NASA Astrophysics Data System (ADS)
Nguyen Van Do, Vuong
2018-04-01
In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.
Chen, Xiaozhong; He, Kunjin; Chen, Zhengming
2017-01-01
The present study proposes an integrated computer-aided approach combining femur surface modeling, fracture evidence recover plate creation, and plate modification in order to conduct a parametric investigation of the design of custom plate for a specific patient. The study allows for improving the design efficiency of specific plates on the patients' femur parameters and the fracture information. Furthermore, the present approach will lead to exploration of plate modification and optimization. The three-dimensional (3D) surface model of a detailed femur and the corresponding fixation plate were represented with high-level feature parameters, and the shape of the specific plate was recursively modified in order to obtain the optimal plate for a specific patient. The proposed approach was tested and verified on a case study, and it could be helpful for orthopedic surgeons to design and modify the plate in order to fit the specific femur anatomy and the fracture information.
High-Temperature Thermal Conductivity Measurement Apparatus Based on Guarded Hot Plate Method
NASA Astrophysics Data System (ADS)
Turzo-Andras, E.; Magyarlaki, T.
2017-10-01
An alternative calibration procedure has been applied using apparatus built in-house, created to optimize thermal conductivity measurements. The new approach compared to those of usual measurement procedures of thermal conductivity by guarded hot plate (GHP) consists of modified design of the apparatus, modified position of the temperature sensors and new conception in the calculation method, applying the temperature at the inlet section of the specimen instead of the temperature difference across the specimen. This alternative technique is suitable for eliminating the effect of thermal contact resistance arising between a rigid specimen and the heated plate, as well as accurate determination of the specimen temperature and of the heat loss at the lateral edge of the specimen. This paper presents an overview of the specific characteristics of the newly developed "high-temperature thermal conductivity measurement apparatus" based on the GHP method, as well as how the major difficulties are handled in the case of this apparatus, as compared to the common GHP method that conforms to current international standards.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.
Electromagnetic on-aircraft antenna radiation in the presence of composite plates
NASA Technical Reports Server (NTRS)
Kan, S. H-T.; Rojas, R. G.
1994-01-01
The UTD-based NEWAIR3 code is modified such that it can model modern aircraft by composite plates. One good model of conductor-backed composites is the impedance boundary condition where the composites are replaced by surfaces with complex impedances. This impedance-plate model is then used to model the composite plates in the NEWAIR3 code. In most applications, the aircraft distorts the desired radiation pattern of the antenna. However, test examples conducted in this report have shown that the undesired scattered fields are minimized if the right impedance values are chosen for the surface impedance plates.
Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate
NASA Astrophysics Data System (ADS)
Fenn, Alan J.
1990-05-01
The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.
Thermal conductivity of some common forest fuels
G.M. Byram; W.L. Fons
1952-01-01
This study was designed to obtain thermal conductivity of som common forest fuels which hitherto had defied such efforts because of their shape, size, or structure. Dry leaves and decayed. wood (punk) were modified so that conductivity measurements could be made by a thin plate uni-directional heat flow calibration stand, Resultss of these measurements are compatible...
NASA Astrophysics Data System (ADS)
Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui
2018-04-01
Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.
Casimir force in a Lorentz violating theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Mariana; Turan, Ismail
2006-08-01
We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less
NASA Astrophysics Data System (ADS)
Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der
The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.
High-Energy-Density Shear Flow and Instability Experiments
NASA Astrophysics Data System (ADS)
Doss, F. W.; Flippo, K. A.; Merritt, E. C.; di Stefano, C. A.; Devolder, B. G.; Kurien, S.; Kline, J. L.
2017-10-01
High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models ability to function in the high-energy-density, inertial- fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of >= 100 km/s, which initiate a strong shear instability across an initially solid-density, 20 μm thick Al plate, variations of the experiment to details of the initial conditions have been performed. These variations have included increasing the fluid densities (by modifying the plate material from Al to Ti and Cu), imposing sinusoidal seed perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. Radiography of the unseeded layer has revealed the presence of emergent Kelvin-Helmholtz structures which may be analyzed to infer fluid-mechanical properties including turbulent energy density. This work is conducted by the US DOE by LANL under contract DE-0AC52-06NA25396. This abstract is LA-UR-16-24930.
NASA Technical Reports Server (NTRS)
Chiou, J., Sr.
1977-01-01
The test article, Model EF-212, Serial Nr. 002, is a single glazed collector with a nonselective absorber plate, using flowing air as the heat transfer medium. The absorber plate and box frame are aluminum and the insulation is one inch isocyanurate foam board with thermal conductivity of 0.11 (BTU/sq ft Hr0/ft.) The tests included the following. (1) time constant test, (2) collector efficiency test, (3) collector stagnation test, (4) incident angle modifier test, (5) load test, (6) weathering test, and (7) absorber plate optical properties test. The results of these tests are tabulated, graphed, or otherwise recorded.
Unsteady conjugate heat transfer analysis for impinging jet cooling
NASA Astrophysics Data System (ADS)
Tejero, F.; Flaszyński, P.; Szwaba, R.; Telega, J.
2016-10-01
The paper presents the numerical investigations of the heat transfer on a flat plate cooled by a single impinging jet. The thermal conductivity of the plate was modified from a high thermal case (steel -λ= 35 W/m/K) to a low one (steel alloy Inconel -λ= 9.8 W/m/K). The numerical simulations results are compared with the experimental data from the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk (Poland). The numerical simulations are carried out by means of Ansys/Fluent and k-ω SST turbulence model and the temperature evolution on the target plate is investigated by conjugated heat transfer computations.
Fixed-angle plate osteosynthesis of the patella - an alternative to tension wiring?
Wild, M; Eichler, C; Thelen, S; Jungbluth, P; Windolf, J; Hakimi, M
2010-05-01
The goal of this study is carry out a biomechanical evaluation of the stability of a bilateral, polyaxial, fixed-angle 2.7 mm plate system specifically designed for use on the patella. The results of this approach are then compared to the two currently most commonly used surgical techniques for patella fractures: modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring. A transient biomechanical analysis determining material failure points of all osteosyntheses were conducted on 21 identical left polyurethane foam patellae, which were osteotomized horizontally. Evaluated were load (N), displacement (mm) and run-time (s) as well as elastic modulus (MPa), tensile strength (MPa) and strain at failure (%). With a maximum load capacity of 2396 (SD 492) N, the fixed-angle plate proved to be significantly stronger than the cannulated lag screws with anterior tension wiring (1015 (SD 246) N) and the modified anterior tension wiring (625 (SD 84.9) N). The fixed-angle plate displayed significantly greater stiffness and lower fracture gap dehiscence than the other osteosyntheses. Additionally, osteosynthesis deformation was found to be lower for the fixed-angle plate. A bilateral fixed-angle plate was the most rigid and stable osteosynthesis for horizontal patella fractures with the least amount of fracture gap dehiscence. Further biomechanical trials performed under cycling loading with fresh cadaver specimen should be done to figure out if a fixed-angle plate may be an alternative in the surgical treatment of patella fractures. Copyright 2009 Elsevier Ltd. All rights reserved.
46 CFR 54.25-3 - Steel plates (modifies UCS-6).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The steels...
46 CFR 54.25-3 - Steel plates (modifies UCS-6).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The steels...
46 CFR 54.25-3 - Steel plates (modifies UCS-6).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The steels...
46 CFR 54.25-3 - Steel plates (modifies UCS-6).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The steels...
46 CFR 54.25-3 - Steel plates (modifies UCS-6).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The steels...
NASA Astrophysics Data System (ADS)
Ayub, M.; Abbas, T.; Bhatti, M. M.
2016-06-01
The boundary layer flow of nanofluid that is electrically conducting over a Riga plate is considered. The Riga plate is an electromagnetic actuator which comprises a spanwise adjusted cluster of substituting terminal and lasting magnets mounted on a plane surface. The numerical model fuses the Brownian motion and the thermophoresis impacts because of the nanofluid and the Grinberg term for the wall parallel Lorentz force due to the Riga plate in the presence of slip effects. The numerical solution of the problem is presented using the shooting method. The novelties of all the physical parameters such as modified Hartmann number, Richardson number, nanoparticle concentration flux parameter, Prandtl number, Lewis number, thermophoresis parameter, Brownian motion parameter and slip parameter are demonstrated graphically. Numerical values of reduced Nusselt number, Sherwood number are discussed in detail.
A Hands-On Activity to Introduce the Effects of Transmission by an Invasive Species
ERIC Educational Resources Information Center
May, Barbara Jean
2013-01-01
This activity engages students to better understand the impact of transmission by invasive species. Using dice, poker chips, and paper plates, an entire class mimics the spread of an invasive species within a geographic region. The activity can be modified and conducted at the K-16 levels.
Indoor thermal performance evaluation of Daystar solar collector
NASA Technical Reports Server (NTRS)
Shih, K., Sr.
1977-01-01
The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.
Liu, Junshan; Wang, Junyao; Chen, Zuanguang; Yu, Yong; Yang, Xiujuan; Zhang, Xianbin; Xu, Zheng; Liu, Chong
2011-03-07
A three-layer poly (methyl methacrylate) (PMMA) electrophoresis microchip integrated with Pt microelectrodes for contactless conductivity detection is presented. A 50 μm-thick PMMA film is used as the insulating layer and placed between the channel plate (containing the microchannel) and the electrode plate (containing the microelectrode). The three-layer structure facilitates the achievement of a thin insulating layer, obviates the difficulty of integrating microelectrodes on a thin film, and does not compromise the integration of microchips. To overcome the thermal and chemical incompatibilities of polymers and photolithographic techniques, a modified lift-off process was developed to integrate Pt microelectrodes onto the PMMA substrate. A novel two-step bonding method was created to assemble the complete PMMA microchip. A low limit of detection of 1.25 μg ml(-1) for Na(+) and high separation efficiency of 77,000 and 48,000 plates/m for Na(+) and K(+) were obtained when operating the detector at a low excitation frequency of 60 kHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A. J.; Percher, C. M.; Zywiec, W. J.
This report presents the final design (CED-2) for IER-297, and focuses on 15 critical configurations using highly enriched uranium (HEU) Jemima plates moderated by polyethylene with and without hafnium diluent. The goal of the U.S. Nuclear Criticality Safety Program’s Thermal/Epithermal eXperiments (TEX) is to design and conduct new critical experiments to address high priority nuclear data needs from the nuclear criticality safety and nuclear data communities, with special emphasis on intermediate energy (0.625 eV – 100 keV) assemblies that can be easily modified to include various high priority diluent materials. The TEX (IER 184) CED-1 Report [1], completed in 2012,more » demonstrated the feasibility of meeting the TEX goals with two existing NCSP fissile assets, plutonium Zero Power Physics Reactor (ZPPR) plates and highly enriched uranium (HEU) Jemima plates. The first set of TEX experiments will focus on using the plutonium ZPPR plates with polyethylene moderator and tantalum diluents.« less
NASA Technical Reports Server (NTRS)
Hasanyan, Davresh; Librescu, Liviu; Qin, Zhanming; Ambur, Damodar R.
2006-01-01
A fully coupled magneto-thermo-elastokinetic model of laminated composite, finitely electroconductive plates incorporating geometrical nonlinearities and subjected to a combination of magnetic and thermal fields, as well as carrying an electrical current is developed, In this context. the first-order transversely shearable plate theory in conjunction with von-Karman geometrically nonlinear strain concept is adopted. Related to the distribution of electric and magnetic field disturbances within the plate, the assumptions proposed by Ambartsumyan and his collaborators are adopted. Based on the electromagnetic equations (i.e. the ones by Faraday, Ampere, Ohm, Maxwell and Lorentz), the modified Fourier's law of heat conduction and on the elastokinetic field equations, the 3-D coupled problem is reduced to an equivalent 2- D one. The theory developed herein provides a foundation for the investigation, both analytical and numerical, of the interacting effects among the magnetic, thermal and elastic fields in multi-layered thin plates made of anisotropic materials.
NASA Technical Reports Server (NTRS)
Wadlin, Kenneth L; Ramsen, John A; Vaughan, Victor L , Jr
1955-01-01
Report presents the results of an investigation conducted to determine the hydrodynamic forces and moments acting on modified rectangular flat plates with aspect ratios of 1.00, 0.25, and 0.125 mounted on a single strut and operating at several depths of submersion. A simple method has been developed by modification of Falkner's vortex-lattice theory which enables the prediction of the lift characteristics in unseparated flow at large depths. This method shows good agreement with experimental data from the present tests and with aerodynamic data at all angles investigated for aspect ratios of 1.00 and 0.25 and at angles up to 16 degrees for aspect ratio 0.125. Above 16 degrees for aspect ratio 0.125, the predicted lift proved too high.
Bosnjakovic, Admira; Mishra, Manoj K.; Han, Hye Jung; Romero, Roberto; Kannan, Rangaramanujam M.
2012-01-01
A dendrimer-based sandwich type enzyme-linked immunosorbent assay (ELISA) was developed for the improved detection of recombinant human tumor necrosis factor-alpha (TNF-α) for early diagnosis of perinatal diseases. Hydroxyl-terminated generation four poly(amidoamine) dendrimer (G4-OH) was used for the development of a solid phase bio-sensing platform. The surface of the ELISA plate was modified with polyethylene-glycol (PEG) and thiol-functionalized G4-OH was immobilized on the PEG-functionalized plate. A capture antibody was oxidized and covalently immobilized onto the dendrimer-modified ELISA plate, which provides favorable orientation for the antigen binding sites towards the analyte. The dendrimer-modified plate showed enhanced sensitivity, and the detection limit for TNF-α was found to be 0.48 pg mL−1, which is significantly better than the commercially available ELISA kit. The selectivity of the dendrimer-modified ELISA plate was further evaluated with a mixture of cytokines, which showed results for similar to that of TNF-α alone. The modified plate provides a greater opportunity for the detection of a wide range of cytokines and biomarkers. PMID:22365129
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
NASA Astrophysics Data System (ADS)
Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.
2016-03-01
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
Cochrane, Kyle R.; Lemke, Raymond W.; Riford, Z.; ...
2016-03-11
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materialsexperiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic(MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolatesmore » those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this study, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/–1%.« less
NASA Astrophysics Data System (ADS)
Anjum, Aisha; Mir, N. A.; Farooq, M.; Javed, M.; Ahmad, S.; Malik, M. Y.; Alshomrani, A. S.
2018-06-01
The present article concentrates on thermal stratification in the flow of second grade fluid past a Riga plate with linear stretching towards a stagnation region. Heat transfer phenomenon is disclosed with heat generation/absorption. Riga plate is known as electromagnetic actuator which comprises of permanent magnets and alternating electrodes placed on a plane surface. Cattaneo-Christov heat flux model is implemented to analyze the features of heat transfer. This new heat flux model is the generalization of classical Fourier's law with the contribution of thermal relaxation time. For the first time heat generation/absorption effect is computed with non-Fourier's law of heat conduction (i.e., Cattaneo-Christov heat flux model). Transformations are used to obtain the governing non-linear ordinary differential equations. Approximate convergent solutions are developed for the non-dimensionalized governing problems. Physical features of velocity and temperature distributions are graphically analyzed corresponding to various parameters in 2D and 3D. It is noted that velocity field enhances with an increment of modified Hartman number while it reduces with increasing variable thickness parameter. Increment in modified heat generation parameter results in reduction of temperature field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo-Decanini, Juan M.
Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and themore » switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.« less
Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.
Record Efficiency on Large Area P-Type Czochralski Silicon Substrates
NASA Astrophysics Data System (ADS)
Hallam, Brett; Wenham, Stuart; Lee, Haeseok; Lee, Eunjoo; Lee, Hyunwoo; Kim, Jisun; Shin, Jeongeun; Cho, Kyeongyeon; Kim, Jisoo
2012-10-01
In this work we report a world record independently confirmed efficiency of 19.4% for a large area p-type Czochralski grown solar cell fabricated with a full area aluminium back surface field. This is achieved using the laser doped selective emitter solar cell technology on an industrial screen print production line with the addition of laser doping and light induced plating equipment. The use of a modified diffusion process is explored in which the emitter is diffused to a sheet resistance of 90 Ω/square and subsequent etch back of the emitter to 120 Ω/square. This results in a lower surface concentration of phosphorus compared to that of emitters diffused directly to 120 Ω/square. This modified diffusion process subsequently reduces the conductivity of the surface in relation to that of the heavily diffused laser doped contacts and avoids parasitic plating, resulting an average absolute increase in efficiency of 0.4% compared to cells fabricated without an emitter etch back process.
Stability of a viscous fluid in a rectangular cavity in the presence of a magnetic field
NASA Technical Reports Server (NTRS)
Liang, C. Y.; Hung, Y. Y.
1976-01-01
The stability of an electrically conducting fluid subjected to two dimensional disturbance was investigated. A physical system consisting of two parallel infinite vertical plates which are thermally insulated was studied. An external magnetic field of constant strength was applied to normal plates. The fluid was heated from below so that a steady temperature gradient was maintained in the fluid. The governing equations were derived by perturbation technique, and solutions were obtained by a modified Galerkin method. It was found that the presence of the magnetic field increases the stability of the physical system and instability can occur in the form of neutral or oscillatory instability.
Using a visual plate waste study to monitor menu performance.
Connors, Priscilla L; Rozell, Sarah B
2004-01-01
Two visual plate waste studies were conducted in 1-week phases over a 1-year period in an acute care hospital. A total of 383 trays were evaluated in the first phase and 467 in the second. Food items were ranked for consumption from a low (1) to high (6) score, with a score of 4.0 set as the benchmark denoting a minimum level of acceptable consumption. In the first phase two entrees, four starches, all of the vegetables, sliced white bread, and skim milk scored below the benchmark. As a result six menu items were replaced and one was modified. In the second phase all entrees scored at or above 4.0, as did seven vegetables, and a dinner roll that replaced sliced white bread. Skim milk continued to score below the benchmark. A visual plate waste study assists in benchmarking performance, planning menu changes, and assessing effectiveness.
RERTR-10 Irradiation Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-10 was designed to further test the effectiveness of modified fuel/clad interfaces in monolithic fuel plates. The experiment was conducted in two campaigns: RERTR-10A and RERTR-10B. The fuel plates tested in RERTR-10A were all fabricated by Hot Isostatic Pressing (HIP) and were designed to evaluate the effect of various Si levels in the interlayer and the thickness of the Zr interlayer (0.001”) using 0.010” and 0.020” nominal foil thicknesses. The fuel plates in RERTR-10B were fabricated by Friction Bonding (FB) with two different thickness Si layers and Nb and Zrmore » diffusion barriers.1 The following report summarizes the life of the RERTR-10A/B experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.« less
Mechanical, Thermal and Acoustic Properties of Open-pore Phenolic Multi-structured Cryogel
NASA Astrophysics Data System (ADS)
Yao, Rui; Yao, Zhengjun; Zhou, Jintang; Liu, Peijiang; Lei, Yiming
2017-09-01
Open-pore phenolic cryogel acoustic multi-structured plates (OCMPs) were prepared via modified sol gel polymerization and freeze-dried methods. The pore morphology, mechanical, thermal and acoustic properties of the cryogels were investigated. From the experimental results, the cryogels exhibited a porous sandwich microstructure: A nano-micron double-pore structure was observed in the core layer of the plates, and nanosized pores were observed in the inner part of the micron pores. In addtion, compared with cryogel plates with uniform-pore (OCPs), the OCMPs had lower thermal conductivities. What’s more, the compressive and tensile strength of the OCMPs were much higher than those of OCPs. Finally, the OCMPs exhibited superior acoustic performances (20% solid content OCMPs performed the best) as compared with those of OCPs. Moreover, the sound insulation value and sound absorption bandwidth of OCMPs exhibited an improvement of approximately 3 and 2 times as compared with those of OCPs, respectively.
Jindal, Shivali; Anand, Sanjeev; Metzger, Lloyd; Amamcharla, Jayendra
2018-04-01
Flow of milk through the plate heat exchanger (PHE) results in denaturation of proteins, resulting in fouling. This also accelerates bacterial adhesion on the PHE surface, eventually leading to the development of biofilms. During prolonged processing, these biofilms result in shedding of bacteria and cross-contaminate the milk being processed, thereby limiting the duration of production runs. Altering the surface properties of PHE, such as surface energy and hydrophobicity, could be an effective approach to reduce biofouling. This study was conducted to compare the extent of biofouling on native stainless steel (SS) and modified-surface [Ni-P-polytetrafluoroethylene (PTFE)] PHE during the pasteurization of raw milk for an uninterrupted processing run of 17 h. For microbial studies, raw and pasteurized milk samples were aseptically collected from inlets and outlets of both PHE at various time intervals to examine shedding of bacteria in the milk. At the end of the run, 3M quick swabs (3M, St. Paul, MN) and ATP swabs (Charm Sciences Inc., Lawrence, MA) were used to sample plates from different sections of the pasteurizers (regeneration, heating, and cooling) for biofilm screening and to estimate the efficiency of cleaning in place, respectively. The data were tested for ANOVA, and means were compared. Modified PHE experienced lower mesophilic and thermophilic bacterial attachment and biofilm formation (average log 1.0 and 0.99 cfu/cm 2 , respectively) in the regenerative section of the pasteurizer compared with SS PHE (average log 1.49 and 1.47, respectively). Similarly, higher relative light units were observed for SS PHE compared with the modified PHE, illustrating the presence of more organic matter on the surface of SS PHE at the end of the run. In addition, at h 17, milk collected from the outlet of SS PHE showed plate counts of 5.44 cfu/cm 2 , which were significantly higher than those for pasteurized milk collected from modified PHE (4.12 log cfu/cm 2 ). This provided further evidence in favor of the modified PHE achieving better microbial quality of pasteurized milk in long process runs. Moreover, because cleaning SS PHE involves an acid treatment step, whereas an alkali treatment step is sufficient for the modified-surface PHE, use of the latter is both cost and time effective, making it a better surface for thermal processing of milk and other fluid dairy products. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics.
Lake, Jason; Mundy, Peter; Comfort, Paul; McMahon, John J; Suchomel, Timothy J; Carden, Patrick
2018-05-29
This study examined concurrent validity of countermovement vertical jump (CMJ) reactive strength index modified and force-time characteristics recorded using a one dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral CMJs on two portable force plates placed on top of two in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to take-off, jump height, reactive strength index modified, braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r≥.99). There were small (d<.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (p<.001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% CL: .9% to 2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement belonged to jump height (2.1%), time to take-off (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force-time variables, from unloaded CMJ and practitioners can use both force plates interchangeably.
Kawai, Hiroyuki; Shibata, Yo; Miyazaki, Takashi
2004-05-01
Despite the fact that several reports have demonstrated osteoclast activity on various bioactive ceramics, osteoclast functions on surface-modified titanium have not come under focus. This study aimed to examine whether the increasing surface energy of glow discharge plasma (GDP) involved in protein adhesion containing the RGD (Arg-Gly-Asp) sequence affects osteoclast responses on titanium plates. We examined osteoclast differentiation and survival rates on titanium plates with and without GDP. The amounts of osteoclasts on titanium plates were not increased by GDP after 1 week. However, osteoclast differentiation was greatly activated by GDP pretreatment, as tartrate-resistant acid phosphatase synthesis significantly increased on the titanium plates with GDP. Additionally, since the presence of osteoclasts was detected only on the titanium plates with GDP, even after 4h cultivation in a coculture test, the osteoclasts survival rate was increased by GDP pretreatment. As osteoclast responses were affected even on surface modified metallic materials, we concluded that novel approaches are needed not only for osteoclastic resorption on ceramic materials but also for osteoclast responses on surface-modified metallic materials.
Passive control of coherent structures in a modified backwards-facing step flow
NASA Astrophysics Data System (ADS)
Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.
2018-05-01
We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.
Litrenta, Jody; Tornetta, Paul; Mehta, Samir; Jones, Clifford; OʼToole, Robert V; Bhandari, Mohit; Kottmeier, Stephen; Ostrum, Robert; Egol, Kenneth; Ricci, William; Schemitsch, Emil; Horwitz, Daniel
2015-11-01
To determine the reliability of the Radiographic Union Scale for Tibia (RUST) score and a new modified RUST score in quantifying healing and to define a value for radiographic union in a large series of metadiaphyseal fractures treated with plates or intramedullary nails. Healing was evaluated using 2 methods: (1) evaluation of interrater agreement in a series of radiographs and (2) analysis of prospectively gathered data from 2 previous large multicenter trials to define thresholds for radiographic union. Part 1: 12 orthopedic trauma surgeons evaluated a series of radiographs of 27 distal femur fractures treated with either plate or retrograde nail fixation at various stages of healing in random order using a modified RUST score. For each radiographic set, the reviewer indicated if the fracture was radiographically healed. Part 2: The radiographic results of 2 multicenter randomized trials comparing plate versus nail fixation of 81 distal femur and 46 proximal tibia fractures were reviewed. Orthopaedic surgeons at 24 trauma centers scored radiographs at 3, 6, and 12 months postoperatively using the modified RUST score above. Additionally, investigators indicated if the fracture was healed or not healed. The intraclass correlation coefficient (ICC) with 95% confidence intervals was determined for each cortex, the standard and modified RUST score, and the assignment of union for part 1 data. The RUST and modified RUST that defined "union" were determined for both parts of the study. ICC: The modified RUST score demonstrated slightly higher ICCs than the standard RUST (0.68 vs. 0.63). Nails had substantial agreement, whereas plates had moderate agreement using both modified and standard RUST (0.74 and 0.67 vs. 0.59 and 0.53). The average standard and modified RUST at union among all fractures was 8.5 and 11.4. Nails had higher standard and modified RUST scores than plates at union. The ICC for union was 0.53 (nails: 0.58; plates: 0.51), which indicates moderate agreement. However, the majority of reviewers assigned union for a standard RUST of 9 and a modified RUST of 11, and >90% considered a score of 10 on the RUST and 13 on the modified RUST united. The ICC for the modified RUST is slightly higher than the standard RUST in metadiaphyseal fractures and had substantial agreement. The ICC for the assessment of union was moderate agreement; however, definite union would be 10 and 13 with over 90% of reviewers assigning union. These are the first data-driven estimates of radiographic union for these scores.
Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.
1994-01-01
A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.
GTD analysis of airborne antennas radiating in the presence of lossy dielectric layers
NASA Technical Reports Server (NTRS)
Rojas-Teran, R. G.; Burnside, W. D.
1981-01-01
The patterns of monopole or aperture antennas mounted on a perfectly conducting convex surface radiating in the presence of a dielectric or metal plate are computed. The geometrical theory of diffraction is used to analyze the radiating system and extended here to include diffraction by flat dielectric slabs. Modified edge diffraction coefficients valid for wedges whose walls are lossy or lossless thin dielectric or perfectly conducting plates are developed. The width of the dielectric plates cannot exceed a quarter of a wavelength in free space, and the interior angle of the wedge is assumed to be close to 0 deg or 180 deg. Systematic methods for computing the individual components of the total high frequency field are discussed. The accuracy of the solutions is demonstrated by comparisons with measured results, where a 2 lambda by 4 lambda prolate spheroid is used as the convex surface. A jump or kink appears in the calculated pattern when higher order terms that are important are not included in the final solution. The most immediate application of the results presented here is in the modelling of structures such as aircraft which are composed of nonmetallic parts that play a significant role in the pattern.
NASA Astrophysics Data System (ADS)
Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do
2017-03-01
As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.
Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers
NASA Astrophysics Data System (ADS)
Lurie, S.; Solyaev, Y.; Ustenko, A.
2018-04-01
In the present paper, the effective damping properties of a symmetric foam-core sandwich beam with composite face plates reinforced with coated fibers is studied. A glass fiber-epoxy composite with additional rubber-toughened epoxy coatings on the fibers is considered as the material of the face plates. A micromechanical analysis of the effective properties of the unidirectional lamina is conducted based on the generalized self-consistent method and the viscoelastic correspondence principle. The effective complex moduli of composite face plates with a symmetric angle-ply structure are evaluated based on classical lamination theory. A modified Mead-Markus model is utilized to evaluate the fundamental modal loss factor of a simply supported sandwich beam with a polyurethane core. The viscoelastic frequency-dependent behaviors of the core and face plate materials are both considered. The properties of the face plates are evaluated based on a micromechanical analysis and found to implicitly depend on frequency; thus, an iterative procedure is applied to find the natural frequencies of the lateral vibrations of the beam. The optimal values of the coating thickness, lamination angle and core thickness for the best multi-scale damping behavior of the beam are found.
Application of chaotic attractor analysis in crack assessment of plates
NASA Astrophysics Data System (ADS)
Jalili, Sina; Daneshmehr, A. R.
2018-03-01
Part-through crack presence with limited length is one of the prevalent defects in plate structures. However, this type of damage has only a slight effect on the dynamic response of the structures. In this paper the modified line spring method (MLSM) is used to develop a nonlinear multi-degree of freedom model of part through cracked rectangular plate and chaotic interrogation is implemented to assess crack-induced degradation in the nonlinear model. After a convergence study of the proposed model in time series domain in which the plate subjected to Lorenz-type chaotic excitation, the tuning of interrogation is conducted by crossing the Lyapunov exponents' spectrums of the nonlinear model of the plate and chaotic signal. In this research nonlinear prediction error (NPE) is proposed as a damage sensitive feature which deals with the chaotic attractor of the excited system response. It is found that there are ranges of tuning parameter that result in higher damage sensitivity of the NPE. Damage characteristics such as: length, angle, location and depth of crack are considered as parameters to be varied to scrutinize the response of the plates. Results show that NPE generally has significantly higher sensitivity in comparison with conventional frequency-based methods; however this property has different levels for various boundary conditions.
Lamsal, Nirmal; Angel, S Michael
2017-06-01
In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.
Blast Loading of Epoxy Panels Using a Shock Tube
NASA Technical Reports Server (NTRS)
Pankow, Mark; Waas, Anthony M.; Bednarcyk, Brett
2010-01-01
The high strain rate mechanical response of thin polymer plates has been studied using a modified shock tube. Diagnostics include the pressure-time history of the incident and reflected pulses and the use of digital image correlation (DIC) techniques to extract the time-history of the out-of-plane displacement distribution. Additionally, finite element models have been developed to understand the plate response and to validate and modify plate material constitutive models that have been proposed.
Environmental Fate and Transport of a New Energetic Material, CL-20
2006-03-01
Microbiology M.Sc. Biochemistry M.Sc. Chemistry Ph.D. Chemistry Ph.D. Ecotoxicology M.Sc.A. Environmental Engineering B.Sc. Chemistry B.Sc...Determine enzymes responsible for initiating the degradation of CL-20. 5. Conduct a battery of ecotoxicological tests to determine the toxic effects of...chrysosporium. The strain ATCC 24725 was maintained on Yeast Peptone Dextrose (YPD) plates and was cultivated in the modified Kirk’s nitrogen- limited medium (pH
Monitoring Microbial Numbers in Food by Density Centrifugation
Basel, Richard M.; Richter, Edward R.; Banwart, George J.
1983-01-01
Some foods contain low numbers of microbes that may be difficult to enumerate by the plate count method due to small food particles that interfere with the counting of colonies. Ludox colloidal silicon was coated with reducing agents to produce a nontoxic density material. Food homogenates were applied to a layered 10 and 80% mixture of modified Ludox and centrifuged at low speed. The top and bottom of the tube contained the food material, and the Ludox-containing portion was evaluated by conventional pour plate techniques. Plate counts of the Ludox mixture agreed with plate counts of the food homogenate alone. The absence of small food particles from pour plates resulted in a plate that was more easily read than pour plates of the homogenate alone. Modified Ludox was evaluated for its effect on bacteria at 4°C during a 24-h incubation period. No inhibition was observed. This method is applicable to food products, such as doughnuts, spices, tomato products, and meat, in which small food particles often interfere with routine plate counts or low dilution may inhibit colony formation. Inhibitory substances can be removed from spices, resulting in higher counts. Ludox is more economical than similar products, such as Percoll. Modified Ludox is easily rendered nontoxic by the addition of common laboratory reagents. In addition, the mixture is compatible with microbiological media. PMID:6303217
NASA Astrophysics Data System (ADS)
Volchkov, Yu. M.
2017-09-01
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.
NASA Astrophysics Data System (ADS)
Goyal, M.; Chakravarty, A.; Atrey, M. D.
2017-02-01
Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.
Roseman, Mary G; Poor, Morgan; Stephenson, Tammy J
2014-01-01
Examine food in cable television programming specifically targeting 11- to 14-year-olds ("tweens"). Content analysis of food-related scenes (FRS)-in which food was shown, mentioned, and/or consumed-in 880 minutes of programming was conducted. Five days of afternoon/early evening television programs on the Disney Channel. Food references were compared with USDA MyPlate and classified according to modified Ratio of Recommended to Restricted Food Components. The authors found 331 FRS, averaging 16.6 scenes/h. Preponderance of FRS was physiological needs (40.7%), followed by display (10%), party (8.5%), social event (8%), and retail store (6.6%). Snacks dominated 41% of FRS, and breakfast, lunch, and dinner were much lower in frequency. Half of FRS was visual only, followed by verbal only. Food references were not congruent with MyPlate recommendations; 42% of food items did not fit into MyPlate food groups. Only 24% of food items were fruit or vegetables, which is considerably less than recommended by MyPlate guidelines. Using modified Ratio of Recommended to Restricted Food Components, 66% of food items scored < 1.0, signifying less nutritious. Tween television programming regularly includes non-nutritious food, which likely influences tweens' attitudes and behaviors. Television programming may consider past approaches to tobacco smoking and health messages on television. More attention is warranted regarding television programming by nutrition educators, researchers, health professionals, and industry specialists. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Defrianto; Tambunan, W.; Lazuardi
2017-07-01
The use of waste heat from exhaust gas and converting it to electricity is now an alternative to harvest a cheap and clean energy. Thermoelectric generator (TEG) has the ability to directly recover such waste heat and generate electricity. The aim of this study is to simulate the heat transfer on the aluminum adapter plate for homogeneity temperature distribution coupled with hot side of TEG type 40-40-10/100 from Firma Eureka and adjust their high temperatures to the TEG operating temperature to avoid the element damage. Modelling was carried out using MATLAB modified diffusion equation with Dirichlet boundary conditions at defined temperature which has been set at the ends of the heat source at 463K and 373K ± 10% on the hot side of the TEG element. The use of nylon insulated material is modeled after Neumann boundary condition in which the temperature gradient is ∂T/∂n = 0 out of boundary. Realization of the modelling is done by designing a heat conductive plate using software ACAD 2015 and converted into a binary file format of Mathlab to form a finite element mesh with geometry variations of solid model. The solid cubic model of aluminum adapter plate has a dimension of 40mm length, 40mm width and also 20mm, 30mm and 40mm thickness arranged in two arrays of 2×2 and 2×3 of TEG elements. Results showed a temperature decrease about 40.95% and 50.02% respectively from the initial source and appropriate with TEG temperature tolerance.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.
A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro
Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling
2015-01-01
Objective To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Materials and Methods Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. Results The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. Conclusions These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C. PMID:26529234
A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.
Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling
2015-01-01
To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH
2011-02-15
This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.
Bowen, Michael E; Cavanaugh, Kerri L; Wolff, Kathleen; Davis, Dianne; Gregory, Rebecca P; Shintani, Ayumi; Eden, Svetlana; Wallston, Ken; Elasy, Tom; Rothman, Russell L
2016-08-01
To compare the effectiveness of different approaches to nutrition education in diabetes self-management education and support (DSME/S). We randomized 150 adults with type 2 diabetes to either certified diabetes educator (CDE)-delivered DSME/S with carbohydrate gram counting or the modified plate method versus general health education. The primary outcome was change in HbA1C over 6 months. At 6 months, HbA1C improved within the plate method [-0.83% (-1.29, -0.33), P<0.001] and carbohydrate counting [-0.63% (-1.03, -0.18), P=0.04] groups but not the control group [P=0.34]. Change in HbA1C from baseline between the control and intervention groups was not significant at 6 months (carbohydrate counting, P=0.36; modified plate method, P=0.08). In a pre-specified subgroup analysis of patients with a baseline HbA1C 7-10%, change in HbA1C from baseline improved in the carbohydrate counting [-0.86% (-1.47, -0.26), P=0.006] and plate method groups [-0.76% (-1.33, -0.19), P=0.01] compared to controls. CDE-delivered DSME/S focused on carbohydrate counting or the modified plate method improved glycemic control in patients with an initial HbA1C between 7 and 10%. Both carbohydrate counting and the modified plate method improve glycemic control as part of DSME/S. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Binod, Bijukachhe; Nagmani, Singh; Bigyan, Bhandari; Rakesh, John; Prashant, Adhikari
2016-08-01
Tibial nonunion is the most common nonunion encountered by the orthopedic surgeon. Repeated surgeries, cost, increased duration of hospital stay, disability, pain all contribute to the increased morbidity. Many methods have been used to treat nonunion of tibia with variable results and none of them are 100 % successful. Our objective was to determine the effectiveness of modification of Judet's decortication technique and buttress plating, without bone graft, in the treatment of aseptic, atrophic tibial nonunion. Also, to find the correlation between time of achieving union and time since injury to decortication. Ours is a retrospective study conducted at a Level I trauma center. A total of 35 cases of atrophic tibial nonunion, irrespective of the cause, was treated by modifying Judet's osteoperiosteal decortication and plating during the time period January 2006 to July 2013. Demographic data, range of motion, time of achieving union and clinico-radiological evaluation for union of fracture were included as main outcome measurements. Union was achieved in all cases with a mean duration of 8.34 months. Pain and stiffness of joints were not reported in any case on long-term follow-up and the patients had satisfactory range of motion. Implant removal was done in three cases after fracture union. Treatment of atrophic tibial nonunion is challenging and management of each nonunion has to be customized based on the biological and mechanical characteristics of the nonunion. Plating with osteoperiosteal decortication is an effective and simple technique, which in our hands has shown to result in 100 % union rates without the need of additional bone healing augmentation procedures like bone grafting. Level II.
Chon, Jung-Whan; Kim, Hong-Seok; Kim, Hyunsook; Oh, Deog-Hwan; Seo, Kun-Ho
2014-05-01
Potassium-clavulanate-supplemented modified charcoal-cefoperazone-deoxycholate agar (C-mCCDA) that was described in our previous study was compared with original mCCDA for the enumeration of Campylobacter in pure culture and chicken carcass rinse. The quantitative detection of viable Campylobacter cells from a pure culture, plated on C-mCCDA, is statistically similar (P > 0.05) to mCCDA. In total, 120 chickens were rinsed using 400 mL buffered peptone water. The rinses were inoculated onto C-mCCDA and mCCDA followed by incubation at 42 °C for 48 h. There was no statistical difference between C-mCCDA (45 of 120 plates; mean count, 145.5 CFU/mL) and normal mCCDA (46 of 120 plates; mean count, 160.8 CFU/mL) in the isolation rate and recovery of Campylobacter (P > 0.05) from chicken carcass rinse. The Pearson correlation coefficient value for the number of Campylobacter cells recovered in the 2 media was 0.942. However, the selectivity was much better on C-mCCDA than on mCCDA plates (P < 0.05). Significantly fewer C-mCCDA plates (33 out of 120 plates; mean count, 1.9 CFU/mL) were contaminated with non-Campylobacter cells than the normal mCCDA plates (67 out of 120 plates; mean count, 27.1 CFU/mL). The C-mCCDA may provide improved results for enumeration of Campylobacter in chicken meat alternative to mCCDA with its increased selectivity the modified agar possess. © 2014 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao
2018-04-01
Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.
High-gradient compact linear accelerator
Carder, B.M.
1998-05-26
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.
High-gradient compact linear accelerator
Carder, Bruce M.
1998-01-01
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.
Highly conductive composites for fuel cell flow field plates and bipolar plates
Jang, Bor Z; Zhamu, Aruna; Song, Lulu
2014-10-21
This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.
Laser-induced selective copper plating of polypropylene surface
NASA Astrophysics Data System (ADS)
Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.
2016-03-01
Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.
Computer program to compute buckling loads of simply supported anisotropic plates
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1973-01-01
Program handles several types of composites and several load conditions for each plate, both compressive or tensile membrane loads, and bending-stretching coupling via the concept of reduced bending rigidities. Vibration frequencies of homogeneous or layered anisotropic plates can be calculated by slightly modifying the program.
NASA Technical Reports Server (NTRS)
Domack, M. S.
1985-01-01
A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.
NASA Astrophysics Data System (ADS)
Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.
2017-04-01
In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.
Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki
2011-01-01
To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.
Electrochemical apparatus comprising modified disposable rectangular cuvette
Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E
2013-09-10
Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.
Subcritical crack growth of selected aerospace pressure vessel materials
NASA Technical Reports Server (NTRS)
Hall, L. R.; Bixler, W. D.
1972-01-01
This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.
Numerical analysis of standard and modified osteosynthesis in long bone fractures treatment.
Sisljagić, Vladimir; Jovanović, Savo; Mrcela, Tomislav; Radić, Radivoje; Selthofer, Robert; Mrcela, Milanka
2010-03-01
The fundamental problem in osteoporotic fracture treatment is significant decrease in bone mass and bone tissue density resulting in decreased firmness and elasticity of osteoporotic bone. Application of standard implants and standard surgical techniques in osteoporotic bone fracture treatment makes it almost impossible to achieve stable osteosynthesis sufficient for early mobility, verticalization and load. Taking into account the form and the size of the contact surface as well as distribution of forces between the osteosynthetic materials and the bone tissue numerical analysis showed advantages of modified osteosynthesis with bone cement filling in the screw bed. The applied numerical model consisted of three sub-models: 3D model from solid elements, 3D cross section of the contact between the plate and the bone and the part of 3D cross section of the screw head and body. We have reached the conclusion that modified osteosynthesis with bone cement resulted in weaker strain in the part of the plate above the fracture fissure, more even strain on the screws, plate and bone, more even strain distribution along all the screws' bodies, significantly greater strain in the part of the screw head opposite to the fracture fissure, firm connection of the screw head and neck and the plate hole with the whole plate and more even bone strain around the screw.
Kiess, A S; Parker, H M; McDaniel, C D
2010-08-01
Poultry is a major reservoir for Campylobacter, the leading cause of foodborne illness in the United States, but how broilers become initially colonized is still under debate. Broiler litter is a potential source, but the best technique for quantifying Campylobacter from litter is still unknown. Therefore, our objectives were to determine if certain media are more selective for quantifying Campylobacter and if enrichment allows for the detection of stressed or viable but nonculturable cells from broiler litter samples. In this trial, 5 media and 2 culturing techniques were used to enumerate Campylobacter from broiler litter. The media used were campy-Line agar (CLA), campy-cefex agar (CCA), modified CCA, Campylobacter agar plates (CAP), and modified charcoal cefoperazone deoxycholate agar. Litter samples were obtained from a commercial broiler house. Each sample was equally divided and diluted 10-fold into peptone, for direct plating, or 4-fold into Campylobacter enrichment broth. Samples diluted in peptone were direct-plated onto each media and incubated under microaerophilic conditions for 48 h at 42 degrees C. Samples diluted in enrichment broth were incubated under the same conditions for 24 h, then further diluted to 10-fold before plating. Plates from enriched samples were incubated for an additional 24 h after plating. After incubation, all plates (direct and enriched) were counted and presumptive positive colonies were confirmed using a Campylobacter latex agglutination kit. Results indicated that there was no difference in the ability of any of the selective media tested to grow Campylobacter. Direct-plated samples had a higher Campylobacter isolation rate compared with enriched samples. The CLA and CAP were able to suppress total bacterial growth better than modified charcoal cefoperazone deoxycholate, modified CCA, and CCA. The CLA and CAP were the only media able to detect total bacterial population shifts over time. In conclusion, it is important before making a final decision on a selective medium to consider the medium's ability to suppress total bacterial growth as well as isolate Campylobacter.
Static aeroelastic behavior of a subsonic plate wing
NASA Astrophysics Data System (ADS)
Berci, M.
2017-07-01
The static aeroelastic behavior of a subsonic plate wing is here described by semi-analytical means. Within a generalised modal formulation, any distribution of the plate's properties is allowed. Modified strip theory is employed for the aerodynamic modelling and a linear aeroelastic model is eventually derived. Numerical results are then shown for the plate's aeroelastic stability in terms of divergence speed, with respect to the most relevant aero-structural parameters.
Evaluation of Kojima-Matsubara color vision test plates: validity in young children.
Lee, D Y; Cotter, S A; French, A L
1997-09-01
We examined a pseudoisochromatic color plate test by Kojima and Matsubara for young children which uses drawings of familiar objects rather than letters or numbers. First, we evaluated the test's efficacy as a color deficiency screener and its validity in classifying the types of color deficiencies by comparing its results with those from the Moreland anomaloscope. Second, we eliminated the chromatic factor and evaluated the functional ability of young children to perform the task by determining how many correct responses were obtained using modified black/white replicas of the test plates. Part 1: Twenty color-normal and 13 color-deficient adults were diagnosed and classified with the Ishihara test, Panel D-15 test, and anomaloscope. Subjects were then tested with the Kojima-Matsubara test and result were compared with those from the anomaloscope. Part 2: Fifty children aged 3 to 7 years were tested with modified black/white test plate replicas. The number of correct responses for each plate was determined for five different age groups. Part 1: Among the 20 color-normal subjects, 18 read all 10 plates correctly and 2 subjects missed 1 of the 10. Only 1 of the 13 color-deficient subjects exhibited the expected responses for plates 2 to 6 (used for color deficiency screening). The color-deficient subjects' responses for plates 7 to 10, which are used to classify red-green defects, were varied and only the protanomalous subjects (n = 2) followed the expected response pattern. Part 2: Of the 10 black/white modified plates, only 2 were correctly identified by all 50 children. The other plates had a recognition rate that ranged from 32 to 98%. Because the response patterns given by most of the color-deficient adult subjects were different from those in the test manual, ambiguous results would occur if the Kojima-Matsubara test were used for color vision screening or the diagnosis of color deficiency. In addition, the difficulty that many of the young children exhibited in identifying the objects in the black/white replica plates suggests that there would be a large number of false positive errors (classifying a color normal as color deficient) when using this test in young children.
Fuel Cell Thermal Management Through Conductive Cooling Plates
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Burke, Kenneth A.
2008-01-01
An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.
The outcome of unstable proximal femoral fracture treated with reverse LISS plates.
Lin, Shih-Jie; Huang, Kuo-Chin; Chuang, Po-Yao; Lee, Chien-Yin; Huang, Tsan-Wen; Lee, Mel S; Hsu, Robert Wen-Wei
2016-10-01
The Russel-Taylor type 2B fractures compromised the trochanteric region and medial buttress of proximal femur. This fracture pattern limits the choice of implants and raises the risk of adverse outcomes. We aimed to (i) determine the outcome of Russel-Taylor type 2B fractures treated using reverse less invasive stabilization system plates (LISS-DF) and to (ii) learn what factors affected outcomes after osteosynthesis with reverse LISS plates. A retrospective study SETTING: The study was conducted at a Level III trauma center in Taiwan. Twenty-five consecutive patients presenting with a Russel-Taylor type 2B fracture were enrolled. All cases were treated with reverse LISS plates. A Modified Radiographic Union Scale for Femur (RUSF), Radiographic parameters, functional scores, and complications were assessed. Union occurred in 21 cases at an average of 18.8 weeks. The average immediate postoperative neck-shaft angle was 130° (range: 122-135°) compared with 139° (range: 135-141°, p=0.05) on the contralateral side. Two cases had complications of proximal screws cutting out and two cases had broken implants. Finally, all 4 cases required repeated surgeries (16%). Malunion occurred in 4 patients and early mechanical failure (proximal screws cut out) occurred in 2. There was a significant difference in the purchase index of the proximal screws between cases with redisplacement and those without (26.4mm and 98.6mm, p=0.01). The use of reverse LISS plate appeared to be an alternative procedure for the specific pattern in the present study. We recommend using this reverse locking plate to treat unstable proximal femoral fractures with meticulous techniques of placing plates. Adequate purchase of the proximal locking screws might decrease the risks of complications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Shubo; Liu, Mengsi; Xia, Tian; Tao, Shaohua
2018-06-01
We present a new family of diffractive lenses, Fibonacci-like zone plates, generated with a modified Fibonacci sequence. The focusing properties and the evolution of transverse diffraction pattern for the Fibonacci-like zone plates have been analytically investigated both theoretically and experimentally and compared with the corresponding Fresnel zone plates of the same resolution. The results demonstrate that the Fibonacci-like zone plates possess the self-similar property and the multifocal behavior. Furthermore, the Fibonacci-like zone plate beams are found to possess the self-reconstruction property, and would be promising for 3D optical tweezers, laser machining, and optical imaging.
Battery plate containing filler with conductive coating
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1986-01-01
The plate (10) comprises a matrix or binder resin phase (12) in which is dispersed particulate, conductive tin oxide such as tin oxide coated glass fibers (14). A monopolar plate (11) is prepared by coating a layer (18) of electrolytically active material onto a surface of the plate (10). Tin oxide is prevented from reduction by coating a surface of the plate (10) with a conductive, impervious layer resistant to reduction such as a thin film (22) of lead adhered to the plate with a layer (21) of conductive adhesive. The plate (10) can be formed by casting a molten dispersion from mixer (36) onto a sheet (30) of lead foil or by passing an assembly of a sheet (41) of resin, a sheet (43) of fiberglass and a sheet (45) of lead between the nip of heated rollers (48, 50).
Battery plate containing filler with conductive coating
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1985-01-01
The plate (10) comprises a matrix or binder resin phase (12) in which is dispersed particulate, conductive tin oxide such as tin oxide coated glass fibers (14). A monopolar plate (11) is prepared by coating a layer (18) of electrolytically active material onto a surface of the plate (10). Tin oxide is prevented from reduction by coating a surface of the plate (10) with a conductive, impervious layer resistant to reduction such as a thin film (22) of lead adhered to the plate with a layer (21) of conductive adhesive. The plate (10) can be formed by casting a molten dispersion from mixer (36) onto a sheet (30) of lead foil or by passing an assembly of a sheet (41) of resin, a sheet (43) of fiberglass and a sheet (45) of lead between the nip of heated rollers (48, 50).
Indoor test for thermal performance evaluation of the Solaron (air) solar collector
NASA Technical Reports Server (NTRS)
1978-01-01
The test procedure used and the results obtained from an evaluation test program, conducted to obtain thermal performance data on a Solaron double glazed air solar collector under simulated conditions in a solar simulator are described. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed. The Solaron collector absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.
Cooling apparatus with a resilient heat conducting member
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.
2016-06-14
A cooling structure including a thermally conducting central element having a channel formed therein, the channel being configured for flow of cooling fluid there through, a first pressure plate, and a first thermally conductive resilient member disposed between the thermally conducting central element and the first pressure plate, wherein the first pressure plate, the first thermally conductive resilient member, and the thermally conducting central element form a first heat transfer path.
Chon, Jung-Whan; Kim, Young-Ji; Kim, Hong-Seok; Kim, Dong-Hyeon; Kim, Hyunsook; Song, Kwang-Young; Sung, Kidon; Seo, Kun-Ho
2016-04-16
Although cefoperazone is the most commonly used antibiotic in Campylobacter-selective media, the distribution of cefoperazone-resistant bacteria such as extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli is increasing. Here we evaluated the potential of cephamycins for use as supplements to improve modified charcoal-cefoperazone-deoxycholate agar (mCCDA) by replacing cefoperazone with the same concentrations (32 mg/L) of cefotetan (modified charcoal-cefotetan-deoxycholate agar, mCCtDA) and cefoxitin (modified charcoal-cefoxitin-deoxycholate agar, mCCxDA). In chicken carcass rinse samples, the number of mCCDA plates detecting for Campylobacter (18/70, 26%) was significantly lower than that of mCCtDA (42/70, 60%) or mCCxDA plates (40/70, 57%). The number of mCCDA plates (70/70, 100%) that were contaminated with non-Campylobacter species was significantly higher than that of mCCtDA (20/70, 29%) or mCCxDA plates (21/70, 30%). The most common competing species identified using mCCDA was ESBL-producing E. coli, while Pseudomonas species frequently appeared on mCCtDA and mCCxDA. Copyright © 2016. Published by Elsevier B.V.
Vorst, Keith L; Todd, Ewen C D; Rysert, Elliot T
2004-10-01
Four sampling devices, a sterile environmental sponge (ES), a sterile cotton-tipped swab (CS), a sterile calcium alginate fiber-tipped swab (CAS), and a one-ply composite tissue (CT), were evaluated for quantitative recovery of Listeria monocytogenes from a food-grade stainless steel surface. Sterile 304-grade stainless steel plates (6 by 6 cm) were inoculated with approximately 106 CFU/cm2 L. monocytogenes strain Scott A and dried for 1 h. The ES and CT sampling devices were rehydrated in phosphate buffer solution. After plate swabbing, ES and CT were placed in 40 ml of phosphate buffer solution, stomached for 1 min and hand massaged for 30 s. Each CS and CAS device was rehydrated in 0.1% peptone before swabbing. After swabbing, CS and CAS were vortexed in 0.1% peptone for 1 min. Samples were spiral plated on modified Oxford agar with modified Oxford agar Rodac Contact plates used to recover any remaining cells from the stainless steel surface. Potential inhibition from CT was examined in both phosphate buffer solution and in a modified disc-diffusion assay. Recovery was 2.70, 1.34, and 0.62 log greater using CT compared with ES, CS, and CAS, respectively, with these differences statistically significant (P < 0.001) for ES and CT and for CAS, CS, and CT (P < 0.05). Rodac plates were typically overgrown following ES, positive after CS and CAS, and negative after CT sampling. CT was noninhibitory in both phosphate buffer solution and the modified disc-diffusion assay. Using scanning electron microscopy, Listeria cells were observed on stainless steel plates sampled with each sampling device except CT. The CT device, which is inexpensive and easy to use, represents a major improvement over other methods in quantifying L. monocytogenes on stainless steel surfaces and is likely applicable to enrichment of environmental samples.
NASA Astrophysics Data System (ADS)
Ghosh, Amal K.
2010-09-01
The parity generators and the checkers are the most important circuits in communication systems. With the development of multi-valued logic (MVL), the proposed system with parity generators and checkers is the most required using the recently developed optoelectronic technology in the modified trinary number (MTN) system. This system also meets up the tremendous needs of speeds by exploiting the savart plates and spatial light modulators (SLM) in the optical tree architecture (OTA).
Jung, Kyung-Won; Park, Dae-Seon; Hwang, Min-Jin; Ahn, Kyu-Hong
2015-09-01
In this study, the decolorization of Acid Orange 7 (AO-7) with intensified performance was obtained using hydrodynamic cavitation (HC) combined with an electric field (graphite electrodes). As a preliminary step, various HC systems were compared in terms of decolorization, and, among them, the electric field-assisted modified orifice plate HC (EFM-HC) system exhibited perfect decolorization performance within 40 min of reaction time. Interestingly, when H2O2 was injected into the EFM-HC system as an additional oxidant, the reactor performance gradually decreased as the dosing ratio increased; thus, the remaining experiments were performed without H2O2. Subsequently, an optimization process was conducted using response surface methodology with a Box-Behnken design. The inlet pressure, initial pH, applied voltage, and reaction time were chosen as operational key factors, while decolorization was selected as the response variable. The overall performance revealed that the selected parameters were either slightly interdependent, or had significant interactive effects on the decolorization. In the verification test, complete decolorization was observed under statistically optimized conditions. This study suggests that EFM-HC is a useful method for pretreatment of dye wastewater with positive economic and commercial benefits. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bi, Siyi; Zhao, Hang; Hou, Lei; Lu, Yinxiang
2017-10-01
The primary objective of this research work was to develop high-performance conductive fabrics with desired electromagnetic interference (EMI) shielding effectiveness (SE), excellent durability and improved corrosion resistance. Such conductive fabrics were fabricated by combining an ultra-low-cost electroless plating method with an alkoxy silane self-assembly technology, which involved successive steps of modification, activation, Co-Ni-P coating deposition and 3-aminopropyltrimethoxysilane (APTMS) thin coatings assembling. Malic acid (MA) was selected to modify the pristine Tencel (TS) substrates, and the probably interaction mechanism was investigated by FT-IR measurement. Co0 and Ni0 nanoparticles (NPs) were used as the activators to initiate electroless plating, respectively, and thereby two categories of Co-Ni-P coatings with different Co/Ni atomic ratio were obtained. Both of them presented compact morphologies and preferential (1 1 1) crystal orientation, which were validated by FE-SEM and XRD measurements. Owing to the lower square resistance and higher magnetic properties, the Co-Ni-P coated fabric activated by Co0 activator showed a higher EMI SE (18.2-40.1 dB) at frequency of 30-1000 MHz. APTMS thin coatings were then assembled on the top of alloy coated fabrics to act as anti-corrosion barriers. Electrochemical polarization measurement in 3.5 wt.% NaCl solution showed that top-APTMS coated conductive fabric exhibited a higher corrosion resistance than the one in absence of APTMS assembly. Overall, the whole process of fabrication could be performed in several hours (or less) without any specialized equipment, which shows a great potential as EMI shielding fabrics in mass-production.
Analysis of modes of heat transfer in baking Indian rice pan cake (Dosa,) a breakfast food.
Venkateshmurthy, K; Raghavarao, K S M S
2015-08-01
Heat transfer by individual modes is estimated during baking of rice (Oryza sativa) pan cake (Dosa), a traditional food. The mathematical expressions proposed could be used to modify the baking oven for controlling the individual modes of heat transfer to obtain the desired product texture, colour and flavour. Conduction from the rotating hot plate is found to be the most prominent mode of heat transfer and is critical for obtaining the desired product characteristics such as texture and flavour. Temperature profiles along the thickness of Dosa are obtained and compared with those obtained experimentally. Heat transfer parameters such as thermal conductivity and emissivity of Dosa are determined (0.42 W/m K and 0.31, respectively). The effect of material of construction of the hot plate such as alloy steel, teflon coated aluminum, cast iron and stainless steel on product texture was studied and stainless steel was found to give good surface finish to the product, which was confirmed by scanning electron microscope. Sensory evaluation was carried out to evaluate the product acceptability. The thermal efficiency of the baking oven was 51.5%.
Non-Gurney Scaling of Explosives Heavily Loaded with Dense Inert Additives
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Higgins, Andrew; Frost, David
2017-06-01
For most high explosives, the ability to accelerate material to some terminal velocity scales with the ratio of material-mass to charge-mass (M/C) according to the Gurney equations. Generally, the Gurney equation for planar geometry accurately predicts the terminal velocity of the driven material until the M/C ratio is reduced to roughly 0.15 or lower; at which point gasdynamic departures from the assumptions in the model result in systematic underpredictions of the material velocity. The authors conducted a series of open-face sandwich flyer plate experiments to measure the scaling of flyer terminal velocity with M/C for a heterogeneous explosive composed of a packed bed of 280 μm steel particles saturated with amine-sensitized nitromethane (90% NM, 10% diethylenetriamine). The propulsive capability of this explosive did not scale according to a modified form of the Gurney equation. Rather, propulsive efficiency increased as the flyer plate became relatively thicker. In the present study the authors have conducted further experiments using this explosive in symmetric sandwiches as well as for normally-incident detonations initiated via a slapping foil to examine how flyer terminal velocity scales with M/C for alternative geometries and loading conditions.
Plating isolation of various catalase-negative microorganisms from soil
NASA Technical Reports Server (NTRS)
Labeda, D. P.; Hunt, C. M.; Casida, L. E., Jr.
1974-01-01
A unique plating procedure was developed that allows isolation, but not enumeration, of representatives of the catalase-negative soil microflora. The numbers recovered, however, are low as compared to the numbers recovered when the modified dilution-to-extinction isolation procedure is used. The latter procedure provides prolonged inoculation in sealed tubes containing a nutritionally rich broth medium over small submerged agar slants. In contrast, the plating procedure utilizes nutritionally minimal media and the shorter incubations mandated by the inherent problems associated with plating.
Transfer function modeling of damping mechanisms in viscoelastic plates
NASA Technical Reports Server (NTRS)
Slater, J. C.; Inman, D. J.
1991-01-01
This work formulates a method for the modeling of material damping characteristics in plates. The Sophie German equation of classical plate theory is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes, (1985). However, this procedure is not limited to this representation. The governing characteristic equation is decoupled through separation of variables, yielding a solution similar to that of undamped classical plate theory, allowing solution of the steady state as well as the transient response problem.
An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers
Nellis, G. F.; Kelin, S. A.; Zhu, W.; Gianchandani, Y.
2010-01-01
Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid. PMID:20976021
An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.
White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y
2010-11-01
Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.
Quantum mechanics on Laakso spaces
NASA Astrophysics Data System (ADS)
Kauffman, Christopher J.; Kesler, Robert M.; Parshall, Amanda G.; Stamey, Evelyn A.; Steinhurst, Benjamin A.
2012-04-01
We first review the spectrum of the Laplacian operator on a general Laakso space before considering modified Hamiltonians for the infinite square well, parabola, and Coulomb potentials. Additionally, we compute the spectrum for the Laplacian and its multiplicities when certain regions of a Laakso space are compressed or stretched and calculate the Casimir force experienced by two uncharged conducting plates by imposing physically relevant boundary conditions and then analytically regularizing the resulting zeta function. Lastly, we derive a general formula for the spectral zeta function and its derivative for Laakso spaces with strict self-similar structure before listing explicit spectral values for some special cases
NASA Technical Reports Server (NTRS)
Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.
2004-01-01
A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
Appraisal of formulas for stresses in bilayered dental ceramics subjected to biaxial moment loading.
Hsueh, C H; Thompson, G A
2007-07-01
The purpose of this study was to compare three existing sets of formulas predicting stresses in a thin circular plate subjected to biaxial moment loading, such that limitations for each set of formulas could be understood. These formulas include American Society for Testing and Materials (ASTM) formulas for monolayered plates, Roark's formulas for bilayered plates, and Hsueh et al.'s formulas for multilayered plates. The three sets of formulas were summarized and appraised. Biaxial moment loading is generally achieved using biaxial flexure tests, and the plate is placed on a support ring and loaded in the central region. While both ASTM and Hsueh et al.'s formulas predict stresses through the thickness of the plate, Roark's formulas predict stresses only on the top and the bottom surfaces of the plate. Also, a simply supported plate at its edge is considered in Roark's formulas. We modified Roark's formulas to include the overhang region of the plate to more closely simulate the actual loading configuration. Then, the accuracy of formulas was examined by comparing with finite element results of monolayered and bilayered plates subjected to ring-on-ring loading. Monolayer is a special case of bilayer, and both monolayer and bilayer are special cases of multilayer. For monolayered plates, ASTM and Hsueh et al.'s formulas are identical, and both are in excellent agreement with finite element results. For bilayered plates, Hsueh et al.'s formulas are in excellent agreement with finite element results. For both monolayered and bilayered plates, Roark's formulas deviate from finite element results while the modified Roark's formulas are accurate. Roark's formulas for evaluating the biaxial strength of bilayered dental ceramics will result in errors in predicted stresses which depend on the size of the overhang region of the plate in the actual loading configuration. Also, Roark's formulas are limited to predicting stresses on the top and the bottom surfaces of the plate. On the other hand, Hsueh et al.'s formulas are for multilayered plates and predict stresses through the plate thickness.
Appraisal of formulas for stresses in bilayered dental ceramics subjected to biaxial moment loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Thompson, G. A.
Summary - Objectives: The purpose of this study was to compare three existing sets of formulas predicting stresses in a thin circular plate subjected to biaxial moment loading, such that limitations for each set of formulas could be understood. These formulas include American Society for Testing and Materials (ASTM) formulas for monolayered plates, Roark's formulas for bilayered plates, and Hsueh et al.'s formulas for multilayered plates. Methods: The three sets of formulas were summarized and appraised. Biaxial moment loading is generally achieved using biaxial flexure tests, and the plate is placed on a support ring and loaded in the centralmore » region. While both ASTM and Hsueh et al.'s formulas predict stresses through the thickness of the plate, Roark's formulas predict stresses only on the top and the bottom surfaces of the plate. Also, a simply supported plate at its edge is considered in Roark's formulas. We modified Roark's formulas to include the overhang region of the plate to more closely simulate the actual loading configuration. Then, the accuracy of formulas was examined by comparing with finite element results of monolayered and bilayered plates subjected to ring-on-ring loading. Results: Monolayer is a special case of bilayer, and both monolayer and bilayer are special cases of multilayer. For monolayered plates, ASTM and Hsueh et al.'s formulas are identical, and both are in excellent agreement with finite element results. For bilayered plates, Hsueh et al.'s formulas are in excellent agreement with finite element results. For both monolayered and bilayered plates, Roark's formulas deviate from finite element results while the modified Roark's formulas are accurate. Conclusions: Roark's formulas for evaluating the biaxial strength of bilayered dental ceramics will result in errors in predicted stresses which depend on the size of the overhang region of the plate in the actual loading configuration. Also, Roark's formulas are limited to predicting stresses on the top and the bottom surfaces of the plate. On the other hand, Hsueh et al.'s formulas are for multilayered plates and predict stresses through the plate thickness.« less
NASA Astrophysics Data System (ADS)
Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei
2016-10-01
Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.
Development of an Anti-Corrosion Conductive Nano Carbon Coating Layer on Metal Bipolar Plates.
Yeo, Kiho; Kim, Juyong; Kim, Jongryoul
2018-09-01
For automotive applications of polymer electrolyte membrane fuel cells, the enhancement of the corrosion resistance of metal bipolar plates has been a critical issue with regard to the lifespan of fuel cell stacks. In this paper, we present a novel method for increasing the lifespan by means of a conductive carbon coating on bipolar plates. Conductive carbon films were plasma coated onto metal bipolar plates in a vacuum at various temperatures. As a result, 316L stainless plates with a 10-nm-thick carbon coating layer on a 20-nm-thick CrN undercoat layer showed-contact resistance of 10.71 mΩcm2@10 kgf/cm2 and a corrosion current of 0.5 μA/cm2@0.6 V. This thin coating layer with high conductivity and excellent corrosion resistance suggests a new, effective coating method for the mass production of metal bipolar plates.
G-300: The first French Getaway Special microgravity measurements of fluid thermal conductivity
NASA Technical Reports Server (NTRS)
Perron, J. C.; Chretien, P.; Garnier, C.; Lecaude, N.
1987-01-01
Thermal conductivity measurements on liquids are difficult to perform on Earth because of thermal motions due to convection. In microgravity, the convection due to buoyancy is evanescent, and a strong reduction of Rayleigh and Nusselt numbers can be expected. Three low viscosity liquids are selected to carry out the measurements; distilled water (standard) and two silicone oils. A modified hot plate method with a simplified guard ring is used; the reduction of convective motions permitted the use in the experimental cells of larger interplate distances and/or temperature differences than in Earth measurements, improving the accuracy. Comparisons between Earth and orbit results may help to understand the convection occurrence in the cells. Thermal, vibrational, and EMI tests have proved that the design satisfies the NASA requirements.
Direct plating technique for enumeration of Listeria monocytogenes in foods.
Golden, D A; Beuchat, L R; Brackett, R E
1988-01-01
The advantages and disadvantages of various techniques for detecting and enumerating Listeria monocytogenes in foods are reviewed, and results from a study designed to compare 14 direct plating media for their suitability to recover uninjured cells of L. monocytogenes from 4 foods are summarized. McBride Listeria agar (MLA), gum base nalidixic acid tryptone soy agar (GBNTSA), modified Despierres agar (MDA), and modified MLA (MMLA) performed best for recovering all inoculum populations from milk and ice cream mix. For Brie cheese, MLA, MDA, MMLA, and Dominguez Rodriguez isolation agar were superior for recovering L. monocytogenes; GBNTSA, MDA, MMLA, and Donnelly's Listeria enrichment agar were best for recovering the organism from cabbage. Direct plating procedures without prior enrichment can be utilized successfully for recovering L. monocytogenes from foods such as pasteurized milk and ice cream mix, which contain low populations of background microflora. However, recovery of L. monocytogenes from foods such as raw cabbage and Brie cheese, which contain high populations of other microorganisms, was not satisfactory using direct plating procedures.
A Modified Protocol for Color Vision Screening Using Ishihara.
Chorley, Adrian C
2015-08-01
The Ishihara plates are commonly used as an initial occupational screening test for color vision. While effective at detecting red-green deficiencies, the color deficient subject can learn the test using different techniques. Some medical standards such as the European Aviation Safety Agency (EASA) require plate randomization and apply a stricter pass/fail requirement than suggested by Ishihara. This has been reported to increase the false positive rate up to ∼50%. Two modifications to the Ishihara protocol are investigated. These involved allowing subjects a second attempt where one or two reading errors were made and the presentation of rotated Ishihara plates. A reduction of false positive rate to 5.9% was found. Correct identification of certain rotated Ishihara plates was not affected. By using a modified Ishihara protocol, fewer color normal subjects would require unnecessary advanced color vision examination. Further, additional safeguards would be in place to ensure that no subject with a color vision deficiency could pass the Ishihara test.
Apparatus for Use in Determining Surface Conductivity at Microwave Frequencies
NASA Technical Reports Server (NTRS)
Hearn, Chase P. (Inventor)
1995-01-01
An apparatus is provided for use in determining surface conductivity of a flat or shaped conductive material at microwave frequencies. A plate has an electrically conductive surface with first and second holes passing through the plate. An electrically conductive material under test (MUT) is maintained in a spaced apart relationship with the electrically conductive surface of the plate by one or more nonconductive spacers. A first coupling loop is electrically shielded within the first hole while a second coupling loop is electrically shielded within the second hole. A dielectric resonator element is positioned between the first and second coupling loops, while also being positioned closer to the MUT than the electrically conductive surface of the plate. Microwave energy at an operating frequency f is supplied from a signal source to the first coupling loop while microwave energy received at the second coupling loop is measured. The apparatus is capable of measuring the Q-factor of the dielectric resonator situated in the 'cavity' existing between the electrically conductive surface of the plate and the MUT. Surface conductivity of the electrically conductive surface can be determined via interpolation using: 1 ) the measured Q-factor with the electrically conductive surface in place, and 2) the measured Q-factor when the MUT is replaced with reference standards having known surface conductivities.
Mitsukawa, Nobuyuki; Saiga, Atsuomi; Akita, Shinsuke; Kubota, Yoshitaka; Kuriyama, Motone; Satoh, Kaneshige
2015-02-01
One-stage repair is a conventional treatment of hypospadias. If hypospadias is severe as in the scrotal type and perineal type, penile curvature sometimes cannot be corrected by dorsal midline plication alone. In addition to resection of the urethral plate, ventral grafting becomes necessary for insufficient skin and subcutaneous tissue. In recent years, there has been renewed interest in 2-stage repair for such severe cases and salvage of failed cases with scarring. In the present study, novel 2-stage urethroplasty was performed in 6 cases to repair severe proximal hypospadias which required resection of the urethral plate. This novel method consisted of a combination of a modified Bracka method using oral mucosal grafts and a modified Byars flap of the dorsal foreskin. Good results were obtained using this novel method.
Chauhan, Nidhi; Narang, Jagriti; Jain, Utkarsh
2015-03-21
Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 °C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 μM. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.
Improved Orifice Plate for Spray Gun
NASA Technical Reports Server (NTRS)
Cunningham, W.
1986-01-01
Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.
Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui
2015-09-15
Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.
Highly conductive thermoplastic composites for rapid production of fuel cell bipolar plates
Huang, Jianhua [Blacksburg, VA; Baird, Donald G [Blacksburg, VA; McGrath, James E [Blacksburg, VA
2008-04-29
A low cost method of fabricating bipolar plates for use in fuel cells utilizes a wet lay process for combining graphite particles, thermoplastic fibers, and reinforcing fibers to produce a plurality of formable sheets. The formable sheets are then molded into a bipolar plates with features impressed therein via the molding process. The bipolar plates formed by the process have conductivity in excess of 150 S/cm and have sufficient mechanical strength to be used in fuel cells. The bipolar plates can be formed as a skin/core laminate where a second polymer material is used on the skin surface which provides for enhanced conductivity, chemical resistance, and resistance to gas permeation.
Study of Forebody Injection and Mixing with Application to Hypervelocity Airbreathing Propulsion
NASA Technical Reports Server (NTRS)
Axdahl, Erik; Kumar, Ajay; Wilhite, Alan
2012-01-01
The use of premixed, shock-induced combustion in the context of a hypervelocity, airbreathing vehicle requires effective injection and mixing of hydrogen fuel and air on the vehicle forebody. Three dimensional computational simulations of fuel injection and mixing from flush-wall and modified ramp and strut injectors are reported in this study. A well-established code, VULCAN, is used to conduct nonreacting, viscous, turbulent simulations on a flat plate at conditions relevant to a Mach 12 flight vehicle forebody. In comparing results of various fuel injection strategies, it is found that strut injection provides the greatest balance of performance between mixing efficiency and stream thrust potential.
Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun
2009-09-01
A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.
Compact Low Frequency Radio Antenna
Punnoose, Ratish J.
2008-11-11
An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.
NASA Astrophysics Data System (ADS)
Huang, Jianhua; Baird, Donald G.; McGrath, James E.
A method with the potential to produce economical bipolar plates with high electrical conductivity and mechanical properties is described. Thermoplastic composite materials consisting of graphite particles, thermoplastic fibers and glass or carbon fibers are generated by means of a wet-lay (paper-making) process to yield highly formable sheets. The sheets are then stacked and compression molded to form bipolar plates with gas flow channels. Poly(phenylene sulfide) (PPS) based wet-lay composite plates have in-plane conductivity of 200-300 S cm -1, tensile strength of 57 MPa, flexural strength of 96 MPa and impact strength (unnotched) of 81 J m -1 (1.5 ft-lb in. -1). These values well exceed industrial as well as Department of Energy requirements or targets and have never been reached before for composite bipolar plates. The use of wet-lay sheets also makes it possible to choose different components including polymer, graphite particle and reinforcement for the core and outer layers of the plate, respectively, to optimize the properties and/or reduce the cost of the plate. The through-plane conductivity (around 20 S cm -1) and half-cell resistance of the bipolar plate indicate that the through-plane conductivity of the material needs some improvement.
NASA Astrophysics Data System (ADS)
Filippo, Emanuela; Baldassarre, Francesca; Tepore, Marco; Guascito, Maria Rachele; Chirizzi, Daniela; Tepore, Antonio
2017-05-01
The growth of MoO3 hierarchical plates was obtained by direct resistive heating of molybdenum foils at ambient pressure in the absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically grow in an single-crystalline orthorhombic structure that develop preferentially in the [001] direction, and are characterized by high resolution transmission electron microscopy, selected area diffraction pattern and Raman-scattering measurements. They are about 100-200 nm in thickness and a few tens of micrometers in length. As heating time proceeds to 80 min, plates of α-MoO3 form a branched structure. A more attentive look shows that primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoO3 plates on platinum electrodes was done by cyclic voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electro-oxidation. Reported results indicate that Pt MoO3 modified electrodes are appropriate to develop new an amperometric non-enzymatic sensor for methanol as well as to make anodes suitable to be used in direct methanol fuel cells working at neutral pH.
Multimaterial lamination as a means of retarding penetration and spallation failures in plates
NASA Technical Reports Server (NTRS)
Dibattista, J. D.; Humes, D. H.
1972-01-01
Experimental data are presented which show that hypervelocity impact spallation and penetration failures of a single solid aluminum plate and of a solid aluminum plate spaced a distance behind a Whipple meteor bumper may be retarded by replacing the solid aluminum plate with a laminated plate. Four sets of experiments were conducted. The first set of experiments was conducted with projectile mass and velocity held constant and with polycarbonate cylinders impacted into single plates of different construction. The second set of experiments was done with single plates of various construction and aluminum spherical projectiles of similar mass but different velocities. These two experiments showed that a laminated plate of aluminum and polycarbonate or aluminum and methyl methacrylate could prevent spallation and penetration failures with a lower areal density than either an all-aluminum laminated plate or a solid aluminum plate. The aluminum laminated plate was in turn superior to the solid aluminum plate in resisting spallation and penetration failures. In addition, through an example of 6061-T6 aluminum and methyl methacrylate, it is shown that a laminated structure ballistically superior to its parent materials may be built. The last two sets of experiments were conducted using bumper-protected main walls of solid aluminum and of laminated aluminum and polycarbonate. Again, under hypervelocity impact conditions, the laminated main walls were superior to the solid aluminum main walls in retarding spallation and penetration failures.
Execution of Educational Mechanical Production Programs for School Children
NASA Astrophysics Data System (ADS)
Itoh, Nobuhide; Itoh, Goroh; Shibata, Takayuki
The authors are conducting experience-based engineering educational programs for elementary and junior high school students with the aim to provide a chance for them to experience mechanical production. As part of this endeavor, we planned and conducted a program called “Fabrication of Original Magnet Plates by Casting” for elementary school students. This program included a course for leading nature laws and logical thinking method. Prior to the program, a preliminary program was applied to school teachers to get comments and to modify for the program accordingly. The children responded excellently to the production process which realizes their ideas, but it was found that the course on natural laws and logical methods need to be improved to draw their interest and attention. We will continue to plan more effective programs, deepening ties with the local community.
NASA Astrophysics Data System (ADS)
Lu, Mai; Ueno, Shoogo
2009-04-01
In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.
Conductivity fuel cell collector plate and method of fabrication
Braun, James C.
2002-01-01
An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.
Kwon, Dong Rak; Kwon, Hyunjung; Lee, Woo Ram; Park, Joonsoo
2016-10-01
Fungi are eukaryotic microorganisms including yeast and molds. Many studies have focused on modifying bacterial growth, but few on fungal growth. Microcurrent electricity may stimulate fungal growth. This study aims to investigate effects of microcurrent electric stimulation on Trichophyton rubrum growth. Standard-sized inoculums of T. rubrum derived from a spore suspension were applied to potato dextrose cornmeal agar (PDACC) plates, gently withdrawn with a sterile pipette, and were applied to twelve PDACC plates with a sterile spreader. Twelve Petri dishes were divided into four groups. The given amperage of electric current was 500 nA, 2 µA, and 4 µA in groups A, B, and C, respectively. No electric current was given in group D. In the first 48 hours, colonies only appeared in groups A and B (500 nA and 2 µA exposure). Colonies in group A (500 nA) were denser. Group C (4 µA) plates showed a barely visible film of fungus after 96 hours of incubation. Fungal growth became visible after 144 hours in the control group. Lower intensities of electric current caused faster fungal growth within the amperage range used in this study. Based on these results, further studies with a larger sample size, various fungal species, and various intensities of electric stimulation should be conducted.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... assembly attaching hardware with the high strength steel hardware for unmodified REL MRS because the...) should be extended for the MRS over life limit because the steel plates referenced in the service... mandate modifying the configuration using the steel plates in SB 61B35-53A, and therefore the availability...
Plate Tectonism on Early Mars: Diverse Geological and Geophysical Evidence
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Maruyama, S.; Baker, V. R.; Anderson, R. C.; Ferris, Justin C.; Hare, Trent M.
2002-01-01
Mars has been modified by endogenic and exogenic processes similar in many ways to Earth. However, evidence of Mars embryonic development is preserved because of low erosion rates and stagnant lid convective conditions since the Late Noachian. Early plate tectonism can explain such evidence. Additional information is contained in the original extended abstract.
Measurement of the residual stress distribution in a thick pre-stretched aluminum plate
NASA Astrophysics Data System (ADS)
Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.
2008-12-01
Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.
Lee, Dong Kyu; Park, Hyun Jung; Cha, Yu-Jung; Kim, Hyeong Jin; Kwak, Joon Seop
2018-03-01
The junction temperature of high-power LED lighting was reduced effectively using a lens plate made from a thermally-conductive plastics (TCP). TCP has an excellent thermal conductivity, approximately 5 times that of polymethylmethacrylate (PMMA). Two sets of high-power LED lighting were designed using a multi array LED package with a lens plate for thermal simulation. The difference between two models was the materials of the lens plate. The lens plates of first and second models were fabricated by PMMA (PMMA lighting) and TCP (TCP lighting), respectively. At the lens plate, the simulated temperature of the TCP lighting was higher than that of the PMMA lighting. Near the LED package, the temperature of the TCP lighting was 2 °C lower than that of the PMMA lighting. This was well matched with the measured temperature of the fabricated lighting with TCP and PMMA.
Jung, Kyung-Won; Hwang, Min-Jin; Yun, Yeo-Myeong; Cha, Min-Jung; Ahn, Kyu-Hong
2014-09-01
In this current study, we present a modified hydrodynamic cavitation device that combines an electric field to substitute for the chemical addition. A modified HC system is basically an orifice plate and crisscross pipe assembly, in which the crisscross pipe imparts some turbulence, which creates collision events. This study shows that for maximizing disintegration, combining HC system, which called electric field-assisted modified orifice plate hydrodynamic cavitation (EFM-HC) in this study, with an electric field is important. Various HC systems were compared in terms of disintegration of WAS, and, among them, the EFM-HC system exhibited the best performance with the highest disintegration efficiency of 47.0±2.0% as well as the destruction of WAS morphological characteristics. The experimental results clearly show that a conventional HC system was successfully modified. In addition, electric field has a great potential for efficient disintegration of WAS for as a additional option in a combination treatment. This study suggests continued research in this field may lead to an appropriate design for commercial use. Copyright © 2014 Elsevier B.V. All rights reserved.
Sintered silver joints via controlled topography of electronic packaging subcomponents
Wereszczak, Andrew A.
2014-09-02
Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.
Pleated metal bipolar assembly
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A thin low-cost bipolar plate for an electrochemical cell is formed from a polymer support plate with first flow channels on a first side of the support plate and second flow channels on a second side of the support plate, where the first flow channels and second flow channels have intersecting locations and have a depth effective to form openings through the support plate at the intersecting locations. A first foil of electrically conductive material is pressed into the first flow channels. A second foil of electrically conductive material pressed into the second flow channels so that electrical contact is made between the first and second foils at the openings through the support plate. A particular application of the bipolar plate is in polymer electrolyte fuel cells.
Sukegawa, Shintaro; Kanno, Takahiro; Shibata, Akane; Matsumoto, Kenichi; Sukegawa-Takahashi, Yuka; Sakaida, Kyousuke; Furuki, Yoshihiko
2017-07-01
As a surgical approach targeting the pterygopalatine fossa following maxillary cancer due to tumor invasion, Crockett's method is conventional and useful. However, if the tumor is confined to the area between the maxilla and pterygopalatine fossa, it is not necessary to include the zygomatico-orbital in the access osteotomy, and the orbital floor may be preserved. Depending on the range of tumor invasion, the current study reports a more minimally invasive, modified Crockett's surgery that may be considered, which includes resection with modified osteotomy lines and repositioning with fixation of the zygoma and zygomatic arch following maxillary cancer ablation. In addition, the majority of patients with advanced maxillary cancer may require postoperative radiotherapy or chemoradiotherapy following maxillectomy according to several guidelines. Therefore, using a low-profile bioactive resorbable plate system as a method of repositioning and fixing the resected and preserved zygoma and zygomatic arch may be more effective in this modified Crockett's method for maxillectomy.
Mercurio, Meagan D; Dambergs, Robert G; Herderich, Markus J; Smith, Paul A
2007-06-13
The methyl cellulose precipitable (MCP) tannin assay and a modified version of the Somers and Evans color assay were adapted to high-throughput (HTP) analysis. To improve efficiency of the MCP tannin assay, a miniaturized 1 mL format and a HTP format using 96 well plates were developed. The Somers color assay was modified to allow the standardization of pH and ethanol concentrations of wine samples in a simple one-step dilution with a buffer solution, thus removing inconsistencies between wine matrices prior to analysis and allowing for its adaptation to a HTP format. Validation studies showed that all new formats were efficient, and results were reproducible and analogous to the original formats.
Lithium/water battery with lithium ion conducting glass-ceramics electrolyte
NASA Astrophysics Data System (ADS)
Katoh, Takashi; Inda, Yasushi; Nakajima, Kousuke; Ye, Rongbin; Baba, Mamoru
Lithium/water batteries have attracted considerable attention as high power supply devices because they use high energy density lithium metal as an anode and water as a cathode. In this study, we investigate the use of lithium/water batteries that use a glass-ceramics plate as an electrolyte. A lithium ion conducting glass-ceramics plate has no through-holes and does not exhibit moisture permeation. Such a plate has stable ionic conductivity in water. Lithium/water batteries that used a glass-ceramics plate as an electrolyte had a long and stable discharge for 50 days at room temperature when the lithium metal was prevented from coming into contact with water. Lithium/seawater batteries using a glass-ceramics plate as an electrolyte also operated well in the 10-70 °C temperature range.
Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A
2014-08-07
We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.
Depth of focus enhancement of a modified imaging quasi-fractal zone plate.
Zhang, Qinqin; Wang, Jingang; Wang, Mingwei; Bu, Jing; Zhu, Siwei; Gao, Bruce Z; Yuan, Xiaocong
2012-10-01
We propose a new parameter w for optimization of foci distribution of conventional fractal zone plates (FZPs) with a greater depth of focus (DOF) in imaging. Numerical simulations of DOF distribution on axis directions indicate that the values of DOF can be extended by a factor of 1.5 or more by a modified quasi-FZP. In experiments, we employ a simple object-lens-image-plane arrangement to pick up images at various positions within the DOF of a conventional FZP and a quasi-FZP, respectively. Experimental results show that the parameter w improves foci distribution of FZPs in good agreement with theoretical predictions.
Depth of focus enhancement of a modified imaging quasi-fractal zone plate
Zhang, Qinqin; Wang, Jingang; Wang, Mingwei; Bu, Jing; Zhu, Siwei; Gao, Bruce Z.; Yuan, Xiaocong
2013-01-01
We propose a new parameter w for optimization of foci distribution of conventional fractal zone plates (FZPs) with a greater depth of focus (DOF) in imaging. Numerical simulations of DOF distribution on axis directions indicate that the values of DOF can be extended by a factor of 1.5 or more by a modified quasi-FZP. In experiments, we employ a simple object–lens–image-plane arrangement to pick up images at various positions within the DOF of a conventional FZP and a quasi-FZP, respectively. Experimental results show that the parameter w improves foci distribution of FZPs in good agreement with theoretical predictions. PMID:24285908
Liu, Bing; Lin, Donge; Xu, Lin; Lei, Yanhui; Bo, Qianglong; Shou, Chongqi
2012-05-01
The surface of poly (methyl acrylate) (PMMA) microfluidic chips were modified using hyperbranched polyamide ester via chemical bonding. The contact angles of the modified chips were measured. The surface morphology was observed by scanning electron microscope (SEM) and stereo microscope. The results showed that the surface of the modified chips was coated by a dense, uniform, continuous, hydrophilic layer of hyperbranched polyamide ester. The hydrophilic of the chip surface was markedly improved. The contact angle of the chips modified decreased from 89.9 degrees to 29.5 degrees. The electro osmotic flow (EOF) in the modified microchannel was lower than that in the unmodified microchannel. Adenosine and L-lysine were detected and separated via the modified PMMA microfluidic chips. Compared with unmodified chips, the modified chips successfully separated the two biomolecules. The detection peaks were clear and sharp. The separation efficiencies of adenosine and L-lysine were 8.44 x 10(4) plates/m and 9.82 x 10(4) plates/m respectively, and the resolutions (Rs) was 5.31. The column efficiencies and resolutions of the modified chips were much higher than those of the unmodified chips. It was also observed that the modified chips possessed good reproducibility of migration time. This research may provide a new and effective method to improve the hydrophilicity of the PMMA surface and the application of PMMA microfluidic chips in the determination of trace biomolecules.
Distal tibia fractures: locked or non-locked plating? A systematic review of outcomes.
Khalsa, Amrit S; Toossi, Nader; Tabb, Loni P; Amin, Nirav H; Donohue, Kenneth W; Cerynik, Douglas L
2014-06-01
Although plating is considered to be the treatment of choice in distal tibia fractures, controversies abound regarding the type of plating for optimal fixation. We conducted a systematic review to evaluate and compare the outcomes of locked plating and non-locked plating in treatment of distal tibia fractures. A systematic review was conducted using PubMed to identify articles on the outcomes of plating in distal tibia fractures that were published up to June 2012. We included English language articles involving a minimum of 10 adult cases with acute fractures treated using single-plate, minimally invasive techniques. Study-level binomial regression on the pooled data was conducted to determine the effect of locking status on different outcomes, adjusted for age, sex, and other independent variables. 27 studies met the inclusion criteria and were included in the final analysis of 764 cases (499 locking, 265 non-locking). Based on descriptive analysis only, delayed union was reported in 6% of cases with locked plating and in 4% of cases with non-locked plating. Non-union was reported in 2% of cases with locked plating and 3% of cases with non-locked plating. Comparing locked and non-locked plating, the odds ratio (OR) for reoperation was 0.13 (95% CI: 0.03-0.57) and for malalignment it was 0.10 (95% CI: 0.02-0.42). Both values were statistically significant. This study showed that locked plating reduces the odds of reoperation and malalignment after treatment for acute distal tibia fracture. Future studies should accurately assess causality and the clinical and economic impact of these findings.
NDE methods for determining the materials properties of silicon carbide plates
NASA Astrophysics Data System (ADS)
Kenderian, Shant; Kim, Yong; Johnson, Eric; Palusinski, Iwona A.
2009-08-01
Two types of SiC plates, differing in their manufacturing processes, were interrogated using a variety of NDE techniques. The task of evaluating the materials properties of these plates was a challenge due to their non-uniform thickness. Ultrasound was used to estimate the Young's Modulus and calculate the thickness profile and Poisson's Ratio of the plates. The Young's Modulus profile plots were consistent with the thickness profile plots, indicating that the technique was highly influenced by the non-uniform thickness of the plates. The Poisson's Ratio is calculated from the longitudinal and shear wave velocities. Because the thickness is cancelled out, the result is dependent only on the time of flight of the two wave modes, which can be measured accurately. X-Ray was used to determine if any density variations were present in the plates. None were detected suggesting that the varying time of flight of the acoustic wave is attributed only to variations in the elastic constants and thickness profiles of the plates. Eddy Current was used to plot the conductivity profile. Surprisingly, the conductivity profile of one type of plates varied over a wide range rarely seen in other materials. The other type revealed a uniform conductivity profile.
Şükür, Erhan; Öztürkmen, Yusuf; Akman, Yunus Emre; Güngör, Mustafa
2016-10-01
The aim of this study was to analyze the clinical and functional results of hook plate fixation in Neer type 2 distal clavicle fractures. We retrospectively analyzed 16 patients (11 males, 5 females) who were diagnosed with Neer type 2 distal clavicle fractures and treated with hook plate fixation between 2013 and 2014. Mean age was 38 (range: 27-61), and mean follow-up time was 14.3 (range: 12-18) months. Complications seen on radiographs were implant failure and subacromial osteolysis. The clinical results were evaluated with modified UCLA (University of California Los Angeles) scoring system. Bone union was achieved in all patients at the end of the first 4 months. Mean modified UCLA score was 32.75 (range 31-35). In 12 patients (68%), the implants had to be removed due to complications. After removal, the complaints regressed and shoulders' range of motion increased. Clinical and radiological results on the fixation of Neer type 2 distal clavicle fractures with a hook plate are good in terms of fracture union and function. The major disadvantage of the method was the requirement of early implant removal due to the hardware related complications and good results can be achieved only after plate removal. Optimizing the length of hook plate may lower the rate of complications. Level IV, Therapeutic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack
Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL
2010-04-20
A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.
Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)
NASA Astrophysics Data System (ADS)
Lee, Dongyoung; Lee, Dai Gil
2016-09-01
A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.
Experimental Searches for Exotic Short-Range Forces Using Mechanical Oscillators
NASA Astrophysics Data System (ADS)
Weisman, Evan
Experimental searches for forces beyond gravity and electromagnetism at short range have attracted a great deal of attention over the last decade. In this thesis I describe the test mass development for two new experiments searching for forces below 1 mm. Both modify a previous experiment that used 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds, a promising technique for probing exceptionally small distances at the limit of instrumental thermal noise. To further reduce thermal noise, one experiment will use plated silicon test masses at cryogenic temperatures. The other experiment, which searches for spin-dependent interactions, will apply the spin-polarizable material Dy3Fe5O 12 to the test mass surfaces. This material exhibits orbital compensation of the magnetism associated with its intrinsic electron spin, minimizing magnetic backgrounds. Several plated silicon test mass prototypes were fabricated using photolithography (useful in both experiments), and spin-dependent materials were synthesized with a simple chemical recipe. Both silicon and spin-dependent test masses demonstrate the mechanical and magnetic properties necessary for sensitive experiments. I also describe sensitivity calculations of another proposed spin-dependent experiment, based on a modified search for the electron electric dipole moment, which show unprecedented sensitivity to exotic monopole-dipole forces. Inspired by a finite element model, a study attempting to maximize detector quality factor versus geometry is also presented, with experimental results so far not explained by the model.
Profiles of electrified drops and bubbles
NASA Technical Reports Server (NTRS)
Basaran, O. A.; Scriven, L. E.
1982-01-01
Axisymmetric equilibrium shapes of conducting drops and bubbles, (1) pendant or sessile on one face of a circular parallel-plate capacitor or (2) free and surface-charged, are found by solving simultaneously the free boundary problem consisting of the augmented Young-Laplace equation for surface shape and the Laplace equation for electrostatic field, given the surface potential. The problem is nonlinear and the method is a finite element algorithm employing Newton iteration, a modified frontal solver, and triangular as well as quadrilateral tessellations of the domain exterior to the drop in order to facilitate refined analysis of sharply curved drop tips seen in experiments. The stability limit predicted by this computer-aided theoretical analysis agrees well with experiments.
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.; Frink, Neal T.
1999-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.
Lead-acid battery construction
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1988-01-01
The power characteristics of a lead-acid battery are improved by incorporating a dispersion of 1 to 10% by weight of a thermodynamically stable conductivity additive, such as conductive tin oxide coated glass fibers (34) of filamentary glass wool (42) in the positive active layer (32) carried on the grid (30) of the positive plate (16). The avoiding of positive plate reversal to prevent reduction of the tin oxide is accomplished by (a) employing an oversized positive plate and pre-charging it; (b) by pre-discharging the negative plate; and/or (c) by placing a circuit breaker (26) in combination with the plates (16, 18) and terminals (22, 24) to remove the load when the voltage of the positive plate falls below a pre-selected level.
NASA Astrophysics Data System (ADS)
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
ALS LOX/H2 subscale coaxial injector testing
NASA Technical Reports Server (NTRS)
Dexter, Carol E.
1991-01-01
Tests of a 40K subscale LOX/H2 coaxial LOX swirl injector conducted without injector or chamber degradation are reported. Chamber pressures ranged from 1572 to 2355 psia with overall mixture ratios from 5.04 to 6.39. The highest characteristic velocities were measured when the mixture ratio across the injector face was uniform. Scarfing of the outer row LOX posts had the largest effect on chamber heating rates. As a result of the tests, the LSI design was modified to arrange the outer row LOX posts in a circular pattern, eliminate O/F biasing and fuel film cooling, and modify the interpropellant plate to allow for larger pressure differentials during the start and cutoff transients. Testing of a 100 K LOX/H2 coaxial LOX swirl injector involved chamber pressure ranging from 700 to 2500 psia with overall mixture ratios from 3.2 to 8.8. Stable combustion was observed to a fuel temperature of 90R and characteristic velocity efficiencies were good.
Optimization of Uranium Molecular Deposition for Alpha-Counting Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monzo, Ellen; Parsons-Moss, Tashi; Genetti, Victoria
2016-12-12
Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control undermore » the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.« less
Analysis and flight evaluation of a small, fixed-wing aircraft equipped with hinged plate spoilers
NASA Technical Reports Server (NTRS)
Olcott, J. W.; Sackel, E.; Ellis, D. R.
1981-01-01
The results of a four phase effort to evaluate the application of hinged plate spoilers/dive brakes to a small general aviation aircraft are presented. The test vehicle was a single engine light aircraft modified with an experimental set of upper surface spoilers and lower surface dive brakes similar to the type used on sailplanes. The lift, drag, stick free stability, trim, and dynamic response characteristics of four different spoiler/dive brake configurations were determined. Tests also were conducted, under a wide range of flight conditions and with pilots of various experience levels, to determine the most favorable methods of spoiler control and to evaluate how spoilers might best be used during the approach and landing task. The effects of approach path angle, approach airspeed, and pilot technique using throttle/spoiler integrated control were investigated for day, night, VFR, and IFR approaches and landings. The test results indicated that spoilers offered significant improvements in the vehicle's performance and flying qualities for all elements of the approach and landing task, provided a suitable method of control was available.
Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory
NASA Astrophysics Data System (ADS)
Wang, Liming; Zheng, Shijie
2018-02-01
In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.
Distal tibia fractures: locked or non-locked plating?
Khalsa, Amrit S; Toossi, Nader; Tabb, Loni P; Amin, Nirav H; Donohue, Kenneth W; Cerynik, Douglas L
2014-01-01
Background and purpose Although plating is considered to be the treatment of choice in distal tibia fractures, controversies abound regarding the type of plating for optimal fixation. We conducted a systematic review to evaluate and compare the outcomes of locked plating and non-locked plating in treatment of distal tibia fractures. Patients and methods A systematic review was conducted using PubMed to identify articles on the outcomes of plating in distal tibia fractures that were published up to June 2012. We included English language articles involving a minimum of 10 adult cases with acute fractures treated using single-plate, minimally invasive techniques. Study-level binomial regression on the pooled data was conducted to determine the effect of locking status on different outcomes, adjusted for age, sex, and other independent variables. Results 27 studies met the inclusion criteria and were included in the final analysis of 764 cases (499 locking, 265 non-locking). Based on descriptive analysis only, delayed union was reported in 6% of cases with locked plating and in 4% of cases with non-locked plating. Non-union was reported in 2% of cases with locked plating and 3% of cases with non-locked plating. Comparing locked and non-locked plating, the odds ratio (OR) for reoperation was 0.13 (95% CI: 0.03–0.57) and for malalignment it was 0.10 (95% CI: 0.02–0.42). Both values were statistically significant. Interpretation This study showed that locked plating reduces the odds of reoperation and malalignment after treatment for acute distal tibia fracture. Future studies should accurately assess causality and the clinical and economic impact of these findings. PMID:24758325
Li, Chen-Yu; Hemmig, Elisa A; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia; Keyser, Ulrich F; Aksimentiev, Aleksei
2015-02-24
The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules, a DNA origami plate, placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg(2+) ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA.
van Weemen, B.; Kacaki, J.
1976-01-01
A modified haemagglutination inhibition test for rubella antibodies, using standardized freeze-dried reagents, was developed and compared with haemagglutination inhibition tests using fresh erythrocytes. This comparison was made in collaboration with six European laboratories. A total of 4205 serum samples were tested. The results show that: (1) Sensitivity and reliability of the modified test are good; (2) the modified test can be performed in polystyrene microtitration plates. PMID:789763
NASA Technical Reports Server (NTRS)
McGowan, David M.; Anderson, Melvin S.
1998-01-01
The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to allow the plate reference surface to be located a distance z(c), from the centroid surface which is convenient for modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for several example problems with different loading states are made. Results from the new curved-plate analysis compare well with closed-form solution results and with results from known example problems in the literature. Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is presented.
NASA Astrophysics Data System (ADS)
Hameury, J.; Koenen, A.; Hay, B.; Wu, J.; Hammerschmidt, U.; Rafeld, E. K.; Pennewitz, E.; Turzó-András, E.; Strnad, R.; Blahut, A.
2018-01-01
The selection of a material for making the hot and cold plates of high-temperature guarded hot plates (HTGHPs) working up to 800°C is still an issue. The material must be machinable, have a high mechanical stability to keep the high level of flatness of the plates and have a high thermal conductivity and a high resistance to oxidation when used in air. Nickel 201 alloy has been used in several instruments, but has shown, sometimes, problems of mechanical stability. The total hemispherical emissivity of the plates must be higher than 0.8 as recommended by the standards. Three ceramic materials, a silicon infiltrated silicon carbide (SiSiC), a machinable aluminum nitride and a sintered aluminum nitride (AlN) with high thermal conductivity claimed at ambient temperature, were selected for tests in thermal conductivity and opacity to thermal radiation. Three paints withstanding high temperatures were tested in total hemispherical emissivity and durability at high temperature. Above 600°C, Nickel 201 alloy has a higher thermal conductivity than the three ceramics. Below 600°C, the SiSiC and the sintered AlN have a thermal conductivity significantly higher than Nickel 201, but the sintered AlN shows a wide transparency spectral band at short wavelengths (below 6.5 μ m). Above 300°C, the three paints have a total hemispherical emissivity above 0.8. One of the paints has polluted the specimens of an insulation material tested in thermal conductivity up to 650°C. The other two can be recommended to coat the hot and cold plates of HTGHPs used up to 800°C.
Raffat, Arsalah; Ijaz, Abida
2009-06-01
To determine retraction and alignment of protruded and rotated premaxillary segment and to measure increase in columellar length by using modified orthopaedic plate with anterior acrylic ring in newborn babies with non syndromic bilateral cleft lip and palate. Pre surgical infant orthopaedic treatment of ten non syndromic bilateral cleft lip and palate new born babies was done. Modified orthopaedic plate with anterior acrylic ring was used. This was adjusted every week by adding increments of 1 mm acrylic along the inner surface contacting labial surface of pre maxillary segment and trimming the same amount along the anterior margin of the plate. Pre and post treatment dental cast and a 1:1 photocopy of dental cast was obtained to analyze the retraction, angulations and arch form. Data was compiled and analyzed in SPSS 10. A significant pre maxillary retraction, correction of rotation as well as increase of columellar length was achieved. The appliance proved most successful being used immediately after birth, making use of plasticity of the neonate cartilage due to maternal estrogen levels. Moreover the appliance maintained arch form facilitated function and rendered initial lip repair easy and tension free.
Low intensity X-ray and gamma-ray imaging device. [fiber optics
NASA Technical Reports Server (NTRS)
Yin, L. I. (Inventor)
1979-01-01
A radiation to visible light converter is combined with a visible light intensifier. The converter is a phosphor or scintillator material which is modified to block ambient light. The intensifier includes fiber optics input and output face plates with a photocathode-microchannel plate amplifier-phosphor combination. Incoming radiation is converted to visible light by the converter which is piped into the intensifier by the input fiber optics face plate. The photocathode converts the visible light to electrons which are amplified by a microchannel plate amplifier. The electrons are converted back to light by a phosphor layer and piped out for viewing by the output fiber optics faces plate. The converter-intensifier combination may be further combined with its own radiation source or used with an independent source.
Biologic plating of unstable distal radial fractures.
Kwak, Jae-Man; Jung, Gu-Hee
2018-04-14
Volar locking plating through the flexor carpi radialis is a well-established technique for treating unstable distal radial fractures, with few reported complications. In certain circumstances, including metaphyseal comminuted fractures, bridge plating through a pronator quadratus (PQ)-sparing approach may be required to preserve the soft tissue envelope. This study describes our prospective experience with bridge plating through indirect reduction. Thirty-three wrists (four 23A2, six 23A3, 15 23C1, and eight 23C2) underwent bridge plating through a PQ-sparing approach with indirect reduction from June 2006 to December 2010. Mean patient age was 56.8 years (range, 25-83 years), and the mean follow-up period was 47.5 months (range, 36-84 months). Changes in radiologic parameters (volar tilt, radial inclination, radial length, and ulnar variance) were analyzed, and functional results at final follow-up were evaluated by measuring the Modified Mayo Wrist Score (MMWS) and Modified Gartland-Werley Score (MGWS). All wrists achieved bone healing without significant complications after a single operation. At final follow-up, radial length was restored from an average of 3.7 mm to 11.0 mm, as were radial inclination, from 16.4° to 22.5°, and volar tilt, from - 9.1° to 5.5°. However, radial length was overcorrected in three wrists, and two experienced residual dorsal tilt. Excellent and good results on the MGWS were achieved in 30 wrists (90.9%). The average MMWS outcome was 92.6 (range, 75-100). Our experience with bridge plating was similar to that previously reported in the earlier publications. Compared with the conventional technique, bridge plating through a PQ-sparing approach may help in managing metaphyseal comminuted fractures of both cortices with a reduced radio-ulnar index.
Double-Plate Penetration Equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
2000-01-01
This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.
Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.
1986-01-01
A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.
Gasca, Fernando; Richter, Lars; Schweikard, Achim
2010-01-01
Transcranial Magnetic Stimulation (TMS) in the rat is a powerful tool for investigating brain function. However, the state-of-the-art experiments are considerably limited because the stimulation usually affects undesired anatomical structures. A simulation of a conductive shield plate placed between the coil stimulator and the rat brain during TMS is presented. The Finite Element (FE) method is used to obtain the 3D electric field distribution on a four-layer rat head model. The simulations show that the shield plate with a circular window can improve the focalization of stimulation, as quantitatively seen by computing the three-dimensional half power region (HPR). Focalization with the shield plate showed a clear compromise with the attenuation of the induced field. The results suggest that the shield plate can work as a helpful tool for conducting TMS rat experiments on specific targets.
Ion plated gold films: Properties, tribological behavior and performance
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1987-01-01
The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.
NASA Technical Reports Server (NTRS)
Vaughan, Victor L , Jr; Ramsen, John A
1957-01-01
Results of an investigation of the hydrodynamic characteristics over an extended speed range of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion are presented. Comparisons between these data and data over a lower speed range on a similar aspect-ratio-0.25 flat plate but having one-half the thickness are presented. These comparisons show no significant differences at the low speeds. At high speeds and high angles of attack, where extensive cavitation was present, the lift coefficients were lower than would have been indicated by the results of the previous investigations and the present investigation at the lower angles of attack. A brief discussion and comparison of ventilation are presented which shows two types of planing bubble formation and the effect of increasing the thickness of the model on the ventilation boundary.
Stewart, Suzanne; Barr, Stephanie; Engiles, Julie; Hickok, Noreen J; Shapiro, Irving M; Richardson, Dean W; Parvizi, Javad; Schaer, Thomas P
2012-08-01
Implant-associated infections contribute to patient morbidity and health care costs. We hypothesized that surface modification of titanium fracture hardware with vancomycin would support bone-healing and prevent bacterial colonization of the implant in a large-animal model. A unilateral transverse mid-diaphyseal tibial osteotomy was performed and repaired with a titanium locking compression plate in nine sheep. Four control animals were treated with an unmodified plate and five experimental animals were treated with a vancomycin-modified plate. The osteotomy was inoculated with 2.5 × 106 colony-forming units of Staphylococcus aureus. The animals were killed at three months postoperatively, and implants were retrieved aseptically. Microbiologic and histologic analyses, scanning electron and confocal microscopy, and microcomputed tomography were performed. All animals completed the study. Compared with the treatment cohort, control animals exhibited protracted lameness in the operatively treated leg. Gross findings during necropsy were consistent with an infected osteotomy accompanied by a florid and lytic callus. Microcomputed tomography and histologic analysis of the tibiae further supported the presence of septic osteomyelitis in the control cohort. Thick biofilms were also evident, and bacterial cultures were positive for Staphylococcus aureus in three of four control animals. In contrast, animals treated with vancomycin-treated plates exhibited a healed osteotomy site with homogenous remodeling, there was no evidence of biofilm formation on the retrieved plate, and bacterial cultures from only one of five animals were positive for Staphylococcus aureus. Vancomycin-derivatized plate surfaces inhibited implant colonization with Staphylococcus aureus and supported bone-healing in an infected large-animal model.
Newell, C R; Ma, Li; Doyle, Michael
2012-06-01
A series of botulism challenge studies were performed to determine the possibility of production of botulinum toxin in mussels (Mytilus edulis) held under a commercial high-oxygen (60 to 65% O(2)), modified atmosphere packaging (MAP) condition. Spore mixtures of six strains of nonproteolytic Clostridium botulinum were introduced into mussel MAP packages receiving different packaging buffers with or without the addition of lactic acid bacteria. Dye studies and package flipping trials were conducted to ensure internalization of spores by packed mussels. Inoculated mussel packages were stored at normal (4°C) and abusive (12°C) temperatures for 21 and 13 days, respectively, which were beyond the packaged mussels' intended shelf life. Microbiological and chemical analyses were conducted at predetermined intervals (a total of five sampling times at each temperature), including total aerobic plate counts, C. botulinum counts, lactic acid bacterial counts, package headspace gas composition, pH of packaging buffer and mussel meat, and botulinum toxin assays of packaging buffer and mussel meat. Results revealed that C. botulinum inoculated in fresh mussels packed under MAP packaging did not produce toxin, even at an abusive storage temperature and when held beyond their shelf life. No evidence was found that packaging buffers or gas composition influenced the lack of botulinum toxin production in packed mussels.
Study of oxygen gas production phenomenon during stand and discharge in silver-zinc batteries
NASA Technical Reports Server (NTRS)
1974-01-01
Standard production procedures for manufacturing silver zinc batteries are evaluated and modified to reduce oxygen generation during open circuit stand and discharge. Production predictions of several variable combinations using analysis models are listed for minimum gassing, with emphasis on the concentration of potassium hydroxide in plate formation. A recommendation for work optimizing the variables involved in plate processing is included.
Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates.
Green, F; Clausen, C A; Highley, T L
1989-11-01
The Nelson-Somogyi assay for reducing sugars was adapted to microtiter plates. The primary advantages of this modified assay are (i) smaller sample and reagent volumes, (ii) elimination of boiling and filtration steps, (iii) automated measurement with a dual-wavelength scanning TLC densitometer, (iv) increased range and reproducibility, and (v) automated colorimetric readings by reflectance rather than absorbance.
Nonlinear resonance of the rotating circular plate under static loads in magnetic field
NASA Astrophysics Data System (ADS)
Hu, Yuda; Wang, Tong
2015-11-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
PEM fuel cell bipolar plate material requirements for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.
1996-04-01
Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.
Williamson Polishing & Plating Site
Williamson Polishing & Plating Co. Inc. was a plating shop located in the Martindale-Brightwood neighborhood of Indianapolis. The facility conducted job shop polishing and electroplating services. The vacant site contains a 14,651-square-foot building.
NASA Astrophysics Data System (ADS)
Li, Hong; Huang, Chengya; Zhang, Long; Lou, Wanqiu
2014-09-01
In this study we report a new and efficient method of fabricating superhydrophobic surface on zinc plate modified with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts (CF3BD), which shows a water contact angle of 160° for a 4 μl water droplet and a low sliding angle of about 1°. The morphology and chemical composition of as-prepared superhydrophobic zinc surfaces are investigated by means of scanning electron microscopy (SEM), electron probe microanalyzer (EPMA) and FT-IR spectrum. The results show that the organic layers formed on zinc plate surface are provided with the special hierarchical porous microstructure and the low surface energy, which lead to the superhydrophobicity surface on the modified zinc.
Savini, Giorgio; Pisano, Giampaolo; Ade, Peter A R
2006-12-10
We adopted an existing formalism and modified it to simulate, with high precision, the transmission, reflection, and absorption of multiple-plate birefringent devices as a function of frequency. To validate the model, we use it to compare the measured properties of an achromatic five-plate device with a broadband antireflection coating to expectations derived from the material optical constants and its geometric configuration. The half-wave plate presented here is observed to perform well with a phase shift variation of < 2 degrees from the ideal 180 degrees over a bandwidth of Deltav/v approximately 1 at millimeter wavelengths. This formalism represents a powerful design tool for birefringent polarization modulators and enables its optical properties to be specified with high accuracy.
NASA Astrophysics Data System (ADS)
Lawanya, T.; Vidhya, M.; Govindarajan, A.
2018-04-01
This present paper deals with the investigation of couette flow of a viscous electrically conducting incompressible fluid three dimensionally through a porous medium in presence of transverse magnetic field. Approximate Solution of equations of motion and energy equations are derived using series solution method. Hartmann number, Schmidt number and Grashoff number (or) modified Grashoff number for mass transfer on the velocity and temperature distribution are numerically discussed and shown graphically. The Nusselt number and skin friction coefficients atthe plate are derived and their numerical values are shown graphically. It is seen that in the main flow direction the velocity profiles decreases due to either an increase in Schmidt number (Or) Hartmann number.
Frost formation on an airfoil: A mathematical model 1
NASA Technical Reports Server (NTRS)
Dietenberger, M.; Kumar, P.; Luers, J.
1979-01-01
A computer model to predict the frost formation process on a flat plate was developed for application to most environmental conditions under which frost occurs. The model was analytically based on a generalized frost thermal conductivity expression, on frost density and thickness rate equations, and on modified heat and mass transfer coefficients designed to fit the available experimental data. The broad experimental ranges reflected by the extremes in ambient humidities, wall temperatures, and convective flow properties in the various publications which were examined served to severely test the flexibility of the model. An efficient numerical integration scheme was developed to solve for the frost surface temperature, density, and thickness under the changing environmental conditions. The comparison of results with experimental data was very encouraging.
XAFS studies on a modified Al-Si hypoeutectic alloy
NASA Astrophysics Data System (ADS)
Srirangam, V. S. Prakash; Chattopadhyay, S.; Shibata, T.; Kaduk, J. A.; Miller, J. T.; Segre, C. U.; Shankar, S.
2009-11-01
To understand the role of Sr in doped aluminium-silicon alloys, we have conducted for the first time, Sr- K edge XAFS measurements on Al-3%Si-0.04%Sr. Aluminium-Silicon alloys are widely used in automobile and aerospace applications. Modification of these alloys with addition of trace levels of Sr (200-400 ppm) results in changing the morphology of Si eutectic from "plate" like structure to "fibrous" structure. Several theories have been proposed to understand the mechanism of modification of eutectic phases with Sr addition in these alloys, but there is no conclusive evidence in support of these theories. From our XAFS analysis, we suggest Sr-Si bonds and Sr-Sr correlations may be responsible for the morphological transformation observed in the alloy.
Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.
2000-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2013-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2017-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Auto-ignition of methane-air mixtures flowing along an array of thin catalytic plates
NASA Astrophysics Data System (ADS)
Treviño, C.
2010-12-01
In this paper, the heterogeneous ignition of a methane-air mixture flowing along an infinite array of catalytic parallel plates has been studied by inclusion of gas expansion effects and the finite heat conduction on the plates. The system of equations considers the full compressible Navier-Stokes equations coupled with the energy equations of the plates. The gas expansion effects which arise from temperature changes have been considered. The heterogeneous kinetics considers the adsorption and desorption reactions for both reactants. The limits of large and small longitudinal thermal conductance of the plate material are analyzed and the critical conditions for ignition are obtained in closed form. The governing equations are solved numerically using finite differences. The results show that ignition is more easily produced as the longitudinal wall thermal conductance increases, and the effects of the gas expansion on the catalytic ignition process are rather small due to the large value of the activation energy of the desorption reaction of adsorbed oxygen atoms.
Geodynamical simulation of the RRF triple junction
NASA Astrophysics Data System (ADS)
Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.
2017-12-01
Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.
Development of Passive Fuel Cell Thermal Management Heat Exchanger
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.
2010-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)
1985-01-01
The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).
Electrospun fiber membranes enable proliferation of genetically modified cells
Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B
2013-01-01
Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983
Aluminum transfer method for plating plastics
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Stalmach, C. J., Jr.
1977-01-01
Electroless plating technique produces plate of uniform thickness. Hardness and abrasion resistance can be increased further by heat treatment. Method results in seamless coating over many materials, has low thermal conductivity, and is relatively inexpensive compared to conventional methods.
Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
Dettling, Charles J.; Terry, Peter L.
1985-03-19
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
Dettling, Charles J.; Terry, Peter L.
1988-03-22
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
Analysis of surface cracks in finite plates under tension or bending loads
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1979-01-01
Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.
Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites.
Chen, Pingan; Zhang, Jian; Shen, Qiang; Luo, Guoqiang; Dai, Yang; Wang, Chuanbing; Li, Meijuan; Zhang, Lianmeng
2017-04-01
Microstructure and thermal conductivity (TC) of carbon nanotubes reinforced Cu (CNT-Cu) composites have been studied. When CNTs were coated with nano Cu by electroless plating, the TC of CNT-Cu composites showed a noticeable improvement and increased with CNT contents. When 1.0 vol% CNTs was added, the TC of CNT-Cu composites increased to 420.4 W/(m · K), 30% higher than that of monolithic Cu (323.1 W/(m · K)). According to the measured TC of CNT-Cu composites, the interfacial thermal resistance of CNT-Cu composites was calculated as 3.0 × 10⁻⁹ m² K/W which was lower than the reported values of CNTs reinforced polymer matrix composites and ceramic matrix composites. Microstructures showed that CNTs modified with nano Cu were homogeneously dispersed and embedded in the Cu matrix, indicating that there was strong bonding between CNTs and Cu. The homogeneously dispersed CNTs and reduction of interfacial thermal resistance resulted in the improvement of thermal conductivity of CNT-Cu composites. Therefore, the prepared CNT-Cu composites are promising materials for thermal management applications.
The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziadoń, Andrzej
2016-08-15
The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, themore » following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.« less
Measurement of the Casimir Force between Two Spheres
NASA Astrophysics Data System (ADS)
Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.
2018-01-01
Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Azhar, Ehtsham; Mehmood, Zaffar; Maraj, E. N.
Present article is a study of stagnation point flow over Riga plate with erratic thickness. Riga plate is an electromagnetic surface in which electrodes are assembled alternatively. This arrangement generates electromagnetic hydrodynamic behavior in the fluid flow. This is an attempt to investigate influence of melting heat, thermal radiation and viscous dissipation effects on Riga plate. A traversal electric and magnetic fields are produced by Riga plate. It causes Lorentz force parallel to wall which contributes in directing flow pattern. Physical problem is modeled and reduced nonlinear system is solved numerically. Comparative analysis is carried out between solutions obtained by Keller Box Method and shooting technique with Runge-Kutta Fehlberg method of order 5. It is noted that melting heat transfer reduces temperature distribution whereas radiation parameter upsurge it. Velocity is accelerated by modified Hartman number and Eckert number contributes in raising temperature.
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis; Sliney, Harold E.
1994-01-01
A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.
Method for conducting electroless metal-plating processes
Petit, George S.; Wright, Ralph R.
1978-01-01
This invention is an improved method for conducting electroless metal-plating processes in a metal tank which is exposed to the plating bath. The invention solves a problem commonly encountered in such processes: how to determine when it is advisable to shutdown the process in order to clean and/or re-passivate the tank. The new method comprises contacting the bath with a current-conducting, non-catalytic probe and, during plating operations, monitoring the gradually changing difference in electropotential between the probe and tank. It has been found that the value of this voltage is indicative of the extent to which nickel-bearing decomposition products accumulate on the tank. By utilizing the voltage to determine when shutdown for cleaning is advisable, the operator can avoid premature shutdown and at the same time avoid prolonging operations to the point that spontaneous decomposition occurs.
Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression
NASA Technical Reports Server (NTRS)
McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.
2001-01-01
Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.
Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan
2013-01-01
Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.
Modal control of a plate using a fuzzy logic controller
NASA Astrophysics Data System (ADS)
Sharma, Manu; Singh, S. P.; Sachdeva, B. L.
2007-08-01
This paper presents fuzzy logic based independent modal space control (IMSC) and fuzzy logic based modified independent modal space control (MIMSC) of vibration. The rule base of the controller consists of nine rules, which have been derived based upon simple human reasoning. Input to the controller consists of the first two modal displacements and velocities of the structure and the output of the controller is the modal force to be applied by the actuator. Fuzzy logic is used in such a way that the actuator is never called to apply effort which is beyond safe limits and also the operator is saved from calculating control gains. The proposed fuzzy controller is experimentally tested for active vibration control of a cantilevered plate. A piezoelectric patch is used as a sensor to sense vibrations of the plate and another piezoelectric patch is used as an actuator to control vibrations of the plate. For analytical formulation, a finite element method based upon Hamilton's principle is used to model the plate. For experimentation, the first two modes of the plate are observed using a Kalman observer. Real-time experiments are performed to control the first mode, the second mode and both modes simultaneously. Experiments are also performed to control the first mode by IMSC, the second mode by IMSC and both modes simultaneously by MIMSC. It is found that for the same decibel reduction in the first mode, the voltage applied by the fuzzy logic based controller is less than that applied by IMSC. While controlling the second mode by IMSC, a considerable amount of spillover is observed in the first mode and region just after the second mode, whereas while controlling the second mode by fuzzy logic, spillover effects are much smaller. While controlling two modes simultaneously, with a single sensor/actuator pair, appreciable resonance control is observed both with fuzzy logic based MIMSC as well as with direct MIMSC, but there is a considerable amount of spillover in the off-resonance region. This may be due to the sub-optimal location and/or an insufficient number of actuators. So, another smart plate with two piezoelectric actuators and one piezoelectric sensor is considered. Piezoelectric patches are fixed in an area where modal strains are high. With this configuration of the smart plate, experiments are conducted to control the first three modes of the plate and it is found that spillover effects are greatly reduced.
Accurate reconstruction of the thermal conductivity depth profile in case hardened steel
NASA Astrophysics Data System (ADS)
Celorrio, Ricardo; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín; Mandelis, Andreas
2010-04-01
The problem of retrieving a nonhomogeneous thermal conductivity profile from photothermal radiometry data is addressed from the perspective of a stabilized least square fitting algorithm. We have implemented an inversion method with several improvements: (a) a renormalization of the experimental data which removes not only the instrumental factor, but the constants affecting the amplitude and the phase as well, (b) the introduction of a frequency weighting factor in order to balance the contribution of high and low frequencies in the inversion algorithm, (c) the simultaneous fitting of amplitude and phase data, balanced according to their experimental noises, (d) a modified Tikhonov regularization procedure has been introduced to stabilize the inversion, and (e) the Morozov discrepancy principle has been used to stop the iterative process automatically, according to the experimental noise, to avoid "overfitting" of the experimental data. We have tested this improved method by fitting theoretical data generated from a known conductivity profile. Finally, we have applied our method to real data obtained in a hardened stainless steel plate. The reconstructed in-depth thermal conductivity profile exhibits low dispersion, even at the deepest locations, and is in good anticorrelation with the hardness indentation test.
Bipolar plates for PEM fuel cells
NASA Astrophysics Data System (ADS)
Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.
The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.
Li, Chen-Yu; Hemmig, Elisa A.; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia
2015-01-01
The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules—a DNA origami plate— placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg2+ ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA. PMID:25623807
[Use of the Omega plate for stabilisation of acetabular fractures: first experience].
Šrám, J; Taller, S; Lukáš, R; Endrych, L
2013-01-01
The aim of our study is to solve the problem of insufficient fixation of comminuted fractures of the quadrilateral plane and the iliopectineal line. These fixation problems occur while using the standard narrow 3.5 mm fixation plate applied from a modified Stoppa approach. A new plate developed by the authors--the Omega plate--fulfils the requirements. In the period 2010-2012, we performed 156 stabilisations of pelvic ring fractures and acetabular fractures. We used the modified Stoppa approach applying the standard fixation plate in 24 patients and the Omega plate in 15 patients. The patient group with the Omega plate included 10 male and five female patients with the average age of 61 years (range, 30-72). Only 11 patients were followed up, with an average period of 13.3 months, because one patient was lost to followup and three patients were shortly after surgery. The surgical technique of Omega plate application is described in detail. The clinical evaluation of post-operative results was based on the Harris Hip Score; the graphical results were rated using the Matta and Pohlemann criteria. The Stoppa approach alone was used in four patients, combination of two approaches (Stoppa and Kocher-Langenbeck approach) was used in six cases and three approaches were employed in five patients. No adverse intra- or post-operative events were recorded. Excellent or satisfactory graphical results were obtained in 12 patients and an unsatisfactory graphical outcome was recorded in three cases. In the follow-up period ranging from 8 to 22 months, 11 patients healed. Late complications included avascular femoral head necrosis in two and severe post-traumatic coxarthrosis in three patients. Due to these complications, all five patients underwent total hip arthroplasty without previous Omega plate removal at an average interval of 15 months from the primary pelvic surgery. They were not included in the follow-up evaluation. The remaining six patients had an average Harris Hip Score of 88 points (range, 81-98). The novel plate, shaped as a reverse omega letter, enables fixation of the quadrilateral area of the acetabulum through pressure of the arc of the plate against this area. Hitches, with holes for screw insertion, attached to the Omega plate in its middle part allow for fixation of fragments above the linea arcuata simply by pressure. Hitches in the ventral part provide for plate fixation to the ventral acetabular column and the superior pubic ramus. Hitches in the posterior segment of the plate facilitate insertion of a long screw in the posterior acetabular column from an additional iliac approach for stabilisation of simple acetabular fractures. The Omega plates are manufactured in several modifications. The Omega plate enables us to fix fractures of the superior pubic ramus, fractures of the anterior acetabular column, fractures of the quadrilateral acetabular plate, fractures in the iliopectineal line and simple fractures of the posterior column. A CT-defined projection of the pelvic inlet based on pre-operative CT scans allows us to choose the appropriate plate size and to shape the plate pre-operatively. After a technically well performed Stoppa approach and good fragment reduction, the application of an Omega plate is easy if our recommendations are followed. Fixation of all fragments of the anterior column and the quadrilateral plate is very stable and the Omega plate is highly resistant to secondary loss of reduction. A potential total hip arthroplasty does not require Omega plate removal.
Goulart, Douglas Rangel; Kemmoku, Daniel Takanori; Noritomi, Pedro Yoshito
2015-01-01
ABSTRACT Objectives The aim of the present study was to develop a plate to treat mandibular angle fractures using the finite element method and mechanical testing. Material and Methods A three-dimensional model of a fractured mandible was generated using Rhinoceros 4.0 software. The models were exported to ANSYS®, in which a static application of displacement (3 mm) was performed in the first molar region. Three groups were assessed according to the method of internal fixation (2 mm system): two non-locking plates; two locking plates and a new design locking plate. The computational model was transferred to an in vitro experiment with polyurethane mandibles. Each group contained five samples and was subjected to a linear loading test in a universal testing machine. Results A balanced distribution of stress was associated with the new plate design. This plate modified the mechanical behavior of the fractured region, with less displacement between the fractured segments. In the mechanical test, the group with two locking plates exhibited greater resistance to the 3 mm displacement, with a statistically significant difference when compared with the new plate group (ANOVA, P = 0.016). Conclusions The new plate exhibited a more balanced distribution of stress. However, the group with two locking plates exhibited greater mechanical resistance. PMID:26539287
Aeroservoelastic DAP missile fin development. [directionally attached piezoelectric actuator
NASA Technical Reports Server (NTRS)
Barrett, Ron
1993-01-01
The development of an active aeroservoelastic missile fin using directionally attached piezoelectric (DAP) actuator elements is detailed. Several different types of actuator elements are examined, including piezoelectric polymers, piezoelectric fiber composites, and conventionally attached piezoelectric (CAP) and DAP elements. These actuator elements are bonded to the substrate of a torque plate. The root of the torque plate is attached to a fuselage hard point or folding pivot. The tip of the plate is bonded to an aerodynamic shell which undergoes a pitch change as the plate twists. The design procedures used on the plate are discussed. A comparison of the various actuator element shows that DAP elements provide the highest deflections with the highest torsional stiffness. A torque plate was constructed from 0.2032 mm thick DAP elements bonded to a 0.127 mm thick AISI 1010 steel substrate. The torque plate produced static twist deflections in excess of +/- 3 deg. An aerodynamic shell with a modified NACA 0012 profile was added to the torque plate. This fin was tested in a wind tunnel at speeds up to 50 ms/sec. The static deflection of the fin was predicted to within 6 percent of the experimental data.
Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS
NASA Technical Reports Server (NTRS)
Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.
2006-01-01
A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.
A Modified Cooling Method and Its Application in "Drosophila" Experiments
ERIC Educational Resources Information Center
Qu, Wen-hui; Zhu, Tong-bo; Yang, Da-Xiang
2015-01-01
Chilling is a cost-effective and safe method of immobilising flies in "Drosophila" experiments. However, should condensation form on the plate, it would be fatal to the flies. Here we describe a modified cooling method using reusable commercial ice pack(s) (ca. 400 ml, 2-3 cm tall) rather than crushed ice. The ice pack is covered with a…
NASA Technical Reports Server (NTRS)
Swartzendruber, L.; Boettinger, W.; Ives, L.; Coriell, S.; Ballard, D.; Laughlin, D.; Clough, R.; Biancanieilo, F.; Blau, P.; Cahn, J.
1980-01-01
The compositional homogeneity, microstructure, hardness, electrical conductivity and mechanical properties of 2219 aluminum alloy plates are influenced by the process variables during casting, rolling and thermomechanical treatment. The details of these relationships wre investigated for correctly processed 2219 plate as well as for deviations caused by improper quenching after solution heat treatment. Primary emphasis was been placed on the reliability of eddy current electrical conductivity and hardness as NDE tools to detect variations in mechanical properties.
He, Dongmei; Yang, Chi; Chen, Minjie; Bin, Jiang; Zhang, Xiaohu; Qiu, Yating
2010-07-01
This article reports a modified preauricular approach for intracapsular condyle fracture (ICF) of the mandible and evaluates the stability of various internal fixation methods in the temporomandibular joint (TMJ) division of the Shanghai Ninth People's Hospital. One hundred fifty-one patients with 208 ICFs diagnosed by panoramic radiograph and computed tomographic (CT) scan received open treatment in the TMJ division from 1999 to 2008. Their charts were reviewed. Classification of the fracture was based on coronal CT scan. Forty-three patients also underwent magnetic resonance imaging before the operation to check displacement of the disc. A modified preauricular approach was used for all patients. Various internal fixation methods from wire, to screw, to plate were evaluated for stability. There were 110 ICFs of type A fracture, 60 of type B fracture, 9 of type C fracture, 25 of type M fracture, and 4 fractures without displacement. A modified preauricular approach was used for open treatment, which can better expose and protect the TMJ and superficial temporal vessels. Wire and plate is the commonly used stable fixation method for type A, B, and M fractures, which accounted for 56.7% (101/178). Small fracture fragments were removed with disc repositioning for all type C fractures (n = 9) and some type B (n = 9) and M fractures (n = 5). Three type M fracture and 3 nondisplaced ICFs were treated closed. Eighty-nine patients with 115 ICFs had postoperative CT scan, which showed anatomic and nearly anatomic fracture reduction rates of 95.6%. Thirty-five patients with 44 ICFs had long-term follow-ups from 3 months to 5 years. Among them, 63.2% (n = 12/19) pediatric ICFs had continuous condyle growth after open reduction and rigid fixation; 92% adults had ICFs that healed well (n = 23/25). Postoperative complications were facial nerve injury (n = 3), TMJ clicking (n = 1), and condyle resorption that required plate removal (n = 4). A modified preauricular approach provides better exposure and protection of the TMJ and superficial temporal vessels. Wire and plate provides stable fixation for type A and some type B and M fractures. Open reduction and rigid fixation produce good results for adult patients. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Saito, S.; Lin, W.
2014-12-01
Core-log integration has been applied for rock mechanics studies in scientific ocean drilling since 2007 in plate subduction margins such as Nankai Trough, Costa Rica margin, and Japan Trench. State of stress in subduction wedge is essential for controlling dynamics of plate boundary fault. One of the common methods to estimate stress state is analysis of borehole breakouts (drilling induced borehole wall compressive failures) recorded in borehole image logs to determine the maximum horizontal principal stress orientation. Borehole breakouts can also yield possible range of stress magnitude based on a rock compressive strength criterion. In this study, we constrained the stress magnitudes based on two different rock failure criteria, the Mohr-Coulomb (MC) criteria and the modified Wiebols-Cook (mWC) criteria. As the MC criterion is the same as that under unconfined compression state, only one rock parameter, unconfined compressive strength (UCS) is needed to constrain stress magnitudes. The mWC criterion needs the UCS, Poisson's ratio and internal frictional coefficient determined by triaxial compression experiments to take the intermediate principal stress effects on rock strength into consideration. We conducted various strength experiments on samples taken during IODP Expeditions 334/344 (Costa Rica Seismogenesis Project) to evaluate reliable method to estimate stress magnitudes. Our results show that the effects of the intermediate principal stress on the rock compressive failure occurred on a borehole wall is not negligible.
Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection
NASA Astrophysics Data System (ADS)
Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan
2017-03-01
To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.
Epoxy Resin Composite Based on Functional Hybrid Fillers
Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil
2014-01-01
A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177
Impact of early developmental fluoride exposure on the peripheral pain sensitivity in mice.
Ma, Jing; Liu, Fei; Liu, Peng; Dong, Ying-Ying; Chu, Zheng; Hou, Tie-Zhou; Dang, Yong-Hui
2015-12-01
Consumption of high concentration of fluoride in the drinking water would cause the fluorosis and chronic pain. Similar pain syndrome appeared in the patients in fluoride therapy of osteoporotic. The aim of the current study was to examine whether exposing immature mice to fluoride would modify the peripheral pain sensitivity or even cause a pain syndrome. We gave developmental fluoride exposure to mice in different concentration (0mg/L, 50mg/L and 100mg/L) and evaluated their basal pain threshold. Von Frey hair test, hot plate test and formalin test were conducted to examine the mechanical, thermal nociceptive threshold and inflammatory pain, respectively. In addition, the expression of hippocampal brain-derived neurotrophic factor (BDNF) was also evaluated by Western blotting. Hyperalgesia in fluoride exposure mice was exhibited in the Von Frey hair test, hot plate test and formalin test. Meanwhile, the expression of BDNF was significantly higher than that of control group. The results suggest that early developmental fluoride exposure may lower the basal pain threshold and be associated with the increasing of BDNF expression in hippocampus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Low-Temperature Nitriding of Pure Titanium by using Hollow Cathode RF-DC Plasma
NASA Astrophysics Data System (ADS)
Windajanti, J. M.; S, D. J. Djoko H.; Abdurrouf
2017-05-01
Pure titanium is widely used for the structures and mechanical parts due to its high strength, low density, and high corrosion resistance. Unfortunately, titanium products suffer from low hardness and low wear resistance. Titanium’s surface can be modified by nitriding process to overcome such problems, which is commonly conducted at high temperature. Here, we report the low-temperature plasma nitriding process, where pure titanium was utilized by high-density RF-DC plasma combined with hollow cathode device. To this end, a pure titanium plate was set inside a hollow tube placed on the cathode plate. After heating to 450 °C, a pre-sputtering process was conducted for 1 hour to remove the oxide layer and activate the surface for nitriding. Plasma nitriding using N2/H2 gasses was performed in 4 and 8 hours with the RF voltage of 250 V, DC bias of -500 to -600 V, and gas pressure of 75 to 30 Pa. To study the nitriding mechanism as well as the role of hollow cathode, the nitrided specimen was characterized by SEM, EDX, XRD, and micro-hardness equipment. The TiN compound was obtained with the diffusion zone of nitrogen until 5 μm thickness for 4 hours nitriding process, and 8 μm for 8 hours process. The average hardness also increased from 300 HV in the untreated specimen to 624 HV and 792 HV for 4 and 8 hours nitriding, respectively.
NASA Astrophysics Data System (ADS)
Shah, S.; Hussain, S.; Sagheer, M.
2018-06-01
This article explores the problem of two-dimensional, laminar, steady and boundary layer stagnation point slip flow over a Riga plate. The incompressible upper-convected Maxwell fluid has been considered as a rheological fluid model. The heat transfer characteristics are investigated with generalized Fourier's law. The fluid thermal conductivity is assumed to be temperature dependent in this study. A system of partial differential equations governing the flow of an upper-convected Maxwell fluid, heat and mass transfer using generalized Fourier's law is developed. The main objective of the article is to inspect the impacts of pertinent physical parameters such as the stretching ratio parameter (0 ⩽ A ⩽ 0.3) , Deborah number (0 ⩽ β ⩽ 0.6) , thermal relaxation parameter (0 ⩽ γ ⩽ 0.5) , wall thickness parameter (0.1 ⩽ α ⩽ 3.5) , slip parameter (0 ⩽ R ⩽ 1.5) , thermal conductivity parameter (0.1 ⩽ δ ⩽ 1.0) and modified Hartmann number (0 ⩽ Q ⩽ 3) on the velocity and temperature profiles. Suitable local similarity transformations have been used to get a system of non-linear ODEs from the governing PDEs. The numerical solutions for the dimensionless velocity and temperature distributions have been achieved by employing an effective numerical method called the shooting method. It is seen that the velocity profile shows the reduction in the velocity for the higher values of viscoelastic parameter and the thermal relaxation parameter. In addition, to enhance the reliability at the maximum level of the obtained numerical results by shooting method, a MATLAB built-in solver bvp4c has also been utilized.
NASA Astrophysics Data System (ADS)
Diestra Cruz, Heberth Alexander
The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.
Jiang, Liangjun; Pan, Zhijun; Zheng, Qiang
2014-01-01
Augmentation plating has been used successfully to treat hypertrophic non-union after nail fixation. This study compared the efficacy of augmentation plating and exchange plating for treating hypertrophic non-union of femoral shaft fracture after intramedullary nail fixation. A total of 12 patients received augmentation plating and 15 patients received exchange plating as treatment for femoral shaft hypertrophic non-union. The procedures were conducted at our medical centre between January 2005 and January 2012. Clinical follow-up was conducted at 2 weeks, 1 month and then monthly until union was achieved to compare union time, operation time, bleeding and complications between the two groups. All patients underwent follow-up examinations until fracture union was achieved. The average length of follow-up time after the second treatment was (18.37 ± 3.28) months. The time needed for union was (4.17 ± 0.94) months in the augmentation plating group and (5.33 ± 1.72) months in the exchange plating group. The operation time was (90.00 ± 17.58) minutes in the augmentation plating group and (160.00 ± 25.35) minutes in the exchange plating group. The amount of blood loss during the operation was (270.00 ± 43.32) ml in the augmentation plating group and (530.00 ± 103.65) ml in the exchange plating group. Both groups showed significant difference (P < 0.05) in their results. No complications were reported after the second operation. Augmentation plating after nail fixation could remove local rotation instability, facilitate simple operation, create minimal damage and enable exercise for early functional recovery. Therefore, augmentation plating is excellent for treating hypertrophic non-union after nail fixation in femoral shaft fracture.
Electrodeposited Zinc-Nickel as an Alternative to Cadmium Plating for Aerospace Application
NASA Technical Reports Server (NTRS)
Mcmillan, V. C.
1991-01-01
Corrosion evaluation studies were conducted on 4130 alloy steel samples coated with electrodeposited zinc-nickel and samples coated with electrodeposited cadmium. The zinc nickel was deposited by the selection electrochemical metallizing process. These coated samples were exposed to a 5-percent salt fog environment at 35 plus or minus 2 C for a period ranging from 96 to 240 hours. An evaluation of the effect of dichromate coatings on the performance of each plating was conducted. The protection afforded by platings with a dichromate seal was compared to platings without the seal. During the later stages of testing, deposit adhesion and the potential for hydrogen entrapment were also evaluated.
Woven-grid sealed quasi-bipolar lead-acid battery construction and fabricating method
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1989-01-01
A quasi-bipolar lead-acid battery construction includes a plurality of bipolar cells disposed in side-by-side relation to form a stack, and a pair of monoplanar plates at opposite ends of the stack, the cell stack and monopolar plates being contained within a housing of the battery. Each bipolar cell is loaded with an electrolyte and composed of a bipolar electrode plate and a pair of separator plates disposed on opposite sides of the electrode plate and peripherally sealed thereto. Each bipolar electrode plate is composed of a partition sheet and two bipolar electrode elements folded into a hairpin configuration and applied over opposite edges of the partition sheet so as to cover the opposite surfaces of the opposite halves thereof. Each bipolar electrode element is comprised of a woven grid with a hot-melt strip applied to a central longitudinal region of the grid along which the grid is folded into the hairpin configuration, and layers of negative and positive active material pastes applied to opposite halves of the grid on opposite sides of the central hot-melt strip. The grid is made up of strands of conductive and non-conductive yarns composing the respective transverse and longitudinal weaves of the grid. The conductive yarn has a multi-stranded glass core surrounded and covered by a lead sheath, whereas the non-conductive yarn has a multi-stranded glass core surrounded and covered by a thermally activated sizing.
Choi, Yi Taek; Bae, Sung Hwa; Son, Injoon; Sohn, Ho Sang; Kim, Kyung Tae; Ju, Young-Wan
2018-09-01
In this study, electrolytic etching, anodic oxidation, and copper electroplating were applied to aluminum to produce a plate on which a copper circuit for a thermoelectric module was formed. An oxide film insulating layer was formed on the aluminum through anodic oxidation, and platinum was coated by sputtering to produce conductivity. Finally, copper electroplating was performed directly on the substrate. In this structure, the copper plating layer on the insulating layer served as a conductive layer in the circuit. The adhesion of the copper plating layer was improved by electrolytic etching. As a result, the thermoelectric module fabricated in this study showed excellent adhesion and good insulation characteristics. It is expected that our findings can contribute to the manufacture of plates applicable to thermoelectric modules with high dissipation performance.
Lateral column lengthening using allograft interposition and cervical plate fixation.
Philbin, Terrence M; Pokabla, Christopher; Berlet, Gregory C
2008-10-01
Lateral column lengthening has been used successfully in the treatment of stage II adult-acquired pes planovalgus deformity. The purpose of this study is to review the union rate when allograft material is used and the osteotomy stabilized with a cervical plate. A retrospective review was performed on 28 feet in 26 patients who underwent correction of stage II pes planovalgus deformity using a lateral column lengthening with allograft tricortical iliac crest stabilized with a cervical plate. Patients were evaluated preoperatively and postoperatively using a modified American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale and the Short Form-12 health survey, as well as radiographically by assessing the talonavicular coverage angle. At a mean follow-up of 9 months, the mean total modified AOFAS score and pain subscore were significantly higher (45.6 and 25.0, respectively) versus preoperatively (27.3 and 11.2, respectively). Graft incorporation occurred in all but one case, and the average length of time to union was 10.06 weeks. Complications included 4 hardware removals, 1 nonunion, 1 graft penetration of the calcaneocuboid joint, and 2 cases of calcaneocuboid joint arthritis. Lateral column lengthening using allograft tricortical iliac crest bone graft with cervical plate fixation is a viable option for the correction of acquired pes planovalgus deformity. Allograft bone avoids donor site morbidity of autogenous iliac crest grafts and was not shown to increase rates of nonunion. Cervical plate fixation avoids the necessity of penetrating the graft with a screw and is associated with high patient satisfaction and radiographic union.
Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates
NASA Astrophysics Data System (ADS)
Harris, R. N.; Spinelli, G. A.; Fisher, A. T.
2017-12-01
We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.
NASA Astrophysics Data System (ADS)
Huang, Chengcheng; Zheng, Xiaogu; Tait, Andrew; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Li, Tao; Wang, Zhonglei
2014-01-01
Partial thin-plate smoothing spline model is used to construct the trend surface.Correction of the spline estimated trend surface is often necessary in practice.Cressman weight is modified and applied in residual correction.The modified Cressman weight performs better than Cressman weight.A method for estimating the error covariance matrix of gridded field is provided.
Failure analysis of stainless steel femur fixation plate.
Hussain, P B; Mohammad, M
2004-05-01
Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.
Gill, Thomas Mark; Zhao, Jiheng; Berenschot, Erwin J W; Tas, Niels; Zheng, Xiaolin
2018-06-25
Nickel (Ni) plating has garnered great commercial interest, as it provides excellent hardness, corrosion resistance, and electrical conductivity. Though Ni plating on conducting substrates is commonly employed via electrodeposition, plating on semiconductors and insulators often necessitates electroless approaches. Corresponding plating theory for deposition on planar substrates was developed as early as 1946, but for substrates with micro- and nanoscale features, very little is known of the relationships between plating conditions, Ni deposition quality, and substrate morphology. Herein, we describe the general theory and mechanisms of electroless Ni deposition on semiconducting silicon (Si) substrates, detailing plating bath failures and establishing relationships between critical plating bath parameters and the deposited Ni film quality. Through this theory, we develop two different plating recipes: galvanic displacement (GD) and autocatalytic deposition (ACD). Neither recipe requires pretreatment of the Si substrate, and both methods are capable of depositing uniform Ni films on planar Si substrates and convex Si pyramids. In comparison, ACD has better tunability than GD, and it provides a more conformal Ni coating on complex and high-aspect-ratio Si structures, such as inverse fractal Si pyramids and ultralong Si nanowires. Our methodology and theoretical analyses can be leveraged to develop electroless plating processes for other metals and metal alloys and to generally provide direction for the adaptation of electroless deposition to modern applications.
Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting.
Wang, Di; Wang, Yimeng; Wu, Shibiao; Lin, Hui; Yang, Yongqiang; Fan, Shicai; Gu, Cheng; Wang, Jianhua; Song, Changhui
2017-01-04
In pelvic fracture operations, bone plate shaping is challenging and the operation time is long. To address this issue, a customized bone plate was designed and produced using selective laser melting (SLM) technology. The key steps of this study included designing the customized bone plate, metal 3D printing, vacuum heat treatment, surface post-processing, operation rehearsal, and clinical application and evaluation. The joint surface of the bone plate was placed upwards with respect to the build platform to keep it away from the support and to improve the quality of the joint surface. Heat conduction was enhanced by adding a cone-type support beneath the bone plate to prevent low-quality fabrication due to poor heat conductivity of the Ti-6Al-4V powder. The residual stress was eliminated by exposing the SLM-fabricated titanium-alloy bone plate to a vacuum heat treatment. Results indicated that the bone plate has a hardness of HV1 360-HV1 390, an ultimate tensile strength of 1000-1100 MPa, yield strength of 900-950 MPa, and an elongation of 8%-10%. Pre-operative experiments and operation rehearsal were performed using the customized bone plate and the ABC-made pelvic model. Finally, the customized bone plate was clinically applied. The intraoperative C-arm and postoperative X-ray imaging results indicated that the customized bone plate matched well to the damaged pelvis. The customized bone plate fixed the broken bone and guides pelvis restoration while reducing operation time to about two hours. The customized bone plate eliminated the need for preoperative titanium plate pre-bending, thereby greatly reducing surgical wounds and operation time.
Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting
Wang, Di; Wang, Yimeng; Wu, Shibiao; Lin, Hui; Yang, Yongqiang; Fan, Shicai; Gu, Cheng; Wang, Jianhua; Song, Changhui
2017-01-01
In pelvic fracture operations, bone plate shaping is challenging and the operation time is long. To address this issue, a customized bone plate was designed and produced using selective laser melting (SLM) technology. The key steps of this study included designing the customized bone plate, metal 3D printing, vacuum heat treatment, surface post-processing, operation rehearsal, and clinical application and evaluation. The joint surface of the bone plate was placed upwards with respect to the build platform to keep it away from the support and to improve the quality of the joint surface. Heat conduction was enhanced by adding a cone-type support beneath the bone plate to prevent low-quality fabrication due to poor heat conductivity of the Ti-6Al-4V powder. The residual stress was eliminated by exposing the SLM-fabricated titanium-alloy bone plate to a vacuum heat treatment. Results indicated that the bone plate has a hardness of HV1 360–HV1 390, an ultimate tensile strength of 1000–1100 MPa, yield strength of 900–950 MPa, and an elongation of 8%–10%. Pre-operative experiments and operation rehearsal were performed using the customized bone plate and the ABC-made pelvic model. Finally, the customized bone plate was clinically applied. The intraoperative C-arm and postoperative X-ray imaging results indicated that the customized bone plate matched well to the damaged pelvis. The customized bone plate fixed the broken bone and guides pelvis restoration while reducing operation time to about two hours. The customized bone plate eliminated the need for preoperative titanium plate pre-bending, thereby greatly reducing surgical wounds and operation time. PMID:28772395
Spaceflight and age affect tibial epiphyseal growth plate histomorphometry
NASA Technical Reports Server (NTRS)
Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.
1992-01-01
Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.
Improved Control of Charging Voltage for Li-Ion Battery
NASA Technical Reports Server (NTRS)
Timmerman, Paul; Bugga, Ratnakumar
2006-01-01
The protocol for charging a lithium-ion battery would be modified, according to a proposal, to compensate for the internal voltage drop (charging current internal resistance of the battery). The essence of the modification is to provide for measurement of the internal voltage drop and to increase the terminal-voltage setting by the amount of the internal voltage drop. Ordinarily, a lithium-ion battery is charged at constant current until its terminal voltage attains a set value equal to the nominal full-charge potential. The set value is chosen carefully so as not to exceed the lithium-plating potential, because plated lithium in metallic form constitutes a hazard. When the battery is charged at low temperature, the internal voltage drop is considerable because the electrical conductivity of the battery electrolyte is low at low temperature. Charging the battery at high current at any temperature also gives rise to a high internal voltage drop. In some cases, the internal voltage drop can be as high as 1 volt per cell. Because the voltage available for charging is less than the terminal voltage by the amount of the internal voltage drop, the battery is not fully charged (see figure), even when the terminal voltage reaches the set value. In the modified protocol, the charging current would be periodically interrupted so that the zero-current battery-terminal voltage indicative of the state of charge could be measured. The terminal voltage would also be measured at full charging current. The difference between the full-current and zero-current voltages would equal the internal voltage drop. The set value of terminal voltage would then be increased beyond the nominal full-charge potential by the amount of the internal voltage drop. This adjustment would be performed repeatedly, in real time, so that the voltage setting would track variations in the internal voltage drop to afford full charge without risk of lithium plating. If the charging current and voltage settings were controlled by a computer, then this method of charge control could readily be implemented in software.
Dynamic Response of a Rigid Pavement Plate Based on an Inertial Soil
Gibigaye, Mohamed; Yabi, Crespin Prudence; Alloba, I. Ezéchiel
2016-01-01
This work presents the dynamic response of a pavement plate resting on a soil whose inertia is taken into account in the design of pavements by rational methods. Thus, the pavement is modeled as a thin plate with finite dimensions, supported longitudinally by dowels and laterally by tie bars. The subgrade is modeled via Pasternak-Vlasov type (three-parameter type) foundation models and the moving traffic load is expressed as a concentrated dynamic load of harmonically varying magnitude, moving straight along the plate with a constant acceleration. The governing equation of the problem is solved using the modified Bolotin method for determining the natural frequencies and the wavenumbers of the system. The orthogonal properties of eigenfunctions are used to find the general solution of the problem. Considering the load over the center of the plate, the results showed that the deflections of the plate are maximum about the middle of the plate but are not null at its edges. It is therefore observed that the deflection decreased 18.33 percent when the inertia of the soil is taken into account. This result shows the possible economic gain when taking into account the inertia of soil in pavement dynamic design. PMID:27382639
Dynamic Response of a Rigid Pavement Plate Based on an Inertial Soil.
Gibigaye, Mohamed; Yabi, Crespin Prudence; Alloba, I Ezéchiel
2016-01-01
This work presents the dynamic response of a pavement plate resting on a soil whose inertia is taken into account in the design of pavements by rational methods. Thus, the pavement is modeled as a thin plate with finite dimensions, supported longitudinally by dowels and laterally by tie bars. The subgrade is modeled via Pasternak-Vlasov type (three-parameter type) foundation models and the moving traffic load is expressed as a concentrated dynamic load of harmonically varying magnitude, moving straight along the plate with a constant acceleration. The governing equation of the problem is solved using the modified Bolotin method for determining the natural frequencies and the wavenumbers of the system. The orthogonal properties of eigenfunctions are used to find the general solution of the problem. Considering the load over the center of the plate, the results showed that the deflections of the plate are maximum about the middle of the plate but are not null at its edges. It is therefore observed that the deflection decreased 18.33 percent when the inertia of the soil is taken into account. This result shows the possible economic gain when taking into account the inertia of soil in pavement dynamic design.
Probiotic culture survival and implications in fermented frozen yogurt characteristics.
Davidson, R H; Duncan, S E; Hackney, C R; Eigel, W N; Boling, J W
2000-04-01
Low-fat ice cream mix was fermented with probiotic-supplemented and traditional starter culture systems and evaluated for culture survival, composition, and sensory characteristics of frozen product. Fermentations were stopped when the titratable acidity reached 0.15% greater than the initial titratable acidity (end point 1) or when the pH reached 5.6 (end point 2). Mix was frozen and stored for 11 wk at -20 degrees C. The traditional yogurt culture system contained the strains Streptococcus salivarius ssp. thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. The probiotic-supplemented system contained the traditional cultures as well as Bifidobacterium longum and Lactobacillus acidophilus. We compared recovery of Bifodobacterium by three methods, a repair-detection system with roll-tubes and plates on modified bifid glucose medium and plates with maltose + galactose reinforced clostridial medium. Culture bacteria in both systems did not decrease in the yogurt during frozen storage. The roll-tube method with modified bifid glucose agar and repair detection system provided at least one-half log10 cfu/ml higher recovery of B. longum compared with recoveries using modified bifid glucose agar or maltose + galactose reinforced clostridial agar on petri plates. No change in concentrations of lactose or protein for products fermented with either culture system occurred during storage. Acid flavor was more intense when product was fermented to pH 5.6, but yogurt flavor was not intensified. The presence of probiotic bacteria in the supplemented system seemed to cause no differences in protein and lactose concentration and sensory characteristics.
Alam, M K; Iida, J; Sato, Y; Kajii, Takashi S
2013-12-01
We have evaluated the craniofacial morphology of Japanese patients with unilateral cleft lip and palate (UCLP) and assessed the various postnatal factors that affect it. Lateral cephalograms of 140 subjects (mean (SD) aged 7 (2) years) with UCLP were taken before orthodontic treatment. Surgeons from Hokkaido University Hospital had done the primary operations. The craniofacial morphology was assessed by angular and linear cephalometric measurements. Cheiloplasty, palatoplasty, and preoperative orthopaedic treatment were chosen as postnatal factors. To compare the assessments of the postnatal factors, we made angular and linear cephalometric measurements for each subject and converted them into Z scores in relation to the mean (SD) of the two variables. Subjects treated by the modified Millard cheiloplasty had larger sella-nasion-point A (SNA) and nasion-point A-pogonion (NA-POG) measurements than subjects treated by the modified Millard with a vomer flap cheiloplasty. Two-stage palatoplasty showed consistently better craniofacial morphology than the other palatoplasty. Subjects who had preoperative orthopaedic treatment with a Hotz plate had significantly larger upper incisor/sella-nasion (U1-SN) measurements than who had no preoperative orthopaedic treatment or an active plate. We conclude that in subjects treated by a modified Millard type of cheiloplasty, a two-stage palatoplasty, and a Hotz plate there were fewer adverse effects on craniofacial morphology. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Kim, Dong-Hun; Georghiou, George E; Won, Chulho
2006-04-01
In this paper, a carefully designed conductive shield plate is presented, which helps to improve localization of the electric field distribution induced by transcranial magnetic stimulation for neuron stimulation. The shield plate is introduced between a figure-of-eight coil and the head. In order to accurately predict the field distribution inside the brain and to examine the effects of the shield plate, a realistic head model is constructed from magnetic resonance image data with the help of image processing tools and the finite-element method in three dimensions is employed. Finally, to show the improvements obtained, the results are compared with two conventional coil designs. It is found that an incorporation of the shield plate into the coil, effectively improves the induced field localization by more than 50%, and prevents other parts of the brain from exposure to high pulsed magnetic fields.
Shahinpoor, Mohsen
1995-01-01
A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.
Method of making a quartz resonator
Vig, John R.; Filler, Raymond L.; Peters, R. Donald; Frank, James M.
1981-01-01
A quartz resonator is made from a chemically polished quartz plate. The plate is placed in an enclosure fitted with at least three mounting clips to receive the plate. The plate is secured to the clips with an electrically conductive adhesive capable of withstanding operation at 350 degrees C. The assembly is cleaned and a metallic electrode deposited onto the plate until the desired frequency is reached. The enclosure is then hermetically sealed. The resulting resonator can consistently withstand extremely high shocks.
Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.
2010-01-01
As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achman, D.
1987-12-31
The company employs about forty people and operates for one or two eight hour shifts with an average of 315 racks of chrome plating per eight hour day. They plate a variety of metals including copper, nickel, gold, brass and chromium. Chromium is the major metal plated and is usually the last step in plating cycle. Most parts are copper plated and then nickel plated in preparation for chrome plating. The main difference between New Dimension Plating and other plating shops is the variety of parts plated. As New Dimension Plating is a job shop, a wide range of partsmore » such as motorcycle accessories, stove parts, and custom items are metal finished. The plating lines are manual, meaning employees dip the racks into the tanks by hand. This fact along with the fact that parts vary greatly in size and shape accounts for the significant drag-out on the chromium plating line.« less
NASA Technical Reports Server (NTRS)
Rossow, Vernon J
1958-01-01
The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.
NASA Astrophysics Data System (ADS)
Kattenhorn, Simon A.
2018-03-01
A new modeling-based study by Johnson et al. (2017, https://doi.org/10.1002/2017JE005370) lends support to the hypothesis that portions of Europa's surface may have been removed by the process of subduction, as suggested by Kattenhorn and Prockter (2014, https://doi.org/10.1038/NGEO2245). Using a simple 1-D model that tracks the thermal and density structure of a descending ice plate, Johnson et al. show that ice plates with 10% porosity and overall salt contents of 5%, which differ in salt content by 2.5% from the surrounding reference ice shell, are nonbuoyant and thus likely to sink through the underlying, convecting portion of the ice shell. The feasibility of subduction in an ice shell is critical to the existence of icy plate tectonics, which is hypothesized to exist at least locally on Europa, potentially making it the only other Solar System body other than Earth with a surface modified by plate tectonics.
Detailed Analysis and Design Review of the MARK IX (Modified) Underwater Breathing Apparatus
1969-07-30
hard- chrome plated, and the purge-valve assembly and regulator piston . electroless-nickel plated. Manufacturing/Assembly Controls and Tests The control...high a flow through the orifice, peak pressures of 4500 psi have been applied repeatedly with- out failure or damage to any component. (7) Orifice...c) Proved In use. (d) "Functional" test by stpplkir. (5)J (e) Peak pressure of only 4500 jsi reached. (1) (f) Leak test at 1-1/2 •is. (g) Predive
Method of making a hydrogen transport membrane, and article
Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon
2015-07-21
The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.
Plane wave diffraction by a finite plate with impedance boundary conditions.
Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal
2014-01-01
In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.
Vibration analysis of partially cracked plate submerged in fluid
NASA Astrophysics Data System (ADS)
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
Electrically Small Microstrip Quarter-Wave Monopole Antennas
NASA Technical Reports Server (NTRS)
Young, W. Robert
2004-01-01
Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects with the patch above one-third of the radial distance from the center. The modified feed configuration of the innovative approach is an inductive-short-circuit configuration that provides impedance matching and that has been used for many years on other antennas but not on microstrip-style monopole antennas. In this configuration, the pin is connected to both the conductive patch and the ground plane. As before, the shield of the coaxial cable is connected to the ground plane, but now the central conductor is connected to a point on the pin between the ground plane and the conductive plate (see figure). The location of the connection point on the pin is chosen so that together, the inductive short circuit and the conductive plate or patch act as components of a lumped-element resonant circuit that radiates efficiently at the resonance frequency and, at the resonance frequency, has an impedance that matches that of the coaxial cable. It should be noted that the innovative design entails two significant disadvantages. One disadvantage is that the frequency bandwidth for efficient operation is only about 1/20 to 1/15 that of a whip antenna designed for the same nominal frequency. The other disadvantage is that the estimated gain is between 3-1/2 and 4-1/2 dB below that of the whip antenna. However, if an affected radio-communication system used only a few adjacent frequency channels and the design of the components of the system other than the antenna provided adequate power or gain margin, then these disadvantages could be overcome.
Lin, Sansan; Fischl, Anthony S; Bi, Xiahui; Parce, Wally
2003-03-01
Phospholipid molecules such as ceramide and phosphoinositides play crucial roles in signal transduction pathways. Lipid-modifying enzymes including sphingomyelinase and phosphoinositide kinases regulate the generation and degradation of these lipid-signaling molecules and are important therapeutic targets in drug discovery. We now report a sensitive and convenient method to separate these lipids using microfluidic chip-based technology. The method takes advantage of the high-separation power of the microchips that separate lipids based on micellar electrokinetic capillary chromatography (MEKC) and the high sensitivity of fluorescence detection. We further exploited the method to develop a homogenous assay to monitor activities of lipid-modifying enzymes. The assay format consists of two steps: an on-plate enzymatic reaction using fluorescently labeled substrates followed by an on-chip MEKC separation of the reaction products from the substrates. The utility of the assay format for high-throughput screening (HTS) is demonstrated using phospholipase A(2) on the Caliper 250 HTS system: throughput of 80min per 384-well plate can be achieved with unattended running time of 5.4h. This enabling technology for assaying lipid-modifying enzymes is ideal for HTS because it avoids the use of radioactive substrates and complicated separation/washing steps and detects both substrate and product simultaneously.
Radiation force on a single atom in a cavity
NASA Technical Reports Server (NTRS)
Kim, M. S.
1992-01-01
We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave.
Fuel cell assembly unit for promoting fluid service and electrical conductivity
Jones, Daniel O.
1999-01-01
Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.
Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F
2018-05-01
The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.
High power density capacitor and method of fabrication
Tuncer, Enis
2012-11-20
A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.
NASA Astrophysics Data System (ADS)
Romo, J. M.; Gómez-Treviño, E.; Flores-Luna, C.; García-Abdeslem, J.
2017-12-01
Crustal and sub-crustal structure of northwestern Mexico (peninsular California) resulted from major accretion episodes occurred during the long-lived subduction of the Farallon plate beneath the North American plate, since late Jurassic time. A magnetotelluric profile across central Baja California reveals several electrical conductivity anomalies probably associated to the crustal boundaries of distinct Mezosoic terranes juxtaposed in the current peninsular crust. It is known that electrical conductivity is significantly increased by the pervasive presence of conductive minerals generated during metamorphic processes in highly sheared zones. We interpret a striking sub-horizontal conductivity anomaly reveled in the model as explained by the presence of high-salinity fluids released after dehydration of the subducted Magdalena microplate (Farallon plate?). The presence of fluids at the base of the peninsular crust may produce a zone of weakness, which supports the idea that Baja California lithosphere has not been entirely coupled to the Pacific plate. In addition, crustal thickness is estimated in our model in about 35 km beneath the western Peninsular Ranges batholith (PRB) and 20 km beneath the eastern PRB. This crustal thickness is in good agreement with independent estimations of a thinner crust in the Gulf of California margin and a thicker crust along the axial PRB.
NASA Astrophysics Data System (ADS)
Grover, D.; Seth, R. K.
2018-05-01
Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.
NASA Astrophysics Data System (ADS)
Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.
2016-01-01
An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.
NASA Astrophysics Data System (ADS)
Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis
2014-12-01
This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.
Mechanical design optimization of bioabsorbable fixation devices for bone fractures.
Lovald, Scott T; Khraishi, Tariq; Wagner, Jon; Baack, Bret
2009-03-01
Bioabsorbable bone plates can eliminate the necessity for a permanent implant when used to fixate fractures of the human mandible. They are currently not in widespread use because of the low strength of the materials and the requisite large volume of the resulting bone plate. The aim of the current study was to discover a minimally invasive bioabsorbable bone plate design that can provide the same mechanical stability as a standard titanium bone plate. A finite element model of a mandible with a fracture in the body region is subjected to bite loads that are common to patients postsurgery. The model is used first to determine benchmark stress and strain values for a titanium plate. These values are then set as the limits within which the bioabsorbable bone plate must comply. The model is then modified to consider a bone plate made of the polymer poly-L/DL-lactide 70/30. An optimization routine is run to determine the smallest volume of bioabsorbable bone plate that can perform and a titanium bone plate when fixating fractures of this considered type. Two design parameters are varied for the bone plate design during the optimization analysis. The analysis determined that a strut style poly-L-lactide-co-DL-lactide plate of 690 mm2 can provide as much mechanical stability as a similar titanium design structure of 172 mm2. The model has determined a bioabsorbable bone plate design that is as strong as a titanium plate when fixating fractures of the load-bearing mandible. This is an intriguing outcome, considering that the polymer material has only 6% of the stiffness of titanium.
Lightweight porous plastic plaque. [nickel cadmium batteries
NASA Technical Reports Server (NTRS)
Reid, M.
1978-01-01
The porosity and platability of various materials were investigated to determine a suitable substrate for nickel-plated electrodes. Immersion, ultrasonics, and flow-through plating techniques were tried using nonproprietary formulations, and proprietary phosphide and boride baths. Modifications to the selected material include variations in formulation and treatment, carbon loading to increase conductivity, and the incorporation of a grid. Problems to be solved relate to determining conductivities and porosities as a function of amount of nickel plated on the plastics; loading; charge and discharge curves of electrodes at different current densities; cell performance; and long-term degradation of electrodes.
NASA Technical Reports Server (NTRS)
Wang, N. N.
1974-01-01
The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.
Method and apparatus for measuring thermal conductivity of small, highly insulating specimens
NASA Technical Reports Server (NTRS)
Miller, Robert A. (Inventor); Kuczmarski, Maria A. (Inventor)
2012-01-01
A hot plate method and apparatus for the measurement of thermal conductivity combines the following capabilities: 1) measurements of very small specimens; 2) measurements of specimens with thermal conductivity on the same order of that as air; and, 3) the ability to use air as a reference material. Care is taken to ensure that the heat flow through the test specimen is essentially one-dimensional. No attempt is made to use heated guards to minimize the flow of heat from the hot plate to the surroundings. Results indicate that since large correction factors must be applied to account for guard imperfections when specimen dimensions are small, simply measuring and correcting for heat from the heater disc that does not flow into the specimen is preferable. The invention is a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air.
Plate tectonics drive tropical reef biodiversity dynamics
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc
2016-01-01
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103
Plate tectonics drive tropical reef biodiversity dynamics.
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J; de Santana, Charles N; Heine, Christian; Mouillot, David; Bellwood, David R; Pellissier, Loïc
2016-05-06
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.
Research on stability of nozzle-floating plate institution
NASA Astrophysics Data System (ADS)
Huang, Bin; Tao, Jiayue; Yi, Jiajing; Chen, Shijing
2016-01-01
In this paper, air hammer instability of nozzle-floating plate institution in gas lubricated force sensor were studied. Through establishment of the theoretical model for the analysis of the nozzle-floating plate institution stability, combined with air hammer stability judgment theorems, we had some simulation research on the radius of the nozzle, the radius of the pressure chamber, pressure chamber depth, orifice radius and the relationship between air supply pressure and bearing capacity, in order to explore the instability mechanism of nozzle-floating plate institution. For conducting experimental observations for the stability of two groups nozzle-floating plate institution, which have typical structural parameters conducted experimental observations. We set up a special experimental device, verify the correctness of the theoretical study and simulation results. This paper shows that in the nozzle-floating plate institution, increasing the nozzle diameter, reduced pressure chamber radius, reducing the depth of the pressure chamber and increase the supply orifice radius, and other measures is conducive to system stability. Results of this study have important implications for research and design of gas lubricated force sensor.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.
2014-01-01
This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.
2015-01-01
This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.
2015-01-01
This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
A user's manual for the Electromagnetic Surface Patch code: ESP version 3
NASA Technical Reports Server (NTRS)
Newman, E. H.; Dilsavor, R. L.
1987-01-01
This report serves as a user's manual for Version III of the Electromagnetic Surface Patch Code or ESP code. ESP is user-oriented, based on the method of moments (MM) for treating geometries consisting of an interconnection of thin wires and perfectly conducting polygonal plates. Wire/plate junctions must be about 0.1 lambda or more from any plate edge. Several plates may intersect along a common edge. Excitation may be by either a delta-gap voltage generator or by a plane wave. The thin wires may have finite conductivity and also may contain lumped loads. The code computes most of the usual quantities of interest such as current distribution, input impedance, radiation efficiency, mutual coupling, far zone gain patterns (both polarizations) and radar-cross-section (both/cross polarizations).
Eddy-Current Measurement Of Turning Or Curvature
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
Rotatable conductive plate covers sensing coil to varying degree. Curvature of pipe at remote or otherwise inaccessible location inside pipe measured using relatively simple angular-displacement eddy-current probe. Crawler and sensor assemblies move along inside of pipe on wheels. Conductive plate pivots to follow curvature of pipe, partly covering one of eddy-current coils to degree depending on local curvature on pipe.
High intensity acoustic tests of a thermally stressed aluminum plate in TAFA
NASA Technical Reports Server (NTRS)
Ng, Chung Fai; Clevenson, Sherman A.
1989-01-01
An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.
NASA Astrophysics Data System (ADS)
Vidi, S.; Rausch, S.; Ebert, H. P.; Löhberg, A.; Petry, D.
2013-05-01
Measurements were done on a carbon fiber reinforced composite (CFC) sample tested for the space probe Bepi Colombo by using the guarded hot-plate (GHP) method. The values of interest were the thermal transmittance through the samples, (56.3 ± 3.6) W · m-2 · K-1, and the effective thermal conductivity (1.06 ± 0.07) W · m-1 · K-1. The samples consist of a light honeycomb core attached to thicker surface plates. Due to this construction, the effective thermal conductivity parallel to the face plates is higher than the effective thermal conductivity through the sample. This leads to lateral heat gains or losses during the GHP measurement, which in return can lead to erroneous results. Furthermore, due to the high rigidity of the CFC material, there will be high contact resistances between the samples and the GHP apparatus plates. The separation of these thermal contact resistances from the total measured thermal resistance is essential in order to achieve correct results. Good results were achieved using a special measurement setup and a lateral correction method designed to reduce errors due to lateral heat flows.
Shahinpoor, M.
1995-07-25
A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.
Ultrasound influence on the activation step before electroless coating.
Touyeras, F; Hihn, J Y; Delalande, S; Viennet, R; Doche, M L
2003-10-01
This paper is devoted to the electroless plating of non-conductive substrates under ultrasound at 530 kHz. The ultrasonic irradiation is applied to the activation and to the plating steps. Effects are measured by following the final copper thickness obtained in 1 h of plating time, easily correlated to the average plating rate. It appears that ultrasound has a strong influence on the plating rates enhancement, and assumptions can be made that this increase could be linked to the catalyst cleaning. This is confirmed by XPS measurements.
Can Latino Food Trucks (Loncheras) Serve Healthy Meals? A Feasibility Study
Cohen, Deborah; Colaiaco, Ben; Martinez-Wenzl, Mary; Montes, Monica; Han, Bing; Berry, Sandy H.
2018-01-01
Objective To conduct a pilot study to assess the feasibility of modifying food truck meals to meet the My Plate guidelines as well as the acceptability of healthier meals among consumers. Design We recruited the owners of Latino food trucks (loncheras) in 2013-14 and offered an incentive for participation, assistance with marketing, and training by a bilingual dietician. We surveyed customers and we audited purchases to estimate sales of the modified meals. Setting City of Los Angeles Subjects Owners or operators of Latino food trucks (loncheras) and their customers Results We enrolled 22 lonchera owners and 11 completed the intervention, offering more than 50 new menu items meeting meal guidelines. Sales of the meals comprised 2% of audited orders. Customers rated the meals highly; 97% said they would recommend and buy them again and 75% of participants who completed the intervention intended to continue offering the healthier meals. However, adherence to guidelines drifted after several months of operation and participant burden was cited as a reason for drop-out among 3/11 lonchera owners. Conclusions Loncheras who participated reported minimal difficulty in modifying menu items. Given the difficulty in enrollment, expanding this program and ensuring adherence would likely need to be accomplished through regulatory requirements, monitoring and feedback, similar to the methods used to achieve compliance with sanitary standards. A companion marketing campaign would be helpful to increase consumer demand. PMID:28069099
Can Latino food trucks (loncheras) serve healthy meals? A feasibility study.
Cohen, Deborah A; Colaiaco, Ben; Martinez-Wenzl, Mary; Montes, Monica; Han, Bing; Berry, Sandy H
2017-05-01
To conduct a pilot study to assess the feasibility of modifying food truck meals to meet the My Plate guidelines as well as the acceptability of healthier meals among consumers. We recruited the owners of Latino food trucks (loncheras) in 2013-2014 and offered an incentive for participation, assistance with marketing and training by a bilingual dietitian. We surveyed customers and we audited purchases to estimate sales of the modified meals. City of Los Angeles, CA, USA. Owners or operators of Latino food trucks (loncheras) and their customers. We enrolled twenty-two lonchera owners and eleven completed the intervention, offering more than fifty new menu items meeting meal guidelines. Sales of the meals comprised 2 % of audited orders. Customers rated the meals highly; 97 % said they would recommend and buy them again and 75 % of participants who completed the intervention intended to continue offering the healthier meals. However, adherence to guidelines drifted after several months of operation and participant burden was cited as a reason for dropout among three of eleven lonchera owners who dropped out. Lonchera owners/operators who participated reported minimal difficulty in modifying menu items. Given the difficulty in enrolment, expanding this programme and ensuring adherence would likely need to be accomplished through regulatory requirements, monitoring and feedback, similar to the methods used to achieve compliance with sanitary standards. A companion marketing campaign would be helpful to increase consumer demand.
NASA Astrophysics Data System (ADS)
Katsura, Tomoo; Baba, Kiyoshi; Yoshino, Takashi; Kogiso, Tetsu
2017-10-01
We review the currently available results of laboratory experiments, geochemistry and MT observations and attempt to explain the conductivity structures in the oceanic asthenosphere by constructing mineral-physics models for the depleted mid-oceanic ridge basalt (MORB) mantle (DMM) and volatile-enriched plume mantle (EM) along the normal and plume geotherms. The hopping and ionic conductivity of olivine has a large temperature dependence, whereas the proton conductivity has a smaller dependence. The contribution of proton conduction is small in DMM. Melt conductivity is enhanced by the H2O and CO2 components. The effects of incipient melts with high volatile components on bulk conductivity are significant. The low solidus temperatures of the hydrous carbonated peridotite produce incipient melts in the asthenosphere, which strongly increase conductivity around 100 km depth under older plates. DMM has a conductivity of 10- 1.2 - 1.5 S/m at 100-300 km depth, regardless of the plate age. Plume mantle should have much higher conductivity than normal mantle, due to its high volatile content and high temperatures. The MT observations of the oceanic asthenosphere show a relatively uniform conductivity at 200-300 km depth, consistent with the mineral-physics model. On the other hand, the MT observations show large lateral variations in shallow parts of the asthenosphere despite similar tectonic settings and close locations. Such variations are difficult to explain with the mineral-physics model. High conductivity layers (HCL), which are associated with anisotropy in the direction of the plate motion, have only been observed in the asthenosphere under infant or young plates, but they are not ubiquitous in the oceanic asthenosphere. Although the general features of HCL imply their high-temperature melting origin, the mineral-physics model cannot explain them quantitatively. Much lower conductivity under hotspots, compared with the model plume-mantle conductivity suggests the extraction of volatiles from the plume mantle by the ocean island basalt (OIB) magmatism.
Bridgman growth of large-aperture yttrium calcium oxyborate crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing
2012-09-15
Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less
Research on Equation of State For Detonation Products of Aluminized Explosive
NASA Astrophysics Data System (ADS)
Yue, Jun-Zheng; Duan, Zhuo-Ping; Zhang, Zhen-Yu; Ou, Zhuo-Cheng
2017-10-01
The secondary reaction of the aluminum powder contained in an aluminized explosive is investigated, from which the energy loss resulted from the quantity reduce of the gaseous products is demonstrated. Moreover, taking the energy loss into account, the existing improved Jones-Wilkins-Lee (JWL) equation of state for detonation products of aluminized explosive is modified. Furthermore, the new modified JWL equation of state is implemented into the dynamic analysis software (DYNA)-2D hydro-code to simulate numerically the metal plate acceleration tests of the Hexogen (RDX)-based aluminized explosives. It is found that the numerical results are in good agreement with previous experimental data. In addition, it is also demonstrated that the reaction rate of explosive before the Chapman-Jouget (CJ) state has little influence on the motion of the metal plate, based on which a simple approach is proposed to simulate numerically the products expansion process after the CJ state.
Surface modified stainless steels for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO
2007-07-24
A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.
Thermal conductance of gold plated metallic contacts at liquid helium temperatures
NASA Technical Reports Server (NTRS)
Kittel, Peter; Spivak, Alan L.; Salerno, Louis J.
1992-01-01
The thermal conductance of gold plated OFHC copper, 6061-T6 aluminum, free-machining brass, and 304 stainless steel contacts has been measured over the temperature range of 1.6 to 4.2 K, with applied forces from 22 N to 670 N. The contact surfaces were prepared with a 0.8 micron lapped finish prior to gold coating. It was found that for all materials, except stainless steel, the thermal conductance was significantly improved as the result of gold coating the contact surfaces.
Leak and Pipe Detection Method and System
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor)
2003-01-01
A method and system for locating leaks of conductive fluids from non-conductive pipes and other structures or for locat- ing non-conductive pipes or structures having conductive fluid contained therein, employ a charge generator to apply a time varying charge to the conductive fluid, and a capaci- tive type detector that can detect the variable charge that is induced in the fluid. The capacitive detector, which prefer- ably includes a handheld housing, employs a large conduc- tive pickup plate that is used to locate the pipe or leak by scanning the plate over the ground and detecting the induced charge that is generated when the plate comes in close proximity to the pipe or leak. If a leak is encountered, the resulting signal will appear over an area larger than expected for a buried pipe, assuming the leak provides an electrically conductive path between the flow and the wet surrounding ground. The detector uses any suitable type of indicator device, such as a pair of headphones that enable an operator to hear the detected signal as a chirping sound, for example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel G. Medvedev
2009-11-01
Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20oC temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermalmore » conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.« less
Marko, Michael; Meng, Xing; Hsieh, Chyongere; Roussie, James; Striemer, Christopher
2013-01-01
Imaging with Zernike phase plates is increasingly being used in cryo-TEM tomography and cryo-EM single-particle applications. However, rapid ageing of the phase plates, together with the cost and effort in producing them, present serious obstacles to widespread adoption. We are experimenting with phase plates based on silicon chips that have thin windows; such phase plates could be mass-produced and made available at moderate cost. The windows are coated with conductive layers to reduce charging, and this considerably extends the useful life of the phase plates compared to traditional pure-carbon phase plates. However, a compromise must be reached between robustness and transmission through the phase-plate film. Details are given on testing phase-plate performance by means of imaging an amorphous thin film and evaluating the power spectra of the images. PMID:23994351
NASA Astrophysics Data System (ADS)
Dey, Sudip; Karmakar, Amit
2014-02-01
This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.
Development of a Fowler flap system for a high performance general aviation airfoil
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.; Seetharam, H. C.
1974-01-01
A two-dimensional wind-tunnel evaluation of two Fowler flap configurations on the new GA(W)-1 airfoil was conducted. One configuration used a computer-designed 29-percent chord Fowler flap. The second configuration was modified to have increased Fowler action with a 30-percent chord flap. Force, pressure, and flow-visualization data were obtained at Reynolds numbers of 2.2 million to 2.9 million. Optimum slot geometry and performance were found to be close to computer predictions. A C sub L max of 3.8 was achieved. Optimum flap deflection, slot gap, and flap overlap are presented as functions of C sub L. Tests were made with the lower surface cusp filled in to show the performance penalties that result. Some data on the effects of adding vortex generators and hinged-plate spoilers were obtained.
NASA Astrophysics Data System (ADS)
Elbing, Brian R.
2006-11-01
Recent experiments on a flat plate, turbulent boundary layer at high Reynolds numbers (>10^7) were performed to investigate various methods of reducing skin friction drag. The methods used involved injecting either air or a polymer solution into the boundary layer through a slot injector. Two slot injectors were mounted on the model with one located 1.4 meters downstream of the nose and the second located 3.75 meters downstream. This allowed for some synergetic experiments to be performed by varying the injections from each slot and comparing the skin friction along the plate. Skin friction measurements were made with 6 shear stress sensors flush mounted along the stream-wise direction of the model.
40 CFR 413.71 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... deposition of conductive material from an autocatalytic plating solution without application of electrical current. (c) The term operation shall mean any step in the electroless plating process in which a metal is...
Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie
2012-07-17
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.
Gao, X-L; Zhang, G Y
2016-07-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.
Zhang, G. Y.
2016-01-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler–Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived. PMID:27493578
Influence of tip end-plate on noise of small axial fan
NASA Astrophysics Data System (ADS)
Mao, Hongya; Wang, Yanping; Lin, Peifeng; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2017-02-01
In this work, tip end-plate is used to improve the noise performance of small axial fans. Both numerical simulations and experimental methods were adopted to study the fluid flow and noise level of axial fans. Four modified models and the prototype are simulated. Influences of tip end-plate on static characteristics, internal flow field and noise of small axial fans are analyzed. The results show that on basis of the prototype, the model with the tip end-plate of 2 mm width and changed length achieved best noise performance. The overall sound pressure level of the model with the tip end-plate of 2 mm width and changed length is 2.4 dB less than that of the prototype at the monitoring point in specified far field. It is found that the mechanism of noise reduction is due to the decrease of vorticity variation on the surface of blades caused by the tip end-plate. Compared with the prototype, the static pressure of the model with the tip end-plate of 2 mm width and changed length at design flow rate decreases by 2 Pa and the efficiency decreases by 0.8%. It is concluded that the method of adding tip end-plate to impeller blades has a positive influence on reducing noise, but it may diminish the static characteristics of small axial fan to some extent.
METHOD OF MAKING AND PLATE CONNECTION
Patriarca, P.; Shubert, C.E.; Slaughter, G.M.
1963-02-26
This invention relates to a method of joining, by welding or brazing, a tube to a plate, particularly where the tube and the plate are of different thickness or have different thermal conductivities and are subject to high temperatures. In this method the tube is inserted in the core of a plate containing an annular groove in its back face concentric with the bore and in communication with the bore. One end of the tube is welded substantially flush with the front end of the plate. Brazing alloy is placed in the groove on the back face of the plate and heat is applied to the plate and tube to melt the brazing alloy to permit the alloy to flow into the bore and bond the tube to the plate. (AEC)
NASA Astrophysics Data System (ADS)
Wang, Yan Qing
2018-02-01
To provide reference for aerospace structural design, electro-mechanical vibrations of functionally graded piezoelectric material (FGPM) plates carrying porosities in the translation state are investigated. A modified power law formulation is employed to depict the material properties of the plates in the thickness direction. Three terms of inertial forces are taken into account due to the translation of plates. The geometrical nonlinearity is considered by adopting the von Kármán non-linear relations. Using the d'Alembert's principle, the nonlinear governing equation of the out-of-plane motion of the plates is derived. The equation is further discretized to a system of ordinary differential equations using the Galerkin method, which are subsequently solved via the harmonic balance method. Then, the approximate analytical results are validated by utilizing the adaptive step-size fourth-order Runge-Kutta technique. Additionally, the stability of the steady state responses is examined by means of the perturbation technique. Linear and nonlinear vibration analyses are both carried out and results display some interesting dynamic phenomenon for translational porous FGPM plates. Parametric study shows that the vibration characteristics of the present inhomogeneous structure depend on several key physical parameters.
NASA Astrophysics Data System (ADS)
Zigta, B.; Koya, P. R.
2017-12-01
This paper studies the effect of magneto hydrodynamics on unsteady free convection between a pair of infinite vertical Couette plates. The temperature of the plates and concentration between the plates vary with time. Convection between the plates is considered in the presence of thermal radiation and chemical reaction. The solution is obtained using perturbation techniques. These techniques are used to transform nonlinear coupled partial differential equations to a system of ordinary differential equations. The resulting equations are solved analytically. The solution is expressed in terms of power series with some small parameter. The effect of various parameters, viz., velocity, temperature and concentration, has been discussed. Mat lab code simulation study is carried out to support the theoretical results. The result shows that as the thermal radiation parameter R increases, the temperature decreases near the moving porous plate while it approaches to a zero in the region close to the boundary layer of the stationary plate. Moreover, as the modified Grashof number, i.e., based on concentration difference, increases, the velocity of the fluid flow increases hence the concentration decreases. An increase in both the chemical reaction parameter and Schmidt number results in decreased concentration.
Effect of leading-edge geometry on boundary-layer receptivity to freestream sound
NASA Technical Reports Server (NTRS)
Lin, Nay; Reed, Helen L.; Saric, W. S.
1991-01-01
The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.
Heat transfer and flow friction correlations for perforated plate matrix heat exchangers
NASA Astrophysics Data System (ADS)
Ratna Raju, L.; Kumar, S. Sunil; Chowdhury, K.; Nandi, T. K.
2017-02-01
Perforated plate matrix heat exchangers (MHE) are constructed of high conductivity perforated plates stacked alternately with low conductivity spacers. They are being increasingly used in many cryogenic applications including Claude cycle or Reversed Brayton cycle cryo-refrigerators and liquefiers. Design of high NTU (number of (heat) transfer unit) cryogenic MHEs requires accurate heat transfer coefficient and flow friction factor. Thermo-hydraulic behaviour of perforated plates strongly depends on the geometrical parameters. Existing correlations, however, are mostly expressed as functions of Reynolds number only. This causes, for a given configuration, significant variations in coefficients from one correlation to the other. In this paper we present heat transfer and flow friction correlations as functions of all geometrical and other controlling variables. A FluentTM based numerical model has been developed for heat transfer and pressure drop studies over a stack of alternately arranged perforated plates and spacers. The model is validated with the data from literature. Generalized correlations are obtained through regression analysis over a large number of computed data.
Li, Manfeng; Zhang, Hua; Ju, Yonglin
2012-07-01
A double-sided guarded hot plate apparatus (GHP) is specifically designed, fabricated, and constructed for the measurement of thermal conductivities of insulation specimens operated down to liquid nitrogen temperature (-196 °C), at different controlled pressures from 0.005 Pa to 0.105 MPa. The specimens placed in this apparatus are 300 mm in diameter at various thicknesses ranging from 4 mm to 40 mm. The apparatus is different from traditional GHP in terms of structure, supporting and heating method. The details of the design and construction of the hot plate, the cold plates, the suspensions, the clampings, and the vacuum chamber of the system are presented. The measurement methods of the temperatures, the input power, the meter area, and the thickness of the specimens are given. The apparatus is calibrated with teflon plates as sample and the maximum deviation from the published data is about 6% for thermal conductivity. The uncertainties for the measurement are also discussed in this paper.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
Question of the change in thermal conductivity of semiconductors in a magnetic field
NASA Astrophysics Data System (ADS)
Amirkhanov, Kh. I.; Daibov, A. Z.; Zhuze, V. P.
1986-09-01
The Maggi-Righi-Leduc effect consists in the appearance of an additional longitudinal difference in temperatures delta T in the plate of a conductor placed in a transverse magnetic field H perpendicular if there is a temperature gradient along the plate. The appearance of this difference in temperature leads to an increase in the effective part of thermal conductivity.
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
Shi, Jun; Yuan, Hao; Xu, Bing
2013-01-01
Surgery for mandibular condyle fractures must allow direct vision of the fracture, reduce surgical trauma and achieve reduction and fixation while avoiding facial nerve injury. This prospective study was conducted to introduce a new surgical approach for open reduction and internal fixation of mandibular condyle fractures using a modified transparotid approach via the parotid mini-incision, and surgical outcomes were evaluated. The modified transparotid approach via the parotid mini-incision was applied and rigid internal fixation using a small titanium plate was carried out for 36 mandibular condyle fractures in 31 cases. Postoperative follow-up of patients ranged from 3 to 26 months; in the first 3 months after surgery, outcomes for all patients were analyzed by evaluating the degree of mouth opening, occlusal relationship, facial nerve function and results of imaging studies. The occlusal relationships were excellent in all patients and none had symptoms of intraoperative ipsilateral facial nerve injury. The mean degree of mouth opening was 4.0 (maximum 4.8 cm, minimum 3.0 cm). No mandibular deviations were noted in any patient during mouth opening. CT showed complete anatomical reduction of the mandibular condyle fracture in all patients. The modified transparotid approach via the smaller, easily concealed parotid mini-incision is minimally invasive and achieves anatomical reduction and rigid internal fixation with a simplified procedure that directly exposes the fracture site. Study results showed that this procedure is safe and feasible for treating mandibular condyle fracture, and offers a short operative path, protection of the facial nerve and satisfactory aesthetic outcomes. PMID:24386221
Gene-edited plants on the plate - the "CRISPR cabbage story".
Jansson, Stefan
2018-05-10
With the advent of gene editing, it has become clearer than ever before that the legislation surrounding genetically modified organisms (Directive 2001/18/EG) is severely outdated. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui
2017-04-01
A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.
Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures
NASA Technical Reports Server (NTRS)
Forman, R. G.; Glorioso, S. V.; Medlock, J. D.
1973-01-01
Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws.
Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan
2009-01-01
Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.
Konrade, Kricket A; Clode, Alison B; Michau, Tammy M; Roe, Simon C; Trumpatori, Brian J; Krug, William V; Gilger, Brian C
2009-01-01
A grossly displaced segmental zygomatic arch fracture with marked ventro-lateral deviation of the left globe was diagnosed in a 3-month-old male German Shepherd dog following a bite injury. The fracture was approached via a modified lateral orbitotomy and a fragment of the lacrimal bone removed. The rostral portion of the fracture was stabilized with a 5-hole 2.0 dynamic compression plate bone plate. The surgical correction achieved sufficient skeletal fixation for proper anatomical reduction of the globe and excellent cosmetic and functional outcomes.
Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors
NASA Technical Reports Server (NTRS)
1981-01-01
An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.
Venus: Mantle convection, hotspots, and tectonics
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1989-01-01
The putative paradigm that planets of the same size and mass have the same tectonic style led to the adaptation of the mechanisms of terrestrial plate tectonics as the a priori model of the way Venus should behave. Data acquired over the last decade by Pioneer Venus, Venera, and ground-based radar have modified this view sharply and have illuminated the lack of detailed understanding of the plate tectonic mechanism. For reference, terrestrial mechanisms are briefly reviewed. Venusian lithospheric divergence, hotspot model, and horizontal deformation theories are proposed and examined.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2011-01-01
A survey of studies conducted since 1914 on the use of equivalent-plate stiffnesses in modeling the overall, stiffness-critical response of stiffened plates and shells is presented. Two detailed, comprehensive derivations of first-approximation equivalent-plate stiffnesses are also presented that are based on the Reissner-Mindlin-type, first-order transverse-shear deformation theory for anisotropic plates. Equivalent-plate stiffness expressions, and a corresponding symbolic manipulation computer program, are also presented for several different stiffener configurations. These expressions are very general and exhibit the full range of anisotropies permitted by the Reissner-Mindlin-type, first-order transverse-shear deformation theory for anisotropic plates. The expressions presented in the present study were also compared with available, previously published results. For the most part, the previously published results are for special cases of the general expressions presented herein and are almost in complete agreement. Analysis is also presented that extends the use of the equivalent-plate stiffness expressions to sandwich plates.
Yi, Peiyun; Zhang, Weixin; Bi, Feifei; Peng, Linfa; Lai, Xinmin
2018-06-06
Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x /amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x /a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp 2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x /a-C coatings would provide new opportunities for commercial bipolar plates.
Artificial dielectric stepped-refractive-index lens for the terahertz region.
Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M
2018-02-05
In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Singh, Mrityunjay; Shpargel, Tarah; Asthana, Rajiv
2006-01-01
A simple tube-plate joint tensile test was implemented to compare the effectiveness of commercial brazes, namely, TiCuNi, TiCuSil, and Cu-ABA, used for bonding Ti-tubes joined to C-C composite plates. The different braze systems yielded different; yet, repeatable results. The Cu-ABA system proved to have about twice the load-carrying ability of the other two systems due to the fact that the bonded area between the braze material and the C-C plate was largest for this system. The orientation of the surface fiber tows also had a significant effect on load-carrying ability with tows oriented perpendicular to the tube axis displaying the highest failure loads. Increasing the process load and modifying the surface of the C-C plate by grooving out channels for the Ti-Tube to nest in resulted in increased load-carrying ability for the TiCuSil and Cu-ABA systems due to increased bonded area and better penetration of the braze material into the C-C composite.
Time-domain simulation of damped impacted plates. II. Numerical model and results.
Lambourg, C; Chaigne, A; Matignon, D
2001-04-01
A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity.
Researcher and Mechanic with Solar Collector in Solar Simulator Cell
1976-08-21
Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.
A passive guard for low thermal conductivity measurement of small samples by the hot plate method
NASA Astrophysics Data System (ADS)
Jannot, Yves; Degiovanni, Alain; Grigorova-Moutiers, Veneta; Godefroy, Justine
2017-01-01
Hot plate methods under steady state conditions are based on a 1D model to estimate the thermal conductivity, using measurements of the temperatures T 0 and T 1 of the two sides of the sample and of the heat flux crossing it. To be consistent with the hypothesis of the 1D heat flux, either a hot plate guarded apparatus is used, or the temperature is measured at the centre of the sample. On one hand the latter method can be used only if the ratio thickness/width of the sample is sufficiently low and on the other hand the guarded hot plate method requires large width samples (typical cross section of 0.6 × 0.6 m2). That is why both methods cannot be used for low width samples. The method presented in this paper is based on an optimal choice of the temperatures T 0 and T 1 compared to the ambient temperature T a, enabling the estimation of the thermal conductivity with a centered hot plate method, by applying the 1D heat flux model. It will be shown that these optimal values do not depend on the size or on the thermal conductivity of samples (in the range 0.015-0.2 W m-1 K-1), but only on T a. The experimental results obtained validate the method for several reference samples for values of the ratio thickness/width up to 0.3, thus enabling the measurement of the thermal conductivity of samples having a small cross-section, down to 0.045 × 0.045 m2.
Multiple internal seal right micro-electro-mechanical system vacuum package
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Wiberg, Dean V. (Inventor); Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Bae, Youngsam (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)
2007-01-01
A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.
Multiple internal seal ring micro-electro-mechanical system vacuum packaging method
NASA Technical Reports Server (NTRS)
Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)
2008-01-01
A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.
Design Guideline for New Generation of High-Temperature Guarded Hot Plate
NASA Astrophysics Data System (ADS)
Wu, J.; Hameury, J.; Failleau, G.; Blahut, A.; Vachova, T.; Strnad, R.; Krause, M.; Rafeld, E.; Hammerschmidt, U.
2018-02-01
This paper complements the existing measurement standards and literature for high-temperature guarded hot plates (HTGHPs) by addressing specific issues relating to thermal conductivity measurement of technical insulation at high temperatures. The examples given are focused on the designs of HTGHPs for measuring thin thermal insulation. The sensitivity studies have been carried out on major influencing factors that affect the thermal conductivity measurements using HTGHPs, e.g., the uncertainty of temperature measurements, plate flatness and center-guard gap design and imbalance. A new configuration of center-guard gap with triangular shape cross section has been optimized to obtain the same thermal resistance as a 2 mm wide gap with rectangular shape cross section that has been used in the HTGHPs at NPL and LNE. Recommendations have been made on the selections of heater plate materials, high-temperature high-emissivity coatings and miniature temperature sensors. For the first time, thermal stress analysis method has been applied to the field of HTGHPs, in order to estimate the effect of differential thermal expansion on the flatness of thin rigid specimens during thermal conductivity tests in a GHP.
NASA Astrophysics Data System (ADS)
Martel, Ralph R.; Rounseville, Matthew P.; Botros, Ihab W.; Seligmann, Bruce E.
2002-06-01
Multiplexed Molecular Profiling (MMP) assays for drug discovery are performed in ArrayPlates. ArrayPlates are 96- well microtiter plates that contain a 16-element array at the bottom of each well. Each element within an array measures one analyte in a sample. A CCD imager records the quantitative chemiluminescent readout of all 1,536 elements in a 96-well plate simultaneously. Since array elements are reagent modifiable by the end-user, ArrayPlates can be adapted to a broad range of nucleic acid- and protein-based assays. Such multiplexed assays are rapidly established, flexible, robust, automation-friendly and cost-effective. Nucleic acid assays in ArrayPlates can detect DNA and RNA, including SNPs and ESTs. A multiplexed mRNA assay to measure the expression of 16 genes is described. The assay combines a homogeneous nuclease protection assay with subsequent probe immobilization to the array by means of a sandwich hybridization followed with chemiluminescent detection. This assay was used to examine cells grown and treated in microplates and avoided cloning, transfection, RNA insolation, reverse transcription, amplification and fluorochrome labeling. Standard deviations for the measurement of 16 genes ranged from 3 percent to 13 percent in samples of 30,000 cells. Such ArrayPlates transcription assays are useful in drug discovery and development for target validation, screening, lead optimization, metabolism and toxicity profiling. Chemiluminescent detection provides ArrayPlates assays with high signal-to-noise readout and simplifies imager requirements. Imaging a 2D surface that contains arrays simplifies lens requirements relative to imaging columns of liquid in microtiter plate wells. The Omix imager for ArrayPlates is described.
Zhang, M-L; Cao, Z; He, J-L; Xue, L; Zhou, Y; Long, S; Deng, T; Zhang, L
2012-01-01
A simple gold plate electrode (GPE) based on a gadolinium-doped titanium dioxide (Gd/TiO₂) ultrathin film was successfully constructed by using a surface sol-gel technique, and used for the detection of trace amounts of nitrite in cured foods. The Gd/TiO₂ nanoparticles were synthesised and characterised via scanning electron microscopy (SEM) and X-ray diffraction (XRD), indicating that the Gd-doped TiO₂ formed an anatase phase through roasting at 450°C, generating actively interstitial oxygen at the interface of the surface of TiO₂ lattice surrounded by Gd³⁺. The electro-catalytic effect for oxidation of nitrite on the modified electrode was investigated by cyclic voltammetry in 0.10 mol l⁻¹ sulfuric acid media solution, showing that the modified electrode exhibited excellent response performance to nitrite with good reproducibility, selectivity and stability. The catalytic peak current was found to be linear with nitrite concentrations in the range of 8.0 × 10⁻⁷ to 4.0 × 10⁻⁴) mol l⁻¹, with a detection limit of 5.0 × 10⁻⁷ mol l⁻¹ (S/N = 3). The modified electrode could be used for the determination of nitrite in the cured sausage samples with a satisfactory recovery in the range of 95.5-104%, showing its promising application for food safety monitoring.
NASA Technical Reports Server (NTRS)
Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)
1981-01-01
A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.
NASA Technical Reports Server (NTRS)
Demmons, Nathaniel (Inventor); Roy, Thomas (Inventor); Spence, Douglas (Inventor); Martin, Roy (Inventor); Hruby, Vladimir (Inventor); Ehrbar, Eric (Inventor); Zwahlen, Jurg (Inventor)
2011-01-01
An electrospray device includes an electrospray emitter adapted to receive electrospray fluid; an extractor plate spaced from the electrospray emitter and having at least one aperture; and a power supply for applying a first voltage between the extractor plate and emitter for generating at least one Taylor cone emission through the aperture to create an electrospray plume from the electrospray fluid, the extractor plate as well as accelerator and shaping plates may include a porous, conductive medium for transporting and storing excess, accumulated electrospray fluid away from the aperture.
Hypervelocity impact on shielded plates
NASA Technical Reports Server (NTRS)
Smith, James P.
1993-01-01
A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.
NASA Technical Reports Server (NTRS)
Chyu, MING-C.
1992-01-01
Plate-fin heat exchangers will be employed in the Active Thermal Control System of Space Station Freedom. During ground testing of prototypic heat exchangers, certain anomalous behaviors have been observed. Diagnosis has been conducted to determine the cause of the observed behaviors, including a scrutiny of temperature, pressure, and flow rate test data, and verification calculations based on such data and more data collected during the ambient and thermal/vacuum tests participated by the author. The test data of a plate-fin cold plate have been also analyzed. Recommendation was made with regard to further tests providing more useful information of the cold plate performance.
In-depth survey report of American Airlines plating facility
NASA Astrophysics Data System (ADS)
Mortimer, V. D., Jr.
1982-12-01
An in depth survey was conducted at the American Airlines Maintenance and Engineering Center as part of National Institute for Occupational Safety and Health (NIOSH) study evaluating measures to control occupational health hazards associated with the metal plating industry. This American Airlines plating facility, employing approximately 25 workers, is primarily engaged in plating hard chromium, nickel and cadmium on aircraft engine and landing gear parts. Six tanks were studied, including an electroless nickel tank. Area and personal samples for chromium, nickel, cadmium, and cyanide were collected. Ventilation airflow and tank dimensions were measured and data recorded on plating operations. The relationships between air contaminants emitted, local exhaust ventilation flow rate, tank size, and plating activity were evaluated.
Development of control system of coating of rod hydraulic cylinders
NASA Astrophysics Data System (ADS)
Aizhambaeva, S. Zh; Maximova, A. V.
2018-01-01
In this article, requirements to materials of hydraulic cylinders and methods of eliminating the main factors affecting the quality of the applied coatings rod hydraulic cylinders. The chromium plating process - one of ways of increase of anti-friction properties of coatings rods, stability to the wear and corrosion. The article gives description of differences of the stand-speed chromium plating process from other types of chromium plating that determines a conclusion about cutting time of chromium plating process. Conducting the analysis of technological equipment suggested addressing the modernization of high-speed chromium plating processes by automation and mechanization. Control system developed by design of schematic block diagram of a modernized and stand-speed chromium plating process.
Detecting swift fox: Smoked-plate scent stations versus spotlighting
Daniel W. Uresk; Kieth E. Severson; Jody Javersak
2003-01-01
We compared two methods of detecting presence of swift fox: smoked-plate scent stations and spotlight counts. Tracks were counted on ten 1-mile (1.6-km) transects with bait/tracking plate stations every 0.1 mile (0.16 km). Vehicle spotlight counts were conducted on the same transects. Methods were compared with Spearman's rank order correlation. Repeated measures...
21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Selection of extractability conditions. These are to be chosen as provided in § 176.170(c) of this chapter..., weighed platinum dish, evaporated to 2-5 milliliters on a nonsparking, low-temperature hot plate and dried...
21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Selection of extractability conditions. These are to be chosen as provided in § 176.170(c) of this chapter..., weighed platinum dish, evaporated to 2-5 milliliters on a nonsparking, low-temperature hot plate and dried...
21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Selection of extractability conditions. These are to be chosen as provided in § 176.170(c) of this chapter..., weighed platinum dish, evaporated to 2-5 milliliters on a nonsparking, low-temperature hot plate and dried...
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
NASA Astrophysics Data System (ADS)
Zhou, Xiaosheng; Liu, Yongchang; Liu, Chenxi; Yu, Liming; Li, Huijun
2018-06-01
The martensitic transformation, microstructural characteristics, and mechanical performance of modified ferritic heat-resistant steels under various austenitizing conditions were investigated by differential scanning calorimetry, microstructural examination, and mechanical tests. When the austenitizing temperature was as high as 1200 °C, a considerable amount of δ-ferrite formed, and the austenite grain size was seen to decrease. Higher austenitizing temperatures were found to promote martensite formation, but retard martensite growth, and the lath width increased as the austenitizing temperature increased. After tempering, rod-like and granular M23C6 carbides appeared within the tempered martensite, the average size and composition of which were dependent on the austenitizing conditions. When the austenitizing temperature was 1050 °C, granular MX with sizes less than 6 nm were identified in the δ-ferrite, while for other austenitizing temperatures, plate MX was inside the δ-ferrite. At 1200 °C, the length of the plate MX was as high as 100 nm, and the number density of plate MX decreased. The steel austenitized at 1150 °C exhibited the best tensile performance. It was found that the presence of a large amount of δ-ferrite would initiate cracking, thereby impeding the tensile strength.
Congruency of scapula locking plates: implications for implant design.
Park, Andrew Y; DiStefano, James G; Nguyen, Thuc-Quyen; Buckley, Jenni M; Montgomery, William H; Grimsrud, Chris D
2012-04-01
We conducted a study to evaluate the congruency of fit of current scapular plate designs. Three-dimensional image-processing and -analysis software, and computed tomography scans of 12 cadaveric scapulae were used to generate 3 measurements: mean distance from plate to bone, maximum distance, and percentage of plate surface within 2 mm of bone. These measurements were used to quantify congruency. The scapular spine plate had the most congruent fit in all 3 measured variables. The lateral border and glenoid plates performed statistically as well as the scapular spine plate in at least 1 of the measured variables. The medial border plate had the least optimal measurements in all 3 variables. With locking-plate technology used in a wide variety of anatomical locations, the locking scapula plate system can allow for a fixed-angle construct in this region. Our study results showed that the scapular spine, glenoid, and lateral border plates are adequate in terms of congruency. However, design improvements may be necessary for the medial border plate. In addition, we describe a novel method for quantifying hardware congruency, a method that can be applied to any anatomical location.
Phase 2 of the array automated assembly task for the low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Petersen, R. C.
1980-01-01
Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work was directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The process was found to be extremely lengthy and cumbersome, and was also found to produce a product virtually identical to that produced by single step electroless nickel plating, as shown by adhesion tests and electrical characteristics of cells under illumination.
Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.
Zhang, Wenting; Lee, Woo Y; Zilberberg, Jenny
2017-01-01
We described here the manufacturing and implementation of two prototype perfusion culture devices designed primarily for the cultivation of difficult-to-preserve primary patient-derived multiple myeloma cells (MMC). The first device consists of an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment. The second platform is a 96-well plate-modified perfusion culture device that can be utilized to reconstruct several tissue and tumor microenvironments utilizing both primary human and murine cells. This culture device was designed and fabricated specifically to: (1) enable the preservation of primary MMC for downstream use in biological studies and chemosensitivity analyses and, (2) provide a high-throughput format that is compatible with plate readers specifically seeing that this system is built on an industry standard 96-well tissue culture plate.
Acoustic plane waves incident on an oblique clamped panel in a rectangular duct
NASA Technical Reports Server (NTRS)
Unz, H.; Roskam, J.
1980-01-01
The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.
2000-07-29
An entranced youngster watches a demonstration of the enhanced resilience of undercooled metal alloys as compared to conventional alloys. Steel bearings are dropped onto plates made of steel, titanium alloy, and zirconium liquid metal alloy, so-called because its molecular structure is amorphous and not crystalline. The bearing on the liquid metal plate bounces for a minute or more longer than on the other plates. Experiments aboard the Space Shuttle helped scientists refine their understanding of the physical properties of certain metal alloys when undercooled (i.e., kept liquid below their normal solidification temperature). This new knowledge then allowed scientists to modify a terrestrial production method so they can now make limited quantities marketed under the Liquid Metal trademark. The exhibit was a part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.
Current conducting end plate of fuel cell assembly
Walsh, Michael M.
1999-01-01
A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.
NASA Technical Reports Server (NTRS)
McGowan, David M.
1999-01-01
The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are derived. These equations are then modified to allow the plate reference surface to be located a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described. The terms of the plate stiffness matrix using both classical plate theory (CPT) and first-order shear-deformation plate theory (SDPT) are presented. The effects of in-plane transverse and in-plane shear loads are included in the in-plane stability equations. Numerical results for several example problems with different loading states are presented. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPT are made. The computational effort required by the new analysis is compared to that of the analysis currently in the VICONOPT program. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.
Enhanced methanol utilization in direct methanol fuel cell
Ren, Xiaoming; Gottesfeld, Shimshon
2001-10-02
The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.
Mechanical design and analysis of focal plate for gravity deformation
NASA Astrophysics Data System (ADS)
Wang, Jianping; Chu, Jiaru; Hu, Hongzhuan; Li, Kexuan; Zhou, Zengxiang
2014-07-01
The surface accuracy of astronomical telescope focal plate is a key indicator to precision stellar observation. To conduct accurate deformation measurement for focal plate in different status, a 6-DOF hexapod platform was used for attitude adjustment. For the small adjustment range of a classic 6-DOF hexapod platform, an improved structural arrangement method was proposed in the paper to achieve ultimate adjustment of the focal plate in horizontal and vertical direction. To validate the feasibility of this method, an angle change model which used ball hinge was set up for the movement and base plate. Simulation results in MATLAB suggested that the ball hinge angle change of movement and base plate is within the range of the limiting angle in the process of the platform plate adjusting to ultimate attitude. The proposed method has some guiding significance for accurate surface measurement of focal plate.
21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... These are to be chosen as provided in § 176.170(c) of this chapter. (2) Preparation of samples... milliliters on a nonsparking, low-temperature hot plate and dried in 212 °F oven for 30 minutes. The residue...
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Leonard, B. P.
1994-01-01
The modified mixing length (MML) turbulence model was installed in the Proteus Navier-Stokes code, then modified to make it applicable to a wider range of flows typical of aerospace propulsion applications. The modifications are based on experimental data for three flat-plate flows having zero, mild adverse, and strong adverse pressure gradients. Three transonic diffuser test cases were run with the new version of the model in order to evaluate its performance. All results are compared with experimental data and show improvements over calculations made using the Baldwin-Lomax turbulence model, the standard algebraic model in Proteus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The RERTR-9 experiment was designed to test the effect of modified fuel/clad interfaces in monolithic fuel plates and to demonstrate that the addition of Si to the matrix material in dispersion plates continued to be effective at high loading (~8.5 g U/cc). Several monolithic fuel plates were fabricated by Hot Isostatic Pressing (HIP) and Friction Bonding (FB) with thin layers of Si inserted and by HIP with a Zr diffusion barrier between the fuel and cladding. Si was applied to the interface by thermal spray of Al Si mixtures and by the insertion of thin Si-rich Al alloy foil betweenmore » the fuel/clad interface. The dispersion fuel plates were fabricated by semi-standard rolling techniques (the reduction by rolling was lowered to limit fabrication defects). Matrix materials consisted of Al-Si alloys and mixtures with various levels of Si. The following report summarizes the life of the RERTR-9A/B experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.« less
Nechaeva, O V; Tikhomirova, E I; Zayarsky, D A; Bespalova, N V; Glinskaya, E V; Shurshalova, N F; Al Bayati, B M; Babailova, A I
2017-04-01
The dynamics of microbial biofilm formation by standard strain and by clinical strains of uropathogenic coliform bacteria was investigated in vitro and the effect of sublethal concentrations of the polymer compound polyazolidinammonium modified with iodine hydrate ions on the initial stages of biofilm formation was assessed. Treatment of immunological plate wells with the polymeric compound prevented film formation, especially in case of clinical E. coli strain carrying FimH virulence gene.
The electrical conductivity during incipient melting in the oceanic low velocity zone
Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice
2014-01-01
A low viscosity layer in the upper mantle, the Asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the Asthenosphere are attributed either to sub-solidus water-related defects in olivine minerals2-4 or to a few volume percents of partial melt5-8 but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be higher than 50 ppm due to partitioning with other mantle phases9, including pargasite amphibole at moderate temperatures10, and partial melting at high temperatures9; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the Asthenosphere and by the high melt mobility that can lead to gravitational segregation11,12. Here we determined the electrical conductivity of CO2-H2O-rich melts, typically produced at the onset of mantle melting. Electrical conductivity modestly increases with moderate amounts of H2O and CO2 but it dramatically increases as CO2 content exceeds 6 wt% in the melt. Incipient melts, long-expected to prevail in the asthenosphere10,13-15, can therefore trigger its high electrical conductivities. Considering depleted and enriched mantle abundances in H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the Asthenosphere for various plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (>5Ma), incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas for young plates4, where seamount volcanism occurs6, higher degree of melting is expected. PMID:24784219
Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; Lim, James
2008-01-01
Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.
Electrical conductivity during incipient melting in the oceanic low-velocity zone.
Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice
2014-05-01
The low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals or to a few volume per cent of partial melt, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases (including pargasite amphibole at moderate temperatures) and partial melting at high temperatures. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates, where seamount volcanism occurs, a higher degree of melting is expected.
NASA Astrophysics Data System (ADS)
Grobbelaar-Van Dalsen, Marié
2015-08-01
This article is a continuation of our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) on the polynomial stabilization of a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin-Timoshenko plate. We introduce nonlinear damping that is effective only in a small portion of the interior of the plate. It turns out that the model is uniformly exponentially stable when the function , that represents the locally distributed damping, behaves linearly near the origin. However, the use of Mindlin-Timoshenko plate theory in the model enforces a restriction on the region occupied by the plate.
Omnidirectional antenna having constant phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sena, Matthew
Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintainingmore » a required spacing/parallelism therebetween.« less
NASA Astrophysics Data System (ADS)
Schmoldt, J.-P.; G.. Jones, A.; Hogg, C.; Rosell, O.
2009-04-01
The first phase of the DIAS magnetotelluric (MT) component of the PICASSO (Project to Investigate Convective Alboran Sea System Overturn) project was carried out in Southern Spain from Sept.-Nov., 2007. PICASSO is an international, multi-disciplinary project that aims to improve knowledge of the internal structure and plate-tectonic processes in the highly complex three-dimensional region formed by the collision of the African and European plate under the effect of the Mediterranean plate motion. Two different types of magnetotelluric (MT) equipment - broadband (BBMT) and long period (LMT) MT - were used along a profile from the outskirts of Madrid to the Mediterranean Sea through the Betic Mountain Chain. In spite of low solar activity during acquisition, the time series data are of good quality at most sites due to the excellent instrumentation and careful site location. The modified acquisition design of one of the equipment types (the LEMI long period system) with separate recording of each telluric channel allowed for advanced investigation of the dataset. The data were processed using four different robust algorithms, and the different responses have been compared. Pseudosections of responses from this first phase show a remarkably complex subsurface structure dominated by a slightly southwards dipping, conductive slab underneath the region of the External Betic Chain. Strike direction varies along the profile and with depth due to the intricate morphology, and its choice has an enormous impact on the responses to be modelled and thereby provides a challenging framework for MT data interpretation. This paper will describe the experiment and show representative responses and strike analyses. Preliminary models derived from different assumptions about strike coordinates will be compared and contrasted, and common features interpreted.
Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane
NASA Astrophysics Data System (ADS)
Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.
2018-06-01
A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.
Sieve tube geometry in relation to phloem flow.
Mullendore, Daniel L; Windt, Carel W; Van As, Henk; Knoblauch, Michael
2010-03-01
Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube-specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms.
Sieve Tube Geometry in Relation to Phloem Flow
Mullendore, Daniel L.; Windt, Carel W.; Van As, Henk; Knoblauch, Michael
2010-01-01
Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube–specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms. PMID:20354199
Structural verification for GAS experiments
NASA Technical Reports Server (NTRS)
Peden, Mark Daniel
1992-01-01
The purpose of this paper is to assist the Get Away Special (GAS) experimenter in conducting a thorough structural verification of its experiment structural configuration, thus expediting the structural review/approval process and the safety process in general. Material selection for structural subsystems will be covered with an emphasis on fasteners (GSFC fastener integrity requirements) and primary support structures (Stress Corrosion Cracking requirements and National Space Transportation System (NSTS) requirements). Different approaches to structural verifications (tests and analyses) will be outlined especially those stemming from lessons learned on load and fundamental frequency verification. In addition, fracture control will be covered for those payloads that utilize a door assembly or modify the containment provided by the standard GAS Experiment Mounting Plate (EMP). Structural hazard assessment and the preparation of structural hazard reports will be reviewed to form a summation of structural safety issues for inclusion in the safety data package.
Impact and Blast Resistance of Sandwich Plates
NASA Astrophysics Data System (ADS)
Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.
Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.
Corrosion resistant metallic bipolar plate
Brady, Michael P [Oak Ridge, TN; Schneibel, Joachim H [Knoxville, TN; Pint, Bruce A [Knoxville, TN; Maziasz, Philip J [Oak Ridge, TN
2007-05-01
A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.
Titanium Carbide Bipolar Plate for Electrochemical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.
Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.
Fabrication of myogenic engineered tissue constructs.
Pacak, Christina A; Cowan, Douglas B
2009-05-01
Despite the fact that electronic pacemakers are life-saving medical devices, their long-term performance in pediatric patients can be problematic owing to the restrictions imposed by a child's small size and their inevitable growth. Consequently, there is a genuine need for innovative therapies designed specifically for pediatric patients with cardiac rhythm disorders. We propose that a conductive biological alternative consisting of a collagen-based matrix containing autologously-derived cells could better adapt to growth, reduce the need for recurrent surgeries, and greatly improve the quality of life for these patients. In the present study, we describe a procedure for incorporating primary skeletal myoblast cell cultures within a hydrogel matrix to fashion a surgically-implantable tissue construct that will serve as an electrical conduit between the upper and lower chambers of the heart. Ultimately, we anticipate using this type of engineered tissue to restore atrioventricular electrical conduction in children with complete heart block. In view of that, we isolate myoblasts from the skeletal muscles of neonatal Lewis rats and plate them onto laminin-coated tissue culture dishes using a modified version of established protocols. After one to two days, cultured cells are collected and mixed with antibiotics, type 1 collagen, Matrigel, and NaHCO(3). The result is a viscous, uniform solution that can be cast into a mold of nearly any shape and size. For our tissue constructs, we employ type 1 collagen isolated from fetal lamb skin using standard procedures. Once the tissue has solidified at 37 degrees C, culture media is carefully added to the plate until the construct is submerged. The engineered tissue is then allowed to further condense through dehydration for 2 more days, at which point it is ready for in vitro assessment or surgical-implantation.
An investigation to determine the producibility of a 3-D braider and bias direction weaving loom
NASA Technical Reports Server (NTRS)
Huey, Cecil O., Jr.
1991-01-01
The development of prototype machines for the production of generalized braid patterns is described. Mechanical operating principles and control strategies are presented for two prototype machines which were fabricated and evaluated. Both machines represent advances over current techniques for forming composite material preforms by enabling near ideal control of fiber orientation. Furthermore, they overcome both the lack of general control of produced fiber architectures and the complexity of other weaving processes that were produced for the same purpose. One prototype, the modified Farley braider, consists of an array of turntables which can be rotated 90 degrees and returned; hence, they can form tracks in the x and y axis. Yarn ends are transported about the surface formed by the turntables using motorized tractors. These tractors are controlled using an optical link with a control circuit and host computer. The tractors are powered through electrical contact with the turntables. The necessary relative motions are produced by a series of linear tractor moves combined with a sequence of turntable rotations. The movement of the tractors about the surface causes the yarns to produce the desired braiding pattern. The second device, the shuttle plate braider, consists of a braiding surface formed by an array of square elements, each separated from its neighbor by a gap. Beneath this surface lies a shuttle plate, which reciprocates first in one axis and then in the other. As this movement takes place, yarn carrying shuttles engage and disengage the plate by means of solenoid activated pins. By selective engagement and disengagement, the shuttles can move the yarn ends in any desired pattern, forming the desired braid. Control power, and control signals, are transmitted from the electronic interface circuit and host computer, via the braiding surface through electrical contact with the shuttles. Motive power is proved to the shuttles by motion of the shuttle plate, which is passively driven using pneumatic rams. Each shuttle is a simple device that uses only a solenoid to engage the plate and is a simple device that uses only a solenoid to engage the plate and is independently controllable. When compared with each other, the modified Farley braider has the advantage of speed, and the shuttle plate braider the advantage of mechanical control and simplicity.
Method for in situ heating of hydrocarbonaceous formations
Little, William E.; McLendon, Thomas R.
1987-01-01
A method for extracting valuable constituents from underground hydrocarbonaceous deposits such as heavy crude tar sands and oil shale is disclosed. Initially, a stratum containing a rich deposit is hydraulically fractured to form a horizontally extending fracture plane. A conducting liquid and proppant is then injected into the fracture plane to form a conducting plane. Electrical excitations are then introduced into the stratum adjacent the conducting plate to retort the rich stratum along the conducting plane. The valuable constituents from the stratum adjacent the conducting plate are then recovered. Subsequently, the remainder of the deposit is also combustion retorted to further recover valuable constituents from the deposit. Various R.F. heating systems are also disclosed for use in the present invention.
Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.
Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to bemore » cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.« less
Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.
Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to bemore » cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface tomore » be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.« less
Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.
2016-08-09
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.
2016-04-05
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.; Estochen, E.G.
The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due tomore » tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.; Estochen, E.
The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds requiremore » replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.« less
NASA Astrophysics Data System (ADS)
Eremin, A. V.; Kudinov, V. A.; Stefanyuk, E. V.; Kudinov, I. V.
2018-03-01
By using the modified Fourier law’s formula considering the relaxation of heat flow and temperature gradient, a mathematical model of the local non-equilibrium process of plate heating with ultrashort laser pulses was developed. The research showed that consideration of non-locality results in the delayed plate heat up irrespective of the laser radiation flow intensity. It was also shown that in consideration of the relaxation phenomena, the boundary conditions may not be fulfilled immediately – they may be set only within a definite range of the initial time.
Mohanty, Sujata; Dabas, Jitender; Gupta, Rekha
2015-01-01
Transport distraction is nowadays gaining enormous popularity and is becoming a promising option for reconstruction of mandibular defects. However, the vast number of distraction device designs create huge confusion in the clinician's mind to choose the right one. Considering these complex and costly designs, the authors decided to find a simplified way of combining a modified conventional reconstruction plate and monofocal distraction device that can act as a transport distraction device for bridging of bony defects. A case performed by this technique and device has been presented along with the description of device design.
NASA Astrophysics Data System (ADS)
Anjum, A.; Mir, N. A.; Farooq, M.; Khan, M. Ijaz; Hayat, T.
2018-06-01
This article addresses thermally stratified stagnation point flow of viscous fluid induced by a non-linear variable thicked Riga plate. Velocity and thermal slip effects are incorporated to disclose the flow analysis. Solar thermal radiation phenomenon is implemented to address the characteristics of heat transfer. Variations of different physical parameters on the horizontal velocity and temperature distributions are described through graphs. Graphical interpretations of skin friction coefficient (drag force at the surface) and Nusselt number (rate of heat transfer) are also addressed. Modified Hartman number and thermal stratification parameter result in reduction of temperature distribution.
Ripley, Edward B.; Hallman, Russell L.
2015-11-10
Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.
Laser processing of polymer constructs from poly(3-hydroxybutyrate).
Volova, T G; Tarasevich, A A; Golubev, A I; Boyandin, A N; Shumilova, A A; Nikolaeva, E D; Shishatskaya, E I
2015-01-01
CO2 laser radiation was used to process poly(3-hydroxybutyrate) constructs - films and 3D pressed plates. Laser processing increased the biocompatibility of unperforated films treated with moderate uniform radiation, as estimated by the number and degree of adhesion of NIH 3T3 mouse fibroblast cells. The biocompatibility of perforated films modified in the pulsed mode did not change significantly. At the same time, pulsed laser processing of the 3D plates produced perforated scaffolds with improved mechanical properties and high biocompatibility with bone marrow-derived multipotent, mesenchymal stem cells, which show great promise for bone regeneration.
The many impacts of building mountain belts on plate tectonics and mantle flow
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent
2015-04-01
During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Such an increase of stresses in the lithosphere can impact on plate tectonics and mantle dynamics. We show that mountain belts at plate boundaries increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, this changes the dynamic and kinematic surface conditions of the underlying flowing mantle. Ultimately, this modifies the pattern of mantle flow. This forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among these, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, or the initiation of subduction, the onset of obduction, for the lithosphere. In the mantle, such change in boundary condition redesigns the pattern of mantle flow and, consequently, the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere rests. Our results show that when collision occurs, the mantle flow is highly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) to a modification of the convection style. In turn, the transition between a 'free' convection (mobile lid) and an 'upset' convection (stagnant -or sluggish- lid) highly impacts the dynamics of the lithosphere at the surface of the Earth. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, a fact that may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.
Status and directions of modified tribological surfaces by ion processes
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1988-01-01
An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.
46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ultrasonic thickness gaugings at a minimum of 5 points on each plate, evenly spaced; (4) Take hull plating... the Officer in Charge, Marine Inspection (OCMI) prior to conducting the survey. If you choose this...
46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ultrasonic thickness gaugings at a minimum of 5 points on each plate, evenly spaced; (4) Take hull plating... the Officer in Charge, Marine Inspection (OCMI) prior to conducting the survey. If you choose this...
46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ultrasonic thickness gaugings at a minimum of 5 points on each plate, evenly spaced; (4) Take hull plating... the Officer in Charge, Marine Inspection (OCMI) prior to conducting the survey. If you choose this...
46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ultrasonic thickness gaugings at a minimum of 5 points on each plate, evenly spaced; (4) Take hull plating... the Officer in Charge, Marine Inspection (OCMI) prior to conducting the survey. If you choose this...
DOT National Transportation Integrated Search
2016-10-01
This report details the research undertaken and software tools that were developed that enable digital : images of gusset plates to be converted into orthophotos, establish physical dimensions, collect : geometric information from them, and conduct s...
Titanium carbide bipolar plate for electrochemical devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.
A corrosion resistant, electrically conductive, non-porous bipolar plate is made from titanium carbide for use in an eletrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.
NASA Astrophysics Data System (ADS)
Lee, C. H.; Yang, D. Y.; Lee, S. R.; Chang, I. G.; Lee, T. W.
2011-08-01
The shielded slot plate, which has a sheared corrugated trapezoidal pattern, is a component of the metallic bipolar plate for the molten carbonate fuel cell (MCFC). In order to increase the efficiency of the fuel cell, the unit cell of the shielded slot plate should have a relatively large upper area. Additionally, defects from the forming process should be minimized. In order to simulate the slitting process, whereby sheared corrugated patterns are formed, ductile fracture criteria based on the histories of stress and strain are employed. The user material subroutine VUMAT is employed for implementation of the material and ductile fracture criteria in the commercial FEM software ABAQUS. The variables of the ductile fracture criteria were determined by comparing the simulation results and the experimental results of the tension test and the shearing test. Parametric studies were conducted to determine the critical value of the ductile fracture criterion. Employing these ductile fracture criteria, the three dimensional forming process of the shielded slot plate was numerically simulated. The effects of the slitting process in the forming process of the shielded slot plate were analyzed through a FEM simulation and experimental studies. Finally, experiments involving microscopic and macroscopic observations were conducted to verify the numerical simulations of the 3-step forming process.
NASA Astrophysics Data System (ADS)
Emadi, Arezoo; Buchanan, Douglas
2016-10-01
A multiple moving membrane capacitive micromachined ultrasonic transducer has been developed. This transducer cell structure includes a second flexible plate suspended between the transducer top plate and the fixed bottom electrode. The added plate influences the transducer top plate deflection map and, therefore, the transducer properties. Three series of individual air-coupled, dual deflectable plate transducers and two 1×27 element transducer arrays were fabricated using multiuser microelectromechanical systems (MEMS) processes (MUMPs). Each set of transducers included devices with middle plate radii from 22% to 65% of the corresponding transducer top plate radius. The effect of the transducer middle plate configuration has been investigated. Electrical, optical, and acoustic characterizations were conducted and the results were compared with the simulation findings. It was found that the transducer top plate amplitude of vibration is significantly enhanced with a wider middle deflectable plate. The electrical and optical measurement results are shown to be in good agreement with simulation results. The acoustic measurement results indicated a 37% increase in the amplitude of transmitted signal by the 1-MHz air-couple transducer when its middle plate radius was increased by 35%.
NASA Technical Reports Server (NTRS)
Brazel, J. P.; Kennedy, B. S.
1974-01-01
The materials studied are described along with the apparatus and the experimental techniques employed. The results of the measurements involving two REI Silica materials and a Mod 1 B REI Mullite are listed in a table. Measurements were conducted at unusually high temperature differences to detect 'shine-through' radiation transparency. Photographs are presented of the high-temperature guarded hot plate assembly.
The microstructure of aluminum A5083 butt joint by friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasri, M. A. H. M.; Afendi, M.; Ismail, A.
This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the platemore » form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.« less
TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS
Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.
1962-01-01
Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975
Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Schuster, David M.
2001-01-01
Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.
Muhlisin; Panjono; Kim, Dong Soo; Song, Yeong Rae; Lee, Sung-Jin; Lee, Jeong Koo; Lee, Sung Ki
2014-01-01
This study was conducted to observe the effects of gas composition in modified atmosphere packaging (MAP) on the shelf-life of Longissimus dorsi of Korean Native Black Pigs-Duroc Crossbred (KNP×D) during refrigerated storage. Muscle sample was obtained from the left side of carcass of seven months old of KNP×D barrow. The sample was sliced into 1 cm in thickness, placed on trays (two slices/tray) and filled with different gas composition, i.e. 0:20:80/O2:CO2:N2 (MAP1), 30:20:50/O2:CO2:N2 (MAP2) and 70:20:10/O2:CO2:N2 (MAP3). Other slices of sample were vacuum packed (VP) as a control. All packs were stored at 5±1°C. At 12 d of storage, pH value of MAP2 and MAP3 were higher (p<0.05) than that of MAP1 and pH value of MAP1 was higher (p<0.05) than that of VP. At 6 d of storage, redness (a*) value of MAP2 and MAP3 were higher (p<0.05) than that of VP and MAP1 and, at 9 and 12 d of storage, redness value of MAP3 was higher (p<0.05) than that of VP, MAP1, and MAP2. At 3, 6, 9, and 12 d of storage, the 2-thiobarbituric acid reactive substances (TBARS) value of MAP3 was higher than that of MAP2 and TBARS value of MAP2 was higher than that of VP and MAP1. At 3, 6, 9, and 12 d of storage, volatile basic nitrogen values of MAP2 and MAP3 were higher (p<0.05) than those of VP and MAP1. At 3 d of storage, total aerobic plate counts of MAP2 and MAP3 were higher (p<0.05) than those of VP and MAP1 and, at 6 d of storage, total aerobic plate counts of MAP3 was higher (p<0.05) than that of MAP1 and MAP2. However, there was no significant different total aerobic plate count among MAP1, MAP2, and MAP3 at 9 and 12 d of storage. There was no significant different total anaerobic plate count among MAP1, MAP2, and MAP3 during storage. It is concluded that the MAP containing 30:20:50/O2:CO2:N2 gas composition (MAP2) might be ideal for better meat quality for KNP×D meat. PMID:25083110
Space Research Benefits Demonstrated
NASA Technical Reports Server (NTRS)
2000-01-01
An entranced youngster watches a demonstration of the enhanced resilience of undercooled metal alloys as compared to conventional alloys. Steel bearings are dropped onto plates made of steel, titanium alloy, and zirconium liquid metal alloy, so-called because its molecular structure is amorphous and not crystalline. The bearing on the liquid metal plate bounces for a minute or more longer than on the other plates. Experiments aboard the Space Shuttle helped scientists refine their understanding of the physical properties of certain metal alloys when undercooled (i.e., kept liquid below their normal solidification temperature). This new knowledge then allowed scientists to modify a terrestrial production method so they can now make limited quantities marketed under the Liquid Metal trademark. The exhibit was a part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.
Couette flow of an incompressible fluid in a porous channel with mass transfer
NASA Astrophysics Data System (ADS)
Niranjana, N.; Vidhya, M.; Govindarajan, A.
2018-04-01
The present discussion deals with the study of couette flow through a porous medium of a viscous incompressible fluid between two infinite horizontal parallel porous flat plates with heat and mass transfer. The stationary plate and the plate in uniform motion are subjected to transverse sinusoidal injection and uniform suction of the fluid. Due to this type of injection velocity, the flow becomes three dimensional. The analytical solutions of the nonlinear partial differential equations of this problem are obtained by using perturbation technique. Expressions for the velocity, temperature fields and the rate of heat and mass transfers are obtained. Effects of the following parameters Schmidt number (Sc), Modified Grashof number (Gm) on the velocity, temperature and concentration fields are obtained numerically and depicted through graphs. The rate of heat and mass transfer are also analyzed.
Thermal conductivity of metals
NASA Technical Reports Server (NTRS)
Kazem, Sayyed M.
1990-01-01
The objective is to familiarize students with steady and unsteady heat transfer by conduction and with the effect of thermal conductivity upon temperature distribution through a homogeneous substance. The elementary heat conduction experiment presented is designed for associate degree technology students in a simple manner to enhance their intuition and to clarify many confusing concepts such as temperature, thermal energy, thermal conductivity, heat, transient and steady flows. The equipment set is safe, small, portable (10 kg) and relatively cheap (about $1200): the electric hot plate 2 kg (4.4 lb) for $175: the 24 channel selector and Thermocouple Digital Readout (Trendicator) 4.5 kg (10 lb) for about $1000; the three metal specimens (each of 2.5 cm diameter and 11 cm length), base plate and the bucket all about 3 kg (7 lb) for about $25. The experiment may take from 60 to 70 minutes. Although the hot plate surface temperature could be set from 90 to 370 C (maximum of 750 watts) it is a good practice to work with temperatures of 180 to 200 C (about 400 watts). They may experiment in squads of 2, 3 or even 4, or the instructor may demonstrate it for the whole class.
NASA Technical Reports Server (NTRS)
Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.
1994-01-01
Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.
Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.
Klimchitskaya, G L; Mostepanenko, V M
2017-07-12
The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.
Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression
NASA Astrophysics Data System (ADS)
Yuan, Fuping; Tsai, Liren; Prakash, Vikas; Dandekar, Dattatraya P.; Rajendran, A. M.
2008-05-01
In the present paper, a series of plate impact shock-reshock and shock-release experiments were conducted to study the critical shear strength of a S2 glass fiber reinforced polymer (GRP) composite under shock compression levels ranging from 0.8 to 1.8 GPa. The GRP was fabricated at ARL, Aberdeen, using S2 glass woven roving in a Cycom 4102 polyester resin matrix. The experiments were conducted by using an 82.5 mm bore single-stage gas gun at Case Western Reserve University. In order to conduct shock-reshock and shock-release experiments a dual flyer plate assembly was utilized. The shock-reshock experiments were conducted by using a projectile faced with GRP and backed with a relatively high shock impedance Al 6061-T6 plate; while for the shock-release experiments the GRP was backed by a relatively lower impedance polymethyl methacrylate backup flyer plate. A multibeam velocity interferometer was used to measure the particle velocity profile at the rear surface of the target plate. By using self-consistent technique procedure described by Asay and Chabbildas [Shock Waves and High-Strain-Rate Phenomena, in Metals, edited by M. M. Myers and L. E. Murr (Plenum, New York, 1981), pp. 417-431], the critical shear strength of the GRP (2τc) was determined for impact stresses in the range of 0.8 to 1.8 GPa. The results show that the critical shear strength of the GRP is increased from 0.108 GPa to 0.682 GPa when the impact stress is increased from 0.8 to 1.8 GPa. The increase in critical shear strength may be attributed to rate-dependence and/or pressure dependent yield behavior of the GRP.
Casimir free energy of dielectric films: classical limit, low-temperature behavior and control
NASA Astrophysics Data System (ADS)
Klimchitskaya, G. L.; Mostepanenko, V. M.
2017-07-01
The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO2 and Al2O3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO2, Al2O3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.
Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations
NASA Astrophysics Data System (ADS)
Murphy, Michael J.; Adrian, Ronald J.
2007-08-01
Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.
Thickness Measurement of Surface Attachment on Plate with Lamb Wave
NASA Astrophysics Data System (ADS)
Ma, Xianglong; Zhang, Yinghong; Wen, Lichao; He, Yehu
2017-12-01
Aiming at the thickness detection of the plate surface attachment, a nondestructive testing method based on the Lamb wave is presented. This method utilizes Lamb wave propagation characteristics of signals in a bi-layer medium to measure the surface attachment plate thickness. Propagation of Lamb wave in bi-layer elastic is modeled and analyzed. The two-dimensional simulation model of electromagnetic ultrasonic plate - scale is established. The simulation is conducted by software COMSOL for simulation analysis under different boiler scale thickness wave form curve. Through this study, the thickness of the attached material can be judged by analyzing the characteristics of the received signal when the thickness of the surface of the plate is measured.
A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface.
Bonetti, Simone; Pistone, Assunta; Brucale, Marco; Karges, Saskia; Favaretto, Laura; Zambianchi, Massimo; Posati, Tamara; Sagnella, Anna; Caprini, Marco; Toffanin, Stefano; Zamboni, Roberto; Camaioni, Nadia; Muccini, Michele; Melucci, Manuela; Benfenati, Valentina
2015-06-03
Lysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties. The Lys insertion in T4 enables adhesion of primary culture of rat dorsal root ganglion (DRG), which is not achievable by plating cells on T4. Notably, on T4Lys, the number on adhering neurons/area is higher and displays a twofold longer neurite length than neurons plated on glass coated with poly-l-lysine. Finally, by whole-cell patch-clamp, it is shown that the biofunctionality of neurons cultured on T4Lys is preserved. The present study introduces an innovative concept for organic material neural interface that combines optical and iono-electronic functionalities with improved biocompatibility and neuron affinity promoted by Lys linkage and the softness of organic semiconductors. Lysinated organic semiconductors could set the scene for the fabrication of simplified bioorganic devices geometry for cells bidirectional communication or optoelectronic control of neural cells biofunctionality. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Machicado, Jorge D; Marcos, Luis A; Tello, Raul; Canales, Marco; Terashima, Angelica; Gotuzzo, Eduardo
2012-06-01
An observational descriptive study was conducted in a Shipibo-Conibo/Ese'Eja community of the rainforest in Peru to compare the Kato-Katz method and the spontaneous sedimentation in tube technique (SSTT) for the diagnosis of intestinal parasites as well as to report the prevalence of soil-transmitted helminth (STH) infections in this area. A total of 73 stool samples were collected and analysed by several parasitological techniques, including Kato-Katz, SSTT, modified Baermann technique (MBT), agar plate culture, Harada-Mori culture and the direct smear examination. Kato-Katz and SSTT had the same rate of detection for Ascaris lumbricoides (5%), Trichuris trichiura (5%), hookworm (14%) and Hymenolepis nana (26%). The detection rate for Strongyloides stercoralis larvae was 16% by SSTT and 0% by Kato-Katz, but 18% by agar plate culture and 16% by MBT. The SSTT also had the advantage of detecting multiple intestinal protozoa such as Blastocystis hominis (40%), Giardia intestinalis (29%) and Entamoeba histolytica/E. dispar (16%). The most common intestinal parasites found in this community were B. hominis, G. intestinalis, H. nana, S. stercoralis and hookworm. In conclusion, the SSTT is not inferior to Kato-Katz for the diagnosis of common STH infections but is largely superior for detecting intestinal protozoa and S. stercoralis larvae. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Houk, V S; Claxton, L D
1986-03-01
10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bjørseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.
Rathayibacter iranicus isolated from asymptomatic wheat seeds in Turkey
USDA-ARS?s Scientific Manuscript database
Asymptomatic wheat seeds collected from 799 farmers in six central provinces of Turkey were checked for the presence of Rathayibacter species by plating 100 µl of the diluted and undiluted seed wash suspension onto modified 523 agar. Of the 25 isolated strains presumptively identified as Rathayibac...
Alimi, Marjan; Njoku, Innocent; Hofstetter, Christoph P; Tsiouris, Apostolos J; Kesavabhotla, Kartik; Boockvar, John; Navarro-Ramirez, Rodrigo; Härtl, Roger
2016-04-17
Interposition grafts combined with anterior plating currently remain the gold standard for anterior cervical discectomy and fusion. The use of anterior plates increases fusion rates but may be associated with higher rates of postoperative dysphagia. The aim of the current study was to determine the clinical and radiological outcomes following anterior cervical discectomy and fusion (ACDF) using zero-profile anchored spacers versus standard interposition grafts with anterior plating. This was a retrospective case series. A total of 53 male and 51 female consecutive patients (164 total operated levels) who underwent ACDF between 2007 and 2011 were included. The mean clinical follow-up was 15.7 ± 1.2 (SEM) months for patients with zero-profile implants and 14.8 ± 2.1 months for patients with conventional ACDF with anterior plating. Patient demographics, operative details, clinical outcomes, complications, and radiographic imaging were reviewed. Dysphagia was determined using the Bazaz criteria. Clinical outcome scores improved in both groups as measured by the modified Japanese Orthopedic Association and Nurick scores. Zero-profile constructs gave rise to significantly less prevertebral soft tissue swelling compared to constructs with anterior plates postoperatively (15.74 ± 0.52 as compared to 20.48 ± 0.85 mm, p < 0.001) and at the latest follow-up (10.88 ± 0.39 mm vs. 13.72 ± 0.67 mm, p < 0.001). There was a significant difference in the incidence of dysphagia at the latest follow-up (1.5% vs. 20%, p=0.001, zero-profile vs. anterior plate, respectively). Zero-profile implants lead to functional outcomes similar to standard anterior plate constructs. Avoiding the use of an anterior locking plate may decrease the risk of persistent postoperative dysphagia.
Durable warmth retention finishing of down using titanium dioxide optimized by RSM
NASA Astrophysics Data System (ADS)
Li, Huihao; Qi, Lu; Li, Jun
2017-03-01
A new product, referred to herein as modified down, was prepared by grafting down fiber with titanium dioxide. Grafting modification brings new functionalities to down Using response surface methodology (RSM); the effect of titanium dioxide concentration, KH550 concentration, and baking temperature on the warmth retention is studied using the response surface method (RSM) to obtain the optimal experimental formula and models. The optimal preparation conditions for modified down were 19.35% titanium dioxide, 15.81% KH550, 10min baking time, and 115 °C temperature. The warmth retention of the modified down was 79.98%, The structure and property of modified down were characterized and analyzed by using Flat Plate Warmth Retaining Tester, FT-IR, and TG. The CLO value increased by 27.28%, the thermal resistance increased by 27.34%. The ultimate residual quantities of the modified down fibers were 30.05%.
Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector
NASA Astrophysics Data System (ADS)
Herrero Martín, R.; García, A.; Pérez-García, J.
2012-11-01
Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.
Comparison of seven plating media for enumeration of Listeria spp.
Loessner, M J; Bell, R H; Jay, J M; Shelef, L A
1988-01-01
The suitability of seven media for the enumeration of Listeria spp. was evaluated at 30 degrees C for 48 h. The media tested were (i) the original McBride Listeria agar formulation (with glycine); (ii) modified McBride agar containing glycine anhydride; (iii) LiCl-phenylethanol-moxalactam (LPM) agar; (iv) acriflavine-ceftazidime agar; (v) Rodriguez isolation agar (RISA); (vi) modified Vogel-Johnson (MVJ) agar; (vii) cyclohexanedione-nalidixic acid-phenylethanol agar; and tryptose agar as control. A total of 66 organisms were used including 11 Listeria monocytogenes strains and 5 other Listeria spp. For L. monocytogenes strains only, all media performed highly similarly. Of the other Listeria spp., only two grew on MVJ agar and three each grew on LPM and RISA. Only LPM agar inhibited the 50 non-listeriae, including five yeasts, while MVJ agar inhibited all but one yeast. The McBride Listeria agar formulation that contained glycine anhydride was less selective than the original. When pure cultures of 10 bacteria (including one L. monocytogenes strain) were combined and plated on four media, L. monocytogenes colonies were easiest to enumerate on MVJ agar, followed by LPM and RISA. These media ranked in the same order when plated with homogenates of various foods to which was added L. monocytogenes Scott A, but LPM agar was the best overall since Scott A was inhibited by MVJ. Upon microscopic examination of listerial colonies from the plating media, atypical cell morphology was noted with cells being about twofold in size on LPM, MVJ, and acriflavine-ceftazidime agars. Overall, LPM agar was the most suitable of the media tested even though it was inhibitory to Listeria grayi and Listeria murrayi. PMID:3146947
Peridinialean dinoflagellate plate patterns, labels and homologies
Edwards, L.E.
1990-01-01
Tabulation patterns for peridinialean dinoflagellate thecae and cysts have been traditionally expressed using a plate labelling system described by C.A. Kofoid in the early 1900's. This system can obscure dinoflagellate plate homologies and has not always been strictly applied. The plate-labelling system presented here introduces new series labels but incorporates key features and ideas from the more recently proposed systems of G.L. Eaton and F.J.R. Taylor, as modified by W.R. Evitt. Plate-series recognition begins with the cingulum (C-series) and proceeds from the cingulum toward the apex for the three series of the epitheca/epicyst and proceeds from the cingulum toward the antapex for the two series of the hypotheca/hypocyst. The epithecal/epicystal model consists of eight plates that touch the anterior margin of the cingulum (E-series: plates E1-E7, ES), seven plates toward the apex that touch the E-series plates (M-series: R, M1-M6), and up to seven plates near the apex that do not touch E-series plates (D-series: Dp-Dv). The hypothecal/hypocystal model consists of eight plates that touch the posterior margin of the cingulum (H-series: H1-H6,HR,HS) and three plates toward the antapex (T1-T3). Epithecal/epicystal tabulation patterns come in both 8- and 7- models, corresponding to eight and seven plates, respectively, in the E-series. Hypothecal/hypocystal tabulation patterns also come in both 8- and 7-models, corresponding to eight and seven plates, respectively, in the H-series. By convention, the 7-model epitheca/epicyst has no plates E1 and M1; the 7-model hypotheca/hypocyst has no plate H6. Within an 8-model or 7-model, the system emphasizes plates that are presumed to be homologous by giving them identical labels. I introduce the adjectives "monothigmate", "dithigmate," and "trithigmate" to designate plates touching one, two, and three plates, respectively, of the adjacent series. The term "thigmation" applies to the analysis of plate contacts between plate series as a guide to interpretation. Application of the proposed plate labelling system involves: (1) locating the cingulum and identifying the plate series, (2) identifying the landmark plates within each series, (3) assigning appropriate plate numbers to plates in the E- and H-series, (4) assigning appropriate plate numbers to the remaining plates using thigmation and interactions of diagonally opposite pairs of plates (quartets) as guides to interpretation. A "typical" gonyaulacoid tabulation pattern combines a 7-model epitheca/epicyst and an 8-model hypotheca/hypocyst. A "typical" peridinioid tabulation pattern combines an 8-model epitheca/epicyst and a 7-model hypotheca/hypocyst. The group that is presently termed partiform gonyaulacoid (which includes the modern genus Cladopyxis Stein and the fossil Microdinium Cookson and Eisenack) has an 8-model epitheca/epicyst and an 8-model hypotheca/hypocyst. ?? 1990.
NASA Astrophysics Data System (ADS)
Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis
2015-05-01
This paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed.
From Geodynamics to Simplicity
NASA Astrophysics Data System (ADS)
Anderson, D. L.
2002-12-01
Mantle convection and plate tectonics are often thought as synonymous. Convection is sometimes treated as the driver or plate tectonics is viewed as simply a manifestation of mantle convection. Mantle plumes are regarded as supplying some of the elements missing in the plate tectonic and mantle convection paradigms, such as island chains, swells and large igneous provinces. An alternate view is motivated by Prigogine's concept of far-from-equilibrium self-organization ( SOFFE), not to be confused with Bak's self-organized criticality ( SOC) . In a SOFFE system the components interact, and the system is small compared to the outside world to which it is open. There must be multiple possible states and dissipation is important. Such a system is sensitive to small changes. Rayleigh-Benard convection in a container with isothermal walls is such a self-organizing system ; the driving bouyancy and the dissipation ( viscosity ) are in the fluid. In Marangoni convection the driving forces ( surface tension ) and dissipation are in the surface film and this organizes the surface and the underlying fluid. The mantle provides energy and matter to the interacting plate system but forces in the plates drive and dissipate the energy. Thus, plate tectonics may be a SOFFEE system that drives convection,as are systems cooled from above, in general. If so, plates will reorganize as boundary conditions change ; incipient plate boundaries will emerge as volcanic chains at tensile regions. Plates are defined as regions of lateral compression ( force chains ), rather than strength, and they are ephemeral. The plate system, rather than mantle viscosity, will modulate mantle cooling. The supercontinent cycle, with episodes of reorganization and massive magmatism, may be a manifestation of this far-from-equilibrium, driven from above, system. Geodynamics may be simpler than we think. Plate tectonics is certainly a more powerful concept once the concepts of rididity, elasticity, homogeneity, steady-state, equilibrium and uniformity are dropped or modified, as qualifiers of the system,as recommended in Occam's philosophy.
Deformation of island-arc lithosphere due to steady plate subduction
NASA Astrophysics Data System (ADS)
Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro
2016-02-01
Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction zones: a pair of topography and gravity anomalies, high in the arc and low around the trench, is observed without exceptions all over the world, while there are large variety in the amplitude and horizontal scale of the topography and gravity anomalies.
Roda, A; Mirasoli, M; Guardigli, M; Michelini, E; Simoni, P; Magliulo, M
2006-03-01
Proteins from the Cry 1 family, in particular Cry 1Ab, are commonly expressed in genetically modified Bt maize in order to control chewing insect pests. A sensitive chemiluminescent sandwich enzyme immunoassay for the detection of Cry1Ab protein from genetically modified Bt maize has been developed and validated. A Cry1Ab protein-specific antibody was immobilized on 96- or 384-well microtiter plates in order to capture the Cry1Ab toxin in the sample; the bound toxin was then detected by employing a second anti-Cry1Ab antibody and a horseradish peroxidase-labeled anti-antibody, followed by measurement of the enzyme activity with an enhanced chemiluminescent system. The chemiluminescent assay fulfilled all the requirements of accuracy and precision and exhibited limits of detection of a few pg mL(-1) Cry1Ab (3 or 5 pg mL(-1), depending on the assay format), which are significantly lower than that achievable using conventional colorimetric detection of peroxidase activity and also represent an improvement compared to previously developed Cry1Ab immunoassays. High-throughput analysis can be performed using the 384-well microtiter plate format immunoassay, which also allows one to reduce the consumption of samples and reagents. Validation of the assay, performed by analyzing certified reference materials, proved that the immunoassay is able to detect the presence of the Cry1Ab protein in certified reference samples containing as low as 0.1% of MON 810 genetically modified Bt maize. This value is below the threshold requiring mandatory labeling of foods containing genetically modified material according to the actual EU regulation.
Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation
NASA Astrophysics Data System (ADS)
Tsamasphyros, George J.; Bikakis, George S.
2015-01-01
GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.
Methods of localization of Lamb wave sources on thin plates
NASA Astrophysics Data System (ADS)
Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut
2015-04-01
Signal localization techniques are ubiquitous in both industry and academic communities. We propose a new localization method on plates which is based on energy amplitude attenuation and inverted source amplitude comparison. This inversion is tested on synthetic data using Lamb wave propagation direct model and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers (1-26 kHz frequency range)). We compare the performance of the technique to the classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. Furthermore, we measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, geometry, Signal to Noise Ratio, and we show that this very versatile technique works better than classical ones over the sampling rates 100kHz - 1MHz. Experimental phase consists of a glass plate having dimensions of 80cmx40cm with a thickness of 1cm. Generated signals due to a wooden hammer hit or a steel ball hit are captured by sensors placed on the plate on different locations with the mentioned sensors. Numerical simulations are done using dispersive far field approximation of plate waves. Signals are generated using a hertzian loading over the plate. Using imaginary sources outside the plate boundaries the effect of reflections is also included. This proposed method, can be modified to be implemented on 3d environments, monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2015-01-01
Test specimen configuration was provided by Parker Chomerics. The EMI gasket used in this project was Cho-Seal 6503E. Black oxide alloy steel socket head bolts were used to hold the plates together. Non-conductive spacers were used to control the amount of compression on the gaskets. The following test fixture specifications were provided by Parker Chomerics. The CHO-TP09 test plate sets selected for this project consist of two aluminum plates manufactured to the specifications detailed in CHO-TP09. The first plate, referred to as the test frame, is illustrated in Figure 1. The test frame is designed with a cutout in the center and two alternating bolt patterns. One pattern is used to bolt the test frame to the corresponding test cover plate (Figure 2), forming a test plate set. The second pattern accepts the hardware used to mount the fully assembled test plate set to the main adapter plate (Figure 3).
Vortex Dynamics of Asymmetric Heave Plates
NASA Astrophysics Data System (ADS)
Rusch, Curtis; Maurer, Benjamin; Polagye, Brian
2017-11-01
Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.
Size and Charge Dependence of Ion Transport in Human Nail Plate
Baswan, Sudhir M.; Li, S. Kevin; LaCount, Terri D.; Kasting, Gerald B.
2016-01-01
The electrical properties of human nail plate are poorly characterized, yet are a key determinate of the potential to treat nail diseases such as onychomycosis using iontophoresis. In order to address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of −1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were three-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upwards of 5 Å (approximately MW ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. PMID:26886342
Robust Monolithic Ultraviolet Interferometer for the Shimmer Instrument on STPSat-1
2003-01-01
wavelength- dependent spatial frequency are produced by a modified Michelson interferometer in which the re- turn mirrors are replaced by conventional...alignment of the spacers, prisms, and gratings to the beam splitter was accom- plished with the aid of a Zerodur plate onto which the bottom surface of
ON THE MODIFICATION OF THE LOW FLOW-RATE PM10 DICHOTOMOUS SAMPLER INLET
A popular flat-topped inlet used for the collection of atmospheric particulate matter was modified to reduce water intrusion during rain and snow events. Simple alterations in the intake region of this inlet were made, including a larger drain hole, a one piece top plate, and ...
NASA Astrophysics Data System (ADS)
Nosov, G. V.; Kuleshova, E. O.; Lefebvre, S.; Plyusnin, A. A.; Tokmashev, D. M.
2017-02-01
The technique for parameters determination of magnetic skin effect on ferromagnetic plate at a specified pulse of magnetic field intensity on the plate surface is proposed. It is based on a frequency-domain method and could be applied for a pulsing transformer, a dynamoelectric pulse generator and a commutating inductor that contains an imbricated core. Due to this technique, such plate parameters as specific heat loss energy, the average power of this energy and the plate temperature raise, the magnetic flux attenuation factor and the plate q-factor could be calculated. These parameters depend on the steel type, the amplitude, the rms value, the duration and the form of the magnetic field intensity impulse on the plate surface. The plate thickness is defined by the value of the flux attenuation factor and the plate q-factor that should be maximal. The reliability of the proposed technique is built on a common frequency-domain usage applicable for pulse transient study under zero boundary conditions of the electric circuit and the conformity of obtained results with the sinusoidal steady-state mode.
Synthesis and analgesic activity of some side-chain modified anpirtoline derivatives.
Rádl, S; Hezky, P; Proska, J; Hejnová, L; Krejcí, I
2000-05-01
New derivatives of anpirtoline and deazaanpirtoline modified in the side chain have been synthesized. The series includes compounds 3 with side-chains containing piperidine or pyrrolidine rings, compounds 4 containing 8-azabicyclo[3.2.1]octane moiety, and compounds 5 having piperazine ring in their side-chains. Their receptor binding profiles (5-HT1A, 5-HT1B) and analgesic activity (hot plate, acetic acid induced writhing) have been studied. Optimized structures (PM3-MOPAC, Alchemy 2000, Tripos Inc.) of the synthesized compounds 3-5 were compared with that of anpirtoline.
Rayner, Simon; Brignac, Stafford; Bumeister, Ron; Belosludtsev, Yuri; Ward, Travis; Grant, O’dell; O’Brien, Kevin; Evans, Glen A.; Garner, Harold R.
1998-01-01
We have designed and constructed a machine that synthesizes two standard 96-well plates of oligonucleotides in a single run using standard phosphoramidite chemistry. The machine is capable of making a combination of standard, degenerate, or modified oligos in a single plate. The run time is typically 17 hr for two plates of 20-mers and a reaction scale of 40 nm. The reaction vessel is a standard polypropylene 96-well plate with a hole drilled in the bottom of each well. The two plates are placed in separate vacuum chucks and mounted on an xy table. Each well in turn is positioned under the appropriate reagent injection line and the reagent is injected by switching a dedicated valve. All aspects of machine operation are controlled by a Macintosh computer, which also guides the user through the startup and shutdown procedures, provides a continuous update on the status of the run, and facilitates a number of service procedures that need to be carried out periodically. Over 25,000 oligos have been synthesized for use in dye terminator sequencing reactions, polymerase chain reactions (PCRs), hybridization, and RT–PCR. Oligos up to 100 bases in length have been made with a coupling efficiency in excess of 99%. These machines, working in conjunction with our oligo prediction code are particularly well suited to application in automated high throughput genomic sequencing. PMID:9685322
Rayner, S; Brignac, S; Bumeister, R; Belosludtsev, Y; Ward, T; Grant, O; O'Brien, K; Evans, G A; Garner, H R
1998-07-01
We have designed and constructed a machine that synthesizes two standard 96-well plates of oligonucleotides in a single run using standard phosphoramidite chemistry. The machine is capable of making a combination of standard, degenerate, or modified oligos in a single plate. The run time is typically 17 hr for two plates of 20-mers and a reaction scale of 40 nM. The reaction vessel is a standard polypropylene 96-well plate with a hole drilled in the bottom of each well. The two plates are placed in separate vacuum chucks and mounted on an xy table. Each well in turn is positioned under the appropriate reagent injection line and the reagent is injected by switching a dedicated valve. All aspects of machine operation are controlled by a Macintosh computer, which also guides the user through the startup and shutdown procedures, provides a continuous update on the status of the run, and facilitates a number of service procedures that need to be carried out periodically. Over 25,000 oligos have been synthesized for use in dye terminator sequencing reactions, polymerase chain reactions (PCRs), hybridization, and RT-PCR. Oligos up to 100 bases in length have been made with a coupling efficiency in excess of 99%. These machines, working in conjunction with our oligo prediction code are particularly well suited to application in automated high throughput genomic sequencing.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Girgis, Morris
2002-01-01
To complement the effectiveness of ceramic materials and the applicability to turbine engine applications, a parametric study using the finite element method was carried out. This study conducted thorough analyses of a thermal-barrier-coated silicon nitride (Si3N4) plate specimen with cooling channels, where its thermal conductivity was verified in an attempt to minimize the thermal stresses and reach an optimal rate of stress. The thermal stress profile was generated for specimens with circular and square cooling channels. Lower stresses were reported for a higher magnitude of thermal conductivity and in particular for the circular cooling channel arrangement. Contour plots for the stresses and the temperature are presented and discussed.
Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa
2014-11-07
Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All rights reserved.
Plate motions and deformations from geologic and geodetic data
NASA Technical Reports Server (NTRS)
Jordan, T. H.
1986-01-01
A satellite laser ranging experiment conducted by NASA since 1972 has measured the relative motion between the North America and Pacific plates in California. Based on these measurements, the 896-km distance between San Diego and Quincy, California, is shortening at 62 + or - 9 mm/yr. This geodetic estimate is consistent with the rate of motion between the two plates, calculated from geological data to be 53 + or - 3 mm/yr averaged over the past few million years.
Metallization of Large Silicon Wafers
NASA Technical Reports Server (NTRS)
Pryor, R. A.
1978-01-01
A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.
Composite bipolar plate for electrochemical cells
Wilson, Mahlon S.; Busick, Deanna N.
2001-01-01
A bipolar separator plate for fuel cells consists of a molded mixture of a vinyl ester resin and graphite powder. The plate serves as a current collector and may contain fluid flow fields for the distribution of reactant gases. The material is inexpensive, electrically conductive, lightweight, strong, corrosion resistant, easily mass produced, and relatively impermeable to hydrogen gas. The addition of certain fiber reinforcements and other additives can improve the properties of the composite material without significantly increasing its overall cost.
Microchannel plate for high-efficiency field emission display
NASA Astrophysics Data System (ADS)
Yi, Whikun; Jin, Sunghwan; Jeong, Taewon; Lee, Jeonghee; Yu, SeGi; Choi, Yongsoo; Kim, J. M.
2000-09-01
The efficiency of a field emission display was improved significantly with a newly developed microchannel plate. The key features of this unit and its fabrication are summarized as follows: (a) bulk alumina is used as a substrate material, (b) channel location is defined by a programed-hole puncher, and (c) thin film deposition is conducted by electroless plating followed by a sol-gel process. With the microchannel plate between the cathode and the anode of a field emission display, the brightness of luminescent light increases three- to fourfold by electron multiplication through an array of pores in the device. In addition, the fabricated microchannel plate prevents spreading of electrons emitted from the cathode tips, thus improving both display resolution and picture quality.
Forced air heat sink apparatus
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1989-01-01
A high efficiency forced air heat sink assembly employs a split feed transverse flow configuration to minimize the length of the air flow path through at least two separated fin structures. Different embodiments use different fin structure material configurations including honeycomb, corrugated and serpentine. Each such embodiment uses a thermally conductive plate having opposed exterior surfaces; one for receiving a component to be cooled and one for receiving the fin structures. The serpentine structured fin embodiment employs a plurality of fin supports extending from the plate and forming a plurality of channels for receiving the fin structures. A high thermal conductivity bondant, such as metal-filled epoxy, may be used to bond the fin structures to either the plate or the fin supports. Dip brazing and soldering may also be employed depending upon the materials selected.
Finite element analysis of damped vibrations of laminated composite plates
NASA Astrophysics Data System (ADS)
Hu, Baogang
1992-11-01
Damped free vibrations of composite laminates are subjected to macromechanical analysis. Two models are developed: a viscoelastic damping model and a specific damping capacity model. The important symmetry property of the damping matrix is retained in both models. A modified modal strain energy method is proposed for evaluating modal damping in the viscoelastic model using a real (instead of a complex) eigenvalue problem solution. Numerical studies of multidegree of freedom systems are conducted to illustrate the improved accuracy of the method compared to the modal strain energy method. The experimental data reported in the literature for damped free vibrations in both polymer matrix and metal matrix composites were used in finite element analysis to test and compare the damping models. The natural frequencies and modal damping were obtained using both the viscoelastic and specific models. Results from both models are in satisfactory agreement with experimental data. Both models were found to be reasonably accurate for systems with low damping. Parametric studies were conducted to examine the effects on damping of the side to thickness ratio, the principal moduli ratio, the total number of layers, the ply angle, and the boundary conditions.
NASA Astrophysics Data System (ADS)
Zhang, Dongming; Ye, Ke; Cao, Dianxue; Yin, Jinling; Cheng, Kui; Wang, Bin; Xu, Yang; Wang, Guiling
2015-01-01
A piece of flexible and conductive A4 paper is prepared by coating a layer of graphite with a normal 8B pencil. Then, Co nano-plates and Pd are assembled by a simple electrodeposition and chemical-reduction methods on the surface of the electrified paper, respectively. The as-prepared paper substrate/graphite-Co film-Pd (PG-CoPd) electrode is characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer, transmission electron microscope and X-ray diffractometer. The catalytic activity of the PG-CoPd electrode for H2O2 electroreduction is investigated by means of cyclic voltammetry and chronoamperometry. The preparation process of the PG-CoPd electrode does not use any binder and it exhibits a three dimensional (3D) nano structure, high stability and good electric conductivity. The mass of the Pd in PG-CoPd is about 0.0535 mg cm-2 and the reduction current density reaches to -4.30 A cm-2 mg-1 in 1 mol dm-3 NaOH and 1.4 mol dm-3 H2O2 at -0.5 V, which is higher than our previous reports of Au/Pd modified Co electrode.
NASA Astrophysics Data System (ADS)
Wang, Xinliang; Lu, Xiaoming; Liu, Yanqi; Xu, Yi; Wang, Cheng; Li, Shuai; Yu, Linpeng; Liu, Xingyan; Liu, Keyang; Xu, Rongjie; Leng, Yuxin
2018-06-01
We present an intra-cavity spectral shaping method to suppress the spectral narrowing in a Ti:sapphire (Ti:Sa) regenerative amplifier. The spectral shaping is realized by manipulating the stored energies of two Ti:Sa crystals with orthogonal c-axes, changing the length of a quartz plate, and rotating a broadband achromatic half-wave plate. Using this method, in our proof-of-concept experiment, an 84-nm-(FWHM)-broadband amplified pulse with an energy gain larger than 106 is obtained, which supports a 17.8 fs Fourier-transform-limited pulse duration. The pulse is compressed to 18.9 fs.
NASA Astrophysics Data System (ADS)
Hanumagowda, B. N.; Raju, B. T.; Santhosh Kumar, J.; Vasanth, K. R.
2018-04-01
In this paper, the effect of PDV on the couple stress squeeze film lubrication between porous circular stepped plates is presented. Keeping the base of Christensen’s stochastic theory modified Reynolds equation is derived. Reynolds equation, fluid film pressure, squeeze film time and load carrying capacity are solved using standard perturbation technique. The results are tabulated and presented graphically for selected physical parameters and found that the squeeze effect is depleted in a porous bearing compared to its nonporous and increasing permeability has an adverse effect on the pressure, load carrying capacity and time of approach.
Effect of micropolar fluids on the squeeze film elliptical plates
NASA Astrophysics Data System (ADS)
Rajashekhar Anagod, Roopa; Hanumagowda, B. N.; Santhosh Kumar, J.
2018-04-01
This paper elaborates on the theoretical analysis of squeeze film characteristics between elliptical plates lubricated with non-Newtonian micro-polar fluid on the basis of Eringen's micropolar fluid theory. The modified Reynold’s equations governing flow of micro-polar fluid is mathematically derived and the outcome reveals distribution of film pressure which determines the dynamic performance characteristics in terms of load and squeezing time for various values of coupling number and micro structure size parameter. Based on the results reported, The influence of non-Newtonian micropolar fluids is examined in enhancing the time of approach and load carrying capacity to the case of classical Newtonian lubricant.
Astrometric and Photometric Analysis of the September 2008 ATV-1 Re-Entry Event
NASA Technical Reports Server (NTRS)
Mulrooney, Mark K.; Barker, Edwin S.; Maley, Paul D.; Beaulieu, Kevin R.; Stokely, Christopher L.
2008-01-01
NASA utilized Image Intensified Video Cameras for ATV data acquisition from a jet flying at 12.8 km. Afterwards the video was digitized and then analyzed with a modified commercial software package, Image Systems Trackeye. Astrometric results were limited by saturation, plate scale, and imposed linear plate solution based on field reference stars. Time-dependent fragment angular trajectories, velocities, accelerations, and luminosities were derived in each video segment. It was evident that individual fragments behave differently. Photometric accuracy was insufficient to confidently assess correlations between luminosity and fragment spatial behavior (velocity, deceleration). Use of high resolution digital video cameras in future should remedy this shortcoming.
Improvement of Mechanical Properties in Natural Rubber with Organic Fillers
NASA Astrophysics Data System (ADS)
Gonzales-Fernandes, M.; Bastos, Andrade C. G.; Esper, F. J.; Valenzuela-Diaz, F. R.; Wiebeck, H.
When added to polymeric matrices, organophilic clay transforms the performance of the resulting composites. A natural rubber matrix with different loads was prepared as bentonite chocolate B modified by sodification and treated with ammonium quaternary salt with cellulose charge, cardboard and palm fiber. After the mixture of natural rubber in a roller mill with the additives and subsequent addition of loads individually, plates were vulcanized for fabricating specimens. We measured the mechanical properties of traction and the interlayer distances analyzed by XRD. The aim of the paper is to show that the composite obtained improved in mechanical properties as compared to plates without the addition of loads.
NASA Astrophysics Data System (ADS)
Zuev, V. V.; Grigoriev, S. N.; Fominski, V. Yu.; Volosova, M. A.; Soloviev, A. A.
2017-09-01
The possibility of detecting H2 by registering the thermal electromotive force signal, which arises between the surfaces of 6 H-SiC plates with a thickness of 400 μm, is established. The working surface of the plates is modified by deposition of a WO x film and catalytic Pt. An ohmic contact (Ni/Pt) is created on the rear surface of the plate, and this surface is maintained at a stabilized temperature of 350°C. The temperature gradient through the plate thickness arises due to the cooling of the working surface with the air medium. The delivery of H2 into this medium up to a concentration of 2% gives rise to a 15-fold increase in the electric signal, which considerably exceeds the Pt/WO x /SiC/Ni/Pt system's response registered in the usual way by measuring the current-voltage dependence. In this case, an additional power source for the registration of the thermal electromotive force is not required.
NASA Astrophysics Data System (ADS)
Zhen, Wu; Wanji, Chen
2007-05-01
Buckling response of angle-ply laminated composite and sandwich plates are analyzed using the global-local higher order theory with combination of geometric stiffness matrix in this paper. This global-local theory completely fulfills the free surface conditions and the displacement and stress continuity conditions at interfaces. Moreover, the number of unknowns in this theory is independent of the number of layers in the laminate. Based on this global-local theory, a three-noded triangular element satisfying C1 continuity conditions has also been proposed. The bending part of this element is constructed from the concept of DKT element. In order to improve the accuracy of the analysis, a method of modified geometric stiffness matrix has been introduced. Numerical results show that the present theory not only computes accurately the buckling response of general laminated composite plates but also predicts the critical buckling loads of soft-core sandwiches. However, the global higher-order theories as well as first order theories might encounter some difficulties and overestimate the critical buckling loads for soft-core sandwich plates.
Hayat, Tasawar; Khan, Mumtaz; Khan, Muhammad Ijaz; Alsaedi, Ahmed; Ayub, Muhammad
2017-01-01
This article predicts the electromagneto squeezing rotational flow of carbon-water nanofluid between two stretchable Riga plates. Riga plate is known as electromagnetic actuator which is the combination of permanent magnets and a span wise aligned array of alternating electrodes mounted on a plane surface. Mathematical model is developed for the flow problem with the phenomena of melting heat transfer, viscous dissipation and heat generation/absorption. Water and kerosene oil are utilized as the base fluids whereas single and multi-wall carbon nanotubes as the nanomaterials. Numerical solutions of the dimensionless problems are constructed by using built in shooting method. The correlation expressions for Nusselt number and skin friction coefficient are developed and examined through numerical data. Characteristics of numerous relevant parameters on the dimensionless temperature and velocity are sketched and discussed. Horizontal velocity is found to enhance for higher modified Hartman number.
Hayat, Tasawar; Khan, Mumtaz; Alsaedi, Ahmed; Ayub, Muhammad
2017-01-01
This article predicts the electromagneto squeezing rotational flow of carbon-water nanofluid between two stretchable Riga plates. Riga plate is known as electromagnetic actuator which is the combination of permanent magnets and a span wise aligned array of alternating electrodes mounted on a plane surface. Mathematical model is developed for the flow problem with the phenomena of melting heat transfer, viscous dissipation and heat generation/absorption. Water and kerosene oil are utilized as the base fluids whereas single and multi-wall carbon nanotubes as the nanomaterials. Numerical solutions of the dimensionless problems are constructed by using built in shooting method. The correlation expressions for Nusselt number and skin friction coefficient are developed and examined through numerical data. Characteristics of numerous relevant parameters on the dimensionless temperature and velocity are sketched and discussed. Horizontal velocity is found to enhance for higher modified Hartman number. PMID:28813427
DOT National Transportation Integrated Search
2012-03-01
This research study aims at evaluating the performance of base and subgrade soil in flexible pavements under repeated loading test conditions. For this purpose, an indoor cyclic plate load testing equipment was developed and used to conduct a series ...
Magnetically excited flexural plate wave apparatus
Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Smith, James H.
1998-01-01
A non-piezoelectric flexural plate wave apparatus having meander-line transducers mounted on a non-piezoelectric membrane. A static magnetic field is directed perpendicularly to the conductive legs of the transducers in the plane of the membrane. Single-port, two-port, resonant, non-resonant, eigenmode, and delay-line modes may be employed.
Basin formation and Neogene sedimentation in a backarc setting, Halmahera, eastern Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, R.; Nichols, G.J.
1991-03-01
It has been proposed that basins in backarc setting form in association with subduction by thinning of continental crust, backarc spreading in oceanic crust, compression, or trapping of pieces of oceanic plate behind an arc. The Halmahera basin in eastern Indonesia developed in a backarc setting but does not fall into these categories; it formed by subsidence of thickened crust made up of imbricated Mesozoic-Paleogene arc and ophiolite rocks. Halmahera lies at the western edge of the Philippine Sea Plate in a complex zone of convergence between the Eurasian margin, the oceanic plates of the West Pacific, and the Australian/Indianmore » Plate to the south. The basement is an imbricated complex of Mesozoic to Paleogene ophiolite, arc, and arc-related rocks. During the Miocene this basement complex formed an area of thickened crust upon which carbonate reef and reef-associated sediments were deposited. The authors interpret this shallow marine region to be similar to many of the oceanic plateaus and ridges found within the Philippine Sea Plate today. In the Late Miocene, convergence between the Philippine Sea Plate and the Eurasian margin resulted in the formation of the Halmahera Trench to the west of this region of thickened crust. Subduction of the Molucca Sea Plate caused the development of a volcanic island arc. Subsidence in the backarc area produced a broad sedimentary basin filled by clastics eroded from the arc and from uplifted basement and cover rocks. The basin was asymmetric with the thickest sedimentary fill on the western side, against the volcanic arc. The Halmahera basin was modified in the Plio-Pleistocene by east-west compression as the Molucca Sea Plate was eliminated by subduction.« less
NASA Astrophysics Data System (ADS)
Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi
2013-03-01
Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.
NASA Technical Reports Server (NTRS)
McGowan, David Michael
1997-01-01
The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. The formulation uses the principle of virtual work. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are then derived after the application of several simplifying assumptions. These equations are then modified to allow the reference surface of the plate to be located at a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described as well. The terms of the plate stiffness matrix using both Classical Plate Theory (CPT) and first-order Shear-Deformation Plate Theory (SDPT) are presented. The necessary steps to include the effects of in-plane transverse and in-plane shear loads in the in-plane stability equations are also outlined. Numerical results are presented using the newly implemented capability. Comparisons of results for several example problems with different loading states are made. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPF are also made. Results comparing the computational effort required by the new analysis to that of the analysis currently in the VICONOPT program are presented. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.
NASA Astrophysics Data System (ADS)
Naif, Samer
2018-01-01
Electrical conductivity soundings provide important constraints on the thermal and hydration state of the mantle. Recent seafloor magnetotelluric surveys have imaged the electrical conductivity structure of the oceanic upper mantle over a variety of plate ages. All regions show high conductivity (0.02 to 0.2 S/m) at 50 to 150 km depths that cannot be explained with a sub-solidus dry mantle regime without unrealistic temperature gradients. Instead, the conductivity observations require either a small amount of water stored in nominally anhydrous minerals or the presence of interconnected partial melts. This ambiguity leads to dramatically different interpretations on the origin of the asthenosphere. Here, I apply the damp peridotite solidus together with plate cooling models to determine the amount of H2O needed to induce dehydration melting as a function of depth and plate age. Then, I use the temperature and water content estimates to calculate the electrical conductivity of the oceanic mantle with a two-phase mixture of olivine and pyroxene from several competing empirical conductivity models. This represents the maximum potential conductivity of sub-solidus oceanic mantle at the limit of hydration. The results show that partial melt is required to explain the subset of the high conductivity observations beneath young seafloor, irrespective of which empirical model is applied. In contrast, the end-member empirical models predict either nearly dry (<20 wt ppm H2O) or slightly damp (<200 wt ppm H2O) asthenosphere for observations of mature seafloor. Since the former estimate is too dry compared with geochemical constraints from mid-ocean ridge basalts, this suggests the effect of water on mantle conductivity is less pronounced than currently predicted by the conductive end-member empirical model.
Comparison of Spall Pullback Signals and X-ray Tomography Analysis in Copper
NASA Astrophysics Data System (ADS)
Gard, Marcie; Russell, Rod; Hanna, Romy; Bless, Stephan; InstituteAdvanced Technology Collaboration; Department of Geological Sciences-UT Austin Collaboration
2011-06-01
Spall experiments were conducted on electrolytic tough pitch C110 copper plates. Flyer plates half the target-plate thickness were launched with a single-stage compressed-gas gun. Pullback signals were measured with a photonic Doppler velocimeter (PDV). Spall stresses were determined and found to be about 1 GPa. In addition, damage on the spall plane for samples that failed to separate a spall plate was characterized by x-ray tomography. The paper will include a description of threshold damage. The threshold for appearance of a pullback signal corresponded to the initiation of tensile damage, not formation of a spall separation plane.
Modified Judet approach and minifragment fixation of scapular body and glenoid neck fractures.
Jones, Clifford B; Cornelius, Jonathan P; Sietsema, Debra L; Ringler, James R; Endres, Terrence J
2009-09-01
To describe the technique and to determine the outcome of operatively treated displaced scapular body or glenoid neck fractures using minifragment fixation through a modified Judet approach. Retrospective review of scapular or glenoid fractures. Level 1 teaching trauma center. All treated scapular or glenoid fractures over 7 years (1999-2005) were determined. Of a total of 227 scapular or glenoid fractures, 37 were treated with open reduction internal fixation and formed the basis of study. All patients were followed for a minimum of 1 year until healing or discharge from care. All operatively treated scapular fractures were performed in the lateral position on a radiolucent table. A modified Judet approach was used in all patients. The posterior deltoid was incised off the scapular spine cephalad reaching the lateral scapular border. The interval between the teres minor and infraspinatus was paramount for fracture reduction and implant insertion. The 2.7-mm minifragment plates were applied along the lateral border of the scapula. Radiographic assessment of fracture healing and clinical assessment of shoulder function. The majority of patients were males (31 males, 6 females) who sustained blunt trauma. All scapular fractures maintained fixation and reduction. No wound or muscle dehiscence problems were noted. Average range of motion was 158 degrees (range 90-180 degrees). There were no fixation failures or instances of implant loosening. The modified Judet approach allows for excellent scapular and glenoid fracture visualization and reduction while preserving rotator cuff function. Minifragment fixation along the lateral scapular border provides excellent plate position, screw length, and fracture stability.
Low Temperature and Modified Atmosphere: Hurdles for Antibiotic Resistance Transfer?
Van Meervenne, Eva; Van Coillie, Els; Van Weyenberg, Stephanie; Boon, Nico; Herman, Lieve; Devlieghere, Frank
2015-12-01
Food is an important dissemination route for antibiotic-resistant bacteria. Factors used during food production and preservation may contribute to the transfer of antibiotic resistance genes, but research on this subject is scarce. In this study, the effect of temperature (7 to 37°C) and modified atmosphere packaging (air, 50% CO2-50% N2, and 100% N2) on antibiotic resistance transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes was evaluated. Filter mating was performed on nonselective agar plates with high-density inocula. A more realistic setup was created by performing modified atmosphere experiments on cooked ham using high-density and low-density inocula. Plasmid transfer was observed between 10 and 37°C, with plasmid transfer also observed at 7°C during a prolonged incubation period. When high-density inocula were used, transconjugants were detected, both on agar plates and cooked ham, under the three atmospheres (air, 50% CO2-50% N2, and 100% N2) at 7°C. This yielded a median transfer ratio (number of transconjugants/number of recipients) with an order of magnitude of 10(-4) to 10(-6). With low-density inocula, transfer was only detected under the 100% N2 atmosphere after 10-day incubation at 7°C, yielding a transfer ratio of 10(-5). Under this condition, the highest bacterial density was obtained. The results indicate that low temperature and modified atmosphere packaging, two important hurdles in the food industry, do not necessarily prevent plasmid transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes.
NASA Astrophysics Data System (ADS)
Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian
2018-02-01
This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.
Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories
NASA Astrophysics Data System (ADS)
Ghodrati, Behnam; Yaghootian, Amin; Ghanbar Zadeh, Afshin; Mohammad-Sedighi, Hamid
2018-01-01
In this paper, Lamb wave propagation in a homogeneous and isotropic non-classical micro/nano-plates is investigated. To consider the effect of material microstructure on the wave propagation, three size-dependent models namely indeterminate-, modified- and consistent couple stress theories are used to extract the dispersion equations. In the mentioned theories, a parameter called 'characteristic length' is used to consider the size of material microstructure in the governing equations. To generalize the parametric studies and examine the effect of thickness, propagation wavelength, and characteristic length on the behavior of miniature plate structures, the governing equations are nondimensionalized by defining appropriate dimensionless parameters. Then the dispersion curves for phase and group velocities are plotted in terms of a wide frequency-thickness range to study the lamb waves propagation considering microstructure effects in very high frequencies. According to the illustrated results, it was observed that the couple stress theories in the Cosserat type material predict more rigidity than the classical theory; so that in a plate with constant thickness, by increasing the thickness to characteristic length ratio, the results approach to the classical theory, and by reducing this ratio, wave propagation speed in the plate is significantly increased. In addition, it is demonstrated that for high-frequency Lamb waves, it converges to dispersive Rayleigh wave velocity.
NASA Technical Reports Server (NTRS)
Benhachmi, Driss; Greber, Isaac; Hingst, Warren R.
1988-01-01
A combined experimental and numerical study of the interaction of an incident oblique shock wave with a turbulent boundary layer on a rough plate and on a porous plate with suction is presented. The experimental phase involved the acquisition of mean data upstream of, within, and downstream of the interaction region at Mach numbers 2.5 and 3.0. Data were taken at unit Reynolds numbers of 1.66 E7 and 1.85 E7 m respectively, and for flow deflection angles of 0, 4, 6 and 8 degs. Measured data include wall static pressure, pitot pressure profiles, and local bleed distributions on the porous plate. On the rough plate, with no suction, the boundary layer profiles were modified near the wall, but not separated for the 4 deg flow deflection angle. For the higher deflection angles of 6 and 8 degs, the boundary layer was separated. Suction increases the strength of the incident shock required to separate the turbulent boundary layer; for all shock strengths tested, separation is completely eliminated. The pitot pressure profiles are affected throughout the whole boundary layer; they are fuller than the ones obtained on the rough plate. It is also found that the combination of suction and roughness introduces spatial perturbations.
Fuel cell collector plate and method of fabrication
Braun, James C.; Zabriskie, Jr., John E.; Neutzler, Jay K.; Fuchs, Michel; Gustafson, Robert C.
2001-01-01
An improved molding composition is provided for compression molding or injection molding a current collector plate for a polymer electrolyte membrane fuel cell. The molding composition is comprised of a polymer resin combined with a low surface area, highly-conductive carbon and/or graphite powder filler. The low viscosity of the thermoplastic resin combined with the reduced filler particle surface area provide a moldable composition which can be fabricated into a current collector plate having improved current collecting capacity vis-a-vis comparable fluoropolymer molding compositions.
Strength evaluation test of pressureless-sintered silicon nitride at room temperature
NASA Technical Reports Server (NTRS)
Matsusue, K.; Takahara, K.; Hashimoto, R.
1984-01-01
In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.
Impacting load control of floating supported friction plate and its experimental verification
NASA Astrophysics Data System (ADS)
Ning, Keyan; Wang, Yu; Huang, Dingchuan; Yin, Lei
2017-05-01
Friction plates are key components in automobile transmission system. Unfortunately, due to the tough working condition i.e. high impact, high temperature, fracture and plastic deformation are easily observed in friction plates. In order to reduce the impact load and increase the impact resistance and life span of the friction plate. This paper presents a variable damping design method and structure, by punching holes in the key position of the friction plate and filling it with damping materials, the impact load of the floating support friction plate can be controlled. Simulation is applied to study the effect of the position and number of damping holes on tooth root stress. Furthermore, physic test was designed and conducted to validate the correctness and effectiveness of the proposed method. Test result shows that the impact load of the new structure is reduced by 40% and its fatigue life is 4.7 times larger. The new structure provides a new way for floating supported friction plates design.
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.
1993-01-01
Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.
Effect of high strain rates on peak stress in a Zr-based bulk metallic glass
NASA Astrophysics Data System (ADS)
Sunny, George; Yuan, Fuping; Prakash, Vikas; Lewandowski, John
2008-11-01
The mechanical behavior of Zr41.25Ti13.75Cu12.5Ni10Be22.5 (LM-1) has been extensively characterized under quasistatic loading conditions; however, its mechanical behavior under dynamic loading conditions is currently not well understood. A Split-Hopkinson pressure bar (SHPB) and a single-stage gas gun are employed to characterize the mechanical behavior of LM-1 in the strain-rate regime of 102-105/s. The SHPB experiments are conducted with a tapered insert design to mitigate the effects of stress concentrations and preferential failure at the specimen-insert interface. The higher strain-rate plate-impact compression-and-shear experiments are conducted by impacting a thick tungsten carbide (WC) flyer plate with a sandwich sample comprising a thin bulk metallic glass specimen between two thicker WC target plates. Specimens employed in the SHPB experiments failed in the gage-section at a peak stress of approximately 1.8 GPa. Specimens in the high strain-rate plate-impact experiments exhibited a flow stress in shear of approximately 0.9 GPa, regardless of the shear strain-rate. The flow stress under the plate-impact conditions was converted to an equivalent flow stress under uniaxial compression by assuming a von Mises-like material behavior and accounting for the plane strain conditions. The results of these experiments, when compared to the previous work conducted at quasistatic loading rates, indicate that the peak stress of LM-1 is essentially strain rate independent over the strain-rate range up to 105/s.
Influence of particle arrangement on the permittivity of an elastomeric composite
NASA Astrophysics Data System (ADS)
Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.
2017-01-01
Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.
Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M
2009-08-01
This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.
Surgical treatment of chronic mandibular dislocation--report of a case.
Bakardjiev, Angel G; Atanasov, Dimitar T
2002-01-01
Chronic dislocation of the temporomandibular jaw (TMJ) can result from lax joint ligaments and parafunctioning joints; it can also be a consequence of a systemic connective tissue disorder. The authors report a case of hypermobile joint syndrome in combination with mitral valve prolapse. The case was managed by osteosynthesis using modified titanium plate.
Fillet Weld Stress Using Finite Element Methods
NASA Technical Reports Server (NTRS)
Lehnhoff, T. F.; Green, G. W.
1985-01-01
Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.
Computer model of catalytic combustion/Stirling engine heater head
NASA Technical Reports Server (NTRS)
Chu, E. K.; Chang, R. L.; Tong, H.
1981-01-01
The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.
Marcinkowska-Lesiak, Monika; Poławska, Ewa; Wierzbicka, Agnieszka
2017-03-01
The aim of this study was to determine the influence of different packaging materials on meat quality during cold storage. Therefore pork loins (m. longissimus thoracis et lumborum) obtained from crossbred pigs (Polish Landrance x Duroc, n = 6) were stored at 2 ℃ in modified atmosphere packs (80% O 2 , 20% CO 2 ) in four types of trays, which differ in gas permeability. Physicochemical (headspace gas composition, pH, colour, drip loss, cooking loss, shear force, the basic composition and fatty acid profile) and microbiological ( Salmonella spp., Escherichia coli, Enterobacteriaceae, total aerobic plates count, total psychrotrophic bacteria count, the number of lactic acid bacteria, Pseudomonas spp., the general amount of yeast and mold) parameters were monitored for up to 12 days. At the end of the storage period no differences in most physicochemical properties of pork loin due to type of packaging were found, however trays with high gas permeability had the greatest impact on total aerobic plates count and Pseudomonas spp. growth.
Chincup treatment modifies the mandibular shape in children with prognathism.
Alarcón, José Antonio; Bastir, Markus; Rosas, Antonio; Molero, Julia
2011-07-01
Although chincups are the preferred treatment for growing children with mandibular prognathism, the mechanism by which chincups improve this condition remains unclear. The aim of this study was to use geometric morphometrics to evaluate changes in the shape of the mandible of prognathic children treated with a chincup. Geometric morphometrics were used to evaluate the short-term mandibular shape changes in 50 prognathic children treated with chincups compared with 40 untreated matched controls. Twenty-one 2-dimensional mandibular landmarks from cephalograms taken before and after 36 months of treatment or observation were analyzed by Procrustes superimposition and thin plate spline. Permutation tests of the treated patients showed highly significant differences in the mandibular shapes before and after treatment, and compared with the control group after the observation period. The thin plate spline grid deformations indicated more rectangular mandibular configuration, forward condyle orientation, condyle neck compression, gonial area compression, and symphysis narrowing. Early chincup treatment widely modifies the mandibular shape of prognathic children to improve Class III malocclusion. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Kaeothip, Sophon; Boons, Geert-Jan
2013-08-21
Extensins are plant-derived glycoproteins that are densely modified by oligo-arabinofuranosides linked to hydroxyproline residues. These glycoproteins have been implicated in many aspects of plant growth and development. Here, we describe the chemical synthesis of a tetrameric β(1-2)-linked arabinofuranoside that is capped by an α(1-3)-arabinofuranoside and a similar trisaccharide lacking the capping moiety. The challenging β(1-2)-linked arabinofuranosides were installed by using an arabinofuranosyl donor protected with 3,5-O-(di-tert-butylsilane) and a C-2 2-methylnaphthyl (Nap) ether. It was found that the cyclic silane-protecting group of the glycosyl donor greatly increased β-anomeric selectivity. It was, however, imperative to remove the silane-protecting group of an arabinosyl acceptor to achieve optimal anomeric selectivities. The anomeric linker of the synthetic compounds was modified by a biotin moiety for immobilization of the compounds to microtiter plates coated with streptavidine. The resulting microtiter plates were employed to screen for binding against a panel of antibodies elicited against plant cell wall polysaccharides.
High voltage feedthrough bushing
Brucker, John P.
1993-01-01
A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.
Hara, Katsutoshi; Kaku, Nobuhiro; Tabata, Tomonori; Tsumura, Hiroshi
2015-07-01
We used a three-dimensional finite element method to investigate the conditions behind the Kerboull-type (KT) dome. The KT plate dome was divided into five areas, and 14 models were created to examine different conditions of dome contact with the acetabulum. The maximum stress on the KT plate and screws was estimated for each model. Furthermore, to investigate the impact of the contact area with the acetabulum on the KT plate, a multiple regression analysis was conducted using the analysis results. The dome-acetabulum contact area affected the maximum equivalent stress on the KT plate; good contact with two specific areas of the vertical and horizontal beams (Areas 3 and 5) reduced the maximum equivalent stress. The maximum equivalent stress on the hook increased when the hardness of the bone representing the acetabulum varied. Thus, we confirmed the technical importance of providing a plate with a broad area of appropriate support from the bone and cement in the posterior portion of the dome and also proved the importance of supporting the area of the plate in the direction of the load at the center of the cross-plate and near the hook.
A computed microtomography method for understanding epiphyseal growth plate fusion
NASA Astrophysics Data System (ADS)
Staines, Katherine A.; Madi, Kamel; Javaheri, Behzad; Lee, Peter D.; Pitsillides, Andrew A.
2017-12-01
The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion ‘bridging’ event, the precise mechanisms by which it is governed are complex and yet to be established. Progress is likely hindered by the current methods for growth plate visualisation; these are invasive and largely rely on histological procedures. Here we describe our non-invasive method utilising synchrotron x-ray computed microtomography for the examination of growth plate bridging, which ultimately leads to its closure coincident with termination of further longitudinal bone growth. We then apply this method to a dataset obtained from a benchtop microcomputed tomography scanner to highlight its potential for wide usage. Furthermore, we conduct finite element modelling at the micron-scale to reveal the effects of growth plate bridging on local tissue mechanics. Employment of these 3D analyses of growth plate bone bridging is likely to advance our understanding of the physiological mechanisms that control growth plate fusion.
Evaluation of the mechanical properties of electroslag refined iron alloys
NASA Technical Reports Server (NTRS)
Bhat, G. K.
1976-01-01
Nitronic 40 (21Cr-6N-9Mn), HY-130, 9Ni-4Co, and D-6 alloys were prepared and evaluated in the form of 15.2 mm thick plates. Smooth bar tensile tests, double-edge sharp notch fracture toughness tests Charpy V-notch impact tests were conducted on appropriate heat treated specimens of the four steel plates at 22 C, -50 C, -100 C, -150 C, and -196 C. Similar material characterization, including metallographic evaluation studies on air melt and vacuum arc melt grades of same four alloy steels were conducted for comparative purposes. A cost analysis of manufacturing plates of air melt, electroslag remelt and vacuum arc remelt grades was performed. The results of both material characterization and cost analyses pointed out certain special benefits of electroslag processing iron base alloys.
Montei, Carolyn; McDougal, Susan; Mozola, Mark; Rice, Jennifer
2014-01-01
The Soleris Non-fermenting Total Viable Count method was previously validated for a wide variety of food products, including cocoa powder. A matrix extension study was conducted to validate the method for use with cocoa butter and cocoa liquor. Test samples included naturally contaminated cocoa liquor and cocoa butter inoculated with natural microbial flora derived from cocoa liquor. A probability of detection statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with aerobic plate counts determined using the AOAC Official Method 966.23 dilution plating method. Results of the two methods were not statistically different at any dilution level in any of the three trials conducted. The Soleris method offers the advantage of results within 24 h, compared to the 48 h required by standard dilution plating methods.
NASA Astrophysics Data System (ADS)
Anastassiu, Hristos T.
2003-04-01
The physical optics approximation is employed in the derivation of a closed form expression for the radar cross section (RCS) of a flat, perfectly conducting plate of various shapes, located over a dielectric, possibly lossy half-space. The half-space is assumed to lie in the far field region of the plate. The well-known "four-path model" is invoked in a first-order approximation of the half-space contribution to the scattering mechanisms. Numerical results are compared to a reference, Moment Method solution, and the agreement is investigated, to assess the accuracy of the approximations used. The analytical expressions derived can facilitate very fast RCS calculations for realistic scatterers, such as ships in a sea environment, or aircraft flying low over the ground.
Movable anode x-ray source with enhanced anode cooling
Bird, C.R.; Rockett, P.D.
1987-08-04
An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.
Movable anode x-ray source with enhanced anode cooling
Bird, Charles R.; Rockett, Paul D.
1987-01-01
An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.
Continious production of exfoliated graphite composite compositions and flow field plates
Shi, Jinjun; Zhamu, Aruna; Jang, Bor Z.
2010-07-20
A process of continuously producing a more isotropic, electrically conductive composite composition is provided. The process comprises: (a) continuously supplying a compressible mixture comprising exfoliated graphite worms and a binder or matrix material, wherein the binder or matrix material is in an amount of between 3% and 60% by weight based on the total weight of the mixture; (b) continuously compressing the compressible mixture at a pressure within the range of from about 5 psi or 0.035 MPa to about 50,000 psi or 350 MPa in at least a first direction into a cohered graphite composite compact; and (c) continuously compressing the composite compact in a second direction, different from the first direction, to form the composite composition in a sheet or plate form. The process leads to composite plates with exceptionally high thickness-direction electrical conductivity.
Lu, Longsheng; Liang, Linsheng; Teh, Kwok Siong; Xie, Yingxi; Wan, Zhenping; Tang, Yong
2017-01-01
Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF) monofilaments grafted with CNTs (simplified as CNTs/CFs) were fabricated in two key steps: (i) nickel electroless plating, followed by (ii) chemical vapor deposition (CVD). Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN)6), by using a cyclic voltammetry (CV) and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility. PMID:28358344
Arshadi, Hamid; Sabetkish, Shabnam; Kajbafzadeh, Abdol-Mohammad
2017-12-01
To report the feasibility of modified tubularized incised plate (TIP) urethroplasty technique for proximal hypospadias in 63 cases. From January 2004 to March 2010, 63 patients underwent one-stage TIP urethroplasty (modified Snodgrass technique repair) using 2-3 of three covering layers (corpus spongiosum, dartos, and tunica vaginalis). The primary meatus was proximal penile, penoscrotal, scrotal, and perineal in 38, 13, 10, and 2 patients, respectively. All patients had chordee that was corrected with dorsal plication. Glanuloplasty was performed in all cases. Complications and cosmetic results were documented after 6-72 months of follow-up. A total of 63 boys with proximal hypospadias underwent Snodgrass hypospadias repair at a mean age of 8.5 months (range 6-54). Mean operative time was 210 ± 35 min. Patients were followed up with 6-month intervals for up to 6 years postoperatively. After 6 years of follow-up, nine urethrocutaneous fistulae, four bleeding, four meatal stenoses, and one urethral stricture were reported. Cosmetic result was satisfactory according to parent's opinion and another surgeon. No residual chordee was observed in any cases (without artificial correction). In conclusion, this preliminary report can be estimated as an alternative technique with acceptable complication and cosmetic results for proximal hypospadias correction.
Plant regeneration from leaf protoplasts of Solanum torvum.
Guri, A; Volokita, M; Sink, K C
1987-07-01
A protocol to obtain regenerated plants from protoplasts of Solanum torvum Sw a wild species of eggplant resistant to Verticillium wilt is reported. Leaf protoplasts were enzymatically isolated from six-week old seedlings grown in a controlled environment chamber. Protoplasts were plated on modified KM medium (0.4 M glucose)+(mg/l): 1.0 p-chlorophenoxyacetic acid (CPA)+1.0 naphthaleneacetic acid (NAA)+0.5 6-benzylaminopurine (BAP) and 0.02 abscisic acid (ABA). The protoplast density was 5×10(4) per ml with 5 ml placed in each of two quadrants in X-dishes (100×15 mm). The reservoir medium was modified KM+(mg/l): 0.1 NAA+0.5 BAP+0.1 M sucrose+0.1 M mannitol+0.6% washed agar+1% activated charcoal. Dishes were initially placed in the dark at 27°C. Protoplast division was initiated in 1-2 weeks and 4 weeks later p-calli were 1-3 mm. Plating efficiency was 11% when measured at 3 weeks. Six-week old p-calli were transferred individually onto Whatman No. 1 filter paper layered on modified KM (0.15 M sucrose)+mg/l: 2.0 indoleacetic acid (IAA)+2.0 zeatin+0.5% washed agar for 2 weeks. Subsequently, shoots occurred within 4 weeks at 70% efficiency on MS+30 g/l sucrose+2 mg/l zeatin. Shoots were rooted on half strength MS+10 g/l sucrose.
NASA Astrophysics Data System (ADS)
Wu, Xiaoyan; Tian, Yu; Zhang, Jun; Zuo, Wei; Kong, Xiaowei; Wang, Jinghui; Sun, Kening; Zhou, Xiaoliang
2016-01-01
In this paper, silver (Ag) particles are introduced into the conventional Ni/YSZ anode by utilizing electroless plating method to improve its carbon anti-coking ability in hydrocarbons. The experimental results show that electrochemical performances of the decorated cells in H2, CH4 and C2H6 are all increased as compared to the cell with unmodified Ni/YSZ anode, which are verified by impedance spectrums as well. The durability experiment is carried out for as long as 24 h at the current density of 0.33 A/cm2 where the modified anode is subjected to dry C2H6 indicating the anti-coking ability of the anode is greatly improved. Scanning electron microscope shows that the slight decreasing in the cell terminal voltage can be attributed to the minimized carbon deposition which maybe resulted from the aggregation of silver particles at high temperature. Energy-dispersive X-ray spectroscopy line scanning results after long-term stability operation of the anode suggest that the carbon deposition can be depressed effectively both inside the anode and on the surface of the anode. Therefore, the results show that silver is a promising candidate material for modifying the Ni/YSZ anode with regard to improving electrochemical performance and suppressing the carbon deposition when taking the hydrocarbons as fuels.
Hu, Yuli; Yu, Xinglong; Zhao, Dun; Li, Runcheng; Liu, Yang; Ge, Meng; Hu, Huican
2017-12-01
Environmental exposure is considered to be responsible for nontuberculous mycobacterial infections in humans. To facilitate the isolation of mycobacteria from soil, Middlebrook 7H10 agar was optimized as an enhanced selective medium by increasing the concentration of malachite green. A series of modified Middlebrook 7H10 agar media with malachite green concentrations ranging from 2.5 to 2500 mg/L was evaluated using 20 soil samples decontaminated with 3% sodium dodecyl sulfate plus 2% NaOH for 30 min. Among these modified Middlebrook 7H10 media, the medium with malachite green at a concentration of 250 mg/L, i.e., at the same concentration as in Löwenstein-Jensen medium, was the most effective in terms of the number of plates with mycobacterial growth. This medium was further evaluated with 116 soil samples. The results showed that 87.1% (101/116) of the samples produced mycobacterial growth, and 15 samples (12.9%) produced no mycobacterial growth. Of the plates inoculated with the soil samples, each in duplicate, 5.2% (12/232) showed late contamination. In total, 19 mycobacterial species were isolated, including seven (36.8%) rapidly growing mycobacteria and 12 (63.2%) slowly growing mycobacteria. Our results demonstrate that the modified Middlebrook 7H10 agar with 250 mg/L malachite green is useful for the primary isolation of nontuberculous mycobacteria from soil.
Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo
2007-09-14
Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.
NASA Astrophysics Data System (ADS)
Hendrarsakti, J.; Ichsan, Y.
2016-09-01
This research was conducted to assess the direct use of geothermal energy for blood warmer. The heating plate was made form aluminium plates with dimensions of 100 x 200 mm and then fed from the hot water heater. Tests were conducted in the laboratory where geothermal source water is replaced with the heat generated from the heater. The hot water from the heater in the temperature range 55°C - 60°C flowed into vertical chamber. Setting the temperature of the hot water heater is done by changing the flow of hot water coming out of the heater. Results showed that the value of a standard deviation of plate temperature was about 0.42 °C, so it can be said isothermal accordance with design requirement and objective. The test data used for the analysis of the manufacture of the heating plate in the blood warmer to regulate the discharge of hot water at intervals of 21.47 mL/s to 24.8 mL/s to obtain a temperature of 37.20 °C - 40.15 °C. Geothermal energy has the potential for blood warmer because blood warmer is part of the energy cascade in a temperature range of 40°C to 60°C
Size and Charge Dependence of Ion Transport in Human Nail Plate.
Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B
2016-03-01
The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
An alternate design for the Defrise phantom to quantify resolution in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Acciavatti, Raymond J.; Mannherz, William; Nolan, Margaret; Maidment, Andrew D. A.
2017-03-01
Our previous work analyzed the Defrise phantom as a test object for evaluating image quality in digital breast tomosynthesis (DBT). The phantom is assembled from multiple plastic plates, which are arranged to form a square wave. In our previous work, there was no explicit analysis of how image quality varies with the thickness of the plates. To investigate this concept, a modified design of the phantom is now considered. For this purpose, each rectangular plate was laser-cut at an angle, creating a slope along which thickness varies continuously. The phantom was imaged using a clinical DBT system, and the relative modulation of the plastic-air separations was calculated in the reconstruction. In addition, a theoretical model was developed to determine whether modulation can be optimized by modifying the x-ray tube trajectory. It is demonstrated that modulation is dependent on the orientation of the frequency. Modulation is within detectable limits over a broad range of phantom thicknesses if frequency is parallel with the tube travel direction. Conversely, there is marked loss of modulation if frequency is oriented along the posteroanterior direction. In particular, as distance from the chest wall increases, there is a smaller range of thicknesses over which modulation is within detectable limits. Theoretical modeling suggests that this anisotropy is minimized by introducing tube motion along the posteroanterior direction. In conclusion, this paper demonstrates that the Defrise phantom is a tool for analyzing the limits of resolution in DBT systems.
Plated wire random access memories
NASA Technical Reports Server (NTRS)
Gouldin, L. D.
1975-01-01
A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.
ERIC Educational Resources Information Center
Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.
2012-01-01
A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…
Axially shaped channel and integral flow trippers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Johansson, E.B.; Matzner, B.
1988-06-07
A fuel assembly is described comprising fuel rods positioned in spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounds the array for conducting coolant about the fuel rods. The open ended channel has a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the uppermore » and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel. The improvement in the flow channel comprises tapered side walls. The tapered side walls extend from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less
Axially shaped channel and integral flow trippers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L. Jr.; Johansson, E.B.; Matzner, B.
1992-02-11
This patent describes a fuel assembly. It comprises: fuel rods positioned in spaced array by upper and lower tie-plates, and open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounding the array for conducting coolant about the fuel rods; the open ended channel having a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connectingmore » the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, the improvement in the flow channel comprising tapered side walls, the tapered side walls extending from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less
Gras, Florian; Marintschev, Ivan; Grossterlinden, Lars; Rossmann, Markus; Graul, Isabel; Hofmann, Gunther O; Rueger, Johannes M; Lehmann, Wolfgang
2017-07-01
Anatomical acetabular plates the anterior intrapelvic approach (AIP) were recently introduced to fix acetabular fractures through the intrapelvic approach. Therefore, we asked the following: (1) Does the preshaped 3-dimensional suprapectineal plate interfere with or even impair the fracture reduction quality? (2) How often does the AIP approach need to be extended by the first (lateral) window of the ilioinguinal approach? Observational case series. Two Level 1 trauma centers. Patients with unstable acetabular fractures in 2014. Fracture fixation with anatomical-preshaped, 3-dimensional suprapectineal plates through the AIP approach ± the first window of the ilioinguinal approach. Fracture reduction results were measured in computed tomography scans and graded according to the Matta quality of reduction. Intraoperative parameters and perioperative complications were recorded. Radiological results (according to Matta) and functional outcome (modified Merle d'Aubigné score) were evaluated at 1-year follow-up. Thirty patients (9 women + 21 men; mean age ± SE: 64 ± 8 years) were included. The intrapelvic approach was solely used in 19 cases, and in 11 cases, an additional extension with the first window of the ilioinguinal approach (preferential for 2-column fractures) was performed. The mean operating time was 202 ± 59 minutes; the fluoroscopic time was 66 ± 48 seconds. Fracture gaps and steps in preoperative versus postoperative computed tomography scans were 12.4 ± 9.8 versus 2.0 ± 1.5 and 6.0 ± 5.5 versus 1.3 ± 1.7 mm, respectively. At 13.4 ± 2.9 months follow-up, the Matta grading was excellent in 50%, good in 25%, fair in 11%, and poor in 14% of cases. The modified Merle d'Aubigné score was excellent in 17%, good in 37%, fair in 33%, and poor in 13% of cases. The AIP approach using approach-specific instruments and an anatomical-preshaped, 3-dimensional suprapectineal plate became the standard procedure in our departments. Radiological and functional early results justify joint preserving surgery in most cases. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Anterior inferior plating versus superior plating for clavicle fracture: a meta-analysis.
Ai, Jie; Kan, Shun-Li; Li, Hai-Liang; Xu, Hong; Liu, Yang; Ning, Guang-Zhi; Feng, Shi-Qing
2017-04-18
The position of plate fixation for clavicle fracture remains controversial. Our objective was to perform a comprehensive review of the literature and quantify the surgical parameters and clinical indexes between the anterior inferior plating and superior plating for clavicle fracture. PubMed, EMBASE, and the Cochrane Library were searched for randomized and non-randomized studies that compared the anterior inferior plating with the superior plating for clavicle fracture. The relative risk or standardized mean difference with 95% confidence interval was calculated using either a fixed- or random-effects model. Four randomized controlled trials and eight observational studies were identified to compare the surgical parameters and clinical indexes. For the surgical parameters, the anterior inferior plating group was better than the superior plating group in operation time and blood loss (P < 0.05). Furthermore, in terms of clinical indexes, the anterior inferior plating was superior to the superior plating in reducing the union time, and the two kinds of plate fixation methods were comparable in constant score, and the rate of infection, nonunion, and complications (P > 0.05). Based on the current evidence, the anterior inferior plating may reduce the blood loss, the operation and union time, but no differences were observed in constant score, and the rate of infection, nonunion, and complications between the two groups. Given that some of the studies have low quality, more randomized controlled trails with high quality should be conduct to further verify the findings.
Feldsine, Philip T; Leung, Stephanie C; Lienau, Andrew H; Mui, Linda A; Townsend, David E
2003-01-01
The relative efficacy of the SimPlate Total Plate Count-Color Indicator (TPC-CI) method (SimPlate 35 degrees C) was compared with the AOAC Official Method 966.23 (AOAC 35 degrees C) for enumeration of total aerobic microorganisms in foods. The SimPlate TPC-CI method, incubated at 30 degrees C (SimPlate 30 degrees C), was also compared with the International Organization for Standardization (ISO) 4833 method (ISO 30 degrees C). Six food types were analyzed: ground black pepper, flour, nut meats, frozen hamburger patties, frozen fruits, and fresh vegetables. All foods tested were naturally contaminated. Nineteen laboratories throughout North America and Europe participated in the study. Three method comparisons were conducted. In general, there was <0.3 mean log count difference in recovery among the SimPlate methods and their corresponding reference methods. Mean log counts between the 2 reference methods were also very similar. Repeatability (Sr) and reproducibility (SR) standard deviations were similar among the 3 method comparisons. The SimPlate method (35 degrees C) and the AOAC method were comparable for enumerating total aerobic microorganisms in foods. Similarly, the SimPlate method (30 degrees C) was comparable to the ISO method when samples were prepared and incubated according to the ISO method.
NASA Astrophysics Data System (ADS)
Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd
2018-04-01
A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.
Reactive conductors for increased efficiency of exploding foil initiators and other detonators
Morris, Christopher J.; Wilkins, Paul; May, Chadd; Zakar, Eugene
2015-05-05
Provided among other things are reactive energetic material systems used for conductors in detonators for increased efficiencies. According to an embodiment, a detonator may include: a conductor including at least two constituents including (i) an electrically conductive constituent, and (ii) an electrically non-conductive constituent, that when subjected to sufficient electrical energy, result in an exothermic reaction; and a flyer plate having a non-conductive surface in contact with said conductor. When the sufficient electrical energy is supplied to said conductor, rapid heating and vaporization of at least a portion of the conductor occurs so as to explosively drive at least a portion of the flyer plate away from said conductor. In an embodiment, a multilayer conductor may be formed of alternating layers of at least one electrically conductive layer, and at least one electrically non-conductive layer, that when subjected to sufficient electrical energy, result in an exothermic reaction.
Influence of material anisotropy on the hydroelastic response of composite plates in water
NASA Astrophysics Data System (ADS)
Akcabay, Deniz Tolga; Young, Yin Lu
2018-03-01
Flexible lightweight plate-like lifting surfaces in external flows have a diverse range of use from propelling and controlling marine and aerospace vehicles to converting wind and ocean energy to electrical energy. Design and analysis of such structures are complex for underwater applications where the water density is much higher than air. The hydrodynamic loads, which vary with the inflow speed, can significantly alter the dynamic response and stability. This paper focuses on the hydroelastic response of composite plates in water. The results show that the dynamics and stability of the structure can be significantly modified by taking advantage of the material anisotropic; on the contrary, careless composite material designs may lead to unwanted dynamic instability failures. The resonance frequencies, divergence speeds, and fluid loss coefficients change with material anisotropy and hydrodynamic loads. The resonance frequencies are much lower in water than in air. The critical divergence speed increases, if the principal fiber direction is oriented towards the inflow. Hydrodynamic damping is shown to be much higher than the material damping, and tend to increase with flow speed and to decrease with increasing modal frequency. The paper derives Response Amplitude Operators (RAOs) for sample composite plates in water and use them to predict the motion response when subject to stochastic flow excitations. We show how material anisotropy can be used to passively tailor the plate vibration response spectrum to limit or enhance flow-induced vibrations of the plate depending on the desired applications.
Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A
2007-09-04
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.
Population Screening Using Sewage Reveals Pan-Resistant Bacteria in Hospital and Community Samples.
Meir-Gruber, Lital; Manor, Yossi; Gefen-Halevi, Shiraz; Hindiyeh, Musa Y; Mileguir, Fernando; Azar, Roberto; Smollan, Gill; Belausov, Natasha; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan
2016-01-01
The presence of pan-resistant bacteria worldwide possesses a threat to global health. It is difficult to evaluate the extent of carriage of resistant bacteria in the population. Sewage sampling is a possible way to monitor populations. We evaluated the presence of pan-resistant bacteria in Israeli sewage collected from all over Israel, by modifying the pour plate method for heterotrophic plate count technique using commercial selective agar plates. This method enables convenient and fast sewage sampling and detection. We found that sewage in Israel contains multiple pan-resistant bacteria including carbapenemase resistant Enterobacteriacae carrying blaKPC and blaNDM-1, MRSA and VRE. blaKPC carrying Klebsiella pneumonia and Enterobacter cloacae were the most common Enterobacteriacae drug resistant bacteria found in the sewage locations we sampled. Klebsiella pneumonia, Enterobacter spp., Escherichia coli and Citrobacter spp. were the 4 main CRE isolated from Israeli sewage and also from clinical samples in our clinical microbiology laboratory. Hospitals and Community sewage had similar percentage of positive samplings for blaKPC and blaNDM-1. VRE was found to be more abundant in sewage in Israel than MRSA but there were more locations positive for MRSA and VRE bacteria in Hospital sewage than in the Community. Therefore, our upgrade of the pour plate method for heterotrophic plate count technique using commercial selective agar plates can be a useful tool for routine screening and monitoring of the population for pan-resistant bacteria using sewage.
Population Screening Using Sewage Reveals Pan-Resistant Bacteria in Hospital and Community Samples
Mileguir, Fernando; Azar, Roberto; Smollan, Gill; Belausov, Natasha; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan
2016-01-01
The presence of pan-resistant bacteria worldwide possesses a threat to global health. It is difficult to evaluate the extent of carriage of resistant bacteria in the population. Sewage sampling is a possible way to monitor populations. We evaluated the presence of pan-resistant bacteria in Israeli sewage collected from all over Israel, by modifying the pour plate method for heterotrophic plate count technique using commercial selective agar plates. This method enables convenient and fast sewage sampling and detection. We found that sewage in Israel contains multiple pan-resistant bacteria including carbapenemase resistant Enterobacteriacae carrying blaKPC and blaNDM-1, MRSA and VRE. blaKPC carrying Klebsiella pneumonia and Enterobacter cloacae were the most common Enterobacteriacae drug resistant bacteria found in the sewage locations we sampled. Klebsiella pneumonia, Enterobacter spp., Escherichia coli and Citrobacter spp. were the 4 main CRE isolated from Israeli sewage and also from clinical samples in our clinical microbiology laboratory. Hospitals and Community sewage had similar percentage of positive samplings for blaKPC and blaNDM-1. VRE was found to be more abundant in sewage in Israel than MRSA but there were more locations positive for MRSA and VRE bacteria in Hospital sewage than in the Community. Therefore, our upgrade of the pour plate method for heterotrophic plate count technique using commercial selective agar plates can be a useful tool for routine screening and monitoring of the population for pan-resistant bacteria using sewage. PMID:27780222
Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.
2007-01-01
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806
Octanol reduces end-plate channel lifetime
Gage, Peter W.; McBurney, Robert N.; Van Helden, Dirk
1978-01-01
1. Post-synaptic effects of n-octanol at concentrations of 0·1-1 mM were examined in toad sartorius muscles by use of extracellular and voltage-clamp techniques. 2. Octanol depressed the amplitude and duration of miniature end-plate currents and hence depressed neuromuscular transmission. 3. The decay of miniature end-plate currents remained exponential in octanol solutions even when the time constant of decay (τD) was decreased by 80-90%. 4. The lifetime of end-plate channels, obtained by analysis of acetylcholine noise, was also decreased by octanol. The average lifetime measured from noise spectra agreed reasonably well with the time constant of decay of miniature end-plate currents, both in control solution and in octanol solutions. 5. Octanol caused a reduction in the conductance of end-plate channels. Single channel conductance was on average about 25 pS in control solution and 20 pS in octanol. 6. In most cells the normal voltage sensitivity of the decay of miniature end-plate currents was retained in octanol solutions. The lifetime of end-plate channels measured from acetylcholine noise also remained voltage-sensitive in octanol solutions. In some experiments in which channel lifetime was exceptionally reduced the voltage sensitivity was less than normal. 7. In octanol solutions, τD was still very sensitive to temperature changes in most cells although in some the temperature sensitivity of τD was clearly reduced. Changes in τD with temperature could generally be fitted by the Arrhenius equation suggesting that a single step reaction controlled the decay of currents both in control and in octanol solutions. In some cells in which τD became less than 0·3 ms, the relationship between τD and temperature became inconsistent with the Arrhenius equation. 8. As the decay of end-plate currents in octanol solutions remains exponential, and the voltage and temperature sensitivity can be unchanged even when τD is significantly reduced, it seems likely that octanol decreases τD by increasing the rate of the reaction which normally controls the lifetime of end-plate channels. PMID:203674
Power loss in open cavity diodes and a modified Child-Langmuir law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Debabrata; Kumar, Raghwendra; Puri, R.R.
Diodes used in most high power devices are inherently open. It is shown that under such circumstances, there is a loss of electromagnetic radiation leading to a lower critical current as compared to closed diodes. The power loss can be incorporated in the standard Child-Langmuir framework by introducing an effective potential. The modified Child-Langmuir law can be used to predict the maximum power loss for a given plate separation and potential difference as well as the maximum transmitted current for this power loss. The effectiveness of the theory is tested numerically.
NASA Astrophysics Data System (ADS)
Key, K.; Bedrosian, P.; Egbert, G. D.; Livelybrooks, D.; Parris, B. A.; Schultz, A.
2015-12-01
The Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment was carried out to study the nature of the seismogenic locked zone and the down-dip transition zone where episodic tremor and slip (ETS) originates. This amphibious magnetotelluric (MT) data set consists of 8 offshore and 15 onshore profiles crossing from just seaward of the trench to the western front of the Cascades, with a north-south extent spanning from central Oregon to central Washington. The 71 offshore stations and the 75 onshore stations (red triangles in the image below) fit into the broader context of the more sparsely sampled EarthScope MT transportable array (black triangles) and other previous and pending MT surveys (other symbols). These data allows us to image variations in electrical conductivity along distinct segments of the Cascadia subduction zone defined by ETS recurrence intervals. Since bulk conductivity in this setting depends primarily on porosity, fluid content and temperature, the conductivity images created from the MOCHA data offer unique insights on fluid processes in the crust and mantle, and how the distribution of fluid along the plate interface relates to observed variations in ETS behavior. This abstract explores the across- and along-strike variations in the incoming plate and the shallow offshore forearc. In particular we examine how conductivity variations, and the inferred fluid content and porosity variations, are related to tectonic segmentation, seismicity and deformation patterns, and arc magma variations along-strike. Porosity inferred in the forearc crust can be interpreted in conjunction with active and passive seismic imaging results and may provide new insights on the origin of recently observed extremely high heat flow values. A companion abstract (Parris et al.) examines the deeper conductivity structure of the locked and ETS zones along the plate interface in order to identify correlations between ETS occurrence rates and inferred fluid concentrations.
Friction and Wear Properties of Selected Solid Lubricating Films. Part 2; Ion-Plated Lead Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro
2000-01-01
To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of ion-plated lead films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of 1.2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7 x 10(exp -7 Pa), humid air (relative humidity, approx. 20 percent), and dry nitrogen (relative humidity, less then 1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the ion-plated lead films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the ion-plated lead films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 1(exp -6) cu mm/N.m or less, respectively. The ion-plated lead films met both criteria only in ultrahigh vacuum but failed in humid air and in dry nitrogen, where the coefficient of friction was higher than the criterion. Both the lead film wear rate and the ball wear rate met that criterion in all three environments. Adhesion and plastic deformation played important roles in the friction and wear of the ion-plated lead films in contact with 440C stainless steel balls in the three environments. All sliding involved adhesive transfer of materials: transfer of lead wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart lead.
NASA Astrophysics Data System (ADS)
Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.
2018-06-01
Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.
NASA Astrophysics Data System (ADS)
Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.
2018-02-01
Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.
Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir
2018-01-01
A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Xue, Xing-He; Yan, Shi-Gui; Cai, Xun-Zi; Shi, Ming-Min; Lin, Tiao
2014-04-01
With development in the techniques of reduction and fixation, there has been a controversy in comparison between intramedullary nailing (IMN) and plating for the treatment of distal tibial metaphyseal fracture (DTF). The study aimed to investigate: (1) which fixation, IMN or plating, was better in the clinical outcomes and in the complications for the treatment of DTF and (2) which modifying variables affected the comparative results between the two modalities. PubMed, EMBASE, OVID, Scopus, ISI Web of Science, the Cochrane Library, Google Scholar and specific orthopaedic journals were searched from inception to July 2013, using the search strategy of '('Fracture Fixation, Intramedullary' [MeSH]) AND ('Tibial Fractures' [MeSH]) AND (plate OR plating)'. All prospective and retrospective controlled trials comparing function, pain, bone union and complications between IMN and plating for DTF were identified. Our analysis had no limitation of the language or the publication year. The primary outcome measurements were complication rate, union time, operation time and hospital stays, while the secondary outcome measurements were functional score and pain score. Fourteen of 6620 studies with 842 patients were included. IMN was probably preferential to plating for DTF given its higher functional score (p=0.01), lower risk of infection (p=0.02) and comparable pain score (p=0.33), total complication rate (p=0.53) and time to union (p=0.86). However, plating had a lower malunion rate than IMN (p<0.0001). All the results were based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence of moderate quality. With a satisfying alignment obtained, IMN may be preferential to plating for fixation of DTF with better function and lower risk of infection. However, IMN showed higher malunion rate for fixation of DTF. With the biases in our meta-analysis, it will ultimately require a rigorous and adequately powered randomised controlled trial (RCT) to prove. Level III, therapeutic study (systematic review). Copyright © 2014 Elsevier Ltd. All rights reserved.
Friction and wear study of NR/SBR blends with Si3N4Filler
NASA Astrophysics Data System (ADS)
GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.
2018-04-01
The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.
NASA Astrophysics Data System (ADS)
Xu, Y.; Karato, S.
2002-12-01
Well-controlled high-pressure deformation experiments are critical for understanding the dynamics of Earth's interior. Most of the previous works on ultrahigh-pressure (P>10 GPa) deformation experiments have two limitations. (1) The mode of deformation is "stress-relaxation", in which stress changes with time in a given experiment, and (2) the magnitude of stress is limited (<1). To overcome these limitations and to perform large-strain plastic deformation under the upper mantle and top of lower mantle conditions, we have constructed a new apparatus by modifying the Drickamer-type high-pressure press combined with a rotation actuator involving an ac servo-motor. After the desired pressure and temperature are reached, torsional stress can be applied to a sample with a constant rotation rate. The advantage of this design is that the direction of shear deformation is normal to that of compression and therefore compression and deformation can be separated. A sample (typically ~1.8 mm diameter and ~0.2 mm thickness) is sandwiched between two zirconia plates and two heater plates made of TiC + diamond. Thin foils of W3%Re and W25%Re are inserted between two halves of samples which act as a thermocouple as well as strain markers. We have conducted a preliminary test on MgO at ~12 GPa and ~1470 K to the strain up to ~3. Deformation experiments on wadsleyite are underway to investigate the fabric development and rheology in this mineral.