A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Gayatri; Rangasamy, Ezhiylmurugan; Li, Juchuan
2014-04-16
In lithium-ion conducting solid electrolytes the potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes is shown. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. We report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li 3AsS 4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li 3.334Ge 0.334As 0.666S 4more » has a high ionic conductivity of 1.12 mScm -1 at 27°C. Local Li + hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li + solid conductors. Finally, our study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.« less
Effects of activation energy and activation volume on the temperature-dependent viscosity of water.
Kwang-Hua, Chu Rainer
2016-08-01
Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.
Electrical screening procedure for solid ionic conductors
NASA Technical Reports Server (NTRS)
Kautz, H. E.; Singer, J.; Fielder, W. L.; Fordyce, J. S.
1973-01-01
An electrical screening method has been developed for preliminary evaluation of polycrystalline specimens of candidates for use as solid ionic conductive electrolytes in batteries. The procedure measures dielectric loss and capacitance, from which are calculated an ac conductivity attributed provisionally to ions and an activation energy for that conductivity. Electronic conductivity is directly measured. The screening procedure applied to sodium beta-alumina yielded acceptable values for conductivity and activation energy.
Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, K. B.; Boota, M.; Kumbur, E. C.
2015-01-01
This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Flowable conducting particle networks in redox-active electrolytes for grid energy storage
Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...
2015-01-09
This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
30 CFR 285.650 - When may I begin conducting activities under my GAP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... GAP? 285.650 Section 285.650 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... conducting the approved activities that do not involve a project easement or the construction of facilities...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Mark
This report summarizes activity conducted by the Institute for Market Transformation and a team of American and Chinese partners in development of a new building energy-efficiency code for the transitional climate zone in the People's Republic of China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Amita; Kurchania, Rajnish; Tripathi, S. K., E-mail: surya@pu.ac.in
2016-05-06
Present communication deals with the study of electrical conductivity measurements of Cu doped CdSe-PVA nanocomposite via chemical method. In electrical measurements, the dark conductivity (σ{sub d}) and the photoconductivity (σ{sub ph}) of CdSe prepared thin films have been studied in the temperature range of 308–343 K. The effect of temperature and the intensity on conductivity has been analyzed for CdSe and CdSe:Cu nanocomposite films. The conductivity of all the samples increases with increasing temperature indicating the semiconducting behavior of the samples. The value of photo activation energy is less than the dark activation energy due to the shift in energy levelsmore » under illumination.« less
Non-Arrhenius ionic conductivities in glasses due to a distribution of activation energies.
Bischoff, C; Schuller, K; Beckman, S P; Martin, S W
2012-08-17
Previously observed non-Arrhenius behavior in fast ion conducting glasses [J. Kincs and S. W. Martin, Phys. Rev. Lett. 76, 70 (1996)] occurs at temperatures near the glass transition temperature, T(g), and is attributed to changes in the ion mobility due to ion trapping mechanisms that diminish the conductivity and result in a decreasing conductivity with increasing temperature. It is intuitive that disorder in glass will also result in a distribution of the activation energies (DAE) for ion conduction, which should increase the conductivity with increasing temperature, yet this has not been identified in the literature. In this Letter, a series of high precision ionic conductivity measurements are reported for 0.5Na(2)S + 0.5[xGeS(2) + (1-x)PS(5/2)] glasses with compositions ranging from 0 ≤ x ≤ 1. The impact of the cation site disorder on the activation energy is identified and explained using a DAE model. The absence of the non-Arrhenius behavior in other glasses is explained and it is predicted which glasses are expected to accentuate the DAE effect on the ionic conductivity.
The Big E (Energy). 4-H Member Guide, Unit 3.
ERIC Educational Resources Information Center
Caldwell, William; And Others
This activity and record book is designed for unit 3 (ages 15-19) of the Nebraska 4-H Energy Project. Aims, energy attitudes to be developed, and instructions are provided for each activity. Activities include: (1) determining ways to reduce energy waste with hot water heaters; (2) making personal choices about using appliances; (3) conducting a…
30 CFR 280.3 - What requirements must I follow when I conduct prospecting or research activities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... when I conduct prospecting or research activities? You must conduct G&G prospecting activities or scientific research activities under this part according to: (a) The Act; (b) The regulations in this part... prospecting or research activities? 280.3 Section 280.3 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT...
Crystal growth and electrical properties of CuFeO 2 single crystals
NASA Astrophysics Data System (ADS)
Dordor, P.; Chaminade, J. P.; Wichainchai, A.; Marquestaut, E.; Doumerc, J. P.; Pouchard, M.; Hagenmuller, P.; Ammar, A.
1988-07-01
Delafossite-type CuFeO 2 single crystals have been prepared by a flux method: crystals obtained in a Cu crucible with LiBO 2 as flux are n-type whereas those prepared in a Pt crucible with a Cu 2O flux are p-type. Electrical measurements have revealed that n-type crystals exhibit weak anisotropic conductivities with large activation energies and small mobilities (r.t. values perpendicular and parallel to the c-axis: μ⊥ = 5 × 10 -5 and μ‖ = 10 -7 cm -2 V -1 sec -1). p-type crystals, less anisotropic, are characterized by low activation energies and higher mobilities ( μ⊥ = 34 and μ‖ = 8.9 cm 2 V -1 sec -1). A two -conduction-band model is proposed to account for the difference observed between the energy gap value deduced from photoelectrochemical measurements and the activation energy of the electrical conductivity in the intrinsic domain.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Scope. 830.1 Section 830.1 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT § 830.1 Scope. This part governs the conduct of DOE contractors, DOE personnel, and other persons conducting activities (including providing items and services) that affect, or may...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Scope. 830.1 Section 830.1 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT § 830.1 Scope. This part governs the conduct of DOE contractors, DOE personnel, and other persons conducting activities (including providing items and services) that affect, or may...
30 CFR 285.308 - How will MMS conduct an auction for ROW grants and RUE grants?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and RUE grants? 285.308 Section 285.308 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING... Renewable Energy Activities Obtaining Row Grants and Rue Grants § 285.308 How will MMS conduct an auction...
Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications.
Feng, Feng; Wu, Junchi; Wu, Changzheng; Xie, Yi
2015-02-11
Recent years have witnessed great developments in inorganic 2D nanomaterials for their unique dimensional confinement and diverse electronic energy bands. Precisely regulating their intrinsic electrical behaviors would bring superior electrical conductivity, rendering 2D nanomaterials ideal candidates for active materials in electrochemical applications when combined with the excellent reaction activity from the inorganic lattice. This Concept focuses on highly conducting inorganic 2D nanomaterials, including intrinsic metallic 2D nanomaterials and artificial highly conductive 2D nanomaterials. The intrinsic metallicity of 2D nanomaterials is derived from their closely packed atomic structures that ensure maximum overlapping of electron orbitals, while artificial highly conductive 2D nanomaterials could be achieved by designed methodologies of surface modification, intralayer ion doping, and lattice strain, in which atomic-scale structural modulation plays a vital role in realizing conducting behaviors. Benefiting from fast electron transfer, high reaction activity, as well as large surface areas arising from the 2D inorganic lattice, highly conducting 2D nanomaterials open up prospects for enhancing performance in electrochemical catalysis and electrochemical capacitors. Conductive 2D inorganic nanomaterials promise higher efficiency for electrochemical applications of energy conversion and storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Redox-active Hybrid Materials for Pseudocapacitive Energy Storage
NASA Astrophysics Data System (ADS)
Boota, Muhammad
Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanbeigi, Ali; Price, Lynn
Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources formore » improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.« less
Silicon-embedded copper nanostructure network for high energy storage
Yu, Tianyue
2018-01-23
Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.
Silicon-embedded copper nanostructure network for high energy storage
Yu, Tianyue
2016-03-15
Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.
Communicating Wave Energy: An Active Learning Experience for Students
ERIC Educational Resources Information Center
Huynh, Trongnghia; Hou, Gene; Wang, Jin
2016-01-01
We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…
Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin
2015-01-01
Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices. PMID:25650133
Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin
2015-02-04
Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Employment. 1041.140 Section 1041.140 Energy DEPARTMENT OF... ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.140 Employment. No qualified handicapped person shall, on the basis of handicap, be subjected to discrimination in employment under any program or activity...
30 CFR 285.1010 - How long may I conduct activities under an Alternate Use RUE?
Code of Federal Regulations, 2010 CFR
2010-07-01
... THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using Existing OCS Facilities...
Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage
Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi
2010-01-01
Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527
Conducting polymer nanostructures: template synthesis and applications in energy storage.
Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi
2010-07-02
Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.
Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN
NASA Astrophysics Data System (ADS)
Gunning, Brendan; Lowder, Jonathan; Moseley, Michael; Alan Doolittle, W.
2012-08-01
Highly p-type GaN films with hole concentrations exceeding 6 × 1019 cm-3 grown by metal-modulated epitaxy are electrically characterized. Temperature-dependent Hall effect measurements at cryogenic temperatures reveal minimal carrier freeze-out in highly doped samples, while less heavily doped samples exhibited high resistivity and donor-compensated conductivity as is traditionally observed. Effective activation energies as low as 43 meV were extracted, and a maximum Mg activation efficiency of 52% was found. In addition, the effective activation energy was found to be negatively correlated to the hole concentration. These results indicate the onset of the Mott-Insulator transition leading to impurity band conduction.
30 CFR 585.1010 - How long may I conduct activities under an Alternate Use RUE?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Alternate Use RUE? 585.1010 Section 585.1010 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using Existing OCS...
30 CFR 585.1010 - How long may I conduct activities under an Alternate Use RUE?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Alternate Use RUE? 585.1010 Section 585.1010 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using Existing OCS...
30 CFR 585.1010 - How long may I conduct activities under an Alternate Use RUE?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Alternate Use RUE? 585.1010 Section 585.1010 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using Existing OCS...
10 CFR 820.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Purpose and scope. 820.1 Section 820.1 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.1 Purpose and scope. (a) Scope. This part sets forth the procedures to govern the conduct of persons involved in DOE nuclear activities...
Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters
NASA Astrophysics Data System (ADS)
Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.
2018-01-01
Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.
Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeyama, Daiki; Hagi, Keisuke; Ogiwara, Naoki
2014-12-01
The proton conductivity of a dense coordination polymer (CP) was investigated under high-pressure conditions. Impedance measurements under high pressures revealed that the proton conductivity of the CP decreased more than 1000-fold at pressures of 3–7 GPa and that the activation energy for proton conduction almost doubled compared with that at ambient pressure. A synchrotron X-ray study under high pressure identified the amorphization process of the CP during compression, which rationally explains the decrease in conductivity and increase in activation energy. This phenomenon is categorized as reversible pressure-induced amorphization of a dense CP and is regarded as a demonstration of themore » coupling of the mechanical and electrical properties of a CP.« less
Mayes, James C [Sugar Land, TX
2009-05-05
A device and method provide for cooling of a system having an energy source, one or more devices that actively consume energy, and one or more devices that generate heat. The device may include one or more thermoelectric coolers ("TECs") in conductive engagement with at least one of the heat-generating devices, and an energy diverter for diverting at least a portion of the energy from the energy source that is not consumed by the active energy-consuming devices to the TECs.
Compliance Verification Paths for Residential and Commercial Energy Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, David R.; Makela, Eric J.; Fannin, Jerica D.
2011-10-10
This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.
Award Winning Energy Education Activities for Elementary and High School Teachers.
ERIC Educational Resources Information Center
Carey, Helen H., Ed.
This publication contains descriptions of the winning entries to the National Science Teachers Association (NSTA) Teacher Participation Contest conducted in 1976. This was a nationwide contest for the design of activities around energy themes at any grade level, K-12. The ten winning entries described here are: (1) Energy Units for Primary Grades;…
Conducting polymers: Synthesis and industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1997-04-01
The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in themore » US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.« less
Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors
NASA Astrophysics Data System (ADS)
Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu
2015-09-01
This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.
Dielectric and AC conductivity studies on SrBi4Ti4O15
NASA Astrophysics Data System (ADS)
Jose, Roshan; Saravanan, K. Venkata
2018-05-01
The four layered SrBi4Ti4O15 ceramics which belong to the aurivillius family of oxide was prepared by conventional solid state reaction technique. Analysis of the dielectric data as a function of temperature and frequency revealed normal phase transition. The frequency dependent ac conductivity follows Jonscher's universal power law. Frequency exponent (n), pre-exponential factor (A), bulk dc conductivity (σdc), and hopping frequency (ωp) were determined from the fitting curves. The variation of frequency exponent with temperature indicates that large polaron hopping mechanism up to curie-temperature, then its changes to small polaron hopping. The activation energies were calculated from ac conductivity, bulk dc conductivity and hopping frequency. The activation energies revealed that conductivity had contributions from migrations of oxygen vacancies, bismuth ion vacancies and strontium ion vacancies.
NASA Technical Reports Server (NTRS)
Angel, Paul W.; Hann, Raiford E.; Cooper, Alfred R.
1993-01-01
Electrical response measurements from 10 Hz to 100 kHz between 120 and 540 C were made on potassium-silicate glasses with alkali oxide contents of 2, 3, 5 and 10 mol percent. Low alkali content glasses were chosen in order to try to reduce the Coulombic interactions between alkali ions to the point that frozen structural effects from the glass could be observed. Conductivity and electrical relaxation responses for both annealed and quenched glasses of the same composition were compared. Lower DC conductivity (sigma(sub DC)) activation energies were measured for the quenched compared to the annealed glasses. The two glasses with the lowest alkali contents exhibited a non-Arrhenius concave up curvature in the log(sigma(sub DC)) against 1/T plots, which decreased upon quenching. A sharp decrease in sigma(sub DC) was observed for glasses containing K2O concentrations of 5 mol percent or less. The log modulus loss peak (M'') maximum frequency plots against 1/T all showed Arrhenius behavior for both annealed and quenched samples. The activation energies for these plots closely agreed with the sigma(sub DC) activation energies. A sharp increase in activation energy was observed for both series as the potassium oxide concentration decreased. Changes in the electrical response are attributed to structural effects due to different alkali concentrations. Differences between the annealed and quenched response are linked to a change in the distribution of activation energies (DAE).
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2001-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.
Energy budget of the volcano Stromboli, Italy
NASA Technical Reports Server (NTRS)
Mcgetchin, T. R.; Chouet, B. A.
1979-01-01
The results of the analyses of movies of eruptions at Stromboli, Italy, and other available data are used to discuss the question of its energy partitioning among various energy transport mechanisms. Energy is transported to the surface from active volcanoes in at least eight modes, viz. conduction (and convection) of the heat through the surface, radiative heat transfer from the vent, acoustical radiation in blast and jet noise, seismic radiation, thermal energy of ejected particles, kinetic energy of ejected particles, thermal energy of ejected gas, and kinetic energy of ejected gas. Estimated values of energy flux from Stromboli by these eight mechanisms are tabulated. The energy budget of Stromboli in its normal mode of activity appears to be dominated by heat conduction (and convection) through the ground surface. Heat carried by eruption gases is the most important of the other energy transfer modes. Radiated heat from the open vent and heat carried by ejected lava particles also contribute to the total flux, while seismic energy accounts for about 0.5% of the total. All other modes are trivial by comparison.
Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3−δ} (Me = Fe, Mn)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwa, Eiki, E-mail: e-niwa@phys.chs.nihon-u.ac.jp; Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550; Maeda, Hiroki
Graphical abstract: Compositional dependence of (a) electrical conductivity and (b) E{sub a} for hopping conduction of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn). - Highlights: • Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn) was investigated. • Hopping conduction model could be applied for conductivity of both specimens. • The difference of E{sub a} due to that of energy level of Fe and Mn was observed. • Hole concentration estimated by iodimetry increases with increasing Ni content. - Abstract: Electrical conduction mechanism of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} expected as Sr-freemore » new cathode material for solid oxide fuel cells was analyzed. Electrical conduction behaviors of both specimens could be well fitted by small polaron hopping conduction model. The electrical conductivity of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} increased with increasing Ni content, showing agreement with decrease of activation energy for hopping conduction. The decrease of electrical conductivity and increase of activation energy of LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} were observed with increasing Ni content for 0.0 ≤ x ≤ 0.4. Further Ni substitution increased electrical conductivity and decreased activation energy for 0.4 ≤ x ≤ 0.6. It was revealed using iodometry that the difference of hole carrier density between LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} was small. It was suspected that the origin of the difference of electrical conduction behavior of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1-x}O{sub 3+δ} was difference of energy level of e{sub g} band composed of Fe 3d or Mn 3d orbitals and their overlapping quantity with O 2p and Ni 3d band.« less
Electrical transport in lead-free (Na0.5Bi0.5)1-xSrxTiO3 ceramics (x = 0, 0.01 and 0.02)
NASA Astrophysics Data System (ADS)
Dutkiewicz, E. M.; Suchanicz, J.; Konieczny, K.; Czaja, P.; Kluczewska, K.; Czternastek, H.; Antonova, M.; Sternberg, A.
2017-09-01
Lead-free (Na0.5Bi0.5)1xSrxTiO3 (x = 0, 0.01 and 0.02) ceramics were manufactured through a solid-state mixed oxide method and their ac (σac) and dc (σdc) electric conductivity were studied. It is shown that the low-frequency (100 Hz-1 MHz) ac conductivity obeys a power law σac ∼ ωs characteristic for disordered materials. Both the dc and ac conductivities have thermally activated character and possess linear parts with different activation energies. The calculated activation energies are attributed to different mechanism of conductivity. Frequency dependence of σdc and exponent s is reasonably interpreted by a correlated barrier hopping model. The NBT-ST system is expected to be a new promising candidate for lead-free electronic materials.
Photoconduction in amorphous thin films of Se90Sb10-xAgx glassy alloys
NASA Astrophysics Data System (ADS)
Sharma, Suresh Kumar; Shukla, R. K.; Dwivedi, Prabhat K.; Kumar, A.
2017-10-01
The present paper reports the steady state photoconductivity and photosensitivity response of thermally evaporated amorphous thin films of Se90Sb10-xAgx(x = 2, 4, 6, 8, 10). Temperature dependence of dark conductivity is studied and activation energy is calculated for different samples. Temperature dependence of photoconductivity is also studied at different intensities. From temperature dependence of photoconductivity activation energy is computed at different intensities which are found to vary from 0.26 to 0.47 eV. Intensity dependence of photoconductivity has also been studied at different temperatures. These curves are plotted on logarithmic scale and found to be straight lines which show that photoconductivity follows a power law with intensity. Composition dependence of dark conductivity, activation energy of DC conduction and photosensitivity show that these parameters are highly. composition dependent and show a discontinuity at a particular composition when Ag concentration becomes 6 at. %. This is explained in terms of transition from floppy state to mechanically stabilized state at this composition.
10 CFR 4.510 - Self-evaluation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Self-evaluation. 4.510 Section 4.510 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.510 Self-evaluation. (a) The...
Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors
2017-01-01
Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K+ conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings. PMID:28381642
Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors.
Heras, Francisco J H; Anderson, John; Laughlin, Simon B; Niven, Jeremy E
2017-04-01
Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K + conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings. © 2017 The Author(s).
30 CFR 550.208 - If I conduct ancillary activities, what notices must I provide?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false If I conduct ancillary activities, what notices must I provide? 550.208 Section 550.208 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT... activity and any mitigation to eliminate or minimize these effects on the marine, coastal, and human...
30 CFR 550.208 - If I conduct ancillary activities, what notices must I provide?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false If I conduct ancillary activities, what notices must I provide? 550.208 Section 550.208 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT... activity and any mitigation to eliminate or minimize these effects on the marine, coastal, and human...
30 CFR 250.208 - If I conduct ancillary activities, what notices must I provide?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false If I conduct ancillary activities, what notices must I provide? 250.208 Section 250.208 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... the proposed activity and any mitigation to eliminate or minimize these effects on the marine, coastal...
30 CFR 550.208 - If I conduct ancillary activities, what notices must I provide?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false If I conduct ancillary activities, what notices must I provide? 550.208 Section 550.208 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT... activity and any mitigation to eliminate or minimize these effects on the marine, coastal, and human...
30 CFR 285.652 - How long do I have to conduct activities under an approved GAP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... an approved GAP? 285.652 Section 285.652 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information Requirements Activities Under An Approved Gap § 285.652 How long do I have to conduct activities under an approved GAP? After MMS approves your GAP...
Electrical conductivity and dielectric behavior in sodium zinc divanadates
NASA Astrophysics Data System (ADS)
Sallemi, F.; Louati, B.; Guidara, K.
2014-11-01
The Na2ZnV2O7 compound was obtained by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, Raman and impedance spectroscopy. The ac electrical conductivity and dielectric properties have been investigated in the frequency and temperature range of 200 Hz-1 MHz and 513 K-729 K, respectively. The direct current conductivity process is thermally activated. The frequency dependence of the conductivity is interpreted using the power law. The close values of activation energies obtained from the analysis of hopping frequency and dc conductivity implies that the transport is due to Na+ cation displacement parallel to (0 0 1) plane located between ZnO4 and VO4 tetrahedra. The evolution of the complex permittivity as a function of angular frequency was investigated. Several important parameters such as charge carrier concentration, ionic mobility and diffusion coefficient were determined. Thermodynamic parameters such as the free energy of activation ∆F, the enthalpy ∆H, and the change in entropy ∆S have been calculated.
2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Grey; Chester Motloch; James Francfort
2010-01-01
The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporationmore » conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.« less
Electrochemical energy storage devices comprising self-compensating polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody
The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises amore » zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.« less
Martin, Steve W; Bischoff, Christian; Schuller, Katherine
2015-12-24
A negative mixed glass former effect (MGFE) in the Na(+) ion conductivity of glass has been found in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] glasses where the Na(+) ion conductivity is significantly smaller for all of the ternary glasses than either of the binary end-member glasses. The minimum conductivity of ∼0.4 × 10(-6) (Ω cm)(-1) at 25 °C occurs for the x = 0.7 glass. Prior to this observation, the alkali ion conductivity of sulfide glasses at constant alkali concentration, but variable ratio of one glass former for another (x) ternary mixed glass former (MGF) glasses, has always produced a positive MGFE in the alkali ion conductivity; that is, the ternary glasses have always had higher ion conductivities that either of the end-member binary glasses. While the Na(+) ion conductivity exhibits a single global minimum value, the conductivity activation energy exhibits a bimodal double maximum at x ≈ 0.4 and x ≈ 0.7. The modified Christensen-Martin-Anderson-Stuart (CMAS) model of the activation energies reveals the origin of the negative MGFE to be due to an increase in the dielectric stiffness (a decrease in relative dielectric permittivity) of these glasses. When coupled with an increase in the average Na(+) ion jump distance and a slight increase in the mechanical stiffness of the glass, this causes the activation energy to go through maximum values and thereby produce the negative MGFE. The double maximum in the conductivity activation energy is coincident with double maximums in CMAS calculated strain, ΔES, and Coulombic, ΔEC, activation energies. In these ternary glasses, the increase in the dielectric stiffness of the glass arises from a negative deviation of the limiting high frequency dielectric permittivity as compared to the binary end-member glasses. While the CMAS calculated total activation energies ΔEact = ΔES + ΔEC are found to reproduce the overall shape of the composition dependence of the measured ΔEact values, they are consistently smaller than the measured values for all compositions x. The new concept of an effective Madelung constant for the Na(+) ions in glass is introduced, MD(Na(+)), to account for the difference. Calculated MD(Na(+)) values necessary to bring the CMAS and experimental ΔEact values into agreement are in excellent agreement with nominal values for typical oxide crystals containing Na(+). New MD simulations of oxide glasses were performed and were used to calculate MD(Na(+)) values for Na2O + SiO2 glasses for the first time and were found to agree quite well with the values for the sulfide glasses studied here. Insights from the current study have been used to predict and design new MGF systems that may lead to a positive MGFE in the ionic conductivity.
AC and DC conductivity due to hopping mechanism in double ion doped ceramics
NASA Astrophysics Data System (ADS)
Rizwana, Mahboob, Syed; Sarah, P.
2018-04-01
Sr1-2xNaxNdxBi4Ti4O15 (x = 0.1, 0.2 and 0.4) system is prepared by sol gel method involving Pechini process of modified polymeric precursor method. Phase identification is done using X-ray diffraction. Conduction in prepared materials involves different mechanisms and is explained through detailed AC and DC conductivity studies. AC conductivity studies carried out on the samples at different frequencies and different temperatures gives more information about electrical transport. Exponents used in two term power relation helps us to understand the different hopping mechanism involved at low as well as high frequencies. Activation energies calculated from the Arrhenius plots are used to calculate activation energies at different temperatures and frequencies. Hopping frequency calculated from the measured data explains hopping of charge carriers at different temperatures. DC conductivity studies help us to know the role of oxygen vacancies in conduction.
10 CFR 1041.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Program accessibility: Existing facilities. 1041.150 Section 1041.150 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.150 Program...
10 CFR 1041.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Program accessibility: Existing facilities. 1041.150 Section 1041.150 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.150 Program...
10 CFR 1041.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Program accessibility: Existing facilities. 1041.150 Section 1041.150 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.150 Program...
10 CFR 1041.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Program accessibility: Existing facilities. 1041.150 Section 1041.150 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.150 Program...
10 CFR 1041.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Program accessibility: Existing facilities. 1041.150 Section 1041.150 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.150 Program...
10 CFR 4.541-4.548 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 4.541-4.548 Section 4.541-4.548 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission §§ 4.541-4.548 [Reserved] ...
10 CFR 4.552-4.559 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 4.552-4.559 Section 4.552-4.559 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission §§ 4.552-4.559 [Reserved] ...
10 CFR 4.504-4.509 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 4.504-4.509 Section 4.504-4.509 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission §§ 4.504-4.509 [Reserved] ...
10 CFR 4.531-4.539 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 4.531-4.539 Section 4.531-4.539 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission §§ 4.531-4.539 [Reserved] ...
10 CFR 4.561-4.569 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 4.561-4.569 Section 4.561-4.569 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission §§ 4.561-4.569 [Reserved] ...
10 CFR 4.512-4.529 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 4.512-4.529 Section 4.512-4.529 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission §§ 4.512-4.529 [Reserved] ...
10 CFR 4.571-4.999 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 4.571-4.999 Section 4.571-4.999 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission §§ 4.571-4.999 [Reserved] ...
Devereux-Fitzgerald, Angela; Powell, Rachael; French, David P
2018-05-24
Perceptions of time and energy and their role in physical activity engagement were examined in older adults living in lower socioeconomic status areas. Semistructured interviews were conducted with 19 participants aged 67-94 years. A thematic framework analysis identified four themes: Time is Energy (older adults conflate time and energy in relation to physical activity), Reduced Day (engaging in activities outside a certain time frame is deemed unacceptable), Being Given Enough Time (need for time to socialize and go at own pace), and Seasonal Impact (seasonal differences affecting access). Enjoyment appears to mitigate the perceived energy drain and increase the capacity for physical activities for many. Conflation of time and energy may explain observed discrepancies between older adults' actual and perceived available time. Having locally based physical activities means less time/energy is required to attend, leaving more resources for physical activity itself. A limited availability of resources in lower socioeconomic status areas is therefore problematic.
NASA Astrophysics Data System (ADS)
Satheesh Kumar, S. S.; Raghu, T.
2015-02-01
Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.
10 CFR 1041.160 - Communications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Communications. 1041.160 Section 1041.160 Energy... PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.160 Communications. (a) The agency shall take appropriate steps to ensure effective communication with applicants, participants, personnel...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Scope. 830.120 Section 830.120 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Quality Assurance Requirements § 830.120 Scope. This subpart establishes quality assurance requirements for contractors conducting activities, including providing items or services, that...
ERIC Educational Resources Information Center
Bufe, Charles Glenn
1983-01-01
Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)
10 CFR 1041.160 - Communications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Communications. 1041.160 Section 1041.160 Energy... PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.160 Communications. (a) The agency shall take appropriate steps to ensure effective communication with applicants, participants, personnel...
10 CFR 1041.160 - Communications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Communications. 1041.160 Section 1041.160 Energy... PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.160 Communications. (a) The agency shall take appropriate steps to ensure effective communication with applicants, participants, personnel...
10 CFR 1041.160 - Communications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Communications. 1041.160 Section 1041.160 Energy... PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.160 Communications. (a) The agency shall take appropriate steps to ensure effective communication with applicants, participants, personnel...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Scope. 830.120 Section 830.120 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Quality Assurance Requirements § 830.120 Scope. This subpart establishes quality assurance requirements for contractors conducting activities, including providing items or services, that...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Scope. 830.120 Section 830.120 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Quality Assurance Requirements § 830.120 Scope. This subpart establishes quality assurance requirements for contractors conducting activities, including providing items or services, that...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Scope. 830.120 Section 830.120 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Quality Assurance Requirements § 830.120 Scope. This subpart establishes quality assurance requirements for contractors conducting activities, including providing items or services, that...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Compliance. 850.13 Section 850.13 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Administrative Requirements § 850.13 Compliance. (a) The responsible employer must conduct activities in compliance with its CBDPP. (b) The responsible...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Compliance. 850.13 Section 850.13 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Administrative Requirements § 850.13 Compliance. (a) The responsible employer must conduct activities in compliance with its CBDPP. (b) The responsible...
Design for the fabrication of high efficiency solar cells
Simmons, Joseph H.
1998-01-01
A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.
High energy density redox flow device
Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa
2014-05-13
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses
NASA Astrophysics Data System (ADS)
Dhankhar, Sunil; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Punia, R.; Kishore, N.
2016-09-01
The ac conductivity of zinc modified tellurium based quaternary glasses having composition 60 TeO2-10 B2O3-(30 - x) Bi2O3-x ZnO; x = 10, 15, 20, 25 and 30 has been investigated in the frequency range 10-1-105 Hz and in temperature range 483-593 K. Frequency and temperature dependent ac conductivity found to obey Jonscher power law modified by Almond-West. DC conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher power law modified by Almond-West. The ac conductivity and its frequency exponent have been analyzed by various theoretical models. In presently studied glasses ac conduction takes place via tunneling of overlapping large polaron tunneling. Activation energy is found to be increased with increase in zinc content and dc conduction takes place via variable range hopping proposed by Mott with some modification suggested by Punia et al. The value of the stretched exponent ( β) obtained by fitting of M^' ' }} reveals the presence of non-Debye type relaxation. Scaling spectra of ac conductivity and electric modulus collapse into a single master curve for all compositions and temperatures, reveals the presence of composition and temperature independent conduction and relaxation process in these glasses. Activation energy of conduction ( W) and electric modulus ( E R ) are nearly equal, indicating that polaron have to overcome the same energy barrier during conduction as well as relaxation processes.
30 CFR 585.650 - When may I begin conducting activities under my GAP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... GAP? 585.650 Section 585.650 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... activities that do not involve a project easement or the construction of facilities on the OCS that BOEM has...
30 CFR 585.650 - When may I begin conducting activities under my GAP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... GAP? 585.650 Section 585.650 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... activities that do not involve a project easement or the construction of facilities on the OCS that BOEM has...
30 CFR 585.650 - When may I begin conducting activities under my GAP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... GAP? 585.650 Section 585.650 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... activities that do not involve a project easement or the construction of facilities on the OCS that BOEM has...
Ionic conductivity and dielectric relaxation in Y doped La2Mo2O9 oxide-ion conductors
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2014-10-01
In this work, we have studied electrical conductivity and dielectric properties of polycrystalline La2-xYxMo2O9 (0.05 ≤ x ≤ 0.3) compounds in the temperature range from 358 K to 1088 K and the frequency range from 10 Hz to 3 GHz. The bulk and grain boundary contributions to the overall conductivity of these compounds show Arrhenius type behavior at low temperatures. The random free-energy barrier model has been used to analyze the frequency dependence of the conductivity. The charge carrier relaxation time and its activation energy have been determined from the analysis of the conductivity spectra using this model. The results obtained from the random free-energy barrier model satisfy Barton-Nakajima-Namikawa relation. The conduction mechanism has been also predicted using random free-energy barrier model and the scaling formalism. We have observed that the dielectric relaxation peaks arise from the diffusion of oxygen ions via vacancies.
Nuclear Theft: Real and Imagined Dangers
1976-03-01
are utilized in connection with fossil fuel energy research and development programs and related activities conducted by the Bureau of Mines "energy... development associated with the U.S. nuclear weapons program . Addition- ally, ERDA conducts related programs which include power reactor design... development , nuclear propulsion, and other systems associated with space programs . The military and ERDA enjoy a symbiotic relationship in that nuclear
Final Report. Research in Theoretical High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greensite, Jeffrey P.; Golterman, Maarten F.L.
Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.
NASA Astrophysics Data System (ADS)
Aneesh Kumar, K. S.; Bhowmik, R. N.
2017-12-01
The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonscher’s power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity ~10-4-10-12 S cm-1, and unusually high activation energy ~0.17-1.36 eV.
10 CFR 52.91 - Authorization to conduct limited work authorization activities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... determination required by 10 CFR 50.10(e), and the Director of New Reactors or the Director of Nuclear Reactor... activities. 52.91 Section 52.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.91 Authorization to conduct limited work...
10 CFR 52.91 - Authorization to conduct limited work authorization activities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... determination required by 10 CFR 50.10(e), and the Director of New Reactors or the Director of Nuclear Reactor... activities. 52.91 Section 52.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.91 Authorization to conduct limited work...
10 CFR 52.91 - Authorization to conduct limited work authorization activities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... determination required by 10 CFR 50.10(e), and the Director of New Reactors or the Director of Nuclear Reactor... activities. 52.91 Section 52.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.91 Authorization to conduct limited work...
10 CFR 52.91 - Authorization to conduct limited work authorization activities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... determination required by 10 CFR 50.10(e), and the Director of New Reactors or the Director of Nuclear Reactor... activities. 52.91 Section 52.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.91 Authorization to conduct limited work...
10 CFR 52.91 - Authorization to conduct limited work authorization activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... determination required by 10 CFR 50.10(e), and the Director of New Reactors or the Director of Nuclear Reactor... activities. 52.91 Section 52.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.91 Authorization to conduct limited work...
ERIC Educational Resources Information Center
Yu, C. C. W.; Chan, Scarlet; Cheng, Frances; Sung, R. Y. T.; Hau, Kit-Tai
2006-01-01
Education is so strongly emphasized in the Chinese culture that academic success is widely regarded as the only indicator of success, while too much physical activity is often discouraged because it drains energy and affects academic concentration. This study investigated the relations among academic achievement, self-esteem, school conduct and…
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
Integration of body temperature into the analysis of energy expenditure in the mouse
Abreu-Vieira, Gustavo; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L.
2015-01-01
Objectives We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. Methods The effect of environmental temperature (4–33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3-/y, lipodystrophic) was measured using continuous monitoring. Results Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts of energy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-induced thermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matched that calculated from the energy expenditure using Fourier's law of heat conduction. Mice defended a higher body temperature during physical activity. The cost of the warmer body temperature during the active phase is 4–16% of total daily energy expenditure. Parameters measured in diet-induced obese and Brs3-/y mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in mice is via physiological mechanisms. Conclusions At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis. PMID:26042200
NASA Astrophysics Data System (ADS)
Benlakehal, D.; Belfedal, A.; Bouizem, Y.; Sib, J. D.; Chahed, L.; Zellama, K.
2016-12-01
The dependence on the temperature range, T, of the electronic transport mechanism in intrinsic and doped hydrogenated nanocrystalline silicon films, deposited by radiofrequency-magnetron sputtering at low substrate temperature, has been studied. Electrical conductivity measurements σ(T) have been conducted on these films, as a function of temperature, in the 93-450 K range. The analysis of these results clearly shows a thermally activated conduction process in the 273-450 K range which allows us to estimate the associated activation energy as well as the preexponential conductivity factor. While, in the lower temperature range (T < 273 K), a non-ohmic behavior is observed for the conductivity changes. The conductivity σ(T) presents a linear dependence on (T-1/4) , and a hopping mechanism is suggested to explain these results. By using the Percolation theory, further information can be gained about the density of states near the Fermi level as well as the range and the hopping energy.
Effect of Impedance Relaxation in Conductance Mechanisms in TiO2/ITO/ZnO:Al/p-Si Heterostructure
NASA Astrophysics Data System (ADS)
Nouiri, M.; El Mir, L.
2018-03-01
The electrical conduction of a TiO2/ITO/ZnO:Al/p-Si structure under alternating-current excitation was investigated in the temperature range of 80 K to 300 K. The frequency dependence of the capacitance and conductance revealed the response of a thermally activated trap characterized by activation energy of about 140 meV. The frequency dependence of the conductance obeyed the universal dynamic response according to the common relation G = Aωs . The temperature dependence of the frequency exponent s illustrates that, in the low frequency range, conduction is governed by the correlated barrier hopping (CBH) mechanism involving two distinct energy levels for all investigated temperatures. For the high frequency region, conduction takes place according to the overlapping large-polaron tunneling mechanism at low temperatures but the CBH mechanism becomes dominant in the high temperature region. This difference in electrical behavior between low and high temperatures can be attributed to the dominance of dielectric relaxation at low compared with high temperatures.
10 CFR 1041.110 - Self-evaluation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Self-evaluation. 1041.110 Section 1041.110 Energy... PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.110 Self-evaluation. (a) The agency... representing handicapped persons, to participate in the self-evaluation process by submitting comments (both...
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2000-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.
Recent Science and Engineering Graduates Working in Energy-Related Activities, 1979 and 1980.
ERIC Educational Resources Information Center
Bell, Sharon E.
Employment and professional activities of recent science and engineering graduates who described their work as energy-related were examined. The survey included graduates who received bachelor's or master's degrees between 1972 and 1979 and was conducted in 1976, 1978, 1979, and 1980. Data indicated that the number of graduates who reported…
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.
1992-01-01
The temperature dependence of the gate current versus the gate voltage in complementary heterojunction field-effect transistors (CHFET's) is examined. An analysis indicates that the gate conduction is due to a combination of thermionic emission, thermionic-field emission, and conduction through a temperature-activated resistance. The thermionic-field emission is consistent with tunneling through the AlGaAs insulator. The activation energy of the resistance is consistent with the ionization energy associated with the DX center in the AlGaAs. Methods reducing the gate current are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2001-05-01
This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.
Electrical transport and optical band gap of NiFe2Ox thin films
NASA Astrophysics Data System (ADS)
Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter
2017-12-01
We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xia; Wang, Yanlong; Silver, Mark A.
An ultrahigh proton conductivity of 2.91 × 10 −2 S cm −1 and an ultralow activation energy of 0.10 eV were observed in an anionic lanthanide-organic framework. Both values approach the records for proton-conducting MOF materials.
NASA Astrophysics Data System (ADS)
Rao, K. S.; Krishna, P. M.; Prasad, D. M.; Latha, T. S.; Hussain, M.
2007-09-01
Dielectric, impedance, modulus and conductivity studies were performed over temperature 35 °C 600 °C and frequency 45 Hz 5 MHz range on the Lead Potassium Lithium Niobate (Pb{4.0}K{1.0}Li{1.0}Nb{10}O{30}, PKLN) ceramics. These studies established the conduction ion motion and polarization mechanism in the material. The dispersive dielectric loss at high temperature reveals the ionic conductivity. From frequency variation of \\varepsilonl response the pre-factor A(T) and critical exponent n(T) are evaluated, and are used in Jonscher's dielectric dispersion relation for \\varepsilon ' to fit with the experimental data. Complex impedance plots showed a non Debye type relaxation, are used to evaluate the grain and grain boundary conduction and relaxation activation energies. DC and ac conduction activation energies are estimated from Arrhenius plots. Occupancy of Li+ for C-sites gave a completely filled structure and enhanced the phase transition temperature to 520 °C compared to PKN. This is supported by the conduction activation energy in ferro region is more than the para region. Also, the dc conductivity characterized from bulk resistance and M^ll peak frequency. Polaron hoping mechanism at room temperature has been confirmed via the linear variation of the plot log (σ ac-σ dc) as a function of log ω 2. Stretched exponential parameter, β (0 < β ≤slant 1) has been evaluated from impedance plots, interpreted as a result of correlated motions between the Li+ ions and distribution of dielectric relaxation. Compared the results from different techniques, and discussed the conduction mechanism in the material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Hearing. 820.29 Section 820.29 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.29 Hearing. (a) General. Except as otherwise provided by this part or the Presiding Officer, a hearing shall be conducted in accordance with...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Hearing. 820.29 Section 820.29 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.29 Hearing. (a) General. Except as otherwise provided by this part or the Presiding Officer, a hearing shall be conducted in accordance with...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Hearing. 820.29 Section 820.29 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.29 Hearing. (a) General. Except as otherwise provided by this part or the Presiding Officer, a hearing shall be conducted in accordance with...
75 FR 12238 - Agency Information Collection Activities: Emergency Clearance; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
..., biofuels- based, geothermal and/or renewable energy production. \\2\\ For purposes of this Questionnaire, a... certain transactions involving parties that conduct business with the Iranian energy sector. To ensure...: Company Name: Address: Contact: Name and Title: Telephone: Email: 2. Are you an energy producer \\1\\ or...
Evaluation of Students' Energy Conception in Environmental Science
ERIC Educational Resources Information Center
Park, Mihwa; Johnson, Joseph A.
2016-01-01
While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…
Paul Hill d/b/a Alternative Energy Windows and Siding
Paul Hill d/b/a Alternative Energy Windows and Siding (the Company) is located in Concord, New Hampshire. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Concord, New Hampshire.
Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; Grant, Richard P.; Monson, Todd C.
2017-01-01
Many challenges must be overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. To begin addressing these challenges (and others), we report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers. The tethered array of nanoparticles, MnO in this case, bound directly to a gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). This strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles. PMID:28287183
NASA Astrophysics Data System (ADS)
Mariappan, C. R.
2014-05-01
AC conductivity spectra of Li-analogues NASICON-type Li1.5Al0.5Ge1.5P3O12 (LAGP), Li-Al-Ti-P-O (LATP) glass-ceramics and garnet-type Li7La2Ta2O13 (LLTO) ceramic are analyzed by universal power law and Summerfield scaling approaches. The activation energies and pre-exponential factors of total and grain conductivities are following the Meyer-Neldel (M-N) rule for NASICON-type materials. However, the garnet-type LLTO material deviates from the M-N rule line of NASICON-type materials. The frequency- and temperature-dependent conductivity spectra of LAGP and LLTO are superimposed by Summerfield scaling. The scaled conductivity curves of LATP are not superimposed at the grain boundary response region. The superimposed conductivity curves are observed at cross-over frequencies of grain boundary response region for LATP by incorporating the exp ( {{{ - (EAt - EAg )} {{{ - (EAt - EAg )} {kT}}} ) factor along with Summerfield scaling factors on the frequency axis, where EAt and EAg are the activation energies of total and grain conductivities, respectively.
30 CFR 280.11 - What must I do before I may conduct scientific research?
Code of Federal Regulations, 2011 CFR
2011-07-01
... I may conduct scientific research? You may conduct G&G scientific research activities related to... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I do before I may conduct scientific research? 280.11 Section 280.11 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND...
Wang, Xia; Wang, Yanlong; Silver, Mark A.; ...
2018-01-01
An ultrahigh proton conductivity of 2.91 × 10 −2 S cm −1 and an ultralow activation energy of 0.10 eV were observed in an anionic lanthanide-organic framework. Both values approach the records for proton-conducting MOF materials.
An Assessment of Energy-Related Career Paths of Senior Industrial Assessment Center Program Alumni
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M.A.
2003-10-20
The purpose of this study was to assess the career paths of alumni from the U.S. Department of Energy's Industrial Assessment Center (IAC) program. IAC was originally named the Energy Analysis and Diagnostic Center (EADC) program when it began in association with four schools in 1976. The current IAC program provides funding to 26 engineering colleges, located in centers across the United States, to conduct energy, waste, and productivity assessments for small- to medium-sized manufacturing establishments within their respective regions. Through part-time employment with the university, students receive training and in turn conduct assessments for local manufacturers, under the directmore » supervision of engineering faculty. Annually, IAC participants conduct over 700 assessments, and each assessment generates recommendations for energy savings, energy cost savings, and waste and productivity cost savings customized for individual clients. An earlier study determined that energy savings could be attributed to alumni of the IAC program who take their IAC experiences with them to the professional workplace. During their careers, the alumni conduct additional energy assessments as well as influence energy efficiency through design, teaching and training, and other activities. Indeed, a significant level of program benefits can be attributed to the alumni. This project addressed such specific questions as: How many years after graduation are IAC alumni involved in energy-efficiency activities? What different methods do they use to influence energy-efficiency decisions? To answer these questions, the University of Tennessee, Knoxville (UT) surveyed IAC senior alumni, defined as those who graduated in 1995 or earlier. Section 2 describes the survey used in this research. The actual survey can be found in Appendix A. Section 3 describes our approach to data collection. Section 4 presents descriptive statistics about the senior alumni who responded to the survey. Section 5 begins with the presentation of two frameworks used to help analyze the data about alumni career paths and then presents the career path results. Section 6 offers concluding remarks.« less
Fleshman, Allison M; Petrowsky, Matt; Frech, Roger
2013-05-02
The molal conductivity of liquid electrolytes with low static dielectric constants (ε(s) < 10) decreases to a minimum at low concentrations (region I) and increases to a maximum at higher concentrations (region II) when plotted against the square root of the concentration. This behavior is investigated by applying the compensated Arrhenius formalism (CAF) to the molal conductivity, Λ, of a family of 1-alcohol electrolytes over a broad concentration range. A scaling procedure is applied that results in an energy of activation (E(a)) and an exponential prefactor (Λ0) that are both concentration dependent. It is shown that the increasing molal conductivity in region II results from the combined effect of (1) a decrease in the energy of activation calculated from the CAF, and (2) an inherent concentration dependence in the exponential prefactor that is partly due to the dielectric constant.
Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites
NASA Astrophysics Data System (ADS)
Studenyak, I. P.; Neimet, Yu. Yu.; Kranjčec, M.; Solomon, A. M.; Orliukas, A. F.; Kežionis, A.; Kazakevičius, E.; Šalkus, T.
2014-01-01
Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300-400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.
AC and DC conductivity study on Ca substituted bismuth ferrite
NASA Astrophysics Data System (ADS)
Pandey, Rabichandra; Pradhan, Lagen Kumar; Kumar, Sunil; Kar, Manoranjan
2018-05-01
Bi0.95Ca0.05FeO3 multiferroic compound was synthesized by the citric acid modified sol-gel method. Crystal structure of Bi0.95Ca0.05FeO3 is studied by the X-ray diffraction (XRD) technique. The ac impedance analysis of the compound has been carried out in a wide range of frequency (100 Hz - 1MHz) as well as temperature (40-2500C). Frequency variation of dielectric constant at different temperatures can be understood by the modified Debye formula. The activation energy was found to be 0.48eV, which was obtained by employing Arrhenius equation. The AC conductivity of the sample follows the Johnscher's power law which indicates the presence of hopping type conduction in localized charged states. To understand the conduction mechanism with localized charge states, the DC resistivity data were analyzed by Mott's variable range hopping (VRH) model. The activation energy calculated from Debye relaxation time, AC conductivity and DC resistivity are comparable to each other.
Reasearch Activities for the Establishment of The Center for Sustainable Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Michael Seliger
2005-08-08
In 2003, Bronx Community College received a grant of $481,000 through the United States Department of Energy for the purpose of conducting research- related activities leading to the creation of the Center for Sustainable Energy at Bronx Community College. The award, which was administered on behalf of Bronx Community College by the Research Foundation of the City University of New York, was initially for one year, from October 2003 through September 30, 2004. It received a no-cost extension to June 30, 2005. This report presents a summary of the activities and accomplishments attributable to the award.
U.S. Geological Survey activities related to American Indians and Alaska Natives: Fiscal year 2004
,; Brunstein, F. Craig
2006-01-01
The USGS works in cooperation with American Indian and Alaska Native governments to conduct research on (1) water, energy, and mineral resources, (2) animals and plants that are important for traditional lifeways or have environmental or economic significance, and (3) natural hazards. This report describes most of the activities that the USGS conducted with American Indian and Alaska Native governments, educational institutions, and individuals during Federal fiscal year (FY) 2004. Most of these USGS activities were collaborations with Tribes, Tribal organizations, or professional societies. Other activities were conducted cooperatively with the U.S. Bureau of Indian Affairs (BIA) or other Federal entities.
Materials Development for All-Solid-State Battery Electrolytes
NASA Astrophysics Data System (ADS)
Wang, Weimin
Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in glasses as involving a jump by the migrating cation and transient reversible isotropic displacement of atoms in the immediate vicinity, and express the activation energy as a sum of Coulomb and elastic terms. By fitting our experimental data to this model, we find that the number of affected atoms in the vicinity ranges between 20 and 30. Furthermore, elastic deformations in ion jumping are almost purely hydrostatic and hardly shear. Considering that the energy required for the cation jump is made available by concentrating thermal phonons at the jump site, we establish a relationship between structural stiffness and activation energy. Moreover, the more atoms that partake in the cation jump, the more degrees of freedom for atomic motion can be relied upon to achieve the required net outward expansion to facilitate the passage of the jumping cation, lowering the activation energy. To combine the flexibility of polymers and the good mechanical and electrochemical properties of silica, we use sol-gel methods for fabricating silica-based hybrid organic-inorganic electrolytes. Polyethylene glycol is covalently grafted onto the silica backbone as the organic filler that provides the environment for ion conduction. We developed synthesis methods in which grafting and polycondensation occur concurrently, or the grafting occurs after the silica backbone has formed. Small angle x-ray scattering measurements reveal that different structures are achieved depending on the method used. The two-step procedure allows for a larger amount of conducting polymer to be embedded into network pores than in the one-pot method. This greatly enhances the ionic conductivity without sacrificing mechanical stability afforded by the continuous silica backbone. Here we provide a cumulative account of a systematic materials design efforts, in which we sequentially implement several important design aspects to identify their respective importance and influence on the materials performance characteristics.
30 CFR 285.1010 - How long may I conduct activities under an Alternate Use RUE?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Alternate Use RUE? 285.1010 Section 285.1010 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dholabhai, Pratik P., E-mail: pratik.dholabhai@asu.ed; Anwar, Shahriar, E-mail: anwar@asu.ed; Adams, James B., E-mail: jim.adams@asu.ed
Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy diffusion in praseodymium-doped ceria. The current approach uses a database of activation energies for oxygen vacancy migration, calculated using first-principles, for various migration pathways in praseodymium-doped ceria. Since the first-principles calculations revealed significant vacancy-vacancy repulsion, we investigate the importance of that effect by conducting simulations with and without a repulsive interaction. Initially, as dopant concentrations increase, vacancy concentration and thus conductivity increases. However, at higher concentrations, vacancies interfere and repel one another, and dopants trap vacancies, creating a 'traffic jam' that decreases conductivity, which is consistent with themore » experimental findings. The modeled effective activation energy for vacancy migration slightly increased with increasing dopant concentration in qualitative agreement with the experiment. The current methodology comprising a blend of first-principle calculations and KLMC model provides a very powerful fundamental tool for predicting the optimal dopant concentration in ceria related materials. -- graphical abstract: Ionic conductivity in praseodymium doped ceria as a function of dopant concentration calculated using the kinetic lattice Monte Carlo vacancy-repelling model, which predicts the optimal composition for achieving maximum conductivity. Display Omitted Research highlights: {yields} KLMC method calculates the accurate time-dependent diffusion of oxygen vacancies. {yields} KLMC-VR model predicts a dopant concentration of {approx}15-20% to be optimal in PDC. {yields} At higher dopant concentration, vacancies interfere and repel one another, and dopants trap vacancies. {yields} Activation energy for vacancy migration increases as a function of dopant content« less
NASA Astrophysics Data System (ADS)
Karato, Shun-ichiro
2015-11-01
Nominally anhydrous minerals such as olivine dissolve hydrogen in a variety of forms including free (or interstitial) proton (Hrad) and two protons trapped at the M-site ((2 H)M×). The strength of chemical bonding between protons and the surrounding atoms are different among different species, and consequently protons belonging to different species likely have different mobility (diffusion coefficients). I discuss the role of diffusion of protons in different species in the isotope exchange and hydrogen-assisted electrical conductivity adding a few notes to the previous work by Karato (2013) including a new way to test the model. I conclude that in the case of isotope exchange, the interaction among these species is strong because diffusion is heterogeneous, whereas there is no strong interaction among different species in electrical conduction where diffusion is homogeneous (in an infinite crystal). Consequently, the slowest diffusing species controls the rate of isotope exchange, whereas the fastest diffusing species controls electrical conductivity leading to a different temperature dependence of activation energy and anisotropy. This model explains the differences in the activation energy and anisotropy between isotope diffusion and electrical conductivity, and predicts that the mechanism of electrical conductivity changes with temperature providing an explanation for most of the discrepancies among different experimental observations at different temperatures except for those by Poe et al. (2010) who reported anomalously high water content dependence and highly anisotropic activation energy. When the results obtained at high temperatures are used, most of the geophysically observed high and highly anisotropic electrical conductivity in the asthenosphere can be explained without invoking partial melting.
Computer aided design of nano-structured materials with tailored ionic conductivities.
Sayle, Dean C; Doig, James A; Parker, Stephen C; Watson, Graeme W; Sayle, Thi X T
2005-01-07
We show, using simulation techniques, that the high ionic conductivity in BaF2/CaF2 heterolayers is because the interfaces reduce the activation energy barriers to mobility and increase the number of charge carriers.
Ultrahigh Ionic Conduction in Water-Stable Close-Packed Metal-Carbonate Frameworks.
Manna, Biplab; Desai, Aamod V; Illathvalappil, Rajith; Gupta, Kriti; Sen, Arunabha; Kurungot, Sreekumar; Ghosh, Sujit K
2017-08-21
Utilization of the robust metal-carbonate backbone in a series of water-stable, anionic frameworks has been harnessed for the function of highly efficient solid-state ion-conduction. The compact organization of hydrophilic guest ions facilitates water-assisted ion-conduction in all the compounds. The dense packing of the compounds imparts high ion-conducting ability and minimizes the possibility of fuel crossover, making this approach promising for design and development of compounds as potential components of energy devices. This work presents the first report of evaluating ion-conduction in a purely metal-carbonate framework, which exhibits high ion-conductivity on the order of 10 -2 S cm -1 along with very low activation energy, which is comparable to highly conducting well-known crystalline coordination polymers or commercialized organic polymers like Nafion.
Preparations of an inorganic-framework proton exchange nanochannel membrane
NASA Astrophysics Data System (ADS)
Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.
2016-09-01
In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.
Bypass apparatus and method for series connected energy storage devices
Rouillard, Jean; Comte, Christophe; Daigle, Dominik
2000-01-01
A bypass apparatus and method for series connected energy storage devices. Each of the energy storage devices coupled to a common series connection has an associated bypass unit connected thereto in parallel. A current bypass unit includes a sensor which is coupled in parallel with an associated energy storage device or cell and senses an energy parameter indicative of an energy state of the cell, such as cell voltage. A bypass switch is coupled in parallel with the energy storage cell and operable between a non-activated state and an activated state. The bypass switch, when in the non-activated state, is substantially non-conductive with respect to current passing through the energy storage cell and, when in the activated state, provides a bypass current path for passing current to the series connection so as to bypass the associated cell. A controller controls activation of the bypass switch in response to the voltage of the cell deviating from a pre-established voltage setpoint. The controller may be included within the bypass unit or be disposed on a control platform external to the bypass unit. The bypass switch may, when activated, establish a permanent or a temporary bypass current path.
GD Friend, Inc. d/b/a Everlast Home Energy Solutions Information Sheet
GD Friend, Inc. d/b/a Everlast Home Energy Solutions (the Company) is located in Anaheim, California. The settlement involves renovation activities conducted at properties constructed prior to 1978, located in Anaheim and La Verne, California.
Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.
Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang
2016-08-22
Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark
2015-04-07
Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.
Training on women and renewable sources of energy.
Duenas Loza, M
1997-01-01
The training package developed by the International Research and Training Institute for the Advancement of Women in 1989 focuses on women and energy. The Institute conducts training activities using collected, analyzed and disseminated information and documentation, as well as identification of critical research and training activities and promotion of integrated issues on women and energy policies, programs and projects. Previous training experiences identified the inefficient quality of training offered to community members, technical staff and technical agencies, with more emphasis on the technical skills instead on the managerial, socio-organizational and environmental aspects. The creation of a multimedia modular training material provides an association between the issues of women, New and Renewable Sources of Energy (NRSE) and environmental aspects necessary for the strengthening of national institutions, promotion of socioeconomical and technically feasible renewable technologies, and awareness building, information and communication enhancement. The package covers 1) overview of the UN activities on NRSE; 2) Women's Position in the Energy Sector; 3) NRSE Project and Program design and implementation; 4) relevant NRSE characteristics and technology systems; 5) education and training activities in NRSE projects. This training package is designed to contribute a new approach in the organization and management of NRSE through integration of women's needs and increase awareness and capabilities of planners, officials and experts. In addition, several training seminars were conducted during 1989-91, which focused on the relationship between women and renewable energy sources through the application of participatory and self-reliant techniques.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What plans and information must I submit to MMS before I conduct activities on my lease or grant? 285.600 Section 285.600 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING...
Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis
NASA Astrophysics Data System (ADS)
Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.
2013-04-01
We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.
Solar Energy Installers Curriculum Guides. Final Report.
ERIC Educational Resources Information Center
Walker, Gene C.
A project was conducted to develop solar energy installers curriculum guides for use in high school vocational centers and community colleges. Project activities included researching job competencies for the heating, ventilation, and air conditioning industry and determining through interviews and manufacturers' literature what additional…
30 CFR 585.308 - How will BOEM conduct an auction for ROW grants and RUE grants?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and RUE grants? 585.308 Section 585.308 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights-of-Way Grants and Rights-of-Use and Easement Grants for Renewable Energy Activities...
30 CFR 585.308 - How will BOEM conduct an auction for ROW grants and RUE grants?
Code of Federal Regulations, 2012 CFR
2012-07-01
... and RUE grants? 585.308 Section 585.308 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights-of-Way Grants and Rights-of-Use and Easement Grants for Renewable Energy Activities...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). Highmore » energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.
NASA Astrophysics Data System (ADS)
Papelniuk, Oksana
2017-10-01
The author studies innovative activity of enterprises and carries out the classification of conditions and factors of construction enterprises’ innovative activity, and conducts systematization of specific features of this innovative activity. On the basis of statistical data on structure and dynamics of innovations the author carries out the research with the use of methods of economic-mathematical modelling in order to offer the approach which will allow construction enterprises to define the directions of innovative activity for achievement of a resource-saving and energy efficiency in construction sector.
Dielectric Studies on Thermally Evaporated
NASA Astrophysics Data System (ADS)
Selvasekarapandian, S.; Gowtham, M.; Bhuvaneswari, M. S.
In recent years rare earth compounds especially their fluorides have drawn particular attention as electrochemical gas sensors. Lanthanum and cerium fluoride based sensors have been investigated for sensing the fluorine, oxygen, and carbon monoxide because of their high chemical stability and high ionic conductivity. The fast response and good sensitivity of these sensors rely on the ion conduction properties of these thin films. In the present work Cerium Fluoride thin film has been prepared by vacuum thermal evaporation method. The electrical characterization is carried out using the Impedance spectroscopy method in the frequency range of 50 Hz to 5 MHz. The temperature dependence of ionic conductivity obeys the Arrhenius behavior and the activation energy Ea is found to be 0.3eV. The modulus and the dielectric spectra analysis reveal the non - Debye nature and the distribution of relaxation time due to the presence of grain and grain boundaries in the film. The relaxation energy Ed has been calculated from the dielectric spectra. The similar value of activation and relaxation energies suggests that the charge carriers that are responsible for bulk conductivity and relaxation process are the same. The optical measurement done in the wavelength range of 400-2500 nm confirms that the CeF3 thin film is highly transparent and the band gap energy is found to be 3.5 eV.
NASA Technical Reports Server (NTRS)
Hann, Raiford E.
1991-01-01
An equivalent circuit model (ECM) approach is used to predict the scattering behavior of temperature-activated, electrically lossy dielectric layers. The total electrical response of the dielectric (relaxation + conductive) is given by the ECM and used in combination with transmission line theory to compute reflectance spectra for a Dallenbach layer configuration. The effects of thermally-activated relaxation processes on the scattering properties is discussed. Also, the effect of relaxation and conduction activation energy on the electrical properties of the dielectric is described.
NASA Astrophysics Data System (ADS)
Moutia, N.; Ben Gzaiel, M.; Oueslati, A.; Khirouni, K.
2017-04-01
The present paper accounts for the vibrational spectroscopy and electrical characterization of a bis-tetrapropylammonium tetrachlorocobaltate grown at room temperature by slow evaporation of aqueous solution. The Raman spectra were studied in the range of 50-3500 cm-1 as a function of temperature of 318 K-421 K. The most important changes are observed for the band at 1032 cm-1 associated to δ(C - C - C) + t(CH2) + ω(CH2) . A detail analysis of the frequency and half-width is quantitatively described in term of an order-disorder model allowed to obtain information relative to the thermal coefficient and activation energy. The decrease of the activation energy with increasing temperature has been interpreted in term of a change in the re-orientation motion of the cationic parts [N(C3H7)4]+. Besides, the impedance measurements indicate that the electrical properties are strongly temperature dependent. Nyquist plots (-Z″versus Z‧) show that the conductivity behavior is accurately represented by an equivalent circuit models which consists of a series combination of grains interior and grains boundary. The conductivity follows the Arrhenius relation with different activation energies and conduction mechanisms: three temperature regions with activation energies EaI = 0.78 eV and EaII = 0.81 eV and EaIII = 0.93 eV. Furthermore, the modulus plots can be characterized by full width at half height or in term of a non-experiential decay function ϕ(t) = exp(-1/τ) β .
2011-01-01
Background Overweight and obesity in youth has increased dramatically. Therefore, overweight prevention initiatives should start early in life and target modifiable energy balance-related behaviours. Parental participation is often advocated as important for school-based interventions, however, getting parents involved in school-based interventions appears to be challenging based on earlier intervention experiences. The purpose of this study was to get insight into the determinants of and perspectives on parental participation in school-interventions on energy balance-related behaviours (physical activity, healthy eating, sedentary behaviours) in parents of ten- to twelve-year olds in order to develop an effective parental module for school-based interventions concerning energy balance-related behaviours. Methods Four countries (Belgium, Hungary, Norway and Spain) conducted the focus group research based on a standardised protocol and a semi-structured questioning route. A variation in parental socio-economic status (SES) and parental school involvement was taken into account when recruiting the parents. The audio taped interviews were transcribed, and a qualitative content analysis of the transcripts was conducted in each country. Results Seventeen focus group interviews were conducted with a total of 92 parents (12 men, 80 women). Physical activity was considered to be a joint responsibility of school and parents, nutrition as parent's responsibility but supported by the school, and prevention of sedentary behaviours as parent's sole responsibility. Parents proposed interactive and practical activities together with their child as the best way to involve them such as cooking, food tasting, nutrition workshops, walking or cycling tours, sport initiations together with their child. Activities should be cheap, on a convenient moment, focused on their children and not on themselves, not tutoring, not theoretical, and school-or home-based. Conclusions Parents want to be involved in activities related to energy balance-related behaviours if this implies 'doing things together' with their child at school or at home. PMID:22112159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, K.M.; Bilyard, G.R.; Davidson, S.A.
1993-06-01
The US Department of Energy (DOE) is now engaged in a program of environmental restoration nationwide across its 45 sites. It is also bringing its facilities into compliance with environmental regulations, decontaminating and decommissioning unwanted facilities, and constructing new waste management facilities. One of the most difficult questions that DOE must face in successfully remediating its inactive waste sites, decontaminating and decommissioning its inactive facilities, and operating its waste management facilities is: ``What criteria and standards should be met?`` Acceptable standards or procedures for determining standards will assist DOE in its conduct of ongoing waste management and pending cleanup activitiesmore » by helping to ensure that those activities are conducted in compliance with applicable laws and regulations and are accepted by the regulatory community and the public. This document reports on the second of three baseline activities that are being conducted as prerequisites to either the development of quantitative standards that could be used by DOE, or consistent procedures for developing such standards. The first and third baseline activities are also briefly discussed in conjunction with the second of the three activities.« less
Electrical conductivity of diopside: evidence for oxygen vacancies
Huebner, J.S.; Voigt, D.E.
1988-01-01
Impedance spectra for two natural single crystals of diopside were obtained at 800 to 1300??C and 1-bar pressure over the frequency range 0.001 Hz to 100 kHz in a system closed to all components but oxygen. At both higher and lower fO2 values, no fO2 dependence of conductivity was observed, indicating the presence of different conduction mechanisms. At temperatures less than 1000??C, the activation energy is 1.3 eV, also suggesting a different conduction mechanism. Thus, at least four regimes are necessary to describe the conductivity of this diopside in T-fO2 space. The approximately -1/(7 ?? 1) value of d(log ??)/d(log fO2) in a high-temperature geologic region suggests a reaction by which oxygen vacancies control the conductivity. This relatively pure diopside is much less conducting than olivine or orthopyroxene. A second diopside with greater Fe content but otherwise similar in composition to the near-end-member diopside, is more conducting, has a smaller activation energy (1.0 eV) over the range 1050 to 1225??C, and shows only a weak negative fO2 dependence; suggesting that oxygen vacancies are present but are not the dominant defect in controlling the conductivity. -from Authors
30 CFR 280.21 - What must I do in conducting G&G prospecting or scientific research?
Code of Federal Regulations, 2011 CFR
2011-07-01
... scientific research? 280.21 Section 280.21 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... What must I do in conducting G&G prospecting or scientific research? While conducting G&G prospecting or scientific research activities under a permit or notice, you must: (a) Immediately report to the...
Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
Sheberla, Dennis; Bachman, John C; Elias, Joseph S; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea
2017-02-01
Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (Ni 3 (HITP) 2 ), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.
Conductive MOF electrodes for stable supercapacitors with high areal capacitance
NASA Astrophysics Data System (ADS)
Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea
2017-02-01
Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.
10 CFR 4.560 - Communications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Communications. 4.560 Section 4.560 Energy NUCLEAR... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.560 Communications. (a) The agency shall take appropriate steps to ensure effective communication with applicants, participants...
10 CFR 4.560 - Communications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Communications. 4.560 Section 4.560 Energy NUCLEAR... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.560 Communications. (a) The agency shall take appropriate steps to ensure effective communication with applicants, participants...
10 CFR 4.560 - Communications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Communications. 4.560 Section 4.560 Energy NUCLEAR... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.560 Communications. (a) The agency shall take appropriate steps to ensure effective communication with applicants, participants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES... 60.4. We will do this if: (1) The site has been impacted by your project activities; or (2) Impacts...
Code of Federal Regulations, 2014 CFR
2014-07-01
... OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES... 60.4. We will do this if: (1) The site has been impacted by your project activities; or (2) Impacts...
Code of Federal Regulations, 2012 CFR
2012-07-01
... OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES... 60.4. We will do this if: (1) The site has been impacted by your project activities; or (2) Impacts...
Solar Energy Information and Education Project. Final Report.
ERIC Educational Resources Information Center
Hensley, Michael
The New Mexico Solar Energy Institute (NMSEI) conducted a concentrated information and education program during 1985. This report summarizes NMSEI's Information and Education project activities. It provides detailed descriptions of project costs and concise recommendations for similar programs. Individual sections contain explanations of the scope…
Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; ...
2017-03-13
There are many challenges to overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. We report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers, in order to begin addressing these challenges (and others). The tethered array of nanoparticles, MnO in this case, bound directly to amore » gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). Our strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles.« less
Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Sukhwinder, E-mail: ss7667@gmail.com; Saini, G. S. S.; Tripathi, S. K.
2016-05-06
The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrheniusmore » plotsare used to find the thermal activation energy.« less
Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners.
Herrmann, Inga; Svensson, Malin; Ecke, Holger; Kumpiene, Jurate; Maurice, Christian; Andreas, Lale; Lagerkvist, Anders
2009-08-01
Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 2(7-1) fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material x ash ratio and ash ratio x compaction energy affected hydraulic conductivity significantly (alpha=0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by R(adjusted)(2) values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 x 10(-11)m s(-1) and 8.9 x 10(-10)m s(-1) if the compaction energy was 2.4 J cm(-3), the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10(-9)m s(-1).
Maximum on the Electrical Conductivity Polytherm of Molten TeCl4
NASA Astrophysics Data System (ADS)
Salyulev, Alexander B.; Potapov, Alexei M.
2017-05-01
The electrical conductivity of molten TeCl4 was measured up to 761K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl4 electrical conductivity polytherm has a maximum. It was recorded at 705K (κmax=0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.
All Solid State Rechargeable Lithium Batteries using Block Copolymers
NASA Astrophysics Data System (ADS)
Hallinan, Daniel; Balsara, Nitash
2011-03-01
The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.
Chen, Dengyu; Zheng, Yan; Zhu, Xifeng
2013-03-01
An in-depth investigation was conducted on the kinetic analysis of raw biomass using thermogravimetric analysis (TGA), from which the activation energy distribution of the whole pyrolysis process was obtained. Two different stages, namely, drying stage (Stage I) and devolatilization stage (Stage II), were shown in the pyrolysis process in which the activation energy values changed with conversion. The activation energy at low conversions (below 0.15) in the drying stage ranged from 10 to 30 kJ/mol. Such energy was calculated using the nonisothermal Page model, known as the best model to describe the drying kinetics. Kinetic analysis was performed using the distributed activation energy model in a wide range of conversions (0.15-0.95) in the devolatilization stage. The activation energy first ranged from 178.23 to 245.58 kJ/mol and from 159.66 to 210.76 kJ/mol for corn straw and wheat straw, respectively, then increasing remarkably with an irregular trend. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Filho, J. M. S.; Rodrigues Junior, C. A.; Sousa, D. G.; Oliveira, R. G. M.; Costa, M. M.; Barroso, G. C.; Sombra, A. S. B.
2017-07-01
The complex impedance spectroscopy study of magnesium niobate Mg4Nb2O9 (MN) ceramics with different additions of V2O5 (0%, 2%, 5%) was performed in this present paper. The preparation of MN samples were carried out by using the solid-state reaction method with a high-energy milling machine. Frequency and temperature dependence of the complex impedance, complex modulus analysis, and conductivity were measured and calculated at different temperatures by using a network impedance analyzer. A non-Debye type relaxation was observed showing a decentralization of the semicircles. Cole-Cole formalism was adopted here with the help of a computer program used to fit the experimental data. A typical universal dielectric response in the frequency-dependent conductivity at different temperatures was found. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The activation energy was obtained from the Arrhenius fitting by using conductivity and electrical modules data. The results would help to understand deeply the relaxation process in these types of materials.
Dynamic and Structure of Polymer-Cellulose Composite Electrolyte for Li-ion Battery
NASA Astrophysics Data System (ADS)
Zhan, Pengfei; Maranas, Janna
Crystalline PEO6LiX complex is a tunnel-like polymer/salt structure that promotes fast Li motion. The application is limited because high ion conductivity is only observed with short molecular weight PEO, as the molecular weight increase, tunnels are misaligned and the conductivity is decreased. High aspect ratio nanofillers based on cellulose nanowhiskers are hypothesized to promote the formation of tunnel structures. Compared with unfilled electrolyte, the room temperature ion conductivity increased as much as 1100% in filled electrolyte. With wide angle x-ray scattering (WAXS), we observe that the structure transitions from amorphous phase to crystalline phase as we add cellulose nanowhiskers and this is because the interaction between cellulose surface and polymer chain enhances the crystallization. From the temperature dependence of conductivity, the calculated Li+ hopping activation energy is shown to be lower in acidic cellulose nanowhisker filled samples. Our quasi-elastic neutron scattering (QENS) indicates with acidic surface, the rotation of PEO6 channels are more stabilized and this could be the origin of the low activation energy and high conductivity
Schmitt, E A; Law, D; Zhang, G G
1999-03-01
The crystallization kinetics of amorphous lactose in the presence and absence of seed crystals were investigated at 57.5% relative humidity. Isothermal crystallization studies were conducted gravimetrically in an automated vacuum moisture balance at several temperatures between 18 and 32 degrees C. The crystallization rate constants were then determined from Johnson-Mehl-Avrami (JMA) treatment and isothermal activation energies were obtained from Arrhenius plots. Based on microscopic observations, a reaction order of 3 was used for JMA analysis. The nonisothermal activation energies were determined by differential scanning calorimetry using Kissinger's analysis. Isothermal activation energies for amorphous lactose with and without seed crystals were 89.5 (+/-5.6) kJ/mol and 186.5 (+/-17.6) kJ/mol, respectively. Nonisothermal activation energies with and without seed crystals were 71 (+/-7.5) kJ/mol and 80.9 (+/-8.9) kJ/mol, respectively. The similarity of the isothermal and nonisothermal activation energies for the sample with seeds suggested that crystallization was occurring by growth from a fixed number of preexisting nuclei. Markedly different isothermal and nonisothermal activation energies in the absence of seeds suggested a site-saturated nucleation mechanism, and therefore allowed calculation of an activation energy for nucleation of 317 kJ/mol.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Definitions. 4.503 Section 4.503 Energy NUCLEAR REGULATORY... Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.503 Definitions. For purposes of this part... self, performing manual tasks, walking, seeing, hearing, speaking, breathing, learning, and working. (3...
10 CFR 7.16 - Annual comprehensive review.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Annual comprehensive review. 7.16 Section 7.16 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.16 Annual comprehensive review. (a) The Chairman of the Commission shall conduct an annual comprehensive review of the activities and responsibilities of...
10 CFR 7.16 - Annual comprehensive review.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Annual comprehensive review. 7.16 Section 7.16 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.16 Annual comprehensive review. (a) The Chairman of the Commission shall conduct an annual comprehensive review of the activities and responsibilities of...
10 CFR 7.16 - Annual comprehensive review.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Annual comprehensive review. 7.16 Section 7.16 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.16 Annual comprehensive review. (a) The Chairman of the Commission shall conduct an annual comprehensive review of the activities and responsibilities of...
10 CFR 7.16 - Annual comprehensive review.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Annual comprehensive review. 7.16 Section 7.16 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.16 Annual comprehensive review. (a) The Chairman of the Commission shall conduct an annual comprehensive review of the activities and responsibilities of...
10 CFR 7.16 - Annual comprehensive review.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Annual comprehensive review. 7.16 Section 7.16 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.16 Annual comprehensive review. (a) The Chairman of the Commission shall conduct an annual comprehensive review of the activities and responsibilities of...
Voltage tunability of thermal conductivity in ferroelectric materials
Ihlefeld, Jon; Hopkins, Patrick Edward
2016-02-09
A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
10 CFR 1041.103 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... physical impairment that substantially limits one or more major life activities. (4) Is regarded as having... life activities but is treated by the agency as constituting such a limitation; (ii) Has a physical or... OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF ENERGY § 1041.103 Definitions. For purposes of this part...
Electrically conducting ternary amorphous fully oxidized materials and their application
NASA Technical Reports Server (NTRS)
Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)
2004-01-01
Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.
Vaddiraju, Sreeram; Cebeci, Hülya; Gleason, Karen K; Wardle, Brian L
2009-11-01
A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.
MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives.
Zhang, Hong; Liu, Ximeng; Wu, Yue; Guan, Cao; Cheetham, Anthony K; Wang, John
2018-03-27
More than 20 000 MOFs have been reported to date, with different combinations of metal ions/centers and organic linkers, and they can be grown into various 3D, 2D, 1D and 0D morphologies. The flexibility in control over varying length scales from atomic scale up to bulk structure allows access to an almost endless variety of MOF-based and MOF-derived materials. Indeed, MOFs themselves have been studied as a class of useful functional materials. More remarkably, extensive research conducted in recent years has shown that MOFs are exceptionally good precursors for a large variety of nanohybrids as active materials in both electrocatalysis and energy storage. As they already contain both carbon and well-dispersed metal atoms, MOFs can be converted to conductive carbons decorated with active metal species and doping elements through appropriate pyrolysis. Due to the great diversity accessible in the composition, structure, and morphology of MOFs, several types of MOF-derived nanohybrids are now among the best performing materials both for electrocatalysts and electrodes in various energy conversion and storage devices. In addition to mesoporous nano-carbons, both doped and undoped, carbon-metal nanohybrids, and carbon-compound nanohybrids, there are several types of core@shell, encapsulated nanostructures, embedded nanosystems and heterostructures that have been developed from MOFs recently. They can be made in either free-standing forms, nano- or micro-powders, grown on appropriate conducting substrates, or assembled together with other active materials. During the MOF to active material conversion, other active species or precursors can be inserted into the MOF-derived nanostructures or assembled on surfaces, leading to uniquely new porous nanostructures. These MOF-derived active materials for electrocatalysis and energy storage are nanohybrids consisting of more than functional components that are purposely integrated together at desired length scales for much-improved performance. This article reviews the current status of these nanohybrids and concludes with a brief perspective on the future of MOF-derived functional materials.
NASA Astrophysics Data System (ADS)
Szabó, Tibor; Magyar, Melinda; Hajdu, Kata; Dorogi, Márta; Nyerki, Emil; Tóth, Tünde; Lingvay, Mónika; Garab, Győző; Hernádi, Klára; Nagy, László
2015-12-01
Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P+(QAQB)- charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications.
10 CFR 4.510 - Self-evaluation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Self-evaluation. 4.510 Section 4.510 Energy NUCLEAR... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.510 Self-evaluation. (a) The... agency shall provide an opportunity to interested persons, including disabled persons or organizations...
10 CFR 4.510 - Self-evaluation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Self-evaluation. 4.510 Section 4.510 Energy NUCLEAR... Programs or Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.510 Self-evaluation. (a) The... representing handicapped persons, to participate in the self-evaluation process by submitting comments (both...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Employment. 4.540 Section 4.540 Energy NUCLEAR REGULATORY... Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.540 Employment. No qualified handicapped person shall, on the basis of handicap, be subjected to discrimination in employment under any program or...
NASA Astrophysics Data System (ADS)
Hao, Tian; Xu, Yuanze; Hao, Ting
2018-04-01
The Eyring's rate process theory and free volume concept are employed to treat protons (or other particles) transporting through a 2D (two dimensional) crystal like graphene and hexagonal boron nitride. The protons are assumed to be activated first in order to participate conduction and the conduction rate is dependent on how much free volume available in the system. The obtained proton conductivity equations show that only the number of conduction protons, proton size and packing structure, and the energy barrier associated with 2D crystals are critical; the quantization conductance is unexpectedly predicted with a simple Arrhenius type temperature dependence. The predictions agree well with experimental observations and clear out many puzzles like much smaller energy barrier determined from experiments than from the density function calculations and isotope separation rate independent of the energy barrier of 2D crystals, etc. Our work may deepen our understandings on how protons transport through a membrane and has direct implications on hydrogen related technology and proton involved bioprocesses.
Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.
Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco
2015-12-28
Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10(-3) S cm(-1) at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.
26 CFR 1.183-2 - Activity not engaged in for profit defined.
Code of Federal Regulations, 2013 CFR
2013-04-01
... devote most of his energies to the activity may also be evidence that the activity is engaged in for... retailing soft drinks, raises dogs and horses. He began raising a particular breed of dogs many years ago in... business activities of retailing soft drinks, (iii) the horse and dog operations are not conducted in a...
26 CFR 1.183-2 - Activity not engaged in for profit defined.
Code of Federal Regulations, 2014 CFR
2014-04-01
... devote most of his energies to the activity may also be evidence that the activity is engaged in for... retailing soft drinks, raises dogs and horses. He began raising a particular breed of dogs many years ago in... business activities of retailing soft drinks, (iii) the horse and dog operations are not conducted in a...
26 CFR 1.183-2 - Activity not engaged in for profit defined.
Code of Federal Regulations, 2011 CFR
2011-04-01
... devote most of his energies to the activity may also be evidence that the activity is engaged in for... retailing soft drinks, raises dogs and horses. He began raising a particular breed of dogs many years ago in... business activities of retailing soft drinks, (iii) the horse and dog operations are not conducted in a...
26 CFR 1.183-2 - Activity not engaged in for profit defined.
Code of Federal Regulations, 2012 CFR
2012-04-01
... devote most of his energies to the activity may also be evidence that the activity is engaged in for... retailing soft drinks, raises dogs and horses. He began raising a particular breed of dogs many years ago in... business activities of retailing soft drinks, (iii) the horse and dog operations are not conducted in a...
NASA Astrophysics Data System (ADS)
Dinh, Toan; Viet Dao, Dzung; Phan, Hoang-Phuong; Wang, Li; Qamar, Afzaal; Nguyen, Nam-Trung; Tanner, Philip; Rybachuk, Maksym
2015-06-01
We report on the temperature dependence of the charge transport and activation energy of amorphous silicon carbide (a-SiC) thin films grown on quartz by low-pressure chemical vapor deposition. The electrical conductivity as characterized by the Arrhenius rule was found to vary distinctly under two activation energy thresholds of 150 and 205 meV, corresponding to temperature ranges of 300 to 450 K and 450 to 580 K, respectively. The a-SiC/quartz system displayed a high temperature coefficient of resistance ranging from -4,000 to -16,000 ppm/K, demonstrating a strong feasibility of using this material for highly sensitive thermal sensing applications.
NASA Astrophysics Data System (ADS)
Xue, Sha; Liu, Yingdi; Li, Yaping; Teeters, Dale; Crunkleton, Daniel; Wang, Sanwu
The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to its high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline phase can conduct ions. In this work, we use ab initio molecular dynamics simulations to obtain the amorphous structure of PEO3:LiCF3SO3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO3:LiCF3SO3 are determined with first-principles density functional theory. In crystalline PEO3:LiCF3SO3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO3:LiCF3SO3has higher ionic conductivity than the crystalline phase. This work was supported by NASA Grant No. NNX13AN01A and by Tulsa Institute of Alternative Energy and Tulsa Institute of Nanotechnology. This research used resources of XSEDE, NERSC, and the Tandy Supercomputing Center.
NASA Astrophysics Data System (ADS)
Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M.
2018-03-01
The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs) with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs) with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.
Long, Linshuang; Ye, Hong
2016-04-07
A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.
Long, Linshuang; Ye, Hong
2016-01-01
A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials. PMID:27052186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Brion
2014-10-01
The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormalmore » conditions testing, and charging of a plug-in vehicle.« less
Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Brion
2015-05-01
The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormalmore » conditions testing, and charging of a plug-in vehicle.« less
Energy structure of MHD flow coupling with outer resistance circuit
NASA Astrophysics Data System (ADS)
Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.
2015-08-01
Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.
This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...
This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...
This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...
10 CFR 1040.101 - Compliance reviews.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.101 Compliance reviews. (a) The Director shall periodically conduct compliance... of: (1) The practices to be reviewed; (2) The programs or activities affected by the review; (3) The...
10 CFR 1040.101 - Compliance reviews.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.101 Compliance reviews. (a) The Director shall periodically conduct compliance... of: (1) The practices to be reviewed; (2) The programs or activities affected by the review; (3) The...
10 CFR 1040.101 - Compliance reviews.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.101 Compliance reviews. (a) The Director shall periodically conduct compliance... of: (1) The practices to be reviewed; (2) The programs or activities affected by the review; (3) The...
10 CFR 1040.101 - Compliance reviews.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.101 Compliance reviews. (a) The Director shall periodically conduct compliance... of: (1) The practices to be reviewed; (2) The programs or activities affected by the review; (3) The...
10 CFR 1040.101 - Compliance reviews.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.101 Compliance reviews. (a) The Director shall periodically conduct compliance... of: (1) The practices to be reviewed; (2) The programs or activities affected by the review; (3) The...
Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films
NASA Astrophysics Data System (ADS)
Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.
2016-05-01
The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrhenius plotsare used to find the thermal activation energy. The original version of this article supplied to AIP Publishing contained erroneous text at the end of the abstract. "Arrhenius plots are used to find the thermal activation energy." was deleted as it does not pertain to the article. In addition, a figure citation was cited incorrectly and an equation was missing. This has been corrected in the updated version republished on 4 December 2017.
Sitewide Environmental Assessment for the National Renewable Energy Laboratory, Golden, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-04
The Solar Energy Research, Development, and Demonstration Act of 1974 authorized a federal program to develop solar energy as a viable source of the nation`s future energy needs. Under this authority, the National Renewable Energy Laboratory (NREL) was created as a laboratory of the Department of Energy (DOE) to research a number of renewable energy possibilities. The laboratory conducts its operations both in government-owned facilities on the NREL South Table Mountain (STM) Site near Golden, Colorado, and in a number of leased facilities, particularly the Denver West Office Park. NREL operations include research in energy technologies, and other areas ofmore » national environmental and energy technology interest. Examples of these technologies include electricity from sunlight with solar cells (photovoltaics); energy from wind (windmills or wind turbines); conversion of plants and plant products (biomass) into liquid fuels (ethanol and methanol); heat from the sun (solar thermal) in place of wood, oil, gas, coal and other forms of heating; and solar buildings. NREL proposes to continue and expand the present R&D efforts in C&R energy by making infrastructure improvements and constructing facilities to eventually consolidate the R&D and associated support activities at its STM Site. In addition, it is proposed that operations continue in current leased space at the present levels of activity until site development is complete. The construction schedule proposed is designed to develop the site as rapidly as possible, dependent on Congressional funding, to accommodate not only the existing R&D that is being conducted in leased facilities off-site but to also allow for the 20-year projected growth. Impacts from operations currently conducted off-site are quantified and added to the cumulative impacts of the STM site. This environmental assessment provides information to determine the severity of impacts on the environment from the proposed action.« less
Metrics for the National SCADA Test Bed Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.
2008-12-05
The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.
High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.
Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun
2015-05-12
High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).
Hole transport in pure and doped hematite
NASA Astrophysics Data System (ADS)
Liao, Peilin; Carter, Emily A.
2012-07-01
Hematite (α-Fe2O3) is a promising candidate for use in photovoltaic (PV) and photoelectrochemical devices. Its poor conductivity is one major drawback. Doping hematite either p-type or n-type greatly enhances its measured conductivity and is required for potential p-n junctions in PVs. Here, we study hole transport in pure and doped hematite using an electrostatically embedded cluster model with ab initio quantum mechanics (unrestricted Hartree-Fock theory). Consistent with previous work, the model suggests that hole hopping is via oxygen anions for pure hematite. The activation energy for hole mobility is predicted to be at least 0.1 eV higher than the activation energy for electron mobility, consistent with the trend observed in experiments. We examine four dopants—magnesium(II), nickel(II), copper(II), and manganese(II/III) in direct cation substitution sites—to gain insight into the mechanism by which conductivity is improved. The activation energies are used to assess qualitative effects of different dopants. The hole carriers are predicted to be attracted to O anions near the dopants. The magnitude of the trapping effect is similar among the four dopants in their +2 oxidation states. The multivalent character of Mn doping facilitates local hole transport around Mn centers via a low-barrier O-Mn-O pathway, which suggests that higher hole mobility can be achieved with increasing Mn doping concentration, especially when a network of these low-barrier pathways is produced. Our results suggest that the experimentally observed conductivity increase in Mg-, Ni-, and Cu-doped p-type hematite is mostly due to an increase in hole carriers rather than improved mobility, and that Mg-, Ni-, and Cu-doping perform similarly, while the conductivity of Mn-doped hematite might be significantly improved in the high doping concentration limit.
1985-04-01
activation energies than previously possible. Electron traps and hole traps with energies less than 50 meV were observed for the first time in GaAs...developed in our laboratory to photoexcite electrons in a given energy range in the conduction band and then measure the relaxation of these carriers...limitations on the electron energy may be required. CURRENT AND FUTURE EFFORTS The possibility of ballistic electron transport in gallium arsenide has been
Accelerating the deployment of energy efficient and renewable energy technologies in South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shickman, Kurt
Purpose of the project was to accelerate the deployment of energy efficient and renewable energy technologies in South Africa. Activities were undertaken to reduce barriers to deployment by improving product awareness for the South African market; market and policy intelligence for U.S. manufacturers; product/service availability; local technical capacity at the workforce, policymaker and expert levels; and ease of conducting business for these technologies/services in the South African market.
Energy Expenditure During Extravehicular Activity: Apollo Skylab Through STS-135
NASA Technical Reports Server (NTRS)
Paul, Heather L.
2011-01-01
The importance of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to conduct an EVA over-tasked the crewmember and exceeded the capabilities of vehicle and space suit life support systems. Energy expenditure was closely evaluated through the Apollo lunar surface EVAs, resulting in modifications to space suit design and EVA operations. After the Apollo lunar surface missions were completed, the United States shifted its focus to long duration human space flight, to study the human response to living and working in a microgravity environment. This paper summarizes the energy expenditure during EVA from Apollo Skylab through STS-135.
C&RE-SLC: Database for conservation and renewable energy activities
NASA Astrophysics Data System (ADS)
Cavallo, J. D.; Tompkins, M. M.; Fisher, A. G.
1992-08-01
The Western Area Power Administration (Western) requires all its long-term power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. The hope is that these measures could significantly reduce the amount of environmental damage associated with electricity production. As part of preparing the environmental impact statement for Western's Electric Power Marketing Program, Argonne National Laboratory constructed a database of the conservation and renewable energy activities in which Western's Salt Lake City customers are involved. The database provides information on types of conservation and renewable energy activities and allows for comparisons of activities being conducted at different utilities in the Salt Lake City region. Sorting the database allows Western's Salt Lake City customers to be classified so the various activities offered by different classes of utilities can be identified; for example, comparisons can be made between municipal utilities and cooperatives or between large and small customers. The information included in the database was collected from customer planning documents in the files of Western's Salt Lake City office.
Women, work and pregnancy outcome.
Huffman, S
1988-01-01
In developing countries, 1/3 of infants are born weighing less than 2500 grams. A study conducted in Ethiopia among women consuming about 1600 kcal/day, those who were very physically active during pregnancy bore smaller babies, and gained less weight during pregnancy, than those who were not so active. Average birth weight was 3068 grams for the 1st group, 3270 grams for the less active. The active group of women gained an average of 6.5 kilograms, and the less active 9.2 kilograms. Women who did not engage in heavy work during pregnancy, although they were undernourished, apparently did not bear growth-retarded babies. Indirect evidence for the effect of physical activity on pregnancy outcome comes from studies conducted in Taiwan, and the Gambia. These studies, and others from Malawi, Burkina Faso, and Kenya have shown that women's energy expenditures vary greatly with the agricultural season. Daily housekeeping tasks, however, also consume a lot of women's energy. Technologies that allow women to reduce energy expenditure can have beneficial effects, if they do not simultaneously reduce their incomes. For instance, programs improving water or fuel availability, or reducing fuel needs, reduce women's energy expenditures. Food processing mills can help too if women have access to them, and are thus not in danger of being displaced from their jobs and losing necessary income. Examples of technology improving women's tasks are pedal drying machines for nice in Bangladesh, using a greater and pressing machine to prepare gari in Ghana; but growing thicker rice stalks in Indonesia displaced women workers and reduced income.
Strain-dependent activation energy of shear transformation in metallic glasses
NASA Astrophysics Data System (ADS)
Xu, Bin; Falk, Michael; Li, Jinfu; Kong, Lingti
2017-04-01
Shear transformation (ST) plays a decisive role in determining the mechanical behavior of metallic glasses, which is believed to be a stress-assisted thermally activated process. Understanding the dependence in its activation energy on the stress imposed on the material is of central importance to model the deformation process of metallic glasses and other amorphous solids. Here a theoretical model is proposed to predict the variation of the minimum energy path (MEP) associated with a particular ST event upon further deformation. Verification based on atomistic simulations and calculations are also conducted. The proposed model reproduces the MEP and activation energy of an ST event under different imposed macroscopic strains based on a known MEP at a reference strain. Moreover, an analytical approach is proposed based on the atomistic calculations, which works well when the stress varies linearity along the MEP. These findings provide necessary background for understanding the activation processes and, in turn, the mechanical behavior of metallic glasses.
ERIC Educational Resources Information Center
Oak Ridge Associated Universities, TN. Manpower Development Div.
The report is a description of the program activities carried on by Training and Technology (TAT) during the first six months of 1973. In the general category of manpower research and development, brief but detailed descriptions are given of each of the projects conducted in the development and extension of the TAT training model in Albuquerque,…
Assessing the Potential for Renewable Energy on Public Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2003-02-01
This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identifymore » BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.« less
The Museum of Solid Waste and Energy.
ERIC Educational Resources Information Center
National Energy Education Development Project, Reston, VA.
This activity geared for grades 5-9 involves students in creating museum stations on eight solid waste and energy topics. While working in groups, students present their station topic to other students who are conducting a "museum tour." In doing so participants are encouraged to enhance their reading, writing, public speaking, and artistic skills…
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Management Act? 585.803 Section 585.803 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... National Marine Fisheries Service. (b) Any conservation recommendations adopted by BOEM to avoid or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Management Act? 585.803 Section 585.803 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... National Marine Fisheries Service. (b) Any conservation recommendations adopted by BOEM to avoid or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Management Act? 585.803 Section 585.803 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... National Marine Fisheries Service. (b) Any conservation recommendations adopted by BOEM to avoid or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Management Act? 285.803 Section 285.803 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING..., MMS must consult with National Marine Fisheries Service. (b) Any conservation recommendations adopted...
Code of Federal Regulations, 2011 CFR
2011-07-01
... OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and... your project, you must: (1) Immediately halt all seafloor-disturbing activities within the area of the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Definitions. 4.503 Section 4.503 Energy NUCLEAR REGULATORY... Activities Conducted by the U.S. Nuclear Regulatory Commission § 4.503 Definitions. For purposes of this part..., and working. (3) Has a record of such an impairment means has a history of, or has been misclassified...
Hydrogen molecule defect in proton-conductive SrTiO3 Perovskite
NASA Astrophysics Data System (ADS)
Onishi, Taku
2017-11-01
In proton-conductive SrTiO3 perovskite, no hydrogen molecule defect ideally exists. However, the unforeseen chemical reaction is often observed after the use of fuel cell. From the viewpoint of battery safety, we have investigated the effect of hydrogen molecule defect by molecular orbital analysis. When counter cation vacancy exists, the activation energy for hydrogen molecule migration was 1.39 - 1.50 eV, which is much smaller than the dissociation energy of hydrogen molecule. It implies that hydrogen molecule may migrate without its dissociation.
Anomalous heat transfer in two polymorphs of para-bromobenzophenone
NASA Astrophysics Data System (ADS)
Romantsova, O. O.; Horbatenko, Yu. V.; Krivchikov, A. I.; Korolyuk, O. A.; Vdovichenko, G. A.; Zloba, D. I.; Pyshkin, O. S.
2017-03-01
The thermal conductivity of a polycrystalline sample of monoclinic polymorph of para-bromobenzophenone in the T = 3-320 K temperature range was measured using steady-state linear heat flow. The temperature dependences of thermal conductivity are presented as the sum of two independent contributions: a contribution that corresponds to the thermal conductivity of an orientationally ordered crystal structure, and a new additional thermally activated contribution that manifests itself above 130 K. A comparison is made with the data on the thermal conductivity of a single crystal triclinic polymorph of para-bromobenzophenone. It is established that the contribution corresponding to the thermal conductivity of the orientationally ordered crystal structure depends on the molecular crystal packing, and the characteristic activation energy of the thermal activation contribution, which is caused by the intramolecular vibrations of the C-Br bond, does not depend on the grain size or on the structure of the sample.
Strategies for achieving healthy energy balance among African Americans in the Mississippi Delta.
Parham, Groesbeck P; Scarinci, Isabel C
2007-10-01
Low-income African Americans who live in rural areas of the Deep South are particularly vulnerable to diseases associated with unhealthy energy imbalance. The Centers for Disease Control and Prevention (CDC) has suggested various physical activity strategies to achieve healthy energy balance. Our objective was to conduct formal, open-ended discussions with low-income African Americans in the Mississippi Delta to determine 1) their dietary habits and physical activity levels, 2) their attitudes toward CDC's suggested physical activity strategies, and 3) their suggestions on how to achieve CDC's strategies within their own environment. A qualitative method (focus groups) was used to conduct the study during 2005. Prestudy meetings were held with African American lay health workers to formulate a focus group topic guide, establish inclusion criteria for focus group participants, select meeting sites and times, and determine group segmentation guidelines. Focus groups were divided into two phases. All discussions and focus group meetings were held in community centers within African American neighborhoods in the Mississippi Delta and were led by trained African American moderators. Phase I focus groups identified the following themes: overeating, low self-esteem, low income, lack of physical exercise, unhealthy methods of food preparation, a poor working definition of healthy energy balance, and superficial knowledge of strategies for achieving healthy energy balance. Phase 2 focus groups identified a preference for social support-based strategies for increasing physical activity levels. Energy balance strategies targeting low-income, rural African Americans in the Deep South may be more effective if they emphasize social interaction at the community and family levels and incorporate the concept of community volunteerism.
Subtask 7.1 - Strategic Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Erickson
2009-03-30
The Energy & Environmental Research Center (EERC) has recently completed 11 years of research through the Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) focused on fossil energy technology development and demonstration. To support a significant number of the different activities being considered within all of our research contracts with NETL, a subtask (7.1 Strategic Studies) was created to focus on small research efforts that came up throughout the year which would support an existing EERC-NETL project or would help to develop a new concept for inclusion in future efforts. Typical efforts conducted undermore » this task were usually between $15,000 and $60,000 in scope and had time lines of less than 6 months. A limited number of larger studies were also conducted, generally at the direct request of NETL. Over the life of this task, 46 projects were conducted. These efforts ranged from quick experiments to gain fundamental knowledge to support a current effort, to literature reviews, to a few larger engineering efforts.« less
Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses
NASA Astrophysics Data System (ADS)
Seema, Khasa, S.; Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.
2015-06-01
Glasses with composition xZnOṡ(30 - x)ṡLi2Oṡ70B2O3 containing 2 mol% of V2O5 (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li2O is replaced by ZnO, keeping the concentration of B2O3 constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a "blocking effect" on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.
NASA Astrophysics Data System (ADS)
Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Xi, Yi; Lang, Qiang; Guo, Donglin; Hu, Chenguo
2015-08-01
The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors.The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03363b
Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity
Pan, Lijia; Yu, Guihua; Zhai, Dongyuan; Lee, Hye Ryoung; Zhao, Wenting; Liu, Nian; Wang, Huiliang; Tee, Benjamin C.-K.; Shi, Yi; Cui, Yi; Bao, Zhenan
2012-01-01
Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (∼480 F·g-1), unprecedented rate capability, and cycling stability (∼83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (∼0.3 s) and superior sensitivity (∼16.7 μA·mM-1). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes. PMID:22645374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zulueta, Y.A., E-mail: yohandysalexis.zuluetaleyva@student.kuleuven.be; Department of Chemistry, KU Leuven, B-3001 Leuven; Dawson, J.A.
In combination with the dielectric modulus formalism and theoretical calculations, a newly developed defect incorporation mode, which is a combination of the standard A- and B-site doping mechanisms, is used to explain the conducting properties in 5 mol% Ca-doped BaTiO{sub 3}. Simulation results for Ca solution energies in the BaTiO{sub 3} lattice show that the new oxygen vacancy inducing mixed mode exhibits low defect energies. A reduction in dc conductivity compared with undoped BaTiO{sub 3} is witnessed for the incorporation of Ca. The conducting properties of 5 mol% Ca-doped BaTiO{sub 3} are analyzed using molecular dynamics and impedance spectroscopy. Themore » ionic conductivity activation energies for each incorporation mode are calculated and good agreement with experimental data for oxygen migration is observed. The likely existence of the proposed defect configuration is also analyzed on the basis of these methods. - Graphical abstract: Oxygen vacancy formation as a result of self-compensation in Ca-doped BaTiO{sub 3}.« less
Superconducting High Energy Resolution Gamma-ray Spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, D T
2002-02-22
We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction ofmore » TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular results.« less
Towards representative energy data: the Machiguenga study.
Montgomery, E
1978-01-01
Representative energy data for a human population can be produced by combining randomly sampled time allocation observations with activity-specific energy expenditure measurements. Research to produce representative energy data for adults of a population of Machiguenga Indians has recently been conducted in lowland, southeastern Peru. Marked contrast was found between the sexes for average married adults in energy expended on an average day. Men spent about 3,200 kcals and women, about 1,925; ratio: 1.66 to 1. In general, men tended to work at somewhat more energetic activities and for longer periods than did women. In addition to sex-role-related task differences were contrasts in uses of technological items and in respective work settings. These representative behavior data permit direct estimates of population-level energy requirements for average days, seasons, or for 1 year.
Cooperative research in high energy astrophysics
NASA Technical Reports Server (NTRS)
1994-01-01
Details of the activities conducted under the joint effort of the University of Maryland and NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics are detailed for the period July 1989 through April 1994. The research covered a variety of topics including: (1) detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; (2) support work for several x-ray satellites; (3) high resolution gamma-ray spectroscopy of celestial sources; (4)theoretical astrophysics; and (5) active galaxies.
A novel method for synthesizing nanoscale superionic MF-Sn2F5 (M = K, Cs) solid electrolytes
NASA Astrophysics Data System (ADS)
Podgorbunsky, Anatoly B.; Usolseva, T. I.; Sokolov, Alexander A.; Gnedenkov, S. V.; Sinebryukhov, S. L.
2017-09-01
Cesium and potassium pentafluorodistannites have been synthesized through "wet" high-energy ball milling and characterized through XRD, SEM techniques. The electrical conductivity of the systems have been investigated in the temperature range from 373 K to 513 K by means of impedance spectroscopy. It has been shown that the frequency dependent conductivity of the present system shows the power law feature. Thermally induced phase transitions has been confirmed as well as activation energy calculated from temperature variation of dc conductivity. It has been shown that synthesis in a wet medium enables one to obtain nanoparticles much smaller than in the case of "dry" milling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Richard Barney; Scoffield, Don; Bennett, Brion
2013-12-01
The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionalitymore » testing, abnormal conditions testing, and charging of a plug-in vehicle.« less
NASA Astrophysics Data System (ADS)
Bayer, T. J. M.; Carter, J. J.; Wang, Jian-Jun; Klein, Andreas; Chen, Long-Qing; Randall, C. A.
2017-12-01
Under electrical bias, mixed ionic conductors such as SrTiO3 are characterized by oxygen vacancy migration which leads to resistance degradation. The defect chemistry to describe the relationship between conductivity and oxygen vacancies is usually obtained by high temperature conductivity data or quenching experiments. These techniques can investigate the equilibrated state only. Here, we introduce a new approach using in-situ impedance studies with applied dc voltage to analyze the temperature dependent electrical properties of degraded SrTiO3 single crystals. This procedure is most beneficial since it includes electric field driven effects. The benefits of the approach are highlighted by comparing acceptor doped and undoped SrTiO3. This approach allows the determination of the temperature activation of both anodic and cathodic conductivity of Fe-doped SrTiO3 in the degraded state. The anodic activation energy matches well with the published results, while the activation energy of the degraded cathode region reported here is not in agreement with earlier assumptions. The specific discrepancies of the experimental data and the published defect chemistry are discussed, and a defect chemistry model that includes the strong temperature dependence of the electron conductivity in the cathode region is proposed.
77 FR 70746 - Commission Information Collection Activities (FERC-592); Comment Request; Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
... information collection, Standards of Conduct for Transmission Provider; and Marketing Affiliates of Interstate... transportation information, which allows them to compete with marketing affiliates on a more equal basis. 18 CFR... Information Collection Activities (FERC-592); Comment Request; Extension AGENCY: Federal Energy Regulatory...
Examining Students' Opinions about STEAM Activities
ERIC Educational Resources Information Center
Ozkan, Gulbin; Topsakal, Unsal Umdu
2017-01-01
The purpose of this study is to determine the opinions of students about STEAM activities. This qualitative study was conducted on the with 7th grade students (n = 37) who are studying at a public school in Istanbul. A purposeful sampling was used in this study. Nine STEAM activities were used while teaching Force and Energy unit. An evaluation…
Pagan, Darren C.; Miller, Matthew P.
2014-01-01
A forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye’s model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity. Simulation results compared against diffraction data measured in situ from a silicon single-crystal specimen plastically deformed under single-slip conditions indicate that slip system activity can be identified during HEDM experiments. PMID:24904242
Carbon-based supercapacitors produced by activation of graphene.
Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D; Ganesh, K J; Cai, Weiwei; Ferreira, Paulo J; Pirkle, Adam; Wallace, Robert M; Cychosz, Katie A; Thommes, Matthias; Su, Dong; Stach, Eric A; Ruoff, Rodney S
2011-06-24
Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp(2)-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.
Carbon-Based Supercapacitors Produced by Activation of Graphene
NASA Astrophysics Data System (ADS)
Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D.; Ganesh, K. J.; Cai, Weiwei; Ferreira, Paulo J.; Pirkle, Adam; Wallace, Robert M.; Cychosz, Katie A.; Thommes, Matthias; Su, Dong; Stach, Eric A.; Ruoff, Rodney S.
2011-06-01
Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp2-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.
Military housing foam application and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, J. J.
2012-03-01
Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), the partnership provides a unique opportunity to take technology research and development from demonstration to application in sustainable communities. This project consists of two activities conducted in Hawaii that focus on performance, integration and application of energy saving technologies. Hawaii has many energy challenges, making this location an excellent testbed for these activities. Under this project, spray foam technology was applied at military housing on Oahu and the consumption data collected. A cost benefit and operational analysis of the foam was completed. The second phase of thismore » project included design, integration, and analysis of photovoltaic systems at a military community on Oahu. This phase of the project was conducted as part of Forest City's second Solar America Showcase Award.« less
NASA Astrophysics Data System (ADS)
Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.; Waqas, M.
2018-06-01
Here we investigated stagnation point flow of second grade fluid over a stretchable cylinder. Heat transfer is characterized by non-Fourier law of heat flux and thermal stratification. Temperature dependent thermal conductivity and activation energy are also accounted. Transformations procedure is applying to transform the governing PDE's into ODE's. Obtained system of ODE's are solved analytically by HAM. Influence of flow variables on velocity, temperature, concentration, skin friction and Sherwood number are analyzed. Obtained outcome shows that velocity enhanced through curvature parameter, viscoelastic parameter and velocities ratio variable. Temperature decays for larger Prandtl number, thermal stratification, thermal relaxation and curvature parameter. Sherwood number and concentration field show opposite behavior for higher estimation of activation energy, reaction rate, curvature parameter and Schmidt number.
Recent developments in photovoltaic energy by ERDA/NASA-LeRC
NASA Technical Reports Server (NTRS)
Deyo, J. N.
1977-01-01
Application development activities were designed to stimulate the market for photovoltaics so that as costs are reduced there will be an increasing market demand to encourage the expansion of industrial solar array production capacity. Supporting these application development activities are tasks concerned with: (1) establishing standards and methodology for terrestrial solar cell calibration; (2) conducting standard and diagnostic measurements on solar cells and modules; and (3) conducting real time and accelerated testing of solar cell modules and materials of construction under outdoor sunlight conditions.
Aqueous processing of composite lithium ion electrode material
Li, Jianlin; Armstrong, Beth L.; Daniel, Claus; Wood, III, David L.
2017-06-20
A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.
Aqueous processing of composite lithium ion electrode material
Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L
2015-02-17
A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.
Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.
Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui
2013-11-07
We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.
Thermal management system and method for a solid-state energy storing device
Rouillard, Roger; Domroese, Michael K.; Gauthier, Michel; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Rouillard, Jean; Shiota, Toshimi; St-Germain, Philippe; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.
2000-01-01
An improved electrochemical energy storing device includes a number of thin-film electrochemical cells which are maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of each electrochemical cell, conducts current into and out of the electrochemical cells and also conducts thermal energy between the electrochemical cells and thermally conductive material disposed on a wall structure adjacent the conductors. The wall structure includes electrically resistive material, such as an anodized coating or a thin film of plastic. The thermal conductors are fabricated to include a spring mechanism which expands and contacts to maintain mechanical contact between the electrochemical cells and the thermally conductive material in the presence of relative movement between the electrochemical cells and the wall structure. An active cooling apparatus may be employed external to a hermetically sealed housing containing the electrochemical cells to enhance the transfer of thermal energy into and out of the electrochemical cells. An integrated interconnect board may be disposed within the housing onto which a number of electrical and electro-mechanical components are mounted. Heat generated by the components is conducted from the interconnect board to the housing using the thermal conductors.
Bailey, Rachel L
2016-12-01
More energy dense foods are preferable from an optimal foraging perspective, which suggests these foods are more motivationally relevant due to their greater capability of fulfilling biological imperatives. This increase in motivational relevance may be exacerbated in circumstances where foraging will be necessary. This study examined how food energy density and presence of food in the immediate environment interacted to influence motivational processing of food advertisements. N = 58 adults viewed advertisements for foods varying in energy density in contexts where the advertised food was actually present in the viewing room or not. Advertisements for more energy dense foods elicited greater skin conductivity level compared to ads for less energy dense foods when food was not present. All ads elicited decreases in corrugator supercilii activation indicating positive emotional response resultant from appetitive motivational activation, though the greatest activation was exhibited toward higher energy density foods when food was present. This supports an optimal foraging perspective and has implications for healthy eating interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-07-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.
NASA Astrophysics Data System (ADS)
Das, M. R.; Mukherjee, A.; Mitra, P.
2017-09-01
We have studied the electrical conductivity, dielectric relaxation mechanism and impedance spectroscopy characteristics of nickel oxide (NiO) thin films synthesized by chemical bath deposition (CBD) method. Thickness dependent structural, optical and ac electrical characterization has been carried out and deposition time was varied to control the thickness. The material has been characterized using X-ray diffraction and UV-VIS spectrophotometer. Impedance spectroscopy analysis confirmed enhancement of ac conductivity and dielectric constant for films deposited with higher deposition time. Decrease of grain size in thicker films were confirmed from XRD analysis and activation energy of the material for electrical charge hopping process was increased with thickness of the film. Decrease in band gap in thicker films were observed which could be associated with creation of additional energy levels in the band gap of the material. Cole-Cole plot shows contribution of both grain and grain boundary towards total resistance and capacitance. The overall resistance was found to decrease from 14.6 × 105 Ω for 30 min deposited film ( 120 nm thick) to 2.42 × 105 Ω for 120 min deposited film ( 307 nm thick). Activation energy value to electrical conduction process evaluated from conductivity data was found to decrease with thickness. Identical result was obtained from relaxation time approach suggesting hopping mechanism of charge carriers.
NASA Astrophysics Data System (ADS)
Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi
2017-04-01
The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.
ASSESSMENT OF PHYSICAL COAL CLEANING PRACTICES FOR SULFUR REMOVAL
The report gives results of a study of the current level of coal cleaning activity in the U.S. n 1983, the U.S. DOE's Energy Information Administration (EIA) expanded coal data collection activities to include information on the extent and type of coal preparation conducted in ea...
10 CFR 70.23 - Requirements for the approval of applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... be used for the conduct of research or development activities of a type specified in section 31 of... types of research and development activities specified in section 31 are those relating to: (1) Nuclear processes; (2) The theory and production of atomic energy, including processes, materials, and devices...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahern, Keith; Daming, Liu; Hanley, Tim
The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducingmore » CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China Institute of Atomic Energy (CIAE) in Beijing. This paper provides details of the successful cooperation between DOE/NNSA and CAEA for all phases of the cooperative effort to enhance civil domestic MPC&A inspections in China.« less
Thermally Stimulated Currents in Nanocrystalline Titania
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Cavallaro, Alessandro; Scaringella, Monica
2018-01-01
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies. PMID:29303976
Thermally Stimulated Currents in Nanocrystalline Titania.
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Carnevale, Ennio Antonio; Cavallaro, Alessandro; Scaringella, Monica
2018-01-05
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10 14 -10 18 cm -3 , associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.
Activation energy of the low-load NaCl transition from nanoindentation loading curves.
Kaupp, Gerd
2014-01-01
Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.
Bibliography of NASA-related publications on wind turbine technology 1973-1995
NASA Technical Reports Server (NTRS)
Spera, David A.
1995-01-01
A major program of research and development projects on wind turbines for generating electricity was conducted at the NASA Lewis Research Center from 1973 to 1988. Most of these projects were sponsored by the U.S. Department of Energy (DOE), as a major element of its Federal Wind Energy Program. One other large-scale wind turbine project was sponsored by the Bureau of Reclamation of the Department of Interior (DOI). The peak years for wind energy work at Lewis were 1979-80, when almost 100 engineers, technicians, and administrative personnel were involved. From 1988 their conclusion in 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. Wind energy activities at NASA can be divided into two broad categories which are closely related and often overlapping: (1) Designing, building, and testing a series of 12 large-scale, experimental, horizontal-axis wind turbines (HAWT's); and (2) conducting supporting research and technology (SR&T) projects. The purpose of this bibliography is to assist those active in the field of wind energy in locating the technical information they need on wind power planning, wind loads, turbine design and analysis, fabrication and installation, laboratory and field testing, and operations and maintenance. This bibliography contains approximately 620 citations of publications by over 520 authors and co-authors. Sources are: (1) NASA reports authored by government grantee, and contractor personnel, (2) papers presented by attendees at NASA-sponsored workshops and conferences, (3) papers presented by NASA personnel at outside workshops and conferences, and (4) outside publications related to research performed at NASA/ DOE wind turbine sites.
25 CFR 162.502 - Who must obtain a WEEL or WSR lease?
Code of Federal Regulations, 2013 CFR
2013-04-01
... Wind and Solar Resource Leases General Provisions Applicable to Weels and Wsr Leases § 162.502 Who must... possession of the Indian land to conduct wind energy evaluation activities is authorized: (1) Under § 162.005.../or solar resources must obtain a WSR lease. (c) A tribe that conducts wind and solar resource...
25 CFR 162.502 - Who must obtain a WEEL or WSR lease?
Code of Federal Regulations, 2014 CFR
2014-04-01
... Wind and Solar Resource Leases General Provisions Applicable to Weels and Wsr Leases § 162.502 Who must... possession of the Indian land to conduct wind energy evaluation activities is authorized: (1) Under § 162.005.../or solar resources must obtain a WSR lease. (c) A tribe that conducts wind and solar resource...
The crossover between tunnel and hopping conductivity in granulated films of noble metals
NASA Astrophysics Data System (ADS)
Kavokin, Alexey; Kutrovskaya, Stella; Kucherik, Alexey; Osipov, Anton; Vartanyan, Tigran; Arakelyan, Sergey
2017-11-01
The conductivity of thin films composed by clusters of gold and silver nanoparticles has been studies in a wide range of temperatures. The switch from a temperature independence to an exponential thermal dependence of the conductivity manifests the crossover between the tunnel and thermally activated hopping regimes of the electronic transport at the temperature of 60 °C. The characteristic thermal activation energy that governs hopping of electrons between nanoparticles is estimated as 1.3 eV. We have achieved a good control of the composition and thicknesses of nano-cluster films by use of the laser ablation method in colloidal solutions.
NASA Astrophysics Data System (ADS)
Chen, Tianran; Shklovskii, B. I.
2013-04-01
In the recent paper, we explained why the maximum bulk resistivity of topological insulators (TIs) such as Bi2Se3 is so small [B. Skinner, T. Chen, and B. I. Shklovskii, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.176801 109, 176801 (2012)]. Using the model of completely compensated semiconductor we showed that when the Fermi level is pinned in the middle of the gap the activation energy of resistivity is Δ=0.3(Eg/2), where Eg is the semiconductor gap. In this paper, we consider a strongly compensated n-type semiconductor. We find the position of the Fermi level μ calculated from the bottom of the conduction band Ec and the activation energy of resistivity Δ as a function of compensation K, and show that Δ=0.3(Ec-μ) holds at any 0<1-K≪1. In the same range of relatively high temperatures, the Peltier energy (heat) Π is even smaller: Π≃Δ/2=0.15(Ec-μ). We also show that at low temperatures, the activated conductivity crosses over to variable range hopping (VRH) and find the characteristic temperature of VRH, TES, as a function of K.
Holistic Framework for Understanding the Evolution of Stellar Coronal Plasmas
NASA Astrophysics Data System (ADS)
Blackman, Eric; Owen, James
2017-10-01
Understanding how how the coronal X-ray activity of stars depends on magnetic field strength, dynamos, rotation, mass loss and age is of interest not only for the basic plasma physics of stars, but also for stellar age determination and implications for habitability. Approximate relations between field strength, activity, spin down, mass loss and age have been measured, but remain to be understood theoretically. The saturation of plasma activity of the fastest rotators and the decoupling of spin-down from magnetic field strengths for slow rotators are particular puzzles. To explain the observed trends, I discuss our minimalist holistic theoretical framework that combines a Parker wind with (i) magnetic dynamo sourcing of thermal energy, wind energy and x-ray luminosity (ii) dynamo saturation based on magnetic helicity conservation and shear-induced eddy shredding and (iii) coronal equilibrium to determine how the magnetic energy divides into wind, x-ray, and thermal conduction sinks. We find conduction to be important for older stars where it can reduce the efficacy of wind angular momentum loss, offering an alternative explanation of this trend to those which require dynamo transitions. Overall, the framework shows promise and provides opportunity for further Grant NSF-AST1515648 is acknowledged.
Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl 2)
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Farid, A. M.; Abd El-Rahman, K. F.; Ali, H. A. M.
2008-07-01
The ac conductivity, σac( ω), has been measured for bulk tin phthalocyanine dichloride (SnPcCl 2) in the form of compressed pellet with evaporated ohmic Au electrodes in a temperature range 303-403 K. Ac conductivity, σac( ω), is found to vary as ωs in the frequency range 42 Hz-5×10 6 Hz. At low range of frequency, s<1 and it decreases with the increase in temperature indicating a dominant hopping process. At high range of frequency, s is found to be equal to ≈1.09 and is temperature independent. The dielectric constant, ε1, and dialectic loss, ε2, have been determined for bulk SnPcCl 2. Both ε1 and ε2 decrease with the increase in frequency and increase with the increase in temperature. The Cole-Cole types have been used to determine some parameters such as; the macroscopic relaxation time ( τo), the molecular relaxation time ( τ), the activation energy for relaxation ( Eo) and the distribution parameter ( α). The temperature dependence of τ is expressed by a thermally activated process with the activation energy of 0.299 eV.
Paducah Site annual report for 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, G.
1997-01-01
The Paducah Gaseous Diffusion Plant, located in McCracken County, Kentucky, has been producing enriched uranium since 1952. In July 1993, the US department of Energy (DOE) leased the production areas of the site to the US Enrichment Corporation (USEC). A new subsidiary of Lockheed Martin Corporation, Lockheed Martin Utility Services, manages the leased facilities for USEC. DOE maintains responsibility for the environmental restoration, waste management, and enrichment facilities activities at the plant through its management contractor, Lockheed Martin Energy Systems. The purpose of this document is to summarize calendar year 1995 environmental monitoring activities for DOE activities at the Paducahmore » Site. DOE requires all of its facilities to conduct and document such activities annually. This report does not include USEC environmental activities.« less
Fabrication, testing and simulation of all solid state three dimensional Li-ion batteries
Talin, Albert Alec; Ruzmetov, Dmitry; Kolmakov, Andrei; ...
2016-11-10
Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community. [1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10 -6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes [3].
NASA Astrophysics Data System (ADS)
Chatterjee, Soumi; Saha, Shyamal Kumar; Chakravorty, Dipankar
2018-04-01
Nanodimensional sodium silicate glasses of composition 30Na2O.70SiO2 has been prepared within the pores of 5.5 nm of mesoporous silica as a template using the surfactant P123. The nanocomposite was characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. Electrical conductivity of the sample was studied by ac impedance spectroscopy. The activation energy for ionic conduction was found to be 0.13 eV with dc conductivity at room temperature of 10-6 S-cm-1. This is attributed to the creation of oxygen ion vacancies at the interface of mesoporous silica and nanoglass arising out of the presence of Si2+ species in the system. These nanocomposites are expected to be useful for applications in sodiumion battery for storage of renewable energy.
Pecher, Oliver; Kong, Shiao-Tong; Goebel, Thorsten; Nickel, Vera; Weichert, Katja; Reiner, Christof; Deiseroth, Hans-Jörg; Maier, Joachim; Haarmann, Frank; Zahn, Dirk
2010-07-26
The atomistic mechanisms of Li(+) ion mobility/conductivity in Li(7-x)PS(6-x)I(x) argyrodites are explored from both experimental and theoretical viewpoints. Ionic conductivity in the title compound is associated with a solid-solid phase transition, which was characterised by low-temperature differential scanning calorimetry, (7)Li and (127)I NMR investigations, impedance measurements and molecular dynamics simulations. The NMR signals of both isotopes are dominated by anisotropic interactions at low temperatures. A significant narrowing of the NMR signal indicates a motional averaging of the anisotropic interactions above 177+/-2 K. The activation energy to ionic conductivity was assessed from both impedance spectroscopy and molecular dynamics simulations. The latter revealed that a series of interstitial sites become accessible to the Li(+) ions, whilst the remaining ions stay at their respective sites in the argyrodite lattice. The interstitial positions each correspond to the centres of tetrahedra of S/I atoms, and differ only in terms of their common corners, edges, or faces with adjacent PS(4) tetrahedra. From connectivity analyses and free-energy rankings, a specific tetrahedron is identified as the key restriction to ionic conductivity, and is clearly differentiated from local mobility, which follows a different mechanism with much lower activation energy. Interpolation of the lattice parameters as derived from X-ray diffraction experiments indicates a homogeneity range for Li(7-x)PS(6-x)I(x) with 0.97 < or = x < or = 1.00. Within this range, molecular dynamics simulations predict Li(+) conductivity at ambient conditions to vary considerably.
A new model linking elastic properties and ionic conductivity of mixed network former glasses.
Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Martin, Steve W; Kieffer, John
2018-01-17
Glasses are promising candidate materials for all-solid-state electrolytes for rechargeable batteries due to their outstanding mechanical stability, wide electrochemical stability range, and open structure for potentially high conductivity. Mechanical stiffness and ionic conductivity are two key parameters for solid-state electrolytes. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. With mixed-network formers, the structure of the network changes while the network modifier mole fraction is kept constant, i.e., x = 0.2, which allows us to analyze the effect of the network structure on various properties, including ionic conductivity and elastic properties. Besides the non-linear, non-additive mixed glass former effect, we find that the longitudinal, shear and Young's moduli depend on the combined number density of tetrahedrally and octahedrally coordinated network former elements. These units provide connectivity in three dimensions, which is required for the networks to exhibit restoring forces in response to isotropic and shear deformations. Moreover, the activation energy for modifier cation, Na + , migration is strongly correlated with the bulk modulus, suggesting that the elastic strain energy associated with the passageway dilation for the sodium ions is governed by the bulk modulus of the glass. The detailed analysis provided here gives an estimate for the number of atoms in the vicinity of the migrating cation that are affected by elastic deformation during the activated process. The larger this number and the more compliant the glass network, the lower is the activation energy for the cation jump.
42 CFR 82.1 - What is the purpose of this part?
Code of Federal Regulations, 2014 CFR
2014-10-01
... HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY... radiation dose received by a covered employee with cancer under EEOICPA, through the completion of a dose...
42 CFR 82.1 - What is the purpose of this part?
Code of Federal Regulations, 2011 CFR
2011-10-01
... HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY... radiation dose received by a covered employee with cancer under EEOICPA, through the completion of a dose...
42 CFR 82.1 - What is the purpose of this part?
Code of Federal Regulations, 2013 CFR
2013-10-01
... HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY... radiation dose received by a covered employee with cancer under EEOICPA, through the completion of a dose...
42 CFR 82.1 - What is the purpose of this part?
Code of Federal Regulations, 2012 CFR
2012-10-01
... HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY... radiation dose received by a covered employee with cancer under EEOICPA, through the completion of a dose...
Use of active video games to increase physical activity in children: a (virtual) reality?
Foley, Louise; Maddison, Ralph
2010-02-01
There has been increased research interest in the use of active video games (in which players physically interact with images onscreen) as a means to promote physical activity in children. The aim of this review was to assess active video games as a means of increasing energy expenditure and physical activity behavior in children. Studies were obtained from computerized searches of multiple electronic bibliographic databases. The last search was conducted in December 2008. Eleven studies focused on the quantification of the energy cost associated with playing active video games, and eight studies focused on the utility of active video games as an intervention to increase physical activity in children. Compared with traditional nonactive video games, active video games elicited greater energy expenditure, which was similar in intensity to mild to moderate intensity physical activity. The intervention studies indicate that active video games may have the potential to increase free-living physical activity and improve body composition in children; however, methodological limitations prevent definitive conclusions. Future research should focus on larger, methodologically sound intervention trials to provide definitive answers as to whether this technology is effective in promoting long-term physical activity in children.
Energy: Economic activity and energy demand; link to energy flow. Example: France
NASA Astrophysics Data System (ADS)
1980-10-01
The data derived from the EXPLOR and EPOM, Energy Flow Optimization Model are described. The core of the EXPLOR model is a circular system of relations involving consumer's demand, producer's outputs, and market prices. The solution of this system of relations is obtained by successive iterations; the final output is a coherent system of economic accounts. The computer program for this transition is described. The work conducted by comparing different energy demand models is summarized. The procedure is illustrated by a numerical projection to 1980 and 1985 using the existing version of the EXPLOR France model.
NASA Astrophysics Data System (ADS)
Katsura, T.; Fei, H.; Koizumi, S.; Sakamoto, N.; Yurimoto, H.
2016-12-01
Although the water corporation has been considered to enhance the electrical conductivity of olivine by the proton conduction, the magnitude of the proton conduction is relatively small at asthenospheric temperatures because of its smaller activation energy than those of the small polaron and ionic conductions. However, the water incorporation could enhance the ionic conduction, because it should increase the defect density in the Mg sites. Since the ionic conductivity is proportional to the diffusivity, we have measured the self-diffusion coefficients of Mg in forsterite as a function of pressure, temperature and water content. We annealed fine-grained polycrystalline aggregates of forsterite with water contents up to 300 ppm, on whose polished plane a 25Mg-enriched Mg2SiO4 thin film was made, at pressures of 1 to 13 GPa and temperatures of 1100 to 1300 K. The lattice and grain-boundary diffusion coefficients were calculated simultaneously using profiles obtained by the depth analysis of SIMS. Experimental results gave the activation energy of 280 ± 30 and 360 ± 30 kJ/mol, activation volumes of 4.3 ± 0.3 and 3.9 ± 0.7 cm3/mol, and water content exponents of 1.2 ± 0.2 and 1.0 ± 0.1 for the lattice and grain-boundary diffusions, respectively. Using the ionic conduction data by Constable [2006] and Yoshino et al. [2009], and the water and pressure effects on Mg diffusivity in this study, the ionic conduction is found by 2 orders of magnitude higher than the small polaron and proton conductions under oceanic-asthenosphere conditions. Thus, the high conductivity of the oceanic asthenosphere will be governed by the water-enhanced ionic conduction. The negative pressure dependence of the Mg diffusivity and the gradual temperature increase in the asthenosphere will produce a conductivity maximum at the top of the asthenosphere. The high-conductivity layer at the top of the asthenosphere observed under very young oceanic plates can be attributed to this ionic conduction maximum.
Cu1–xFexO: hopping transport and ferromagnetism
Nasir, Mohd.; Islam, Rakibul; Ahmed, Md. A; Ayaz, Saniya; Kumar, Gautham; Kumar, Sunil; Prajapat, C. L.; Roussel, Frederick; Biring, Sajal
2017-01-01
Single phase, sol–gel prepared Cu1–xFexO (0 ≤ x ≤ 0.125) powders are characterized in terms of structural, electronic and magnetic properties. Using dielectric and magnetic studies we investigate the coupling of electron and spin. The electrical conductivities and activation energies are studied with increasing Fe content. Modelling of experimental conductivity data emphasizes a single hopping mechanism for all samples except x = 0.125, which have two activation energies. Hole doping is confirmed by confirming a majority Fe3+ substitution of Cu2+ in CuO from X-ray photoelectron spectroscopy studies (XPS). Such a substitution results in stabilized ferromagnetism. Fe substitution introduces variation in coercivity as an intrinsic magnetic property in Fe-doped CuO, and not as a secondary impurity phase. PMID:28989741
Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A
2014-04-02
We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.
NASA Astrophysics Data System (ADS)
Shiau, Lie-Ding; Wang, Hsu-Pei
2016-05-01
A model is developed in this work to calculate the interfacial energy and growth activation energy of a crystallized substance from induction time data without the knowledge of the actual growth rate. Induction time data for αL-glutamic acid measured with a turbidity probe for various supersaturations at temperatures from 293 to 313 K are employed to verify the developed model. In the model a simple empirical growth rate with growth order 2 is assumed because experiments are conducted at low supersaturation. The results indicate for αL-glutamic acid that the growth activation energy is 39 kJ/mol, which suggests that the growth rate of small nuclei in the agitated induction time experiments is integration controlled. The interfacial energy obtained from the current model is in the range of 5.2-7.4 mJ/m2, which is slightly greater than that obtained from the traditional method (ti-1∝J) for which the value is in the range 4.1-5.7 mJ/m2.
Ion dynamics in AgI doped silver selenium-tellurite mixed former glasses
NASA Astrophysics Data System (ADS)
Palui, A.; Ghosh, A.
2017-03-01
The ionic conductivity and the conductivity spectra of the glass compositions xAgI-(1-x)[yAg2O-(1-y)(0.5SeO2-0.5TeO2)] have been studied at different temperatures The activation energy for the dc conduction has been analyzed using the Anderson-Stuart model, and a correlation between the dc conductivity and the doorway radius has been obtained. We have analyzed the conductivity spectra using the random free-energy barrier model, taking into account the contribution of electrode polarization. It is observed that the Barton-Nakajima-Namikawa relation between the conductivity and the relaxation time is valid for these glasses. The time-temperature superposition principle has been verified using the scaling of the conductivity spectra in the framework of the random barrier model. The charge carrier density, obtained from the Nernst-Einstein relation, is found to be almost independent of temperature, but dependent weakly on composition. We have also studied the influence of the modification of the network structure of these glasses on ion migration and correlated the conductivity with the relative strength of the structural units.
Design and Implementation of Green Construction Scheme for a High-rise Residential Building Project
NASA Astrophysics Data System (ADS)
Zhou, Yong; Huang, You Zhen
2018-06-01
This paper mainly studies the green construction scheme of a high-rise residential building project. From "four sections one environmental protection", saving material, water saving, energy saving, economical use of land and environmental protection conduct analysis and research. Adopting scientific, advanced, reasonable and economical construction technology measures, implementing green construction method. Promoting energy-saving technologies in buildings, ensuring the sustainable use of resources, Maximum savings of resources and energy, increase energy efficiency, to reduce pollution, reducing the adverse environmental impact of construction activities, ensure construction safety, build sustainable buildings.
Development Impact Assessment (DIA) Case Study. South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie; Nawaz, Kathleen; Sandor, Debra
2015-05-19
This case study reviews South Africa’s experience in considering the impacts of climate change action on development goals, focusing on the South African energy sector and development impact assessments (DIAs) that have and could be used to influence energy policy or inform the selection of energy activities. It includes a review of assessments—conducted by government ministries, technical partners, and academic institutes and non-governmental organizations (NGOs)—that consider employment, health, and water implications of possible energy sector actions, as well as multi-criteria impact assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David; Stein, Emily; Gross, Michael B
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... accomplished by one vessel with acoustic sources. Shell plans to conduct site clearance and shallow hazards... equipment recovery and maintenance activity would be accomplished by one vessel operating in dynamic... Wilderness Society (collectively ``AWL''), Bureau of Ocean Energy Management (BOEM), and one private citizen...
U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipman, Tim; Kammen, Dan; McDonell, Vince
2013-09-30
The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence andmore » Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC) at San Diego State University and San Francisco State University. The center also worked with a wide range of affiliated groups and industry, government, NGO, and academic stakeholders to conduct a series of CHP education and outreach, project technical support, and related activities for the Pacific region. Key PCEAC tasks have included: - Preparing, organizing and conducting educational seminars on various aspects of CHP - Conducting state baseline assessments for CHP - Working with state energy offices to prepare state CHP action plans - Providing technical support services including CHP/district energy project feasibility screenings - Working with state agencies on CHP policy development - Developing additional CHP educational materials The primary specific services that PCEAC has offered include: - A CHP “information clearinghouse “ website: http://www.pacificcleanenergy.org - Site evaluations and potential projects screenings - Assessment of CHP status, potential, and key issues for each state - Information and training workshops - Policy and regulatory guidance documents and other interactions These services were generally offered at no cost to client groups based on the DOE funding and additional activities supported by the California Energy Commission, except for the in-kind staff resources needed to provide input data and support to PCEAC assessments at host sites. Through these efforts, the PCEAC reached thousands of end-users and directly worked with several dozen organizations and potential CHP “host sites” from 2009-2013. The major activities and outcomes of PCEAC project work are described.« less
Adenylate Energy Pool and Energy Charge in Maturing Rape Seeds 1
Ching, Te May; Crane, Jim M.; Stamp, David L.
1974-01-01
A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number. PMID:16658964
Thermal energy creation and transport and X-ray/EUV emission in a thermodynamic MHD CME simulation
NASA Astrophysics Data System (ADS)
Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.
2017-12-01
We model a CME using the PSI 3D numerical MHD code that includes coronal heating, thermal conduction and radiative cooling in the energy equation. The magnetic flux distribution at 1 Rs is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. We introduce transverse electric fields near the neutral line in the active region to form a flux rope, then a converging flow is imposed that causes the eruption. We follow the formation and evolution of the current sheet and find that instabilities set in soon after the reconnection commences. We simulate XRT and AIA EUV emission and find that the instabilities manifest as bright features emanating from the reconnection region. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic compression and expansion, coronal heating and ohmic heating due to dissipation of currents. We find that the adiabatic compression plays an important role in heating the plasma around the current sheet, especially in the later stages of the eruption when the instabilities are present. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process.
A linkage analysis toolkit for studying allosteric networks in ion channels
2013-01-01
A thermodynamic approach to studying allosterically regulated ion channels such as the large-conductance voltage- and Ca2+-dependent (BK) channel is presented, drawing from principles originally introduced to describe linkage phenomena in hemoglobin. In this paper, linkage between a principal channel component and secondary elements is derived from a four-state thermodynamic cycle. One set of parallel legs in the cycle describes the “work function,” or the free energy required to activate the principal component. The second are “lever operations” activating linked elements. The experimental embodiment of this linkage cycle is a plot of work function versus secondary force, whose asymptotes are a function of the parameters (displacements and interaction energies) of an allosteric network. Two essential work functions play a role in evaluating data from voltage-clamp experiments. The first is the conductance Hill energy WH[g], which is a “local” work function for pore activation, and is defined as kT times the Hill transform of the conductance (G-V) curve. The second is the electrical capacitance energy WC[q], representing “global” gating charge displacement, and is equal to the product of total gating charge per channel times the first moment (VM) of normalized capacitance (slope of Q-V curve). Plots of WH[g] and WC[q] versus voltage and Ca2+ potential can be used to measure thermodynamic parameters in a model-independent fashion of the core gating constituents (pore, voltage-sensor, and Ca2+-binding domain) of BK channel. The method is easily generalized for use in studying other allosterically regulated ion channels. The feasibility of performing linkage analysis from patch-clamp data were explored by simulating gating and ionic currents of a 17-particle model BK channel in response to a slow voltage ramp, which yielded interaction energies deviating from their given values in the range of 1.3 to 7.2%. PMID:23250867
Ion transport in the microporous titanosilicate ETS-10.
Wei, Ta-Chen; Hillhouse, Hugh W
2006-07-20
Impedance spectroscopy was used to investigate ion transport in the microporous crystalline framework titanosilicate ETS-10 in the frequency range from 1 Hz to 10 MHz. These data were compared to measured data from the microporous aluminosilicate zeolite X. Na-ETS-10 was found to have a lower activation energy for ion conduction than that of NaX, 58.5 kJ/mol compared to 66.8 kJ/mol. However, the dc conductivity and ion hopping rate for Na-ETS-10 were also lower than NaX. This was found to be due to the smaller entropy contribution in Na-ETS-10 because of its high cation site occupancy. This was verified by ion exchanging Na(+) with Cu(2+) in both microporous frameworks. This exchange decreases the cation site occupancy and reduces correlation effects. The exchanged Cu-ETS-10 was found to have both lower activation energy and higher ionic conductivity than CuX. Zeolite X has the highest ion conductivity among the zeolites, and thus the data shown here indicate that ETS-10 has more facile transport of higher valence cations which may be important for ion-exchange, environmental remediation of radionucleotides, and nanofabrication.
Quantifying TEMPO Redox Polymer Charge Transport toward the Organic Radical Battery.
Karlsson, Christoffer; Suga, Takeo; Nishide, Hiroyuki
2017-03-29
To design new and better organic active battery materials in a rational fashion, fundamental parameters of the charge transport must be studied. Herein we report on the electronic conductivity by electron diffusion in a TEMPO-containing redox polymer, and the reorganization energy of the TEMPO self-exchange in an organic solvent is determined for the first time. The electronic conductivity was 8.5 μS/cm at E 0 and corresponded to a redox hopping mechanism. The apparent electron diffusion coefficient was 1.9 × 10 -9 cm 2 /s at room temperature, and at short times the ion diffusion was limiting with a diffusion coefficient of 6.5 × 10 -10 cm 2 /s. The reorganization energy was determined to be 1.01 eV, indicating a rather polar chemical environment for the TEMPO groups. The implications for the usage of this type of materials in organic energy storage are discussed. As conductivity through 10 μm was demonstrated, we show that, if sufficient swellability can be ensured, charge can be transported through several micrometer thick layers in a battery electrode without any conducting additive.
Alternating-current conductivity and dielectric relaxation of bulk iodoargentate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Hai-Bao, E-mail: duanhaibao4660@163.com; Yu, Shan-Shan; Zhou, Hong
Graphical abstract: The electric modulus shows single dielectric relaxation process in the measured frequency range. - Highlights: • The conduction mechanism is described by quantum mechanical tunneling model. • The applications of dielectric modulus give a simple method for evaluating the activation energy of the dielectric relaxation. • The [Ag{sub 2}I{sub 4}]{sup 2−}1-D chain and [Cu(en){sub 2}]{sup 2+} cation column form the layered stacks by hydrogen bond interactions. - Abstract: An inorganic-organic hybrid compound Cu(en){sub 2}Ag{sub 2}I{sub 4} (en = ethylenediamine) (1) was synthesized and single crystal structurally characterized. Along the [001] direction, the inorganic parts form an infinite 1-Dmore » chain and [Cu(en){sub 2}]{sup 2+} cations are separated by inorganic chain. The electrical conductivity and dielectric properties of 1 have been investigated over wide ranges of frequency. The alternating-current conductivities have been fitted to the Almond–West type power law expression with use of a single value of S. It is found that S values for 1 are nearly temperature-independent, which indicates that the conduction mechanism could be quantum mechanical tunneling (QMT) model. The dielectric loss and electric modulus show single dielectric relaxation process. The activation energy obtained from temperature-dependent electric modulus compare with the calculated from the dc conductivity plots.« less
van Deutekom, Arend W; Chinapaw, Mai Jm; Gademan, Maaike Gj; Twisk, Jos Wr; Gemke, Reinoud Jbj; Vrijkotte, Tanja Gm
2016-08-01
The purpose of this study was to examine the association of birth weight and infant growth with childhood autonomic nervous system (ANS) activity and to assess whether ANS activity mediates the associations of birth weight and infant growth with energy-balance-related behaviours, including energy intake, satiety response, physical activity and screen time. In 2089 children, we prospectively collected birth weight, infant growth defined as conditional weight and height gain between birth and 12 months and-at 5 years-indices of cardiac ANS activity and parent-reported energy-balance-related behaviours. A mediation analysis was conducted, based on MacKinnon's multivariate extension of the product-of-coefficients strategy. Birth weight and infant height gain were inversely associated with sympathetic, but not parasympathetic, activity at age 5. Infant weight gain was not associated with childhood ANS activity. Infant weight gain was predictive of increased childhood screen time and infant height gain of diminished childhood energy intake, but sympathetic activity did not mediate these associations. Low-birth-weight children have higher sympathetic activity, which is considered a risk factor for cardiovascular disease. Height gain in infancy seems to be beneficial for childhood sympathetic activity. However, sympathetic activity was no mediator of the associations of infant growth with childhood energy-balance-related behaviours. As individual differences in ANS activity predict increased risk of cardiovascular disease, these differences may offer insight into the early-life origins of chronic diseases and provide further basis for public health strategies to optimize birth weight and infant growth. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Cao, Chunmei; Liu, Yu; Zhu, Weimo; Ma, Jiangjun
2016-05-01
Recently developed active workstation could become a potential means for worksite physical activity and wellness promotion. The aim of this review was to quantitatively examine the effectiveness of active workstation in energy expenditure and job performance. The literature search was conducted in 6 databases (PubMed, SPORTDiscuss, Web of Science, ProQuest, ScienceDirect, and Scopuse) for articles published up to February 2014, from which a systematic review and meta-analysis was conducted. The cumulative analysis for EE showed there was significant increase in EE using active workstation [mean effect size (MES): 1.47; 95% confidence interval (CI): 1.22 to 1.72, P < .0001]. Results from job performance indicated 2 findings: (1) active workstation did not affect selective attention, processing speed, speech quality, reading comprehension, interpretation and accuracy of transcription; and (2) it could decrease the efficiency of typing speed (MES: -0.55; CI: -0.88 to -0.21, P < .001) and mouse clicking (MES: -1.10; CI: -1.29 to -0.92, P < .001). Active workstation could significantly increase daily PA and be potentially useful in reducing workplace sedentariness. Although some parts of job performance were significantly lower, others were not. As a result there was little effect on real-life work productivity if we made a good arrangement of job tasks.
Electrocatalytic Metal-Organic Frameworks for Energy Applications.
Downes, Courtney A; Marinescu, Smaranda C
2017-11-23
With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...
Conduct urban agglomeration with the baton of transportation.
DOT National Transportation Integrated Search
2013-12-01
A key indicator of traffic activity patterns is commuting distance. Shorter commuting distances yield less traffic, fewer emissions, : and lower energy consumption. This study develops a spatial error seemingly unrelated regression model to investiga...
Electrical conductivity behavior of Gum Arabic biopolymer-Fe3O4 nanocomposites
NASA Astrophysics Data System (ADS)
Bhakat, D.; Barik, P.; Bhattacharjee, A.
2018-01-01
Present work reports a study on the electrical conduction properties of some composites of Gum Arabic biopolymer and magnetite nanoparticles as host and guest, respectively, synthesized in different weight percentages. The nanocomposites are found to be non-extrinsic type of semiconductors with guest content dependent trap distribution of charge carriers. Conductivity of these materials increases with increasing guest content along with a concomitant decrease in the activation energy. Percolation theory has been employed for the analysis of the electrical conductivity results to explore the effect of the guest on the electrical conductivity of the host.
First-principles investigation of polarization and ion conduction mechanisms in hydroxyapatite
NASA Astrophysics Data System (ADS)
Kasamatsu, Shusuke; Sugino, Osamu
We report first-principles simulation of polarization mechanisms in hydroxyapatite to explain the underlying mechanism behind the reported ion conductivities and polarization under electrical poling at elevated temperatures. It is found that ion conduction occurs mainly in the column of OH$^-$ ions along the $c$-axis through a combination of the flipping of OH$^-$ ions, exchange of proton vacancies between OH$^-$ ions, and the hopping of the OH$^-$ vacancy. The calculated activation energies are consistent with those found in conductivity measurements and thermally stimulated depolarization current measurements.
Luo, Wen-Bin; Pham, Thien Viet; Guo, Hai-Peng; Liu, Hua-Kun; Dou, Shi-Xue
2017-02-28
The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg -1 ), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt 3 Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt 3 Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt 3 Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g -1 along with an 84% conversion efficiency at a current density of 0.2 mA cm -2 , and when the current density increased to 0.8 mA cm -2 , the discharge capacity is still greater than 3500 mAh g -1 together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.
Tantalum-based semiconductors for solar water splitting.
Zhang, Peng; Zhang, Jijie; Gong, Jinlong
2014-07-07
Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting are also discussed.
Influence of cellular and paracellular conductance patterns on epithelial transport and metabolism.
Essig, A
1982-01-01
Theoretical analysis of transepithelial active Na transport is often based on equivalent electrical circuits comprising discrete parallel active and passive pathways. Recent findings show, however, that Na+ pumps are distributed over the entire basal lateral surface of epithelial cells. This suggests that Na+ that has been actively transported into paracellular channels may to some extent return to the apical (mucosal) bathing solution, depending on the relative conductances of the pathways via the tight junctions and the lateral intercellular spaces. Such circulation, as well as the relative conductance of cellular and paracellular pathways, may have an important influence on the relationships between parameters of transcellular and transepithelial active transport and metabolism. These relationships were examined by equivalent circuit analysis of active Na transport, Na conductance, the electromotive force of Na transport, the "stoichiometry" of transport, and the degree of coupling of transport to metabolism. Although the model is too crude to permit precise quantification, important qualitative differences are predicted between "loose" and "tight" epithelia in the absence and presence of circulation. In contrast, there is no effect on the free energy of metabolic reaction estimated from a linear thermodynamic formalism. Also of interest are implications concerning the experimental evaluation of passive paracellular conductance following abolition of active transport, and the use of the cellular voltage-divider ratio to estimate the relative conductances of apical and basal lateral plasma membranes. PMID:6284264
Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps
Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun; ...
2017-08-02
Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less
Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun
Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less
NASA Astrophysics Data System (ADS)
Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.
2016-12-01
A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.
Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao
2014-03-01
Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.
U. S. Department of Energy (DOE) Industrial Programs and Their Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Roop, Joseph M.
The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2003). From 1976-2002, the commercialized technologies from ITP's R&D programs and other activities have cumulatively saved 3.7 quadrillion Btu, with a net cost savings of $14.6 billion.« less
Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm
NASA Astrophysics Data System (ADS)
Martin, M.; Schulz, O.
Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A- and the B-sublattice and anion vacancies as well.
Conductive Polymer Binder-Enabled SiO–Sn xCo yC z Anode for High-Energy Lithium-Ion Batteries
Zhao, Hui; Fu, Yanbao; Ling, Min; ...
2016-05-10
In this paper, a SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm 2 is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. Finally, bymore » achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.« less
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-01-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an “in situ growth for conductive wrapping” and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm−3 at a discharge current density of 0.1 A cm−3 and an energy density of 6.16 × 10−3 Wh cm−3 at a power density of 0.04 W cm−3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the “in situ growth for conductive wrapping” method might be generalized to open up new strategies for designing next-generation energy storage devices. PMID:23884478
Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks.
Shen, Li; Wu, Hao Bin; Liu, Fang; Brosmer, Jonathan L; Shen, Gurong; Wang, Xiaofeng; Zink, Jeffrey I; Xiao, Qiangfeng; Cai, Mei; Wang, Ge; Lu, Yunfeng; Dunn, Bruce
2018-06-01
Solid-state electrolytes are the key to the development of lithium-based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid-state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal-organic frameworks (MOFs), which transforms the MOF scaffolds into ionic-channel analogs with lithium-ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid-state lithium-ion conducting electrolytes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL...
24 CFR 882.805 - HA application process, ACC execution, and pre-rehabilitation activities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... standards approved by HUD; (B) Conduct a feasibility analysis, and determine whether cost-effective energy... accomplished, the preliminary feasibility of the proposal, and the number of units to be assisted, the Owner...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and GAPs Maintenance and...
STRUCTURE AND PHYSICAL PROPERTIES OF SOLID AND LIQUID VANADIUM PENTOXIDE.
The electrical resistivity of near-stoichiometric crystalline V2O5 was measured as a function of crystal orientation and oxygen partial pressure from...25C to 300C. Conductivity is insensitive to ambient atmosphere. The activation energy for conduction is 0.20 ev. Molten V2O5 , however, is...sensitive to oxygen partial pressure. Its conductivity is proportional to P-O2 to the -1/6th power. Anomalously high electrical resistivity was observed for glassy V2O5 films. (Author)
Studies on a.c. conductivity behaviour of milled carbon fibre reinforced epoxy gradient composites
NASA Astrophysics Data System (ADS)
Nigrawal, Archana; Sharma, Arun Kumar; Ojha, Pragya
2018-05-01
Temperature and frequency dependence of a.c. conductivity (σa.c) of milled carbon fibre (MCF) reinforced epoxy gradient composites has been studied in a wide temperature (30 to 150°C) and frequency range (1 to 10kHz). It is observed that the ac conductivity of composites increases with increase in temperature. Activation energy decreases from 0.55 eV to 0.43 eV on increase of MCF content from 0.45to 1.66 Vol%.
Electrode and grain-boundary effects on the conductivity of CaCu{sub 3}Ti{sub 4}O{sub 12}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Lei
2005-07-11
The ac conductivity of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics was studied in the temperature range 173
NASA Astrophysics Data System (ADS)
Karner, Donald; Francfort, James
The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.
Prakash, T; Prasad, K Padma; Ramasamy, S; Murty, B S
2008-08-01
Nanocrystalline p-type semiconductor copper aluminum oxide (CuAlO2) has been synthesized by mechanical alloying using freshly prepared Cu2O and alpha-AlO2O3 nanocrystals in toluene medium. A study on structural property performed with different alloying and post annealing durations, by X-ray diffraction (XRD) reveals the formation of single phase with average crystallite size approximately 45 nm. Optical absorbance onset at 364.5 nm confirms its wide band gap nature (E(g) = 3.4 eV) and the fluorescence emission behaviour (390 nm) confirms its direct band type transition. The activation energy for electrical conduction has been calculated by Arrhenius plots using impedance measurement. Both grain and grain boundary conductivity takes place with almost equal activation energies of approximately 0.45 eV. The paper discusses synthesis, structural, optical and electrical properties of delafossite CuAlO2 in detail.
NASA Astrophysics Data System (ADS)
Fatimah, Is; Nur Ilahi, Rico; Pratami, Rismayanti
2018-01-01
Research on perovskite CaTiO3 synthesis from scallop (Anadara granosa) shell and its test as material for antibacterial ceramic application have been conducted. The synthesis was performed by calcium extraction from the scallop shell followed by solid-solid reaction of obtained calcium with TiO2. Physicochemical character of the perovskite wasstudied by measurement of crystallinity using x-ray diffraction (XRD), diffuse-reflectance UV Visible spectrophotometry, scanning electrone microscope-energy dispersive x-ray (SEM-EDX) and Fourier-Transform InfraRed. Considering the future application of the perovskite as antibacterial agent, laboratory test of the peroskite as material in antibacterial ceramic preparation was also conducted. Result of research indicated that perovskite formation was obtained and the material demonstrated photocatalytic activity as identified by band gap energy (Eg) value. The significant activity was also reflected by the antibacterial action of formed ceramic.
Kinnunen, Ulla; Feldt, Taru; de Bloom, Jessica; Korpela, Kalevi
2015-11-01
The present study aimed at identifying subgroups of employees with similar daily energy management strategies at work and finding out whether well-being indicators and job characteristics differ between these subgroups. The study was conducted by electronic questionnaire among 1122 Finnish employees. First, subgroups of employees with unique and distinctive patterns of energy management strategies were identified using latent profile analysis. Second, differences in well-being indicators and job characteristics between the subgroups were investigated by means of ANCOVA. Four subgroups (i.e., patterns) were identified and named: Passives (n = 371), Averages (n = 390), Casuals (n = 272) and Actives (n = 89). Passives used all three (i.e., work-related, private micro-break and physical micro-break) strategies less frequently than other subgroups, whereas Actives used work-related and physical energy management strategies more frequently than other subgroups. Averages used all strategies on an average level. Casuals' use of all strategies came close to that of Actives, notably in a shared low use of private micro-break strategies. Active and Casual patterns maintained vigor and vitality. Autonomy and social support at work played a significant role in providing opportunities for the use of beneficial energy management strategies. Autonomy and support at work seem to support active and casual use of daily energy management, which is important in staying energized throughout the working day.
Mössbauer study of conductive oxide glass
NASA Astrophysics Data System (ADS)
Matsuda, Koken; Kubuki, Shiro; Nishida, Tetsuaki
2014-10-01
Heat treatment of barium iron vanadate glass, BaO - Fe2O3- V2O5, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (ρ) from several MΩcm to several Ωcm. 57Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (Δ) of FeIII, reflecting a structural relaxation, i.e., an increased symmetry of "distorted" FeO4 and VO4 tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu2O -containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. "n-type semiconductor model combined with small polaron hopping theory" was proposed in order to explain the high conductivity.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1975-01-01
Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.
Creep Deformation by Dislocation Movement in Waspaloy
Whittaker, Mark; Harrison, Will; Deen, Christopher; Rae, Cathie; Williams, Steve
2017-01-01
Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 °C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, with particular attention paid to comparing tests performed above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. Activation energies are calculated through approaches developed in the use of the recently formulated Wilshire Equations, and are found to differ above and below the yield stress. Low activation energies are found to be related to dislocation interaction with γ′ precipitates below the yield stress. However, significantly increased dislocation densities at stresses above yield cause an increase in the activation energy values as forest hardening becomes the primary mechanism controlling dislocation movement. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results. PMID:28772421
Jensen, Chad D; Kirwan, C Brock
2015-03-01
Research conducted with adults suggests that successful weight losers demonstrate greater activation in brain regions associated with executive control in response to viewing high-energy foods. No previous studies have examined these associations in adolescents. Functional neuroimaging was used to assess brain response to food images among groups of overweight (OW), normal-weight (NW), and successful weight-losing (SWL) adolescents. Eleven SWL, 12 NW, and 11 OW participants underwent functional magnetic resonance imaging while viewing images of high- and low-energy foods. When viewing high-energy food images, SWLs demonstrated greater activation in the dorsolateral prefrontal cortex (DLPFC) compared with OW and NW controls. Compared with NW and SWL groups, OW individuals demonstrated greater activation in the ventral striatum and anterior cingulate in response to food images. Adolescent SWLs demonstrated greater neural activation in the DLPFC compared with OW/NW controls when viewing high-energy food stimuli, which may indicate enhanced executive control. OW individuals' brain responses to food stimuli may indicate greater reward incentive processes than either SWL or NW groups. © 2015 The Obesity Society.
Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants
NASA Astrophysics Data System (ADS)
Prabhu, K. Narayan; Fernandes, Peter
2007-08-01
An investigation was conducted to study the suitability of vegetable oils such as sunflower, coconut, groundnut, castor, cashewnut shell (CNS), and palm oils as quench media (bioquenchants) for industrial heat treatment by assessing their wetting behavior and severity of quenching. The relaxation of contact angle was sharp during the initial stages, and it became gradual as the system approached equilibrium. The equilibrium contact angle decreased with increase in the temperature of the substrate and decrease in the viscosity of the quench medium. A comparison of the relaxation of the contact angle at various temperatures indicated the significant difference in spreading of oils having varying viscosity. The spread activation energy was determined using the Arrhenius type of equation. Oils with higher viscosity resulted in lower cooling rates. The quench severity of various oil media was determined by estimating heat-transfer coefficients using the lumped capacitance method. Activation energy for spreading determined using the wetting behavior of oils at various temperatures was in good agreement with the severity of quenching assessed by cooling curve analysis. A high quench severity is associated with oils having low spread activation energy.
NASA Astrophysics Data System (ADS)
Hu, Sixiao; Zhang, Sanliang; Pan, Ning; Hsieh, You-Lo
2014-12-01
Highly porous submicron activated carbon fibers (ACFs) were robustly generated from low sulfonated alkali lignin and fabricated into supercapacitors for capacitive energy storage. The hydrophilic and high specific surface ACFs exhibited large-size nanographites and good electrical conductivity to demonstrate outstanding electrochemical performance. ACFs from KOH activation, in particular, showed very high 344 F g-1 specific capacitance at low 1.8 mg cm-2 mass loading and 10 mV s-1 scan rate in aqueous electrolytes. Even at relatively high scan rate of 50 mV s-1 and mass loading of 10 mg cm-2, a decent specific capacitance of 196 F g-1 and a remarkable areal capacitance of 0.55 F cm-2 was obtained, leading to high energy density of 8.1 Wh kg-1 based on averaged electrodes mass. Furthermore, over 96% capacitance retention rates were achieved after 5000 charge/discharge cycles. Such excellent performance demonstrated great potential of lignin derived carbons for electrical energy storage.
Du, Zhijia; Wood, David L.; Daniel, Claus; ...
2017-02-09
We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less
Office of Industrial Technologies research in progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffsmore » of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.« less
Collected Papers on Wind Turbine Technology
NASA Technical Reports Server (NTRS)
Spera, David A. (Editor)
1995-01-01
R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.
Govekar, Henry R; Robinson, Thomas N; Stiegmann, Greg V; McGreevy, Francis T
2011-11-01
Energy devices are essential laparoscopic tools. Residual heat is defined as the increased instrument temperature after energy activation is completed. This study aimed to determine the length of time a surgeon needs to wait before touching other tissue using four common laparoscopic energy sources. Thermal imaging quantified instrument and tissue temperature ex vivo using monopolar coagulation, argon beam coagulation, ultrasonic dissection, and bipolar tissue fusion devices. To simulate realistic operative usage, each instrument was activated for 5 s four consecutive times with 5 s pauses between fires. Thermal conductivity to bovine liver tissue was measured 2.5, 5, 10, and 20 s after final activation. The maximum increase in instrument tip temperature was 172 ± 63°C for the ultrasonic dissection, 81 ± 18°C for the monopolar coagulation, 46 ± 19°C for the bipolar tissue fusion, and 1 ± 1°C for the argon beam coagulation (P < 0.05 for all comparisons). Touching the instrument tip to tissue at four intervals after the final activation (2.5, 5, 10, and 20 s) found that ultrasonic energy raised the tissue temperature higher (maximum change, 58°C) than the other three energy devices at all four time points (P < 0.05). Ultrasonic energy instruments have greater residual heat than monopolar electrosurgery, bipolar tissue fusion, and argon beam. The ultrasonic energy instrument tips heated tissue more than 20°C from baseline even 20 s after activation; whereas all the other energy sources raised the tissue temperature less than 20°C by 5 s. These practical findings may alter a surgeon's usage of these common energy devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premalatha, M.; Materials Research Center, Coimbatore-641 045; Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com
2016-05-23
Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasingmore » temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drucker, H.
1983-02-01
Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.
Petrowsky, Matt; Frech, Roger
2010-07-08
Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.
A Small Potassium Current in AgRP/NPY Neurons Regulates Feeding Behavior and Energy Metabolism.
He, Yanlin; Shu, Gang; Yang, Yongjie; Xu, Pingwen; Xia, Yan; Wang, Chunmei; Saito, Kenji; Hinton, Antentor; Yan, Xiaofeng; Liu, Chen; Wu, Qi; Tong, Qingchun; Xu, Yong
2016-11-08
Neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) are indispensable for normal feeding behavior. Firing activities of AgRP/NPY neurons are dynamically regulated by energy status and coordinate appropriate feeding behavior to meet nutritional demands. However, intrinsic mechanisms that regulate AgRP/NPY neural activities during the fed-to-fasted transition are not fully understood. We found that AgRP/NPY neurons in satiated mice express high levels of the small-conductance calcium-activated potassium channel 3 (SK3) and are inhibited by SK3-mediated potassium currents; on the other hand, food deprivation suppresses SK3 expression in AgRP/NPY neurons, and the decreased SK3-mediated currents contribute to fasting-induced activation of these neurons. Genetic mutation of SK3 specifically in AgRP/NPY neurons leads to increased sensitivity to diet-induced obesity, associated with chronic hyperphagia and decreased energy expenditure. Our results identify SK3 as a key intrinsic mediator that coordinates nutritional status with AgRP/NPY neural activities and animals' feeding behavior and energy metabolism. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Energy requirements of US Army Special Operation Forces during military training.
Margolis, Lee M; Crombie, Aaron P; McClung, Holly L; McGraw, Susan M; Rood, Jennifer C; Montain, Scott J; Young, Andrew J
2014-05-12
Special Operations Forces (SOF) regularly engage in physically demanding combat operations and field training exercises, resulting in high daily energy expenditure, and thus increased energy requirements. However, the majority of studies assessing energy requirements of SOF have been conducted on soldiers going through intense SOF initiation training. The objective of the current investigation was to determine the energy expenditure of SOF conducting military training operations. Thirty-one soldiers taking part in Pre-Mission Training (PMT n = 15) and Combat Diver Qualification Courses (CDQC n = 16) volunteered to participate in this observational study. Energy expenditure was determined using doubly labeled water. Body weight (83 ± 7 kg) remained stable during both training periods. Overall energy expenditure adjusted for body composition was 17,606 ± 2326 kJ·day(-1). Energy expenditure was 19,110 ± 1468 kJ·day(-1) during CDQC and 16,334 ± 2180 kJ·day(-1) during PMT, with physical activity levels of 2.6 ± 0.2 and 2.2 ± 0.3 during CDQC and PMT, respectively. Compared to the Military Dietary Reference Intakes for energy (13,598 kJ·day(-1)), these data are in agreement with previous reports that energy requirement for SOF Soldiers exceed that of the average soldier.
Energy Requirements of US Army Special Operation Forces During Military Training
Margolis, Lee M.; Crombie, Aaron P.; McClung, Holly L.; McGraw, Susan M.; Rood, Jennifer C.; Montain, Scott J.; Young, Andrew J.
2014-01-01
Special Operations Forces (SOF) regularly engage in physically demanding combat operations and field training exercises, resulting in high daily energy expenditure, and thus increased energy requirements. However, the majority of studies assessing energy requirements of SOF have been conducted on soldiers going through intense SOF initiation training. The objective of the current investigation was to determine the energy expenditure of SOF conducting military training operations. Thirty-one soldiers taking part in Pre-Mission Training (PMT n = 15) and Combat Diver Qualification Courses (CDQC n = 16) volunteered to participate in this observational study. Energy expenditure was determined using doubly labeled water. Body weight (83 ± 7 kg) remained stable during both training periods. Overall energy expenditure adjusted for body composition was 17,606 ± 2326 kJ·day−1. Energy expenditure was 19,110 ± 1468 kJ·day−1 during CDQC and 16,334 ± 2180 kJ·day−1 during PMT, with physical activity levels of 2.6 ± 0.2 and 2.2 ± 0.3 during CDQC and PMT, respectively. Compared to the Military Dietary Reference Intakes for energy (13,598 kJ·day−1), these data are in agreement with previous reports that energy requirement for SOF Soldiers exceed that of the average soldier. PMID:24824290
Saudi Arabia's experience in solar energy applications
NASA Astrophysics Data System (ADS)
Huraib, Fahad S.
The progress in solar energy research in Saudi Arabia is discussed with emphasis on the efforts of a government research entity - King Adbulaziz City for Science and Technology (KACST). Three programs currently underway at KACST are considered: the continuation of activities initiated under the Solar Energy Research American/Saudi (SOLERAS) program, a Saudi/German program, and projects developed and conducted completely by KACST. The objectives, management structure, and program organization of SOLEARS are outlined, and attention is focused on urban, rural/agricultural, and industrial applications as well as resource development activities and accomplishments. Solar-hydrogen projects pursued together with Germany are reviewed, and their objectives, program management, and technical plans are covered. Domestic programs dealing with photovoltaic-powered lightning and hot-water systems are summarized.
Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Benally, Deputy Director,
2012-05-15
The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketingmore » tools to support outreach efforts targeting the public, vendors, investors and government audiences.« less
The NEED (National Energy Education Development) Project
NASA Astrophysics Data System (ADS)
Hogan, D.; Spruill, M.
2012-04-01
The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR..., exploration, testing, or mining activities; or (3) In which there is a reasonable probability of significant... overylying waters (when obtained for geochemical analysis) acquired while conducting postlease mining...
30 CFR 285.650 - When may I begin conducting activities under my GAP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and... involve a project easement or the construction of facilities on the OCS that MMS has deemed to be complex...
El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G
2015-05-15
A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.
The energy balance and pressure in the solar transition zone for network and active region features
NASA Technical Reports Server (NTRS)
Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.
1979-01-01
The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).
Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production.
Michalsky, Ronald; Botu, Venkatesh; Hargus, Cory M; Peterson, Andrew A; Steinfeld, Aldo
2015-04-01
The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO 2 and H 2 O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO 2 , Ti 2 O 3 , Cu 2 O, ZnO, ZrO 2 , MoO 3 , Ag 2 O, CeO 2 , yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity.
Enhanced Proton Conductivity in Y-Doped BaZrO3 via Strain Engineering.
Fluri, Aline; Marcolongo, Aris; Roddatis, Vladimir; Wokaun, Alexander; Pergolesi, Daniele; Marzari, Nicola; Lippert, Thomas
2017-12-01
The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO 3 , a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain. In particular, a twofold increased conductivity is measured at 200 °C along a 0.7% tensile strained lattice. This is at variance with conclusions coming from force-field simulations or the static calculations of diffusion barriers. Here, extensive first-principles molecular dynamic simulations of proton diffusivity in the proton-trapping regime are therefore performed and found to agree with the experiments. The simulations highlight that compressive strain confines protons in planes parallel to the substrate, while tensile strain boosts diffusivity in the perpendicular direction, with the net result that the overall conductivity is enhanced. It is indeed the presence of the dopant and the proton-trapping effect that makes tensile strain favorable for proton conduction.
NASA Astrophysics Data System (ADS)
Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.
1980-03-01
Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.
NASA Technical Reports Server (NTRS)
Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.
1980-01-01
Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.
Dielectric relaxation of gamma irradiated muscovite mica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Navjeet; Singh, Mohan, E-mail: mohansinghphysics@gmail.com; Singh, Lakhwant
2015-03-15
Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, usingmore » the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.« less
Electrical conductivity of Gd doped BiFeO3-PbZrO3 composite
NASA Astrophysics Data System (ADS)
Satpathy, Santosh Kumar; Mohanty, Nilaya Kumar; Behera, Ajay Kumar; Behera, Banarji; Nayak, Pratibindhya
2013-09-01
The composite, 0.5(BiGd0.15Fe0.85O3)-0.5(PbZrO3), was synthesized using the solid-state reaction technique. The formation of the compound was confirmed by XRD with an orthorhombic structure at room temperature. The impedance parameters were studied using an impedance analyzer in a wide range of frequency (102-106 Hz) at different temperatures. The Nyquist plot suggests the contribution of bulk effect and a slight indication of grain boundary effect and the bulk resistance decreases with a rise in temperature. The presence of temperature-dependent relaxation process occurs in the material. Electrical modulus reveals the presence of the hopping mechanism in the materials. The value of exponent n, pre-factor A and σ dc were obtained by fitting ac conductivity data with Jonscher's universal power law. The activation energies calculated from the ac conductivity were found to be 0.50, 0.46, 0.44, 0.43, 0.42 and 0.38 eV at 1, 10, 50, 100, 500 kHz and 1 MHz respectively in the temperature region of 110°C-350°C. The dc conductivity was found to increase with the rise in temperature. The activation energy calculated from complex impedance plot and from the fitted Jonscher's power law are very close, which results similar type of charge carrier exist in conduction mechanism of the material.
NASA Astrophysics Data System (ADS)
Kumar, E. Ramesh; Nageswar Rao, P.; Appa Rao, B.
2016-09-01
Super ion conducting glasses of composition D%AgI-(100-D)%[MAg2O-F{(F1)B2O3- (F2)TeO2}]; D=10.0 to 60.0 in steps of 10.0 for a fixed values of F1 (0.4), F2 (0.6) which are glass network formers, fixed values of modifier M(0.667), F (0.333) and D is dopant salt which was varied. These glasses were prepared by melt quenching technique. XRD spectra taken for all the samples. Electrical characterization was done in terms of AC and DC conductivities. DC and AC conductivities at room temperature increased from 10-5 to 10-1 scm-1 and DC activation energy (Edc) found to decrease from 0.36 to 0.19eV with increase in D% ratio. Measurements are performed over the frequency range 1 kHz to 3 MHz at different temperatures. From the impedance spectroscopy real and imaginary parts of impedances (Z', Z"), conductivities were calculated and plotted, and equivalent R-C circuit parameters were obtained from Cole-Cole plots. With the increase in D%, AC conductivity is observed to increase whereas the AC activation energy (Eac) is observed to decrease from 0.23 to 0.14 eV. The quantitative analysis of these results indicates that the electrical conductivity of silver borate glasses is enhanced with increase in D% ratio. Based on conductivity values these glasses are ionic conductors, in which conduction is by hopping mechanism. An attempt is made to understand the charge transportation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, E.; Dueñas, S.; Castán, H.
2015-12-28
The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existencemore » of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known, the Meyer-Neldel rule typically appears in processes involving multiple excitations, like carrier capture and emission in deep levels, and it is generally observed in disordered systems. The obtained Meyer-Neldel energy value, 15.19 meV, is very close to the value obtained in multicrystalline silicon samples contaminated with iron (13.65 meV), meaning that this energy value could be associated to the phonons energy in this kind of substrates.« less
Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism
Gut, Philipp; Baeza-Raja, Bernat; Andersson, Olov; Hasenkamp, Laura; Hsiao, Joseph; Hesselson, Daniel; Akassoglou, Katerina; Verdin, Eric; Hirschey, Matthew D.; Stainier, Didier Y.R.
2012-01-01
Improving the control of energy homeostasis can lower cardiovascular risk in metabolically compromised individuals. To identify new regulators of whole-body energy control, we conducted a high-throughput screen in transgenic reporter zebrafish for small molecules that modulate the expression of the fasting-inducible gluconeogenic gene pck1. We show that this in vivo strategy identified several drugs that impact gluconeogenesis in humans, as well as metabolically uncharacterized compounds. Most notably, we find that the Translocator Protein (TSPO) ligands PK 11195 and Ro5-4864 are glucose lowering agents despite a strong inductive effect on pck1 expression. We show that these drugs are activators of a fasting-like energy state, and importantly that they protect high-fat diet induced obese mice from hepatosteatosis and glucose intolerance, two pathological manifestations of metabolic dysregulation. Thus, using a whole-organism screening strategy, this study has identified new small molecule activators of fasting metabolism. PMID:23201900
Morphology, Structural and Dielectric Properties of Vacuum Evaporated V2O5 Thin Films
NASA Astrophysics Data System (ADS)
Sengodan, R.; Shekar, B. Chandar; Sathish, S.
Vanadium pentoxide (V2O5) thin films were deposited on well cleaned glass substrate using evaporation technique under the pressure of 10-5 Torr. The thickness of the films was measured by the multiple beam interferometry technique and cross checked by using capacitance method. Metal-Insulator-Metal (MIM) structure was fabricated by using suitable masks to study dielectric properties. The dielectric properties were studied by employing LCR meter in the frequency range 12 Hz to 100 kHz for various temperatures. The temperature co- efficient of permittivity (TCP), temperature co-efficient of capacitance (TCC) and dielectric constant (ɛ) were calculated. The activation energy was calculated and found to be very low. The activation energy was found to be increasing with increase in frequency. The obtained low value of activation energy suggested that the hopping conduction may be due to electrons rather than ions.
Federal Geothermal Research Program Update Fiscal Year 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-02-01
The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates howmore » the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.« less
Effective Charge Carrier Utilization in Photocatalytic Conversions.
Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong
2016-05-17
Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the morphology of nanostructured photocatalysts can reduce the migration distance of charge carriers. Improving the conductivity of photocatalysts by using graphitic materials can also improve the transport of charge carriers. Upon charge carrier migration, electrons and holes also tend to recombine. The suppression of recombination can be achieved by constructing heterojunctions that enhance charge separation in the photocatalysts. Surface states acting as recombination centers should also be removed to improve the photocatalytic efficiency. Moreover, surface reactions, which are the core chemical processes during the solar energy conversion, can be enhanced by applying cocatalysts as well as suppressing side reactions. All of these strategies have been proved to be essential for enhancing the activities of semiconductor photocatalysts. It is hoped that delicate manipulation of photogenerated charge carriers in semiconductor photocatalysts will hold the key to effective solar-to-chemical energy conversion.
Piezoelectric energy harvester having planform-tapered interdigitated beams
Kellogg, Rick A [Tijeras, NM; Sumali, Hartono [Albuquerque, NM
2011-05-24
Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.
Strong induction effects during the substorm on 27 August 2001
NASA Astrophysics Data System (ADS)
Mishin, V. V.; Mishin, V. M.; Lunyushkin, S. B.; Pu, Z.; Wang, C.
2015-10-01
We report on strong induction effects notably contributing to the cross polar cap potential drop and the energy balance during the growth and active phases of the substorm on 27 August 2001. The inductance of the magnetosphere is found to be crucial for the energy balance and electrical features of the magnetosphere in the course of the substorm. The inductive response to the switching on and off of the solar wind-magnetosphere generator exceeds the effect of the interplanetary magnetic field (IMF) variation. The induction effects are most apparent during the substorm expansion onset when the rapid growth of the ionospheric conductivity is accompanied by the fast release of the magnetic energy stored in the magnetotail during the growth phase. Using the magnetogram inversion technique, we estimated the magnetospheric inductance and effective ionospheric conductivity during the loading and unloading phases.
Designing effective incentives for energy conservation in the public sector
NASA Astrophysics Data System (ADS)
Drezner, Jeffrey Alan
Understanding why government officials behave in certain ways under particular circumstances is an important theme in political science. This research explores the design of policies and incentives targeted at public sector officials, in particular the use of market based policy tools in a non-market environment, and the influence of that organizational environment on the effectiveness of the policy. The research examines the case of Department of Defense (DoD) facility energy management. DoD energy policy includes a provision for the retention of savings generated by conservation activities: two-thirds of the savings is retained at the installation generating the savings, half to used for further investment in energy conservation, and half to be used for general morale, welfare, and recreation activities. This policy creates a financial incentive for installation energy managers to establish higher quality and more active conservation programs. A formal written survey of installation energy managers within DoD was conducted, providing data to test hypotheses regarding policy effectiveness and factors affecting policy implementation. Additionally, two detailed implementation case studies were conducted in order to gain further insights. Results suggest that policy design needs to account for the environment within which the policy will be implemented, particularly organizational culture and standard operating procedures. The retention of savings policy failed to achieve its intended outcome---retention of savings for re-investment in energy conservation---because the role required of the financial management community was outside its normal mode of operation and interests and the budget process for allocating resources did not include a mechanism for retention of savings. The policy design did not adequately address these start-up barriers to implementation. This analysis has shown that in order for retention of savings, or similar policies based on market-type mechanisms, to be effective in the public sector context, the required cultural changes and appropriate implementing mechanisms must be provided for in the policy design.
Temperature dependence of ion transport: the compensated Arrhenius equation.
Petrowsky, Matt; Frech, Roger
2009-04-30
The temperature-dependent conductivity originating in a thermally activated process is often described by a simple Arrhenius expression. However, this expression provides a poor description of the data for organic liquid electrolytes and amorphous polymer electrolytes. Here, we write the temperature dependence of the conductivity as an Arrhenius expression and show that the experimentally observed non-Arrhenius behavior is due to the temperature dependence of the dielectric constant contained in the exponential prefactor. Scaling the experimentally measured conductivities to conductivities at a chosen reference temperature leads to a "compensated" Arrhenius equation that provides an excellent description of temperature-dependent conductivities. A plot of the prefactors as a function of the solvent dielectric constant results in a single master curve for each family of solvents. These data suggest that ion transport in these and related systems is governed by a single activated process differing only in the activation energy for each family of solvents. Connection is made to the shift factor used to describe electrical and mechanical relaxation in a wide range of phenomena, suggesting that this scaling procedure might have broad applications.
Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites
NASA Astrophysics Data System (ADS)
Farid, Hafiz Muhammad Tahir; Ahmad, Ishtiaq; Ali, Irshad; Ramay, Shahid M.; Mahmood, Asif; Murtaza, G.
2017-07-01
Spinel ferrites with nominal composition MgPryFe2-yO4 (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz-3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole-Cole plots were used to separate the grain and grain boundary's effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary's resistance as compared to the grain's resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe2O4 exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.
Porous graphene current collectors filled with silicon as high-performance lithium battery anode
NASA Astrophysics Data System (ADS)
Ababtain, Khalid; Babu, Ganguli; Susarla, Sandhya; Gullapalli, Hemtej; Masurkar, Nirul; Ajayan, Pulickel M.; Mohana Reddy Arava, Leela
2018-01-01
Despite the massive success for high energy density, the charge-discharge current rate performance of the lithium-ion batteries are still a major concern owing to inherent sluggish Li-ion kinetics. Herein, we demonstrate three-dimensional porous electrodes engineered on highly conductive graphene current collectors to enhance the Li-ion conductivity, thereby c-rate performance. Such high-quality graphene provides surface area for loading a large amount of electrochemically active material and strong adhesion with the electrode. The synergism of porous structure and conductive current collector enables us to realize high-performance new-generation silicon anodes with a high energy density of 1.8 mAh cm-2. Further, silicon electrodes revealed with excellent current rates up to 5C with a capacity of 0.37 mAh cm-2 for 500 nm planar thickness.
Study of temperature dependent electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses
NASA Astrophysics Data System (ADS)
Deepika, Singh, Hukum
2018-05-01
This paper reports the variation in electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses studied at different temperatures. The amorphous samples were prepared using the melt quenching method and the electrical measurements were performed on Keithley Electrometer in the temperature ranging from 298-373 K. The I-V characteristics were noted at different temperatures and the data obtained was analysed to get dc electrical conductivity and activation energy of electrical conduction. Further, Mott's 3D VRH model has been applied to obtain density of states, hopping range and hopping energy at different temperatures. The obtained results show that dc electrical conductivity increases with increase in Bi composition in Se-Te system. These compositions also show close agreement to Mott's VRH model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Grote, D. P.; Vay, J. L.
2015-05-29
The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.
Study of dielectric relaxation and AC conductivity of InP:S single crystal
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.
2012-07-01
The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER..., or is scheduled to be used, as a support base for prospecting, exploration, testing, or mining... (when obtained for geochemical analysis) acquired while conducting postlease mining activities. Governor...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER..., or is scheduled to be used, as a support base for prospecting, exploration, testing, or mining... (when obtained for geochemical analysis) acquired while conducting postlease mining activities. Governor...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER..., or is scheduled to be used, as a support base for prospecting, exploration, testing, or mining... (when obtained for geochemical analysis) acquired while conducting postlease mining activities. Governor...
Elementary Particle Physics at Syracuse. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catterall, Simon; Hubisz, Jay; Balachandran, Aiyalam
2013-01-05
This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.
Energy expenditure and nutritional status of coal miners: A cross-sectional study.
Bilici, Saniye; Saglam, Fatma; Beyhan, Yasemin; Barut-Uyar, Banugul; Dikmen, Derya; Goktas, Zeynep; Attar, A James; Mucka, Patrick; Uyar, M Fatih
2016-09-02
The objectives of this study were to assess the nutritional status, daily energy intake, and daily energy expenditure of coal miners in Turkey. A total of 135 healthy coal miners (aged 19-64 years) were evaluated. Heart rates were measured using Polar watches, and the total energy expenditure was calculated using physical activity level formula and Hiilloskorpi equation. The average body mass index of the participants was 25.7 ± 3.98 kg/m 2 , and the average energy intake was 3,973.7 ± 420.85 kcal. According to Dietary Reference Intakes, the energy and nutrient intakes of the miners were adequate, except for the intake of vitamin D. The coal miners were found to be at moderate (43.0%), heavy (41.5%), and very heavy (13.3%) activity levels. Calculations of the energy expenditure at work were found to be 2,189.8 ± 376.19 to 2,788.8 ± 359.89 kcal per day. Further studies have to be conducted for developing national standards for each occupation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, G.; Mansur, D.L.; Ruhter, W.D.
1994-01-01
The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise.more » These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, G.; Mansur, D.L.; Ruhter, W.D.
The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise.more » These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.« less
Spectroscopic neutron detection using composite scintillators
NASA Astrophysics Data System (ADS)
Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.
2016-09-01
Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.
Pulsed Laser Deposition of High Temperature Protonic Films
NASA Technical Reports Server (NTRS)
Dynys, Fred W.; Berger, M. H.; Sayir, Ali
2006-01-01
Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied
Perspectives on AFVs: State and city government fleet manager survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, P.
1999-02-01
In an effort to reduce national dependence on imported oil and to improve urban air quality, the US Department of Energy (DOE) is promoting the development and deployment of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to develop and conduct projects to evaluate the performance and acceptability of light-duty AFVs compared to similar gasoline vehicles. As part of this effort, NREL has undertaken a number of evaluation projects, including conducting telephone surveys with fleet managers and drivers of AFVs in the federal fleet. This report summarizes themore » results of the survey of state and city government fleet managers.« less
Negotiating energy dynamics through embodied action in a materially structured environment
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Close, Hunter G.; Close, Eleanor W.; Flood, Virginia J.; McKagan, Sarah B.; Robertson, Amy D.; Seeley, Lane; Wittmann, Michael C.; Vokos, Stamatis
2013-12-01
We provide evidence that a learning activity called Energy Theater engages learners with key conceptual issues in the learning of energy, including disambiguating matter flow and energy flow and theorizing mechanisms for energy transformation. A participationist theory of learning, in which learning is indicated by changes in speech and behavior, supports ethnographic analysis of learners’ embodied interactions with each other and the material setting. We conduct detailed analysis to build plausible causal links between specific features of Energy Theater and the conceptual engagement that we observe. Disambiguation of matter and energy appears to be promoted especially by the material structure of the Energy Theater environment, in which energy is represented by participants, while objects are represented by areas demarcated by loops of rope. Theorizing mechanisms of energy transformation is promoted especially by Energy Theater’s embodied action, which necessitates modeling the time ordering of energy transformations.
Valuating Indonesian upstream oil management scenario through system dynamics modelling
NASA Astrophysics Data System (ADS)
Ketut Gunarta, I.; Putri, F. A.
2018-04-01
Under the existing regulation in Constitution Number 22 Year 2001 (UU No 22 Tahun 2001), Production Sharing Contract (PSC) continues to be the scenario in conducting oil and gas upstream mining activities as the previous regulation (UU No. 8 Tahun 1971). Because of the high costs and risks in upstream mining activities, the contractors are dominated by foreign companies, meanwhile National Oil Company (NOC) doesn’t act much. The domination of foreign contractor companies also warned Indonesia in several issues addressing to energy independence and energy security. Therefore, to achieve the goals of energy which is independence and security, there need to be a revision in upstream oil activities regulating scenario. The scenarios will be comparing the current scenario, which is PSC, with the “full concession” scenario for National Oil Company (NOC) in managing oil upstream mining activities. Both scenario will be modelled using System Dynamics methodology and assessed furthermore using financial valuation method of income approach. Under the 2 scenarios, the author will compare which scenario is better for upstream oil management in reaching the goals mentioned before and more profitable in financial aspect. From the simulation, it is gathered that concession scenario offers better option than PSC in reaching energy independence and energy security.
Silicon PV cell production on the Moon as the basis for a new architecture for space exploration
NASA Astrophysics Data System (ADS)
Duke, Michael B.; Ignatiev, Alex; Freundlich, Alex; Rosenberg, Sanders D.; Makel, Darby
2001-02-01
A method is described by which silicon photovoltaic (PV) devices can be directly deposited onto the lunar regolith using primarily lunar materials. In sequence, a robotic ``crawler'' moving at slow speed sequentially melts the top layer of regolith and deposits a conducting layer, a doped silicon, a top conducting grid, and an antireflective coating by vacuum evaporation techniques. Concentrated solar energy is utilized as the energy source. Development of this capability would significantly lower the cost of electrical energy on the Moon and would enable a range of other activities, including lower cost propellant production, human outposts with complete food-growth capabilities, and advanced materials production. Low cost energy could affect the economics of propellants in space by allowing the extraction of solar wind hydrogen from the lunar regolith. This would allow the economical export of propellants and other materials to space, first to an Earth-Moon Lagrangian Point and potentially to low Earth orbit. .
U.S. Department of Energy (DOE) Industrial Programs and Their Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Roop, Joseph M.
The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2005). From 1976-2004, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 4.72 quadrillion Btu, with a net cost savings of $23.1 billion.« less
Shalini, Sorout; Dhavale, Vishal M.; Eldho, Kavalakal M.; Kurungot, Sreekumar; Ajithkumar, Thallaseril G.; Vaidhyanathan, Ramanathan
2016-01-01
Pyridinol, a coordinating zwitter-ionic species serves as stoichiometrically loadable and non-leachable proton carrier. The partial replacement of the pyridinol by stronger hydrogen bonding, coordinating guest, ethylene glycol (EG), offers 1000-fold enhancement in conductivity (10−6 to 10−3 Scm−1) with record low activation energy (0.11 eV). Atomic modeling coupled with 13C-SSNMR provides insights into the potential proton conduction pathway functionalized with post-synthetically anchored dynamic proton transporting EG moieties. PMID:27577681
Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E
2015-03-11
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
Effects of Experimental Sleep Restriction on Caloric Intake and Activity Energy Expenditure
Calvin, Andrew D.; Carter, Rickey E.; Adachi, Taro; G. Macedo, Paula; Albuquerque, Felipe N.; van der Walt, Christelle; Bukartyk, Jan; Davison, Diane E.; Levine, James A.
2013-01-01
Background: Epidemiologic studies link short sleep duration to obesity and weight gain. Insufficient sleep appears to alter circulating levels of the hormones leptin and ghrelin, which may promote appetite, although the effects of sleep restriction on caloric intake and energy expenditure are unclear. We sought to determine the effect of 8 days/8 nights of sleep restriction on caloric intake, activity energy expenditure, and circulating levels of leptin and ghrelin. Methods: We conducted a randomized study of usual sleep vs a sleep restriction of two-thirds of normal sleep time for 8 days/8 nights in a hospital-based clinical research unit. The main outcomes were caloric intake, activity energy expenditure, and circulating levels of leptin and ghrelin. Results: Caloric intake in the sleep-restricted group increased by +559 kcal/d (SD, 706 kcal/d, P = .006) and decreased in the control group by −118 kcal/d (SD, 386 kcal/d, P = .51) for a net change of +677 kcal/d (95% CI, 148-1,206 kcal/d; P = .014). Sleep restriction was not associated with changes in activity energy expenditure (P = .62). No change was seen in levels of leptin (P = .27) or ghrelin (P = .21). Conclusions: Sleep restriction was associated with an increase in caloric consumption with no change in activity energy expenditure or leptin and ghrelin concentrations. Increased caloric intake without any accompanying increase in energy expenditure may contribute to obesity in people who are exposed to long-term sleep restriction. Trial Registration: ClinicalTrials.gov; No.: NCT01334788; URL: www.clinicaltrials.gov PMID:23392199
Energy efficiency in California laboratory-type facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, E.; Bell, G.; Sartor, D.
The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less
Wierniuk, Alicja; Włodarek, Dariusz
2014-01-01
Adequate nutrition and energy intake play key rule during the training period and recovery time. The assessment of athlete's energetic needs should be calculated individually, based on personal energy expenditure and Sense Wear PRO3 Armband (SWA) mobile monitor is a useful tool to achieve this goal. However, there is still few studies conducted with use of this monitor. To assess individual energy needs of athletes by use of SWA and to determine whether their energy intake fulfils the body's energy expenditure. Subjects were 15 male students attending Military University of Technology in Warsaw, aged 19-24 years, practicing aerobic. The average body mass was 80.7 ± 7.7 kg and average height was 186.9 ± 5.2 cm, (BMI 23.09 ± 1.85 kg/m2). Assessment of physical activity and energy expenditure (TEE) was established using SWA, which was placed on the back side of dominant hand and worn continuously for 48 hours (during the training and non-training day). The presented results are the average values of these 2 days. Assessment of athletes' physical activity level was established by use of metabolic equivalent of task (MET) and number of steps (NS). Estimation of energy intake was based on three-day dietary recalls (two weekdays and one day of the weekend), evaluated using the Polish Software 'Energia' package. The average TEE of examined athletes was 3877 ± 508 kcal/day and almost half of this energy was spend on physical activity (1898 ± 634 kcal/day). The number of steps was on average 19498 ± 5407 and average MET was 2.05 ± 2.09. The average daily energy intake was 2727 ± 576 kcal. Athletes consumed inadequate amount of energy in comparison to their energy expenditure. Examined group did not have an adequate knowledge about their energy requirement, which shows the need of nutritional consulting and education among these athletes. athletes, aerobic sports, energy expenditure, energy intake.
Lithium ion batteries and their manufacturing challenges
Daniel, Claus
2015-03-01
There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less
2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.
Deng, Zongnan; Jiang, Hao; Li, Chunzhong
2018-05-01
2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Update on DOE’s Nuclear Energy University Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Lambregts
2009-04-01
The Center for Advanced Energy Studies (CAES) Nuclear Energy University Program Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the TIOs/TDOs, a process was designed and administered which includes two competitive Requests for Proposals (RFP’s) and two FOAs in the following areas: (1)Research and Development Grants, (2)Infrastructure improvement, and (3)Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R&D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department’s research needs to facilitatemore » continued alignment of university R&D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... originally installed in the Bruce Power nuclear power plant near Tiverton, Ontario. The stated purpose of the transport is to conduct recycling and volume reduction activities in Sweden. Under the terms of the license...
Potential active materials for photo-supercapacitor: A review
NASA Astrophysics Data System (ADS)
Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.
2015-11-01
The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.
Brug, Johannes; van Stralen, Maartje M; Te Velde, Saskia J; Chinapaw, Mai J M; De Bourdeaudhuij, Ilse; Lien, Nanna; Bere, Elling; Maskini, Victoria; Singh, Amika S; Maes, Lea; Moreno, Luis; Jan, Nataša; Kovacs, Eva; Lobstein, Tim; Manios, Yannis
2012-01-01
Current data on the prevalence of overweight and energy-balance behaviors among European children is necessary to inform overweight prevention interventions. A school-based survey among 10-12 year old children was conducted in seven European countries using a standardized protocol. Weight, height, and waist circumference were measured; Engagement in physical activity, sedentary and dietary behaviors, and sleep duration were self-reported. Descriptive analyses were conducted, looking at differences according to country, gender, and parental education. 7234 children (52%girls; 11.6 ± 0.7 years) participated. 25.8% and 5.4% of boys, and 21.8% and 4.1% of girls were overweight (including obese) and obese (according to International Obesity Task Force criteria), respectively. Higher prevalence of overweight/obesity was observed in Greece, Hungary, Slovenia and Spain than in Belgium, Netherlands and Norway. Large differences between countries were found in intakes of sugar-sweetened beverages, breakfast, active transport, TV and computer time. More favorable overweight status and behavior patterns were found in girls than boys and in children of higher educated parents than in children of lower educated parents. High levels and striking differences in overweight status and potential risk behaviors were found among schoolchildren across Europe.
Optical HMI with biomechanical energy harvesters integrated in textile supports
NASA Astrophysics Data System (ADS)
De Pasquale, G.; Kim, SG; De Pasquale, D.
2015-12-01
This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%.
Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors
NASA Astrophysics Data System (ADS)
He, Nanfei; Yildiz, Ozkan; Pan, Qin; Zhu, Jiadeng; Zhang, Xiangwu; Bradford, Philip D.; Gao, Wei
2017-03-01
Nowadays, the wide-spread adoption of supercapacitors has been hindered by their inferior energy density to that of batteries. Here we report the use of our pyrolytic-carbon-coated carbon nanotube foams as lightweight, compressible, porous, and highly conductive current collectors in supercapacitors, which are infiltrated with chemically-reduced graphene oxide and later compressed via mechanical and capillary forces to generate the active electrodes. The pyrolytic carbon coatings, introduced by chemical vapor infiltration, wrap around the CNT junctions and increase the surface roughness. When active materials are infiltrated, the pyrolytic-carbon coatings help prevent the π-stacking, enlarge the accessible surface area, and increase the electrical conductivity of the scaffold. Our best-performing device offers 48% and 57% higher gravimetric energy and power density, 14% and 23% higher volumetric energy and power density, respectively, and two times higher knee frequency, than the device with commercial current collectors, while the "true-performance metrics" are strictly followed in our measurements. We have further clarified the solution resistance, charge transfer resistance/capacitance, double-layer capacitance, and Warburg resistance in our system via comprehensive impedance analysis, which will shed light on the design and optimization of similar systems.
Sulfurized activated carbon for high energy density supercapacitors
NASA Astrophysics Data System (ADS)
Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong
2014-04-01
Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.
Hanford Site Anuran Monitoring Report for Calendar Year 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, Justin W.; Johnson, Scott J.; Lindsey, Cole T.
2014-02-13
The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krenzien, Susan; Marutzky, Sam
This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2013. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2013. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. In addition, integrated UGTA required reading and correctivemore » action tracking was instituted.« less
Conducting Expeditionary Operations in the Contested Littorals
2015-10-21
240 kg) Trim weight 2.2 lbs (1 kg) Maximum operating depth 1969 feet (600 m) Energy 5.2 kWh rechargeable lithium ion battery Endurance Typically...conducted as one part of the NPS Warfare Innovation Continuum, “Warfighting in the Contested Littorals” series of cross-campus educational and research...activities beginning in the summer of 2014 through the spring of 2015. The purpose of the Warfare Innovation Continuum is to provide a central theme
Energy efficient transport technology: Program summary and bibliography
NASA Technical Reports Server (NTRS)
Middleton, D. B.; Bartlett, D. W.; Hood, R. V.
1985-01-01
The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements.
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption. PMID:28919852
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na + entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na + entry efficiency of somatic AP. Activating inward Ca 2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca 2+ -activated outward K + current in dendrites, however, decreases Na + entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na + influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.
Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; ...
2016-05-18
Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less
Effect of Calcium on the Oxidative Phosphorylation Cascade in Skeletal Muscle Mitochondria
Glancy, Brian; Willis, Wayne T; Chess, David J; Balaban, Robert S
2014-01-01
Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca2+ on the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose response effect of Ca2+ on the maximum velocity of oxidative phosphorylation (VmaxO) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces (extramitochondrial phosphorylation potential (ΔGATP), membrane potential, and redox states of NADH and cytochromes bH, bL, c1, c, and a,a3) were compared with flux (oxygen consumption) at 37°C. 840 nM Ca2+ generated a ∼2 fold increase in VmaxO with no change in ADP affinity (∼43 μM). Force-flow analysis revealed that Ca2+ activation of VmaxO was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca2+ increased the conductance of Complex IV (2.3-fold), Complexes I+III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca2+ activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca2+ in maintaining cellular energy homeostasis. PMID:23547908
NASA Astrophysics Data System (ADS)
Alcinkaya, Burak; Sel, Kivanc
2018-01-01
The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of variousmore » water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.« less
Structural, ac conductivity and dielectric properties of 3-formyl chromone
NASA Astrophysics Data System (ADS)
Ali, H. A. M.
2017-07-01
The structure for the powder of 3-formyl chromone was examined by X-ray diffraction technique in the 2θ° range ( 4° - 60° . The configuration of Al/3-formyl chromone/Al samples was designed. The electrical and dielectric properties were studied as a function of frequency (42- 5 × 106 Hz) and temperature (298-408K). The ac conductivity data of bulk of 3-formyl chromone varies as a power law with the frequency at different temperatures. The predominant mechanism for ac conduction was deduced. The ac conductivity shows a thermally activated process at different frequencies. The dielectric constant and dielectric loss were determined using the capacitance and dissipation factor measurements at different temperatures. The dielectric loss shows a peak of relaxation time that shifted to higher frequency with an increase in the temperature. The activation energy of the relaxation process was estimated.
Dielectric and impedance spectral characteristics of bulk ZnIn2Se4
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.
2014-02-01
The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.
Electrical properties of praseodymium oxide doped Boro-Tellurite glasses
NASA Astrophysics Data System (ADS)
Jagadeesha Gowda G., V.; Devaraja, C.; Eraiah, B.
2016-05-01
Glasses of the composition xPr6O11- (35-x)TeO2-65B2O3 (x=0, 0.1 to 0.5 mol %) have been prepared using the melt quenching method. The ac and dc conductivity of glass have been measured over a wide range of frequencies and temperatures. Experimental results indicate that the ac conductivity depend on temperature, frequency and Praseodymium content. The conductivity as a function of frequency exhibited two components: dc conductivity (σdc), and ac conductivity (σac). The activation energies are estimated and found to be decreases with composition. The impedance plot at each temperature appeared as a semicircle passes through the origin.
Appropriateness of the definition of 'sedentary' in young children: Whole-room calorimetry study.
Reilly, John J; Janssen, Xanne; Cliff, Dylan P; Okely, Anthony D
2015-09-01
The present study aimed to measure the energy cost of three common sedentary activities in young children to test whether energy expended was consistent with the recent consensus definition of 'sedentary' as 'any behaviour conducted in a sitting or reclining posture and with an energy cost ≤ 1.5 metabolic equivalents (METs)' (Sedentary Behaviour Research Network, 2012). Observational study. Whole-room calorimetry measures of television viewing, sitting at a table drawing and reading, and sitting on the floor playing with toys were made in 40 young children (mean age 5.3 years, SD 1.0). The energy cost of each sedentary activity was consistent with the recent consensus definition of sedentary: 1.17 METs (95% CI 1.07-1.27) for TV viewing; 1.38 METs (95% CI 1.30-1.46) for sitting at a table; and 1.35 METs (95% CI 1.28-1.43) for floor-based play. Common sedentary activities in young children have energy costs which are consistent with the recent consensus definition of 'sedentary', and the present study is supportive of this definition. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Mass and energy flow in prominences
NASA Technical Reports Server (NTRS)
Poland, Arthur I.
1990-01-01
Mass and energy flow in quiescent prominences is considered based on the hypothesis that active region prominences have a different structure and thus different mass and energy flow characteristics. Several important physical parameters have been plotted using the computational model, representing the evolutionary process after the prominence formation. The temperature, velocity, conductive flux, and enthalpy flux are plotted against distance from the highest point in the loop to the coolest part of the prominence. It is shown that the maximum velocity is only about 5 km/s. The model calculations indicate that the transition region of prominences is dominated by complex processes. It is necessary to take into account mass flow at temperatures below 200,000 K, and both mass flow and optical depth effects in hydrogen at temperatures below 30,000 K. Both of these effects lead to a less steep temperature gradient through the prominence corona interface than can be obtained from the conduction alone.
NASA Astrophysics Data System (ADS)
Liu, Xiaojuan; Wu, Tao; Dai, Zengxin; Tao, Keran; Shi, Yong; Peng, Chuang; Zhou, Xiaohang; Chen, George Z.
2016-03-01
Stacked electrolysers with titanium bipolar plates are constructed for electrodeposition of polypyrrole electrodes for supercapacitors. The cathode side of the bipolar Ti plates are pre-coated with activated carbon. In this new design, half electrolysis occurs which significantly lowers the deposition voltage. The deposited electrodes are tested in a symmetrical unit cell supercapacitor and an asymmetrical supercapacitor stack. Both devices show excellent energy storage performances and the capacitance values are very close to the design value, suggesting a very high current efficiency during the electrodeposition. The electrolyser stack offers multi-fold benefits for preparation of conducting polymer electrodes, i.e. low energy consumption, facile control of the electrode capacitance and simultaneous preparation of a number of identical electrodes. Therefore, the stacked bipolar electrolyser is a technology advance that offers an engineering solution for mass production of electrodeposited conducting polymer electrodes for supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, R.T.
This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnologymore » Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.« less
Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing
2018-05-09
Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.
Proceedings of the third workshop on the energy development board of Mercer County, North Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Two earlier workshops concerned with managing growth in Mercer County, North Dakota focused on the activities of the Energy Development Board (EDB) and were held in 1977 and 1978, respectively. This third workshop, Energy Development in Rural Areas - Local Implementation of National Priorities addresses the transferability of the EDB as an organization approach for managing energy-related rapid growth; the potential for developing integrated energy resource conservation/economic plans in rural energy development areas; and Federal policy and initiatives regarding energy-impact assistance. Panel discussions on these subjects were conducted and the comments are presented. The introductory address by Wayne Sanstead, Lt.more » Gov. of North Dakota and the keynote address by Edward Helminski, White House Management Task Force on Energy Shortages, are included.« less
NASA Astrophysics Data System (ADS)
Rowse, Tarah
While global, national, and regional efforts to address climate and energy challenges remain essential, local governments and community groups are playing an increasingly stronger and vital role. As an active state in energy system policy, planning and innovation, Vermont offers a testing ground for research into energy governance at the local level. A baseline understanding of the energy planning and energy organizing activities initiated at the local level can support efforts to foster a transition to a sustainable energy system in Vermont. Following an inductive, applied and participatory approach, and grounded in the fields of sustainability transitions, energy planning, and community energy, this research project identifies conditions for change, including opportunities and challenges, within Vermont energy system decision-making and governance at the local level. The following questions are posed: What are the main opportunities and challenges for sustainable energy development at the town level? How are towns approaching energy planning? What are the triggers that will facilitate a faster transition to alternative energy systems, energy efficiency initiatives, and localized approaches? In an effort to answer these questions two studies were conducted: 1) an analysis of municipal energy plans, and 2) a survey of local energy actors. Study 1 examined Vermont energy planning at the state and local level through a review and comparison of 40 municipal plan energy chapters with the state 2011 Comprehensive Energy Plan. On average, municipal plans mentioned just over half of the 24 high-level strategies identified in the Comprehensive Energy Plan. Areas of strong and weak agreement were examined. Increased state and regional interaction with municipal energy planners would support more holistic and coordinated energy planning. The study concludes that while municipalities are keenly aware of the importance of education and partnerships, stronger policy mechanisms and financial stimulus are essential if Vermont hopes to increase strategic energy planning alignment and spur whole-scale energy system change. Study 2 examined local energy actors to assess their ability to develop and sustain energy action on the local level. A survey of 120 municipalities collected statewide baseline data covering the structures, processes, and activities of local energy actors. The analysis examined the role that various forms of capacity play in local energy activity. The results show that towns with higher incomes are more likely to have local energy actors and towns with higher populations have higher aggregate energy activity levels. Structurally, energy actors that had both an energy coordinator and an energy committee were more active, and municipal committees were more active than independent committees. Access to a budget and volunteer engagement were both associated with higher activity levels. The network of local energy actors in Vermont consists of committed and knowledgeable volunteers. Yet, the capacity of these local energy actors to implement sustainable energy change is limited due to resource constraints of time and money. In most cases, the scope of municipal energy planning strategy is modest. Prioritization of strategy and action at the central and local levels, along with increased interaction and coordination, is necessary to increase the regional compatibility and pace of energy system transformation.
A study of electrically active traps in AlGaN/GaN high electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth
2013-10-01
We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.
Ma, Fuying; Zeng, Yelin; Wang, Jinjin; Yang, Yang; Yang, Xuewei; Zhang, Xiaoyu
2013-01-01
Non-isothermal thermogravimetry/derivative thermogravimetry (TG/DTG) measurements are used to determine pyrolytic characteristics and kinetics of lignocellulose. TG/DTG experiments at different heating rates with corn stover pretreated with monocultures of Irpex lacteus CD2 and Auricularia polytricha AP and their cocultures were conducted. Heating rates had little effect on the pyrolysis process, but the peak of weight loss rate in the DTG curves shifted towards higher temperature with heating rate. The maximum weight loss of biopretreated samples was 1.25-fold higher than that of the control at the three heating rates, and the maximum weight loss rate of the co-culture pretreated samples was intermediate between that of the two mono-cultures. The activation energies of the co-culture pretreated samples were 16-72 kJ mol(-1) lower than that of the mono-culture at the conversion rate range from 10% to 60%. This suggests that co-culture pretreatment can decrease activation energy and accelerate pyrolysis reaction thus reducing energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Temperature dependent charge transport in poly(3-hexylthiophene) diodes
NASA Astrophysics Data System (ADS)
Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya
2018-04-01
In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalarvo, Niina H; Gourdon, Olivier; Bi, Zhonghe
2013-01-01
Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activationmore » energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.« less
Singh, Suman; Sinwal, Sushma; Rathore, Hemu
2012-01-01
In India, the farm women are not only involved in household activities but also contribute in various farm operations, animal husbandry. The objective was to assess nutritional profile of the farmwomen and their occupational health problems, to compare the physiological workload in lean and peak seasons and to find out relationship between physiological workload and nutritional intake. The study was conducted on a sample of 90 farmwomen. Energy Intake was calculated using physiological fuel values of carbohydrate, fat and protein. Energy Expenditure Rate (EER), Total Energy Expenditure (TEE) and Energy Balance were calculated. The physiological workload was assessed using sub-maximal workload technique. The results revealed that all the respondents of all categories were, more or less, performing all the agriculture, allied and household activities. In all the agriculture activities physiological hazards such as body pain and fatigue were dominant. Dietary, nutritional and energy intake was lower for heavy workers, from all landholding and BMI categories. HR and OCR were in linear relationship in all BMI categories. Physical work capacity increased with good nutritional status and decreased with age. Regression equations were suggested for calculating oxygen consumption (y) at their known heart rate (x) during various agriculture operations.
Ion-dipole interactions in concentrated organic electrolytes.
Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel
2003-06-16
An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.
Herman, Peter; Sanganahalli, Basavaraju G.; Coman, Daniel; Blumenfeld, Hal; Rothman, Douglas L.
2011-01-01
Abstract A primary objective in neuroscience is to determine how neuronal populations process information within networks. In humans and animal models, functional magnetic resonance imaging (fMRI) is gaining increasing popularity for network mapping. Although neuroimaging with fMRI—conducted with or without tasks—is actively discovering new brain networks, current fMRI data analysis schemes disregard the importance of the total neuronal activity in a region. In task fMRI experiments, the baseline is differenced away to disclose areas of small evoked changes in the blood oxygenation level-dependent (BOLD) signal. In resting-state fMRI experiments, the spotlight is on regions revealed by correlations of tiny fluctuations in the baseline (or spontaneous) BOLD signal. Interpretation of fMRI-based networks is obscured further, because the BOLD signal indirectly reflects neuronal activity, and difference/correlation maps are thresholded. Since the small changes of BOLD signal typically observed in cognitive fMRI experiments represent a minimal fraction of the total energy/activity in a given area, the relevance of fMRI-based networks is uncertain, because the majority of neuronal energy/activity is ignored. Thus, another alternative for quantitative neuroimaging of fMRI-based networks is a perspective in which the activity of a neuronal population is accounted for by the demanded oxidative energy (CMRO2). In this article, we argue that network mapping can be improved by including neuronal energy/activity of both the information about baseline and small differences/fluctuations of BOLD signal. Thus, total energy/activity information can be obtained through use of calibrated fMRI to quantify differences of ΔCMRO2 and through resting-state positron emission tomography/magnetic resonance spectroscopy measurements for average CMRO2. PMID:22433047
30 CFR 282.29 - Reports and records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... mining and processing activity; the number of days operations were conducted; the identity, quantity... mining. All excavations shall be shown in such manner that the volume of OCS minerals produced during a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Anderson F.; Nelson, Austin A.; Tan, Jin
This interim report describes research related to frequency-watt control of solar photovoltaic (PV) inverters conducted under the U.S. Department of Energy's Grid Modernization Laboratory Consortium (GMLC) by a regional partnership for Hawaii. The purpose of this report is to inform an ongoing discussion around frequency-watt control activation in Hawaii.
NASA Astrophysics Data System (ADS)
Apriyanti, Dwi; Nugrahanto, Aris Ida; Shrestha, Sanjaya
2018-02-01
Energy consumption in the industrial sector in Indonesia is increasing as a result of population and economic growth. The government is aware of this and seeks the answer to improve industrial competitiveness and increase energy security through energy efficiency programs. Some industries have implemented energy efficiency programs as ad-hoc, but have not applied systematically, so the results are not optimal. Through the cooperation of the Ministry of Energy and Mineral Resources (ESDM) with the United Nations Industrial Development Organization (UNIDO), there has been training and mentoring activities for industry on Energy Management System (EnMS) based on SNI ISO 50001. Based on the results of identification through survey conducted to 226 industry that has attended the training and 64 industries that have been trained and received assistance, obtained data that 45% of industries have fully adopted EnMS SNI ISO 50001, 17% industry has adopted a part of EnMS SNI ISO 50001 and 38% industry does not adopt EnMS SNI ISO 50001 altogether.
NASA Astrophysics Data System (ADS)
El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.
2014-03-01
Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.
Praseodymium - A Competent Dopant for Luminescent Downshifting and Photocatalysis in ZnO Thin Films
NASA Astrophysics Data System (ADS)
Narayanan, Nripasree; Deepak, N. K.
2018-05-01
Highly transparent and conducting Zinc oxide (ZnO) thin films doped with Praseodymium (Pr) were deposited on glass substrates by using the spray pyrolysis method. The X-ray diffraction (XRD) analysis revealed the polycrystallinity of the deposited films with a hexagonal wurtzite structure, whereas the energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the incorporation of Pr in the films. The optical energy gap decreased by Pr doping due to the merging of the conduction band with the impurity bands formed within the forbidden gap. The room temperature photoluminescence spectra of the Pr-doped film showed enhancement of visible emission, suggesting efficient luminescent downshifting. The photocatalytic activity of the Pr-doped films is higher than that of undoped films due to the effective suppression of the rapid recombination of the photo-generated electron-hole pairs. The impurity levels formed within the forbidden gap act as efficient luminescent centers and electron traps, which lead to luminescent downshifting and enhanced photocatalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, Mohd Khari; Ahmad, Azizah Hanom; Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E.
2015-08-28
A detailed systematic study on the effects of different amount (wt.%) of LiI addition on the electrical conductivity and dielectric behavior of the xLi{sub 2}CO{sub 3}-xLiI (x = 95-70, y = 5-30 wt.%) electrolyte system was carried out. The samples with different compositions were prepared and ground by mechanical milling method. The electrical and dielectric properties of the samples over a range of frequency (50Hz – 1MHz) were investigated by deploying electrical impedance spectroscopy (EIS) technique in a series of temperature set (298–373K). Normally, Li{sub 2}CO{sub 3} itself shows a very low electrical conductivity (10{sup −5} Scm{sup −1}). However, themore » electrical conductivity of the system was found to be increased (10{sup −3} Scm{sup −1}) as the lithium salt (LiI) were introduced to the system. The dielectric analysis displayed that the activation energy was inversely proportional to the increment of LiI (wt.%). As the electrical conductivity reached their maximum value (4.63 × 10{sup −3} Scm{sup −1}) at the 20 wt.% of LiI, the activation energy was dropped to the minimum (0.1 eV). The electrical conductivity increases with the temperature (298 – 373K) indicate that the system obeys Arrhenius law.« less
Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan
2015-04-28
Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.
NASA Astrophysics Data System (ADS)
El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.
2014-03-01
The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.
Strongly correlated perovskite fuel cells
NASA Astrophysics Data System (ADS)
Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram
2016-06-01
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.
Strongly correlated perovskite fuel cells
Zhou, You; Guan, Xiaofei; Zhou, Hua; ...
2016-05-16
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes.more » Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.« less
Strongly correlated perovskite fuel cells.
Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram
2016-06-09
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.
Fusion policy advisory committee named
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Department of Energy Secretary James Watkins has announced the formation of new Fusion Policy Advisory Committee which will recommend a policy for conducting DOE's fusion energy research program. Issues that will be considered by the committee include the balance of research activities within the programs, the timing of experiments to test the burning of plasma fuel, the International Thermonuclear Experimental Reactor, and the development of laser technologies, DOE said. Watkins said that he would be entirely open to the committee's advice.
21st Century Power Partnership: September 2016 Fellowship Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reber, Timothy J.; Rambau, Prudence; Mdhluli, Sipho
This report details the 21st Century Power Partnership fellowship from September 2016. This Fellowship is a follow-up to the Technical Audit of Eskom's Medium- and Long-term Modelling Capabilities, conducted by U.S. National Renewable Energy Laboratory (NREL) in April 2016. The prospect and role of variable renewable energy (vRE) in South Africa poses new modelling-related challenges that Eskom is actively working to address by improving the fidelity of PLEXOS LT and ST models.
The space shuttle payload planning working groups. Volume 3: High energy astrophysics
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of the High Energy Astrophysics working group of the space shuttle payload planning activity are presented. The objectives to be accomplished during space shuttle missions are defined as: (1) X-ray astronomy, (2) hard X-ray and gamma ray astronomy, and (3) cosmic ray astronomy. The instruments and test equipment required to accomplish the mission are identified. Recommendations for managing the installation of the equipment and conducting the missions are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, R.T.
This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contactmore » is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.« less
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Refaat, Tamer F.; Ismail, Syed; Petros, Mulugeta; Davis, Kenneth J.; Kawa, Stephan R.; Menzies, Robert T.
2018-04-01
Modeling of a space-based high-energy 2-μm triple-pulse Integrated Path Differential Absorption (IPDA) lidar was conducted to demonstrate carbon dioxide (CO2) measurement capability and to evaluate random and systematic errors. A high pulse energy laser and an advanced MCT e-APD detector were incorporated in this model. Projected performance shows 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley (RRV) reference surface.
Fusion materials semiannual progress report for the period ending June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, G.
1998-09-01
This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming
2017-07-15
We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jie, E-mail: jie.yang@yale.edu; Cui, Sharon; Ma, T. P.
2013-11-25
We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5 eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambabu, G.; Anantharamulu, N.; Koteswara Rao, K.
2008-06-03
New Nasicon type of compounds of composition AgSbMP{sub 3}O{sub 12} (M = Al, Ga, Fe and Cr) are synthesized by solid-state method. All the compounds crystallize in the hexagonal lattice with space group R3-barc. The infrared spectra of these compounds show characteristic bands due to PO{sub 4} group. The frequency independent conductivity of these compounds shows Arrhenius type behavior and the activation energy for conduction is in the range 0.40-0.55 eV. Frequency independent conductivity ({sigma}{sub dc}) studies and frequency dependent ({sigma}{sub ac}) impedance measurements correlate well. The Cole-Cole plots do not show any spikes on the lower frequency side indicatingmore » negligible electrode effects. The activation energies obtained from the plots of log {sigma}{sub dc}T versus 1/T, log {sigma}{sub ac}(0) versus 1/T and log {tau} versus 1/T are approximately the same. The peak width at half height for electric modulus (M'') plot is {approx}1.24 decades for all samples, which is close to 1.14 decades observed for Debye solid. The height of electric modulus (M'') obtained from the experimental plots are close to that of M'' (max) = C{sub 0}/2C indicating the Debye nature of the samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
The U.S. Department of Energy, Nevada Operations Office (DOE/NV), Completion Report provides a summary of activities conducted at the Nevada Test Site (NTS) between October 1, 1992, and September 30, 1993, associated with Operation KLAXON. (In the past, each annual Completion Report dealt with a series of underground nuclear detonations; however, because no nuclear tests were conducted during FY 1993, this Report summarizes continuing nonnuclear and nuclear test readiness activities at the NTS sponsored by DOE/NV.) The report serves as a reference for those involved with the planning and execution of Operation KLAXON and also serves as a planning guidemore » for future operations. Information in the report covers the logistics and management of activities. Scientific information and data associated with NTS activities are presented in technical documents published by participating agencies. In September 1992, Congress legislated a nine-month moratorium on the testing of nuclear weapons. The bill also provided for a resumption of testing (with no more than five tests per year, or a total of 15 during the next three years) in July 1993, and mandated an end to nuclear testing, entirely, by 1996. President Bush signed the bill into law in October 1992.« less
Dutta, Nirjhar; Koepp, Gabriel A; Stovitz, Steven D; Levine, James A; Pereira, Mark A
2014-06-25
This study was conducted to determine whether installation of sit-stand desks (SSDs) could lead to decreased sitting time during the workday among sedentary office workers. A randomized cross-over trial was conducted from January to April, 2012 at a business in Minneapolis. 28 (nine men, 26 full-time) sedentary office workers took part in a 4 week intervention period which included the use of SSDs to gradually replace 50% of sitting time with standing during the workday. Physical activity was the primary outcome. Mood, energy level, fatigue, appetite, dietary intake, and productivity were explored as secondary outcomes. The intervention reduced sitting time at work by 21% (95% CI 18%-25%) and sedentary time by 4.8 min/work-hr (95% CI 4.1-5.4 min/work-hr). For a 40 h work-week, this translates into replacement of 8 h of sitting time with standing and sedentary time being reduced by 3.2 h. Activity level during non-work hours did not change. The intervention also increased overall sense of well-being, energy, decreased fatigue, had no impact on productivity, and reduced appetite and dietary intake. The workstations were popular with the participants. The SSD intervention was successful in increasing work-time activity level, without changing activity level during non-work hours.
Environmental guidance for public participation in environmental restoration activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-11-01
The US Department of Energy (DOE) is issuing this document, entitled Guidance on Public Participation for US Department of Energy Environmental Restoration Activities, to summarize policy and provide guidance for public participation in environmental restoration activities at DOE Headquarters, Field Offices, facilities, and laboratories. While the Office of Environmental Restoration and Waste Management (EM) has environmental restoration responsibility for the majority of DOE sites and facilities, other DOE Project Offices have similar responsibilities at their sites and facilities. This guidance is applicable to all environment restoration activities conducted by or for DOE under the Comprehensive Environmental Response, Compensation, and Liabilitymore » Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA); the Resource Conservation and Recovery Act of 1976 (RCRA) as amended by the Hazardous and Solid Waste Amendments of 1984 (HSWA) (corrective actions only); and the National Environmental Policy Act of 1969 (NEPA). This guidance also is applicable to CERCLA remedial action programs under the Uranium Mill Tailings Radiation Control Act of 1978 and the Formerly Utilized Sites Remedial Action Program, where DOE is the designated lead. The primary objectives of this guidance document are as follows: acclimate DOE staff to a changing culture that emphasizes the importance of public participation activities; provide direction on implementing these public participation activities; and, provide consistent guidance for all DOE Field Offices and facilities. The purpose of this document is to provide guidance on conducting effective public participation activities for environmental restoration activities under CERCLA; RCRA corrective actions under sections 3004(u), 3004(v), and 3008(h); and NEPA public participation activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, Edward; Gough, Charles
This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.
30 CFR 585.825 - When must I assess my facilities?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 585.825 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and... Offshore Platforms—Working Stress Design (as incorporated by reference in § 585.115). (b) You must initiate...
30 CFR 585.825 - When must I assess my facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 585.825 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and... Offshore Platforms—Working Stress Design (as incorporated by reference in § 585.115). (b) You must initiate...
30 CFR 585.825 - When must I assess my facilities?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 585.825 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and... Offshore Platforms—Working Stress Design (as incorporated by reference in § 585.115). (b) You must initiate...
Hydrated multivalent cations are new class of molten salt mixtures
NASA Technical Reports Server (NTRS)
Angell, C. A.
1967-01-01
Electrical conductance and activation energy measurements on mixtures of calcium and potassium nitrate show the hydrated form to be a new class of molten salt. The theoretical glass transition temperature of the hydrate varied in a manner opposite to that of the anhydrous system.
75 FR 43865 - Licenses, Certifications, and Approvals for Material Licensees
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
.... Environmental Impact--Categorical Exclusion X. Paperwork Reduction Act Statement XI. Regulatory Analysis XII... the briefing, the Commission received a letter from the Nuclear Energy Institute (NEI) dated March 3... that such activities were conducted so as to minimize their environmental impact, and to conform the...
Training Students’ Science Process Skills through Didactic Design on Work and Energy
NASA Astrophysics Data System (ADS)
Ramayanti, S.; Utari, S.; Saepuzaman, D.
2017-09-01
Science Process Skills (SPS) has not been optimally trained to the students in the learning activity. The aim of this research is finding the ways to train SPS on the subject of Work and Energy. One shot case study design is utilized in this research that conducted on 32 students in one of the High Schools in Bandung. The students’ SPS responses were analyzed by the development SPS based assessment portfolios. The results of this research showed the didactic design that had been designed to training the identifying variables skills, formulating hypotheses, and the experiment activity shows the development. But the didactic design to improve the students’ predicting skills shows that the development is still not optimal. Therefore, in the future studies need to be developed the didactic design on the subject Work and Energy that exercising these skills.
Dudney, Nancy J.; Li, Juchuan
2015-01-09
It is not simple to pull all the energy from a battery. For a battery to discharge, electrons and ions have to reach the same place in the active electrode material at the same moment. To reach the entire volume of the battery and maximize energy use, internal pathways for both electrons and ions must be low-resistance and continuous, connecting all regions of the battery electrode. Traditional batteries consist of a randomly distributed mixture of conductive phases within the active battery material. In these materials, bottlenecks and poor contacts may impede effective access to parts of the battery. On pagemore » 149 of this issue, Kirshenbaum et al. (1) explore a different approach, in which silver electronic pathways form on internal surfaces as the battery is discharged. Finally, the electronic pathways are well distributed throughout the electrode, improving battery performance.« less
Energy Intake and Energy Expenditure for Determining Excess Weight Gain in Pregnant Women
Gilmore, L. Anne; Butte, Nancy F.; Ravussin, Eric; Han, Hongmei; Burton, Jeffrey H.; Redman, Leanne M.
2016-01-01
Objective To conduct a secondary analysis designed to test whether gestational weight gain is due to increased energy intake or adaptive changes in energy expenditures. Methods In this secondary analysis, energy intake and energy expenditure of 45 pregnant women (BMI 18.5–24.9 kg/m2, n=33 and BMI ≥ 25, n=12) were measured preconceptionally 22, and 36 weeks of gestation. Energy intake was calculated as the sum of total energy expenditure measured by doubly labeled water and energy deposition determined by the 4-compartment body composition model. Weight, body composition, and metabolic chamber measurement were completed preconceptionally, 9, 22, and 36 weeks of gestation. Basal metabolic rate was measured by indirect calorimetry in a room calorimeter and activity energy expenditure by doubly labeled water. Results Energy intake from 22 to 36 weeks of gestation was significantly higher in high gainers (n=19) (3437 ± 99 kcal/d) versus low + ideal gainers (n=26) (2687 ± 110 p< .001) within both BMI categories. Basal metabolic rate increased in proportion to gestational weight gain; however, basal metabolic rate adjusted for body composition changes with gestational weight gain was not significantly different between high gainers and low + ideal gainers (151 ± 33 vs. 129 ± 36 kcal/d; p=.66). Activity energy expenditure decreased throughout pregnancy in both groups (low + ideal gainers: −150 ± 70 kcal/d; p=.04 and high gainers: −230 ± 92 kcal/day; p=.01), but there was no difference between high gainers and low + ideal gainers (p=.49). Conclusion Interventions designed to increase adherence to the IOM guidelines for weight gain in pregnancy may have increased efficacy if focused on limiting energy intake while increasing nutrient density and maintaining levels of physical activity. PMID:27054928
Passive safety device and internal short tested method for energy storage cells and systems
Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad
2015-09-22
A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.
Uma, R N; Manjula, G; Meenambal, T
2007-04-01
The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.
Galetz, Mathias Christian; Glatzel, Uwe
2010-05-01
The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.
Observations of energitic radiation bursts from thunder activities
NASA Astrophysics Data System (ADS)
Tsuchiya, H.; Enoto, T.; Torii, T.; Yuasa, T.; Yamada, S.; Kitacuhi, T.; Nakazawa, K.; Kato, H.; Okano, M.; Makishima, K.
2009-04-01
Energetic radiation bursts have been observed during strong thunderstorms by ground-based detectors as well as high-mountain ones. Those radiation bursts are thought to result from runaway electrons originating from electrons accelerated by strong electric field in lightning discharges and thunderclouds, and hence provide a valuable key to understand particle acceleration in thunder activity. Interestingly, they can be categorized into two bursts by their duration. One consists of short bursts lasting for milli-seconds or less. The other comprises long bursts having duration of a few seconds. In order to better understand both short and long bursts, we have conducted experiments at coastal area of the Japan Sea and a 2770-m altitude observatory. In this talk, we will report on those experiments, showing the two experiments has successfully observed both short and long bursts. Especially, we will focus on high-energy radiations extending over MeV energies, and then discuss a plausible model to explain how those high-energy radiations are produced in thunder activity.
Entropy generation in a parallel-plate active magnetic regenerator with insulator layers
NASA Astrophysics Data System (ADS)
Mugica Guerrero, Ibai; Poncet, Sébastien; Bouchard, Jonathan
2017-02-01
This paper proposes a feasible solution to diminish conduction losses in active magnetic regenerators. Higher performances of these machines are linked to a lower thermal conductivity of the Magneto-Caloric Material (MCM) in the streamwise direction. The concept presented here involves the insertion of insulator layers along the length of a parallel-plate magnetic regenerator in order to reduce the heat conduction within the MCM. This idea is investigated by means of a 1D numerical model. This model solves not only the energy equations for the fluid and solid domains but also the magnetic circuit that conforms the experimental setup of reference. In conclusion, the addition of insulator layers within the MCM increases the temperature span, cooling load, and coefficient of performance by a combination of lower heat conduction losses and an increment of the global Magneto-Caloric Effect. The generated entropy by solid conduction, fluid convection, and conduction and viscous losses are calculated to help understand the implications of introducing insulator layers in magnetic regenerators. Finally, the optimal number of insulator layers is studied.
NASA Astrophysics Data System (ADS)
Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.
2012-12-01
Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.
Fami, Hossein Shabanali; Veerabhadraiah, V; Nath, Kamal G
2002-09-01
This study was conducted in the Tafresh area of Iran to assess the dietary patterns, time allocation, and nutritional status of rural women in relation to their participation in mixed farming activities. We selected 75 women from 40 villages by applying a stratified random-sampling technique. Cereals and grains were the major source of energy intake. According to the recommended dietary allowance (RDA) tables of India, the United States, the United Kingdom, and the Food and Agriculture Organization (FAO), the respondents seemed to have no micronutrient and energy deficiencies during the spring season. They spent most of their time and energy on household, animal husbandry, and crop farming activities. According to measurements of body mass index (BMI), the respondents were well nourished. However, despite the high level of BMI, analysis suggested a negative energy balance. Nevertheless, analysis indicated that rural women with negative energy balance spent more time and energy in mixed farming and had a higher level of participation in related activities. Hence, it is evident from the results that the physical contribution of rural women in mixed farming activities has a detrimental effect on their nutritional status, at least during some parts of the year (e.g., spring or summer). Therefore, there is a need to adjust nutritional interventions to improve the sustainability of their food intake and to develop appropriate technologies in mixed farming to alleviate their work burdens.
Bioinspired fractal electrodes for solar energy storages.
Thekkekara, Litty V; Gu, Min
2017-03-31
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3 Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1 Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.
Bioinspired fractal electrodes for solar energy storages
Thekkekara, Litty V.; Gu, Min
2017-01-01
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10−3 Whcm−3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10−1 Whcm−3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications. PMID:28361924
Crystallization kinetics, optical and dielectric properties of Li2OṡCdOṡBi2O3ṡSiO2 glasses
NASA Astrophysics Data System (ADS)
Rani, Saroj; Sanghi, Sujata; Ahlawat, Neetu; Agarwal, Ashish
2015-10-01
Crystallization kinetics, optical absorption and electrical behavior of lithium cadmium silicate glasses with different amount of bismuth oxide were investigated using non-isothermal crystallization approach, UV-VIS-NIR spectroscopy and impedance spectroscopy, respectively. These glasses were synthesized by normal melt quenching technique. Variation in physical properties, viz. density, molar volume with Bi2O3:SiO2 ratio were related to the structural changes occurring in the glasses. The glass transition temperature (Tg), crystalline peak temperature (Tp) and melting temperature (Tm) of these glasses were determined using differential scanning calorimeter at various heating rates. The dependence of Tg and Tp on heating rate has been used for the determination of the activation energy of glass transition and crystallization. Thermal stability parameters have revealed high stability of the glass prepared with 40 mol% of Bi2O3 content. The crystallization kinetics for the glasses was studied by using the Kissinger and modified Ozawa equations. Appearance of a sharp cut-off and a wide and reasonable transmission in VIS-NIR region makes these glasses suitable for IR transmission window. The cut-off wavelength, optical band gap and Urbach's energy have been analyzed and discussed in terms of changes in the glass structure. By analyzing the impedance spectra, the ac and dc conductivities, activation energy for dc conduction (Edc) and for relaxation (EM″) were calculated. The results obtained from dc conductivity confirm the network forming role of Cd2+ ion in the glasses. The scaling of the conductivity spectra has been used to interpret the temperature dependence of the relaxation dynamics. The observed conductivity spectra follows power law with exponent 's' which decreases with temperature and satisfies the correlated barrier hopping (CBH) model. The perfect overlying of normalized plots of electrical modulus on a single 'master curve' depicts temperature as well as composition independent dynamical process at several frequencies.
Dependence of Ion Transport on the Electronegativity of the Constituting Atoms in Ionic Crystals.
Zhang, Qian; Kaghazchi, Payam
2017-04-19
Ion transport in electrode and electrolyte materials is a key process in Li-based batteries. In this work, we study the mechanism and activation energy of ion transport (Ea ) in rock-salt Li-based LiX (X=Cl, Br, and I) materials. It is found that Ea at low external voltages, where Li-X Schottky pairs are the most favorable defect types, is about 0.42 times the Gibbs energy of formation of LiX compound (ΔGf ). The value of 0.42 is the slope of the electronegativity of anions of binary Li-based materials as a function of ΔGf . At high voltages, where the Fermi level is located very close to the valence band maximum (VBM), electrons can be excited from the VB to Li vacancy-induced states close to the Fermi level. Under this condition, the formation of Li vacancies that are compensated by holes is energetically more favorable than that of Li-X Schottky pairs, and therefore, the activation energies are lower in the former case. The wide range of reported experimental values of activation energies lies between calculated values at low and high voltage regimes. This work motivates further studies on the relation between the activation energy for ionic conductivity in solid materials and the intrinsic ground-state properties of their free atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-02-01
This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This reportmore » summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.« less
Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, Cole T.; Nugent, John J.
2014-02-10
The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less
Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, Cole T.; Nugent, John J.; Wilde, Justin W.
2014-02-13
The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less
Calibration and validation of wearable monitors.
Bassett, David R; Rowlands, Alex; Trost, Stewart G
2012-01-01
Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.
In-situ short circuit protection system and method for high-energy electrochemical cells
Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.
2000-01-01
An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.
In-situ short-circuit protection system and method for high-energy electrochemical cells
Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.
2003-04-15
An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.
Woon, Fui Chee; Chin, Yit Siew; Mohd Nasir, Mohd Taib
2015-01-01
This paper investigates the association between behavioural factors and BMI-for-age among early adolescents (10-11 years old) in Hulu Langat district, Selangor. This cross-sectional study was conducted among 333 primary school students. Body weight and height of the students were measured and their BMI-for-age was calculated. Eating behaviours, energy intake, energy expenditure, physical activity, and screen time were assessed using the Eating Behaviours Questionnaire and a 2-day dietary and physical activity recall, respectively. Data were analysed using multiple linear regression analysis. The prevalence of overweight and obesity (28.2%) was about twice the prevalence of thinness (11.1%). The mean energy intake and energy expenditure of the students was 1772±441kcal/day and 1705±331kcal/day, respectively. Three in five of the students (60.1%) skipped at least one meal and 98.2% snacked between meals daily. A majority of them (55.3%) were sedentary. Low energy intake (p<0.05) and low energy expenditure (p<0.05) were associated with high BMI-for-age. Energy expenditure (β=-0.033) and energy intake (β=-0.090) significantly explained 65.1% of the variances in BMI-for-age (F=119.170, p<0.05). These findings suggested that promoting healthy eating and active lifestyle should be targeted in the prevention and management of obesity among early adolescents. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Ferreira, Gabriela Kozuchovski; Cardoso, Eria; Vuolo, Francieli Silva; Michels, Monique; Zanoni, Elton Torres; Carvalho-Silva, Milena; Gomes, Lara Mezari; Dal-Pizzol, Felipe; Rezin, Gislaine Tezza; Streck, Emilio L; Paula, Marcos Marques da Silva
2015-12-01
This study evaluated the parameters of oxidative stress and energy metabolism after the acute and long-term administration of gold nanoparticles (GNPs, 10 and 30 nm in diameter) in different organs of rats. Adult male Wistar rats received a single intraperitoneal injection or repeated injections (once daily for 28 days) of saline solution, GNPs-10 or GNPs-30. Twenty-four hours after the last administration, the animals were killed, and the liver, kidney, and heart were isolated for biochemical analysis. We demonstrated that acute administration of GNPs-30 increased the TBARS levels, and that GNPs-10 increased the carbonyl protein levels. The long-term administration of GNPs-10 increased the TBARS levels, and the carbonyl protein levels were increased by GNPs-30. Acute administration of GNPs-10 and GNPs-30 increased SOD activity. Long-term administration of GNPs-30 increased SOD activity. Acute administration of GNPs-10 decreased the activity of CAT, whereas long-term administration of GNP-10 and GNP-30 altered CAT activity randomly. Our results also demonstrated that acute GNPs-30 administration decreased energy metabolism, especially in the liver and heart. Long-term GNPs-10 administration increased energy metabolism in the liver and decreased energy metabolism in the kidney and heart, whereas long-term GNPs-30 administration increased energy metabolism in the heart. The results of our study are consistent with other studies conducted in our research group and reinforce the fact that GNPs can lead to oxidative damage, which is responsible for DNA damage and alterations in energy metabolism.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.
Present developments in theory of the solar wind
NASA Technical Reports Server (NTRS)
Parker, E. N.
1972-01-01
Current problems and developments in the theory of the large-scale expansion of the solar corona are reviewed. The outstanding question is whether the energy supply to the quiet corona is mainly thermal conduction outward from a region of active heating at its base, or mainly wave propagation outward from the base. It is suggested that the question can be settled only when the properties of the wind can be sampled over a wide range of radial distance from the sun, from far inside the orbit of earth to well beyond. It was suggested that hydromagnetic waves may drive the expansion of the active corona by direct transfer of momentum as well as energy.
Cobb, Corie L.; Solberg, Scott E.
2017-04-29
3-dimensional (3D) electrode architectures have been explored as a means to decouple power and energy trade-offs in thick battery electrodes. Limited work has been published which systematically examines the impact of these architectures at the pouch cell level. This paper conducts an analysis on the potential capacity gains that can be realized with thick co-extruded electrodes in a pouch cell. Moreover, our findings show that despite lower active material composition for each cathode layer, the effective gain in thickness and active material loading enables pouch cell capacity gains greater than 10% with a Lithium Nickel Manganese Cobalt Oxide (NMC) materialsmore » system.« less
AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.
2012-06-01
AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.
Earth Sciences annual report, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younker, L.W.; Donohue, M.L.; Peterson, S.J.
1988-12-01
The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.
Jobs and Economic Development from New Transmission and Generation in Wyoming Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-05-10
Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.
77 FR 20781 - Notice of Funding Availability (NOFA) for the Rural Energy for America Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... grants and guaranteed loans for the development and construction of renewable energy systems and for energy efficiency improvement projects; grants for conducting energy audits; grants for conducting renewable energy development assistance; and grants for conducting renewable energy system feasibility...
NASA Technical Reports Server (NTRS)
Eckman, Richard S.
2009-01-01
Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.
NASA Astrophysics Data System (ADS)
Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.
2018-04-01
We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2003.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Mining Plan. 582.24 Section 582.24 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER... § 582.24 Mining Plan. All OCS mineral development and production activities shall be conducted in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Mining Plan. 582.24 Section 582.24 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER... § 582.24 Mining Plan. All OCS mineral development and production activities shall be conducted in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Mining Plan. 582.24 Section 582.24 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER... § 582.24 Mining Plan. All OCS mineral development and production activities shall be conducted in...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of the...
The Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small to medium sized businesses in the state of New Jersey. One of the sites...