prior to the implementation of such technologies in their production lines. For the purposes of the study, a focus group study was conducted across 12 European countries, while a set of four different technologies used as a means to provide traceability information to consumers was the focal point of the discussions in each focus group. Results show that the amount of and confidence in the information provided, perceived levels of convenience, impact on product quality and safety, impact on consumers' health and the environment, and potential consequences on ethical and privacy liberties constitute important factors influencing consumers' perceptions of technologies that provide traceability.
Conducting polymers: Synthesis and industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1997-04-01
The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in themore » US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.« less
Energy Technology Allocation for Distributed Energy Resources: A Technology-Policy Framework
NASA Astrophysics Data System (ADS)
Mallikarjun, Sreekanth
Distributed energy resources (DER) are emerging rapidly. New engineering technologies, materials, and designs improve the performance and extend the range of locations for DER. In contrast, constructing new or modernizing existing high voltage transmission lines for centralized generation are expensive and challenging. In addition, customer demand for reliability has increased and concerns about climate change have created a pull for swift renewable energy penetration. In this context, DER policy makers, developers, and users are interested in determining which energy technologies to use to accommodate different end-use energy demands. We present a two-stage multi-objective strategic technology-policy framework for determining the optimal energy technology allocation for DER. The framework simultaneously considers economic, technical, and environmental objectives. The first stage utilizes a Data Envelopment Analysis model for each end-use to evaluate the performance of each energy technology based on the three objectives. The second stage incorporates factor efficiencies determined in the first stage, capacity limitations, dispatchability, and renewable penetration for each technology, and demand for each end-use into a bottleneck multi-criteria decision model which provides the Pareto-optimal energy resource allocation. We conduct several case studies to understand the roles of various distributed energy technologies in different scenarios. We construct some policy implications based on the model results of set of case studies.
Conduction Cooling of a Niobium SRF Cavity Using a Cryocooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Joshua; Geelhoed, Michael; Dhuley, Ram
Superconducting Radio Frequency (SRF) cavities are the primary choice for accelerating charged particles in high-energy research accelerators. Institutions like Fermilab use SRF cavities because they enable significantly higher gradients and quality factors than normal-conducting RF cavities and DC voltage cavities. To cool the SRF cavities to low temperatures (typically around 2 K), liquid helium refrigerators are used. Producing and maintaining the necessary liquid helium requires large, elaborate cryogenic plants involving dewars, compressors, expansion engines, and recyclers. The cost, complexity, and space required for such plants is part of the reason that industry has not yet adopted SRF-based accelerators. At themore » Illinois Accelerator Research Center (IARC) at Fermilab, our team seeks to make SRF technology accessible not only to large research accelerators, but to industry as well. If we eliminate the complexity associated with liquid helium plants, SRF-based industrial accelerators may finally become a reality. One way to do this is to eliminate the use of liquid helium baths altogether and develop a brand-new cooling technique for SRF cavities: conduction cooling using a cryocooler. Recent advances in SRF technology have made it possible to operate SRF cavities at 4 K, a temperature easily achievable using commercial cryocoolers. Our IARC team is taking advantage of this technology to cool SRF cavities.« less
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY 1996
The Superfund Innovative Technology Evaluation (SITE) Program has been successfully promoting the development, commercialization and implementation of innovative hazardous waste treatment technologies for more than 10 years. SITE offers a mechanism for conducting joint technology...
SUPERFUND INNOVTIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY 1997
The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for more than 12 years. SITE offers a mechanism for conducting joint technology demon...
Technology-enhanced focus groups as a component of instrument development.
Strout, Tania D; DiFazio, Rachel L; Vessey, Judith A
2017-06-22
Background Bullying is a critical public health problem and a screening tool for use in healthcare is needed. Focus groups are a common tool for generating qualitative data when developing an instrument and evidence suggests that technology-enhanced focus groups can be effective in simultaneously engaging participants from diverse settings. Aim To examine the use of technology-enhanced focus groups in generating an item pool to develop a youth-bullying screening tool. Discussion The authors explore methodological and ethical issues related to conducting technology-enhanced focus groups, drawing on their experience in developing a youth-bullying measure. They conducted qualitative focus groups with professionals from the front lines of bullying response and intervention. They describe the experience of conducting technology-enhanced focus group sessions, focusing on the methodological and ethical issues that researchers engaging in similar work may encounter. Challenges associated with this methodology include establishing rapport among participants, privacy concerns and limited non-verbal communication. Conclusion The use of technology-enhanced focus groups can be valuable in obtaining rich data from a wide variety of disciplines and contexts. Organising these focus groups was inexpensive and preferred by the study's participants. Implications for practice Researchers should consider using technology-enhanced focus groups to generate data to develop health-related measurement tools.
Technology Readiness of the NEXT Ion Propulsion System
NASA Technical Reports Server (NTRS)
Benson, Scott W.; Patterson, Michael J.
2008-01-01
The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including: a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development. The next round of competed planetary science mission announcements of opportunity, and directed mission decisions, are anticipated to occur in 2008 and 2009. Progress to date, and the success of on-going technology validation, indicate that the NEXT ion propulsion system will be a primary candidate for mission consideration in these upcoming opportunities.
Scott, Anna Mae; Hofmann, Björn; Gutiérrez-Ibarluzea, Iñaki; Bakke Lysdahl, Kristin; Sandman, Lars; Bombard, Yvonne
2017-01-01
Introduction: Assessment of ethics issues is an important part of health technology assessments (HTA). However, in terms of existence of quality assessment tools, ethics for HTA is methodologically underdeveloped in comparison to other areas of HTA, such as clinical or cost effectiveness. Objective: To methodologically advance ethics for HTA by: (1) proposing and elaborating Q-SEA, the first instrument for quality assessment of ethics analyses, and (2) applying Q-SEA to a sample systematic review of ethics for HTA, in order to illustrate and facilitate its use. Methods: To develop a list of items for the Q-SEA instrument, we systematically reviewed the literature on methodology in ethics for HTA, reviewed HTA organizations’ websites, and solicited views from 32 experts in the field of ethics for HTA at two 2-day workshops. We subsequently refined Q-SEA through its application to an ethics analysis conducted for HTA. Results: Q-SEA instrument consists of two domains – the process domain and the output domain. The process domain consists of 5 elements: research question, literature search, inclusion/exclusion criteria, perspective, and ethics framework. The output domain consists of 5 elements: completeness, bias, implications, conceptual clarification, and conflicting values. Conclusion: Q-SEA is the first instrument for quality assessment of ethics analyses in HTA. Further refinements to the instrument to enhance its usability continue. PMID:28326147
ERIC Educational Resources Information Center
Klein, Davina C. D.; O'Neil, Harold F., Jr.; Dennis, Robert A.; Baker, Eva L.
A cognitive demands analysis of a learning technology, a term that includes the hardware and the computer software products that form learning environments, attempts to describe the types of cognitive learning expected of the individual by the technology. This paper explores the context of cognitive learning, suggesting five families of cognitive…
Microwave a.c. conductivity of domain walls in ferroelectric thin films
Tselev, Alexander; Yu, Pu; Cao, Ye; ...
2016-05-31
Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less
Microwave a.c. conductivity of domain walls in ferroelectric thin films
Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro
2016-01-01
Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997
Two Inseparable Facets of Technology Integration Programs: Technology and Theoretical Framework
ERIC Educational Resources Information Center
Demir, Servet
2011-01-01
This paper considers the process of program development aiming at technology integration for teachers. For this consideration, the paper focused on an integration program which was recently developed as part of a larger project. The participants of this program were 45 in-service teachers. The program continued four weeks and the conduct of the…
Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2002-01-01
Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Space applicable DOE photovoltaic technology: An update
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Stella, P.; Berman, P.
1981-01-01
Photovoltaic development projects applicable to space power are identified. When appropriate, the type of NASA support that would be necessary to implement these technologies for space use is indicated. It is conducted that the relatively small market and divergent operational requirements for space power are mainly responsible for the limited transfer of terrestrial technology to space applications. Information on the factors which control the cost and type of technology is provided. Terrestrial modules using semiconductor materials are investigated.
Preparing for High Technology: Strategies for Change.
ERIC Educational Resources Information Center
Faddis, Constance; And Others
In order to help postsecondary technical colleges to keep abreast of changing technology, a study was conducted (1) to investigate the current and future status of three high technology areas in terms of their impacts on occupations, labor demand, and training requirements; and (2) to provide guidelines to help colleges change their programs to…
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
Science in the Wild: Technology Needs and Opportunities in Scientific Fieldwork
NASA Technical Reports Server (NTRS)
Guice, Jon; Hoffower, Heidi; Norvig, Peter (Technical Monitor)
1999-01-01
Considering that much contemporary natural science involves field expeditions, fieldwork is an under-studied topic. There is also little information technology specifically designed to support scientific fieldwork, aside from portable scientific instruments. This article describes a variety of fieldwork practices in an interdisciplinary research area, proposes a framework linking types of fieldwork to types of needs in information technology, and identifies promising opportunities for technology development. Technologies that are designed to support the integration of field observations and samples with laboratory work are likely to aid nearly all research teams who conduct fieldwork. However, technologies that support highly detailed representations of field sites will likely trigger the deepest changes in work practice. By way of illustration, we present brief case studies of how fieldwork is done today and how it might be conducted with the introduction of new information technologies.
Information technology in health promotion.
Lintonen, T P; Konu, A I; Seedhouse, D
2008-06-01
eHealth, the use of information technology to improve or enable health and health care, has recently been high on the health care development agenda. Given the vivid interest in eHealth, little reference has been made to the use of these technologies in the promotion of health. The aim of this present study was to conduct a review on recent uses of information technology in health promotion through looking at research articles published in peer-reviewed journals. Fifteen relevant journals with issues published between 2003 and June 2005 yielded altogether 1352 articles, 56 of which contained content related to the use of information technology in the context of health promotion. As reflected by this rather small proportion, research on the role of information technology is only starting to emerge. Four broad thematic application areas within health promotion were identified: use of information technology as an intervention medium, use of information technology as a research focus, use of information technology as a research instrument and use of information technology for professional development. In line with this rather instrumental focus, the concepts 'ePromotion of Health' or 'Health ePromotion' would come close to describing the role of information technology in health promotion.
Consideration of Conductive Motor Winding Materials at Room and Elevated Temperatures
NASA Technical Reports Server (NTRS)
de Groh, Henry C., III
2015-01-01
A brief history of conductive motor winding materials is presented, comparing various metal motor winding materials and their properties in terms of conductivity, density and cost. The proposed use of carbon nanotubes (CNTs) and composites incorporating CNTs is explored as a potential way to improve motor winding conductivity, density, and reduce motor size which are important to electric aircraft technology. The conductivity of pure Cu, a CNT yarn, and a dilute Cu-CNT composite was measured at room temperature and at several temperatures up to 340 C. The conductivity of the Cu-CNT composite was about 3 percent lower than pure copper's at all temperatures measured. The conductivity of the CNT yarn was about 200 times lower than copper's, however, the yarn's conductivity dropped less with increasing temperature compared to Cu. It is believed that the low conductivity of the yarn is due primarily to high interfacial resistances and the presence of CNTs with low, semiconductor like electrical properties (s-CNT). It is believed the conductivity of the CNT-Cu composite could be improved by not using s-CNT, and instead using only CNTs with high, metallic like electrical properties (m-CNT); and by increasing the vol% m-CNTs.
CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE
Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...
New technology for food safety: role of the new technology staff in FSIS
NASA Astrophysics Data System (ADS)
Early, Howard
2004-03-01
The Food Safety and Inspection Service (FSIS) has implemented new procedures for meat and poultry establishments, egg products plants, and companies that manufacture and sell technology to official establishments to notify the Agency of new technology that they propose to use in meat and poultry establishments or egg products plants. If the new technology could affect FSIS regulations, product safety, inspection procedures, or the safety of Federal inspection program personnel, then the establishment or plant would need to submit a written protocol to the Agency. As part of this process, the submitter will be expected to conduct in-plant trials of the new technology. The submitter will need to provide data to FSIS throughout the duration of the in-plant trial for the Agency to examine. Data may take several forms: laboratory results, weekly or monthly summary production reports, and evaluations from inspection program personnel.
Magneto-acousto-electrical Measurement Based Electrical Conductivity Reconstruction for Tissues.
Zhou, Yan; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong
2018-05-01
Based on the interaction of ultrasonic excitation and magnetoelectrical induction, magneto-acousto-electrical (MAE) technology was demonstrated to have the capability of differentiating conductivity variations along the acoustic transmission. By applying the characteristics of the MAE voltage, a simplified algorithm of MAE measurement based conductivity reconstruction was developed. With the analyses of acoustic vibration, ultrasound propagation, Hall effect, and magnetoelectrical induction, theoretical and experimental studies of MAE measurement and conductivity reconstruction were performed. The formula of MAE voltage was derived and simplified for the transducer with strong directivity. MAE voltage was simulated for a three-layer gel phantom and the conductivity distribution was reconstructed using the modified Wiener inverse filter and Hilbert transform, which was also verified by experimental measurements. The experimental results are basically consistent with the simulations, and demonstrate that the wave packets of MAE voltage are generated at tissue interfaces with the amplitudes and vibration polarities representing the values and directions of conductivity variations. With the proposed algorithm, the amplitude and polarity of conductivity gradient can be restored and the conductivity distribution can also be reconstructed accurately. The favorable results demonstrate the feasibility of accurate conductivity reconstruction with improved spatial resolution using MAE measurement for tissues with conductivity variations, especially suitable for nondispersive tissues with abrupt conductivity changes. This study demonstrates that the MAE measurement based conductivity reconstruction algorithm can be applied as a new strategy for nondestructive real-time monitoring of conductivity variations in biomedical engineering.
SUPERFUND INNOVATIVE TECHNOLOGIES EVALUATION ...
This task seeks to identify high priority needs of the Regions and Program Offices for innovative field sampling, characterization, monitoring, and measurement technologies. When an appropriate solution to a specific problem is identified, a field demonstration is conducted to document the performance and cost of the proposed technologies. The use of field analysis almost always provides a savings in time and cost over the usual sample and ship to a conventional laboratory for analysis approach to site characterization and monitoring. With improvements in technology and appropriate quality assurance/quality control, field analysis has been shown to provide high quality data, useful for most environmental monitoring or characterization projects. An emphasis of the program is to seek out innovative solutions to existing problems and to provide the cost and performance data a user would require to make an informed decision regarding the adequacy of a technology to address a specific environmental problem. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.
Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures
NASA Astrophysics Data System (ADS)
James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.
2017-12-01
It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi
The Role of Technology in SLA Research
ERIC Educational Resources Information Center
Chun, Dorothy M.
2016-01-01
In this review article for the 20th Anniversary Issue, I look back at research from the last two decades on the role of computer technology in understanding and facilitating second language acquisition (SLA) and forward to what future research might investigate. To be discussed are both how technology has been used to conduct research on SLA…
The Superfund Innovative Technology Evaluation Program Annual Report to Congress FY2004
The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization, and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration ...
Detection of off-flavor in catfish using a conducting polymer electronic-nose technology
Alphus D Wilson; Charisse Oberle; Daniel F. Oberle
2013-01-01
The Aromascan A32S conducting polymer electronic nose was evaluated for the capability of detecting the presence of off-flavor malodorous compounds in catfish meat fillets to assess meat quality for potential merchantability. Sensor array outputs indicated that the aroma profiles of good-flavor (on-flavor) and off-flavor fillets were strongly different as confirmed by...
Water-Stable Nanoporous Polymer Films with Excellent Proton Conductivity.
Wang, Zhengbang; Liang, Cong; Tang, Haolin; Grosjean, Sylvain; Shahnas, Artak; Lahann, Joerg; Bräse, Stefan; Wöll, Christof
2018-03-01
Achieving high values for proton conductivity in a material critically depends on providing hopping sites arranged in a regular fashion. Record values reported for regular, molecular crystals cannot yet be reached by technologically relevant systems, and the best values measured for polymer membranes suited for integration into devices are almost two orders of magnitude lower. Here, an alternative polymer membrane synthesis strategy based on the chemical modification of surface-mounted, monolithic, crystalline metal-organic framework thin films is demonstrated. Due to chemical crosslinking and subsequent removal of metal ions, these surface-mounted gels (SURGELs) are found to exhibit high proton conductivity (0.1 S cm -1 at 30 °C and 100% RH (relative humidity). These record values are attributed to the highly ordered polymer network structure containing regularly spaced carboxylic acid side groups. These covalently bound organic frameworks outperform conventional, ion-conductive polymers with regard to ion conductivity and water stability. Pronounced water-induced swelling, which causes severe mechanical instabilities in commercial membranes, is not observed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-07-01
Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.
Transparent conducting oxide induced by liquid electrolyte gating
NASA Astrophysics Data System (ADS)
ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.
2016-10-01
Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ˜1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.
DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM
The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...
Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices
Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; ...
2016-10-24
Memristive switching devices, candidates for resistive random access memory technology, have been shown to switch off through a progression of states with quantized conductance and subsequent noninteger conductance (in terms of conductance quantum G 0). We have performed calculations based on density functional theory to model the switching process for a Pt-HfO 2-Pt structure, involving the movement of one or two oxygen atoms. Oxygen atoms moving within a conductive oxygen vacancy filament act as tunneling barriers, and partition the filament into weakly coupled quantum wells. We show that the low-bias conductance decreases exponentially when one oxygen atom moves away frommore » interface. In conclusion, our results demonstrate the high sensitivity of the device conductance to the position of oxygen atoms.« less
Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter
Memristive switching devices, candidates for resistive random access memory technology, have been shown to switch off through a progression of states with quantized conductance and subsequent noninteger conductance (in terms of conductance quantum G 0). We have performed calculations based on density functional theory to model the switching process for a Pt-HfO 2-Pt structure, involving the movement of one or two oxygen atoms. Oxygen atoms moving within a conductive oxygen vacancy filament act as tunneling barriers, and partition the filament into weakly coupled quantum wells. We show that the low-bias conductance decreases exponentially when one oxygen atom moves away frommore » interface. In conclusion, our results demonstrate the high sensitivity of the device conductance to the position of oxygen atoms.« less
Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...
2016-01-20
The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less
Factors Affecting Teachers' Competence in the Field of Information Technology
ERIC Educational Resources Information Center
Tambunan, Hamonangan
2014-01-01
The development of learning technology today, have a direct impact on improving teachers' information technology competence. This paper is presented the results of research related to teachers' information technology competence. The study was conducted with a survey of some 245 vocational high school teachers. There are two types of instrument…
Review and status of liquid-cooling technology for gas turbines
NASA Technical Reports Server (NTRS)
Vanfossen, G. J., Jr.; Stepka, F. S.
1979-01-01
A review was conducted of liquid-cooled turbine technology. Selected liquid-cooled systems and methods are presented along with an assessment of the current technology status and requirements. A comprehensive bibliography is presented.
Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites
NASA Astrophysics Data System (ADS)
Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja
2016-09-01
Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.
Application of conductive polymer analysis for wood and woody plant identifications
A. Dan Wilson; D.G. Lester; Charisse S. Oberle
2005-01-01
An electronic aroma detection (EAD) technology known as conductive polymer analysis (CPA) was evaluated as a means of identifying and discriminating woody samples of angiosperms and gymnosperms using an analytical instrument (electronic nose) that characterizes the aroma profiles of volatiles released from excised wood into sampled headspace. The instrument measures...
Recent advances of conductive nanocomposites in printed and flexible electronics
NASA Astrophysics Data System (ADS)
Khan, Saleem; Lorenzelli, Leandro
2017-08-01
Conductive nanocomposites have emerged as significant smart engineered materials for realizing flexible electronics on diverse substrates in recent years. Conductive nanocomposites are comprised of conductive fillers mixed with polymeric elastomer (e.g. polydimethylsiloxane). The possibility to tune electrical as well as mechanical properties of nanocomposites makes them suitable for a wide spectrum of applications including sensors and electronics on non-planar and stretchable surfaces. A number of conductive nanofillers and manufacturing technologies have been developed to meet the diverse requirements of various applications. Considering the substantial contribution of conductive nanocomposites, it is opportune time to review the potentials of various nanofillers, their synthesis, processing methodologies and challenges associated to them. This paper reviews conductive nanocomposites, especially in context with their use in the development of electronic components and the sensors exploiting the piezoresistive behavior. The paper is structured around the nanocomposites related studies aiming to develop various building blocks of flexible electronic skin systems such as pressure, touch, strain and temperature sensors as well as stretchable interconnects. Besides this, the use of nanocomposites in other stimulating industrial and biomedical applications has also been explored briefly.
THE SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY1999
The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for more than 14 years. SITE offers a mechanism for conducting joint technology demon...
A Teacher's Approach: Integrating Technology Appropriately into a First Grade Classroom
ERIC Educational Resources Information Center
Phalen, Loretta Jean
2004-01-01
How are first grade classrooms using technology? How are children using technology at home? Does the use of technology really improve academic achievement? An experiment was conducted to determine the effectiveness of using technology to teach a unit in Social Studies to first grade students. The study occurred in a Christian school in Lancaster,…
Advanced traffic technology test-bed.
DOT National Transportation Integrated Search
2004-06-01
The goal of this project was to create a test-bed to allow the University of California to conduct advanced traffic technology research in a designated, non-public, and controlled setting. Caltrans, with its associated research facilities on UC campu...
On the Effective Thermal Conductivity of Porous Packed Beds with Uniform Spherical Particles
NASA Technical Reports Server (NTRS)
Kandula, Max
2010-01-01
Point contact models for the effective thermal conductivity of porous media with uniform spherical inclusions have been briefly reviewed. The model of Zehner and Schlunder (1970) has been further validated with recent experimental data over a broad range of conductivity ratio from 8 to 1200 and over a range of solids fraction up to about 0.8. The comparisons further confirm the validity of Zehner-Schlunder model, known to be applicable for conductivity ratios less than about 2000, above which area contact between the particles becomes significant. This validation of the Zehner-Schlunder model has implications for its use in the prediction of the effective thermal conductivity of water frost (with conductivity ratio around 100) which arises in many important areas of technology.
Murphy, Susan L
2009-02-01
Accelerometers are being increasingly used in studies of physical activity (PA) among older adults, however the use of these monitors requires some specialized knowledge and up-to-date information on technological innovations. The purpose of this review article is to provide researchers with a guide to some commonly-used accelerometers in order to better design and conduct PA research with older adults. A literature search was conducted to obtain all available literature on commonly-used accelerometers in older adult samples with specific attention to articles discussing research design. The use of accelerometers in older adults requires a basic understanding of the type being used, rationale for their placement, and attention to calibration when needed. The updated technology in some monitors should make study conduct less difficult, however comparison studies of the newer versus the older generation models will be needed. Careful considerations for design and conduct of accelerometer research as outlined in this review should help to enhance the quality and comparability of future research studies.
Advanced technology for America's future in space
NASA Technical Reports Server (NTRS)
1990-01-01
In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.
Understanding University Technology Transfer
ERIC Educational Resources Information Center
Association of American Universities, 2011
2011-01-01
Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…
The NASA modern technology rotors program
NASA Technical Reports Server (NTRS)
Watts, M. E.; Cross, J. L.
1986-01-01
Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.
Developing a Comprehensive View of General Technological Literacy.
ERIC Educational Resources Information Center
Van Duzer, Eric
A literature review was conducted to define technological literacy and its implications for the role of education in preparing citizens in a participatory democracy, as consumers and family members, for employment, and in the spiritual/philosophical dimensions of life as they relate to our conceptions of technology. A definition of technological…
Electrically conductive nano graphite-filled bacterial cellulose composites.
Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J
2016-01-20
A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP. Copyright © 2015 Elsevier Ltd. All rights reserved.
The DeKalb High Technology Needs Assessment for Gifted Students.
ERIC Educational Resources Information Center
Johnson, Berman E.
A study was conducted by DeKalb Area Vocational-Technical School (DAVTS) to determine the attitudes of gifted high school students toward high technology as a choice for postsecondary studies and their interest in joint enrollment in DATVS's high technology programs. A student questionnaire, information on DATVS high technology programs, and a…
Technology for Space Station Evolution. Executive summary and overview
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the technology discipline presentations. The Executive Summary and Overview contains an executive summary for the workshop, the technology discipline summary packages, and the keynote address. The executive summary provides a synopsis of the events and results of the workshop and the technology discipline summary packages.
Technology review of flight crucial flight controls
NASA Technical Reports Server (NTRS)
Rediess, H. A.; Buckley, E. C.
1984-01-01
The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.
ERIC Educational Resources Information Center
Teich, Albert H., Ed.; Thornton, Ray, Ed.
Recognizing that science and technology (S/T) have become increasingly relevant to important public policy issues, Congress has mandated the periodic preparation of a "Five Year Outlook for Science and Technology" to help U.S. policymakers anticipate and deal with these issues more effectively. This book, the result of a study conducted by the…
Health Informatics Scientists' Perception About Big Data Technology.
Minou, John; Routsis, Fotios; Gallos, Parisis; Mantas, John
2017-01-01
The aim of this paper is to present the perceptions of the Health Informatics Scientists about the Big Data Technology in Healthcare. An empirical study was conducted among 46 scientists to assess their knowledge about the Big Data Technology and their perceptions about using this technology in healthcare. Based on the study findings, 86.7% of the scientists had knowledge of Big data Technology. Furthermore, 59.1% of the scientists believed that Big Data Technology refers to structured data. Additionally, 100% of the population believed that Big Data Technology can be implemented in Healthcare. Finally, the majority does not know any cases of use of Big Data Technology in Greece while 57,8% of the them mentioned that they knew use cases of the Big Data Technology abroad.
Small Engine Component Technology (SECT)
NASA Technical Reports Server (NTRS)
Early, M.; Dawson, R.; Zeiner, P.; Turk, M.; Benn, K.
1986-01-01
A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent. The study further shows that cruise missile range can be increased by as much as 200 percent (320 percent with slurry fuels) for a year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000.
2012-01-01
Vertically aligned conducting ultrananocrystalline diamond (UNCD) nanorods are fabricated using the reactive ion etching method incorporated with nanodiamond particles as mask. High electrical conductivity of 275 Ω·cm−1 is obtained for UNCD nanorods. The microplasma cavities using UNCD nanorods as cathode show enhanced plasma illumination characteristics of low threshold field of 0.21 V/μm with plasma current density of 7.06 mA/cm2 at an applied field of 0.35 V/μm. Such superior electrical properties of UNCD nanorods with high aspect ratio potentially make a significant impact on the diamond-based microplasma display technology. PMID:23009733
Use of Technology for Development and Alumni/Constituent Relations among CASE Members
ERIC Educational Resources Information Center
Council for Advancement and Support of Education, 2012
2012-01-01
This research explores the role of "advancement-enabling" technologies in helping institutions meet the challenges of engaging constituents and attracting private support. It includes data on the use of technology, the barriers to effective use of technology, and strategies for effective deployment of technology. First conducted in 2010,…
NASA Technical Reports Server (NTRS)
Berke, J. G.
1971-01-01
The organization and functions of an interdisciplinary team for the application of aerospace generated technology to the solution of discrete technological problems within the public sector are presented. The interdisciplinary group formed at Stanford Research Institute, California is discussed. The functions of the group are to develop and conduct a program not only optimizing the match between public sector technological problems in criminalistics, transportation, and the postal services and potential solutions found in the aerospace data base, but ensuring that appropriate solutions are acutally utilized. The work accomplished during the period from July 1, 1970 to June 30, 1971 is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronnebro, Ewa
PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale thatmore » is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.« less
Business Creation and Technology Transfer.
ERIC Educational Resources Information Center
Martinussen, Jeff
1993-01-01
It is suggested that small- and medium-sized public universities without a commercial tradition reorganize the research administration function to serve as information clearinghouses, conduct "business intelligence," and identify new technologies and entrepreneurs among researchers. Research administration could include other practical functions…
Transferring new technologies within the federal sector: The New Technology Demonstration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, D.R.; Hunt, D.M.
1994-08-01
The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. Inmore » addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.« less
ERIC Educational Resources Information Center
Oak Ridge Associated Universities, TN. Manpower Development Div.
The Oak Ridge Associated Universities (ORAU) of Tennessee and the Nuclear Division of the Union Carbide Corporation established an industrial training program called Training and Technology (TAT) which was conducted at the Oak Ridge Y-12 plant. TAT instructors were provided by the regular work force of Union Carbide while ORAU provided the…
Research and technology annual report, FY 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here is the annual report of the John C. Stennis Space Center (SSC), a NASA center responsible for testing NASA's large propulsion systems, developing supporting test technologies, conducting research in a variety of earth science disciplines, and facilitating the commercial uses of NASA-developed technologies. Described here are activities of the Earth Sciences Research Program, the Technology Development Program, commercial programs, the Technology Utilization Program, and the Information Systems Program. Work is described in such areas as forest ecosystems, land-sea interface, wetland biochemical flux, thermal imaging of crops, gas detectors, plume analysis, synthetic aperture radar, forest resource management, applications engineering, and the Earth Observations Commercial Applications Program.
New technology for food systems and security.
Yau, N J Newton
2009-01-01
In addition to product trade, technology trade has become one of the alternatives for globalization action around the world. Although not all technologies employed on the technology trade platform are innovative technologies, the data base of international technology trade still is a good indicator for observing innovative technologies around world. The technology trade data base from Sinew Consulting Group (SCG) Ltd. was employed as an example to lead the discussion on security or safety issues that may be caused by these innovative technologies. More technologies related to processing, functional ingredients and quality control technology of food were found in the data base of international technology trade platform. The review was conducted by categorizing technologies into the following subcategories in terms of safety and security issues: (1) agricultural materials/ingredients, (2) processing/engineering, (3) additives, (4) packaging/logistics, (5) functional ingredients, (6) miscellaneous (include detection technology). The author discusses examples listed for each subcategory, including GMO technology, nanotechnology, Chinese medicine based functional ingredients, as well as several innovative technologies. Currently, generation of innovative technology advance at a greater pace due to cross-area research and development activities. At the same time, more attention needs to be placed on the employment of these innovative technologies.
Bio-functionalization of conductive textile materials with redox enzymes
NASA Astrophysics Data System (ADS)
Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.
2017-10-01
In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.
Asphalt recycling technology: Literature review and research plan
NASA Astrophysics Data System (ADS)
Newcomb, D. E.; Epps, J. A.
1981-06-01
A review of current technology for the rehabilitation and maintenance of pavement surfaces by recycling was conducted. While the primary concern was asphalt concrete recycling, a brief review of portland cement concrete recycling is included. Reports of cases involving recycling technology and lessons learned are reviewed. Recommendations are presented outlining research required to advance the state-of-the-art in a manner that will permit the U.S. Air Force to fully attain the benefits of recycling technology.
ERIC Educational Resources Information Center
Dugger, William E., Jr.
2007-01-01
The International Technology Education Association (ITEA) conducted research on the status of technology education in the United States in 2006-2007. This was the third study conducted by ITEA on the condition of the study of technology in all 50 states. The previous studies were completed by ITEA's Technology for All Americans Project in…
How Older Adults Make Decisions regarding Smart Technology: An Ethnographic Approach
ERIC Educational Resources Information Center
Davenport, Rick D.; Mann, William; Lutz, Barbara
2012-01-01
Comparatively little research has been conducted regarding the smart technology needs of the older adult population despite the proliferation of smart technology prototypes. The purpose of this study was to explore the perceived smart technology needs of older adults with mobility impairments while using an ethnographic research approach to…
FBIS report. Science and technology: Japan, November 6, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-06
Some articles are: R&D on Microfactory Technologies; MHI Develops Low Cost, Low Noise Mid-size Helicopters; Kumamoto University to Apply for Approval to Conduct Clinical Experiment for Gene Therapy; MITI To Support Private Sector to Develop Cipher Technology; and Hitachi Electronics Develops Digital Broadcasting Camera System.
NASA Astrophysics Data System (ADS)
Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.
2014-12-01
Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.
The interface of genomic technologies and nursing.
Loescher, Lois J; Merkle, Carrie J
2005-01-01
(a) to summarize views of the interface of technology, genomic technology, and nursing; (b) provide an overview of current and emerging genomic technologies; (c) present clinical exemplars of uses of genomic technology in two disease conditions; and (d) list genomic-focused nursing research on genomic technologies. A discussion of genomic technology in the context of nurses' views of technology, the importance of genomic technology for nurses, linking the central dogma of molecular biology to state-of-the-art tests and assays, and nurses' current use of technologies. Human genome discoveries will continue to be an integral part of disease prevention, diagnosis, treatment, and management. These discoveries also have the potential for being integrated into nursing science. Genomic technologies are becoming a driving force in patient management, so that nurses will be unable to provide quality care without knowledge of the types of genomic technologies, the rationale for their use, and the possible sequelae that can result from genetic diagnosis or treatment. Many nurses already are using genomic technologies to conduct genomic-focused nursing research. The biobehavioral nature of much of this research further indicates the important contributions of nurses in genomics.
WASTE REDUCTION TECHNOLOGY EVALUATIONS AT THREE PRINTED WIRE BOARD MANUFACTURERS
Technologies at three printed wire board (PWB) manufacturers were evaluated for waste reduction, and costs were compared to existing operations. rom 1989 to 1993, these evaluations were conducted under US EPA's Waste Reduction Innovative Technology Evaluation (WRITE) Program, in ...
Thermal and Electrical Conductivity Probe for Phoenix Mars Lander
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Phoenix Mars Lander will assess how heat and electricity move through Martian soil from one spike or needle to another of a four-spike electronic fork that will be pushed into the soil at different stages of digging by the lander's Robotic Arm. The four-spike tool, called the thermal and electrical conductivity probe, is in the middle-right of this photo, mounted near the end of the arm near the lander's scoop (upper left). In one type of experiment with this tool, a pulse of heat will be put into one spike, and the rate at which the temperature rises on the nearby spike will be recorded, along with the rate at which the heated spike cools. A little bit of ice can make a big difference in how well soil conducts heat. Similarly, soil's electrical conductivity -- also tested with this tool -- is a sensitive indicator of moisture in the soil. This device adapts technology used in soil-moisture gauges for irrigation-control systems. The conductivity probe has an additional role besides soil analysis. It will serve as a hunidity sensor when held in the air.Student Technology Use in a Self-Access Center
ERIC Educational Resources Information Center
Castellano, Joachim; Mynard, Jo; Rubesch, Troy
2011-01-01
Technology has played an increasingly vital role in self-access learning over the past twenty years or so, yet little research has been conducted into learners' actual use of the technology both for self-directed learning and as part of everyday life. This paper describes an ongoing action research project at a self-access learning center (SALC)…
Research and technology, 1984: Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Moorehead, T. W. (Editor)
1984-01-01
The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.
Key Health Information Technologies and Related Issues for Iran: A Qualitative Study.
Hemmat, Morteza; Ayatollahi, Haleh; Maleki, Mohammadreza; Saghafi, Fatemeh
2018-01-01
Planning for the future of Health Information Technology (HIT) requires applying a systematic approach when conducting foresight studies. The aim of this study was to identify key health information technologies and related issues for Iran until 2025. This was a qualitative study and the participants included experts and policy makers in the field of health information technology. In-depth semi-structured interviews were conducted and data were analyzed by using framework analysis and MAXQDA software. The findings revealed that the development of national health information network, electronic health records, patient health records, a cloud-based service center, interoperability standards, patient monitoring technologies, telehealth, mhealth, clinical decision support systems, health information technology and mhealth infrastructure were found to be the key technologies for the future. These technologies could influence the economic, organizational and individual levels. To achieve them, the economic and organizational obstacles need to be overcome. In this study, a number of key technologies and related issues were identified. This approach can help to focus on the most important technologies in the future and to priorities these technologies for better resource allocation and policy making.
Key Health Information Technologies and Related Issues for Iran: A Qualitative Study
Hemmat, Morteza; Ayatollahi, Haleh; Maleki, Mohammadreza; Saghafi, Fatemeh
2018-01-01
Background and Objective: Planning for the future of Health Information Technology (HIT) requires applying a systematic approach when conducting foresight studies. The aim of this study was to identify key health information technologies and related issues for Iran until 2025. Methods: This was a qualitative study and the participants included experts and policy makers in the field of health information technology. In-depth semi-structured interviews were conducted and data were analyzed by using framework analysis and MAXQDA software. Results: The findings revealed that the development of national health information network, electronic health records, patient health records, a cloud-based service center, interoperability standards, patient monitoring technologies, telehealth, mhealth, clinical decision support systems, health information technology and mhealth infrastructure were found to be the key technologies for the future. These technologies could influence the economic, organizational and individual levels. To achieve them, the economic and organizational obstacles need to be overcome. Conclusion: In this study, a number of key technologies and related issues were identified. This approach can help to focus on the most important technologies in the future and to priorities these technologies for better resource allocation and policy making. PMID:29854016
Survey of Enabling Technologies for CAPS
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.
2005-01-01
The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.
Factors Influencing EFL Novice Teachers' Adoption of Technologies in Classroom Practice
ERIC Educational Resources Information Center
Dinh, Huong Thi Bao
2009-01-01
A primary research conducted with 12 Vietnamese teachers of English using questionnaires and semi-structured interviews has revealed that big investment into technological infrastructure and the top-down approach of implementing technological change in English teaching are not a guarantee for the adoption of technology by English teachers in their…
Technology Catalogue. First edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, asmore » well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY2000
The Superfund Innovative Technology Evaluation Program promotes the development, commercialization, and implementation of innovative hazardous waste treatment technologies. SITE offers a mechanism for conducting joint demonstration and evaluation projects at hazardous waste site...
Mobile display technologies: Past developments, present technologies, and future opportunities
NASA Astrophysics Data System (ADS)
Ohshima, Hiroyuki
2014-01-01
It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.
Factors Affecting Teachers' Continuation of Technology Use in Teaching
ERIC Educational Resources Information Center
Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke
2016-01-01
This study was conducted to investigate the continuation of technology use in science and mathematics teaching of the teachers who attended a professional development program between 2010 and 2012. Continuation of technology use was hypothesized to be affected by the professional development program and by personal, institutional, and…
Technology for Space Station Evolution. Volume 4: Power Systems/Propulsion/Robotics
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 4 consists of the technology discipline sections for Power, Propulsion, and Robotics. For each technology discipline, there is a Level 3 subsystem description, along with the papers.
ERIC Educational Resources Information Center
Upfold, Christopher
2016-01-01
Technology facilitated teaching and learning can now influence the way both lecturers and students collaborate. The problem is that many of these interventions are conducted in a non-systematic ad-hoc way. There are concerns that merely adopting a traditional lecturing approach to a technology based environment provides little if any advantage to…
Emerging Technologies and MOUT
DOE Office of Scientific and Technical Information (OSTI.GOV)
YONAS,GEROLD; MOY,TIMOTHY DAVID
Operating in a potentially hostile city is every soldier's nightmare. The staggering complexity of the urban environment means that deadly threats--or non-combatants-may lurk behind every corner, doorway, or window. Urban operations present an almost unparalleled challenge to the modern professional military. The complexity of urban operations is further amplified by the diversity of missions that the military will be called upon to conduct in urban terrain. Peace-making and peace-keeping missions, urban raids to seize airports or WMD sites or to rescue hostages, and extended urban combat operations all present different sorts of challenges for planners and troops on the ground.more » Technology almost never serves as a magic bullet, and past predictions of technological miracles pile high on the ash heap of history. At the same time, it is a vital element of planning in the modern age to consider and, if possible, take advantage of emerging technologies. We believe that technologies can assist military operations in urbanized terrain (MOUT) in three primary areas, which are discussed.« less
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Heuer, Rolf-Dieter
2018-06-15
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Stapnes, Steinar
2017-12-18
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
[Decision modeling for economic evaluation of health technologies].
de Soárez, Patrícia Coelho; Soares, Marta Oliveira; Novaes, Hillegonda Maria Dutilh
2014-10-01
Most economic evaluations that participate in decision-making processes for incorporation and financing of technologies of health systems use decision models to assess the costs and benefits of the compared strategies. Despite the large number of economic evaluations conducted in Brazil, there is a pressing need to conduct an in-depth methodological study of the types of decision models and their applicability in our setting. The objective of this literature review is to contribute to the knowledge and use of decision models in the national context of economic evaluations of health technologies. This article presents general definitions about models and concerns with their use; it describes the main models: decision trees, Markov chains, micro-simulation, simulation of discrete and dynamic events; it discusses the elements involved in the choice of model; and exemplifies the models addressed in national economic evaluation studies of diagnostic and therapeutic preventive technologies and health programs.
Can advanced technology improve future commuter aircraft
NASA Technical Reports Server (NTRS)
Williams, L. J.; Snow, D. B.
1981-01-01
The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.
1993-10-01
The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings.more » The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.« less
High temperature electrically conducting ceramic heating element and control system
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.
1975-01-01
Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.
Review of ride quality technology needs of industry and user groups
NASA Technical Reports Server (NTRS)
Mckenzie, J. R.; Brumaghim, S. H.
1975-01-01
A broad survey of ride quality technology state-of-the-art and a review of user evaluation of this technology were conducted. During the study 17 users of ride quality technology in 10 organizations representing land, marine and air passenger transportation modes were interviewed. Interim results and conclusions of this effort are reported.
Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology
NASA Technical Reports Server (NTRS)
1987-01-01
NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.
Systems Engineering Programmatic Estimation Using Technology Variance
NASA Technical Reports Server (NTRS)
Mog, Robert A.
2000-01-01
Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.
Aeropropulsion '87. Session 5: Subsonic propulsion technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-11-01
NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.
Synthesis and thermal conductivity of type II silicon clathrates
NASA Astrophysics Data System (ADS)
Beekman, M.; Nolas, G. S.
2006-08-01
We have synthesized and characterized polycrystalline Na 1Si 136 and Na 8Si 136, compounds possessing the type II clathrate hydrate crystal structure. Resistivity measurements from 10 to 300 K indicate very large resistivities in this temperature range, with activated temperature dependences indicative of relatively large band gap semiconductors. The thermal conductivity is very low; two orders-of-magnitude lower than that of diamond-structure silicon at room temperature. The thermal conductivity of Na 8Si 136 displays a temperature dependence that is atypical of crystalline solids and more indicative of amorphous materials. This work is part of a continuing effort to explore the many different compositions and structure types of clathrates, a class of materials that continues to be of interest for scientific and technological applications.
District Response to the Demonstration: The Practice of Technology.
ERIC Educational Resources Information Center
Fleming-McCormick, Treseen; And Others
This paper reports on how technology is currently used in nine schools that educators view as "promising" exemplars of technology use. Four elementary, three middle and two high schools from Arizona, California and Nevada (three schools from each state) were examined. Extensive document review and telephone interviews were conducted in…
Demographic Survey of Female Faculty in Technology Education Programs.
ERIC Educational Resources Information Center
Heidari, Farzin
A study was conducted to determine the general program information and the demographic status of female faculty in four-year technology education programs in the United States. Information was gathered through a literature review and a questionnaire mailed to all 70 technology education programs listed in the 1994 International Technology…
TECHNOLOGIES FOR MONITORING AND MEASUREMENT ...
A demonstration of technologies for determining the presence of dioxin and dioxin-like compounds in soil and sediment was conducted under EPA's Superfund Innovative Technology Evaluation Program in Saginaw, Michigan in April 2004. This report describes the performance evaluation of CAPE Technologies DF-1 Dioxin/Furan and PCB TEQ Immunoassay Kits. The kits are immunoassay techniques that report the total toxicity equivalents (TEQ) of dioxin/furans and polychlorinated biphenyls (PCBs. The technology results were compared to high resolution mass spectrometry TEQ results generated using EPA Methods 1613B and 1668A.The CAPE Technologies kits generally reported data higher than the certified PE and reference laboratory values. The technologys estimated MDL was 12 to 33 pg/g TEQ. Results from this demonstration suggest that the CAPE Technologies kits could be an effective screening tool for determining sample results above and below 20 pg/g TEQ and even more effective as a screen for sample above and below 50 pg/g TEQ, particularly considering that both the cost ($59,234 vs. $398,029) and the time (3 weeks vs. 8 months) to analyze the 209 demonstration samples were significantly less than those of the reference laboratory. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.
Nanaware, Padma P; Ramteke, Manoj P; Somavarapu, Arun K; Venkatraman, Prasanna
2014-07-01
Gankyrin, a non-ATPase component of the proteasome and a chaperone of proteasome assembly, is also an oncoprotein. Gankyrin regulates a variety of oncogenic signaling pathways in cancer cells and accelerates degradation of tumor suppressor proteins p53 and Rb. Therefore gankyrin may be a unique hub integrating signaling networks with the degradation pathway. To identify new interactions that may be crucial in consolidating its role as an oncogenic hub, crystal structure of gankyrin-proteasome ATPase complex was used to predict novel interacting partners. EEVD, a four amino acid linear sequence seems a hot spot site at this interface. By searching for EEVD in exposed regions of human proteins in PDB database, we predicted 34 novel interactions. Eight proteins were tested and seven of them were found to interact with gankyrin. Affinity of four interactions is high enough for endogenous detection. Others require gankyrin overexpression in HEK 293 cells or occur endogenously in breast cancer cell line- MDA-MB-435, reflecting lower affinity or presence of a deregulated network. Mutagenesis and peptide inhibition confirm that EEVD is the common hot spot site at these interfaces and therefore a potential polypharmacological drug target. In MDA-MB-231 cells in which the endogenous CLIC1 is silenced, trans-expression of Wt protein (CLIC1_EEVD) and not the hot spot site mutant (CLIC1_AAVA) resulted in significant rescue of the migratory potential. Our approach can be extended to identify novel functionally relevant protein-protein interactions, in expansion of oncogenic networks and in identifying potential therapeutic targets. © 2013 Wiley Periodicals, Inc.
Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters
NASA Astrophysics Data System (ADS)
Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.
2018-01-01
Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.
Electrical Conductivity of Ferritin Proteins by Conductive AFM
NASA Technical Reports Server (NTRS)
Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.
2005-01-01
Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.
Cardiovascular Technology Program Needs Assessment.
ERIC Educational Resources Information Center
Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.
In 1990/91, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed Cardiovascular Technology program. Fifty-two local hospitals were surveyed to gather information on the employment demand, employment benefits and career preparation requirements for cardiovascular technologists (CVTs), yielding a 62% response…
Instructional Systems Study, Electronics Technology.
ERIC Educational Resources Information Center
Waukesha County Technical Inst., Waukesha, WI.
Because of shortcomings in the traditional approach to instruction and learning at Waukesha County Technical Institute in Wisconsin, this research was conducted to determine the effectiveness of an alternate approach to instruction in electronics technology. The "Closed Loop Systems Approach to Instruction" developed for this study was derived…
Miragoli, Michele; Moshkov, Alexey; Novak, Pavel; Shevchuk, Andrew; Nikolaev, Viacheslav O.; El-Hamamsy, Ismail; Potter, Claire M. F.; Wright, Peter; Kadir, S.H. Sheikh Abdul; Lyon, Alexander R.; Mitchell, Jane A.; Chester, Adrian H.; Klenerman, David; Lab, Max J.; Korchev, Yuri E.; Harding, Sian E.; Gorelik, Julia
2011-01-01
Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In
Schafer, Erin C; Wright, Suzanne; Anderson, Christine; Jones, Jessalyn; Pitts, Katie; Bryant, Danielle; Watson, Melissa; Box, Jerrica; Neve, Melissa; Mathews, Lauren; Reed, Mary Pat
The goal of this study was to conduct assistive technology evaluations on 12 children diagnosed with Autism Spectrum Disorder (ASD) to evaluate the potential benefits of remote-microphone (RM) technology. A single group, within-subjects design was utilized to explore individual and group data from functional questionnaires and behavioral test measures administered, designed to assess school- and home-based listening abilities, once with and once without RM technology. Because some of the children were unable to complete the behavioral test measures, particular focus was given to the functional questionnaires completed by primary teachers, participants, and parents. Behavioral test measures with and without the RM technology included speech recognition in noise, auditory comprehension, and acceptable noise levels. The individual and group teacher (n=8-9), parent (n=8-9), and participant (n=9) questionnaire ratings revealed substantially less listening difficulty when RM technology was used compared to the no-device ratings. On the behavioral measures, individual data revealed varied findings, which will be discussed in detail in the results section. However, on average, the use of the RM technology resulted in improvements in speech recognition in noise (4.6dB improvement) in eight children, higher auditory working memory and comprehension scores (12-13 point improvement) in seven children, and acceptance of poorer signal-to-noise ratios (8.6dB improvement) in five children. The individual and group data from this study suggest that RM technology may improve auditory function in children with ASD in the classroom, at home, and in social situations. However, variability in the data and the inability of some children to complete the behavioral measures indicates that individualized assistive technology evaluations including functional questionnaires will be necessary to determine if the RM technology will be of benefit to a particular child who has ASD. Copyright
3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.
Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana
2016-05-01
Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Use of Phone Technology in Outpatient Populations: A Systematic Review
Duarte, Ana C.; Thomas, Sue A.
2016-01-01
Objective: A systematic review was conducted to identify the types of phone technology used in the adult outpatient population with a focus on Hispanic patients and psychiatric populations. Methods: A search for articles was conducted on the EMBASE, PubMed and PsycINFO databases. Articles reviewed were peer-reviewed, full-text, English language and published through mid-November 2014. Results: Twenty-one articles were included in this review and grouped according to combinations of phone technology, medical specialty area and population. For all articles, phone technology was defined as telephone, cell, or smart phone. Technology was used in psychiatry with Hispanic population in four articles, in psychiatry with non-Hispanic population in seven articles and in other specialties with Hispanic population in ten articles. Articles were evaluated for quality. Six articles were assessed as strong, eight were moderate and seven were weak in global quality. Interventions included direct communication, text messaging, interactive voice response, camera and smart phone app. Studies with Hispanic populations used more text messaging, while studies in psychiatry favored direct communication. The majority of articles in all groups yielded improvements in health outcomes. Conclusion: Few studies have been conducted using phone technology in Hispanic and psychiatric populations. Various phone technologies can be helpful to patients in diverse populations and have demonstrated success in improving a variety of specific and overall healthcare outcomes. Phone technologies are easily adapted to numerous settings and populations and are valuable tools in efforts to increase access to care. PMID:27347255
Ultrasound technology: A decision-making tool
USDA-ARS?s Scientific Manuscript database
An ultrasound demonstration was conducted for participants (~ 110 people) of the Arkansas Cattle Grower’s Conference, Hope, AR. Evaluation of live animals with ultrasound technology allows beef producers the ability to make selection and management decisions. Specifically, ultrasound at the conclu...
DOE technology information management system database study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widing, M.A.; Blodgett, D.W.; Braun, M.D.
1994-11-01
To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performedmore » detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.« less
Small Engine Component Technology (SECT) study. Program report
NASA Technical Reports Server (NTRS)
Almodovar, E.; Exley, T.; Kaehler, H.; Schneider, W.
1986-01-01
The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At $2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals.
2002-08-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.
Study on Thermal Conductivity of Personal Computer Aluminum-Magnesium Alloy Casing
NASA Astrophysics Data System (ADS)
Liao, MeiHong
With the rapid development of computer technology, micro-state atoms by simulating the movement of material to analyze the nature of the macro-state have become an important subject. Materials, especially aluminium-magnesium alloy materials, often used in personal computer case, this article puts forward heat conduction model of the material, and numerical methods of heat transfer performance of the material.
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-01-01
Objectives Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. Research Design and Methods The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Results Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Conclusions Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. PMID:21880237
Control of oil spills in high speed currents : a technology assessment
DOT National Transportation Integrated Search
1999-05-01
A technology assessment has been conducted to analyze the threat of oil spills in fast currents. Technologies and methods for response were evaluated, and promising equipment and strategies were identified. Recommendations are made to pursue those me...
Emerging technologies and corporate culture at Microsoft: a methodological note.
Klein, David; Schmeling, James; Blanck, Peter
2005-01-01
This article explores factors important in the study and examination of corporate culture and change. The particular focus is on the technological methods used to conduct a study of accessible technology and corporate culture at Microsoft Corporation. Reasons for particular approaches are explained. Advantages and challenges of emerging technologies that store and retrieve information in the study of corporate culture are reviewed. 2005 John Wiley & Sons, Ltd.
EDITORIAL: On display with transparent conducting films On display with transparent conducting films
NASA Astrophysics Data System (ADS)
Demming, Anna
2012-03-01
Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained
The space shuttle payload planning working groups. Volume 10: Space technology
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.
Technological Competence: Training Educational Leaders.
ERIC Educational Resources Information Center
Bozeman, William C.; Spuck, Dennis W.
1991-01-01
Discussion of the competence of school administrators in the use of technology focuses on the results of a survey of data processing specialists in 165 school districts that was conducted to determine the importance of various educational computer applications. It is recommended that educational applications of computers be included in preservice…
Plastics & Composites Technology Needs Assessment.
ERIC Educational Resources Information Center
Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.
In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed plastics and composites technology program for design engineers. General information was obtained through a literature search, from the Society of the Plastics Industry, Inc., the Michigan Employment Security Commission, and interviews with…
Health Management Technology as a General Solution Framework
NASA Astrophysics Data System (ADS)
Nakajima, Hiroshi; Hasegawa, Yoshifumi; Tasaki, Hiroshi; Iwami, Taro; Tsuchiya, Naoki
Health maintenance and improvement of humans, artifacts, and nature are pressing requirements considering the problems human beings have faced. In this article, the health management technology is proposed by centering cause-effect structure. The important aspect of the technology is evolvement through human-machine collaboration in response to changes of target systems. One of the reasons why the cause-effect structure is centered in the technology is its feature of transparency to humans by instinct point of view. The notion has been spreaded over wide application areas such as quality control, energy management, and healthcare. Some experiments were conducted to prove effectiveness of the technology in the article.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.
1998-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption
Conductivity is a measure of the ability of water to pass an electrical current. Because dissolved salts and other inorganic chemicals conduct electrical current, conductivity increases as salinity increases.
Improving math and science education in charter secondary schools through the use of technology
NASA Astrophysics Data System (ADS)
Ojose, Bobby
This study was conducted to examine the promising practices of using technology in teaching math and science in charter schools in California. The study was conducted under the auspices of the Center for Educational Governance (CEG) which hopes to compile the promising practices into an Internet-based compendium to be replicated by others. The research employed an in-depth qualitative case study method. It was conducted in two secondary schools in different school districts in the state of California over a two-month period. The main participants were principals, lead teachers, teachers, and support staff. Interviews, observations, and archival documents were the main data collection tools. Face to face interviews were conducted with the principals, lead teachers of technology, teachers, and a support staff (Network Administrator). Technology lab and professional development activities were observed. Interviews were tape-recorded and transcribed. The study found that one school (MSA) has the promising practice of using technology to enhance the subject matter knowledge of students by using computers to further explore concepts already learned in the regular classroom. The other school (CART) has the promising practice of applying technology to real life situations as a teaching pedagogy. The result of these practices is the positive outcomes in the following areas: Increased student achievement in standardized teat scores, increased motivation, growth in mean GPA, less behavior problems from students, and improved school attendance by students. The implications for policy and practice include: Teachers having the knowledge of the benefits of constructive teaching in the classroom; principals understanding that professional development activities for technology integration will vary in complexities and depends on needs of teachers; policy makers identifying needs and establishing goals; and researchers conducting more qualitative studies to gather evidence to
NASA's progress in nuclear electric propulsion technology
NASA Technical Reports Server (NTRS)
Stone, James R.; Doherty, Michael P.; Peecook, Keith M.
1993-01-01
The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.
NASA Engineers Conduct Low Light Test on New Technology for NASA Webb Telescope
2014-09-02
NASA engineers inspect a new piece of technology developed for the James Webb Space Telescope, the micro shutter array, with a low light test at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Developed at Goddard to allow Webb's Near Infrared Spectrograph to obtain spectra of more than 100 objects in the universe simultaneously, the micro shutter array uses thousands of tiny shutters to capture spectra from selected objects of interest in space and block out light from all other sources. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... conduct the 2010 through 2012 Information and Communication Technology Survey (ICTS). The annual survey... payments) for four types of information and communication technology equipment and software (computers and... through the use of automated collection techniques or other forms of information technology. Comments...
Investigation of electrically conducting yarns for use in textile actuators
NASA Astrophysics Data System (ADS)
Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.
2018-07-01
Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.
What gets missed when deploying new technologies in A&E?
Broome, C; Adams, A
2005-06-01
This paper presents a longitudinal study (over 4 months) of an A&E department where the existing whiteboards were replaced with PC-based computer systems. The study was conducted in two parts - an observation of the physical whiteboard usage and in-depth interviews with all users of both the traditional whiteboard usage and the replacement technology. The research was conducted with the systems manager and all whiteboard users (i.e. nursing management, nurses, doctors, porters, and agency staff) across a spread of time frames. Although the technology supported simple information requirements, complex co-ordination, collaboration, and awareness issues were left unsupported. The important role of a pen-holder (information co-ordinator) was poorly supported by the replacement technology as was the task of annotating information with changing situations and needs. Specific deployment issues are derived from these findings that should guide designers when implementing technology replacements for current physical information formats (e.g. whiteboards, notice boards, shared paper notes).
A review of NASA-sponsored technology assessment projects
NASA Technical Reports Server (NTRS)
Mascy, A. C.; Alexander, A. D., III; Wood, R. D.
1978-01-01
Recent technology assessment studies sponsored by NASA are reviewed, and a summary of the technical results as well as a critique of the methodologies are presented. The reviews include Assessment of Lighter-Than-Air Technology, Technology Assessment of Portable Energy RDT&P, Technology Assessment of Future Intercity Passenger Transportation Systems, and Technology Assessment of Space Disposal of Radioactive Nuclear Waste. The use of workshops has been introduced as a unique element of some of these assessments. Also included in this report is a brief synopsis of a method of quantifying opinions obtained through such group interactions. Representative of the current technology assessments, these studies cover a broad range of socio-political factors and issues in greater depth than previously considered in NASA sponsored studies. In addition to the lessons learned through the conduct of these studies, a few suggestions for improving the effectiveness of future technology assessments are provided.
Electronic conductivity studies on oxyhalide glasses containing TMO
NASA Astrophysics Data System (ADS)
Vijayatha, D.; Viswanatha, R.; Sujatha, B.; Narayana Reddy, C.
2016-05-01
Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl2 - 60 PbO - (40-x) V2O5 (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl2 containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V2O5 concentration. Analysis of the results is interpreted in view Austin-Mott's small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.
Current mHealth Technologies for Physical Activity Assessment and Promotion
O’Reilly, Gillian A.; Spruijt-Metz, Donna
2014-01-01
Context Novel mobile assessment and intervention capabilities are changing the face of physical activity (PA) research. A comprehensive systematic review of how mobile technology has been used for measuring PA and promoting PA behavior change is needed. Evidence acquisition Article collection was conducted using six databases from February to June 2012 with search terms related to mobile technology and PA. Articles that described the use of mobile technologies for PA assessment, sedentary behavior assessment, and/or interventions for PA behavior change were included. Articles were screened for inclusion and study information was extracted. Evidence synthesis Analyses were conducted from June to September 2012. Mobile phone–based journals and questionnaires, short message service (SMS) prompts, and on-body PA sensing systems were the mobile technologies most utilized. Results indicate that mobile journals and questionnaires are effective PA self-report measurement tools. Intervention studies that reported successful promotion of PA behavior change employed SMS communication, mobile journaling, or both SMS and mobile journaling. Conclusions mHealth technologies are increasingly being employed to assess and intervene on PA in clinical, epidemiologic, and intervention research. The wide variations in technologies used and outcomes measured limit comparability across studies, and hamper identification of the most promising technologies. Further, the pace of technologic advancement currently outstrips that of scientific inquiry. New adaptive, sequential research designs that take advantage of ongoing technology development are needed. At the same time, scientific norms must shift to accept “smart,” adaptive, iterative, evidence-based assessment and intervention technologies that will, by nature, improve during implementation. PMID:24050427
Current mHealth technologies for physical activity assessment and promotion.
O'Reilly, Gillian A; Spruijt-Metz, Donna
2013-10-01
Novel mobile assessment and intervention capabilities are changing the face of physical activity (PA) research. A comprehensive systematic review of how mobile technology has been used for measuring PA and promoting PA behavior change is needed. Article collection was conducted using six databases from February to June 2012 with search terms related to mobile technology and PA. Articles that described the use of mobile technologies for PA assessment, sedentary behavior assessment, and/or interventions for PA behavior change were included. Articles were screened for inclusion and study information was extracted. Analyses were conducted from June to September 2012. Mobile phone-based journals and questionnaires, short message service (SMS) prompts, and on-body PA sensing systems were the mobile technologies most utilized. Results indicate that mobile journals and questionnaires are effective PA self-report measurement tools. Intervention studies that reported successful promotion of PA behavior change employed SMS communication, mobile journaling, or both SMS and mobile journaling. mHealth technologies are increasingly being employed to assess and intervene on PA in clinical, epidemiologic, and intervention research. The wide variations in technologies used and outcomes measured limit comparability across studies, and hamper identification of the most promising technologies. Further, the pace of technologic advancement currently outstrips that of scientific inquiry. New adaptive, sequential research designs that take advantage of ongoing technology development are needed. At the same time, scientific norms must shift to accept "smart," adaptive, iterative, evidence-based assessment and intervention technologies that will, by nature, improve during implementation. © 2013 American Journal of Preventive Medicine.
Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study
NASA Technical Reports Server (NTRS)
Stuckas, K. J.
1980-01-01
The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.
Conductance and thermopower in molecular nanojunctions
NASA Astrophysics Data System (ADS)
Sen, Arijit
2013-02-01
Electronic transport through short channels in a molecular junction is an intricate quantum scattering problem [1]. To garner insight on how the structure and the electrical properties of a nanoscale junction are correlated is thus of both fundamental and technological interest [1-3]. As observed experimentally in the last couple of years by several independent research groups [4-5], a two-terminal molecular junction comprising of a simple alkane chain with varying length can exhibit high as well as low conductance. However, what causes the simultaneous unveiling of multiple conductances remained largely obscure. We have recently demonstrated [6] that the binary conductance in these heterostructures is due mainly to two distinct electrode orientations that control the electrode-molecule coupling as well as the tunneling strength through quantum interference following diversity in the electrode band structures. Our detailed analysis on the transmission spectra indicates that even a single-molecule nanojunction can potentially serve as a realistic double-quantum-dot kind of system to yield tunable Fano resonance, as often desired for nanoscale switching. In this talk, I intend to give a brief account of molecular electronics and its future applications along with the challenges and possibilities in the current perspective. A few deliberations may as well include how the inter-dot tunneling strength may affect the non-equilibrium charge transport and thermoelectricity in a myriad of molecular junctions based on different molecular conformations and electrode structures. Finally, I shall try to touch upon the effect of electron-phonon interaction on the nanoscale charge transport, and also, the phonon-mediated thermal transport in molecular nanodevices.
Demonstration of Spacecraft Fire Safety Technology
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2012-01-01
During the Constellation Program, the development of spacecraft fire safety technologies were focused on the immediate questions related to the atmosphere of the habitable volume and implementation of fire detection, suppression, and postfire clean-up systems into the vehicle architectures. One of the difficulties encountered during the trade studies for these systems was the frequent lack of data regarding the performance of a technology, such as a water mist fire suppression system or an optically-based combustion product monitor. Even though a spacecraft fire safety technology development project was being funded, there was insufficient time and funding to address all the issues as they were identified. At the conclusion of the Constellation Program, these knowledge gaps formed the basis for a project proposed to the Advanced Exploration Systems (AES) Program. This project, subsequently funded by the AES Program and in operation since October 2011, has as its cornerstone the development of an experiment to be conducted on an ISS resupply vehicle, such as the European Space Agency (ESA) Automated Transfer Vehicle (ATV) or Orbital Science s Cygnus vehicle after it leaves the ISS and before it enters the atmosphere. The technology development efforts being conducted in this project include continued quantification of low- and partial-gravity maximum oxygen concentrations of spacecraft-relevant materials, development and verification of sensors for fire detection and post-fire monitoring, development of standards for sizing and selecting spacecraft fire suppression systems, and demonstration of post-fire cleanup strategies. The major technology development efforts are identified in this paper but its primary purpose is to describe the spacecraft fire safety demonstration being planned for the reentry vehicle.
Efficient Thermally Conductive Strap Design for Cryogenic Propellant Tank Supports and Plumbing
NASA Technical Reports Server (NTRS)
Elchert, J. P.; Christie, R.; Kashani, A.; Opalach, C.
2012-01-01
After evaluating NASA space architecture goals, the Office of Chief Technologist identified the need for developing enabling technology for long term loiters in space with cryogenic fluids. One such technology is structural heat interception. In this prototype, heat interception at the tank support strut was accomplished using a thermally conductive link to the broad area cooled shield. The design methodology for both locating the heat intercept and predicting the reduction in boil-off heat leak is discussed in detail. Results from the chosen design are presented. It was found that contact resistance resulting from different mechanical attachment techniques played a significant role in the form and functionality of a successful design.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.
Conducting a Statewide Dual-Purpose Program for Pesticide Applicators and County Extension Agents
ERIC Educational Resources Information Center
Fishel, Fred; Liu, Guodong David
2014-01-01
The University of Florida Cooperative Extension conducted a statewide program with a dual role during 2013 and 2014 to enhance efficiency. The program provided in-service training to county Extension agents and provided continuing education to meet requirements needed by licensed pesticide applicators. Using Polycom distance technology, the event…
Post Advanced Technology Implementation Effects on School Psychologist Job Performance
ERIC Educational Resources Information Center
Hobson, Rana Dirice
2017-01-01
The technology acceptance model (TAM) has been widely used to assess technology adoption in business, education, and health care. The New York City Department of Education (NYCDOE) launched a web-based Individualized Educational Program (IEP) system for school psychologists to use in conducting evaluations and reviews. This quantitative study…
Technology Transfer Educational Curriculum Plan for the State of Colorado.
ERIC Educational Resources Information Center
Dakin, Karl J.
A recommended plan for an educational curriculum on the topic of technology transfer is outlined. A survey was conducted to determine the current levels of ability and knowledge of technology users and of transfer intermediaries. Information was collected from three sources: individuals and organizations currently presenting educational programs…
Acousto-Optic Technology for Topographic Feature Extraction and Image Analysis.
1981-03-01
This report contains all findings of the acousto - optic technology study for feature extraction conducted by Deft Laboratories Inc. for the U.S. Army...topographic feature extraction and image analysis using acousto - optic (A-O) technology. A conclusion of this study was that A-O devices are potentially
The evolutionary development of high specific impulse electric thruster technology
NASA Technical Reports Server (NTRS)
Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Myers, Roger M.
1992-01-01
Electric propulsion flight and technology demonstrations conducted primarily by Europe, Japan, China, the U.S., and the USSR are reviewed. Evolutionary mission applications for high specific impulse electric thruster systems are discussed, and the status of arcjet, ion, and magnetoplasmadynamic thrusters and associated power processor technologies are summarized.
SOFIA: an R package for enhancing genetic visualization with Circos
USDA-ARS?s Scientific Manuscript database
Visualization of data from any stage of genetic and genomic research is one of the most useful approaches for detecting potential errors, ensuring accuracy and reproducibility, and presentation of the resulting data. Currently software such as Circos, ClicO FS, and RCircos, among others, provide too...
NASA Technical Reports Server (NTRS)
1985-01-01
In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.
The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Brown, Scott A.
The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.« less
OAST Technology for the Future. Executive Summary
NASA Technical Reports Server (NTRS)
1988-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program (IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1987-01-01
Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Yu, Yao; Hu, Hao; Bohlender, Ryan J; Hu, Fulan; Chen, Jiun-Sheng; Holt, Carson; Fowler, Jerry; Guthery, Stephen L; Scheet, Paul; Hildebrandt, Michelle A T; Yandell, Mark; Huff, Chad D
2018-04-06
High-throughput sequencing data are increasingly being made available to the research community for secondary analyses, providing new opportunities for large-scale association studies. However, heterogeneity in target capture and sequencing technologies often introduce strong technological stratification biases that overwhelm subtle signals of association in studies of complex traits. Here, we introduce the Cross-Platform Association Toolkit, XPAT, which provides a suite of tools designed to support and conduct large-scale association studies with heterogeneous sequencing datasets. XPAT includes tools to support cross-platform aware variant calling, quality control filtering, gene-based association testing and rare variant effect size estimation. To evaluate the performance of XPAT, we conducted case-control association studies for three diseases, including 783 breast cancer cases, 272 ovarian cancer cases, 205 Crohn disease cases and 3507 shared controls (including 1722 females) using sequencing data from multiple sources. XPAT greatly reduced Type I error inflation in the case-control analyses, while replicating many previously identified disease-gene associations. We also show that association tests conducted with XPAT using cross-platform data have comparable performance to tests using matched platform data. XPAT enables new association studies that combine existing sequencing datasets to identify genetic loci associated with common diseases and other complex traits.
ERIC Educational Resources Information Center
Abu-Thabit, Nedal Y.
2016-01-01
Electrically conducting polymers are one of the promising alternative materials for technological applications in many interdisciplinary areas, including chemistry, material sciences, and engineering. This experiment was designed for providing undergraduate students with a quick and practical approach for preparation of a polyaniline-conducting…
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Ellis, David; Singh, Jogender
2014-01-01
Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion
NASA Astrophysics Data System (ADS)
Ma, Song-Shan; Xu, Hui; Wang, Huan-You; Guo, Rui
2009-08-01
This paper presents a model to describe alternating current (AC) conductivity of DNA sequences, in which DNA is considered as a one-dimensional (1D) disordered system, and electrons transport via hopping between localized states. It finds that AC conductivity in DNA sequences increases as the frequency of the external electric field rises, and it takes the form of øac(ω) ~ ω2 ln2(1/ω). Also AC conductivity of DNA sequences increases with the increase of temperature, this phenomenon presents characteristics of weak temperature-dependence. Meanwhile, the AC conductivity in an off-diagonally correlated case is much larger than that in the uncorrelated case of the Anderson limit in low temperatures, which indicates that the off-diagonal correlations in DNA sequences have a great effect on the AC conductivity, while at high temperature the off-diagonal correlations no longer play a vital role in electric transport. In addition, the proportion of nucleotide pairs p also plays an important role in AC electron transport of DNA sequences. For p < 0.5, the conductivity of DNA sequence decreases with the increase of p, while for p >= 0.5, the conductivity increases with the increase of p.
Emerging Propulsion Technologies
NASA Astrophysics Data System (ADS)
Bonometti, J. A.
2004-11-01
The Emerging Propulsion Technologies (EPT) technology area is a branch of the In-Space Program that serves as a bridge to bring high-risk/high-payoff technologies to a higher level of maturity. Emerging technologies are innovative and, if successfully developed, could result in revolutionary science capabilities for NASA science missions. EPT is also charged with the responsibility of assessing the technology readiness level (TRL) of technologies under consideration for inclusion in the ISP portfolio. One such technology is the Momentum-eXchange/Electrodynamic Reboost (MXER) tether concept, which is the current, primary investment of EPT. The MXER tether is a long, rotating cable placed in an elliptical Earth orbit, whose rapid rotation allows its tip to catch a payload in a low Earth orbit and throw that payload to a high-energy orbit. Electrodynamic tether propulsion is used to restore the orbital energy transferred by the MXER tether to the payload and reboost the tether's orbit. This technique uses solar power to drive electrical current collected from the Earth's ionosphere through the tether, resulting in a magnetic interaction with the terrestrial field. Since the Earth itself serves as the reaction mass, the thrust force is generated without propellant and allows the MXER facility to be repeatedly reused without re-supply. Essentially, the MXER facility is a 'propellantless' upper stage that could assist nearly every mission going beyond low Earth orbit. Payloads to interplanetary destinations could especially benefit from the boost provided by the MXER facility, resulting in launch vehicle cost reductions, increased payload fractions and more frequent mission opportunities. Synergistic tether technologies resulting from MXER development could include science sampling in the upper atmosphere, remote probes or attached formation flying, artificial gravity experiments with low Coriolis forces, and other science needs that use long, ultra-light strength or
Technologies for Single-Cell Isolation
Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter
2015-01-01
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926
Technologies for Single-Cell Isolation.
Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter
2015-07-24
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.
Fuel system technology overview
NASA Technical Reports Server (NTRS)
Friedman, R.
1980-01-01
Fuel system research and technology studies are being conducted to investigate the correlations and interactions of aircraft fuel system design and environment with applicable characteristics of the fuel. Topics include: (1) analysis of in-flight fuel temperatures; (2) fuel systems for high freezing point fuels; (3) experimental study of low temperature pumpability; (4) full scale fuel tank simulation; and (5) rapid freezing point measurement.
Thermally Conductive Tape Based on Carbon Nanotube Arrays
NASA Technical Reports Server (NTRS)
Kashani, Ali
2011-01-01
array of CNTs was measured to be as high as 10 W/K. The high thermal conductivity and the nanoscale size make CNTs ideal as thermal interface materials. The CNT-based thermal tape can be used for the thermal management of microelectronic packages and electronic systems. It also can be integrated with current device technology and packaging. The material would allow for an efficient method to manage excess heat generation without requiring any additional power. Lastly, the CNT tape can be used to enhance thermal contact conductance across two mating surfaces on some NASA missions.
TRAINING OLDER WORKERS FOR TECHNOLOGY-BASED EMPLOYMENT.
Lee, Chin Chin; Czaja, Sara J; Sharit, Joseph
2009-01-01
An increasingly aging workforce and advances in technology are changing work environments and structures. The continued employability of older adults, particularly those of lower socioeconomic status (SES), requires them to participate in training programs to ensure their competence in today's workplace. Focus groups with 37 unemployed adults (51-76 years old) were conducted to gather information about barriers and obstacles for returning to work, training needs and formats, work experiences, and perceptions of the characteristics of an ideal job. Overall, results indicated that participants experienced age discrimination and lack of technology skills. They also expressed a desire to receive additional training on technology and a preference for classroom training.
Building technology services that address student needs.
Le Ber, Jeanne M; Lombardo, Nancy T; Wimmer, Erin
2015-01-01
A 16-question technology use survey was conducted to assess incoming health sciences students' knowledge of and interest in current technologies, and to identify student device and tool preferences. Survey questions were developed by colleagues at a peer institution and then edited to match this library's student population. Two years of student responses have been compiled, compared, and reviewed as a means for informing library decisions related to technology and resource purchases. Instruction and event programming have been revised to meet student preferences. Based on the number of students using Apple products, librarians are addressing the need to become more proficient with this platform.
Impact and promise of NASA aeropropulsion technology
NASA Technical Reports Server (NTRS)
Saunders, Neal T.; Bowditch, David N.
1990-01-01
The aeropropulsion industry in the U.S. has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. NASA's aeropropulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstration. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
Civil Engineering Technology Needs Assessment.
ERIC Educational Resources Information Center
Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.
In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed Civil Engineering Technology program. An initial examination of the literature focused on industry needs and the job market for civil engineering technicians. In order to gather information on local area employers' hiring practices and needs, a…
Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding
NASA Astrophysics Data System (ADS)
Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng
2018-04-01
The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.
Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding
NASA Astrophysics Data System (ADS)
Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng
2018-05-01
The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.
Beran, R G
2000-01-01
Human research must respect most rigorous ethical standards to protect both the investigators and subjects. Codes of ethical practice relevant to such research are subjected to reviews around the world including The European Union (EU), the Canadian Tri-Council Policy Statement (including the Medical Research Council, the Natural Sciences and Engineering Research Council and the Social Sciences and Humanities Research Council), the Finnish Parliament Research Act (April 1999) and the National Statement on Ethical Conduct in Research Involving Humans in accordance with the NHMRC Act 1992 (Cth) from the National Health and Medical Research Council of Australia. The Australian Statement was endorsed by the Australian Vice-Chancellors' Committee, the Australian Research Council, the Australian Academy of the Humanities, the Australian Academy of Science and the Academy of Social Sciences in Australia and supported by the Academy of Technological Sciences and Engineering. This reflects the extensive ramifications of human experimentation and the range of stack holders. Private organisations have also produced interpretations of minimum standards of good clinical practice. The paper that follows analyses approaches to human experimentation and the minimal ethical expectations in the conduct of such research.
NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2009-01-01
This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.
The EPA's ETV Program, in partnership with recognized testing organizations, objectively and systematically documents the performance of commercial ready technologies. Together, with the full participation of the technology developer, develop plans, conduct tests, collect and ana...
CHOL-N-SOIL PCB TEST KIT, DEXSIL CORP. - INNOVATIVE TECHNOLOGY Evaluation REPORT
This innovative technology evaluation report (ITER) presents the evaluation of two field screening technologies for determining polychlorinated biphenyl (PCB) contamination in soil. The demonstration was conducted by PRC Environmental Management, Inc. (PRC), under contract to the...
Recent progress in VSTOL technology
NASA Technical Reports Server (NTRS)
Roberts, L.; Deckert, W. R.
1982-01-01
Progress in vertical and short takeoff and landing (V/STOL) aircraft technology, in particular, during the 1970 to 1980 period at Ames Research Center is discussed. Although only two kinds of V/STOL aircraft (the helicopter and the British direct lift Harrier) have achieved operational maturity, understanding of the technology has vastly improved during this 10 year period. To pursue an aggressive R and D program at a reasonable cost, it was decided to conduct extensive large scale testing in wind tunnel and flight simulation facilities, to develop low cost research aircraft using modified airframes or engines, and to involve other agencies and industry contractors in joint technical and funding arrangements. The STOL investigations include exploring STOL performance using the rotating cylinder flap concept, the augmentor wing, upon initiation of the Quiet Short Haul Research Aircraft program, the upper surface blown flap concept. The VTOL investigations were conducted using a tilt rotor aircraft, resulting in the XV-15 tilt rotor research aircraft. Direct jet lift is now being considered for application to future supersonic fighter aircraft.
The Role of School Administrators in the Use of Technology
ERIC Educational Resources Information Center
Öznacar, Behcet; Dericioglu, Sonay
2017-01-01
This research is conducted to obtain the thoughts of state high school administrators to determine the obstacles that they are exposed to while using technology and attempting to integrate technology into their schools. The research is carried out through using the qualitative research design "phenomenology." The sample group of this…
The Rontec PicoTAX x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Rec...
A SITE demonstration of the Horsehead Resource Development (HRD) Company, Inc. Flame Reactor Technology was conducted in March 1991 at the HRD facility in Monaca, Pennsylvania. or this demonstration, secondary lead smelter soda slag was treated to produce a potentially recyclable...
Identification and design principles of low hole effective mass p-type transparent conducting oxides
Hautier, Geoffroy; Miglio, Anna; Ceder, Gerbrand; Rignanese, Gian-Marco; Gonze, Xavier
2013-01-01
The development of high-performance transparent conducting oxides is critical to many technologies from transparent electronics to solar cells. Whereas n-type transparent conducting oxides are present in many devices, their p-type counterparts are not largely commercialized, as they exhibit much lower carrier mobilities due to the large hole effective masses of most oxides. Here we conduct a high-throughput computational search on thousands of binary and ternary oxides and identify several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state-of-the-art p-type transparent conducting oxides), as well as wide band gaps. In addition to the discovery of specific compounds, the chemical rationalization of our findings opens new directions, beyond current Cu-based chemistries, for the design and development of future p-type transparent conducting oxides. PMID:23939205
Method and apparatus for casting conductive and semi-conductive materials
Ciszek, T.F.
1984-08-13
A method and apparatus is disclosed for casting conductive and semi-conductive materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semi-conductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
NASA Astrophysics Data System (ADS)
Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.
2018-05-01
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.
Early economic evaluation of emerging health technologies: protocol of a systematic review
2014-01-01
Background The concept of early health technology assessment, discussed well over a decade, has now been collaboratively implemented by industry, government, and academia to select and expedite the development of emerging technologies that may address the needs of patients and health systems. Early economic evaluation is essential to assess the value of emerging technologies, but empirical data to inform the current practice of early evaluation is limited. We propose a systematic review of early economic evaluation studies in order to better understand the current practice. Methods/design This protocol describes a systematic review of economic evaluation studies of regulated health technologies in which the evaluation is conducted prior to regulatory approval and when the technology effectiveness is not well established. Included studies must report an economic evaluation, defined as the comparative analysis of alternatives with respect to their associated costs and health consequences, and must evaluate some regulated health technology such as pharmaceuticals, biologics, high-risk medical devices, or biomarkers. We will conduct the literature search on multiple databases, including MEDLINE, EMBASE, the Centre for Reviews and Dissemination Databases, and EconLit. Additional citations will be identified via scanning reference lists and author searching. We suspect that many early economic evaluation studies are unpublished, especially those conducted for internal use only. Additionally, we use a chain-referral sampling approach to identify authors of unpublished studies who work in technology discovery and development, starting out with our contact lists and authors who published relevant studies. Citation screening and full-text review will be conducted by pairs of reviewers. Abstracted data will include those related to the decision context and decision problem of the early evaluation, evaluation methods (e.g., data sources, methods, and assumptions used to
Early economic evaluation of emerging health technologies: protocol of a systematic review.
Pham, Ba'; Tu, Hong Anh Thi; Han, Dolly; Pechlivanoglou, Petros; Miller, Fiona; Rac, Valeria; Chin, Warren; Tricco, Andrea C; Paulden, Mike; Bielecki, Joanna; Krahn, Murray
2014-07-23
The concept of early health technology assessment, discussed well over a decade, has now been collaboratively implemented by industry, government, and academia to select and expedite the development of emerging technologies that may address the needs of patients and health systems. Early economic evaluation is essential to assess the value of emerging technologies, but empirical data to inform the current practice of early evaluation is limited. We propose a systematic review of early economic evaluation studies in order to better understand the current practice. This protocol describes a systematic review of economic evaluation studies of regulated health technologies in which the evaluation is conducted prior to regulatory approval and when the technology effectiveness is not well established. Included studies must report an economic evaluation, defined as the comparative analysis of alternatives with respect to their associated costs and health consequences, and must evaluate some regulated health technology such as pharmaceuticals, biologics, high-risk medical devices, or biomarkers. We will conduct the literature search on multiple databases, including MEDLINE, EMBASE, the Centre for Reviews and Dissemination Databases, and EconLit. Additional citations will be identified via scanning reference lists and author searching. We suspect that many early economic evaluation studies are unpublished, especially those conducted for internal use only. Additionally, we use a chain-referral sampling approach to identify authors of unpublished studies who work in technology discovery and development, starting out with our contact lists and authors who published relevant studies. Citation screening and full-text review will be conducted by pairs of reviewers. Abstracted data will include those related to the decision context and decision problem of the early evaluation, evaluation methods (e.g., data sources, methods, and assumptions used to identify, measure, and value the
Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.
Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent
2009-01-01
Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.
Overview of free-piston Stirling technology at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1985-01-01
An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (Lewis) free-piston Stirling engine activities is presented. These activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ONRL)), and (2) a free-piston Stirling space-power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kw free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Evolution of Force Sensing Technologies.
Shah, Dipen
2017-06-01
In order to Improve the procedural success and long-term outcomes of catheter ablation techniques for atrial fibrillation (AF), an Important unfulfilled requirement is to create durable electrophysiologically complete lesions. Measurement of contact force (CF) between the catheter tip and the target tissue can guide physicians to optimise both mapping and ablation procedures. Contact force can affect lesion size and clinical outcomes following catheter ablation of AF. Force sensing technologies have matured since their advent several years ago, and now allow the direct measurement of CF between the catheter tip and the target myocardium in real time. In order to obtain complete durable lesions, catheter tip spatial stability and stable contact force are important. Suboptimal energy delivery, lesion density/contiguity and/or excessive wall thickness of the pulmonary vein-left atrial (PV-LA) junction may result in conduction recovery at these sites. Lesion assessment tools may help predict and localise electrical weak points resulting in conduction recovery during and after ablation. There is increasing clinical evidence to show that optimal use of CF sensing during ablation can reduce acute PV re-conduction, although prospective randomised studies are desirable to confirm long-term favourable clinical outcomes. In combination with optimised lesion assessment tools, contact force sensing technology has the potential to become the standard of care for all patients undergoing AF catheter ablation.
ERIC Educational Resources Information Center
Wang, Li
2005-01-01
With the advent of networked computers and Internet technology, computer-based instruction has been widely used in language classrooms throughout the United States. Computer technologies have dramatically changed the way people gather information, conduct research and communicate with others worldwide. Considering the tremendous startup expenses,…
The costs of introducing new technologies into space systems
NASA Technical Reports Server (NTRS)
Dodson, E. N.; Partma, H.; Ruhland, W.
1992-01-01
A review is conducted of cost-research studies intended to provide guidelines for cost estimates of integrating new technologies into existing satellite systems. Quantitative methods are described for determining the technological state-of-the-art so that proposed programs can be evaluated accurately in terms of their contribution to technological development. The R&D costs associated with the proposed programs are then assessed with attention given to the technological advances. Also incorporated quantifiably are any reductions in the costs of production, operations, and support afforded by the advanced technologies. The proposed model is employed in relation to a satellite sizing and cost study in which a tradeoff between increased R&D costs and reduced production costs is examined. The technology/cost model provides a consistent yardstick for assessing the true relative economic impact of introducing novel techniques and technologies.
Development and implications of technology in reform-based physics laboratories
NASA Astrophysics Data System (ADS)
Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung
2012-12-01
Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.
Temperature dependence of conductivity measurement for conducting polymer
NASA Astrophysics Data System (ADS)
Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining
2014-03-01
Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant
Emerging Sealing Technologies Development
NASA Technical Reports Server (NTRS)
2005-01-01
Under this Cooperative Agreement, the objective was to investigate several emerging sealing technologies of interest to the Mechanical Components Branch of National Aeronautics and Space Administration Glenn Research Center at Lewis Field (NASA GRC). The majority of the work conducted was to support the development of Solid Oxide Fuel Cells for application to aeronautic auxiliary power units, though technical investigations of interest to other groups and projects were also conducted. In general, accomplishments and results were periodically reported to the NASA Technical Monitor, the NASA GRC Seal Team staff, and NASA GRC project management. Several technical reports, journal articles, and presentations were given internally to NASA GRC and to the external public.
NASA Technical Reports Server (NTRS)
Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Beers, Benjamin R.
2015-01-01
The Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the sun, within 10 years. The advanced propulsion system trade study consisted of three candidates, including a Magnetically Shielded Miniature Hall thruster, a solar sail and an electric sail. A second analysis was conducted to determine which solid rocket motor kick stage(s) would be required to provide additional thrust at various points in the trajectory, assuming a characteristic energy capability provided by a Space Launch System Block 1B vehicle architecture carrying an 8.4 meter payload fairing. Two trajectory profiles were considered, including an escape trajectory using a Jupiter gravity assist and an escape trajectory first performing a Jupiter gravity assist followed by an Oberth maneuver around the sun and an optional Saturn gravity assist. Results indicated that if the Technology Readiness Level of an electric sail could be increased in time, this technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so in even less time.
Higgins, William J; Luczynski, Kevin C; Carroll, Regina A; Fisher, Wayne W; Mudford, Oliver C
2017-04-01
Recent advancements in telecommunication technologies make it possible to conduct a variety of healthcare services remotely (e.g., behavioral-analytic intervention services), thereby bridging the gap between qualified providers and consumers in isolated locations. In this study, web-based telehealth technologies were used to remotely train direct-care staff to conduct a multiple-stimulus-without-replacement preference assessment. The training package included three components: (a) a multimedia presentation; (b) descriptive feedback from previously recorded baseline sessions; and (c) scripted role-play with immediate feedback. A nonconcurrent, multiple-baseline-across-participants design was used to demonstrate experimental control. Training resulted in robust and immediate improvements, and these effects maintained during 1- to 2-month follow-up observations. In addition, participants expressed high satisfaction with the web-based materials and the overall remote-training experience. © 2017 Society for the Experimental Analysis of Behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologiesmore » identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.« less
The Measurement of Technology Anxiety
Pillar, Barbara
1985-01-01
The growing amount of medical technology on nursing units prompted a study of the anxiety experienced by nurses toward medical equipment. A Likert-type instrument was developed as a self-report questionnaire to assess this emotional response. Testing was conducted on two groups of student nurses, and evaluation of the tool determined that it was both reliable and valid.
DOT National Transportation Integrated Search
1973-04-01
An experimental plan for conducting ionospheric scintillation measurements using the geostationary Applications Technology Satellites at 136 MHz and 1550 MHz is presented. A remote unmanned data collection platform is proposed together with detailed ...
Testing Conducted for Lithium-Ion Cell and Battery Verification
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.
2004-01-01
The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.
Broadband Satellite Technologies and Markets Assessed
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.
1999-01-01
The current usage of broadband (data rate greater than 64 kilobits per second (kbs)) for multimedia network computer applications is increasing, and the need for network communications technologies and systems to support this use is also growing. Satellite technology will likely be an important part of the National Information Infrastructure (NII) and the Global Information Infrastructure (GII) in the next decade. Several candidate communications technologies that may be used to carry a portion of the increased data traffic have been reviewed, and estimates of the future demand for satellite capacity have been made. A study was conducted by the NASA Lewis Research Center to assess the satellite addressable markets for broadband applications. This study effort included four specific milestones: (1) assess the changing nature of broadband applications and their usage, (2) assess broadband satellite and terrestrial technologies, (3) estimate the size of the global satellite addressable market from 2000 to 2010, and (4) identify how the impact of future technology developments could increase the utility of satellite-based transport to serve this market.
Physical Education Teacher's Attitudes towards Philosophy of Education and Technology
ERIC Educational Resources Information Center
Turkeli, Anil; Senel, Omer
2016-01-01
The current study was carried out to find out the attitudes of physical education teachers towards educational philosophy and technology, and to determine the relationship between the philosophy of education that they adopt and their attitudes toward technology. With this aim, the study was conducted on 22 female and 69 male physical education…
NASA Information Technology Implementation Plan
NASA Technical Reports Server (NTRS)
2000-01-01
NASA's Information Technology (IT) resources and IT support continue to be a growing and integral part of all NASA missions. Furthermore, the growing IT support requirements are becoming more complex and diverse. The following are a few examples of the growing complexity and diversity of NASA's IT environment. NASA is conducting basic IT research in the Intelligent Synthesis Environment (ISE) and Intelligent Systems (IS) Initiatives. IT security, infrastructure protection, and privacy of data are requiring more and more management attention and an increasing share of the NASA IT budget. Outsourcing of IT support is becoming a key element of NASA's IT strategy as exemplified by Outsourcing Desktop Initiative for NASA (ODIN) and the outsourcing of NASA Integrated Services Network (NISN) support. Finally, technology refresh is helping to provide improved support at lower cost. Recently the NASA Automated Data Processing (ADP) Consolidation Center (NACC) upgraded its bipolar technology computer systems with Complementary Metal Oxide Semiconductor (CMOS) technology systems. This NACC upgrade substantially reduced the hardware maintenance and software licensing costs, significantly increased system speed and capacity, and reduced customer processing costs by 11 percent.
ERIC Educational Resources Information Center
Delgado, Adolph J.; Wardlow, Liane; McKnight, Katherine; O'Malley, Kimberly
2015-01-01
There is no questioning that the way people live, interact, communicate, and conduct business is undergoing a profound, rapid change. This change is often referred to as the "digital revolution," which is the advancement of technology from analog, electronic and mechanical tools to the digital tools available today. Moreover, technology…
NASA Astrophysics Data System (ADS)
Hübner, Kurt; Treille, Daniel; Schulte, Daniel
The following sections are included: * The LHC and Beyond * Accelerator Magnets with Ever-Higher Fields * Teasing Performance from Superconductors Old and New * RF Power for CLIC: Acceleration by Deceleration * The Next Energy Frontier e+e- Collider: Innovation in Detectors * Hadron Collider Detectors: A Bright and Energetic Future * References
ERIC Educational Resources Information Center
Stuart, Lorrie; Wise, H. Lake
Established to help solve the problems of rural attorneys in Nebraska via mail and telephone research services, the Creighton Legal Information Center (CLIC) is described in this manual in terms of project development and organization; project operations; replication and policy issues; costs and project budgeting; and program results.…
NASA Astrophysics Data System (ADS)
Mehrali, Mohammad; Sadeghinezhad, Emad; Rashidi, Mohammad Mehdi; Akhiani, Amir Reza; Tahan Latibari, Sara; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis
2015-06-01
Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt% Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt%). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 % for a loading of 0.06 wt% NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results.
The Innov-X XT400 Series (XT400) x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kenned...
Rosser, Benjamin A; McCullagh, Paul; Davies, Richard; Mountain, Gail A; McCracken, Lance; Eccleston, Christopher
2011-04-01
Adapting therapeutic practice from traditional face-to-face exchange to remote technology-based delivery presents challenges for the therapist, patient, and technical writer. This article documents the process of therapy adaptation and the resultant specification for the SMART2 project-a technology-based self-management system for assisting long-term health conditions, including chronic pain. Focus group discussions with healthcare professionals and patients were conducted to inform selection of therapeutic objectives and appropriate technology. Pertinent challenges are identified, relating to (1) reduction and definition of therapeutic objectives, and (2) how to approach adaptation of therapy to a form suited to technology delivery. The requirement of the system to provide dynamic and intelligent responses to patient experience and behavior is also emphasized. Solutions to these challenges are described in the context of the SMART2 technology-based intervention. More explicit discussion and documentation of therapy adaptation to technology-based delivery within the literature is encouraged.
Review of V/STOL lift/cruise fan technology
NASA Technical Reports Server (NTRS)
Rolls, L. S.; Quigley, H. C.; Perkins, R. G., Jr.
1976-01-01
This paper presents an overview of supporting technology programs conducted to reduce the risk in the joint NASA/Navy Lift/Cruise Fan Research and Technology Aircraft Program. The aeronautical community has endeavored to combine the low-speed and lifting capabilities of the helicopter with the high-speed capabilities of the jet aircraft; recent developments have indicated a lift/cruise fan propulsion system may provide these desired characteristics. NASA and the Navy have formulated a program that will provide a research and technology aircraft to furnish viability of the lift/cruise fan aircraft through flight experiences and obtain data on designs for future naval and civil V/STOL aircraft. The supporting technology programs discussed include: (1) design studies for operational aircraft, a research and technology aircraft, and associated propulsion systems; (2) wind-tunnel tests of several configurations; (3) propulsion-system thrust vectoring tests; and (4) simulation. These supporting technology programs have indicated that a satisfactory research and technology aircraft program can be accomplished within the current level of technology.