Mapping the conduction band edge density of states of γ-In2Se3 by diffuse reflectance spectra
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Vedeshwar, Agnikumar G.
2018-03-01
It is demonstrated that the measured diffuse reflectance spectra of γ-In2Se3 can be used to map the conduction band edge density of states through Kubelka-Munk analysis. The Kubelka-Munk function derived from the measured spectra almost mimics the calculated density of states in the vicinity of conduction band edge. The calculation of density of states was carried out using first-principles approach yielding the structural, electronic, and optical properties. The calculations were carried out implementing various functionals and only modified Tran and Blaha (TB-MBJ) results tally closest with the experimental result of band gap. The electronic and optical properties were calculated using FP-LAPW + lo approach based on the Density Functional Theory formalism implementing only TB-mBJ functional. The electron and hole effective masses have been calculated as me * = 0.25 m 0 and mh * = 1.11 m 0 , respectively. The optical properties clearly indicate the anisotropic nature of γ-In2Se3.
Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene
NASA Astrophysics Data System (ADS)
Conti, S.; Perali, A.; Peeters, F. M.; Neilson, D.
2017-12-01
Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap Eg˜80 - 120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.
NASA Astrophysics Data System (ADS)
Strak, Pawel; Kempisty, Pawel; Sakowski, Konrad; Krukowski, Stanislaw
2014-09-01
Density functional theory studies were conducted to determine an influence of the carrier concentration on the optical and electronic properties of InN/GaN superlattice system. The oscillator strength values, energy gaps and the band profiles were obtained. The band profiles were found to be strongly affected for technically possible heavy n-type doping while for p-type doping the carrier influence, both screening and band shift, is negligible. Blue shift of the transition energy between conduction band minima and valence band maxima was observed for high concentrations of both type carriers.
Tan, Chih-Shan; Huang, Michael Hsuan-Yi
2018-05-21
To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic transport properties of Ti-impurity band in Si
NASA Astrophysics Data System (ADS)
Olea, J.; González-Díaz, G.; Pastor, D.; Mártil, I.
2009-04-01
In this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.
Electrical and optical properties of Si-doped Ga2O3
NASA Astrophysics Data System (ADS)
Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru
2017-05-01
The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.
Tan, Chih-Shan; Huang, Michael H
2017-09-04
Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
OPTOELECTRONIC PROPERTIES AND THE GAP STATE DISTRIBUTION IN a-Si, Ge ALLOYS
NASA Astrophysics Data System (ADS)
Aljishi, S.; Smith, Z. E.; Wagner, S.
In this article we review optical and electronic transport data measured in amorphous silicon-germanium alloys with the goal of identifying the density of states as a function of alloy composition. The results show that while alloying a-Si:H with germanium has little effect on the valence band tail, the conduction band tail density of states is increased dramatically. Defect distributions both above and below midgap are detected and identified with the dangling bond D+/° and D°/- states. The density of deep defects below midgap increases exponentially with germanium content. Above midgap, a large concentration of defects lying between 0.3 and 0.5 eV below the conduction band edge has a strong effect on transient electron transport.
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
How the laser-induced ionization of transparent solids can be suppressed
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2013-12-01
A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.
Regression estimators for late-instar gypsy moth larvae at low pupulation densities
W.E. Wallnr; A.S. Devito; Stanley J. Zarnoch
1989-01-01
Two regression estimators were developed for determining densities of late-instar gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), larvae from burlap band and pyrethrin spray counts on oak trees in Vermont, Massachusetts, Connecticut, and New York. Studies were conducted by marking larvae on individual burlap banded trees within 15...
First-principle calculation of the electronic structure, DOS and effective mass TlInSe2
NASA Astrophysics Data System (ADS)
Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.
2017-05-01
The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.
Dissepiments, density bands and signatures of thermal stress in Porites skeletons
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Cohen, Anne L.
2017-09-01
The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the underlying cause of high-density stress bands.
Reshak, Ali Hussain; Piasecki, M; Auluck, S; Kityk, I V; Khenata, R; Andriyevsky, B; Cobet, C; Esser, N; Majchrowski, A; Swirkowicz, M; Diduszko, R; Szyrski, W
2009-11-19
We have performed a density functional calculation for the centrosymmetric neodymium gallate using a full-potential linear augmented plane wave method with the LDA and LDA+U exchange correlation. In particular, we explored the influence of U on the band dispersion and optical transitions. Our calculations show that U = 0.55 Ry gives the best agreement with our ellipsometry data taken in the VUV spectral range with a synchrotron source. Our LDA+U (U = 0.55) calculation shows that the valence band maximum (VBM) is located at T and the conduction band minimum (CBM) is located at the center of the Brillouin zone, resulting in a wide indirect energy band gap of about 3.8 eV in excellent agreement with our experiment. The partial density of states show that the upper valence band originates predominantly from Nd-f and O-p states, with a small admixture of Nd-s/p and Ga-p B-p states, while the lower conduction band prevailingly originates from the Nd-f and Nd-d terms with a small contribution of O-p-Ga-s/p states. The Nd-f states in the upper valence band and lower conduction band have a significant influence on the energy band gap dispersion which is illustrated by our calculations. The calculated frequency dependent optical properties show a small positive uniaxial anisotropy.
Reshak, Ali H; Shalaginov, Mikhail Y; Saeed, Yasir; Kityk, I V; Auluck, S
2011-03-31
We report a first-principles study of structural and phase stability in three different structures of perovskite-types KMgH(3) according to H position. While electronic and optical properties were measured only for stable perovskite-type KMgH(3), our calculated structural parameters are found in good agreement with experiment and other theoretical results. We also study the electronic charge density space distribution contours in the (200), (101), and (100) crystallographic planes, which gives better insight picture of chemical bonding between K-H, K-Mg-H, and Mg-H. Moreover, we have calculated the electronic band structure dispersion, total, and partial density of electron states to study the band gap origin and the contribution of s-band of H, s and p-band of Mg in the valence band, and d-band of K in the conduction band. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, optical conductivities, and loss functions of stable KMgH(3) were calculated for photon energies up to 40 eV.
Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.
Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A
2015-10-05
First-principles calculations of the atomic and electronic structure of double-wall nanotubes (DWNTs) of α-V2 O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk-type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single-wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single-layer gaps). The main reason for this effect is the shift of the inner- and outer-wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction-band edges is localized on vanadium atoms of the bulk-type regions, whereas the electron density corresponding to shoulders at the valence-band edges belongs to oxygen atoms of both regions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Ae; Sohn, Bong Won; Jung, Taehyun
We present the catalog of the KVN Calibrator Survey (KVNCS). This first part of the KVNCS is a single-dish radio survey simultaneously conducted at 22 ( K band) and 43 GHz ( Q band) using the Korean VLBI Network (KVN) from 2009 to 2011. A total of 2045 sources are selected from the VLBA Calibrator Survey with an extrapolated flux density limit of 100 mJy at the K band. The KVNCS contains 1533 sources in the K band with a flux density limit of 70 mJy and 553 sources in the Q band with a flux density limit of 120more » mJy; it covers the whole sky down to −32.°5 in decl. We detected 513 sources simultaneously in the K and Q bands; ∼76% of them are flat-spectrum sources (−0.5 ≤ α ≤ 0.5). From the flux–flux relationship, we anticipated that most of the radiation of many of the sources comes from the compact components. The sources listed in the KVNCS therefore are strong candidates for high-frequency VLBI calibrators.« less
NASA Astrophysics Data System (ADS)
Lu, M. F.; Zhou, C. P.; Li, Q. Q.; Zhang, C. L.; Shi, H. F.
2018-01-01
In order to improve the photocatalytic activity under visible-light irradiation, we adopted first principle calculations based on density functional theory (DFT) to calculate the electronic structures of B site transition metal element doped InNbO4. The results indicated that the complete hybridization of Nb 4d states and some Ti 3d states contributed to the new conduction band of Ti doped InNbO4, barely changing the position of band edge. For Cr doping, some localized Cr 3d states were introduced into the band gap. Nonetheless, the potential of localized levels was too positive to cause visible-light reaction. When it came to Cu doping, the band gap was almost same with that of InNbO4 as well as some localized Cu 3d states appeared above the top of VB. The introduction of localized energy levels benefited electrons to migrate from valence band (VB) to conduction band (CB) by absorbing lower energy photons, realizing visible-light response.
Investigation of thermoelectricity in KScSn half-Heusler compound
NASA Astrophysics Data System (ADS)
Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.
2018-05-01
The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.
NASA Astrophysics Data System (ADS)
Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.
2018-01-01
We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
Electronic properties of graphene and effect of doping on the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com
2015-05-15
The electronic structure of pure and doped two dimensional crystalline material graphene have been computed and analyzed. Density functional theory has been employed to perform calculations. The electronic exchange and correlations are considered using local density approximation (LDA). The doped material is studied within virtual crystal approximation (VCA) upto 0.15e excess as well as deficient charge per unit cell. Full Potential Linear Augmented Plane Wave basis as implemented in ELK code has been used to perform the calculations. To ensures the monolayer of graphene, distance after which energy is almost constant when interlayer seperation is varied, is taken as separatingmore » distance between the layers. The obtained density of states and band structure is analyzed. Results show that there is zero band gap in undoped graphene and conduction and valence band meets at fermi level at symmetry point K. PDOS graph shows that near the fermi level the main contribution is due to 2p{sub z} electrons. By using VCA, calculations for doped graphene are done and the results for doped graphene are compared with undoped graphene. We found that by electron or hole doping, the point where conduction and valence bands meet can shift below or above the fermi level. The shift in bands seems almost as per rigid band model upto doping concentration studied.« less
Conduction band edge effective mass of La-doped BaSnO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Allen, S., E-mail: allen@itst.ucsb.edu; Law, Ka-Ming; Raghavan, Santosh
2016-06-20
BaSnO{sub 3} has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO{sub 3} thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.
Electronic structure and p-type doping of ZnSnN2
NASA Astrophysics Data System (ADS)
Wang, Tianshi; Janotti, Anderson; Ni, Chaoying
ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.
ZnO/Sn:In2O3 and ZnO/CdTe band offsets for extremely thin absorber photovoltaics
NASA Astrophysics Data System (ADS)
Kaspar, T. C.; Droubay, T.; Jaffe, J. E.
2011-12-01
Band alignments were measured by x-ray photoelectron spectroscopy for thin films of ZnO on polycrystalline Sn:In2O3 (ITO) and single crystal CdTe. Hybrid density functional theory calculations of epitaxial zinc blende ZnO(001) on CdTe(001) were performed to compare with experiment. A conduction band (CB) offset of -0.6 eV was measured for ZnO/ITO, which is larger than desired for efficient electron injection. For ZnO/CdTe, the experimental conduction band offset of 0.25 eV is smaller than the calculated value of 0.67 eV, possibly due to the TeOx layer at the ZnO/CdTe interface. The measured conduction band offset for ZnO/CdTe is favorable for photovoltaic devices.
X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.
1997-04-01
X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.
NASA Astrophysics Data System (ADS)
Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.
2005-05-01
Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.
Differential conductance (dI/dV) imaging of a heterojunction-nanorod
NASA Astrophysics Data System (ADS)
Kundu, Biswajit; Bera, Abhijit; Pal, Amlan J.
2017-03-01
Through scanning tunneling spectroscopy, we envisage imaging a heterostructure, namely a junction formed in a single nanorod. While the differential conductance spectrum provides location of conduction and valence band edges, dI/dV images record energy levels of materials. Such dI/dV images at different voltages allowed us to view p- and n-sections of heterojunction nanorods and more importantly the depletion region in such a junction that has a type-II band alignment. Viewing of selective sections in a heterojunction occurred due to band-bending in the junction and is correlated to the density of states spectrum of the individual semiconductors. The dI/dV images recorded at different voltages could be used to generate a band diagram of a pn junction.
Characterization of electronic structure of periodically strained graphene
Aslani, Marjan; Garner, C. Michael; Kumar, Suhas; ...
2015-11-03
We induced periodic biaxial tensile strain in polycrystalline graphene by wrapping it over a substrate with repeating pillar-like structures with a periodicity of 600 nm. Using Raman spectroscopy, we determined to have introduced biaxial strains in graphene in the range of 0.4% to 0.7%. Its band structure was characterized using photoemission from valance bands, shifts in the secondary electron emission, and x-ray absorption from the carbon 1s levels to the unoccupied graphene conduction bands. It was observed that relative to unstrained graphene, strained graphene had a higher work function and higher density of states in the valence and conduction bands.more » Furthermore, we measured the conductivity of the strained and unstrained graphene in response to a gate voltage and correlated the changes in their behavior to the changes in the electronic structure. From these sets of data, we propose a simple band diagram representing graphene with periodic biaxial strain.« less
NASA Astrophysics Data System (ADS)
Panda, Saswati; Sahoo, D. D.; Rout, G. C.
2018-04-01
We report here a tight binding model for colossal magnetoresistive (CMR) manganites to study the pseudo gap (PG) behavior near Fermi level. In the Kubo-Ohata type DE model, we consider first and second nearest neighbor interactions for transverse spin fluctuations in core band and hopping integrals in conduction band, in the presence of static band Jahn-Teller distortion. The model Hamiltonian is solved using Zubarev's Green's function technique. The electron density of states (DOS) is found out from the Green's functions. We observe clear PG near Fermi level in the electron DOS.
Electronic structure of Ag7GeS5I superionic compound
NASA Astrophysics Data System (ADS)
Bletskan, Dmytro; Studenyak, Ihor; Bletskan, Mykhailo; Vakulchak, Vasyl
2018-05-01
This paper presents the originally results of ab initio calculations of electronic structure, total and partial densities of electronic states as well as electronic charge density distribution of Ag7GeS5I crystal performed within the density functional theory (DFT) in the local density approximation (LDA) for exchange-correlation potential. According to performed calculations, Ag7GeS5I is the direct-gap semiconductor with the valence band top and the conductivity band bottom in the Γ point of Brillouin zone. The band gap width calculated in the LDA-approximation is Egd = 0.73 eV. The analysis of total and partial densities of electronic states allow us to identify the atomic orbital contributions into the crystal orbitals as well as the formation data of chemical bond in the studied crystal. In the top part of Ag7GeS5I valence band it was revealed the considerable mixing (hybridization) of the occupied d-states of Ag noble metal and the delocalized p-states of sulfur and iodine, which is undoubtedly associated with the covalent character of chemical bond between S, I atoms and noble metal atom.
Electronic properties of disordered Weyl semimetals at charge neutrality
NASA Astrophysics Data System (ADS)
Holder, Tobias; Huang, Chia-Wei; Ostrovsky, Pavel M.
2017-11-01
Weyl semimetals have been intensely studied as a three-dimensional realization of a Dirac-like excitation spectrum where the conduction bands and valence bands touch at isolated Weyl points in momentum space. Like in graphene, this property entails various peculiar electronic properties. However, recent theoretical studies have suggested that resonant scattering from rare regions can give rise to a nonzero density of states even at charge neutrality. Here, we give a detailed account of this effect and demonstrate how the semimetallic nature is suppressed at the lowest scales. To this end, we develop a self-consistent T -matrix approach to investigate the density of states beyond the limit of weak disorder. Our results show a nonvanishing density of states at the Weyl point, which exhibits a nonanalytic dependence on the impurity density. This unusually strong effect of rare regions leads to a revised estimate for the conductivity close to the Weyl point and emphasizes possible deviations from semimetallic behavior in dirty Weyl semimetals at charge neutrality even with very low impurity concentration.
Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity
NASA Astrophysics Data System (ADS)
Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.
2016-07-01
We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.
Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band.
Tablero, C
2005-09-15
A study using first principles of the electronic properties of S32Zn31Cr, a material derived from the SZn host semiconductor where a Cr atom has been substituted for each of the 32 Zn atoms, is presented. This material has an intermediate band sandwiched between the valence and conduction bands of the host semiconductor, which in a formal band-theoretic picture is metallic because the Fermi energy is located within the impurity band. The potential technological application of these materials is that when they are used to absorb photons in solar cells, the efficiency increases significantly with respect to the host semiconductor. An analysis of the gaps, bandwidths, density of states, total and orbital charges, and electronic density is carried out. The main effects of the local-density approximation with a Hubbard term corrections are an increase in the bandwidth, a modification of the relative composition of the five d and p transition-metal orbitals, and a splitting of the intermediate band. The results demonstrate that the main contribution to the intermediate band is the Cr atom. For values of U greater than 6 eV, where U is the empirical Hubbard term U parameter, this band is unfolded, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition.
Importance of conduction electron correlation in a Kondo lattice, Ce₂CoSi₃.
Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran
2010-06-30
Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce₂CoSi₃, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.
Compton scattering studies and electronic properties of BaTiO3
NASA Astrophysics Data System (ADS)
Meena, Seema Kumari; Bapna, Komal; Heda, N. L.; Ahuja, B. L.
2018-04-01
We present the experimental momentum density of BaTiO3 measured using 20 Ci 137Cs Compton spectrometer. The experimental Compton profile (CP) has been compared with the linear combination of atomic orbitals (LCAO) based theoretical profiles for various exchange-correlation potentials. It is found that LCAO-B3PW based CP gives a better agreement with experiment than other theoretical profiles. We have also deduced the energy bands and density of states (DOS) for BaTiO3 using LCAO-B3PW scheme. The energy bands and DOS suggest an indirect band gap in the system arising due to O-2p states of valence band and Ti-3d states of conduction band. Peculiar electronic response of this system is found to be mainly due to hybridized states of Ba-5p/5s and O-2p orbitals.
Scanning tunneling spectroscopy of MoS2 monolayer in presence of ethanol gas
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Ali; Iraji zad, Azam; Berahman, Masoud; Aghakhani Mahyari, Farzaneh; Shokouh, Seyed Hossein Hosseini
2018-04-01
Due to high surface to volume ratio and tunable band gap, two dimensional (2D) layered materials such as MoS2, is good candidate for gas sensing applications. This research mainly focuses on variation of Density of States (DOS) of MoS2 monolayes caused by ethanol adsorption. The nanosheets are synthesized by liquid exfoliation, and then using Scanning Tunneling Spectroscopy (STS) and Density Functional Theory (DFT), local electronic characteristic such as DOS and band gap in non-vacuum condition are analyzed. The results show that ethanol adsorption enhances DOS and deform orbitals near the valence and conduction bands that increase transport of carriers on the sheet.
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron
2018-01-01
We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.
NASA Astrophysics Data System (ADS)
Li, Qun; Chen, Qian; Chong, Jing
2017-12-01
In InAlN/GaN heterostructures, alloy clustering-induced InAlN conduction band fluctuations interact with electrons penetrating into the barrier layers and thus affect the electron transport. Based on the statistical description of InAlN compositional distribution, a theoretical model of the conduction band fluctuation scattering (CBFS) is presented. The model calculations show that the CBFS-limited mobility decreases with increasing two-dimensional electron gas sheet density and is inversely proportional to the squared standard deviation of In distribution. The AlN interfacial layer can effectively suppress the CBFS via decreasing the penetration probability. This model is directed towards understanding the transport properties in heterostructure materials with columnar clusters.
Thin SOI lateral IGBT with band-to-band tunneling mechanism
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Zhaohuan; Tan, Kaizhou; Wang, Zhikuan; Mei, Yong
2017-06-01
In this paper, a novel 200V lateral IGBT on thin SOI layer with a band-to-band tunneling junction near the anode is proposed. The structure and the operating mechanism of the proposed IGBT are described and discussed. Its main feature is that the novel IGBT structure has a unique abrupt doped p++/n++ tunneling junction in the side of the anode. By utilizing the reverse bias characteristics of the tunneling junction, the proposed IGBT can achieve excellent reverse conducting performance. Numerical simulations suggest that a low reverse conduction voltage drop VR=-1.6V at a current density of 100A/cm2 and a soft factor S=0.63 of the build-in diode are achieved.
Ab initio simulation study of defect assisted Zener tunneling in GaAs diode
NASA Astrophysics Data System (ADS)
Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Jiang, Xiang-Wei
2017-06-01
The band to band tunneling of defective GaAs nano-junction is studied by using the non-equilibrium Green's function formalism with density functional theory. Aiming at performance improvement, two types of defect-induced transport behaviors are reported in this work. By examining the partial density of states of the system, we find the substitutional defect OAs that locates in the middle of tunneling region will introduce band-gap states, which can be used as stepping stones to increase the tunneling current nearly 3 times higher at large bias voltage (Vb≥0.3V). Another type of defects SeAs and VGa (Ga vacancy) create donor and acceptor states at the edge of conduction band (CB) and valence band (VB)respectively, which can change the band bending of the junction as well as increase the tunneling field obtaining a 1.5 times higher ON current. This provides an effective defect engineering approach for next generation TFET device design.
Sub-band-gap absorption in Ga2O3
NASA Astrophysics Data System (ADS)
Peelaers, Hartwin; Van de Walle, Chris G.
2017-10-01
β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2010-11-01
Modeling of laser-induced ionization and heating of conduction-band electrons by laser radiation frequently serves as a basis for simulations supporting experimental studies of laser-induced ablation and damage of solid dielectrics. Together with band gap and electron-particle collision rate, effective electron mass is one of material parameters employed for the ionization modeling. Exact value of the effective mass is not known for many materials frequently utilized in experiments, e.g., fused silica and glasses. Because of that reason, value of the effective mass is arbitrary varied around "reasonable values" for the ionization modeling. In fact, it is utilized as a fitting parameter to fit experimental data on dependence of ablation or damage threshold on laser parameters. In this connection, we study how strong is the influence of variations of the effective mass on the value of conduction-band electron density. We consider influence of the effective mass on the photo-ionization rate and rate of impact ionization. In particular, it is shown that the photo-ionization rate can vary by 2-4 orders of magnitude with variation of effective mass by 50%. Impact ionization shows a much weaker dependence on effective mass, but it significantly enhances the variations of seed-electron density produced by the photo-ionization. Utilizing those results, we demonstrate that variation of effective mass by 50% produces variations of conduction-band electron density by 6 orders of magnitude. In this connection, we discuss the general issues of the current models of laser-induced ionization.
Ionic liquid gating reveals trap-filled limit mobility in low temperature amorphous zinc oxide
NASA Astrophysics Data System (ADS)
Bubel, S.; Meyer, S.; Kunze, F.; Chabinyc, M. L.
2013-10-01
In low-temperature solution processed amorphous zinc oxide (a-ZnO) thin films, we show the thin film transistor (TFT) characteristics for the trap-filled limit (TFL), when the quasi Fermi energy exceeds the conduction band edge and all tail-states are filled. In order to apply gate fields that are high enough to reach the TFL, we use an ionic liquid tape gate. Performing capacitance voltage measurements to determine the accumulated charge during TFT operation, we find the TFL at biases higher than predicted by the electronic structure of crystalline ZnO. We conclude that the density of states in the conduction band of a-ZnO is higher than in its crystalline state. Furthermore, we find no indication of percolative transport in the conduction band but trap assisted transport in the tail-states of the band.
Prediction of a mobile two-dimensional electron gas at the LaSc O3 /BaSn O3 (001) interface
NASA Astrophysics Data System (ADS)
Paudel, Tula R.; Tsymbal, Evgeny Y.
2017-12-01
Two-dimensional electron gases (2DEG) at oxide interfaces, such as LaAl O3 /SrTi O3 (001), have aroused significant interest due to their high carrier density (˜1014c m-2 ) and strong lateral confinement (˜1 nm). However, these 2DEGs are normally hosted by the weakly dispersive and degenerate d bands (e.g., Ti -3 d bands), which are strongly coupled to the lattice, causing mobility of such 2DEGs to be relatively low at room temperature (˜1 c m2/Vs ). Here, we propose using oxide host materials with the conduction bands formed from s electrons to increase carrier mobility and soften its temperature dependence. Using first-principles density functional theory calculations, we investigate LaSc O3 /BaSn O3 (001) heterostructure and as a model system, where the conduction band hosts the s -like carriers. We find that the polar discontinuity at this interface leads to electronic reconstruction resulting in the formation of the 2DEG at this interface. The conduction electrons reside in the highly dispersive Sn -5 s bands, which have a large band width and a low effective mass. The predicted 2DEG is expected to be highly mobile even at room temperature due to the reduced electron-phonon scattering via the inter-band scattering channel. A qualitatively similar behavior is predicted for a doped BaSn O3 , where a monolayer of BaO is replaced with LaO. We anticipate that the quantum phenomena associated with these 2DEGs to be more pronounced owing to the high mobility of the carriers.
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.
2018-02-01
The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.
Influence of defects on the absorption edge of InN thin films: The band gap value
NASA Astrophysics Data System (ADS)
Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.
2007-07-01
We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.
Electrical conductivity enhancement by boron-doping in diamond using first principle calculations
NASA Astrophysics Data System (ADS)
Ullah, Mahtab; Ahmed, Ejaz; Hussain, Fayyaz; Rana, Anwar Manzoor; Raza, Rizwan
2015-04-01
Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B-C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B-C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is noted that charge distribution decreased from +1.89 to -1.90 eV whereas bond length reduced by 0.04 Å with increasing boron content in diamond films. These theoretical results support our earlier experimental findings on B-doped diamond polycrystalline films which depict that the addition of boron atoms to diamond films gives a sudden fall in resistivity even up to 105 Ω cm making it a good semiconductor for its applications in electrical devices.
Band offset engineering of 2DEG oxide systems on Si
NASA Astrophysics Data System (ADS)
Jin, Eric; Kornblum, Lior; Kumah, Divine; Zou, Ke; Broadbridge, Christine; Ngai, Joseph; Ahn, Charles; Walker, Fred
2015-03-01
The discovery of 2-dimensional electron gases (2DEGs) at perovskite oxide interfaces has sparked much interest in recent years due to their large carrier densities when compared with semiconductor heterostructures. For device applications, these oxide systems are plagued by low room temperature electrical mobilities. We present an approach to combine the high carrier density of 2DEG oxides with a higher mobility medium in order to realize the combined benefits of higher mobility and carrier density. We grow epitaxial films of the interfacial oxide system LaTiO3/SrTiO3 (LTO/STO) on silicon by molecular beam epitaxy. Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LTO/STO interfaces, consistent with the presence of a 2DEG at each interface. Sheet carrier densities of 8.9 x 1014 cm-2 per interface are measured. Band offsets between the STO and Si are obtained, showing that the conduction band edge of the STO is close in energy to that of silicon, but in a direction that hinders carrier transfer to the silicon substrate. Through modification of the STO/Si interface, we suggest an approach to raise the band offset in order to move the 2DEG from the oxide into the silicon.
Energy spectrum and electrical conductivity of graphene with a nitrogen impurity
NASA Astrophysics Data System (ADS)
Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.
2015-04-01
The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.
NASA Astrophysics Data System (ADS)
Komolov, A. S.; Lazneva, E. F.; Gerasimova, N. B.; Panina, Yu. A.; Baramygin, A. V.; Zashikhin, G. D.; Pshenichnyuk, S. A.
2018-04-01
The results of examination of the electronic structure of the conduction band of naphthalenedicarboxylic anhydride (NDCA) films in the process of their deposition on the surface of oxidized silicon are presented. These results were obtained using total current spectroscopy (TCS) in the energy range from 5 to 20 eV above the Fermi level. The energy position of the primary maxima of the density of unoccupied states (DOUS) of an NDCA film was determined based on the experimental TCS data and calculated data and compared with the position of the DOUS maxima of a naphthalenetetracarboxylic dianhydride (NTCDA) film. The theoretical analysis involved calculating the energies and the spatial distribution of orbitals of the molecules under study at the B3LYP/6-31G(d) DFT (density functional theory) level and correcting the obtained energies in accordance with the procedure that was proven effective in earlier studies of the conduction band of films of small conjugated organic molecules. It was found that the DOUS maxima of the NTCDA film in the studied energy interval from 5 to 20 eV above the Fermi level are shifted toward lower electron energies by 1-2 eV relative to the corresponding DOUS maxima of the NDCA film Subdivision of the Ufa Federal Research Centre of the.
Deep donor state of the copper acceptor as a source of green luminescence in ZnO
NASA Astrophysics Data System (ADS)
Lyons, J. L.; Alkauskas, A.; Janotti, A.; Van de Walle, C. G.
2017-07-01
Copper impurities have long been linked with green luminescence (GL) in ZnO. Copper is known to introduce an acceptor level close to the conduction band of ZnO, and the GL has conventionally been attributed to transitions involving an excited state which localizes holes on neighboring oxygen atoms. To date, a theoretical description of the optical properties of such deep centers has been difficult to achieve due to the limitations of functionals in the density functional theory. Here, we employ a screened hybrid density functional to calculate the properties of Cu in ZnO. In agreement with the experiment, we find that CuZn features an acceptor level near the conduction band of ZnO. However, we find that CuZn also gives rise to a deep donor level 0.46 eV above the valence band of ZnO; the calculated optical transitions involving this state agree well with the GL observed in ZnO:Cu.
A model study of tunneling conductance spectra of ferromagnetically ordered manganites
NASA Astrophysics Data System (ADS)
Panda, Saswati; Kar, J. K.; Rout, G. C.
2018-02-01
We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-01
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X =N ,P ,As ,Sb , and II-VI compounds, (Zn or Cd)X , with X =O ,S ,Se ,Te . By correcting (1) the binary band gaps at high-symmetry points Γ , L , X , (2) the separation of p -and d -orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.
Structural and electronic properties of low-index stoichiometric Cu2ZnSnS4 surfaces
NASA Astrophysics Data System (ADS)
Jia, Zhan-Ju; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qing-Ju
2018-05-01
Over the past few years, quaternary Cu2ZnSnS4 (CZTS) has attracted a great deal of attention as the most promising photovoltaic absorber layer, due to its abundance and non-toxic properties. However, the significant surface structures and properties for photo-catalytic absorption layers have not yet been studied in detail for CZTS. Hence, the surface structure and electronic properties of low-index stoichiometric CZTS surfaces are calculated based on density functional theory. The relaxation is much large for the (001), (100), (101) and (112) surfaces. Moreover, more surface states appear at the bottom of conduction band and the top of valence band. The conduction band is mainly composed of S-3p and Sn-5p orbits. The valence band top is mainly composed of S-3p and Cu-3d orbits. The band gap values of five surfaces do not vary greatly. The dangling bond density for the (112) surfaces is minimal, resulting in minimum surface energy. Finally, the equilibrium morphology of CZTS is constructed by the Wulff rule. It is found that the {101} surface is the dominant surface (72.6%). These results will help us to better understand the surface properties of absorption layer that is related to CZTS surface and provide theoretical support for future experimental studies.
NASA Astrophysics Data System (ADS)
Sant, S.; Schenk, A.
2017-10-01
It is demonstrated how band tail states in the semiconductor influence the performance of a Tunnel Field Effect Transistor (TFET). As a consequence of the smoothened density of states (DOS) around the band edges, the energetic overlap of conduction and valence band states occurs gradually at the onset of band-to-band tunneling (BTBT), thus degrading the sub-threshold swing (SS) of the TFET. The effect of the band tail states on the current-voltage characteristics is modelled quantum-mechanically based on the idea of zero-phonon trap-assisted tunneling between band and tail states. The latter are assumed to arise from a 3-dimensional pseudo-delta potential proposed by Vinogradov [1]. This model potential allows the derivation of analytical expressions for the generation rate covering the whole range from very strong to very weak localization of the tail states. Comparison with direct BTBT in the one-band effective mass approximation reveals the essential features of tail-to-band tunneling. Furthermore, an analytical solution for the problem of tunneling from continuum states of the disturbed DOS to states in the opposite band is found, and the differences to direct BTBT are worked out. Based on the analytical expressions, a semi-classical model is implemented in a commercial device simulator which involves numerical integration along the tunnel paths. The impact of the tail states on the device performance is analyzed for a nanowire Gate-All-Around TFET. The simulations show that tail states notably impact the transfer characteristics of a TFET. It is found that exponentially decaying band tails result in a stronger degradation of the SS than tail states with a Gaussian decay of their density. The developed model allows more realistic simulations of TFETs including their non-idealities.
The electronic structure of lithium metagallate.
Johnson, N W; McLeod, J A; Moewes, A
2011-11-09
Herein we present a study of the electronic structure of lithium metagallate (LiGaO(2)), a material of interest in the field of optoelectronics. We use soft x-ray spectroscopy to probe the electronic structure of both the valence and conduction bands and compare our measurements to ab initio density functional theory calculations. We use several different exchange-correlation functionals, but find that no single theoretical approach used herein accurately quantifies both the band gap and the Ga 3d(10) states in LiGaO(2). We derive a band gap of 5.6 eV, and characterize electron hybridization in both the valence and conduction bands. Our study of the x-ray spectra may prove useful in analysing spectra from more complicated LiGaO(2) heterostructures. © 2011 IOP Publishing Ltd
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Malozovsky, Yuriy; Franklin, LaShounda; Bagayoko, Diola
2018-02-01
We present results from first principle, local density approximation (LDA) calculations of electronic, transport, and bulk properties of iron pyrite (FeS2). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96), using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.
NASA Astrophysics Data System (ADS)
Sabino, Fernando P.; Besse, Rafael; Oliveira, Luiz Nunes; Wei, Su-Huai; Da Silva, Juarez L. F.
2015-11-01
Good transparent conducting oxides (TCOs), such as In2O3 :Sn (ITO), usually combine large optical band gaps, essential for high transparency, with relatively small fundamental band gaps due to low conduction-band minima, which favor n -type doping and enhance the electrical conductivity. It has been understood that the optical band gaps are wider than the fundamental band gaps because optical transitions between the band-edge states are forbidden. The mechanism blocking such transitions, which can play a crucial role in the designing of alternative TCOs, nonetheless remains obscure. Here, based on first-principles density functional theory calculations and symmetry analysis of three oxides, M2O3 (M =Al ,Ga ,In ), we identify the physical origin of the gap disparities. Three conditions are necessary: (1) the crystal structure must have global inversion symmetry; (2) in order to belong to the Ag or A1 g irreducible representations, the states at the conduction-band minimum must have cation and oxygen s character; (3) in order to have g parity, the oxygen p orbitals constituting the states near the valence-band maximum must be strongly coupled to the cation d orbitals. Under these conditions, optical excitations across the fundamental gap will be forbidden. The three criteria explain the trends in the M2O3 (M =Al,Ga,In) sequence, in particular, explaining why In2O3 in the bixbyite structure yields the highest figure of merit. Our study provides guidelines expected to be instrumental in the search for new TCO materials.
47 CFR 15.407 - General technical requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of... density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain...
47 CFR 15.407 - General technical requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of... density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain...
47 CFR 15.407 - General technical requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of... density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gmail.com
2016-08-15
In this paper we study the optical conductivity and density of states (DOS) of doped gapped graphene beyond the Dirac cone approximation in the presence of electron-phonon (e-ph) interaction under strain, i.e., within the framework of a full π-band Holstein model, by using the Kubo linear response formalism that is established upon the retarded self-energy. A new peak in the optical conductivity for a large enough e-ph interaction strength is found which is associated to transitions between the midgap states and the Van Hove singularities of the main π-band. Optical conductivity decreases with strain and at large strains, the systemmore » has a zero optical conductivity at low energies due to optically inter-band excitations through the limit of zero doping. As a result, the Drude weight changes with e-ph interaction, temperature and strain. Consequently, DOS and optical conductivity remains stable with temperature at low e-ph coupling strengths.« less
The Fowler-Nordheim behavior and mechanism of photo-sensitive field from SnS{sub 2} nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryawanshi, Sachin R.; Chaudhari, Nilima S.; Warule, Sambhaji S.
2015-06-24
Here in, we report photo-sensitive field emission measurements of SnS{sub 2} nanosheets at base pressure of ∼1×10{sup −8} mbar are reported. The nonlinear Fowler-Nordheim (F-N) plot is elucidate according to a (F-N) model of calculation based on shift in a saturation of conduction band current density after light illumination and prevalence of valence band current density at high electric field values. The model of calculation suggests that the slope variation before and after visible light illumination of the F-N plot, in the high-field and low-field regions, does not depend on the magnitude of saturation but also depend on charge carriermore » (electron) concentration get increased in conduction band. The F-N model of calculation is important for the fundamental understanding of the photo-sensitive field emission mechanism of semiconducting SnS{sub 2}. The replicate F-N plots exhibit similar features to those observed experimentally. The model calculation suggests that the nonlinearity of the F-N plot is a characteristic of the photo-enhanced energy band structure of the photo-sensitive semiconductor material.« less
Attractive Hubbard model with disorder and the generalized Anderson theorem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A., E-mail: strigina@iep.uran.ru; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru
Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flatmore » densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T{sub c} for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T{sub c} (in the weak-coupling region) or significantly increase T{sub c} (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.« less
First principle study of electronic structures and optical properties of Ce-doped SiO2
NASA Astrophysics Data System (ADS)
Cong, Wei-Yan; Lu, Ying-Bo; Zhang, Peng; Guan, Cheng-Bo
2018-05-01
Electronic structures and optical properties of Silicon dioxide (SiO2) systems with and without cerium(Ce) dopant were calculated using the density functional theory. We find that after the Ce incorporation, a new localized impurity band appears between the valance band maximum (VBM) and the conduction band minimum (CBM) of SiO2 system, which is induced mainly by the Ce-4f orbitals. The localized impurity band constructs a bridge between the valence band and the conduction band, making the electronic transition much easier. The calculated optical properties show that in contrast from the pure SiO2 sample, absorption in the visible-light region is found in Ce-doped SiO2 system, which originates from the transition between the valence band and Ce-4f dominated impurity band, as well as the electronic transition from Ce-4f states to Ce-5d states. All calculated results indicate that Ce doping is an effective strategy to improve the optical performance of SiO2 sample, which is in agreement with the experimental results.
Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotsenko, V.P., E-mail: ssclab@ukr.net; Berezovskaya, I.V.; Voloshinovskii, A.S.
2015-04-15
Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions havemore » been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.« less
NASA Astrophysics Data System (ADS)
Cabuk, Mehmet; Gündüz, Bayram
2017-12-01
In this study, polyaniline doped by boric acid (PAni:BA) conducting polymers were chemically synthesized by oxidative polymerization method using (NH4)2S208 (APS) as initiator. Pani:BA conducting polymers were synthesized by using two different APS/aniline molar ratios as 1:1 and 2:1. Their results were compared with PAni doped by HCl (PAni) conducting polymer. Structural properties of the PAni, PAni:BA (1:1) and PAni:BA (2:1) conducting polymers were characterized by using FTIR, SEM, TGA, particle size and apparent density measurements. Effects of doping agents and initiator concentrations on optical properties were investigated in detail. The optoelectronic parameters such as absorption band edge, molar extinction coefficient, direct allowed band gap, refractive index, optical conductance and electrical conductance of the PAni, PAni:BA (1:1) and PAni:BA (2:1) were determined. The absorption band edge and direct allowed band gap of PAni were decreased with doping BA and increasing APS ratio. Also, the refractive index values of the materials were calculated from experimental results and compared with obtained results from Moss, Ravindra, Herve-Vandamme, Reddy and Kumar-Singh relations.
NASA Astrophysics Data System (ADS)
Ghosh, Anima; Thangavel, R.
2017-11-01
In present work, the electronic structure and optical properties of the FeX2 (X = S, Se, Te) compounds have been evaluated by the density functional theory based on the scalar-relativistic full potential linear augmented plane wave method via Wien2K. From the total energy calculations, it has been found that all the compounds have direct band nature, which determined by iron 3 d states at valance band edge and anion p dominated at conduction band at Γ-point and the fundamental band gap between the valence band and conduction band are estimated 1.40, 1.02 and 0.88 eV respectively with scissor correction for FeS2, FeSe2 and FeTe2 which are close to the experimental values. The optical properties such as dielectric tensor components and the absorption coefficient of these materials are determined in order to investigate their usefulness in photovoltaic applications.
Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.
2016-01-01
Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808
Growth and Characterization of the p-type Semiconductors Tin Sulfide and Bismuth Copper Oxy Selenide
NASA Astrophysics Data System (ADS)
Francis, Jason
BiCuOSe and SnS are layered, moderate band gap (epsilon G ≈ 1 eV) semiconductors that exhibit intrinsic p type conductivity. Doping of BiCuOSe with Ca results in a slight expansion of the lattice and an increase of the hole concentration from 10 18 cm--3 to greater than 1020 cm --3. The large carrier density in undoped films is the result of copper vacancies. Mobility is unaffected by doping, remaining constant at 1.5 cm2V--1s--1 in both undoped and doped films, because the Bi-O layers serve as the source of carriers, while transport occurs within the Cu-Se layers. Bi possesses a 6s2 lone pair that was expected to hybridize with the oxygen p states at the top of the valence band, resulting in high hole mobility as compared to similar materials such as LaCuOSe, which lack this lone pair. However, both LaCuOSe and BiCuOSe have similar hole mobility. X-ray absorption and emission spectroscopy, combined with density functional theory calculations, reveal that the Bi 6 s states contribute deep within the valence band, forming bonding and anti-bonding states with O 2p at 11 eV and 3 eV below the valence band maximum, respectively. Hence, the Bi lone pair does not contribute at the top of the valence band and does not enhance the hole mobility. The Bi 6p states contribute at the bottom of the conduction band, resulting in a smaller band gap for BiCuOSe than LaCuOSe (1 eV vs. 3 eV). SnS is a potential photovoltaic absorber composed of weakly coupled layers stacked along the long axis. This weak coupling results in the formation of strongly oriented films on amorphous substrates. The optical band gap is 1.2 eV, in agreement with GW calculations. Absorption reaches 105 cm--1 within 0.5 eV of the band gap. The p type conduction arises from energetically favorable tin vacancies. Variation of growth conditions yields carrier densities of 1014 -- 1016 cm--3 and hole mobility of 7 -- 15 cm2V--1s--1. SnS was alloyed with rocksalt CaS, which was predicted to form a rocksalt structure when the calcium content is increased past 18%. Films of Sn1--x CaxS with x from 0.4 to 0.9 adopt the rocksalt structure with a band gap of 1.1-1.3 eV, with absorption greater than 105 cm--1 within about 0.7 eV of the band gap. The lattice contracts as the calcium content of the films is increased, reaching 5.7 A when x = 0.93. Films are highly insulating, but Seebeck measurements do indicate p type conduction.
Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl)
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Zhao, Qiang; Li, Yang; Ouyang, Xiao-Ping
2016-05-01
The band structure, electronic density of states and optical properties of CsI and of CsI doped with silver or thallium are studied by using a first-principles calculation based on density functional theory (DFT). The exchange and the correlation potentials among the electrons are described by using the generalized gradient approximation (GGA). The results of our study show that the electronic structure changes somewhat when CsI is doped with silver or thallium. The band gaps of CsI(Ag) and CsI(Tl) are smaller than that of CsI, and the width of the conduction band of CsI is increased when CsI is doped with thallium or silver. Two peaks located in the conduction band of CsI(Ag) and CsI(Tl) are observed from their electronic densities of states. The absorption coefficients of CsI, CsI(Ag), and CsI(Tl) are zero when their photon energies are below 3.5 eV, 1.5 eV, and 3.1 eV, respectively. The results show that doping can improve the detection performance of CsI scintillators. Our study can explain why doping can improve the detection performance from a theoretical point of view. The results of our research provide both theoretical support for the luminescent mechanisms at play in scintillator materials when they are exposed to radiation and a reference for CsI doping from the point of view of the electronic structure.
Ba 2TeO as an optoelectronic material: First-principles study
Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; ...
2015-05-21
The band structure, optical and defects properties of Ba 2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba 2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba 2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneousmore » formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.« less
Electrical characterization of plasma-grown oxides on gallium arsenide
NASA Technical Reports Server (NTRS)
Hshieh, F. I.; Bhat, K. N.; Ghandhi, S. K.; Borrego, J. M.
1985-01-01
Plasma-grown GaAs oxides and their interfaces have been characterized by measuring the electrical properties of metal-oxide-semiconductor capacitors and of Schottky junctions. The current transport mechanism in the oxide at high electrical field was found to be Frankel-Poole emission, with an electron trap center at 0.47 eV below the conduction band of the oxide. The interface-state density, evaluated from capacitance and conductance measurements, exhibits a U-shaped interface-state continuum extending over the entire band gap. Two discrete deep states with high concentration are superimposed on this continuum at 0.40 and 0.70 eV below the conduction band. The results obtained from measurements on Schottky junctions have excluded the possibility that these two deep states originate from plasma damage. Possible origins of these states are discussed in this paper.
Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study
NASA Astrophysics Data System (ADS)
Bhamu, K. C.; Khenata, R.; Khan, Saleem Ayaz; Singh, Mangej; Priolkar, K. R.
2016-01-01
The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke-Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.
NASA Astrophysics Data System (ADS)
Glaser, Evan R.
Far-infrared measurements of intersubband absorption spectra and dc electrical transport studies of n-inversion layers in (100) Si. Metal-Oxide-Semiconductor-Field-Effect-Transistors (MOSFETs) with mobile positive ions in the oxide are performed at temperatures between 1.7 and 80K. The results provide evidence for the existence of impurity bands and for screening of these localized states in this quasi two-dimensional electronic system. The properties of the elec- tronic states in the sub-micron (<10('-6)m) conducting layer of the MOS devices are probed in detail by conductance, capacitance and trans- conductance measurements and by optical absorption measure- ments with the aid of a Far-Infrared Fourier Transform Spectrometer. Data are obtained with positive oxide charge density as a parameter, varied by the drifting at room temperature of controlled amounts of. positive ions ((DELTA)N(,ox)) to the oxide-semiconductor interface (1.3 x 10('11) (LESSTHEQ) (DELTA)N(,ox) (LESSTHEQ) 7.0 x 10('11) cm('-2)) in the presence of positive gate voltages. (3-7V). In addition, high mobility devices in which no positive impurity ions had been purposely introduced are investigated to provide a basis for comparison with the corresponding results from poor mobil- ity devices. Studies are carried out for a wide range of net interfacial. oxide charge densities (2 x 10('10) cm('-2) (LESSTHEQ) N(,ox) (LESSTHEQ) 1 x 10('12) cm('-2)), and substrate source bias voltages (-9V (LESSTHEQ) V(,S) (LESSTHEQ) 1V) with the goal of. attaining a better understanding of the nature of localization effects (e.g., two-dimensional carrier localization), interface scattering, and many-body Coulombic interactions (e.g., screening effects) in these structures. The present measurements provide evidence for the existence of impurity bands and long band tails at low electron densities (n(,s) (LESSTHEQ) N(,ox)) associated with subbands due to both the inequivalent conduction-band valleys and for screening of these. localized states at high electron densities (n(,s) >(, )N(,ox)). In addition, at high inversion layer electron densities the intersubband resonance linewidths at 4.2K as a function of positive oxide charge density are found to be correlated with the corresponding scattering rates determined from the low temperature effective mobilities. The results of these studies are compared with recent experimental investigations of this and similar systems and with predictions of available theoretical models.
Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.
Gutstein, D; Lynall, D; Nair, S V; Savelyev, I; Blumin, M; Ercolani, D; Ruda, H E
2018-01-10
The conductance of semiconductor nanowires is strongly dependent on their electrostatic history because of the overwhelming influence of charged surface and interface states on electron confinement and scattering. We show that InAs nanowire field-effect transistor devices can be conditioned to suppress resonances that obscure quantized conduction thereby revealing as many as six sub-bands in the conductance spectra as the Fermi-level is swept across the sub-band energies. The energy level spectra extracted from conductance, coupled with detailed modeling shows the significance of the interface state charge distribution revealing the Coulomb landscape of the nanowire device. Inclusion of self-consistent Coulomb potentials, the measured geometrical shape of the nanowire, the gate geometry and nonparabolicity of the conduction band provide a quantitative and accurate description of the confinement potential and resulting energy level structure. Surfaces of the nanowire terminated by HfO 2 are shown to have their interface donor density reduced by a factor of 30 signifying the passivating role played by HfO 2 .
Luo, Bingcheng; Wang, Xiaohui; Tian, Enke; Song, Hongzhou; Wang, Hongxian; Li, Longtu
2017-06-14
A novel lead-free (1 - x)CaTiO 3 -xBiScO 3 linear dielectric ceramic with enhanced energy-storage density was fabricated. With the composition of BiScO 3 increasing, the dielectric constant of (1 - x)CaTiO 3 -xBiScO 3 ceramics first increased and then decreased after the composition x > 0.1, while the dielectric loss decreased first and increased. For the composition x = 0.1, the polarization was increased into 12.36 μC/cm 2 , 4.6 times higher than that of the pure CaTiO 3 . The energy density of 0.9CaTiO 3 -0.1BiScO 3 ceramic was 1.55 J/cm 3 with the energy-storage efficiency of 90.4% at the breakdown strength of 270 kV/cm, and the power density was 1.79 MW/cm 3 . Comparison with other lead-free dielectric ceramics confirmed the superior potential of CaTiO 3 -BiScO 3 ceramics for the design of ceramics capacitors for energy-storage applications. First-principles calculations revealed that Sc subsitution of Ti-site induced the atomic displacement of Ti ions in the whole crystal lattice, and lattice expansion was caused by variation of the bond angles and lenghths. Strong hybridization between O 2p and Ti 3d was observed in both valence band and conduction band; the hybridization between O 2p and Sc 3d at high conduction band was found to enlarge the band gap, and the static dielectric tensors were increased, which was the essential for the enhancement of polarization and dielectric properties.
Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles
NASA Astrophysics Data System (ADS)
Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A.
2017-07-01
The band offsets between crystalline and hydrogenated amorphous silicon (a -Si ∶H ) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015), 10.1063/1.4906195].
Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3
NASA Astrophysics Data System (ADS)
Tariq, Saad; Saad, Saher; Jamil, M. Imran; Sohail Gilani, S. M.; Mahmood Ramay, Shahid; Mahmood, Asif
2018-03-01
By using the density functional theory (DFT) the systematic study of the structural, electronic and thermodynamic properties of lanthanum ferrite (LaFeO3) has been conducted. The elastic stability criterion and structural tolerance factor reveal that LaFeO3 exists in the cubic phase and is found to be stable under the ambient conditions. In electronic properties, the optical spectrum of the compound has been found to fall in the range of 488 to 688nm which has been calculated from the electronic band gap values by using the PBE-GGA and mBJ-GGA techniques. The light between 488 to 688nm would cause the valence electrons to jump in the conduction band showing the photoconductivity. The pronounced half-metallic character has been discussed by using the projected electronic density of states. The ferromagnetic response has been observed which may be attributed to the Fe-O bonding situation. The compound exhibits ductile, indirect band gap and half-metallic traits in the bulk phase. We expect the compound to be felicitous for the novel spintronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Cheong, S.W.; Kim, Bog G., E-mail: boggikim@pusan.ac.kr
We have studied the properties of SnO{sub 6} octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO{sub 6} containing perovskites. We also have expended the hybrid density functional calculation to the ASnO{sub 3}/A'SnO{sub 3} system with different cation orderings. We propose an empirical relationshipmore » between the tolerance factor and the band gap of SnO{sub 6} containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO{sub 3} for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO{sub 6} octahedrons are plotted as polyhedron. (b) Band gap of ASnO{sub 3} as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO{sub 3}/A'SnO{sub 3} superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO{sub 3}, [001] ordered superlattices, and [111] ordered superlattices of ASnO{sub 3}/A'SnO{sub 3} as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO{sub 3} and ASnO{sub 3}/A'SnO{sub 3}. • The band gap of ASnO{sub 3} using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimoto, Shinya, E-mail: yosshi@issp.u-tokyo.ac.jp; Shiozawa, Yuichiro; Koitaya, Takanori
Electronic states and electrical conductivity of the native oxide Si(111) surface adsorbed with an electron donor tetrakis(dimethylamino)ethylene (TDAE) were investigated using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy (XPS), and independently driven four-probe conductivity measurements. The formation of positively charged TDAE species is confirmed by the downward shift of the vacuum level by 1.45 eV, the absence of HOMO level in the valence band, and observation of the positively charged state in the N 1s XPS spectra. Si 2p XPS spectra and four-probe conductivity measurements revealed that TDAE adsorption induces an increase in downward band bending and a reduction in electrical resistancemore » of the surface, respectively. The sheet conductivity and the electron density of the surface are 1.1 μS/◻ and 4.6 × 10{sup 9} cm{sup −2}, respectively, after TDAE adsorption, and they are as high as 350% of the original surface. These results demonstrate that the electron density of the semiconductor surface is successfully controlled by the electron donor molecule TDAE.« less
Angular dependent XPS study of surface band bending on Ga-polar n-GaN
NASA Astrophysics Data System (ADS)
Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui
2018-05-01
Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.
Narrowband noise study of sliding charge density waves in NbSe3 nanoribbons
NASA Astrophysics Data System (ADS)
Onishi, Seita; Jamei, Mehdi; Zettl, Alex
2017-02-01
Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasing sample thickness.
Complex band structure and electronic transmission eigenchannels
NASA Astrophysics Data System (ADS)
Jensen, Anders; Strange, Mikkel; Smidstrup, Søren; Stokbro, Kurt; Solomon, Gemma C.; Reuter, Matthew G.
2017-12-01
It is natural to characterize materials in transport junctions by their conductance length dependence, β. Theoretical estimations of β are made employing two primary theories: complex band structure and density functional theory (DFT) Landauer transport. It has previously been shown that the β value derived from total Landauer transmission can be related to the β value from the smallest |ki| complex band; however, it is an open question whether there is a deeper relationship between the two. Here we probe the details of the relationship between transmission and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two molecular junctions. The molecular junctions show that both the length dependence of the total transmission and the individual transmission eigenvalues can be, almost always, found through the complex band structure. The complex band structure of the semi-conducting material, however, does not predict the length dependence of the total transmission but only of the individual channels, at some k-points, due to multiple channels contributing to transmission. We also observe instances of vertical bands, some of which are the smallest |ki| complex bands, that do not contribute to transport. By understanding the deeper relationship between complex bands and individual transmission eigenchannels, we can make a general statement about when the previously accepted wisdom linking transmission and complex band structure will fail, namely, when multiple channels contribute significantly to the transmission.
Reinventing the PN Junction: Dimensionality Effects on Tunneling Switches
2012-05-11
Figure 4.7. Finally we need to define the band tail density of states: > < = −− Vp qVEE Vp p EEe EE ED OVp , ,1 )( /)( (4.3.10...Cn qVEE Cn n EEe EE ED OCn , ,1 )( /)( (4.3.11) Here EVp is the valence band edge on the p side and ECn is the conduction band...semiconductor will occur at the oxide semiconductor interface and is given by the boundary condition SSOXOX EE εε = . This means that the maximum
Hu, Chongze; Ni, Peter; Zhan, Li; ...
2018-01-30
We report that CoSb 3-based skutterudites have been a benchmark mid-temperature thermoelectric material under intensive experimental and theoretical studies for decades. Doping and filling, to the first order, alter the crystal lattice constant of CoSb 3 in the context of “chemical pressure.” In this work, we employed ab initio density functional theory in conjunction with semiclassical Boltzmann transport theory to investigate the mechanical properties and especially how hydrostatic loadings, i.e., “physical pressure,” impact the electronic band structure, Seebeck coefficient, and power factor of pristine CoSb 3. It is found that hydrostatic pressure enlarges the band gap, suppresses the density ofmore » states (DOS) near the valence band edge, and fosters the band convergence between the valley bands and the conduction band minimum (CBM). By contrast, hydrostatic tensile reduces the band gap, increases the DOS near the valence band edge, and diminishes the valley bands near the CBM. Therefore, applying hydrostatic pressure provides an alternative avenue for achieving band convergence to improve thermoelectric properties of N-type CoSb 3, which is further supported by our carrier concentration studies. Lastly, these results provide valuable insight into the further improvement of thermoelectric performance of CoSb 3-based skutterudites via a synergy of physical and chemical pressures.« less
Interface state density distribution in Au/n-ZnO nanorods Schottky diodes
NASA Astrophysics Data System (ADS)
Faraz, S. M.; Willander, M.; Wahab, Q.
2012-04-01
Interface states density (NSS) distribution is extracted in Au/ ZnO Schottky diodes. Nanorods of ZnO are grown on silver (Ag) using aqueous chemical growth (ACG) technique. Well aligned hexagonal-shaped vertical nanorods of a mean diameter of 300 - 450 nm and 1.3 -1.9 μm high are revealed in SEM. Gold (Au) Schottky contacts of thickness 60 nm and 1.5mm diameter were evaporated. For electrical characterization of Schottky diodes current-voltage (I-V) and capacitance-Voltage (C-V) measurements are performed. The diodes exhibited a typical non-linear rectifying behavior with a barrier height of 0.62eV and ideality factor of 4.3. Possible reasons for low barrier height and high ideality factor have been addressed. Series resistance (RS) has been calculated from forward I-V characteristics using Chueng's function. The density of interfacial states (NSS) below the conduction band (EC-ESS) is extracted using I-V and C-V measured values. A decrease in interface states density (NSS) is observed from 3.74 × 1011 - 7.98 × 1010 eV-1 cm-2 from 0.30eV - 0.61eV below the conduction band edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru
We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as wellmore » as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T{sub c}, is also controlled only by disorder widening of the conduction band (density of states).« less
Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors
NASA Astrophysics Data System (ADS)
Özçelik, V. Ongun; Fathi, Mohammad; Azadani, Javad G.; Low, Tony
2018-05-01
Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wave functions of the conduction and valence band edges are delocalized across the heterostructure. The resultant band gaps of the heterostructures reside in the infrared region. With strain engineering, the heterostructure band gap undergoes a transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wave function and the mechanical rigidity of the layered heterostructure.
NASA Astrophysics Data System (ADS)
Yelgel, Celal
2016-04-01
We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.
Interface band alignment in high-k gate stacks
NASA Astrophysics Data System (ADS)
Eric, Bersch; Hartlieb, P.
2005-03-01
In order to successfully implement alternate high-K dielectric materials into MOS structures, the interface properties of MOS gate stacks must be better understood. Dipoles that may form at the metal/dielectric and dielectric/semiconductor interfaces make the band offsets difficult to predict. We have measured the conduction and valence band densities of states for a variety MOS stacks using in situ using inverse photoemission (IPE) and photoemission spectroscopy (PES), respectively. Results obtained from clean and metallized (with Ru or Al) HfO2/Si, SiO2/Si and mixed silicate films will be presented. IPE indicates a shift of the conduction band minimum (CBM) to higher energy (i.e. away from EF) with increasing SiO2. The effect of metallization on the location of band edges depends upon the metal species. The addition of N to the dielectrics shifts the CBM in a way that is thickness dependent. Possible mechanisms for these observed effects will be discussed.
Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2
NASA Astrophysics Data System (ADS)
Lv, Xianshun; Wei, Lei; Wang, Xuping; Xu, Jianhua; Yu, Huajian; Hu, Yanyan; Zhang, Huadi; Zhang, Cong; Wang, Jiyang; Li, Qinggang
2018-02-01
Single crystals of Sr2Mg(BO3)2 (SMBO) were grown by Kyropoulos method. X-ray powder diffraction (XRD) analysis, transmission spectrum, thermal properties, band structure, density of states and charge distribution as well as Raman spectra of SMBO were described. The as-grown SMBO crystals show wide transparency range with UV cut-off below 180 nm. A direct band gap of 4.66 eV was obtained from the calculated electronic structure results. The calculated band structure and density of states results indicated the top valence band is determined by O 2p states whereas the low conduction band mainly consists of Sr 5s states. Twelve Raman peaks were observed in the experimental spectrum, fewer than the number predicted by the site group analysis. Raman peaks of SMBO were assigned combining first-principle calculation and site group analysis results. The strongest peak at 917 cm-1 in the experimental spectrum is assigned to symmetric stretching mode A1‧(ν1) of free BO3 units. SMBO is a potential Raman crystal which can be used in deep UV laser frequency conversion.
Quasi 2D Ultrahigh Carrier Density in a Complex Oxide Broken Gap Heterojunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Peng; Droubay, Timothy C.; Jeong, Jong S.
2016-01-21
Two-dimensional (2D) ultra-high carrier densities at complex oxide interfaces are of considerable current research interest for novel plasmonic and high charge-gain devices. However, the highest 2D electron density obtained in oxide heterostructures is thus far limited to 3×1014 cm-2 (½ electron/unit cell/interface) at GdTiO3/SrTiO3 interfaces, and is typically an order of magnitude lower at LaAlO3/SrTiO3 interfaces. Here we show that carrier densities much higher than 3×1014 cm-2 can be achieved via band engineering. Transport measurements for 3 nm SrTiO3/t u.c. NdTiO3/3 nm SrTiO3/LSAT (001) show that charge transfer significantly in excess of the value expected from the polar discontinuity modelmore » occurs for higher t values. The carrier density remains unchanged, and equivalent to ½ electron/unit cell/interface for t < 6 unit cells. However, above a critical NdTiO3 thickness of 6 u.c., electrons from the valence band of NdTiO3 spill over into the SrTiO3 conduction band as a natural consequence of the band alignment. An atomistic model consistent with first-principle calculations and experimental results is proposed for the charge transfer mechanisms. These results may provide an exceptional route to the realization of the room-temperature oxide electronics.« less
Electronic, thermoelectric and transport properties of cesium cadmium trifluoride: A DFT study
NASA Astrophysics Data System (ADS)
Abraham, Jisha Annie; Pagare, G.; Sanyal, Sankar P.
2018-04-01
The full potential linearized augmented plane wave method based on density functional theory is employed to investigate the electronic structure of CsCdF3. The electronic properties of this compound have been studied from the band structure plot and density of states. The presence of indirect energy gap reveals its insulating nature. Using constant relaxation time, the electrical conductivity, electronic thermal conductivity, Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory. We have also studied the temperature dependence of thermoelectric properties of this compound.
Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange
NASA Astrophysics Data System (ADS)
Gillen, Roland; Robertson, John
2011-07-01
We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.
Electron band structure of the high pressure cubic phase of AlH3
NASA Astrophysics Data System (ADS)
Shi, Hongliang; Zarifi, Niliffar; Yim, Wai-Leung; Tse, J. S.
2012-07-01
The electronic band structure of the cubic Pm3n phase of AlH3 stable above 100 GPa is examined with semi-local, Tran-Blaha modified Becke-Johnson local density approximation (TB-mBJLDA), screened hybrid density functionals and GW methods. The shift of the conduction band to higher energy with increasing pressure is predicted by all methods. However, there are significant differences in detail band structure. In the pressure range from 90 to160 GPa, semi-local, hybrid functional and TB-mBJLDA calculations predicted that AlH3 is a poor metal. In comparison, GW calculations show a gap opening at 160 GPa and AlH3 becomes a small gap semi-conductor. From the trends of the calculated band shifts, it can be concluded that the favourable conditions leading to the nesting of Fermi surfaces predicted by semi-local calculation have disappeared if the exchange term is included. The results highlight the importance of the correction to the exchange energy on the band structure of hydrogen dominant dense metal hydrides at high pressure hydrides and may help to rationalize the absence of superconductivity in AlH3 from experimental measurements.
Relating P-band AIRSAR backscatter to forest stand parameters
NASA Technical Reports Server (NTRS)
Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.
1993-01-01
As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.
Band structure of the quasi two-dimensional purple molybdenum bronze
NASA Astrophysics Data System (ADS)
Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.
2006-09-01
The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.
Effect of strain on the electronic structure and optical properties of germanium
NASA Astrophysics Data System (ADS)
Wen, Shumin; Zhao, Chunwang; Li, Jijun; Hou, Qingyu
2018-05-01
The effects of biaxial strain parallel to the (001) plane on the electronic structures and optical properties of Ge are calculated using the first-principles plane-wave pseudopotential method based on density functional theory. The screened-exchange local-density approximation function was used to obtain more reliable band structures, while strain was changed from ‑4% to +4%. The results show that the bandgap of Ge decreases with the increase of strain. Ge becomes a direct-bandgap semiconductor when the tensile strain reaches to 2%, which is in good agreement with the experimental results. The density of electron states of strained Ge becomes more localized. The tensile strain can increase the static dielectric constant distinctly, whereas the compressive strain can decrease the static dielectric constant slightly. The strain makes the absorption band edge move toward low energy. Both the tensile strain and compressive strain can significantly increase the reflectivity in the range from 7 eV to 14 eV. The tensile strain can decrease the optical conductivity, but the compressive strain can increase the optical conductivity significantly.
Bands dispersion and charge transfer in β-BeH2
NASA Astrophysics Data System (ADS)
Trivedi, D. K.; Galav, K. L.; Joshi, K. B.
2018-04-01
Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.
NASA Astrophysics Data System (ADS)
Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.
2013-01-01
The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.
Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.
2015-01-01
The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075
NASA Astrophysics Data System (ADS)
Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars
2013-05-01
The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.
Reshak, Ali Hussain; Khenata, R; Kityk, I V; Plucinski, K J; Auluck, S
2009-04-30
An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.
Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites.
Miglio, Anna; Heinrich, Christophe P; Tremel, Wolfgang; Hautier, Geoffroy; Zeier, Wolfgang G
2017-09-01
Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu 2 ZnGeS 4- x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.
Valence-band-edge shift due to doping in p + GaAs
NASA Astrophysics Data System (ADS)
Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.
1991-05-01
Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.
Solomon, Gemma C; Reimers, Jeffrey R; Hush, Noel S
2004-10-08
A priori evaluations, using Hartree-Fock self-consistent-field (SCF) theory or density-functional theory (DFT), of the current passing between two electrodes through a single bridging molecule result in predicted conductivities that may be up to one to two orders of magnitude larger than observed ones. We demonstrate that this is, in part, often due to the improper application of the computational methods. Conductivity is shown to arise from tunneling between junction states of the electrodes through the molecule; these states are inherently either quasi two-fold or four-fold degenerate and always comprise the (highest occupied molecular orbital) HOMO band at the Fermi energy of the system. Frequently, in previous cluster based molecular conduction calculations, closed-shell SCF or Kohn-Sham DFT methods have been applied to systems that we demonstrate to be intrinsically open shell in nature. Such calculations are shown to induce artificial HOMO-LUMO (LUMO-lowest unoccupied molecular orbital) band splittings that Landauer-based formalisms for steady-state conduction interpret as arising from extremely rapid through-molecule tunneling at the Fermi energy, hence, overestimating the low-voltage conductivity. It is demonstrated that these shortcomings can be eliminated, dramatically reducing calculated current magnitudes, through the alternate use of electronic-structure calculations based on the spin-restricted open-shell formalism and related multiconfigurational SCF of DFT approaches. Further, we demonstrate that most anomalies arising in DFT implementations arise through the use of hybrid density functionals such as B3LYP. While the enhanced band-gap properties of these functionals have made them the defacto standard in molecular conductivity calculations, we demonstrate that it also makes them particularly susceptible to open-shell anomalies.
Band alignment and p -type doping of ZnSnN2
NASA Astrophysics Data System (ADS)
Wang, Tianshi; Ni, Chaoying; Janotti, Anderson
2017-05-01
Composed of earth-abundant elements, ZnSnN2 is a promising semiconductor for photovoltaic and photoelectrochemical applications. However, basic properties such as the precise value of the band gap and the band alignment to other semiconductors are still unresolved. For instance, reported values for the band gap vary from 1.4 to 2.0 eV. In addition, doping in ZnSnN2 remains largely unexplored. Using density functional theory with the Heyd-Scuseria-Ernzerhof hybrid functional, we investigate the electronic structure of ZnSnN2, its band alignment to GaN and ZnO, and the possibility of p -type doping. We find that the position of the valence-band maximum of ZnSnN2 is 0.39 eV higher than that in GaN, yet the conduction-band minimum is close to that in ZnO, which suggests that achieving p -type conductivity is likely as in GaN, yet it may be difficult to control unintentional n -type conductivity as in ZnO. Among possible p -type dopants, we explore Li, Na, and K substituting on the Zn site. We show that while LiZn is a shallow acceptor, NaZn and KZn are deep acceptors, which we trace back to large local relaxations around the Na and K impurities due to the atomic size mismatches.
Electron transport in high aspect ratio semiconductor nanowires and metal-semiconductor interfaces
NASA Astrophysics Data System (ADS)
Sun, Zhuting
We are facing variability problems for modern semiconductor transistors due to the fact that the performances of nominally identical devices in the scale of 10 100 nm could be dramatically different attributed to the small manufacturing variations. Different doping strategies give statistical variations in the number of dopant atom density ND in the channel. The material size gives variations in wire diameter dW. And the immediate environment of the material leads to an additional level of variability. E.g. vacuum-semiconductor interface causes variations in surface state density Ds, metal-semiconductor interface causes variations in Schottky barrier and dielectric semiconductor interface induces dielectric confinement at small scales. To approach these variability problems, I choose Si-doped GaAs nanowires as an example. I investigate transport in Si-doped GaAs nanowire (NW) samples contacted by lithographically patterned Gold-Titanium films as function of temperature T. I find a drastically different temperature dependence between the wire resistance RW, which is relatively weak, and the zero bias resistance RC, which is strong. I show that the data are consistent with a model based on a sharp donor energy level slightly above the bottom of the semiconductor conduction band and develop a simple method for using transport measurements for estimates of the doping density after nanowire growth. I discuss the predictions of effective free carrier density n eff as function of the surface state density Ds and wire size dW. I also describe a correction to the widely used model of Schottky contacts that improves thermodynamic consistency of the Schottky tunnel barrier profile and show that the original theory may underestimate the barrier conductance under certain conditions. I also provide analytical calculations for shallow silicon dopant energy in GaAs crystals, and find the presence of dielectrics (dielectric screening) and free carriers (Coulomb screening) cause a reduction of ionization energy and shift the donor energy level ED upward, accompanying conduction band EC shift downward due to band gap narrowing for doped semiconductor material. The theoretical results are in a reasonable agreement with previous experimental data. I also find that when the material reduces to nanoscale, dielectric confinement and surface depletion compete with both Coulomb screening and dielectric screening that shift the donor level ED down towards the band gap. The calculation should be appropriate for all types of semiconductors and dopant species.
Narrowband noise study of sliding charge density waves in NbSe 3 nanoribbons
Onishi, Seita; Jamei, Mehdi; Zettl, Alex
2017-01-12
Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe 3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasingmore » sample thickness.« less
STS studies of the surface of Bi2Se3
NASA Astrophysics Data System (ADS)
Romanowich, Megan; Lee, Mal-Soon; Mahanti, S. D.; Tessmer, Stuart; Chung, Duck Young; Song, Jung-Hwan; Kanatzidis, Mercouri
2012-02-01
We apply scanning tunneling spectroscopy to characterize the surface of the topological insulator Bi2Se3. Spectroscopy reveals that the minimum in the local density of states (LDOS) does not actually vanish in the region where Dirac cone states exist. We demonstrate with density functional theory calculations that this can be understood in terms of an asymmetric addition to the LDOS associated with a contribution from the bulk valence band that overlaps in energy with the Dirac point. We will discuss the origin of the fluctuations in the LDOS seen in the experiment near 0.2 eV above the Dirac point, which are associated with tunneling into the lowest conduction band states.
Optical properties of an indium doped CdSe nanocrystal: A density functional approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas
2016-05-06
We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less
Zirconium doped TiO{sub 2} thin films: A promising dielectric layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara
2016-05-06
In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less
Electronic and transport properties of fluorite structure of La2Ce2O7
NASA Astrophysics Data System (ADS)
Mahida, H. R.; Singh, Deobrat; Gupta, Sanjeev K.; Sonvane, Yogesh; Thakor, P. B.
2017-05-01
In this paper, we have symmetrically investigated the structural, electronic and transport properties of fluorite structure of lanthanum cerate oxide (La2Ce2O7) using density functional theory (DFT). The electronic band structure of La2Ce2O7 show semiconducting in nature with band gap of 1.54 eV (indirect at R-X points) and 1.71 eV (direct at R points). We have also calculated the susceptibility, hall resistance, electrical, and thermal conductivity by using Boltztrap equation. The electrical conductivity decreases where as thermal conductivity increases with increase in the temperature. Our result shows that La2Ce2O7 has application in Proton exchange membrane (PEM) fuel cells applications.
Comparison of current map data with data from STS-99 SRTM
2000-02-04
JSC2000E01552 (January 2000) --- This chart compares currently available global map data with the data which will be provided by SRTM during STS-99. The area depicted is the California coast. The SRTM mission will have approximately 1,000 scheduled data takes (every time Endeavour is over land). Data acquisition will be conducted in excess of 80 hours. The recording rate for data will be 180 Mbits/sec for C-band, 90 Mbits/sec for X-band. Total raw radar data will be approximately 9.8 terabytes (15,000 CDs). The mission will utilize some 300 high-density tapes (each tape records 30 min. of C-band, or 60 min. of X-band data).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyung Kim, Do; Department of Physics, University of Dongguk, Seoul 100-715; Youn Yoo, Dong
The origin of instability under positive bias stress (PBS) in amorphous Si-In-Zn-O (SIZO) thin film transistor (TFT) with different Si concentration has been investigated by x-ray photoelectron spectroscopy (XPS) and density of states (DOSs) analysis. It is found that stability of SIZO-TFT with 3 wt. % Si under PBS became more deteriorated than that of 1 wt. % Si incorporated SIZO-TFT due to the increased oxygen related trap distributed in energy range from conduction band to {approx}0.3 eV below the conduction band. The origin of instability under PBS was discussed in terms of oxygen related trap derived from DOSs andmore » XPS analysis.« less
Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene
NASA Astrophysics Data System (ADS)
Yang, Ming; Sun, Fang-Yuan; Wang, Rui-Ning; Zhang, Hang; Tang, Da-Wei
2017-10-01
Strain engineering has been proven as an effective approach to modify electronic and thermal properties of materials. Recently, strain effects on two-dimensional materials have become important relevant topics in this field. We performed density functional theory studies on the electronic and heat transport properties of bilayer boronitrene samples under an isotropic strain. We demonstrate that the strain will reduce the band gap width but keep the band gap type robust and direct. The strain will enhance the thermal conductivity of the system because of the increase in specific heat. The thermal conductivity was studied as a function of the phonon mean-free path.
Thermally Stimulated Currents in Nanocrystalline Titania
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Cavallaro, Alessandro; Scaringella, Monica
2018-01-01
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies. PMID:29303976
Thermally Stimulated Currents in Nanocrystalline Titania.
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Carnevale, Ennio Antonio; Cavallaro, Alessandro; Scaringella, Monica
2018-01-05
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10 14 -10 18 cm -3 , associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.
Du, Mao-Hua
2015-04-02
We know that native point defects play an important role in carrier transport properties of CH3NH3PbI3. However, the nature of many important defects remains controversial due partly to the conflicting results reported by recent density functional theory (DFT) calculations. In this Letter, we show that self-interaction error and the neglect of spin–orbit coupling (SOC) in many previous DFT calculations resulted in incorrect positions of valence and conduction band edges, although their difference, which is the band gap, is in good agreement with the experimental value. Moreover, this problem has led to incorrect predictions of defect-level positions. Hybrid density functional calculations,more » which partially correct the self-interaction error and include the SOC, show that, among native point defects (including vacancies, interstitials, and antisites), only the iodine vacancy and its complexes induce deep electron and hole trapping levels inside of the band gap, acting as nonradiative recombination centers.« less
NASA Astrophysics Data System (ADS)
Yu, L. H.; Yao, K. L.; Liu, Z. L.
2004-12-01
The band structures of the filled tetrahedral semiconductors LiMgN and LiZnN, viewed as the zinc-blende (MgN) - and (ZnN) - lattices partially filled with He-like Li + ion interstitials, were studied using the full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory. The conduction band distortions of LiMgN and LiZnN, compared to their “parent” zinc-blende analog AlN and GaN, are discussed. It was found that the insertion of Li + ions at the interstitial sites near the cation or anion pushes the conduction band minimum of the X point in the Brillouin zone upward, relative to that of the Γ point, for both (MgN) - and (ZnN) - lattices (the valence band maximum is at Γ for AlN, GaN, LiMgN, and LiZnN), which provides a method to convert a zinc-blende indirect gap semiconductor into a direct gap material, but the conduction band distortion of the β phase (Li + near the cation) is quite stronger than that of the α phase (Li + near the anion). The total energy calculations show the α phase to be more stable than the β phase for both LiMgN and LiZnN. The Li-N and Mg-N bonds exhibit a strong ionic character, whereas the Zn-N bond has a strong covalent character in LiMgN and LiZnN.
NASA Astrophysics Data System (ADS)
Hembree, Robert H.; Vazhappilly, Tijo; Micha, David A.
2017-12-01
The conductivity of holes and electrons photoexcited in Si slabs is affected by the slab thickness and by adsorbates. The mobilities of those charged carriers depend on how many layers compose the slab, and this has important scientific and technical consequences for the understanding of photovoltaic materials. A previously developed general computational procedure combining density matrix and electronic band structure treatments has been applied to extensive calculations of mobilities of photoexcited electrons and holes at Si(111) nanostructured surfaces with varying slab thickness and for varying photon energies, to investigate the expected change in mobility magnitudes as the slab thickness is increased. Results have been obtained with and without adsorbed silver clusters for comparison of their optical and photovoltaic properties. Band states were generated using a modified ab initio density functional treatment with the PBE exchange and correlation density functionals and with periodic boundary conditions for large atomic supercells. An energy gap correction was applied to the unoccupied orbital energies of each band structure by running more accurate HSE hybrid functional calculations for a Si(111) slab. Photoexcited state populations for slabs with 6, 8, 10, and 12 layers were generated using a steady state reduced density matrix including dissipative effects due to energy exchange with excitons and phonons in the medium. Mobilities have been calculated from the derivatives of voltage-driven electronic energies with respect to electronic momentum, for each energy band and for the average over bands. Results show two clear trends: (a) adding Ag increases the hole photomobilities and (b) decreasing the slab thickness increases hole photomobilities. The increased hole populations in 6- and 8-layer systems and the large increase in hole mobility for these thinner slabs can be interpreted as a quantum confinement effect of hole orbitals. As the slab thickness increases to ten and twelve layers, the effect of silver adsorbates decreases leading to smaller relative enhancements to the conduction electron and hole mobilities, but the addition of the silver nanoclusters still increases the absorbance of light and the mobility of holes compared to their mobilities in the pure Si slabs.
NASA Astrophysics Data System (ADS)
Garcia-Castello, Nuria; Illera, Sergio; Guerra, Roberto; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert
2013-08-01
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
Imam, M; Stojić, N; Binggeli, N
2017-08-04
Band alignments in ferroelectric tunnel junctions (FTJs) are expected to play a critical role in determining the charge transport across the tunneling barrier. In general, however, the interface band discontinuities and their polarization dependence are not well known in these systems. Using a first-principles density-functional-theory approach, we explore the ferroelectric (FE) polarization dependence of the band alignments in [Formula: see text] (LSMO/PZT/Co) multiferroic tunnel junctions, for which recent experiments indicated an ON/OFF conductivity behavior upon switching the PZT FE polarization. Our results on the pseudomorphic defect-free LSMO/PZT/Co FTJs evidence a major FE switching effect on the band discontinuities at both interfaces. Based on the changes in the band alignments, we provide a possible explanation for the observed trends in the resistive switching.
Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys
NASA Astrophysics Data System (ADS)
Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.
2012-02-01
Band structures of GaAs1-xNx and GaSb1-xNx alloys are studied in the framework of the density functional theory within the hybrid functional scheme (HSE06). We find that the scheme gives a clear improvement over the traditional (semi)local functionals in describing, in a qualitative agreement with experiments, the bowing of electron energy band gap in GaAs1-xNx alloys. In the case of GaSb1-xNx alloys, the hybrid functional used makes the study of band structures possible ab initio without any empirical parameter fitting. We explain the trends in the band gap reductions in the two materials that result mainly from the positions of the nitrogen-induced states with respect to the bottoms of the bulk conduction bands.
NASA Astrophysics Data System (ADS)
Phuc, Huynh V.; Tuan, Vu V.; Hieu, Nguyen N.; Ilyasov, Victor V.; Fedorov, Igor A.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Feddi, Elmustapha; Nguyen, Chuong V.
2018-05-01
Using density functional theory, we have studied the structural, electronic and optical properties of two-dimensional graphene-like C_2N nanosheet under in-plane strains. Our results indicate that the C_2N nanosheet is a semiconductor with a direct band gap of 1.70 eV at the equilibrium state opening between the highest valence band and lowest conduction band located at the Γ point. The band gap of the C_2N nanosheet decreases with the increasing of both uniaxial/biaxial strains. In the presence of the strain, we found band shift and band splitting of the occupied and unoccupied energy states of the valence and conduction bands, resulting in a decrease of the band gap. Furthermore, the absorption and reflectance spectra for the C_2N nanosheet have a broad peak around 2.6 eV, where a maximum absorption value is up to 3.2 × 10^{-5} cm^{-1} and reflectance is about 0.27%. Moreover, our calculations also show that the optical properties of the C_2N nanosheets can be controlled by applying the biaxial and uniaxial strains. The obtained results might provide potential applications for the C_2N nanosheets in nanoelectronics and optoelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftci, Yasemin O.; Mahanti, Subhendra D.
Electronic band structure and structural properties of two representative half-Heusler (HH) compounds with 8 electron valence count (VC), KScC and KScGe, have been studied using first principles methods within density functional theory and generalized gradient approximation. These systems differ from the well studied class of HH compounds like ZrNiSn and ZrCoSb which have VC = 18 because of the absence of d electrons of the transition metal atoms Ni and Co. Electronic transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (κ{sub e}) (the latter two scaled by electronic relaxation time), and the power factor (S{sup 2}σ) havemore » been calculated using semi-classical Boltzmann transport theory within constant relaxation time approximation. Both the compounds are direct band gap semiconductors with band extrema at the X point. Their electronic structures show a mixture of heavy and light bands near the valance band maximum and highly anisotropic conduction and valence bands near the band extrema, desirable features of good thermoelectric. Optimal p- or n-type doping concentrations have been estimated based on thermopower and maximum power factors. The optimum room temperature values of S are ∼1.5 times larger than that of the best room temperature thermoelectric Bi{sub 2}Te{sub 3}. We also discuss the impact of the band structure on deviations from Weidemann-Franz law as one tunes the chemical potential across the band gap.« less
NASA Astrophysics Data System (ADS)
Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.
2017-04-01
Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.
Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands
NASA Astrophysics Data System (ADS)
Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.
2018-01-01
The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.
NASA Astrophysics Data System (ADS)
Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.
2015-01-01
Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.
Plasmon enhanced heterogeneous electron transfer with continuous band energy model
NASA Astrophysics Data System (ADS)
Zhao, Dandan; Niu, Lu; Wang, Luxia
2017-08-01
Photoinduced charge injection from a perylene dye molecule into the conduction band of a TiO2 system decorated by a metal nanoparticles (MNP) is studied theoretically. Utilizing the density matrix theory the charge transfer dynamics is analyzed. The continuous behavior of the TiO2 conduction band is accounted for by a Legendre polynomials expansion. The simulations consider optical excitation of the dye molecule coupled to the MNP and the subsequent electron injection into the TiO2 semiconductor. Due to the energy transfer coupling between the molecule and the MNP optical excitation and subsequent charge injection into semiconductor is strongly enhanced. The respective enhancement factor can reach values larger than 103. Effects of pulse duration, coupling strength and energetic resonances are also analyzed. The whole approach offers an efficient way to increase charge injection in dye-sensitized solar cells.
Huang, Yan; Ip, Wing Shan; Lau, Yuen Ying; Sun, Jinfeng; Zeng, Jie; Yeung, Nga Sze Sea; Ng, Wing Sum; Li, Hongfei; Pei, Zengxia; Xue, Qi; Wang, Yukun; Yu, Jie; Hu, Hong; Zhi, Chunyi
2017-09-26
With intrinsic safety and much higher energy densities than supercapacitors, rechargeable nickel/cobalt-zinc-based textile batteries are promising power sources for next generation personalized wearable electronics. However, high-performance wearable nickel/cobalt-zinc-based batteries are rarely reported because there is a lack of industrially weavable and knittable highly conductive yarns. Here, we use scalably produced highly conductive yarns uniformly covered with zinc (as anode) and nickel cobalt hydroxide nanosheets (as cathode) to fabricate rechargeable yarn batteries. They possess a battery level capacity and energy density, as well as a supercapacitor level power density. They deliver high specific capacity of 5 mAh cm -3 and energy densities of 0.12 mWh cm -2 and 8 mWh cm -3 (based on the whole solid battery). They exhibit ultrahigh rate capabilities of 232 C (liquid electrolyte) and 116 C (solid electrolyte), which endows the batteries excellent power densities of 32.8 mW cm -2 and 2.2 W cm -3 (based on the whole solid battery). These are among the highest values reported so far. A wrist band battery is further constructed by using a large conductive cloth woven from the conductive yarns by a commercial weaving machine. It powers various electronic devices successfully, enabling dual functions of wearability and energy storage.
Electronic properties of ZnPSe3-MoS2 Van der Waals heterostructure
NASA Astrophysics Data System (ADS)
Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.
2018-04-01
We present a comparative study of electronic properties of ZnPSe3-MoS2 heterostructure using GGA-PBE functional and DFT-D2 method within the framework of density functional theory (DFT). Electronic band structure for the considered heterostructure shows a direct band gap semiconducting character. A decrease in band gap is observed with the heterostructuring as compared to their constituent pristine monolayers. The alignment of valance band maxima and conduction band minima on different layers in heterostructure indicate the physical separation of charge carriers. A work function of 5.31 eV has been calculated for ZnPSe3-MoS2 heterostructure. These results provide a physical basis for the potential applications of these ZnPSe3-MoS2 heterostructure in optoelectronic devices.
NASA Astrophysics Data System (ADS)
Estrada, M.; Hernandez-Barrios, Y.; Cerdeira, A.; Ávila-Herrera, F.; Tinoco, J.; Moldovan, O.; Lime, F.; Iñiguez, B.
2017-09-01
A crystalline-like temperature dependence of the electrical characteristics of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) is reported, in which the drain current reduces as the temperature is increased. This behavior appears for values of drain and gate voltages above which a change in the predominant conduction mechanism occurs. After studying the possible conduction mechanisms, it was determined that, for gate and drain voltages below these values, hopping is the predominant mechanism with the current increasing with temperature, while for values above, the predominant conduction mechanism becomes percolation in the conduction band or band conduction and IDS reduces as the temperature increases. It was determined that this behavior appears, when the effect of trapping is reduced, either by varying the density of states, their characteristic energy or both. Simulations were used to further confirm the causes of the observed behavior.
Optimal Bandwidth for High Efficiency Thermoelectrics
NASA Astrophysics Data System (ADS)
Zhou, Jun; Yang, Ronggui; Chen, Gang; Dresselhaus, Mildred S.
2011-11-01
The thermoelectric figure of merit (ZT) in narrow conduction bands of different material dimensionalities is investigated for different carrier scattering models. When the bandwidth is zero, the transport distribution function (TDF) is finite, not infinite as previously speculated by Mahan and Sofo [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)PNASA60027-842410.1073/pnas.93.15.7436], even though the carrier density of states goes to infinity. Such a finite TDF results in a zero electrical conductivity and thus a zero ZT. We point out that the optimal ZT cannot be found in an extremely narrow conduction band. The existence of an optimal bandwidth for a maximal ZT depends strongly on the scattering models and the dimensionality of the material. A nonzero optimal bandwidth for maximizing ZT also depends on the lattice thermal conductivity. A larger maximum ZT can be obtained for materials with a smaller lattice thermal conductivity.
Electronic and thermoelectric analysis of phases in the In 2O 3(ZnO) k system
Hopper, E. Mitchell; Zhu, Qimin; Song, Jung-Hwan; ...
2011-01-01
The high-temperature electrical conductivity and thermopower of several compounds in the In 2O 3(ZnO) k system (k = 3, 5, 7, and 9) were measured, and the band structures of the k = 1, 2, and 3 structures were predicted based on first-principles calculations. These phases exhibit highly dispersed conduction bands consistent with transparent conducting oxide behavior. Jonker plots (Seebeck coefficient vs. natural logarithm of conductivity) were used to obtain the product of the density of states and mobility for these phases, which were related to the maximum achievable power factor (thermopower squared times conductivity) for each phase by Ioffemore » analysis (maximum power factor vs. Jonker plot intercept). With the exception of the k = 9 phase, all other phases were found to have maximum predicted power factors comparable to other thermoelectric oxides if suitably doped.« less
Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua
2017-12-06
A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.
Single crystal growth, electronic structure and optical properties of Cs2HgBr4
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Parasyuk, O. V.; Fedorchuk, A. O.; Khyzhun, O. Y.
2015-10-01
We report on successful synthesis of high-quality single crystal of cesium mercury tetrabromide, Cs2HgBr4, by using the vertical Bridgman-Stockbarger method as well as on studies of its electronic structure. For the Cs2HgBr4 crystal, we have recorded X-ray photoelectron spectra for both pristine and Ar+ ion-bombarded surfaces. Our data indicate that the Cs2HgBr4 single crystal surface is rather sensitive with respect to Ar+ ion-bombardment. In particular, such a treatment of the Cs2HgBr4 single crystal surface alters its elemental stoichiometry. To explore peculiarities of the energy distribution of total and partial densities of states within the valence band and the conduction band of Cs2HgBr4, we have made band-structure calculations based on density functional theory (DFT) employing the augmented plane wave+local orbitals (APW+lo) method as incorporated in the WIEN2k package. The APW+lo calculations allow for concluding that the Br 4p states make the major contributions in the upper portion of the valence band, while its lower portion is dominated by contributors of the Hg 5d and Cs 5p states. Further, the main contributors to the bottom of the conduction band of Cs2HgBr4 are the unoccupied Br p and Hg s states. In addition, main optical characteristics of Cs2HgBr4 such as dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity have been explored from the first-principles band-structure calculations.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.
2015-04-01
High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.
Vasseur, Guillaume; Fagot-Revurat, Yannick; Sicot, Muriel; ...
2016-01-04
We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a function of oligomer length by scanning tunnelling spectroscopy, with Fermi level crossings observed for chains longer than ten phenyl rings. Angle-resolved photoelectron spectroscopy reveals a quasi-one-dimensional valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the organic band-structure, includingmore » the k-dispersion, the gap size and electron charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour. In summary, we have fully characterized the band structure of a carbon-based conducting wire. This model system may be considered as a fingerprint of -conjugation of surface organic frameworks.« less
Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.
Su, Kang; Wang, Yuhua
2010-03-01
As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.
Direct measurement of density of states in pentacene thin film transistors
NASA Astrophysics Data System (ADS)
Yogev, S.; Halpern, E.; Matsubara, R.; Nakamura, M.; Rosenwaks, Y.
2011-10-01
We report on direct high lateral resolution measurements of density of states in pentacene thin film transistors using Kelvin probe force microscopy. The measurements were conducted on passivated (hexamethyldisilazane) and unpassivated field effect transistors with 10- and 30-nm-thick pentacene polycrystalline layers. The analysis takes into account both the band bending in the organic film and the trapped charge at the SiO2-pentacene interface. We found that the density of states for the highest occupied molecular orbital band of pentacene film on the treated substrate is Gaussian with a width (variance) of σ=0.07±0.01eV and an exponential tail. The concentration of the density of states in the gap for pentacene on bare SiO2 substrate was larger by one order of magnitude, had a different energy distribution, and induced Fermi level pinning. The results are discussed in view of their effect on pentacene thin film transistors’ performance.
Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo
2016-08-17
Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.
Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys
Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.
2016-01-01
Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470
Emission properties of Ga2O3 nano-flakes: effect of excitation density.
Pozina, G; Forsberg, M; Kaliteevski, M A; Hemmingsson, C
2017-02-08
In the quest of developing high performance electronic and optical devices and more cost effective fabrication processes of monoclinic β-Ga 2 O 3 , new growth techniques and fundamental electronic and optical properties of defects have to be explored. By heating of dissolved metallic Ga in HCl in a NH 3 and N 2 atmosphere, nano-flake films of monoclinic β-phase Ga 2 O 3 were grown as confirmed by XRD. From optical measurements, we observe two strong emissions. A red band peaking at ~2.0 eV and a UV band at ~3.8 eV. The band at ~2.0 eV is attributed to donor-acceptor pair recombination where the donor and acceptor level is suggested to be related to V O and nitrogen, respectively. By studying the dependence of the intensity of the UV band at 3.8 eV versus excitation density, a model is suggested. In the model, it is assumed that local potential fluctuations forming minima (maxima), where the carriers would be localized with a summarized band offset for conduction and valence band of 1 eV. The origin of the fluctuations is tentatively suggested to be related to micro-inclusions of different phases in the film.
Emission properties of Ga2O3 nano-flakes: effect of excitation density
Pozina, G.; Forsberg, M.; Kaliteevski, M. A.; Hemmingsson, C.
2017-01-01
In the quest of developing high performance electronic and optical devices and more cost effective fabrication processes of monoclinic β-Ga2O3, new growth techniques and fundamental electronic and optical properties of defects have to be explored. By heating of dissolved metallic Ga in HCl in a NH3 and N2 atmosphere, nano-flake films of monoclinic β-phase Ga2O3 were grown as confirmed by XRD. From optical measurements, we observe two strong emissions. A red band peaking at ~2.0 eV and a UV band at ~3.8 eV. The band at ~2.0 eV is attributed to donor-acceptor pair recombination where the donor and acceptor level is suggested to be related to VO and nitrogen, respectively. By studying the dependence of the intensity of the UV band at 3.8 eV versus excitation density, a model is suggested. In the model, it is assumed that local potential fluctuations forming minima (maxima), where the carriers would be localized with a summarized band offset for conduction and valence band of 1 eV. The origin of the fluctuations is tentatively suggested to be related to micro-inclusions of different phases in the film. PMID:28176841
Meng, Andrew C; Cheng, Jun; Sprik, Michiel
2016-03-03
Conduction band edge (CBE) and valence band edge (VBE) positions of InxGa1-xN photoelectrodes were computed using density functional theory methods. The band edges of fully solvated GaN and InN model systems were aligned with respect to the standard hydrogen electrode using a molecular dynamics hydrogen electrode scheme applied earlier to TiO2/water interfaces. Similar to the findings for TiO2, we found that the Purdew-Burke-Ernzerhof (PBE) functional gives a VBE potential which is too negative by 1 V. This cathodic bias is largely corrected by application of the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional containing a fraction of Hartree-Fock exchange. The effect of a change of composition was investigated using simplified model systems consisting of vacuum slabs covered on both sides by one monolayer of H2O. The CBE was found to vary linearly with In content. The VBE, in comparison, is much less sensitive to composition. The data show that the band edges straddle the hydrogen and oxygen evolution potentials for In fractions less than 47%. The band gap was found to exceed 2 eV for an In fraction less than 54%.
First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys
NASA Astrophysics Data System (ADS)
Khatta, Swati; Tripathi, S. K.; Prakash, Satya
2017-09-01
The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.
Electrical properties of MOS devices fabricated on the 4H-SiC C-face.
NASA Astrophysics Data System (ADS)
Chen, Zengjun; Ahyi, A. C.; Williams, J. R.
2007-11-01
The electrical characteristics of MOS devices fabricated on the carbon face of 4H-SiC will be described. The C-face has a higher oxidation rate and a higher interface trap density compared to the Si-face. The thermal oxidation rate and the distribution of interface traps under different oxidation conditions will be discussed in this presentation. Sequential post-oxidation anneals in nitric oxide and hydrogen effectively reduces the interface density (Dit) near the conduction band edge. However, deeper in the band gap, the trap density remains higher compared to the Si-face. Time-dependent dielectric breakdown (TDDB) studies have also been performed to investigate oxide reliability on the C-face, and current-voltage measurements show that a low barrier height against carrier injection likely contributes to oxide degradation. Nevertheless, the effective channel mobility and threshold voltage for n-channel C-face lateral MOSFETs compare favorably with similar Si-face devices.
Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert
2017-11-29
Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.
NASA Astrophysics Data System (ADS)
Linz, Norbert; Freidank, Sebastian; Liang, Xiao-Xuan; Vogelmann, Hannes; Trickl, Thomas; Vogel, Alfred
2015-04-01
Investigation of the wavelength dependence (725-1025 nm) of the threshold for nanosecond optical breakdown in water revealed steps consistent with breakdown initiation by multiphoton ionization, with an initiation energy of about 6.6 eV. This value is considerably smaller than the autoionization threshold of about 9.5 eV, which can be regarded as band gap relevant for avalanche ionization. Breakdown initiation is likely to occur via excitation of a valence band electron into a solvated state, followed by rapid excitation into the conduction band. Theoretical analysis based on these assumptions suggests that the seed electron density required for initiating avalanche ionization amounts to 2.5 ×1015c m-3 at 725 nm and drops to 1.1 ×1012c m-3 at 1025 nm. These results demand changes of future breakdown modeling for water, including the use of a larger band gap than previously employed, the introduction of an intermediate energy level for initiation, and consideration of the wavelength dependence of seed electron density.
Temperature-driven band inversion in Pb 0.77 Sn 0.23 Se : Optical and Hall effect studies
Anand, Naween; Buvaev, Sanal; Hebard, A. F.; ...
2014-12-23
Optical and Hall-effect measurements have been performed on single crystals of Pb₀.₇₇Sn₀.₂₃Se, a IV-VI mixed chalcogenide. The temperature dependent (10–300 K) reflectance was measured over 40–7000 cm⁻¹ (5–870 meV) with an extension to 15,500 cm⁻¹ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy opticalmore » spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Thus, density function theory calculation for the electronic band structure also make similar predictions.« less
NASA Astrophysics Data System (ADS)
Indari, E. D.; Wungu, T. D. K.; Hidayat, R.
2017-07-01
Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
NASA Astrophysics Data System (ADS)
Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey
2017-02-01
The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor:
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Parasyuk, O. V.; Fedorchuk, A. O.; Khyzhun, O. Y.
2016-10-01
A high-quality single crystal of cesium mercury tetrabromide, Cs2HgCl4, was synthesized by using the vertical Bridgman-Stockbarger method and its electronic structure was studied from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectra were measured for both pristine and Ar+ ion-bombarded Cs2HgCl4 single crystal surfaces. The present XPS measurements indicate that the Cs2HgCl4 single crystal surface is sensitive with respect to Ar+ ion-bombardment: such a treatment changes substantially its elemental stoichiometry. With the aim of exploring total and partial densities of states within the valence band and conduction band regions of the Cs2HgCl4 compound, band-structure calculations based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method as incorporated within the WIEN2k package are performed. The calculations indicate that the Cl 3p states are the principal contributors in the upper portion of the valence band, while the Hg 5d and Cs 5p states dominate in its lower portion. In addition, the calculations allow for concluding that the unoccupied Cl p and Hg s states are the main contributors to the bottom of the conduction band. Furthermore, main optical characteristics of Cs2HgCl4, namely dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity, are elucidated based on the DFT calculations.
Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John
2018-01-01
Abstract Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO3 and iron doped SrTiO3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO3 and compared it to DOS of iron-doped SrTiO3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO3 and iron-doped SrTiO3. Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO3, are accessible only on TiO2 terminated SrTiO3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction. PMID:29535797
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho
We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was alsomore » clarified.« less
Single Crystal Growth, Resistivity, and Electronic Structure of the Weyl Semimetals NbP and TaP
Sapkota, Deepak; Mukherjee, Rupam; Mandrus, David
2016-12-06
We have successfully synthesized niobium monophosphide and tantalum monophosphide crystals by a chemical vapor transport technique. We report resistivity vs. temperature of both materials in the temperature range from 2 K to 300 K. We have also performed electronic structure calculations and present the band structure and density of states of these two compounds. The calculations show that both compounds are semimetals, as their conduction and valence bands overlap near the Fermi energy.
Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)
NASA Astrophysics Data System (ADS)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
2016-10-01
We present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses, and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from Γ to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 ± 0.02 eV. We thoroughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accurately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.
NASA Astrophysics Data System (ADS)
Bhaskar, Ankam; Pai, Yi-Hsuan; Liu, Chia-Jyi
2017-11-01
Low-temperature electronic and thermal transport measurements are carried out on nanostructured Zn1-x Al x Te (0 ⩽ x ⩽ 0.15) fabricated using hydrothermal synthesis followed by evacuated-and-encapsulated sintering. A single parabolic band with acoustic phonon scattering is used to analyze thermoelectric transport data. It is found that reduced Fermi energy gets closer to the valence band edge and density of states effective mass, effective density of states, and Hall factor decrease with increasing x in doped samples. The chemical carrier concentration, carrier density independent mobility, β, and theoretical zT values increase with increasing x in doped samples. The nanostructured Zn1-x Al x Te exhibits significant reduction of thermal conductivity at 300 K (1.82-3.71 W m-1 K-1) as compared to bulk ZnTe (18 W m-1 K-1). The point-defect scattering and phonon-grain scattering play an important role in reducing the lattice thermal conductivity. In addition, partial substitution of Al3+ for Zn2+ significantly improves both the power factor and zT values.
Boltzmann transport properties of ultra thin-layer of h-CX monolayers
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh
2018-04-01
Structural, electronic and thermoelectric properties of monolayer h-CX (X= Al, As, B, Bi, Ga, In, P, N, Sb and Tl) have been computed using density functional theory (DFT). The structural, electronic band structure, phonon dispersion curves and thermoelectric properties have been investigated. h-CGa and h-CTl show the periodically lattice vibrations and h-CB and h-CIn show small imaginary ZA frequencies. Thermoelectric properties are obtained using BoltzTrap code with the constant relaxation time (τ) approximation such as electronic, thermal and electrical conductivity calculated for various temperatures. The results indicate that h-CGa, h-CIn, h-CTl and h-CAl have direct band gaps with minimum electronic thermal and electrical conductivity while h-CB and h-CN show the high electronic thermal and electrical conductivity with highest cohesive energy.
Band-like transport in highly crystalline graphene films from defective graphene oxides.
Negishi, R; Akabori, M; Ito, T; Watanabe, Y; Kobayashi, Y
2016-07-01
The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm(2)/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.
Band-like transport in highly crystalline graphene films from defective graphene oxides
NASA Astrophysics Data System (ADS)
Negishi, R.; Akabori, M.; Ito, T.; Watanabe, Y.; Kobayashi, Y.
2016-07-01
The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm2/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.
H-tailored surface conductivity in narrow band gap In(AsN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O.
2015-01-12
We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.
Altman, Alison B.; Pemmaraju, C. D.; Alayoglu, Selim; ...
2018-01-15
Correlated electron phenomena in lanthanide and actinide materials are driven by a complex interplay between the f and d orbitals. Here in this study, aluminum K-edge x-ray absorption spectroscopy and density functional theory calculations are used to evaluate the electronic structure of the dialuminides, MAl 2 (M = Ce, Sm, Eu, Yb, Lu, U, and Pu). The results show how the energy and occupancy of the 4f or 5f orbitals impacts mixing of Al 3p character into the 5d or 6d conduction bands, which has implications for understanding the magnetic and structural properties of correlated electron systems.
Play the heavy: An effective mass study for α-Fe{sub 2}O{sub 3} and corundum oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neufeld, Ofer; Caspary Toroker, Maytal, E-mail: maytalc@tx.technion.ac.il
2016-04-28
Iron(III) oxide (α-Fe{sub 2}O{sub 3}) is a known water splitting catalyst commonly used in photoelectrochemical cells. These cells are severely impaired by poor conductivity in α-Fe{sub 2}O{sub 3}, and resolving the conductivity issue is therefore crucial. One of the most intrinsic properties of matter, which governs conductivity, is the carrier effective masses. In this work, we investigate the carrier effective masses in α-Fe{sub 2}O{sub 3} and other corundum oxides, including Al{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and In{sub 2}O{sub 3} with different theoretical constructs: density functional theory (DFT), DFT+U, hybrid DFT, and G{sub 0}W{sub 0}. We findmore » DFT sufficiently describes the carrier masses and a quasi-particle theory is only required for accuracies better than 30% for the conduction band effective mass. Additionally, we compare the density of states (DOS) and band effective mass approximations and conclude the DOS effective mass provides poor results whenever the band structure is anisotropic. We find that the charge carriers in Fe{sub 2}O{sub 3} “play the heavy” since they have large effective masses that reduce conductivity and device efficiency. Finally, we conclude that the less heavy electron effective masses of other corundum oxides studied relative to Fe{sub 2}O{sub 3} could contribute to efficiency improvements in Fe{sub 2}O{sub 3} upon Al{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and In{sub 2}O{sub 3} coverage.« less
Ab-initio study on electronic properties of rocksalt SnAs
NASA Astrophysics Data System (ADS)
Babariya, Bindiya; Vaghela, M. V.; Gajjar, P. N.
2018-05-01
Within the frame work of Local Density Approximation of Exchange and Correlation, ab-initio method of density functional theory with Abinit code is used to compute electronic energy band structure, density of States and charge density of SnAs in rocksalt phase. Our result after optimization for lattice constant agrees with experimental value within 0.59% deviation. The computed electronic energy bands in high symmetry directions Γ→K→X→Γ→L→X→W→L→U shown metallic nature. The lowest band in the electronic band structure is showing band-gap approximately 1.70 eV from next higher band and no crossing between lowest two bands are seen. The density of states revels p-p orbit hybridization between Sn and As atoms. The spherical contour around Sn and As in the charge density plot represent partly ionic and partly covalent bonding. Fermi surface topology is the resultant effect of the single band crossing along L direction at Ef.
Optoelectronics and defect levels in hydroxyapatite by first-principles.
Avakyan, Leon A; Paramonova, Ekaterina V; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S; Bugaev, Lusegen A
2018-04-21
Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.
Optoelectronics and defect levels in hydroxyapatite by first-principles
NASA Astrophysics Data System (ADS)
Avakyan, Leon A.; Paramonova, Ekaterina V.; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S.; Bugaev, Lusegen A.
2018-04-01
Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.
Sizable band gap in organometallic topological insulator
NASA Astrophysics Data System (ADS)
Derakhshan, V.; Ketabi, S. A.
2017-01-01
Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua
Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less
Chalcogen doping at anionic site: A scheme towards more dispersive valence band in CuAlO2
NASA Astrophysics Data System (ADS)
Mazumder, Nilesh; Sen, Dipayan; Chattopadhyay, Kalyan Kumar
2013-02-01
Using first-principles calculations, we propose to enhance the dispersion of the top of valence band at high-symmetry points by selective introduction of chalcogen (Ch) impurities at oxygen site. As ab-plane hole mobility of CuAlO2 is large enough to support a band-conduction model over a polaronic one at room temperature [M. S. Lee et al. Appl. Phys. Lett. 79, 2029, (2001); J. Tate et al. Phys. Rev. B 80, 165206, (2009)], we examine its electronic and optical properties normal to c-axis. Intrinsic indirectness of energy-gap at Γ-point can be effectively removed along with substantial increase in density of states near Fermi level (EF) upon Ch addition. This can be attributed to S 2p-Cu 3d interaction just at or below EF, which should result in significantly improved carrier mobility and conductivity profile for this important p-type TCO.
Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua; ...
2017-11-30
Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less
A drain current model for amorphous InGaZnO thin film transistors considering temperature effects
NASA Astrophysics Data System (ADS)
Cai, M. X.; Yao, R. H.
2018-03-01
Temperature dependent electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) are investigated considering the percolation and multiple trapping and release (MTR) conduction mechanisms. Carrier-density and temperature dependent carrier mobility in a-IGZO is derived with the Boltzmann transport equation, which is affected by potential barriers above the conduction band edge with Gaussian-like distributions. The free and trapped charge densities in the channel are calculated with Fermi-Dirac statistics, and the field effective mobility of a-IGZO TFTs is then deduced based on the MTR theory. Temperature dependent drain current model for a-IGZO TFTs is finally derived with the obtained low field mobility and free charge density, which is applicable to both non-degenerate and degenerate conductions. This physical-based model is verified by available experiment results at various temperatures.
Preliminary study of near surface detections at geothermal field using optic and SAR imageries
NASA Astrophysics Data System (ADS)
Kurniawahidayati, Beta; Agoes Nugroho, Indra; Syahputra Mulyana, Reza; Saepuloh, Asep
2017-12-01
Current remote sensing technologies shows that surface manifestation of geothermal system could be detected with optical and SAR remote sensing, but to assess target beneath near the surface layer with the surficial method needs a further study. This study conducts a preliminary result using Optic and SAR remote sensing imagery to detect near surface geothermal manifestation at and around Mt. Papandayan, West Java, Indonesia. The data used in this study were Landsat-8 OLI/TIRS for delineating geothermal manifestation prospect area and an Advanced Land Observing Satellite(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) level 1.1 for extracting lineaments and their density. An assumption was raised that the lineaments correlated with near surface structures due to long L-band wavelength about 23.6 cm. Near surface manifestation prospect area are delineated using visual comparison between Landsat 8 RGB True Colour Composite band 4,3,2 (TCC), False Colour Composite band 5,6,7 (FCC), and lineament density map of ALOS PALSAR. Visual properties of ground object were distinguished from interaction of the electromagnetic radiation and object whether it reflect, scatter, absorb, or and emit electromagnetic radiation based on characteristic of their molecular composition and their macroscopic scale and geometry. TCC and FCC composite bands produced 6 and 7 surface manifestation zones according to its visual classification, respectively. Classified images were then compared to a Normalized Different Vegetation Index (NDVI) to obtain the influence of vegetation at the ground surface to the image. Geothermal area were classified based on vegetation index from NDVI. TCC image is more sensitive to the vegetation than FCC image. The later composite produced a better result for identifying visually geothermal manifestation showed by detail-detected zones. According to lineament density analysis high density area located on the peak of Papandayan overlaid with zone 1 and 2 of FCC. Comparing to the extracted lineament density, we interpreted that the near surface manifestation is located at zone 1 and 2 of FCC image.
Spin transport in oxygen adsorbed graphene nanoribbon
NASA Astrophysics Data System (ADS)
Kumar, Vipin
2018-04-01
The spin transport properties of pristine graphene nanoribbons (GNRs) have been most widely studied using theoretical and experimental tools. The possibilities of oxidation of fabricated graphene based nano electronic devices may change the device characteristics, which motivates to further explore the properties of graphene oxide nanoribbons (GONRs). Therefore, we present a systematic computational study on the spin polarized transport in surface oxidized GNR in antiferromagnetic (AFM) spin configuration using density functional theory combined with non-equilibrium Green's function (NEGF) method. It is found that the conductance in oxidized GNRs is significantly suppressed in the valance band and the conduction band. A further reduction in the conductance profile is seen in presence of two oxygen atoms on the ribbon plane. This change in the conductance may be attributed to change in the surface topology of the ribbon basal plane due to presence of the oxygen adatoms, where the charge transfer take place between the ribbon basal plane and the oxygen atoms.
Correlation and nuclear distortion effects of Cr-substituted ZnSe.
Tablero, C
2007-04-28
There is a great deal of interest in the effect of the correlation and effect of the atomic distortion in materials with a metallic intermediate band. This band, situated within the semiconductor band gaps, would be split, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition. This basic electronic band structure corresponds to intermediate band materials and is characteristic of transparent-conducting oxides, up and down converters, and intermediate band solar cells. A sufficiently high density of Cr in ZnSe substituting the Zn atoms leads to a microscopic intermediate band, in which these effects will be analyzed. A Hubbard term has been included to improve the description of the many-body effect. This term modifies the bandwidth of the intermediate band, the Fermi energy, and breaks the orbital-occupation degeneracy. From the results, the intermediate band is not split within the range of Hubbard term values analyzed and for Cr substituting Zn from 0.463% to 3.125% of Cr atomic concentration.
Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: A first principle calculation
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike
2017-11-01
In this study, the adsorption mechanism of Cs/NF3 on the [001]-oriented GaN nanowire surface is investigated by using the density function theory based on first-principles. In the Cs/NF3 co-activation process, the system is inclined to form NF3-in structure. Through the calculation results of adsorption energy, NF3 molecule adsorption tends to take an orientation with F atoms on top and the most favorable adsorption site is BGa-N. The NF3 activation process can further cut down the work function of the Cs-covered nanowire surface only when Cs coverage is 0.75 ML and 1 ML, which can be explained by the double dipole moment theory. With increasing Cs coverage, the valence band and conduction band both shift to lower energy side, contributing to the appearance of a downward band bending region and promoting the escape of surface photoelectrons. After NF3 molecule adsorption, the peak of total density of states near Fermi level increase due to the orbital hybridization between NF3-2s, Cs-5s states and N-2p states, which strengthen the conductivity of the nanowire surface and leads to the metallic properties. All these calculations may direct the Cs/NF3 activation process of GaN nanowire optoelectronic devices.
Ma, Yang; Wang, Na; Chen, Jiang; Chen, Changsong; San, Haisheng; Chen, Jige; Cheng, Zhengdong
2018-06-19
Utilizing high-energy beta particles emitted from radioisotopes for long-lifetime betavoltaic cells is a great challenge due to low energy conversion efficiency. Here, we report a betavoltaic cell fabricated using TiO 2 nanotube arrays (TNTAs) electrochemically reduced in ethylene glycol electrolyte (EGECR-TNTAs) for the enhancement of the betavoltaic effect. The electrochemical reduction of TNTAs using high cathodic bias in organic electrolytes is indeed a facile and effective strategy to induce in situ self-doping of oxygen vacancy (OV) and Ti 3+ defects. The black EGECR-TNTAs are highly stable with a significantly narrower band gap and higher electrical conductivity as well as UV-vis-NIR light absorption. A 20 mCi of 63 Ni betavoltaic cell based on the reduced TNTAs exhibits a maximum ECE of 3.79% with open-circuit voltage of 1.04 V, short-circuit current density of 117.5 nA cm -2 , and a maximum power density of 39.2 nW cm -2 . The betavoltaic enhancement can be attributed to the enhanced charge carrier transport and separation as well as multiple exciton generation of electron-hole pairs due the generation of OV and Ti 3+ interstitial bands below the conductive band of TiO 2.
Structural, optical, physical and electrical properties of V2O5.SrO.B2O3 glasses.
Sindhu, S; Sanghi, S; Agarwal, A; Seth, V P; Kishore, N
2006-05-01
The present work aims to study the structure and variation of optical band gap, density and dc electrical conductivity in vanadium strontium borate glasses. The glass systems xV2O5.(40-x)SrO.60B2O3 and xV2O5.(60-x)B2O3.40SrO with x varying from 0 to 20 mol% were prepared by normal melt quench technique. Structural studies were made by recording IR transmission spectra. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. The position of absorption edge and hence the value of the optical band gap was found to depend on the semiconducting glass composition. The absorption in these glasses is believed to be associated with indirect transitions. The origin of Urbach energy is associated with the phonon-assisted indirect transitions. The change in both density and molar volume was discussed in terms of the structural modifications that take place in the glass matrix on addition of V2O5. dc conductivity of the glass systems is also reported. The change of conductivity and activation energy with composition indicates that the conduction process varies from ionic to polaronic one.
Ding, Guangqian; Wang, Cong; Gao, Guoying; Yao, Kailun; Dun, Chaochao; Feng, Chunbao; Li, Dengfeng; Zhang, Gang
2018-04-19
High band degeneracy and glassy phonon transport are two remarkable features of highly efficient thermoelectric (TE) materials. The former promotes the power factor, while the latter aims to break the lower limit of lattice thermal conductivity through phonon scattering. Herein, we use the unique possibility offered by a two-dimensional superlattice-monolayer structure (SLM) to engineer the band degeneracy, charge density and phonon spectrum to maximize the thermoelectric figure of merit (ZT). First-principles calculations with Boltzmann transport equations reveal that the conduction bands of ZrSe2/HfSe2 SLM possess a highly degenerate level which gives a high n-type power factor; at the same time, the stair-like density of states yields a high Seebeck coefficient. These characteristics are absent in the individual monolayers. In addition, the SLM shows a suppressed lattice thermal conductivity along the superlattice period as phonons are effectively scattered by the interfaces. An intrinsic ZT of 5.3 (300 K) is achieved in n-type SLM, and it is 3.2 in the p-type counterpart. Compared with the theoretical predictions calculated with the same level of accuracy, these values are at least four-fold higher than those in the two parent materials, monolayer ZrSe2 and HfSe2. Our results provide a new strategy for the maximum thermoelectric performance, and clearly demonstrate the advantage of two-dimensional material heterostructures in the application of renewable energy.
NASA Astrophysics Data System (ADS)
Polash, Md. Mobarak Hossain; Alam, M. Shah; Biswas, Saumya
2018-03-01
A single quantum well semiconductor laser based on wurtzite-nitride is designed and analyzed for short distance communication wavelength (at around 1300 nm). The laser structure has 12 Å well layer of InN, 15 Å barrier layer of In0.25Ga0.75N, and 54 Å separate confinement heterostructure layer of GaN. To calculate the electronic characteristics of the structure, a self-consistent method is used where Hamiltonian with effective mass approximation is solved for conduction band while six-bands Hamiltonian matrix with k · p formalism including the polarization effect, valence-band mixing effect, and strain effect is solved for valence band. The interband optical transition elements, optical gain, differential gain, radiative current density, spontaneous emission rate, and threshold characteristics have been calculated. The wave function overlap integral is found to be 45.93% for TE-polarized structure. Also, the spontaneous emission rate is found to be 6.57 × 1027 s - 1 cm - 3 eV - 1 at 1288.21 nm with the carrier density of 5 × 1019 cm - 3. Furthermore, the radiative current density and the radiative recombination rate are found to be 121.92 A cm - 2 and 6.35 × 1027 s - 1 cm - 3, respectively, while the TE-polarized optical gain of the structure is 3872.1 cm - 1 at 1301.7 nm.
NASA Astrophysics Data System (ADS)
Kalb, Wolfgang L.; Batlogg, Bertram
2010-01-01
The spectral density of localized states in the band gap of pentacene (trap DOS) was determined with a pentacene-based thin-film transistor from measurements of the temperature dependence and gate-voltage dependence of the contact-corrected field-effect conductivity. Several analytical methods to calculate the trap DOS from the measured data were used to clarify, if the different methods lead to comparable results. We also used computer simulations to further test the results from the analytical methods. Most methods predict a trap DOS close to the valence-band edge that can be very well approximated by a single exponential function with a slope in the range of 50-60 meV and a trap density at the valence-band edge of ≈2×1021eV-1cm-3 . Interestingly, the trap DOS is always slightly steeper than exponential. An important finding is that the choice of the method to calculate the trap DOS from the measured data can have a considerable effect on the final result. We identify two specific simplifying assumptions that lead to significant errors in the trap DOS. The temperature dependence of the band mobility should generally not be neglected. Moreover, the assumption of a constant effective accumulation-layer thickness leads to a significant underestimation of the slope of the trap DOS.
Electronic transport in disordered MoS2 nanoribbons
NASA Astrophysics Data System (ADS)
Ridolfi, Emilia; Lima, Leandro R. F.; Mucciolo, Eduardo R.; Lewenkopf, Caio H.
2017-01-01
We study the electronic structure and transport properties of zigzag and armchair monolayer molybdenum disulfide nanoribbons using an 11-band tight-binding model that accurately reproduces the material's bulk band structure near the band gap. We study the electronic properties of pristine zigzag and armchair nanoribbons, paying particular attention to the edges states that appear within the MoS2 bulk gap. By analyzing both their orbital composition and their local density of states, we find that in zigzag-terminated nanoribbons these states can be localized at a single edge for certain energies independent of the nanoribbon width. We also study the effects of disorder in these systems using the recursive Green's function technique. We show that for the zigzag nanoribbons, the conductance due to the edge states is strongly suppressed by short-range disorder such as vacancies. In contrast, the local density of states still shows edge localization. We also show that long-range disorder has a small effect on the transport properties of nanoribbons within the bulk gap energy window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, In; Song, Jung-Hwan; Im, Jino
CsSnI{sub 3} is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI{sub 3} have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI{sub 3}, coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI{submore » 3}. The black orthorhombic form of CsSnI{sub 3} demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI{sub 3} indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of {approx} 10{sup 17} cm{sup -3} and a hole mobility of {approx} 585 cm{sup 2} V{sup -1} s{sup -1}. The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise intrinsically. Thus, although stoichiometric CsSnI{sub 3} is a semiconductor, the material is prone to intrinsic defects associated with Sn vacancies. This creates highly mobile holes which cause the materials to appear metallic.« less
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2014-12-01
Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photoionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irradiance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.
Quasiparticle band gap in the topological insulator Bi2Te3
NASA Astrophysics Data System (ADS)
Nechaev, I. A.; Chulkov, E. V.
2013-10-01
We present a theoretical study of dispersion of states that form the bulk band-gap edges in the three-dimensional topological insulator Bi2Te3. Within density functional theory, we analyze the effect of atomic positions varied within the error range of the available experimental data and approximation chosen for the exchange-correlation functional on the bulk band gap and k-space location of valence- and conduction-band extrema. For each set of the positions with different exchange-correlation functionals, we show how many-body corrections calculated within a one-shot GW approach affect the mentioned characteristics of electronic structure of Bi2Te3. We thus also illustrate to what degree the one-shot GW results are sensitive to the reference one-particle band structure in the case of bismuth telluride. We found that for this topological insulator the GW corrections enlarge the fundamental band gap and for certain atomic positions and reference band structure bring its value in close agreement with experiment.
Zhang, Yubo; Wang, Youwei; Xi, Lili; Qiu, Ruihao; Shi, Xun; Zhang, Peihong; Zhang, Wenqing
2014-02-21
The traditional photon absorbers Cu2-xX (X = S, Se, and Te) have regained significant research attention in the search of earth-abundant photovoltaic materials. These moderate- and narrow-gap materials have also been shown to exhibit excellent thermoelectric properties recently. However, semimetallic band structures with inverted band orderings are predicted for antifluorite structure Cu2X using density functional theory with the local density approximation or the generalized gradient approximation. We find that semiconducting band structures and normal band orderings can be obtained using the modified Becke-Johnson potential plus an on-site Coulomb U (the mBJ+U approach), which is consistent with our earlier finding for diamond-like Cu-based multinary semiconductors [Y. Zhang, J. Zhang, W. Gao, T. A. Abtew, Y. Wang, P. Zhang, and W. Zhang, J. Chem. Phys. 139, 184706 (2013)]. The trend of the chemical bonding of Cu2X is analyzed, which shows that the positions of the valence band maximum and conduction band minimum are strongly affected by the inter-site pd and intra-site sp hybridizations, respectively. The calculated gaps of Cu2S and Cu2Se still seem to be underestimated compared with experimental results. We also discuss the effects of different structural phases and Cu disordering and deficiency on the bandgaps of these materials.
NASA Astrophysics Data System (ADS)
Long, Debing; Li, Mingkai; Meng, Dongxue; Ahuja, Rajeev; He, Yunbin
2018-03-01
In this work, the structural, electronic, and thermodynamic properties of wurtzite (WZ) and zincblende (ZB) CdS1-xSex alloys are investigated using the density functional theory (DFT) and the cluster expansion method. A special quasirandom structure containing 16 atoms is constructed to calculate the band structures of random alloys. The band gaps of CdS1-xSex alloys are direct and decrease as the Se content increases. The delta self-consistent-field method is applied to correct band gaps that are underestimated by DFT. The band offsets clearly reflect the variation in valence band maxima and conduction band minima, thus providing information useful to the design of relevant quantum well structures. The positive formation enthalpies of both phases imply that CdS1-xSex is an immiscible system and tends to phase separate. The influence of lattice vibrations on the phase diagram is investigated by calculating the phonon density of states. Lattice vibration effects can reduce the critical temperature Tc and increase alloy solid solubilities. This influence is especially significant in the ZB structure. When only chemical interactions are present, the Tc values for WZ- and ZB-CdS1-xSex are 260 K and 249 K, respectively. The lattice vibration enthalpy and entropy lower the Tc to 255 K and 233 K, respectively.
Remote measurement of turbidity and chlorophyll through aerial photography
NASA Technical Reports Server (NTRS)
Schwebel, M. D.; James, W. P.; Clark, W. J.
1973-01-01
Studies were conducted utilizing six different film and filter combinations to quantitatively detect chlorophyll and turbidity in six farm ponds. The low range of turbidity from 0-35 JTU correlated well with the density readings from the green band of normal color film and the high range above 35 JTU was found to correlate with density readings in the red band of color infrared film. The effect of many of the significant variables can be reduced by using standardized procedures in taking the photography. Attempts to detect chlorophyll were masked by the turbidity. The ponds which were highly turbid also had high chlorophyll concentrations; whereas, the ponds with low turbidity also had low chlorophyll concentrations. This prevented a direct correlation for this parameter. Several suggested approaches are cited for possible future investigations.
Ab - initio study of rare earth magnesium alloy: TbMg
NASA Astrophysics Data System (ADS)
Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2018-05-01
The structural, electronic and magnetic properties of TbMg were analyzed by using full-potential linearized augmented plane wave method. This intermetallic is stable in structure CsCl (B2 phase) with space group Pm-3m. In electronic properties, we show the electronic band structure and density of states plots. These plots show that this alloy have metallic character because there is no band gap between the valance band and conduction band at Fermi level. The structural properties, i.e. equilibrium lattice constant, bulk modulus and its pressure derivative, energy and volume show good agreement with available data. In this paper, we also present the total magnetic moment along with the magnetic moment on the atomic and interstitial sites of TbMg intermetallic in B2 phase.
h -AlN-Mg(OH)2 van der Waals bilayer heterostructure: Tuning the excitonic characteristics
NASA Astrophysics Data System (ADS)
Bacaksiz, C.; Dominguez, A.; Rubio, A.; Senger, R. T.; Sahin, H.
2017-02-01
Motivated by recent studies that reported the successful synthesis of monolayer Mg (OH) 2 [Suslu et al., Sci. Rep. 6, 20525 (2016), 10.1038/srep20525] and hexagonal (h -)AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013), 10.1063/1.4851239], we investigate structural, electronic, and optical properties of vertically stacked h -AlN and Mg (OH) 2 , through ab initio density-functional theory (DFT), many-body quasiparticle calculations within the GW approximation and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the A B' stacking having direct band gap at the Γ with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and heterobilayer are investigated. The heterobilayer possesses excitonic peaks, which appear only after the construction of the heterobilayer. The lowest three exciton peaks are analyzed in detail by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the heterobilayer originates from spatially indirect exciton where the electron and hole localized at h -AlN and Mg (OH) 2 , respectively, which is important for the light harvesting applications.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
2014-12-01
from standard HSE06 hybrid functional with α = 0.25 and ω = 0.11 bohr–1 and b) from HSE with α = 0.093 and ω of 0.11 bohr–1...better agreement for the band gap value for future calculations, a systemic study was conducted for the (α, ω) parameter space of the HSE ...orthogonal). Future HSE calculations will be performed with the updated parameters. Fig. 7 Density of States of PEEK based on the optimized
Density Measurements in Air by Optically Exciting the Cordes Bands of I2
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Exton, Reginald J.
2000-01-01
We describe an optical method based on laser-induced fluorescence for obtaining instantaneous measurements of density along a line in low-density air seeded with I2. The Cordes bands of I2 (D(sup 1)sigma(sup +, sub u)) left arrow X(sup 1)sigma(sup +, sub g)) are excited with a tunable ArF excimer laser. air densities in the range (0.1-6.5) x 10(exp 17) cm(exp -3) are measured over 295-583 K using the density-dependent emission ratio of two emission bands of I2; the 340 nm bands and the diffuse-structured McLennan bands near 320 nm.
Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; ...
2016-10-11
Here, we present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses,more » and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from C to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 6 0.02 eV. We thor-oughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accu-rately properties of materials, provides a confirmation of the capability of DFT to describe accu-rately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.« less
Electronic and optical properties of GaSb:N from first principles
NASA Astrophysics Data System (ADS)
Jadaun, Priyamvada; Nair, Hari; Lordi, Vincenzo; Bank, Seth; Banerjee, Sanjay
2014-03-01
We present an ab-initio study of dilute nitride III-Vs, focusing on dilute nitride GaSb (GaSb:N). GaSb:N displays promise towards realization of optoelectronic devices accessing the mid-infrared wavelength regime. Theoretical and experimental results on its electronic and optical properties are however few. To address this, we present a first principles, density functional theory study using the hybrid HSE06 exchange-correlation functional of GaSb doped with 1.6% nitrogen. We conduct a comparative study on GaAs:N, also with 1.6% nitrogen mole fraction, and find that GaSb:N has a smaller band gap and displays more band gap bowing than GaAs:N. In addition we examine the orbital character of the bands, finding the lowest conduction band to be quasi-delocalized, with a large N-3s contribution. At high concentrations, the N atoms interact via the host matrix, forming a dispersive band of their own which governs optoelectronic properties and dominates band gap bowing. While this band drives the optical and electronic properties of GaSb:N, its physics is not captured by traditional models for dilute-nitrides. We thus propose that a complete theory of dilute-nitrides should incorporate orbital character examination, especially at high N concentrations. Texas Advanced Computing Center (TACC), U.S. Department of Energy, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Feng, Zhenzhen; Wang, Yuanxu; Yan, Yuli; Zhang, Guangbiao; Yang, Jueming; Zhang, Jihua; Wang, Chao
2015-06-21
Band engineering is one of the effective approaches for designing ideal thermoelectric materials. Introducing an intermediate band in the band gap of semiconducting thermoelectric compounds may largely increase the carrier concentration and improve the electrical conductivity of these compounds. We test this hypothesis by Pb doping in Zintl Ca5In2Sb6. In the current work, we have systematically investigated the electronic structure and thermoelectric performances of substitutional doping with Pb on In sites at a doping level of 5% (0.2 e per cell) for Ca5In2Sb6 by using density functional theory combined with semi-classical Boltzmann theory. It is found that in contrast to Zn doping, Pb doping introduces a partially filled intermediate band in the band gap of Ca5In2Sb6, which originates from the Pb s states by weakly hybridizing with the Sb p states. Such an intermediate band dramatically increases the electrical conductivity of Ca5In2Sb6 and has little detrimental effect on its Seebeck coefficient, which may increase its thermoelectric figure of merit, ZT. Interestingly, a maximum ZT value of 2.46 may be achieved at 900 K for crystalline Pb-doped Ca5In2Sb6 when the carrier concentration is optimized. Therefore, Pb-doped Ca5In2Sb6 may be a promising thermoelectric material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, G. C., E-mail: siva1987@iopb.res.in, E-mail: skp@iopb.res.in, E-mail: gcr@iopb.res.in; Sahu, Sivabrata; Panda, S. K.
2016-04-13
We report here a microscopic tight-binding model calculation for AB-stacked bilayer graphene in presence of biasing potential between the two layers and the impurity effects to study the evolution of the total density of states with special emphasis on opening of band gap near Dirac point. We have calculated the electron Green’s functions for both the A and B sub-lattices by Zubarev technique. The imaginary part of the Green’s function gives the partial and total density of states of electrons. The density of states are computed numerically for 1000 × 1000 grid points of the electron momentum. The evolution ofmore » the opening of band gap near van-Hove singularities as well as near Dirac point is investigated by varying the different interlayer hoppings and the biasing potentials. The inter layer hopping splits the density of states at van-Hove singularities and produces a V-shaped gap near Dirac point. Further the biasing potential introduces a U shaped gap near Dirac point with a density minimum at the applied potential(i.e. at V/2).« less
Hwang, Jungseek
2016-03-31
We introduce an approximate method which can be used to simulate the optical conductivity data of correlated multiband systems for normal and superconducting cases by taking advantage of a reversed process in comparison to a usual optical data analysis, which has been used to extract the electron-boson spectral density function from measured optical spectra of single-band systems, like cuprates. We applied this method to optical conductivity data of two multiband pnictide systems (Ba0.6K0.4Fe2As2 and LiFeAs) and obtained the electron-boson spectral density functions. The obtained electron-boson spectral density consists of a sharp mode and a broad background. The obtained spectral density functions of the multiband systems show similar properties as those of cuprates in several aspects. We expect that our method helps to reveal the nature of strong correlations in the multiband pnictide superconductors.
Emerald ash borer (Coleoptera: Buprestidae) attraction to stressed or baited ash trees.
McCullough, Deborah G; Poland, Therese M; Anulewicz, Andrea C; Cappaert, David
2009-12-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has killed millions of ash (Fraxinus sp.) trees in North America since its discovery in Michigan in 2002. Efficient methods to detect low-density A. planipennis populations remain a critical priority for regulatory and resource management agencies. We compared the density of adult A. planipennis captured on sticky bands and larval density among ash trees that were girdled for 1 or 2 yr, wounded, exposed to the stress-elicitor methyl jasmonate, baited with Manuka oil lures, or left untreated. Studies were conducted at four sites in 2006 and 2007, where A. planipennis densities on untreated trees ranged from very low to moderate. In 2006, 1-yr girdled trees captured significantly more adult A. planipennis and had higher larval densities than untreated control trees or trees treated with methyl jasmonate or Manuka oil. Open-grown trees captured significantly more A. planipennis beetles than partially or fully shaded trees. In 2007, A. planipennis population levels and captures of adult A. planipennis were substantially higher than in 2006. The density of adults captured on sticky bands did not differ significantly among canopy exposure classes or treatments in 2007. Larval density was significantly higher in untreated, wounded, and 1-yr girdled trees (girdled in 2007) than in 2-yr girdled trees (girdled in 2006), where most phloem was consumed by A. planipennis larvae the previous year. A total of 36 trees (32 in 2006, 4 in 2007) caught no beetles, but 16 of those trees (13 in 2006, 3 in 2007) had A. planipennis larvae. In 2006, there was a positive linear relationship between the density of adults captured on sticky bands and larval density in trees. Our results show that freshly girdled and open grown trees were most attractive to A. planipennis, especially at low-density sites. If girdled trees are used for A. planipennis detection or survey, debarking trees to locate larval galleries is crucial.
Effects of hydrogen treatment on ohmic contacts to p-type GaN films
NASA Astrophysics Data System (ADS)
Huang, Bohr-Ran; Chou, Chia-Hui; Ke, Wen-Cheng; Chou, Yi-Lun; Tsai, Chia-Lung; Wu, Meng-chyi
2011-06-01
This study investigated the effects of hydrogen (H 2) treatment on metal contacts to Mg-doped p-GaN films by Hall-effect measurement, current-voltage ( I- V) analyzer and X-ray photoemission spectra (XPS). The interfacial oxide layer on the p-GaN surface was found to be the main reason for causing the nonlinear I- V behavior of the untreated p-GaN films. The increased nitrogen vacancy (V N) density due to increased GaN decomposition rate at high-temperature hydrogen treatment is believed to form high density surface states on the surface of p-GaN films. Compared to untreated p-GaN films, the surface Fermi level determined by the Ga 2p core-level peak on 1000 °C H 2-treated p-GaN films lies about ˜2.1 eV closer to the conduction band edge (i.e., the surface inverted to n-type behavior). The reduction in barrier height due to the high surface state density pinned the surface Fermi level close to the conduction band edge, and allowed the electrons to easily flow over the barrier from the metal into the p-GaN films. Thus, a good ohmic contact was achieved on the p-GaN films by the surface inversion method.
Scanlon, David O; Godinho, Kate G; Morgan, Benjamin J; Watson, Graeme W
2010-01-14
The Cu(I)-based delafossite structure, Cu(I)M(III)O(2), can accommodate a wide range of rare earth and transition metal cations on the M(III) site. Substitutional doping of divalent ions for these trivalent metals is known to produce higher p-type conductivity than that occurring in the undoped materials. However, an explanation of the conductivity anomalies observed in these p-type materials, as the trivalent metal is varied, is still lacking. In this article, we examine the electronic structure of Cu(I)M(III)O(2) (M(III)=Al,Cr,Sc,Y) using density functional theory corrected for on-site Coulomb interactions in strongly correlated systems (GGA+U) and discuss the unusual experimental trends. The importance of covalent interactions between the M(III) cation and oxygen for improving conductivity in the delafossite structure is highlighted, with the covalency trends found to perfectly match the conductivity trends. We also show that calculating the natural band offsets and the effective masses of the valence band maxima is not an ideal method to classify the conduction properties of these ternary materials.
Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles
NASA Astrophysics Data System (ADS)
Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.
2015-11-01
Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.
Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles
Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; ...
2015-11-24
Complex doping schemes in R 3Al 5O 12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimummore » (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu 3B 5O 12 where B is Al, Ga, In, As, and Sb, and R 3Al 5O 12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less
NASA Astrophysics Data System (ADS)
Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu
2018-04-01
Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).
NASA Astrophysics Data System (ADS)
Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto
2016-02-01
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. Inmore » this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Joung-min, E-mail: cho.j.ad@m.titech.ac.jp; Akiyama, Yuto; Kakinuma, Tomoyuki
2013-10-15
We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulatedmore » characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V{sub G} above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge.« less
Correlation-driven charge order at the interface between a Mott and a band insulator.
Pentcheva, Rossitza; Pickett, Warren E
2007-07-06
To study digital Mott insulator LaTiO3 and band insulator SrTiO3 interfaces, we apply correlated band theory within the local density approximation including a Hubbard U to (n, m) multilayers, 1
NASA Astrophysics Data System (ADS)
Chikamatsu, Akira; Kurauchi, Yuji; Kawahara, Keisuke; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya
2018-06-01
We investigated the electronic structure of a layered perovskite oxyfluoride S r2Ru O3F2 thin film by hard x-ray photoemission spectroscopy (HAXPES) and soft x-ray absorption spectroscopy (XAS) as well as density functional theory (DFT)-based calculations. The core-level HAXPES spectra suggested that S r2Ru O3F2 is a Mott insulator. The DFT calculations described the total and site-projected density of states and the band dispersion for the optimized crystal structure of S r2Ru O3F2 , predicting that R u4 + takes a high-spin configuration of (xy ) ↑(yz ,z x ) ↑↑(3z2-r2 ) ↑ and that S r2Ru O3F2 has an indirect band gap of 0.7 eV with minima at the M ,A and X ,R points. HAXPES spectra near the Fermi level and the angular-dependent O 1 s XAS spectra of the S r2Ru O3F2 thin film, corresponding to the valence band and conduction band density of states, respectively, were drastically different compared to those of the S r2Ru O4 film, suggesting that the changes in the electronic states were mainly driven by the substitution of an oxygen atom coordinated to Ru by fluorine and subsequent modification of the crystal field.
NASA Astrophysics Data System (ADS)
Calderín, L.; Karasiev, V. V.; Trickey, S. B.
2017-12-01
As the foundation for a new computational implementation, we survey the calculation of the complex electrical conductivity tensor based on the Kubo-Greenwood (KG) formalism (Kubo, 1957; Greenwood, 1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave datasets with plane wave basis sets (Blöchl, 1994). New analytical results and a full implementation of the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso (Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity), the code calculates the full complex conductivity tensor (not just the average trace). It supports use of either the original KG formula or the popular one approximated in terms of a Dirac delta function. It provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter-band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane wave processes for their use in band parallelization as well. It is designed to provide rapid convergence with respect to k-point density. Examples of its use are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yubo; Wang, Youwei; Xi, Lili
The traditional photon absorbers Cu{sub 2−x}X (X = S, Se, and Te) have regained significant research attention in the search of earth-abundant photovoltaic materials. These moderate- and narrow-gap materials have also been shown to exhibit excellent thermoelectric properties recently. However, semimetallic band structures with inverted band orderings are predicted for antifluorite structure Cu{sub 2}X using density functional theory with the local density approximation or the generalized gradient approximation. We find that semiconducting band structures and normal band orderings can be obtained using the modified Becke-Johnson potential plus an on-site Coulomb U (the mBJ+U approach), which is consistent with our earliermore » finding for diamond-like Cu-based multinary semiconductors [Y. Zhang, J. Zhang, W. Gao, T. A. Abtew, Y. Wang, P. Zhang, and W. Zhang, J. Chem. Phys. 139, 184706 (2013)]. The trend of the chemical bonding of Cu{sub 2}X is analyzed, which shows that the positions of the valence band maximum and conduction band minimum are strongly affected by the inter-site pd and intra-site sp hybridizations, respectively. The calculated gaps of Cu{sub 2}S and Cu{sub 2}Se still seem to be underestimated compared with experimental results. We also discuss the effects of different structural phases and Cu disordering and deficiency on the bandgaps of these materials.« less
Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials
Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun
2015-01-01
Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability. PMID:26330371
Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun
2015-09-02
Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron-phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm(-2) at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.
Electrical conduction at domain walls in multiferroic BiFeO3
NASA Astrophysics Data System (ADS)
Seidel, Jan; Martin, Lane; He, Qing; Zhan, Qian; Chu, Ying-Hao; Rother, Axel; Hawkridge, Michael; Maksymovych, Peter; Yu, Pu; Gajek, Martin; Balke, Nina; Kalinin, Sergei; Gemming, Sybille; Wang, Feng; Catalán, Gustau; Scott, James; Spaldin, Nicola; Orenstein, Joseph; Ramesh, Ramamoorthy
2009-03-01
We report the observation of room temperature electronic conductivity at ferroelectric domain walls in BiFeO3. The origin and nature of the observed conductivity is probed using a combination of conductive atomic force microscopy, high resolution transmission electron microscopy and first-principles density functional computations. We show that a structurally driven change in both the electrostatic potential and local electronic structure (i.e., a decrease in band gap) at the domain wall leads to the observed electrical conductivity. We estimate the conductivity in the wall to be several orders of magnitude higher than for the bulk material. Additionally we demonstrate the potential for device applications of such conducting nanoscale features.
NASA Astrophysics Data System (ADS)
Brotons-Gisbert, Mauro; Segura, Alfredo; Robles, Roberto; Canadell, Enric; Ordejón, Pablo; Sánchez-Royo, Juan F.
2018-05-01
Monolayers of transition-metal dichalcogenide semiconductors present spin-valley locked electronic bands, a property with applications in valleytronics and spintronics that is usually believed to be absent in their centrosymmetric (as the bilayer or bulk) counterparts. Here we show that bulk 2 H -Mo S2 hides a spin-polarized nature of states determining its direct band gap, with the spin sequence of valence and conduction bands expected for its single layer. This relevant finding is attained by investigating the behavior of the binding energy of A and B excitons under high pressure, by means of absorption measurements and density-functional-theory calculations. These results raise an unusual situation in which bright and dark exciton degeneracy is naturally broken in a centrosymmetric material. Additionally, the phonon-assisted scattering process of excitons has been studied by analyzing the pressure dependence of the linewidth of discrete excitons observed at the absorption coefficient edge of 2 H -Mo S2 . Also, the pressure dependence of the indirect optical transitions of bulk 2 H -Mo S2 has been analyzed by absorption measurements and density-functional-theory calculations. These results reflect a progressive closure of the indirect band gap as pressure increases, indicating that metallization of bulk Mo S2 may occur at pressures higher than 26 GPa.
Oxygen deficiency and Sn doping of amorphous Ga{sub 2}O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, M. D.; Unold, T.; Berry, J.
2016-01-11
The potential of effectively n-type doping Ga{sub 2}O{sub 3} considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaO{sub x} is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaO{sub x} thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence onmore » the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaO{sub x} layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaO{sub x} as an electron transport layer in Cu(In,Ga)Se{sub 2} and in Cu{sub 2}O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.« less
NASA Astrophysics Data System (ADS)
Kaneko, Tatsuya; Ohta, Yukinori; Yunoki, Seiji
2018-04-01
We investigate the microscopic mechanisms of the charge-density-wave (CDW) formation in a monolayer TiSe2 using a realistic multiorbital d -p model with electron-phonon coupling and intersite Coulomb (excitonic) interactions. First, we estimate the tight-binding bands of Ti 3 d and Se 4 p orbitals in the monolayer TiSe2 on the basis of the first-principles band-structure calculations. We thereby show orbital textures of the undistorted band structure near the Fermi level. Next, we derive the electron-phonon coupling using the tight-binding approximation and show that the softening occurs in the transverse phonon mode at the M point of the Brillouin zone. The stability of the triple-q CDW state is thus examined to show that the transverse phonon modes at the M1, M2, and M3 points are frozen simultaneously. Then, we introduce the intersite Coulomb interactions between the nearest-neighbor Ti and Se atoms that lead to the excitonic instability between the valence Se 4 p and conduction Ti 3 d bands. Treating the intersite Coulomb interactions in the mean-field approximation, we show that the electron-phonon and excitonic interactions cooperatively stabilize the triple-q CDW state in TiSe2. We also calculate a single-particle spectrum in the CDW state and reproduce the band folding spectra observed in photoemission spectroscopies. Finally, to clarify the nature of the CDW state, we examine the electronic charge density distribution and show that the CDW state in TiSe2 is of a bond type and induces a vortexlike antiferroelectric polarization in the kagome network of Ti atoms.
Yb5Ga2Sb6: a mixed valent and narrow-band gap material in the RE5M2X6 family.
Subbarao, Udumula; Sarkar, Sumanta; Gudelli, Vijay Kumar; Kanchana, V; Vaitheeswaran, G; Peter, Sebastian C
2013-12-02
A new compound Yb5Ga2Sb6 was synthesized by the metal flux technique as well as high frequency induction heating. Yb5Ga2Sb6 crystallizes in the orthorhombic space group Pbam (no. 55), in the Ba5Al2Bi6 structure type, with a unit cell of a = 7.2769(2) Å, b = 22.9102(5) Å, c = 4.3984(14) Å, and Z = 2. Yb5Ga2Sb6 has an anisotropic structure with infinite anionic double chains (Ga2Sb6)(10-) cross-linked by Yb(2+) and Yb(3+) ions. Each single chain is made of corner-sharing GaSb4 tetrahedra. Two such chains are bridged by Sb2 groups to form double chains of 1/∞ [Ga2Sb6(10-)]. The compound satisfies the classical Zintl-Klemm concept and is a narrow band gap semiconductor with an energy gap of around 0.36 eV calculated from the electrical resistivity data corroborating with the experimental absorption studies in the IR region (0.3 eV). Magnetic measurements suggest Yb atoms in Yb5Ga2Sb6 exist in the mixed valent state. Temperature dependent magnetic susceptibility data follows the Curie-Weiss behavior above 100 K and no magnetic ordering was observed down to 2 K. Experiments are accompanied by all electron full-potential linear augmented plane wave (FP-LAPW) calculations based on density functional theory to calculate the electronic structure and density of states. The calculated band structure shows a weak overlap of valence band and conduction band resulting in a pseudo gap in the density of states revealing semimetallic character.
Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems
NASA Astrophysics Data System (ADS)
Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.
2005-08-01
Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming “tungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.
Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure
Shang, Linbo; Chou, I-Ming; Burruss, Robert; Hu, Ruizhong; Bi, Xianwu
2014-01-01
The positions of the CH4 Raman ν1 symmetric stretching bands were measured in a wide range of temperature (from −180 °C to 350 °C) and density (up to 0.45 g/cm3) using high-pressure optical cell and fused silica capillary capsule. The results show that the Raman band shift is a function of both methane density and temperature; the band shifts to lower wavenumbers as the density increases and the temperature decreases. An equation representing the observed relationship among the CH4 ν1 band position, temperature, and density can be used to calculate the density in natural or synthetic CH4-bearing inclusions.
Valency configuration of transition metal impurities in ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Leon; Schulthess, Thomas C; Svane, Axel
2006-01-01
We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to themore » valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.« less
Shear-band thickness and shear-band cavities in a Zr-based metallic glass
Liu, C.; Roddatis, V.; Kenesei, P.; ...
2017-08-14
Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less
Shear-band thickness and shear-band cavities in a Zr-based metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Roddatis, V.; Kenesei, P.
Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less
The 20/30 GHz satellite systems technology needs assessment
NASA Technical Reports Server (NTRS)
Stevens, G.; Wright, D.
1978-01-01
Rain attenuation in the 20/30 GHz bands, and the resultant impact on system user costs were estimated for a variety of satellite communication system concepts. Results of previous and current NASA Lewis contractual and in-house studies on system design are reported as well as market studies conducted to evaluate the concepts and test their relevancy against forecasted market needs. The 20/30 GHz bands appear attractive economically and, with certain technology, appear to offer a virtually unlimited spectrum resource. This attractiveness is especially relevant to high density trunking where there is sufficient traffic to justify dual-station site diversity.
Temperature dependent energy levels of methylammonium lead iodide perovskite
NASA Astrophysics Data System (ADS)
Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.
2015-06-01
Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.
Modak, Brindaban; Srinivasu, K; Ghosh, Swapan K
2014-08-28
In this theoretical study, we employ a codoping strategy to reduce the band gap of NaTaO3 aimed at improving the photocatalytic activity under visible light. The systematic study includes the effects of metal (W) and nonmetal (N) codoping on the electronic structure of NaTaO3 in comparison to the effect of individual dopants. The feasibility of the introduction of N into the NaTaO3 crystal structure is found to be enhanced in the presence of W, as indicated by the calculated formation energy. This codoping leads to formation of a charge compensated system, beneficial for the minimization of vacancy related defect formation. The electronic structure calculations have been carried out using a hybrid density functional for an accurate description of the proposed system. The introduction of W in place of Ta leads to the appearance of donor states below the conduction band, while N doping in place of oxygen introduces isolated acceptor states above the valence band. The codoping of N and W also passivates undesirable discrete midgap states. This feature is not observed in the case of (Cr, N) codoped NaTaO3 in spite of its charge compensated nature. We have also studied charge non-compensated codoping using several dopant pairs, including anion-anion and cation-anion pairs. However, this non-compensated codoping introduces localized states in between the valence band and the conduction band, and hence may not be effective in enhancing the photocatalytic properties of NaTaO3. The optical spectrum shows that the absorption curve for the (W, N)-codoped NaTaO3 is extended to the visible region due to narrowing of the band gap to 2.67 eV. Moreover, its activity for the photo decomposition of water to produce both H2 and O2 remains intact. Hence, based on the present investigation we can propose (W, N) codoped NaTaO3 as a promising photocatalyst for visible light driven water splitting.
NASA Astrophysics Data System (ADS)
Bieniek, Maciej; Korkusiński, Marek; Szulakowska, Ludmiła; Potasz, Paweł; Ozfidan, Isil; Hawrylak, Paweł
2018-02-01
We present here the minimal tight-binding model for a single layer of transition metal dichalcogenides (TMDCs) MX 2(M , metal; X , chalcogen) which illuminates the physics and captures band nesting, massive Dirac fermions, and valley Landé and Zeeman magnetic field effects. TMDCs share the hexagonal lattice with graphene but their electronic bands require much more complex atomic orbitals. Using symmetry arguments, a minimal basis consisting of three metal d orbitals and three chalcogen dimer p orbitals is constructed. The tunneling matrix elements between nearest-neighbor metal and chalcogen orbitals are explicitly derived at K ,-K , and Γ points of the Brillouin zone. The nearest-neighbor tunneling matrix elements connect specific metal and sulfur orbitals yielding an effective 6 ×6 Hamiltonian giving correct composition of metal and chalcogen orbitals but not the direct gap at K points. The direct gap at K , correct masses, and conduction band minima at Q points responsible for band nesting are obtained by inclusion of next-neighbor Mo-Mo tunneling. The parameters of the next-nearest-neighbor model are successfully fitted to MX 2(M =Mo ; X =S ) density functional ab initio calculations of the highest valence and lowest conduction band dispersion along K -Γ line in the Brillouin zone. The effective two-band massive Dirac Hamiltonian for MoS2, Landé g factors, and valley Zeeman splitting are obtained.
NASA Astrophysics Data System (ADS)
Xiang, An; Xu, Xingliang; Zhang, Lin; Li, Zhiqiang; Li, Juntao; Dai, Gang
2018-02-01
The conduction of current from n-4H-SiC into pyrogenic and dry oxidized films is studied. Anomalous current conduction was observed at a high electric field above 8 MV/cm for dry oxidized metal-oxide-semiconductor (MOS) capacitors, which cannot be interpreted in the framework of pure Fowler-Nordheim tunneling. The temperature-dependent current measurement and density of interface trap estimated from the hi-lo method for the SiO2/4H-SiC interface revealed that the combined current conduction of Fowler-Nordheim and Poole-Frenkel emission is responsible for the current conduction in both pyrogenic and dry oxidized MOS capacitors. Furthermore, the origin of temperature dependent current conduction is the Poole-Frenkel emission via the carbon pair defect trap level at 1.3 eV below the conduction band edge of SiO2. In addition, with the dry oxidized capacitors, the enhanced temperature dependent current above 8 MV/cm is attributed to the PF emission via a trap level at 1.47 eV below the conduction band edge of SiO2, which corresponds to another configuration of a carbon pair defect in SiO2 films.
Study of local currents in low dimension materials using complex injecting potentials
NASA Astrophysics Data System (ADS)
He, Shenglai; Covington, Cody; Varga, Kálmán
2018-04-01
A complex potential is constructed to inject electrons into the conduction band, mimicking electron currents in nanoscale systems. The injected electrons are time propagated until a steady state is reached. The local current density can then be calculated to show the path of the conducting electrons on an atomistic level. The method allows for the calculation of the current density vectors within the medium as a function of energy of the conducting electron. Using this method, we investigate the electron pathway of graphene nanoribbons in various structures, molecular junctions, and black phosphorus nanoribbons. By analyzing the current flow through the structures, we find strong dependence on the structural geometry and the energy of the injected electrons. This method may be of general use in the study of nano-electronic materials and interfaces.
Insulator at the ultrathin limit: MgO on Ag(001).
Schintke, S; Messerli, S; Pivetta, M; Patthey, F; Libioulle, L; Stengel, M; De Vita, A; Schneider, W D
2001-12-31
The electronic structure and morphology of ultrathin MgO films epitaxially grown on Ag(001) were investigated using low-temperature scanning tunneling spectroscopy and scanning tunneling microscopy. Layer-resolved differential conductance (dI/dU) measurements reveal that, even at a film thickness of three monolayers, a band gap of about 6 eV is formed corresponding to that of the MgO(001) single-crystal surface. This finding is confirmed by layer-resolved calculations of the local density of states based on density functional theory.
Nonlinear properties of gated graphene in a strong electromagnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am; Moulopoulos, K., E-mail: cos@ucy.ac.cy
We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.
Disordered two-dimensional electron systems with chiral symmetry
NASA Astrophysics Data System (ADS)
Markoš, P.; Schweitzer, L.
2012-10-01
We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, E.; Dueñas, S.; Castán, H.
2015-12-28
The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existencemore » of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known, the Meyer-Neldel rule typically appears in processes involving multiple excitations, like carrier capture and emission in deep levels, and it is generally observed in disordered systems. The obtained Meyer-Neldel energy value, 15.19 meV, is very close to the value obtained in multicrystalline silicon samples contaminated with iron (13.65 meV), meaning that this energy value could be associated to the phonons energy in this kind of substrates.« less
NASA Astrophysics Data System (ADS)
Nery, Jean Paul; Allen, Philip B.
2016-09-01
We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.
Electronic Structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by First-Principles Calculation
NASA Astrophysics Data System (ADS)
Wang, Jin-song; Liu, Hong-xia; Deng, Shuping; Li, De-cong; Shen, Lan-xian; Cheng, Feng; Deng, Shu-kang
2017-05-01
Sn-based clathrates possess excellent thermoelectric properties ascribed to their higher Seebeck coefficient and lower thermal conductivity. Guest atoms significantly modulate the thermoelectric properties of Sn-based calculates because of their diverse atomic radius and interactions with framework atoms. Thus, we explored the electronic structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by first-principles calculation. Results revealed significant differences between Yb8Ga16Sn30 and M8Ga16Sn30 (M = Ba, Sr,). In particular, the Yb-filled compound substitution possesses lowest formation energy and the off-center distance of the Yb atom is the largest compared with the other structures. I-M8Ga16Sn30 (M = Ba, Sr, Yb) is an indirect band gap semiconductor, and the enhanced hybridization effect between the guest and framework atoms' orbits exists because the Yb f orbit results in a decrease in band gap. Ba- and Sr-filled clathrates have similar valence bands but slightly different conduction bands; however, Yb8Ga16Sn30 possess the spiculate density of states near the Fermi level that reveals excellent thermoelectric properties.
NASA Astrophysics Data System (ADS)
Khomyakov, Petr A.; Luisier, Mathieu; Schenk, Andreas
2015-08-01
Using first-principles calculations, we show that the conduction and valence band energies and their deformation potentials exhibit a non-negligible compositional bowing in strained ternary semiconductor alloys such as InGaAs. The electronic structure of these compounds has been calculated within the framework of local density approximation and hybrid functional approach for large cubic supercells and special quasi-random structures, which represent two kinds of model structures for random alloys. We find that the predicted bowing effect for the band energy deformation potentials is rather insensitive to the choice of the functional and alloy structural model. The direction of bowing is determined by In cations that give a stronger contribution to the formation of the InxGa1-xAs valence band states with x ≳ 0.5, compared to Ga cations.
Abrupt current switching in graphene bilayer tunnel transistors enabled by van Hove singularities.
Alymov, Georgy; Vyurkov, Vladimir; Ryzhii, Victor; Svintsov, Dmitry
2016-04-21
In a continuous search for the energy-efficient electronic switches, a great attention is focused on tunnel field-effect transistors (TFETs) demonstrating an abrupt dependence of the source-drain current on the gate voltage. Among all TFETs, those based on one-dimensional (1D) semiconductors exhibit the steepest current switching due to the singular density of states near the band edges, though the current in 1D structures is pretty low. In this paper, we propose a TFET based on 2D graphene bilayer which demonstrates a record steep subthreshold slope enabled by van Hove singularities in the density of states near the edges of conduction and valence bands. Our simulations show the accessibility of 3.5 × 10(4) ON/OFF current ratio with 150 mV gate voltage swing, and a maximum subthreshold slope of (20 μV/dec)(-1) just above the threshold. The high ON-state current of 0.8 mA/μm is enabled by a narrow (~0.3 eV) extrinsic band gap, while the smallness of the leakage current is due to an all-electrical doping of the source and drain contacts which suppresses the band tailing and trap-assisted tunneling.
Abrupt current switching in graphene bilayer tunnel transistors enabled by van Hove singularities
Alymov, Georgy; Vyurkov, Vladimir; Ryzhii, Victor; Svintsov, Dmitry
2016-01-01
In a continuous search for the energy-efficient electronic switches, a great attention is focused on tunnel field-effect transistors (TFETs) demonstrating an abrupt dependence of the source-drain current on the gate voltage. Among all TFETs, those based on one-dimensional (1D) semiconductors exhibit the steepest current switching due to the singular density of states near the band edges, though the current in 1D structures is pretty low. In this paper, we propose a TFET based on 2D graphene bilayer which demonstrates a record steep subthreshold slope enabled by van Hove singularities in the density of states near the edges of conduction and valence bands. Our simulations show the accessibility of 3.5 × 104 ON/OFF current ratio with 150 mV gate voltage swing, and a maximum subthreshold slope of (20 μV/dec)−1 just above the threshold. The high ON-state current of 0.8 mA/μm is enabled by a narrow (~0.3 eV) extrinsic band gap, while the smallness of the leakage current is due to an all-electrical doping of the source and drain contacts which suppresses the band tailing and trap-assisted tunneling. PMID:27098051
Stabilization of Fermi level via electronic excitation in Sn doped CdO thin films
NASA Astrophysics Data System (ADS)
Das, Arkaprava; Singh, Fouran
2018-04-01
Pure and Sn doped CdO sol-gel derived thin films were deposited on corning glass substrate and further irradiated by swift heavy ion (SHI) (Ag and O) with fluence upto 3×1013 ions/cm2. The observed tensile stress from X-ray diffraction pattern at higher fluence for Ag ions can be corroborated to the imbrications of cylindrical tracks due to multiple impacts. The anomalous band gap enhancement after irradiation may be attributed to the consolidated effect of Burstein-Moss shift (BMS) and impurity induced virtual gap states (ViGs). At higher excitation density as Fermi stabilization level (EFS) tends to coincide with charge neutrality level (CNL), band gap enhancement saturates as further creation of additional defects inside the lattice becomes unsustainable. Raman spectroscopy divulges an intensity enhancement of 478 cm-1 LO phonon mode with Sn doping and irradiation induces further asymmetric peak broadening due to damage and disordering inside the lattice. However for 3% Sn doped thin film irradiated with Ag ions having 3×1013 fluence shows a drastic change in structural properties and reduction in band gap which might be attributed to the generation of localized energy levels between conduction and valance band due to high density of defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Anita; Kaur, Kulwinder; Kumar, Ranjan
In this paper we present the results obtained from first principle calculations of the effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 1-x}Cr{sub x}S diluted magnetic semiconductor in Zinc Blende (B3) phase at x=0.25. High pressure behavior of Cd{sub 1-x}Cr{sub x}S has been investigated between 0 GPa to 100 GPa The calculations have been performed using Density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation as exchange-correlation (XC) potential. Calculated electronic band structures of Cd{sub 1-x}Cr{sub x}S are discussed in terms of contribution ofmore » Cr 3d{sup 5} 4s{sup 1}, Cd 4d{sup 10} 5s{sup 2}, S 3s{sup 2} 3p{sup 4} orbital’s. Study of band structures shows half-metallic ferromagnetic nature of Cd{sub 0.75}Cr{sub 0.25}S with 100% spin polarization. Under application of external pressure, the valence band and conduction band are shifted upward which leads to modification of electronic structure.« less
NASA Astrophysics Data System (ADS)
Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.
1997-03-01
We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.
Electronic transport in gadolinium atomic-size contacts
NASA Astrophysics Data System (ADS)
Olivera, B.; Salgado, C.; Lado, J. L.; Karimi, A.; Henkel, V.; Scheer, E.; Fernández-Rossier, J.; Palacios, J. J.; Untiedt, C.
2017-02-01
We report on the fabrication, transport measurements, and density functional theory (DFT) calculations of atomic-size contacts made of gadolinium (Gd). Gd is known to have local moments mainly associated with f electrons. These coexist with itinerant s and d bands that account for its metallic character. Here we explore whether and how the local moments influence electronic transport properties at the atomic scale. Using both scanning tunneling microscope and lithographic mechanically controllable break junction techniques under cryogenic conditions, we study the conductance of Gd when only few atoms form the junction between bulk electrodes made of the very same material. Thousands of measurements show that Gd has an average lowest conductance, attributed to single-atom contact, below 2/e2 h . Our DFT calculations for monostrand chains anticipate that the f bands are fully spin polarized and insulating and that the conduction may be dominated by s , p , and d bands. We also analyze the electronic transport for model nanocontacts using the nonequilibrium Green's function formalism in combination with DFT. We obtain an overall good agreement with the experimental results for zero bias and show that the contribution to the electronic transport from the f channels is negligible and that from the d channels is marginal.
Optical conductivity of partially oxidized graphene from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasehnia, F., E-mail: f.nasehnia@gmail.com; Seifi, M., E-mail: Seifi@guilan.ac.ir
2015-07-07
We investigate the geometry, electronic structure, and optical properties of partially oxidized graphene using density functional theory. Our calculations show that oxygen atoms are chemisorbed on graphene plane and distort carbon atoms vertically, with almost no change in the in-plane structure. The ground state configurations for different oxygen coverages ranging from 2% to 50% (O/C ratio) are calculated and show the strong tendency of oxygen adatoms to aggregate and form discrete islands on graphene plane. It is found that the opened band gap due to oxygen functionalization depends on the oxygen density and the adsorption configuration. The gap is notmore » significant for oxygen densities lower than 8%. The optical conductivities are calculated in the infrared, visible, and ultraviolet regions and show different characteristic features depending on the degree of oxidation. These results imply that optical measurement techniques can be employed to monitor oxidation (or reduction) process as contact-free methods.« less
Effect of doping on electronic properties of HgSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com
2016-05-23
First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% ofmore » electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point Γ. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.« less
Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications
Qiao, L.; Zhang, S.; Xiao, H. Y.; ...
2018-01-01
Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less
Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, L.; Zhang, S.; Xiao, H. Y.
Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less
NASA Astrophysics Data System (ADS)
Miao, Mao-Sheng; Yarbro, Sam; Barton, Phillip T.; Seshadri, Ram
2014-01-01
Using density functional theory with a hybrid functional, we calculate the ionization energies and electron affinities of a series of delafossite compounds (AMO2: A =Cu, Ag; M =B, Al, Ga, In, Sc). The alignments of the valence band maximum and the conduction band minimum, which directly relate to the ionization energies and electron affinities, were obtained by calculations of supercell slab models constructed in a nonpolar orientation. Our calculations reveal that the ionization energy decreases with an increasing atomic number of group-III elements, and thus suggest an improved p-type doping propensity for heavier compounds. For keeping both a low ionization energy and a band gap of sufficient size, CuScO2 is superior to the Cu-based group-III delafossites. By analyzing the electronic structures, we demonstrate that the compositional trend of the ionization energies and electron affinities is the result of a combined effect of d-band broadening due to Cu(Ag)-Cu(Ag) coupling and a repositioning of the d-band center.
Electronic structure and weak itinerant magnetism in metallic Y 2 Ni 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, David J.
2015-11-03
We describe a density functional study of the electronic structure and magnetism of Y₂Ni₇. The results show itinerant magnetism very similar to that in the weak itinerant ferromagnet Ni₃Al. The electropositive Y atoms in Y₂Ni₇ donate charge to the Ni host mostly in the form of s electrons. The non-spin-polarized state shows a high density of states at the Fermi level, N (E F), due to flat bands. This leads to a ferromagnetic instability. However, there are also several much more dispersive bands crossing E(F), which should promote the conductivity. Spin fluctuation effects appear to be comparable to or weakermore » than Ni₃Al, based on comparison with experimental data. Y₂Ni₇ provides a uniaxial analog to cubic Ni₃Al, for studying weak itinerant ferromagnetism, suggesting detailed measurements of its low temperature physical properties and spin fluctuations, as well as experiments under pressure.« less
Nature of electron trap states under inversion at In0.53Ga0.47As/Al2O3 interfaces
NASA Astrophysics Data System (ADS)
Colleoni, Davide; Pourtois, Geoffrey; Pasquarello, Alfredo
2017-03-01
In and Ga impurities substitutional to Al in the oxide layer resulting from diffusion out of the substrate are identified as candidates for electron traps under inversion at In0.53Ga0.47As/Al2O3 interfaces. Through density-functional calculations, these defects are found to be thermodynamically stable in amorphous Al2O3 and to be able to capture two electrons in a dangling bond upon breaking bonds with neighboring O atoms. Through a band alignment based on hybrid functional calculations, it is inferred that the corresponding defect levels lie at ˜1 eV above the conduction band minimum of In0.53Ga0.47As, in agreement with measured defect densities. These results support the technological importance of avoiding cation diffusion into the oxide layer.
Charge Energy Transport in Hopping Systems with Rapidly Decreasing Density of States
NASA Astrophysics Data System (ADS)
Mendels, Dan; Organic Electronics Group Technion Team
2014-03-01
An accurate description of the carrier hopping topology in the energy domain of hopping systems incorporating a rapidly decreasing density of states and the subsequent energetic position of these systems' so called effective conduction band is crucial for rationalizing and quantifying these systems' thermo-electric properties, doping related phenomena and carrier gradient effects such as the emergence of the General Einstein Relation under degenerate conditions. Additionally, as will be shown, the 'mobile' carriers propagating through the system can have excess energies reaching 0.3eV above the system quasi-Fermi energy. Hence, since these mobile carriers are most prone to reach systems interfaces and interact with oppositely charged carriers, their excess energy should be considered in determining the efficiencies of energy dependent processes such as carrier recombination and exciton dissociation. In light of the stated motivations, a comprehensive numerical and analytical study of the topology of hopping in the energetic density of such systems (i.e. the statistics regarding which energy values carriers visit most and in what manner) was implemented and the main statistical features of the hopping process that determine the position in energy of the system's effective conduction band were distilled. The obtained results also help shed light on yet to be elucidated discrepancies between predictions given by the widely employed transport energy concept and Monte Carlo simulations.
Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon
2017-01-01
Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921
One-Dimensional Nature of InAs/InP Quantum Dashes Revealed by Scanning Tunneling Spectroscopy.
Papatryfonos, Konstantinos; Rodary, Guillemin; David, Christophe; Lelarge, François; Ramdane, Abderrahim; Girard, Jean-Christophe
2015-07-08
We report on low-temperature cross-sectional scanning tunneling microscopy and spectroscopy on InAs(P)/InGaAsP/InP(001) quantum dashes, embedded in a diode-laser structure. The laser active region consists of nine InAs(P) quantum dash layers separated by the InGaAsP quaternary alloy barriers. The effect of the p-i-n junction built-in potential on the band structure has been evidenced and quantified on large-scale tunneling spectroscopic measurements across the whole active region. By comparing the tunneling current onset channels, a consistent energy shift has been measured in successive quantum dash or barrier layers, either for the ground state energy of similar-sized quantum dashes or for the conduction band edge of the barriers, corresponding to the band-bending slope. The extracted values are in good quantitative agreement with the theoretical band structure calculations, demonstrating the high sensitivity of this spectroscopic measurement to probe the electronic structure of individual nanostructures, relative to local potential variations. Furthermore, by taking advantage of the potential gradient, we compared the local density of states over successive quantum dash layers. We observed that it does not vanish while increasing energy, for any of the investigated quantum dashes, in contrast to what would be expected for discrete level zero-dimensional (0D) structures. In order to acquire further proof and fully address the open question concerning the quantum dash dimensionality nature, we focused on individual quantum dashes obtaining high-energy-resolution measurements. The study of the local density of states clearly indicates a 1D quantum-wirelike nature for these nanostructures whose electronic squared wave functions were subsequently imaged by differential conductivity mapping.
Temperature dependent charge transport in poly(3-hexylthiophene) diodes
NASA Astrophysics Data System (ADS)
Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya
2018-04-01
In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A.; Krinitsin, P. G.; Khyzhun, O. Y.
2016-11-01
X-ray photoelectron core-level and valence-band spectra are measured for pristine and Ar+ ion-bombarded surfaces of LiGaGe2Se6 single crystal grown by Bridgman-Stockbarger technique. Further, electronic structure of LiGaGe2Se6 is elucidated from both theoretical and experimental viewpoints. Density functional theory (DFT) calculations are made using the augmented plane wave +local orbitals (APW+lo) method to study total and partial densities of states in the LiGaGe2Se6 compound. The present calculations indicate that the principal contributors to the valence band are the Se 4p states: they contribute mainly at the top and in the central portion of the valence band of LiGaGe2Se6, with also their significant contributions in its lower portion. The Ge 4s and Ge 4p states are among other significant contributors to the valence band of LiGaGe2Se6, contributing mainly at the bottom and in the central portion, respectively. In addition, the calculations indicate that the bottom of the conduction band is composed mainly from the unoccupied Ge s and Se p states. The present DFT calculations are supported experimentally by comparison on a common energy scale of the X-ray emission bands representing the energy distribution of the 4p states associated with Ga, Ge and Se and the XPS valence-band spectrum of the LiGaGe2Se6 single crystal. The main optical characteristics of the LiGaGe2Se6 compound are elucidated by the first-principles calculations.
High electron doping to a wide band gap semiconductor 12CaO•7Al2O3 thin film
NASA Astrophysics Data System (ADS)
Miyakawa, Masashi; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo
2007-04-01
High-density electrons (˜1.9×1021cm-3) were doped into a polycrystalline film of a wide band gap (˜7eV) semiconductor 12CaO•7Al2O3 (C12A7) by an in situ postdeposition reduction treatment using an oxygen-deficient C12A7 overlayer. The resultant film exhibits metallic conduction with a Hall mobility of ˜2.5cm2V-1s-1 and a conductivity of ˜800Scm-1. Optical analyses indicate that most of the doped electrons behave as free carriers with an effective mass of 0.82me and the estimated in-grain mobility is 5.2cm2V-1s-1, which agrees reasonably with the value obtained for high-quality single crystals.
NASA Astrophysics Data System (ADS)
Seema, K.; Kumar, Ranjan
2014-01-01
The structural, electronic, magnetic and optical properties of Co-based Heusler compounds, Co2CrZ (Z = Si, Ge), are studied using first-principle density functional theory. The calculations are performed within the generalized gradient approximation. Our calculated structural parameters at 0 GPa agree well with previous available results. The calculated magnetic moment agrees well with the Slater-Pauling (SP) rule. We have studied the effect of pressure on the electronic and magnetic properties of Co2CrSi and Co2CrGe. With an increase in applied pressure, a decrease in cell volume is observed. Under application of external pressure, the valence band and conduction band are shifted downward which leads to a modification of electronic structure. There exists an indirect band gap along Γ-X for both the alloys. Co2CrSi and Co2CrGe retain 100% spin polarization up to 60 and 50 GPa, respectively. The local magnetic moments of the Co and Si (Ge) atoms increase with an increase in pressure whereas the local magnetic moment of the Cr atom decreases. In addition, the optical properties such as dielectric function, absorption spectra, optical conductivity and energy loss function of these alloys have also been investigated. To our knowledge this is the first theoretical prediction of the pressure dependence of the structural, electronic, magnetic and optical properties of Co2CrSi and Co2CrGe.
NASA Astrophysics Data System (ADS)
Carricart-Ganivet, J. P.; Vásquez-Bedoya, L. F.; Cabanillas-Terán, N.; Blanchon, P.
2013-09-01
Density banding in skeletons of reef-building corals is a valuable source of proxy environmental data. However, skeletal growth strategy has a significant impact on the apparent timing of density-band formation. Some corals employ a strategy where the tissue occupies previously formed skeleton during as the new band forms, which leads to differences between the actual and apparent band timing. To investigate this effect, we collected cores from female and male colonies of Siderastrea siderea and report tissue thicknesses and density-related growth parameters over a 17-yr interval. Correlating these results with monthly sea surface temperature (SST) shows that maximum skeletal density in the female coincides with low winter SSTs, whereas in the male, it coincides with high summer SSTs. Furthermore, maximum skeletal densities in the female coincide with peak Sr/Ca values, whereas in the male, they coincide with low Sr/Ca values. Both results indicate a 6-month difference in the apparent timing of density-band formation between genders. Examination of skeletal extension rates also show that the male has thicker tissue and extends faster, whereas the female has thinner tissue and a denser skeleton—but both calcify at the same rate. The correlation between extension and calcification, combined with the fact that density banding arises from thickening of the skeleton throughout the depth reached by the tissue layer, implies that S. siderea has the same growth strategy as massive Porites, investing its calcification resources into linear extension. In addition, differences in tissue thicknesses suggest that females offset the greater energy requirements of gamete production by generating less tissue, resulting in differences in the apparent timing of density-band formation. Such gender-related offsets may be common in other corals and require that environmental reconstructions be made from sexed colonies and that, in fossil corals where sex cannot be determined, reconstructions must be duplicated in different colonies.
Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study
NASA Astrophysics Data System (ADS)
Camacho-Mojica, Dulce C.; López-Urías, Florentino
2016-04-01
BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation effect due to a lattice mismatch. It was found that zigzag heterojunctions are more energetically favored than armchair heterojunctions. Furthermore, the formation energy presents a maximum at the point where the heterojunction becomes a planar structure. Electronic charge density results yielded a more ionic behavior in Alsbnd N bonds than the Bsbnd As bonds in accordance with monolayer results. It was observed that the conduction band minimum for both heterojunctions exhibit confined states located mainly at the entire AlN strips whereas the valence band maximum exhibits confined states located mainly at BAs strips. We expect that the present investigation will motivate more experimental and theoretical studies on new layered materials made of III-V semiconductors.
NASA Astrophysics Data System (ADS)
Chidambaram, Thenappan
III-V semiconductors are potential candidates to replace Si as a channel material in next generation CMOS integrated circuits owing to their superior carrier mobilities. Low density of states (DOS) and typically high interface and border trap densities (Dit) in high mobility group III-V semiconductors provide difficulties in quantification of Dit near the conduction band edge. The trap response above the threshold voltage of a MOSFET can be very fast, and conventional Dit extraction methods, based on capacitance/conductance response (CV methods) of MOS capacitors at frequencies <1MHz, cannot distinguish conducting and trapped carriers. In addition, the CV methods have to deal with high dispersion in the accumulation region that makes it a difficult task to measure the true oxide capacitance, Cox value. Another implication of these properties of III-V interfaces is an ambiguity of determination of electron density in the MOSFET channel. Traditional evaluation of carrier density by integration of the C-V curve, gives incorrect values for D it and mobility. Here we employ gated Hall method to quantify the D it spectrum at the high-K oxide/III-V semiconductor interface for buried and surface channel devices using Hall measurement and capacitance-voltage data. Determination of electron density directly from Hall measurements allows for obtaining true mobility values.
Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra
2016-12-21
The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.
NASA Astrophysics Data System (ADS)
Yan, Xingxiu; Qiu, Xiandeng; Yan, Zhishuo; Li, Hongjiang; Gong, Yun; Lin, Jianhua
2016-05-01
4-(4-oxopyridin-1(4 H)-yl)phthalic acid (H2L) and three H2L-based metal-organic frameworks (MOFs) formulated as ZnL(DPE)(H2O)·H2O (DPE=(E)-1, 2-di(pyridine -4-yl)ethene) (1), CdL(H2O)2 (2) and CdL (3) were synthesized and structurally characterized by single-crystal X-ray diffraction. The free H2L ligand shows an enol-form and the L2- ligand in the three MOFs exists as the keto-form. Density functional theory (DFT) calculations indicate H2L and the three MOFs possess different band structures. Due to the existence of the N-donor, DPE in MOF 1, the conduction band (CB) minimum and band gap of MOF 1 are much lower than those of H2L. And MOF 1 yielded much larger photocurrent density than H2L upon visible light illumination. Electrochemical impedance spectroscopy (EIS) shows the interfacial charge transfer impedance in the presence of MOF 1 is lower than that in the presence of H2L. The hydrous MOF 2 and the anhydrous MOF 3 are both constructed by Cd(II) and L2-, and they can be reversibly transformed to each other. However, MOFs 2 and 3 possess different CB minimums and VB maximums, and their band gaps are much larger than that of MOF 1.
Quantum multicriticality in disordered Weyl semimetals
NASA Astrophysics Data System (ADS)
Luo, Xunlong; Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi
2018-01-01
In electronic band structure of solid-state material, two band-touching points with linear dispersion appear in pairs in the momentum space. When they annihilate each other, the system undergoes a quantum phase transition from a three-dimensional (3D) Weyl semimetal (WSM) phase to a band insulator phase such as a Chern band insulator (CI) phase. The phase transition is described by a new critical theory with a "magnetic dipole"-like object in the momentum space. In this paper, we reveal that the critical theory hosts a novel disorder-driven quantum multicritical point, which is encompassed by three quantum phases: a renormalized WSM phase, a CI phase, and a diffusive metal (DM) phase. Based on the renormalization group argument, we first clarify scaling properties around the band-touching points at the quantum multicritical point as well as all phase boundaries among these three phases. Based on numerical calculations of localization length, density of states, and critical conductance distribution, we next prove that a localization-delocalization transition between the CI phase with a finite zero-energy density of states (zDOS) and DM phase belongs to an ordinary 3D unitary class. Meanwhile, a localization-delocalization transition between the Chern insulator phase with zero zDOS and a renormalized WSM phase turns out to be a direct phase transition whose critical exponent ν =0.80 ±0.01 . We interpret these numerical results by a renormalization group analysis on the critical theory.
Improved photovoltaic properties of ZnTeO-based intermediate band solar cells
NASA Astrophysics Data System (ADS)
Tanaka, Tooru; Saito, Katsuhiko; Guo, Qixin; Yu, Kin Man; Walukiewicz, Wladek
2018-02-01
Highly mismatched ZnTe1-xOx (ZnTeO) alloy is one of the potential candidates for an absorber material in a bulk intermediate band solar cell (IBSC) because a narrow, O-derived intermediate band IB (E-) is formed well below the conduction band CB (E+) edge of the ZnTe. We have previously demonstrated the generation of photocurrent induced by two-step photon absorption (TSPA) in ZnTeO IBSCs using n-ZnO window layer. However, because of the large conduction band offset (CBO) between ZnTe and ZnO, only a small open circuit voltage (Voc) was observed in this structure. Here, we report our recent progress on the development of ZnTeO IBSCs with n-ZnS window layer. ZnS has a large direct band gap of 3.7 eV with an electron affinity of 3.9 eV that can realize a smaller CBO with ZnTe. We have grown n-type ZnS thin films on ZnTe substrates by molecular beam epitaxy (MBE), and demonstrated ZnTe solar cells and ZnTeO IBSCs using n-ZnS window layer with an improved VOC. Especially, a n-ZnS/i-ZnTe/p-ZnTe solar cell showed an improved Voc of 0.77 V, a large short-circuit current density of 6.7 mA/cm2 with a fill factor of 0.60, yielding the power conversion efficiency of 3.1 %, under 1 sun illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xingxiu; Qiu, Xiandeng; Yan, Zhishuo
2016-05-15
4-(4-oxopyridin-1(4 H)-yl)phthalic acid (H{sub 2}L) and three H{sub 2}L-based metal-organic frameworks (MOFs) formulated as ZnL(DPE)(H{sub 2}O)·H{sub 2}O (DPE=(E)-1, 2-di(pyridine −4-yl)ethene) (1), CdL(H{sub 2}O){sub 2} (2) and CdL (3) were synthesized and structurally characterized by single-crystal X-ray diffraction. The free H{sub 2}L ligand shows an enol-form and the L{sup 2−} ligand in the three MOFs exists as the keto-form. Density functional theory (DFT) calculations indicate H{sub 2}L and the three MOFs possess different band structures. Due to the existence of the N-donor, DPE in MOF 1, the conduction band (CB) minimum and band gap of MOF 1 are much lower thanmore » those of H{sub 2}L. And MOF 1 yielded much larger photocurrent density than H{sub 2}L upon visible light illumination. Electrochemical impedance spectroscopy (EIS) shows the interfacial charge transfer impedance in the presence of MOF 1 is lower than that in the presence of H{sub 2}L. The hydrous MOF 2 and the anhydrous MOF 3 are both constructed by Cd(II) and L{sup 2−}, and they can be reversibly transformed to each other. However, MOFs 2 and 3 possess different CB minimums and VB maximums, and their band gaps are much larger than that of MOF 1. - Graphical abstract: The free ligand, 4-(4-oxopyridin-1(4H)-yl)phthalic acid (H{sub 2}L) shows different configuration from its three MOFs, and they possess different band structures. MOF 1 yielded much larger visible-light-driven photocurrent density than H{sub 2}L. The hydrous MOF 2 and the anhydrous MOF 3 can be transformed to each other, and they have larger band gaps than MOF 1.« less
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.
2017-04-01
We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations.
NASA Astrophysics Data System (ADS)
Dai, Wen-Wu; Zhao, Zong-Yan
2017-06-01
Heterostructure constructing is a feasible and powerful strategy to enhance the performance of photocatalysts, because they can be tailored to have desirable photo-electronics properties and couple distinct advantageous of components. As a novel layered photocatalyst, the main drawback of BiOI is the low edge position of the conduction band. To address this problem, it is meaningful to find materials that possess suitable band gap, proper band edge position, and high mobility of carrier to combine with BiOI to form hetertrostructure. In this study, graphene-based materials (including: graphene, graphene oxide, and g-C3N4) were chosen as candidates to achieve this purpose. The charge transfer, interface interaction, and band offsets are focused on and analyzed in detail by DFT calculations. Results indicated that graphene-based materials and BiOI were in contact and formed van der Waals heterostructures. The valence and conduction band edge positions of graphene oxide, g-C3N4 and BiOI changed with the Fermi level and formed the standard type-II heterojunction. In addition, the overall analysis of charge density difference, Mulliken population, and band offsets indicated that the internal electric field is facilitate for the separation of photo-generated electron-hole pairs, which means these heterostructures can enhance the photocatalytic efficiency of BiOI. Thus, BiOI combines with 2D materials to construct heterostructure not only make use of the unique high electron mobility, but also can adjust the position of energy bands and promote the separation of photo-generated carriers, which provide useful hints for the applications in photocatalysis.
Investigation of narrow-band thermal emission from intersubband transitions in quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Zoysa, M.; Hakubi Center, Kyoto University, Yoshida, Kyoto 606-8501; Asano, T.
2015-09-14
We investigate thermal emission from n-doped GaAs/AlGaAs quantum wells (QWs). Emission peaks with Lorentzian shapes (linewidth 11∼19 meV) that reflect transitions between the first and second conduction subbands are observed in the mid-infrared range. It is demonstrated that the emission characteristics can be tuned by modifying the QW parameters. The peak emissivity is increased from 0.3 to 0.9 by modifying the doping density, and the peak wavelength is tuned from 6 to 10 μm by changing the well width. The obtained results are useful for the design of narrow-band thermal emitters.
NASA Astrophysics Data System (ADS)
Shen, Lanxian; Li, Decong; Liu, Hongxia; Liu, Zuming; Deng, Shukang
2016-12-01
In this study, the structural and electronic structural properties of Ba8Ga16Sn30-xGex (0≤x≤30) are determined by the first-principle method on the basis of density functional theory. Consistent with experimental findings, calculated results reveal that Ge atoms preferentially occupy the 2a and 24g sites in these compounds. As the content of Ge in Ge-substituted clathrate is increased, the lattice parameter is decreased, and the structural stability is enhanced. The bandgaps of the compound at 1≤x≤10 are smaller than those of Ba8Ga16Sn30. By contrast, the bandgaps of the compound at x>10 are larger than those of Ba8Ga16Sn30. The substitution of Ge for Sn affects p-type conductivity but not n-type conductivity. As Ge content increases, the whole conduction band moves to the direction of high energy, and the density of states of valence-band top decreases. The calculated potential energy versus displacement of Ba indicates that the vibration energy of this atom increases as cage size decreases. Because Ge substitution also affects clathrate structural symmetry, the distance of Ba atom deviation from the center of the cage initially increases and subsequently decreases as the Ge content increases.
Phonon-assisted optical absorption in BaSnO 3 from first principles
NASA Astrophysics Data System (ADS)
Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.
2018-03-01
The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.
Designing Semiconductor Heterostructures Using Digitally Accessible Electronic-Structure Data
NASA Astrophysics Data System (ADS)
Shapera, Ethan; Schleife, Andre
Semiconductor sandwich structures, so-called heterojunctions, are at the heart of modern applications with tremendous societal impact: Light-emitting diodes shape the future of lighting and solar cells are promising for renewable energy. However, their computer-based design is hampered by the high cost of electronic structure techniques used to select materials based on alignment of valence and conduction bands and to evaluate excited state properties. We describe, validate, and demonstrate an open source Python framework which rapidly screens existing online databases and user-provided data to find combinations of suitable, previously fabricated materials for optoelectronic applications. The branch point energy aligns valence and conduction bands of different materials, requiring only the bulk density functional theory band structure. We train machine learning algorithms to predict the dielectric constant, electron mobility, and hole mobility with material descriptors available in online databases. Using CdSe and InP as emitting layers for LEDs and CH3NH3PbI3 and nanoparticle PbS as absorbers for solar cells, we demonstrate our broadly applicable, automated method.
Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells
Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel
2009-01-01
We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.
Arana, Inés; Orruño, Maite; Seco, Carolina; Muela, Alicia; Barcina, Isabel
2008-03-01
The ability of Urografin or Percoll density gradient centrifugations to separate nonculturable subpopulations from heterogeneous Escherichia coli populations was analysed. Bacterial counts (total, active and culturable cells) and flow cytometric analyses were carried out in all recovered bands. After Urografin centrifugation, and despite the different origin of E. coli populations, a common pattern was obtained. High-density bands were formed mainly by nonculturable cells. However, the increase in cell density would not be common to all nonculturable cells, since part of this subpopulations banded in low-density zones, mixed with culturable cells. Bands obtained after Percoll centrifugation were heterogeneous and culturable and nonculturable cells were recovered along the gradient. Thus, fractionation in Urografin cannot be only attributed to changes in buoyant densities during the transition from culturable to nonculturable state. Urografin density gradients allow us to obtain enriched fractions in nonculturable subpopulations from a heterogeneous population, but working conditions should be carefully chosen to avoid Urografin toxicity.
Solano, Jesús Ramírez; Baños, Alejandro Trejo; Durán, Álvaro Miranda; Quiroz, Eliel Carvajal; Irisson, Miguel Cruz
2017-09-26
In the development of quantum computing and communications, improvements in materials capable of single photon emission are of great importance. Advances in single photon emission have been achieved experimentally by introducing nitrogen-vacancy (N-V) centers on diamond nanostructures. However, theoretical modeling of the anisotropic effects on the electronic properties of these materials is almost nonexistent. In this study, the electronic band structure and density of states of diamond nanowires with N-V defects were analyzed through first principles approach using the density functional theory and the supercell scheme. The nanowires were modeled on two growth directions [001] and [111]. All surface dangling bonds were passivated with hydrogen (H) atoms. The results show that the N-V introduces multiple trap states within the energy band gap of the diamond nanowire. The energy difference between these states is influenced by the growth direction of the nanowires, which could contribute to the emission of photons with different wavelengths. The presence of these trap states could reduce the recombination rate between the conduction and the valence band, thus favoring the single photon emission. Graphical abstract Diamond nanowires with nitrogen-vacancy centerᅟ.
Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei
2016-08-24
As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.
Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean
2009-05-14
The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.
New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure
NASA Astrophysics Data System (ADS)
Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing
2015-10-01
Two new hybrid lead halides (H2BDA)[PbI4] (1) (H2BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI3] (2) (HNPEIM=N-phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively.
NASA Astrophysics Data System (ADS)
Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei
2018-05-01
C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.
NASA Astrophysics Data System (ADS)
Ohkubo, Isao; Mori, Takao
2017-07-01
The influence of two different types of exchange-correlation functional/potential, namely, the generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) functional and the modified Becke-Johnson (mBJ) potential, on the thermoelectric transport properties of d0 perovskite oxides (SrTiO3 and KTaO3) was investigated. The reduction of band dispersion induced by the mBJ scheme allows the improved prediction of band gap values by thelocal density approximation (LDA) and GGA, which increases the resolution of the increases in the density of states (DOS), carrier concentration, and effective mass near the conduction band edge. A comparison of the experimental effective mass values of d0 perovskite oxides shows that the effective mass values provided by the mBJ potential are similar to those provided by the GGA-PBE functional. Comparative analysis of the data obtained from Boltzmann theory calculations using the electronic structures determined with the GGA-PBE functional and the mBJ potential shows a difference in the transport coefficients owing to the increases in the DOS, carrier concentration, and effective mass induced by the mBJ scheme.
The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model
NASA Technical Reports Server (NTRS)
Kazior, T. E.; Lagowski, J.; Gatos, H. C.
1983-01-01
The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.
Temperature-dependent band structure of SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Raslan, Amany; Lafleur, Patrick; Atkinson, W. A.
2017-02-01
We build a theoretical model for the electronic properties of the two-dimensional (2D) electron gas that forms at the interface between insulating SrTiO3 and a number of polar cap layers, including LaTiO3, LaAlO3, and GdTiO3. The model treats conduction electrons within a tight-binding approximation and the dielectric polarization via a Landau-Devonshire free energy that incorporates strontium titanate's strongly nonlinear, nonlocal, and temperature-dependent dielectric response. The self-consistent band structure comprises a mix of quantum 2D states that are tightly bound to the interface and quasi-three-dimensional (3D) states that extend hundreds of unit cells into the SrTiO3 substrate. We find that there is a substantial shift of electrons away from the interface into the 3D tails as temperature is lowered from 300 K to 10 K. This shift is least important at high electron densities (˜1014cm-2 ) but becomes substantial at low densities; for example, the total electron density within 4 nm of the interface changes by a factor of two for 2D electron densities ˜1013cm-2 . We speculate that the quasi-3D tails form the low-density high-mobility component of the interfacial electron gas that is widely inferred from magnetoresistance measurements.
Composition dependent band offsets of ZnO and its ternary alloys
NASA Astrophysics Data System (ADS)
Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong
2017-01-01
We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1-xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1-xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 - 2.33x + 1.77x2 for Zn1-xMgxO and Zn1-xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics.
First principles investigation of GaNbO{sub 4} as a photocatalytic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Neelam, E-mail: sneelam@issc.unipune.ac.in; Verma, Mukta; Shah, Vaishali
We have performed first principles density functional total energy calculations on pure and doped GaNbO{sub 4} to investigate its applicability as a photo catalyst. Pure GaNbO{sub 4} is an indirect, wide band gap semiconductor similar to the widely investigated TiO{sub 2} which is known to be a photo catalyst in UV light [K. Yang et. al. Chem. Mater. 20, 6528 (2008)]. S atom doping of TiO{sub 2} reduces the band gap [F. Tian et. al. J. Phys. Chem. B 110, 17866 (2006)], and increases its efficiency in the visible light range. It has been experimentally reported that S doping ofmore » GaNbO{sub 4} at the O site, decreases its photo catalytic efficiency. Our band structure calculations show that both pure and doped GaNbO{sub 4} have indirect band gaps and S atom doping reduces the band gap in agreement with experiments. The decrease in the band gap is due to the lowering of the conduction band minimum towards the Fermi level. An unequal reduction in the band gap was observed at the four inequivalent O sites chosen for S doping. This suggests that the photo catalytic activity varies with the dopant site.« less
Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors
NASA Astrophysics Data System (ADS)
Shi, Fangyi; Si, M. S.; Xie, Jiafeng; Mi, Kui; Xiao, Chuntao; Luo, Qiangjun
2017-12-01
Recently, 27 new half-Heusler compounds XYZ (X = Co, Rh, Fe, Ru, Ni; Y = Sc, Ti, V; Z = P, As, Sb, Si, Ge, Sn, Al, Ga, In) with 18 valence electrons are proposed and their bandgaps span a wide range of 0.10-1.39 eV, which have a great potential of applications in varied areas. Note that the bandgaps are predicted on the gradient-corrected Perdew-Burke-Ernzerhof functional, which underestimates the magnitude of bandgap. To obtain the accurate bandgaps, we recalculate them based on the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. Our results show that the nonlocal correction from the HSE06 functional mainly acts on the two lowest conduction bands. The variation in energy separation between these two bands dominates the relative increment of bandgap. More importantly, the band ordering is distinguished in the presence of HSE06 functional, where the dz2 orbital exhibits. When the lattice constant varies, such a band ordering can be inverted, similar to the case of topological insulators. In addition, we find an abnormal behavior of the bandgap related to the Pauling electronegativity difference between the X- and Z-sites, which arises from the delocalization of charge on the Y-site. We expect that our work can provide guidance to the study of bandgap based on the hybrid density functional theory in the half-Heusler semiconductors.
Bonding, moment formation, and magnetic interactions in Ca14MnBi11 and Ba14MnBi11
NASA Astrophysics Data System (ADS)
Sánchez-Portal, D.; Martin, Richard M.; Kauzlarich, S. M.; Pickett, W. E.
2002-04-01
``14-1-11'' phase compounds, based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11, show an unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local-orbital-based method within the local-spin-density approximation to study the electronic structure, we find a gap between a bonding valence-band complex and an antibonding conduction-band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit, and partially compensates for the high-spin d5 Mn moment, leaving a net spin near 4μB that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating ``jungle gym'' networks of spin-4/2 MnBi9-4 units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferromagnetic and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hall, Callie
2005-01-01
Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970s. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is employed in this study, due to its abundance of coastal habitats and its vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated from multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.
NASA Technical Reports Server (NTRS)
Spruce, Joe; Hall, Callie
2005-01-01
Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970's. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is imployed in this study, due to its abundance of coastal habitats and ist vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density-sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated form multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.
Thermoelectric transport in two-dimensional giant Rashba systems
NASA Astrophysics Data System (ADS)
Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian
Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.
Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng
2018-01-24
The electronic and optical properties of the rare earth metal atom-doped anatase TiO₂ have been investigated systematically via density functional theory calculations. The results show that TiO₂ doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron-hole recombination. This effect of band change originates from the 4 f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO₂ is tuned by the introduction of impurity atoms.
Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng
2018-01-01
The electronic and optical properties of the rare earth metal atom-doped anatase TiO2 have been investigated systematically via density functional theory calculations. The results show that TiO2 doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron–hole recombination. This effect of band change originates from the 4f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO2 is tuned by the introduction of impurity atoms. PMID:29364161
Spectroscopic studies of fly ash-based geopolymers
NASA Astrophysics Data System (ADS)
Rożek, Piotr; Król, Magdalena; Mozgawa, Włodzimierz
2018-06-01
In the present work fly-ash based geopolymers with different contents of alkali-activator and water were prepared. Alkali-activation was conducted with sodium hydroxide (NaOH) at the SiO2/Na2O molar ratio of 3, 4, and 5. Water content was at the ratio of 30, 40, and 50 wt% in respect to the weight of the fly ash. Structural and microstructural characterization (FT-IR spectroscopy, 29Si and 27Al MAS NMR, X-ray diffraction, SEM) of the specimens as well as compressive strength and apparent density measurements were carried out. The obtained geopolymers are mainly amorphous due to the presence of disordered aluminosilicate phases. However, hydroxysodalite have been identified as a crystalline product of geopolymerization. The major band in the mid-infrared spectra (at about 1000 cm-1) is related to Sisbnd O(Si,Al) asymmetric stretching vibrations and is an indicator of the geopolymeric network formation. Several component bands in this region can be noticed after the decomposition process. Decomposition of band at 1450 cm-1 (vibrations of Csbnd O bonds in bicarbonate group) has been also conducted. Higher NaOH content favors carbonation, inasmuch as the intensity of the band then increases. Both water and alkaline activator contents have an influence on compressive strength and microstructure of the obtained fly-ash based geopolymers.
Ab-initio modeling of electromechanical coupling at Si surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoppe, Sandra; Müller, Stefan, E-mail: stefan.mueller@tuhh.de; Michl, Anja
The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain responsemore » of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.« less
NASA Astrophysics Data System (ADS)
Borgatti, Francesco; Berger, J. A.; Céolin, Denis; Zhou, Jianqiang Sky; Kas, Joshua J.; Guzzo, Matteo; McConville, C. F.; Offi, Francesco; Panaccione, Giancarlo; Regoutz, Anna; Payne, David J.; Rueff, Jean-Pascal; Bierwagen, Oliver; White, Mark E.; Speck, James S.; Gatti, Matteo; Egdell, Russell G.
2018-04-01
The longstanding problem of interpretation of satellite structures in core-level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO2. Comparison of ab initio many-body calculations with experimental hard x-ray photoemission spectra of the Sn 4 d states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core-level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.
Zhang, Angel; Stillman, Martin J
2018-05-09
The electronic structures of three previously synthesized Ni-coordinated chlorins with β-substituents of thioketone, fluorene, and ketone were investigated using magnetic circular dichroism spectroscopy (MCD) and density functional theory (DFT) for potential application as sensitizers for dye-sensitized solar cells (DSSCs). Computational studies on modeled Zn-coordinated chlorins allowed identification of charge transfer and d-d transitions of the Ni2+ coordinated chlorins. Two fictive Zn chlorins, M1 and M2, were designed with thiophene units based on the fluorene substituted chlorin. Substitution with thiophene altered the typical arrangement of the four Gouterman molecular orbitals (MOs) and red-shifted and greatly intensified the lowest energy absorption band (the Q band). The introduction of the thiophene-based MO as the LUMO below the usual Gouterman LUMO is predicted to increase the efficiency of electron transfer from the dye to the conduction band of the semiconductor in DSSCs. The addition of a donor group on the opposite pyrrole (M2) red-shifted the Q band further and introduced a donor-based MO between the typical Gouterman HOMO and HOMO-1. Despite the relatively small ΔHOMO, M1 and M2 exhibited remarkably intense Q bands. M2 would be a possible candidate for application in DSSCs due to its panchromatic absorption, intense and red-shifted Q band, and the presence of the substituent based MO properties. Another indicator of a successful dye is the alignment of the ground state and excited state oxidation potentials (GSOP and ESOP, respectively) with respect to the conduction band of the semiconductor. The GSOP for M2 lies 0.55 eV below the I-/I3- redox potential and the ESOP lies 0.48 eV above the TiO2 conduction band. The impact of the thiophene dominance in the LUMO also supports the prediction of efficient sensitization properties. The remarkably intense Q band of M2 predicted to be at 777 nm with a ΔHOMO of just 1.04 eV provides a synthetic route to tetrapyrroles with extremely intense, red Q bands without the need for aza nitrogens of the phthalocyanines. This study illustrates the value of guided synthesis using MCD spectral analysis and computational methods for optimizing the design of porphyrin dyes.
Implications of the formation of small polarons in Li2O2 for Li-air batteries
NASA Astrophysics Data System (ADS)
Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.
2012-01-01
Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.
Park, Sarah S.; Hontz, Eric R.; Sun, Lei; ...
2015-01-26
Isostructural metal-organic frameworks (MOFs) M 2(TTFTB) (M = Mn, Co, Zn, and Cd; H4TTFTB = tetrathiafulvalene tetrabenzoate) exhibit a striking correlation between their single-crystal conductivities and the shortest S···S interaction defined by neighboring TTF cores, which inversely correlates with the ionic radius of the metal ions. The larger cations cause a pinching of the S···S contact, which is responsible for better orbital overlap between p z orbitals on neighboring S and C atoms. Density functional theory calculations show that these orbitals are critically involved in the valence band of these materials, such that modulation of the S···S distance has anmore » important effect on band dispersion and, implicitly, on the conductivity. The Cd analogue, with the largest cation and shortest S···S contact, shows the largest electrical conductivity, σ = 2.86 (±0.53) × 10 -4 S/cm, which is also among the highest in microporous MOFs. These results describe the first demonstration of tunable intrinsic electrical conductivity in this class of materials and serve as a blueprint for controlling charge transport in MOFs with π-stacked motifs.« less
NASA Astrophysics Data System (ADS)
Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou
2018-04-01
The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.
A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations
NASA Astrophysics Data System (ADS)
Ilyas, Bahaa M.; Elias, Badal H.
2017-04-01
The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl3 and CsCdCl3 unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl3 and CsPbCl3 is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl3 is Γ-R indirect band gap insulator, while CsPbCl3 is an insulator with a direct band gap Γ-Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl3, and Cd-p states and Cs-p states for the CsCdCl3 in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0-20 GPa and 0-40 GPa for the CsCdCl3 and CsPbCl3 respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame's constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl3 (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For the optical properties, both the static refractive index and dielectric constant are found to be related proportionally to the indirect band gap of CsCdCl3. The refractive index, extinction coefficient, complex dielectric function, energy loss function, optical conductivity, reflectivity and absorption coefficient for 0-25 eV incident photon energies have been predicted. The phonon properties were investigated using response functions to predict the phonon lattice dispersion and the density of states. The thermal effect on the heat capacities, entropy, enthalpy and Free energy were predicted and compared using both the quasi-harmonic Debye model and response functions, the latter provided far better results. To the best of the authors' knowledge, most of the studied properties have not been experimentally reported so far. Generally, the computed results for both CsCdCl3 and CsPbCl3 are very satisfactory and show good agreement with other calculations.
NASA Astrophysics Data System (ADS)
Kumar, Akash; Balasubramaniam, K. R.; Kangsabanik, Jiban; Vikram, Alam, Aftab
2016-11-01
Structural stability, electronic structure, and optical properties of CH3NH3BaI3 hybrid perovskite are examined from theory as well as experiment. Solution-processed thin films of CH3NH3BaI3 exhibited a high transparency in the wavelength range of 400-825 nm (1.5-3.1 eV for which the photon current density is highest in the solar spectrum) which essentially justifies a high band gap of 4 eV obtained by theoretical estimation. Also, the x-ray diffraction patterns of the thin films match well with the {00 l } peaks of the simulated pattern obtained from the relaxed unit cell of CH3NH3BaI3 , crystallizing in the I 4 /m c m space group, with lattice parameters, a =9.30 Å, c =13.94 Å. Atom projected density of state and band structure calculations reveal the conduction and valence band edges to be comprised primarily of barium d orbitals and iodine p orbitals, respectively. The larger band gap of CH3NH3BaI3 compared to CH3NH3PbI3 can be attributed to the lower electronegativity coupled with the lack of d orbitals in the valence band of Ba2 +. A more detailed analysis reveals the excellent chemical and mechanical stability of CH3NH3BaI3 against humidity, unlike its lead halide counterpart, which degrades under such conditions. We propose La to be a suitable dopant to make this compound a promising candidate for transparent conductor applications, especially for all perovskite solar cells. This claim is supported by our calculated results on charge concentration, effective mass, and vacancy formation energies.
2013-01-01
The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596
Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application.
Nourbakhsh, Amirhasan; Zubair, Ahmad; Dresselhaus, Mildred S; Palacios, Tomás
2016-02-10
This paper studies band-to-band tunneling in the transverse and lateral directions of van der Waals MoS2/WSe2 heterojunctions. We observe room-temperature negative differential resistance (NDR) in a heterojunction diode comprised of few-layer WSe2 stacked on multilayer MoS2. The presence of NDR is attributed to the lateral band-to-band tunneling at the edge of the MoS2/WSe2 heterojunction. The backward tunneling diode shows an average conductance slope of 75 mV/dec with a high curvature coefficient of 62 V(-1). Associated with the tunnel-diode characteristics, a positive-to-negative transconductance in the MoS2/WSe2 heterojunction transistors is observed. The transition is induced by strong interlayer coupling between the films, which results in charge density and energy-band modulation. The sign change in transconductance is particularly useful for multivalued logic (MVL) circuits, and we therefore propose and demonstrate for the first time an MVL-inverter that shows three levels of logic using one pair of p-type transistors.
NMR and transport measurements of copper chalcogenide and clathrate compounds
NASA Astrophysics Data System (ADS)
Sirusi Arvij, Ali
Due to limited sources of fossil fuels worldwide and a large percentage wasted as heat energy, searching for efficient thermoelectric materials to convert heat to electricity has gained a great deal of attention. Most of the attempts are focused on materials with substantially lower lattice thermal conductivity and narrow band gaps. Among them, inorganic clathrates and copper-based chalcogenides possess intrinsic low thermal conductivity which makes them promising thermoelectrics. In this work, nuclear magnetic resonance (NMR), transport, and magnetic measurements were performed on clathrates and copper-based chalcogenides to investigate their vibrational and electronic charge carrier properties, as well as the unknown structures of Cu2Se and Cu 2Te at low temperatures, and the effect of rattling of guest atoms in the clathrates. The NMR results in Ba8Ga16Ge30 indicate a pseudogap in the Ga electronic density of states, superposed upon a surprisingly large Ba contribution to the conduction band. Meanwhile, the phonon contributions to the Ga relaxation rates are large and increase more rapidly with temperature than typical semiconductors due to enhanced anharmonicity of the propagative phonon modes over a wide range. Moreover, the observed NMR shifts in the Ba8Cu5Si xGe41-x clathrates change in a nonlinear way with increasing Si substitution: from x = 0 to about 20 the shifts are essentially constant, while approaching x = 41 they increase rapidly, demonstrating a significant change in hybridizations vs Si substitution. NMR studies of Cu2Se show an initial appearance of ionic hopping in a narrow temperature range above 100 K, coinciding with the recently observed low-temperature phase transition. At room temperature and above, this goes over to rapid Cu-ion hopping and a single motionally narrowed line both above and below the alpha-beta structural transition. Furthermore, the NMR results on Cu2Te and Cu 1.98Ag0.2Te demonstrate unusually large negative chemical shifts, as well as large Cu and Te s-state contributions in the valence band. The large diamagnetic chemical shifts coincide with behavior previously identified for materials with topologically nontrivial band inversion, and in addition, the large metallic shifts point to analogous features in the valence band density of states, suggesting that Cu2Te may have similar inverted features.
Wavefunction Properties and Electronic Band Structures of High-Mobility Semiconductor Nanosheet MoS2
NASA Astrophysics Data System (ADS)
Baik, Seung Su; Lee, Hee Sung; Im, Seongil; Choi, Hyoung Joon; Ccsaemp Team; Edl Team
2014-03-01
Molybdenum disulfide (MoS2) nanosheet is regarded as one of the most promising alternatives to the current semiconductors due to its significant band-gap and electron-mobility enhancement upon exfoliating. To elucidate such thickness-dependent properties, we have studied the electronic band structures of bulk and monolayer MoS2 by using the first-principles density-functional method as implemented in the SIESTA code. Based on the wavefunction analyses at the conduction band minimum (CBM) points, we have investigated possible origins of mobility difference between bulk and monolayer MoS2. We provide formation energies of substitutional impurities at the Mo and S sites, and discuss feasible electron sources which may induce a significant difference in the carrier lifetime. This work was supported by NRF of Korea (Grant Nos. 2009-0079462 and 2011-0018306), Nano-Material Technology Development Program (2012M3a7B4034985), and KISTI supercomputing center (Project No. KSC-2013-C3-008). Center for Computational Studies of Advanced Electronic Material Properties.
NASA Astrophysics Data System (ADS)
Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu
2018-04-01
The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.
Origin of subgap states in amorphous In-Ga-Zn-O
NASA Astrophysics Data System (ADS)
Körner, Wolfgang; Urban, Daniel F.; Elsässer, Christian
2013-10-01
We present a density functional theory analysis of stoichiometric and nonstoichiometric, crystalline and amorphous In-Ga-Zn-O (c-IGZO, a-IGZO), which connects the recently experimentally discovered electronic subgap states to structural features of a-IGZO. In particular, we show that undercoordinated oxygen atoms create electronic defect levels in the lower half of the band gap up to about 1.5 eV above the valence band edge. As a second class of fundamental defects that appear in a-IGZO, we identify mainly pairs of metal atoms which are not separated by oxygen atoms in between. These defects cause electronic defect levels in the upper part of the band gap. Furthermore, we show that hydrogen doping can suppress the deep levels due to undercoordinated oxygen atoms while those of metal defects just undergo a shift within the band gap. Altogether our results provide an explanation for the experimentally observed effect that hydrogen doping increases the transparency and improves the conductivity of a-IGZO.
NASA Astrophysics Data System (ADS)
Liu, Wei-wei; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong
2017-02-01
Effect of N doping concentration on the electronic structure of N-doped CuAlO2 was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO2 were structurally stable. The calculated band gaps for N-doped CuAlO2 narrowed compared to pure CuAlO2, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO2 shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO2 materials in optoelectronic and electronic devices.
NASA Astrophysics Data System (ADS)
Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.
2012-03-01
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.
NASA Astrophysics Data System (ADS)
Feneberg, Martin; Osterburg, Sarah; Lange, Karsten; Lidig, Christian; Garke, Bernd; Goldhahn, Rüdiger; Richter, Eberhard; Netzel, Carsten; Neumann, Maciej D.; Esser, Norbert; Fritze, Stephanie; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois
2014-08-01
The interplay between band gap renormalization and band filling (Burstein-Moss effect) in n-type wurtzite GaN is investigated. For a wide range of electron concentrations up to 1.6×1020cm-3 spectroscopic ellipsometry and photoluminescence were used to determine the dependence of the band gap energy and the Fermi edge on electron density. The band gap renormalization is the dominating effect up to an electron density of about 9×1018cm-3; at higher values the Burstein-Moss effect is stronger. Exciton screening, the Mott transition, and formation of Mahan excitons are discussed. A quantitative understanding of the near gap transition energies on electron density is obtained. Higher energy features in the dielectric functions up to 10eV are not influenced by band gap renormalization.
Electron momentum density and band structure calculations of α- and β-GeTe
NASA Astrophysics Data System (ADS)
Vadkhiya, Laxman; Arora, Gunjan; Rathor, Ashish; Ahuja, B. L.
2011-12-01
We have measured isotropic experimental Compton profile of α-GeTe by employing high energy (662 keV) γ-radiation from a 137Cs isotope. To compare our experiment, we have also computed energy bands, density of states, electron momentum densities and Compton profiles of α- and β-phases of GeTe using the linear combination of atomic orbitals method. The electron momentum density is found to play a major role in understanding the topology of bands in the vicinity of the Fermi level. It is seen that the density functional theory (DFT) with generalised gradient approximation is relatively in better agreement with the experiment than the local density approximation and hybrid Hartree-Fock/DFT.
Hou, Xun; Xie, Zhongjing; Li, Chunmei; Li, Guannan; Chen, Zhiqian
2018-01-01
In recent years, graphyne was found to be the only 2D carbon material that has both sp and sp2 hybridization. It has received significant attention because of its great potential in the field of optoelectronics, which arises due to its small band gap. In this study, the structural stability, electronic structure, elasticity, thermal conductivity and optical properties of α, β, γ-graphynes were investigated using density functional theory (DFT) systematically. γ-graphyne has the largest negative cohesive energy and thus the most stable structure, while the β-graphyne comes 2nd. Both β and γ-graphynes have sp-sp, sp-sp2 and sp2-sp2 hybridization bonds, of which γ-graphyne has shorter bond lengths and thus larger Young’s modulus. Due to the difference in acetylenic bond in the structure cell, the effect of strain on the electronic structure varies between graphynes: α-graphyne has no band gap and is insensitive to strain; β-graphyne’s band gap has a sharp up-turn at 10% strain, while γ-graphyne’s band gap goes up linearly with the strain. All the three graphynes exhibit large free carrier concentration and these free carriers have small effective mass, and both free carrier absorption and intrinsic absorption are found in the light absorption. Based on the effect of strain, optical properties of three structures are also analyzed. It is found that the strain has significant impacts on their optical properties. In summary, band gap, thermal conductivity, elasticity and optical properties of graphyne could all be tailored with adjustment on the amount of acetylenic bonds in the structure cell. PMID:29370070
Hou, Xun; Xie, Zhongjing; Li, Chunmei; Li, Guannan; Chen, Zhiqian
2018-01-25
In recent years, graphyne was found to be the only 2D carbon material that has both sp and sp² hybridization. It has received significant attention because of its great potential in the field of optoelectronics, which arises due to its small band gap. In this study, the structural stability, electronic structure, elasticity, thermal conductivity and optical properties of α, β, γ-graphynes were investigated using density functional theory (DFT) systematically. γ-graphyne has the largest negative cohesive energy and thus the most stable structure, while the β-graphyne comes 2nd. Both β and γ-graphynes have sp-sp, sp-sp² and sp²-sp² hybridization bonds, of which γ-graphyne has shorter bond lengths and thus larger Young's modulus. Due to the difference in acetylenic bond in the structure cell, the effect of strain on the electronic structure varies between graphynes: α-graphyne has no band gap and is insensitive to strain; β-graphyne's band gap has a sharp up-turn at 10% strain, while γ-graphyne's band gap goes up linearly with the strain. All the three graphynes exhibit large free carrier concentration and these free carriers have small effective mass, and both free carrier absorption and intrinsic absorption are found in the light absorption. Based on the effect of strain, optical properties of three structures are also analyzed. It is found that the strain has significant impacts on their optical properties. In summary, band gap, thermal conductivity, elasticity and optical properties of graphyne could all be tailored with adjustment on the amount of acetylenic bonds in the structure cell.
Magnetism and Metal-Insulator Transition in Oxygen Deficient SrTiO 3
Lopez-Bezanilla, Alejandro; Ganesh, Panchapakesan; Littlewood, Peter B.
2015-09-08
First-principles calculations to study the electronic and magnetic properties of bulk, oxygen-deficient SrTiO 3 (STO) under different doping conditions and densities have been conducted. The appearance of magnetism in oxygen-deficient STO is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. We find that while an isolated vacancy behaves as a nonmagnetic double donor, manipulation of the doping conditions allows the stability of a single-donor state, with emergent local moments coupled ferromagnetically by carriers in the conduction band. Strong local lattice distortions enhancemore » the binding of this state. As a result, the energy of the in-gap local moment can be further tuned by orthorhombic strain. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient STO, which may have important implications in the design of optical devices.« less
Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis
NASA Astrophysics Data System (ADS)
Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.
2013-04-01
We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Zhou, Wenzhe; Yang, Zhixiong; Wu, Shoujian; Ouyang, Fangping; Xu, Hui
2017-12-01
Based on the first principles calculation, the electrical properties and optical properties of monolayer molybdenum disulfide (MoS2) substitutionally doped by the VB and VIIB transition metal atoms (V, Nb, Ta, Mn, Tc, Re) were investigated. It is found that n-type doping or p-type doping tunes the Fermi level into the conduction band or the valence band respectively, leading to the degenerate semiconductor, while the compensatorily doped systems where the number of valence electrons is not alerted remain direct band gap ranging from 0.958 eV to 1.414 eV. According to the analysis on densities of states, the LUMO orbitals of donor impurities play the crucial role in band gap tuning. Hence, the band gap and optical properties of doped MoS2 are dominated by the species of the donor. Due to the reduction of the band gap, doped MoS2 have a lower threshold energy of photon absorption and an enhanced absorption in near infrared region. These results provide a significant guidance for the design of new 2D optoelectronic materials based on transition metal disulfide.
QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.
Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell
2017-05-01
Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.
Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar
2017-12-01
A combined high pressure and temperature investigation on recently reported cubic perovskite PbMoO3 have been performed within the most accurate density functional theory (DFT). The structure was found stable in cubic paramagnetic phase. The DFT calculated analytical and experimental lattice constant were found in good agreement. The analytical tolerance factor as well as the elastic properties further verifies the cubic stability for PbMoO3. The spin polarized electronic band structure and density of states presented metallic nature with symmetry in up and down states. The insignificant magnetic moment also confirms the paramagnetic nature for the compound. The high pressure elastic and mechanical study up to 35 GPa reveal the structural stability of the material in this pressure range. The compound was found to establish a ductile nature. The electrical conductivity obtained from the band structure results show a decreasing trend with increasing temperature. The temperature dependence of thermodynamic parameters such as specific heat ( C v), thermal expansion ( α) has also been evaluated.
NASA Astrophysics Data System (ADS)
Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.
2016-06-01
A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator-metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature Tj is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature Tj, the concentration of "free" holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3Tj/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to Tj hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (-1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 1017 to 3 × 1020 cm-3, i.e., up to the Mott transition. The model uses no fitting parameters.
Electronic structure and optical properties of boron nitride nanotube bundles from first principles
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2015-06-01
The electronic and optical properties of bundled armchair and zigzag boron nitride nanotubes (BNNTs) are investigated by using density functional theory. Owing to the inter-tube coupling, the dispersions along the tube axis and in the plane perpendicular to the tube axis of BNNT bundles are significantly varied, which are characterized by the decrease of band gap, the splitting of the doubly degenerated states, the expansions of valence and conduction bands. The calculated dielectric functions of the armchair and zigzag bundles are similar to that of the isolated tubes, except for the appearance of broadened peaks, small shifts of peak positions about 0.1 eV and increasing of peak intensities.
Observation of Landau quantization and standing waves in HfSiS
NASA Astrophysics Data System (ADS)
Jiao, L.; Xu, Q. N.; Qi, Y. P.; Wu, S.-C.; Sun, Y.; Felser, C.; Wirth, S.
2018-05-01
Recently, HfSiS was found to be a new type of Dirac semimetal with a line of Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are also pronounced in this compound. Here we report a systematic study of HfSiS by scanning tunneling microscopy/spectroscopy at low temperature and high magnetic field. The Rashba-split surface states are characterized by measuring Landau quantization and standing waves, which reveal a quasilinear dispersive band structure. First-principles calculations based on density-functional theory are conducted and compared with the experimental results. Based on these investigations, the properties of the Rashba-split surface states and their interplay with defects and collective modes are discussed.
Surface-modified TiO2 powders with phenol derivatives: A comparative DFT and experimental study
NASA Astrophysics Data System (ADS)
Sredojević, Dušan N.; Kovač, Tijana; Džunuzović, Enis; Ðorđević, Vesna; Grgur, Branimir N.; Nedeljković, Jovan M.
2017-10-01
The charge transfer complex formation between TiO2 powder and variety of phenol derivatives (phenol, 4-nitrophenol, 4-bromophenol, 4-tert-butylphenol, hydroquinone) was achieved. The red-shift of optical absorption was observed upon surface modification of TiO2 powders with phenol derivatives. The influence of substituent functional groups in para position on the optical band gap and conduction band edge of inorganic/organic hybrids was studied using reflection spectroscopy and cyclic voltammetry. The experimental findings were supported by density functional theory calculations. The measured reflection spectra of surface-modified TiO2 powders with phenol derivatives were compared with calculated electronic excitation spectra of corresponding model systems.
NASA Astrophysics Data System (ADS)
Sabino, Fernando P.; Oliveira, Luiz N.; Wei, Su-Huai; Da Silva, Juarez L. F.
2018-02-01
Transparent conducting oxides such as the bixbyite In2O3 and rutile SnO2 systems have large disparities between the optical and fundamental bandgaps, ΔEgO F , because selection rules forbid dipolar transitions from the top of the valence band to the conduction-band minimum; however, the optical gaps of multi-cation compounds with the same chemical species often coincide with their fundamental gaps. To explain this conundrum, we have employed density-functional theory to compute the optical properties of multi-cation compounds, In2ZnO4 and In4Sn3O12, in several crystal structures. We show that a recently proposed mechanism to explain the disparity between the optical and fundamental gaps of M2O3 (M = Al, Ga, and In) applies also to other binary systems and to multi-compounds. Namely, a gap disparity will arise if the following three conditions are satisfied: (i) the crystal structure has inversion symmetry; (ii) the conduction-band minimum is formed by the cation and O s-orbitals; and (iii) there is strong p-d coupling and weak p-p in the vicinity of the valence-band maximum. The third property depends critically on the cationic chemical species. In the structures with inversion symmetry, Zn (Sn) strengthens (weakens) the p-d coupling in In2ZnO4 (In4Sn3O12), enhancing (reducing) the gap disparity. Furthermore, we have also identified a In4Sn3O12 structure that is 31.80 meV per formula unit more stable than a recently proposed alternative model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyung-Min; Min Kim, Chul; Moon Jeong, Tae, E-mail: jeongtm@gist.ac.kr
A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwell's equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range 10{sup 10} W/cm{sup 2} to 2 × 10{sup 15} W/cm{sup 2} based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied tomore » investigate the changes in the optical reflectance of α-quartz bulk, half-wavelength thin-film, and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange–correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials, in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.« less
Silicon nanowire Esaki diodes.
Schmid, Heinz; Bessire, Cedric; Björk, Mikael T; Schenk, Andreas; Riel, Heike
2012-02-08
We report on the fabrication and characterization of silicon nanowire tunnel diodes. The silicon nanowires were grown on p-type Si substrates using Au-catalyzed vapor-liquid-solid growth and in situ n-type doping. Electrical measurements reveal Esaki diode characteristics with peak current densities of 3.6 kA/cm(2), peak-to-valley current ratios of up to 4.3, and reverse current densities of up to 300 kA/cm(2) at 0.5 V reverse bias. Strain-dependent current-voltage (I-V) measurements exhibit a decrease of the peak tunnel current with uniaxial tensile stress and an increase of 48% for 1.3 GPa compressive stress along the <111> growth direction, revealing the strain dependence of the Si band structure and thus the tunnel barrier. The contributions of phonons to the indirect tunneling process were probed by conductance measurements at 4.2 K. These measurements show phonon peaks at energies corresponding to the transverse acoustical and transverse optical phonons. In addition, the low-temperature conductance measurements were extended to higher biases to identify potential impurity states in the band gap. The results demonstrate that the most likely impurity, namely, Au from the catalyst particle, is not detectable, a finding that is also supported by the excellent device properties of the Esaki diodes reported here. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Sivabrata, E-mail: siva1987@iopb.res.in; Parashar, S. K. S., E-mail: sksparashar@yahoo.com; Rout, G. C., E-mail: gcr@iopb.res.in
We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green’s function for electron operator corresponding to A and B sub lattices by Zubarev’s Green’s function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the differentmore » physical parameters.« less
Wang, Yan; Kim, Chang-Hyun; Yoo, Youngdong; Johns, James E; Frisbie, C Daniel
2017-12-13
The ability to improve and to modulate the heterogeneous charge transfer kinetics of two-dimensional (2D) semiconductors, such as MoS 2 , is a major challenge for electrochemical and photoelectrochemical applications of these materials. Here we report a continuous and reversible physical method for modulating the heterogeneous charge transfer kinetics at a monolayer MoS 2 working electrode supported on a SiO 2 /p-Si substrate. The heavily doped p-Si substrate serves as a back gate electrode; application of a gate voltage (V BG ) to p-Si tunes the electron occupation in the MoS 2 conduction band and shifts the conduction band edge position relative to redox species dissolved in electrolyte in contact with the front side of the MoS 2 . The gate modulation of both charge density and energy band alignment impacts charge transfer kinetics as measured by cyclic voltammetry (CV). Specifically, cyclic voltammograms combined with numerical simulations suggest that the standard heterogeneous charge transfer rate constant (k 0 ) for MoS 2 in contact with the ferrocene/ferrocenium (Fc 0/+ ) redox couple can be modulated by over 2 orders of magnitude from 4 × 10 -6 to 1 × 10 -3 cm/s, by varying V BG . In general, the field effect offers the potential to tune the electrochemical properties of 2D semiconductors, opening up new possibilities for fundamental studies of the relationship between charge transfer kinetics and independently controlled electronic band alignment and band occupation.
Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires
NASA Astrophysics Data System (ADS)
Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong
2018-04-01
The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.
Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass
Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd
2012-01-01
This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711
Effect of B, N, Ge, Sn, K doping on electronic-transport properties of (5, 0) zigzag carbon nanotube
NASA Astrophysics Data System (ADS)
Kamalian, Monir; Seyed Jalili, Yousef; Abbasi, Afshin
2018-04-01
In this paper the effect of impurity on the electronic properties and quantum conductance of zigzag (5, 0) carbon nanotube have been studied by using the Density Functional Theory (DFT) combined with Non-Equilibrium Green’s Function (NEGF) formalism with TranSIESTA software. The effect of Boron (B), Nitrogen (N), Germanium (Ge), Tin (Sn) and Potassium (K) impurities on the CNT conduction behavior and physical characteristics, like density of states (DOS), band structure, transmission coefficients and quantum conductance was considered and discussed simultaneously. The current‑voltage (I‑V) curves of all the proposed models were studied for comparative study under low-bias conditions. The distinct changes in conductance reported as the positions, number and type of dopants was varied in central region of the CNT between two electrodes at different bias voltages. This suggested conductance enhancement mechanism for the charge transport in the doped CNT at different positions is important for the design of CNT based nanoelectronic devices. The results show that Germanium, Tin and Potassium dopant atoms has increased the conductance of the model manifold than other doping atoms furthermore 10 Boron and 10 Nitrogen dopant atoms showed the amazing property of Negative Differential Resistance (NDR).
Fang, D Q; Zhang, S L
2016-01-07
The band offsets of the ZnO/anatase TiO2 and GaN/ZnO heterojunctions are calculated using the density functional theory/generalized gradient approximation (DFT/GGA)-1/2 method, which takes into account the self-energy corrections and can give an approximate description to the quasiparticle characteristics of the electronic structure of semiconductors. We present the results of the ionization potential (IP)-based and interfacial offset-based band alignments. In the interfacial offset-based band alignment, to get the natural band offset, we use the surface calculations to estimate the change of reference level due to the interfacial strain. Based on the interface models and GGA-1/2 calculations, we find that the valence band maximum and conduction band minimum of ZnO, respectively, lie 0.64 eV and 0.57 eV above those of anatase TiO2, while lie 0.84 eV and 1.09 eV below those of GaN, which agree well with the experimental data. However, a large discrepancy exists between the IP-based band offset and the calculated natural band offset, the mechanism of which is discussed. Our results clarify band alignment of the ZnO/anatase TiO2 heterojunction and show good agreement with the GW calculations for the GaN/ZnO heterojunction.
Generation of Multi-band Chorus by Lower Band Cascade in the Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gao, X.; Lu, Q.; Chen, L.; Bortnik, J.; Li, W.; Wang, S.
2016-12-01
Chorus waves are intense electromagnetic whistler-mode emissions in the magnetosphere, typically falling into two distinct frequency bands: a lower band (0.1-0.5fce) and an upper band (0.5-0.8fce) with a power gap at about 0.5fce. In this letter, with the THEMIS satellite, we observed two special chorus events, which are called as multi-band chorus because upper band chorus is located at harmonics of lower band chorus. We propose a new potential generation mechanism for multi-band chorus, which is called as lower band cascade. In this scenario, a density mode with a frequency equal to that of lower band chorus is caused by the ponderomotive effect (inhomogeneity of the electric amplitude) along the wave vector, and then upper band chorus with the frequency twice that of lower band chorus is generated through wave-wave couplings between lower band chorus and the density mode. The mechanism provides a new insight into the evolution of whistler-mode chorus in the Earth's magnetosphere.
Density functional theory calculations of III-N based semiconductors with mBJLDA
NASA Astrophysics Data System (ADS)
Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi
2017-02-01
In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.
Development of Field-Controlled Smart Optic Materials (ScN, AlN) with Rare Earth Dopants
NASA Technical Reports Server (NTRS)
Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Choi, Sang H.
2012-01-01
The purpose of this investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD applications such as: membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras, flat-panel displays, etc. ScN and AlN thin films were fabricated on c-axis Sapphire (0001) or quartz substrate with the RF and DC magnetron sputtering. The crystal structure of AlN in fcc (rocksalt) and hcp (wurtzite) were controlled. Advanced electrical characterizations were performed, including I-V and Hall Effect Measurement. ScN film has a free carrier density of 5.8 x 10(exp 20)/per cubic centimeter and a conductivity of 1.1 x 10(exp 3) per centimeter. The background ntype conductivity of as-grown ScN has enough free electrons that can readily interact with the photons. The high density of free electrons and relatively low mobility indicate that these films contain a high level of shallow donors as well as deep levels. Also, the UV-Vis spectrum of ScN and AlN thin films with rare earth elements (Er or Ho) were measured at room temperature. Their optical band gaps were estimated to be about 2.33eV and 2.24eV, respectively, which are obviously smaller than that of undoped thin film ScN (2.4eV). The red-shifted absorption onset gives direct evidence for the decrease of band gap (Eg) and the energy broadening of valence band states are attributable to the doping. As the doped elements enter the ScN crystal lattices, the localized band edge states form at the doped sites with a reduction of Eg. Using a variable angle spectroscopic ellipsometer, the decrease in refractive index with applied field is observed with a smaller shift in absorption coefficient.
Graphene planar lightwave circuit sensors for chemical detection
NASA Astrophysics Data System (ADS)
Maliakal, Ashok; Husaini, Saima; Reith, Leslie; Bollond, Paul; Cabot, Steve; Sheehan, Paul; Hangartar, Sandra; Walton, Scott; Tamanaha, Cy
2017-02-01
Sensing devices based on Graphene Field Effect Transistors (G-FET) have been demonstrated by several groups to show excellent sensitivity for a variety of chemical agents. These devices are based on measuring changes in the electrical conductivity of graphene when exposed to various chemicals. However, because of its unique band structure, graphene also exhibits changes in its optical response upon chemical exposure. The conical intersection of the valence and conduction bands results in a low density of states near the Dirac point. At this point, chemical doping resulting from molecular binding to graphene can result in dramatic changes in graphene's optical absorption. Here we will discuss our recent work in developing a graphene planar lightwave circuit (PLC) sensor which exploits these optical and electronic properties of graphene to demonstrate chemical sensitivity. The devices are based on a strong evanescent coupling of graphene via electrically gated silicon nanowire waveguides. A strong response in the form of a reversible optical attenuation change of 6 dB is shown when these devices interact with toxic industrial chemicals such as iodine and ammonia. The optical transition can also be tuned to the optical c-band (1530-1565 nm) which enables these devices to operate at telecom wavelengths.
NASA Astrophysics Data System (ADS)
Nurhuda, Maryam; Aziz Majidi, Muhammad
2018-04-01
The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.
Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case of p -Type AgBiSe 2
Parker, David S.; May, Andrew F.; Singh, David J.
2015-06-05
Here we study theoretically the effects of anisotropy on the thermoelectric performance of p-type AgBiSe 2. We present an apparent realization of the thermoelectric benefits of one-dimensional plate-like carrier pocket anisotropy in the valence band of this material. Based on first principles calculations we find a substantial anisotropy in the electronic structure, likely favorable for thermoelectric performance, in the valence bands of the hexagonal phase of the silver chalcogenide thermoelectric AgBiSe 2, while the conduction bands are more isotropic, and in our experiments do not attain high performance. AgBiSe 2 has already exhibited a ZT value of 1.5 in amore » high-temperature disordered fcc phase, but room-temperature performance has not been demonstrated. We develop a theory for the ability of anisotropy to decouple the density-of-states and conductivity effective masses, pointing out the influence of this effect in the high performance thermoelectrics Bi 2Te 3 and PbTe. From our first principles and Boltzmann transport calculations we find that p-type AgBiSe 2 has substantial promise as a room temperature thermoelectric, and estimate its performance.« less
NASA Astrophysics Data System (ADS)
Du, Luojun; Zhang, Tingting; Liao, Mengzhou; Liu, Guibin; Wang, Shuopei; He, Rui; Ye, Zhipeng; Yu, Hua; Yang, Rong; Shi, Dongxia; Yao, Yugui; Zhang, Guangyu
2018-04-01
The recently emerging two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have been a fertile ground for exploring abundant exotic physical properties. Critical points, the extrema or saddle points of electronic bands, are the cornerstone of condensed-matter physics and fundamentally determine the optical and transport phenomena of the TMDCs. However, for bilayer Mo S2 , a typical TMDC and the unprecedented electrically tunable venue for valleytronics, there has been a considerable controversy on its intrinsic electronic structure, especially for the conduction band-edge locations. Moreover, interlayer hopping and layer polarization in bilayer Mo S2 which play vital roles in valley-spintronic applications have remained experimentally elusive. Here, we report the experimental observation of intrinsic critical points locations, interlayer hopping, layer-spin polarization, and their evolution with temperature in bilayer Mo S2 by performing temperature-dependent photoluminescence. Our measurements confirm that the conduction-band minimum locates at the Kc instead of Qc, and the energy splitting between Qc and Kc redshifts with a descent of temperature. Furthermore, the interlayer hopping energy for holes and temperature-dependent layer polarization are quantitatively determined. Our observations are in good harmony with density-functional theory calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montero, J., E-mail: jose.montero@angstrom.uu.se; Granqvist, C. G.; Niklasson, G. A.
2014-04-21
Transparent conducting oxides are used as transparent electrical contacts in a variety of applications, including in electrochromic smart windows. In the present work, we performed a study of transparent conducting antimony-doped tin oxide (ATO) thin films by chronopotentiometry in a Li{sup +}-containing electrolyte. The open circuit potential vs. Li was used to investigate ATO band lineups, such as those of the Fermi level and the ionization potential, as well as the dependence of these lineups on the preparation conditions for ATO. Evidence was found for Li{sup +} intercalation when a current pulse was set in a way so as tomore » drive ions from the electrolyte into the ATO lattice. Galvanostatic intermittent titration was then applied to determine the lithium diffusion coefficient within the ATO lattice. The electrochemical density of states of the conducting oxide was studied by means of the transient voltage recorded during the chronopotentiometry experiments. These measurements were possible because, as Li{sup +} intercalation took place, charge compensating electrons filled the lowest part of the conduction band in ATO. Furthermore, the charge insertion modified the optical properties of ATO according to the Drude model.« less
NASA Astrophysics Data System (ADS)
Mohammadpour, Raheleh
2017-12-01
Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.
Two-dimensional arsenic monolayer sheet predicted from first-principles
NASA Astrophysics Data System (ADS)
Pu, Chun-Ying; Ye, Xiao-Tao; Jiang, Hua-Long; Zhang, Fei-Wu; Lu, Zhi-Wen; He, Jun-Bao; Zhou, Da-Wei
2015-03-01
Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 eV in the hybrid HSE06 functional calculations. The valence band maximum (VBM) and the conduction band minimum (CBM) are mainly occupied by the 4p orbitals of arsenic atoms, which is consistent with the partial charge densities of VBM and CBM. The charge density of the VBM G point has the character of a π bond, which originates from p orbitals. Furthermore, tensile and compressive strains are applied in the armchair and zigzag directions, related to the tensile deformations of zigzag and armchair nanotubes, respectively. We find that the ultimate strain in zigzag deformation is 0.13, smaller than 0.18 of armchair deformation. The limit compressive stresses of single-layer arsenic along armchair and zigzag directions are -4.83 GPa and -4.76 GPa with corresponding strains of -0.15 and -0.14, respectively. Projected supported by the Henan Joint Funds of the National Natural Science Foundation of China (Grant Nos. U1304612 and U1404608), the National Natural Science Foundation of China (Grant Nos. 51374132 and 11404175), the Special Fund for Theoretical Physics of China (Grant No. 11247222), and Nanyang Normal University Science Foundation, China (Grant Nos. ZX2012018 and ZX2013019).
Importance of finite-temperature exchange correlation for warm dense matter calculations.
Karasiev, Valentin V; Calderín, Lázaro; Trickey, S B
2016-06-01
The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.076403] parametrized from restricted path-integral Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T-dependent densities. Both Kohn-Sham (KS) and orbital-free density-functional theories are used, depending upon computational resource demands. Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T=15 kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is T≥7200 K for the T-dependent XC, a result that the ground-state XC underestimates by about 1000 K.
Orbital order and effective mass enhancement in t2 g two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan
2015-03-01
It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Biswajit; Chakrabarti, Sudipto; Pal, Amlan J., E-mail: sspajp@iacs.res.in
2016-03-14
Core-shell nanocrystals having a type-I band-alignment confine charge carriers to the core. In this work, we choose CdSe/CdS core-shell nano-heterostructures that evidence confinement of holes only. Such a selective confinement occurs in the core-shell nanocrystals due to a low energy-offset of conduction band (CB) edges resulting in delocalization of electrons and thus a decrease in the conduction band-edge. Since the delocalization occurs through a thermal assistance, we study temperature dependence of selective delocalization process through scanning tunneling spectroscopy. From the density of states (DOS), we observe that the electrons are confined to the core at low temperatures. Above a certainmore » temperature, they become delocalized up to the shell leading to a decrease in the CB of the core-shell system due to widening of quantum confinement effect. With holes remaining confined to the core due to a large offset in the valence band (VB), we record the topography of the core-shell nanocrystals by probing their CB and VB edges separately. The topographies recorded at different temperatures representing wave-functions of electrons and holes corresponded to the results obtained from the DOS spectra. The results evidence temperature-dependent wave-function delocalization of one-type of carriers up to the shell layer in core-shell nano-heterostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.
The electrostatic model of ionization equilibrium between hydrogen-like acceptors and v-band holes in crystalline covalent p-type semiconductors is developed. The range of applicability of the model is the entire insulator side of the insulator–metal (Mott) phase transition. The density of the spatial distribution of acceptor- and donor-impurity atoms and holes over a crystal was assumed to be Poissonian and the fluctuations of their electrostatic potential energy, to be Gaussian. The model takes into account the effect of a decrease in the energy of affinity of an ionized acceptor to a v-band hole due to Debye–Hückel ion screening by both freemore » v-band holes and localized holes hopping over charge states (0) and (–1) of acceptors in the acceptor band. All donors are in charge state (+1) and are not directly involved in the screening, but ensure the total electroneutrality of a sample. In the quasiclassical approximation, analytical expressions for the root-mean-square fluctuation of the v-band hole energy W{sub p} and effective acceptor bandwidth W{sub a} are obtained. In calculating W{sub a}, only fluctuations caused by the Coulomb interaction between two nearest point charges (impurity ions and holes) are taken into account. It is shown that W{sub p} is lower than W{sub a}, since electrostatic fluctuations do not manifest themselves on scales smaller than the average de Broglie wavelength of a free hole. The delocalization threshold for v-band holes is determined as the sum of the diffusive-percolation threshold and exchange energy of holes. The concentration of free v-band holes is calculated at the temperature T{sub j} of the transition from dc band conductivity to conductivity implemented via hopping over acceptor states, which is determined from the virial theorem. The dependence of the differential energy of the thermal ionization of acceptors at the temperature 3T{sub j}/2 on their concentration N and degree of compensation K (the ratio between the donor and acceptor concentrations) is determined. Good quantitative agreement between the results of the calculation and data on the series of neutron transmutation doped p-Ge samples is obtained up to the Mott transition without using any fitting parameters.« less
The dependence of graphene Raman D-band on carrier density.
Liu, Junku; Li, Qunqing; Zou, Yuan; Qian, Qingkai; Jin, Yuanhao; Li, Guanhong; Jiang, Kaili; Fan, Shoushan
2013-01-01
Raman spectroscopy has been an integral part of graphene research and can provide information about graphene structure, electronic characteristics, and electron-phonon interactions. In this study, the characteristics of the graphene Raman D-band, which vary with carrier density, are studied in detail, including the frequency, full width half-maximum, and intensity. We find the Raman D-band frequency increases for hole doping and decreases for electron doping. The Raman D-band intensity increases when the Fermi level approaches half of the excitation energy and is higher in the case of electron doping than that of hole doping. These variations can be explained by electron-phonon interaction theory and quantum interference between different Raman pathways in graphene. The intensity ratio of Raman D- and G-band, which is important for defects characterization in graphene, shows a strong dependence on carrier density.
Saha, Sanjit; Jana, Milan; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas
2015-07-08
Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of ∼824 F g(-1) is achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of ∼4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.
NASA Astrophysics Data System (ADS)
Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.
2018-06-01
In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.
Nikolic, Aleksandar; Zhang, Kexin; Barnes, C H W
2018-06-13
In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material's ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb 2 Te 3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.
Band structure and phonon properties of lithium fluoride at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, J. M., E-mail: amitjignesh@yahoo.co.in; Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat; Joshi, Mitesh
2016-05-23
High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.
Carrier density control of magnetism and Berry phases in doped EuTiO3
NASA Astrophysics Data System (ADS)
Ahadi, Kaveh; Gui, Zhigang; Porter, Zach; Lynn, Jeffrey W.; Xu, Zhijun; Wilson, Stephen D.; Janotti, Anderson; Stemmer, Susanne
2018-05-01
In materials with broken time-reversal symmetry, the Berry curvature acts as a reciprocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamagnetic transition, which is absent at high carrier densities (>6 × 1020 cm-3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture.
Elastic superlattices with simultaneously negative effective mass density and shear modulus
NASA Astrophysics Data System (ADS)
Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.
2013-03-01
We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.
Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3
NASA Astrophysics Data System (ADS)
Marcano, G.; Rincón, C.; de Chalbaud, L. M.; Bracho, D. B.; Pérez, G. Sánchez
2001-08-01
X-ray powder diffraction by p-type Cu2SnSe3, prepared by the vertical Bridgman-Stockbarger technique, shows that this material crystallizes in a monoclinic structure, space group Cc, with unit cell parameters a=6.5936(1) Å, b=12.1593(4) Å, c=6.6084(3) Å, and β=108.56(2)°. The temperature variation of the hole concentration p obtained from the Hall effect and electrical resistivity measurements from about 160 to 300 K, is explained as due to the thermal activation of an acceptor level with an ionization energy of 0.067 eV, whereas below 100 K, the conduction in the impurity band dominates the electrical transport process. From the analysis of the p vs T data, the density-of-states effective mass of the holes is estimated to be nearly of the same magnitude as the free electron mass. In the valence band, the temperature variation of the hole mobility is analyzed by taking into account the scattering of charge carriers by ionized and neutral impurities, and acoustic phonons. In the impurity band, the mobility is explained as due to the thermally activated hopping transport. From the analysis of the optical absorption spectra at room temperature, the fundamental energy gap was determined to be 0.843 eV. The photoconductivity spectra show the presence of a narrow band gap whose main peak is observed at 0.771 eV. This band is attributed to a free-to-bound transition from the defect acceptor level to the conduction band. The origin of this acceptor state, consistent with the chemical composition of the samples and screening effects, is tentatively attributed to selenium interstitials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song
2016-03-15
The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less
Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls
NASA Astrophysics Data System (ADS)
Sylvia, Somaia Sarwat
The tunnel field effect transistor (TFET) has the potential to operate at lower voltages and lower power than the field effect transistor (FET). The TFET can circumvent the fundamental thermal limit of the inverse subthreshold slope (S) by exploiting interband tunneling of non-equilibrium "cold" carriers. The conduction mechanism in the TFET is governed by band-to-band tunneling which limits the drive current. TFETs built with III-V materials like InAs and InSb can produce enough tunneling current because of their small direct bandgap. Our simulation results show that although they require highly degenerate source doping to support the high electric fields in the tunnel region, the devices achieve minimum inverse subthreshold slopes of 30 mV/dec. In subthreshold, these devices experience both regimes of voltage-controlled tunneling and cold-carrier injection. Numerical results based on a discretized 8-band k.p model are compared to analytical WKB theory. For both regular FETs and TFETs, direct channel tunneling dominates the leakage current when the physical gate length is reduced to 5 nm. Therefore, a survey of materials is performed to determine their ability to suppress the direct tunnel current through a 5 nm barrier. The tunneling effective mass gives the best indication of the relative size of the tunnel currents. Si gives the lowest overall tunnel current for both the conduction and valence band and, therefore, it is the optimum choice for suppressing tunnel current at the 5 nm scale. Our numerical simulation shows that the finite number, random placement, and discrete nature of the dopants in the source of an InAs nanowire (NW) TFET affect both the mean value and the variance of the drive current and the inverse subthreshold slope. The discrete doping model gives an average drive current and an inverse subthreshold slope that are less than those predicted from the homogeneous doping model. The doping density required to achieve a target drive current is higher in the discrete doping model compared to the homogeneous doping model. The relative variation in the ON current decreases as the average doping density and/or NW diameter increases. For the largest 8 nm NW studied, the coefficient of variation in the ON current is ˜15% at a doping density of 1.5 x 1020 cm--3. Results from full self-consistent non-equilibrium Green's function calculations and semi-classical calculations are compared.
NASA Astrophysics Data System (ADS)
Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Nakatsuka, Osamu; Shimizu, Mitsuaki; Miyazaki, Seiichi
2018-06-01
The energy band structure of a Ga-oxide/GaN structure formed by remote oxygen plasma exposure and the electrical interface properties of the GaN metal–oxide–semiconductor (MOS) capacitors with the SiO2/Ga-oxide/GaN structures with postdeposition annealing (PDA) at various temperatures have been investigated. Reflection high-energy electron diffraction and X-ray photoelectron spectroscopy clarified that the formed Ga-oxide layer is neither a single nor polycrystalline phase with high crystallinity. We found that the energy band offsets at the conduction band minimum and at the valence band maximum between the Ga-oxide layer and the GaN surface were 0.4 and 1.2 ± 0.2 eV, respectively. Furthermore, capacitance–voltage (C–V) characteristics revealed that the interface trap density (D it) is lower than the evaluation limit of Terman method without depending on the PDA temperatures, and that the SiO2/Ga-oxide stack can work as a protection layer to maintain the low D it, avoiding the significant decomposition of GaN at the high PDA temperature of 800 °C.
Core Levels, Band Alignments, and Valence-Band States in CuSbS 2 for Solar Cell Applications
Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.; ...
2017-11-10
The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less
Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications.
Whittles, Thomas J; Veal, Tim D; Savory, Christopher N; Welch, Adam W; de Souza Lucas, Francisco Willian; Gibbon, James T; Birkett, Max; Potter, Richard J; Scanlon, David O; Zakutayev, Andriy; Dhanak, Vinod R
2017-12-06
The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuIn x Ga (1-x) Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.
Electronic and mechanic properties of trigonal boron nitride by first-principles calculations
NASA Astrophysics Data System (ADS)
Mei, Hua Yue; Pang, Yong; Liu, Ding Yu; Cheng, Nanpu; Zheng, Shaohui; Song, Qunliang; Wang, Min
2018-07-01
A new boron nitride allotrope with 6 atoms in a unit cell termed as trigonal BN (TBN), which belongs to P3121 space group, is theoretically investigated. Electronic structures, mechanic properties, phonon spectra and other properties were calculated by using first-principles based on density functional theory (DFT). The elastic constants reveal that TBN is mechanically stable. Furthermore, phonon dispersion indicates that TBN is dynamically stable. The calculated bulk modulus and shear modulus of TBN are 323 and 342 GPa, respectively. The calculated Young's modulus are Ex = Ey = 760 GPa, Ez = 959 GPa, indicating that TBN is a super-hard and brittle material. The universal anisotropy index, which is only 0.296, shows its weak anisotropy. Band structure states clearly that TBN is an indirect semiconductor with a band gap of 3.87 eV. The valence bands are mainly composed of N 2p states, and the conduction bands are mainly contributed by B 2p states. Simulated X-ray diffraction patterns (XRD) and Raman spectra were also provided for future experimental characterizations. Due to its band gap and super-hard properties, TBN may possess potential in super-hard, optical and electronic applications.
Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties
NASA Astrophysics Data System (ADS)
Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki
2018-01-01
The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.
Density Banding in Coral Skeletons: A Biotic Response to Sea Surface Temperature?
NASA Astrophysics Data System (ADS)
Hill, C. A.; Oehlert, A. M.; Piggot, A. M.; Yau, P. M.; Fouke, B. W.
2008-12-01
Density bands in the CaCO3 (aragonite) skeleton of scleractinian corals are commonly used as chronometers, where crystalline couplets of high and low density bands represent the span of one year. This provides a sensitive reconstructive tool for paleothermometry, paleoclimatology and paleoecology. However, the detailed mechanisms controlling aragonite nucleation and crystallization events and the rate of skeletal growth remain uncertain. The organic matrix, composed of macromolecules secreted by the calicoblastic ectoderm, is closely associated with skeletal precipitation and is itself incorporated into the skeleton. We postulate that density banding is primarily controlled by changes in the rate of aragonite crystal precipitation mediated by the coral holobiont response to changes in sea surface temperature (SST). To test this hypothesis, data were collected from coral skeleton-tissue biopsies (2.5 cm in diameter) extracted from four species of Montastraea growing on the fringing reef tract of Curacao, Netherlands Antilles (annual mean variation in SST is 29° C in mid-September to 26° C in late February). Samples were collected in the following three contextual modes: 1) at two sites (Water Plant and Playa Kalki) along a lateral 25 km spatial transect; 2) across a vertical bathymetric gradient from 5 to 15 m water depth at each site; and 3) at strategic time periods spanning the 3° C annual variations in SST. Preliminary results indicate that skeletal density banding is also expressed in the organic matrix, permitting biochemical characterization and correlation of the organic matrix banding to the skeletal banding. In addition, both surficial and ectodermal mucins were characterized in terms of total protein content, abundance and location of their anionic, cationic, and neutral macromolecular constituents. Furthermore, the ratio of mucocytes in the oral ectoderm to gastrodermal symbiotic zooxanthellae has permitted estimates of seasonal carbon allocation by the coral holobiont. Our nanometer-scale optical analyses of crystal morphology, arrangement, and densities have revealed consistent changes between high and low skeletal density bands. Mass spectrometry, newly developed immunohistochemical staining, fluorescence and polarized light microscopy are in progress to further quantify and model these observations.
NASA Astrophysics Data System (ADS)
Sun, Zhuting; Burgess, Tim; Tan, H. H.; Jagadish, Chennupati; Kogan, Andrei
2018-04-01
We have investigated the nonlinear conductance in diffusion-doped Si:GaAs nanowires contacted by patterned metal films in a wide range of temperatures T. The wire resistance R W and the zero bias resistance R C, dominated by the contacts, exhibit very different responses to temperature changes. While R W shows almost no dependence on T, R C varies by several orders of magnitude as the devices are cooled from room temperature to T = 5 K. We develop a model that employs a sharp donor level very low in the GaAs conduction band and show that our observations are consistent with the model predictions. We then demonstrate that such measurements can be used to estimate carrier properties in nanostructured semiconductors and obtain an estimate for N D, the doping density in our samples. We also discuss the effects of surface states and dielectric confinement on carrier density in semiconductor nanowires.
Kwon, O Y; Kam, S C; Choi, J H; Do, J M; Hyun, J S
2011-01-01
To identify the effects of sertraline, a selective serotonin reuptake inhibitor, for the treatment of premature ejaculation (PE), changes in brain current-source density (CSD) of the high beta frequency band (22-30 Hz) induced by sertraline administration were investigated during audiovisual erotic stimulation. Eleven patients with PE (36.9±7.8 yrs) and 11 male volunteers (24.2±1.9 years) were enrolled. Scalp electroencephalography (EEG) was conducted twice: once before sertraline administration and then again 4 h after the administration of 50 mg sertraline. Statistical non-parametric maps were obtained using the EEG segments to detect the current-density differences in the high beta frequency bands (beta-3, 22-30 Hz) between the EEGs before and after sertraline administration in the patient group and between the patient group and controls after the administration of sertraline during the erotic video sessions. Comparing between before and after sertraline administration in the patients with PE, the CSD of the high beta frequency band at 4 h after sertraline administration increased significantly in both superior frontal gyri and the right medial frontal gyrus (P<0.01). The CSD of the beta-3 band of the patients with PE were less activated significantly in the middle and superior temporal gyrus, lingual and fusiform gyrus, inferior occipital gyrus and cuneus of the right cerebral hemisphere compared with the normal volunteers 4 h after sertraline administration (P<0.01). In conclusion, sertraline administration increased the CSD in both the superior frontal and right middle temporal gyrus in patients with PE. The results suggest that the increased neural activity in these particular cerebral regions after sertraline administration may be associated with inhibitory effects on ejaculation in patients with PE.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, Tuan V.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.
2018-06-01
Measurements of X-ray photoelectron core-level and valence-band spectra for pristine and irradiated with Ar+ ions surfaces of LiGa0.5In0.5Se2 single crystal, novel nonlinear optical mid-IR selenide grown by a modified vertical Bridgman-Stockbarger technique, are reported. Electronic structure of LiGa0.5In0.5Se2 is elucidated from theoretical and experimental points of view. Notably, total and partial densities of states (DOSs) of the LiGa0.5In0.5Se2 compound are calculated based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method. In accordance with the DFT calculations, the principal contributors to the valence band are the Se 4p states, making the main input at the top and in the upper part of the band, while its bottom is dominated by contributions of the valence s states associated with Ga and In atoms. The theoretical total DOS curve peculiarities are found to be in excellent agreement with the shape of the X-ray photoelectron valence-band spectrum of the LiGa0.5In0.5Se2 single crystal. The bottom of the conduction band of LiGa0.5In0.5Se2 is formed mainly by contributions of the unoccupied Ga 4s and In 5s states in almost equal proportion, with somewhat smaller contributions of the unoccupied Se 4p states as well. Our calculations indicate that the LiGa0.5In0.5Se2 compound is a direct gap semiconductor. The principal optical constants of LiGa0.5In0.5Se2 are calculated in the present work.
Stair-rod dislocation cores acting as one-dimensional charge channels in GaAs nanowires
NASA Astrophysics Data System (ADS)
Bologna, Nicolas; Agrawal, Piyush; Campanini, Marco; Knödler, Moritz; Rossell, Marta D.; Erni, Rolf; Passerone, Daniele
2018-01-01
Aberration-corrected scanning transmission electron microscopy and density-functional theory calculations have been used to investigate the atomic and electronic structure of stair-rod dislocations connected via stacking faults in GaAs nanowires. At the apexes, two distinct dislocation cores consisting of single-column pairs of either gallium or arsenic were identified. Ab initio calculations reveal an overall reduction in the energy gap with the development of two bands of filled and empty localized states at the edges of valence and conduction bands in the Ga core and in the As core, respectively. Our results suggest the behavior of stair-rod dislocations along the nanowire as one-dimensional charge channels, which could host free carriers upon appropriate doping.
NASA Astrophysics Data System (ADS)
Bjelkevig, Cameron; Mi, Zhou; Xiao, Jie; Dowben, P. A.; Wang, Lu; Mei, Wai-Ning; Kelber, Jeffry A.
2010-08-01
A significant BN-to-graphene charge donation is evident in the electronic structure of a graphene/h-BN(0001) heterojunction grown by chemical vapor deposition and atomic layer deposition directly on Ru(0001), consistent with density functional theory. This filling of the lowest unoccupied state near the Brillouin zone center has been characterized by combined photoemission/k vector resolved inverse photoemission spectroscopies, and Raman and scanning tunneling microscopy/spectroscopy. The unoccupied σ*(Γ1 +) band dispersion yields an effective mass of 0.05 me for graphene in the graphene/h-BN(0001) heterostructure, in spite of strong perturbations to the graphene conduction band edge placement.
μ SR study of the noncentrosymmetric superconductor PbTaSe2
NASA Astrophysics Data System (ADS)
Wilson, M. N.; Hallas, A. M.; Cai, Y.; Guo, S.; Gong, Z.; Sankar, R.; Chou, F. C.; Uemura, Y. J.; Luke, G. M.
2017-06-01
We present muon spin rotation and relaxation (μ SR ) measurements on the noncentrosymmetric superconductor PbTaSe2. From measurements in an applied transverse field between Hc 1 and Hc 2, we extract the superfluid density as a function of temperature in the vortex state. These data can be fit with a fully gapped two-band model, consistent with previous evidence from ARPES, thermal conductivity, and resistivity. Furthermore, zero-field measurements show no evidence for a time-reversal symmetry-breaking field greater than 0.05 G in the superconducting state. This makes exotic fully gapped spin-triplet states unlikely, and hence we contend that PbTaSe2 is characterized by conventional BCS s -wave superconductivity in multiple bands.
19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact
2015-01-01
We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%. PMID:25679010
19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.
Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali
2014-12-17
We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO 2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency of 19.2%.
Some characteristics of heavy and light bands of Rickettsia prowazekii on Renografin gradients.
Hanson, B A; Wisseman, C L; Waddell, A; Silverman, D J
1981-01-01
Suspensions of partially purified Rickettsia prowazekii yielded two bands of organisms when centrifuged to equilibrium in Renografin density gradients. Rickettsiae from the lower, heavy band were defective in their infective and metabolic activities, as compared to organisms from the light band. The greater density in Renografin of heavy-banding organisms was due to their lack of permeability barrier to it, as evidenced by the absence of plasmolysis in hypertonic Renografin. In contrast, light-banding rickettsiae were able to exclude Renografin, since they were plasmolyzed in it. The proportion of heavy-banding organisms in a rickettsial suspension was influenced by the growth phase they were in when harvested from infected yolk sacs, as well as by the conditions and media to which they subsequently were exposed. We have concluded that these defective forms arise from the degeneration of light-banding rickettsiae. This separation of two functional classes of rickettsiae in Renografin density gradients has been exploited (i) to increase the uniformity of the suspensions by removing many noninfectious particles and (ii) to determine rapidly the integrity of certain properties of the cytoplasmic membrane of organisms exposed to a variety of conditions. Images PMID:6796519
Zhang, Qiang; Cheng, Long; Liu, Wei; Zheng, Yun; Su, Xianli; Chi, Hang; Liu, Huijun; Yan, Yonggao; Tang, Xinfeng; Uher, Ctirad
2014-11-21
Mg2Si1-xSnx solid solutions are promising thermoelectric materials for power generation applications in the 500-800 K range. Outstanding n-type forms of these solid solutions have been developed in the past few years with the thermoelectric figure of merit ZT as high as 1.4. Unfortunately, no comparable performance has been achieved so far with p-type forms of the structure. In this work, we use Li doping on Mg sites in an attempt to enhance and control the concentration of hole carriers. We show that Li as well as Ga is a far more effective p-type dopant in comparison to Na or K. With the increasing content of Li, the electrical conductivity rises rapidly on account of a significantly enhanced density of holes. While the Seebeck coefficient decreases concomitantly, the power factor retains robust values supported by a rather high mobility of holes. Theoretical calculations indicate that Mg2Si0.3Sn0.7 intrinsically possesses the almost convergent double valence band structure (the light and heavy band), and Li doping retains a low density of states (DOS) on the top of the valence band, contrary to the Ga doping at the sites of Si/Sn. Low temperature specific heat capacity studies attest to a low DOS effective mass in Li-doped samples and consequently their larger hole mobility. The overall effect is a large power factor of Li-doped solid solutions. Although the thermal conductivity increases as more Li is incorporated in the structure, the enhanced carrier density effectively shifts the onset of intrinsic excitations (bipolar effect) to higher temperatures, and the beneficial role of phonon Umklapp processes as the primary limiting factor to the lattice thermal conductivity is thus extended. The final outcome is the figure of merit ZT ∼ 0.5 at 750 K for x = 0.07. This represents a 30% improvement in the figure of merit of p-type Mg2Si1-xSnx solid solutions over the literature values. Hence, designing low DOS near Fermi level EF for given carrier pockets can serve as an effective approach to optimize the PF and thus ZT value.
Band alignment in atomically precise graphene nanoribbon junctions
NASA Astrophysics Data System (ADS)
Ma, Chuanxu; Liang, Liangbo; Hong, Kunlun; Li, An-Ping; Xiao, Zhongcan; Lu, Wenchang; Bernholc, Jerry
Building atomically precise graphene nanoribbon (GNR) heterojunctions down to molecular level opens a new realm to functional graphene-based devices. By employing a surface-assisted self-assembly process, we have synthesized heterojunctions of armchair GNRs (aGNR) with widths of seven, fourteen and twenty-one carbon atoms, denoted 7, 14 and 21-aGNR respectively. A combined study with scanning tunneling microscopy (STM) and density functional theory (DFT) allows the visualization of electronic band structures and energy level alignments at the heterojunctions with varying widths. A wide bandgap ( 2.6 eV) has been identified on semiconducting 7-aGNR, while the 14-aGNR appears nearly metallic and the 21-aGNR possesses a narrow bandgap. The spatially modulations of the energy bands are strongly confined at the heterojunctions within a width of about 2 nm. Clear band bending of about 0.4 eV and 0.1 eV are observed at the 7-14 and 14-21 aGNR heterojunctions, respectively. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
Qin, Zuzeng; Liang, Yi; Liu, Zili; Jiang, Weiqing
2011-01-01
An InYO3 photocatalyst was prepared through a precipitation method and used for the degradation of molasses fermentation wastewater. The InYO3 photocatalyst characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy, surface area and porosimetry. Energy band structures and density of states were achieved using the Cambridge Serial Total Energy package (CASTEP). The results indicated that the photodegradation of molasses fermentation wastewater was significantly enhanced in the presence of InYO3 when compared with PbWO4. The calcination temperature was found to have a significant effect on the photocatalytic activity of InYO3. Specifically, InYO3 calcined at 700 degrees C had a considerably larger surface area and lower reflectance intensity and showed higher photocatalytic activity. The mathematical simulation results indicated that InYO3 is a direct band gap semiconductor, and its conduction band is composed of In 5p and Y 4d orbitals, whereas its valence band is composed of O 2p and In 5s orbitals.
NASA Astrophysics Data System (ADS)
Shi, Z.; Zhang, Z. H.; Chen, Q. B.; Zhang, S. Q.; Meng, J.
2018-03-01
The shell-model-like approach is implemented to treat the cranking many-body Hamiltonian based on the covariant density functional theory including pairing correlations with exact particle number conservation. The self-consistency is achieved by iterating the single-particle occupation probabilities back to the densities and currents. As an example, the rotational structures observed in the neutron-rich nucleus 60Fe are investigated and analyzed. Without introducing any ad hoc parameters, the bandheads, the rotational spectra, and the relations between the angular momentum and rotational frequency for the positive-parity band A and negative-parity bands B and C are well reproduced. The essential role of the pairing correlations is revealed. It is found that for band A, the band crossing is due to the change of the last two occupied neutrons from the 1 f5 /2 signature partners to the 1 g9 /2 signature partners. For the two negative-parity signature partner bands B and C, the band crossings are due to the pseudocrossing between the 1 f7 /2 ,5 /2 and the 1 f5 /2 ,1 /2 orbitals. Generally speaking, the deformation parameters β for bands A, B, and C decrease with rotational frequency. For band A, the deformation jumps from β ≈0.19 to β ≈0.29 around the band crossing. In comparison with its signature partner band C, band B exhibits appreciable triaxial deformation.
Negative differential resistance in oxidized zigzag graphene nanoribbons.
Wang, Min; Li, Chang Ming
2011-01-28
A theoretical study of zigzag graphene nanoribbons (ZGNRs) with an epoxy-pair chain (ZGO) is performed. The electronic transport properties are mainly evaluated by non-equilibrium Green's functions using the TRANSIESTA package. The results indicate that the graphene oxide can have a negative differential resistance (NDR) phenomenon, supported by bias-dependent transmission curves of different spin orientations. Applying non-zero bias voltages makes the density of states (DOS) of the right electrodes shift down. Due to an energy gap between the LUMO and LUMO+1 in ZGOs, with a certain bias, the conduction band of the right electrode cannot match the LUMO of the scattering region, then NDR occurs. With a larger bias, NDR ends when the second conduction band of the right electrode's DOS covers the LUMO of the scattering region. Since most of proposed ZGO systems possess such a gap between the LUMO and LUMO+1, NDR can be widely observed and this discovery may provide great potential applications in NDR-based nanoelectronics by using modified graphene materials.
Thermoelectric properties of doped BaHfO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com; Bhamu, K. C.; Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com
2016-05-06
We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. Themore » doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.« less
GaAs-oxide interface states - Gigantic photoionization via Auger-like process
NASA Technical Reports Server (NTRS)
Lagowski, J.; Kazior, T. E.; Gatos, H. C.; Walukiewicz, W.; Siejka, J.
1981-01-01
Spectral and transient responses of photostimulated current in MOS structures were employed for the study of GaAs-anodic oxide interface states. Discrete deep traps at 0.7 and 0.85 eV below the conduction band were found with concentrations of 5 x 10 to the 12th/sq cm and 7 x 10 to the 11th/sq cm, respectively. These traps coincide with interface states induced on clean GaAs surfaces by oxygen and/or metal adatoms (submonolayer coverage). In contrast to surfaces with low oxygen coverage, the GaAs-thick oxide interfaces exhibited a high density (about 10 to the 14th/sq cm) of shallow donors and acceptors. Photoexcitation of these donor-acceptor pairs led to a gigantic photoionization of deep interface states with rates 1000 times greater than direct transitions into the conduction band. The gigantic photoionization is explained on the basis of energy transfer from excited donor-acceptor pairs to deep states.
Diverse magnetic quantization in bilayer silicene
NASA Astrophysics Data System (ADS)
Do, Thi-Nga; Shih, Po-Hsin; Gumbs, Godfrey; Huang, Danhong; Chiu, Chih-Wei; Lin, Ming-Fa
2018-03-01
The generalized tight-binding model is developed to investigate the rich and unique electronic properties of A B -bt (bottom-top) bilayer silicene under uniform perpendicular electric and magnetic fields. The first pair of conduction and valence bands, with an observable energy gap, displays unusual energy dispersions. Each group of conduction/valence Landau levels (LLs) is further classified into four subgroups, i.e., the sublattice- and spin-dominated LL subgroups. The magnetic-field-dependent LL energy spectra exhibit irregular behavior corresponding to the critical points of the band structure. Moreover, the electric field can induce many LL anticrossings. The main features of the LLs are uncovered with many van Hove singularities in the density-of-states and nonuniform delta-function-like peaks in the magnetoabsorption spectra. The feature-rich magnetic quantization directly reflects the geometric symmetries, intralayer and interlayer atomic interactions, spin-orbital couplings, and field effects. The results of this work can be applied to novel designs of Si-based nanoelectronics and nanodevices with enhanced mobilities.
Field dependence of the vortex core size probed by scanning tunneling microscopy
Fente, A.; Herrera, E.; Guillamón, I.; ...
2016-07-29
We study the spatial distribution of the density of states (DOS) at zero bias N(r) in the mixed state of single and multigap superconductors. We provide an analytic expression for N(r) based on deGennes' relationship between DOS and the order parameter that reproduces well scanning tunneling microscopy (STM) data in several superconducting materials. In the single gap superconductor β-Bi 2 Pd, we find that N(r) is governed by a length scale ξ H =more » $$\\sqrt{Φ0/2πH}$$ which decreases in rising fields. The vortex core size $C$ ∝ (d Δ/dr| r→0) ₋1 differs from ξ H by a material dependent numerical factor. The new data on the tunneling conductance and vortex lattice of the 2H-NbSe 1.8S 0.2 show the in-plane isotropic vortices, suggesting that substitutional scattering removes the in-plane anisotropy found in the two-gap superconductor 2H-NbSe 2. We fit the tunneling conductance of 2H-NbSe 1.8S 0.2 to a two gap model and calculate the vortex core size $C$ for each band. We find that $C$ is field independent and has the same value for both bands. We also analyze the two-band superconductor 2H-NbSe 2 and find the same result. Lastly, we conclude that, independently of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the order parameter close to the vortex core is the same for all bands.« less
Field dependence of the vortex core size probed by scanning tunneling microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fente, A.; Herrera, E.; Guillamón, I.
We study the spatial distribution of the density of states (DOS) at zero bias N(r) in the mixed state of single and multigap superconductors. We provide an analytic expression for N(r) based on deGennes' relationship between DOS and the order parameter that reproduces well scanning tunneling microscopy (STM) data in several superconducting materials. In the single gap superconductor β-Bi 2 Pd, we find that N(r) is governed by a length scale ξ H =more » $$\\sqrt{Φ0/2πH}$$ which decreases in rising fields. The vortex core size $C$ ∝ (d Δ/dr| r→0) ₋1 differs from ξ H by a material dependent numerical factor. The new data on the tunneling conductance and vortex lattice of the 2H-NbSe 1.8S 0.2 show the in-plane isotropic vortices, suggesting that substitutional scattering removes the in-plane anisotropy found in the two-gap superconductor 2H-NbSe 2. We fit the tunneling conductance of 2H-NbSe 1.8S 0.2 to a two gap model and calculate the vortex core size $C$ for each band. We find that $C$ is field independent and has the same value for both bands. We also analyze the two-band superconductor 2H-NbSe 2 and find the same result. Lastly, we conclude that, independently of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the order parameter close to the vortex core is the same for all bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dileep, K., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in; Sahu, R.; Datta, R., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in
2016-03-21
Layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS{sub 2} and ReS{sub 2}, is performed at nanoscale by high resolution electron energy loss spectroscopy. For monolayer MoS{sub 2}, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. An indirect band gap of 1.27 eV is obtained from the multilayer regions. Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS{sub 2}. For ReS{sub 2}, the band gap is direct, and a value of 1.52 andmore » 1.42 eV is obtained for the monolayer and multilayer, respectively. The energy loss function is dominated by features due to high density of states at both the valence and conduction band edges, and the difference in analyzing band gap with respect to ZnO is highlighted. Crystalline 1T ReS{sub 2} forms two dimensional chains like superstructure due to the clustering between four Re atoms. The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.« less
NASA Astrophysics Data System (ADS)
Yang, Gui; Zhang, Guangbiao; Wang, Chao; Wang, Yuanxu
2016-07-01
Ba3Al2As4 exhibits an unusual anisotropic electrical conductivity, that is, the electrical conductivity along the chain is smaller than those along other two directions. The results is conflict with previous conclusion for Ca5M2Pn6. Earlier studies on Ca5M2Pn6 showed that a higher electrical conductivity could be obtained along the chain. The band decomposed charge density is used to explain such unusual behavior. Our calculations indicate the existence of a conductive pathway near the Fermi level is responsible for the electrons transport. Further, the Ba-As bonding of Ba3Al2As4 has some degree covalency which is novel for the Zintl compounds.
The Valence- and Conduction-Band Structure of the Sapphire (1102) Surface.
1984-12-01
surface. The pbotomission spectrum of the valece-baud region has boon adjusted to rmove croas-section effect s and comparod to the recent theoretical ...transitions in Al203. Several theoretical deteminations of the electron structure of various A1203 analoaues have bes performed. These calculations were...picture of the valence sad core density of states in sapphire. The rew, 31 velesee-bend data of Fit. I& and the theoretical 003 shows is Fig. 1.. which
NASA Astrophysics Data System (ADS)
Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.
2015-11-01
The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.
NASA Astrophysics Data System (ADS)
Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker
We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.
A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator–metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atomsmore » with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature T{sub j} is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature T{sub j}, the concentration of “free” holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3T{sub j}/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to T{sub j} hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (−1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3}, i.e., up to the Mott transition. The model uses no fitting parameters.« less
Atomic-scale defects and electronic properties of a transferred synthesized MoS2 monolayer
NASA Astrophysics Data System (ADS)
Delač Marion, Ida; Čapeta, Davor; Pielić, Borna; Faraguna, Fabio; Gallardo, Aurelio; Pou, Pablo; Biel, Blanca; Vujičić, Nataša; Kralj, Marko
2018-07-01
MoS2 monolayer samples were synthesized on a SiO2/Si wafer and transferred to Ir(111) for nano-scale characterization. The samples were extensively characterized during every step of the transfer process, and MoS2 on the final substrate was examined down to the atomic level by scanning tunneling microscopy (STM). The procedures conducted yielded high-quality monolayer MoS2 of milimeter-scale size with an average defect density of 2 × 1013 cm–2. The lift-off from the growth substrate was followed by a release of the tensile strain, visible in a widening of the optical band gap measured by photoluminescence. Subsequent transfer to the Ir(111) surface led to a strong drop of this optical signal but without further shifts of characteristic peaks. The electronic band gap was measured by scanning tunneling spectroscopy (STS), revealing n-doping and lateral nano-scale variations. The combined use of STM imaging and density functional theory (DFT) calculations allows us to identify the most recurring point-like defects as S vacancies.
Efficient evaluation of nonlocal operators in density functional theory
NASA Astrophysics Data System (ADS)
Chen, Ying-Chih; Chen, Jing-Zhe; Michaud-Rioux, Vincent; Shi, Qing; Guo, Hong
2018-02-01
We present a method which combines plane waves (PW) and numerical atomic orbitals (NAO) to efficiently evaluate nonlocal operators in density functional theory with periodic boundary conditions. Nonlocal operators are first expanded using PW and then transformed to NAO so that the problem of distance-truncation is avoided. The general formalism is implemented using the hybrid functional HSE06 where the nonlocal operator is the exact exchange. Comparison of electronic structures of a wide range of semiconductors to a pure PW scheme validates the accuracy of our method. Due to the locality of NAO, thus sparsity of matrix representations of the operators, the computational complexity of the method is asymptotically quadratic in the number of electrons. Finally, we apply the technique to investigate the electronic structure of the interface between a single-layer black phosphorous and the high-κ dielectric material c -HfO2 . We predict that the band offset between the two materials is 1.29 eV and 2.18 eV for valence and conduction band edges, respectively, and such offsets are suitable for 2D field-effect transistor applications.
Atomic-scale defects and electronic properties of a transferred synthesized MoS2 monolayer.
Delač Marion, Ida; Čapeta, Davor; Pielić, Borna; Faraguna, Fabio; Gallardo, Aurelio; Pou, Pablo; Biel, Blanca; Vujičić, Nataša; Kralj, Marko
2018-07-27
MoS 2 monolayer samples were synthesized on a SiO 2 /Si wafer and transferred to Ir(111) for nano-scale characterization. The samples were extensively characterized during every step of the transfer process, and MoS 2 on the final substrate was examined down to the atomic level by scanning tunneling microscopy (STM). The procedures conducted yielded high-quality monolayer MoS 2 of milimeter-scale size with an average defect density of 2 × 10 13 cm -2 . The lift-off from the growth substrate was followed by a release of the tensile strain, visible in a widening of the optical band gap measured by photoluminescence. Subsequent transfer to the Ir(111) surface led to a strong drop of this optical signal but without further shifts of characteristic peaks. The electronic band gap was measured by scanning tunneling spectroscopy (STS), revealing n-doping and lateral nano-scale variations. The combined use of STM imaging and density functional theory (DFT) calculations allows us to identify the most recurring point-like defects as S vacancies.
Electronic structure and electron momentum densities of Ag2CrO4
NASA Astrophysics Data System (ADS)
Meena, Seema Kumari; Ahuja, B. L.
2018-05-01
We present the first-ever experimental electron momentum density of Ag2CrO4 using 661.65 keV γ-rays from 20 Ci 137Cs source. To validate our experimental data, we have also deduced theoretical Compton profiles, energy bands and density of states using linear combination of atomic orbitals (LCAO) method in the framework of density functional theory. It is seen that the DFT-LDA gives a better agreement with experimental data than free atom model. The energy bands and density of states are also discussed.
Electronic and thermal properties of germanene and stanene by first-principles calculations
NASA Astrophysics Data System (ADS)
Jomehpour Zaveh, S.; Roknabadi, M. R.; Morshedloo, T.; Modarresi, M.
2016-03-01
The electronic, vibrational and thermal properties of germanene and stanene have been investigated based on density functional theory (DFT) and density functional perturbation theory (DFPT). The electronic band structure, total and partial density of states and phonon dispersion spectrum and states are analyzed. The phonon spectrum is positive for all modes in the first Brillouin zone and there is a phonon energy band gap between acoustic and optical modes which is around 50 cm-1 for both structure. The constant-volume specific heats of two structures are calculated by using phonon spectrum and density of states. The spin-orbit coupling (SOC) opens a direct energy band gap at the Dirac point, softens phonon spectrum and decreases phonon group velocity of ZA mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr; Bin-Omran, S.; Department of Physics, Faculty of Science & Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942
Highlights: • Electronic and optical properties of the LiCdX compounds have been predicted. • Tran–Blaha-modified Becke–Johnson functional significantly improves the band gap. • We predict a direct band gap in all of the considered LiCdX compounds. • Origin of the peaks in the optical spectra is determined. - Abstract: The structural, electronic and optical properties of the LiCdN, LiCdP, LiCdAs and LiCdSb filled-tetrahedral compounds have been explored from first-principles. The calculated structural parameters are consistent with the available experimental results. Since DFT with the common LDA and GGA underestimates the band gap, we use a new developed functional able tomore » accurately describe the electronic structure of semiconductors, namely the Tran–Blaha-modified Becke–Johnson potential. The four investigated compounds demonstrate semiconducting behavior with direct band gap ranging from about 0.32 to 1.65 eV. The charge-carrier effective masses are evaluated at the topmost valence band and at the bottommost conduction band. The evolution of the value and nature of the energy band gap under pressure effect is also investigated. The frequency-dependent complex dielectric function and some macroscopic optical constants are estimated. The microscopic origins of the structures in the optical spectra are determined in terms of the calculated energy band structures.« less
Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites
Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei; ...
2017-04-25
Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3 skutterudite, a class of materials with important fundamental and application implications for thermoelectrics and spintronics.« less
Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei
Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3 skutterudite, a class of materials with important fundamental and application implications for thermoelectrics and spintronics.« less
[Study of cubic boron nitride crystal UV absorption spectroscopy].
Liu, Hai-Bo; Jia, Gang; Chen, Gang; Meng, Qing-Ju; Zhang, Tie-Chen
2008-07-01
UV absorption spectroscopy of artificial cubic boron nitride (cBN) single crystal flake, synthesized under high-temperature and high-pressure, was studied in the present paper. UV WINLAB spectrometer was used in the experiments, and MOLECULAR SPECTROSCOPY software was used for data analysis. The UV-cBN limit of 198 nm was showed in this test by a special fixture quartz sample. We calculated the energy gap by virtue of the formula: lambda0 = 1.24/E(g) (microm). The energy gap is 6. 26 eV. There are many viewpoints about the gap of cBN. By using the first-principles theory to calculate energy band structure and density of electronic states of cBN, an indirect transition due to electronics in valence band jumping into conduction band by absorbing photon can be confirmed. That leads to UV absorption. The method of calculation was based on the quantum mechanics of CASTEP in the commercial software package of Cerius2 in the Co. Accerlrys in the United States. The theory of CASTEP is based on local density approximation or gradient corrected LDA. The crystal parameter of cBN was input to the quantum mechanics of CASTEP in order to construct the crystal parameter model of cBN. We calculated the energy gap of cBN by the method of gradient corrected LDA. The method underestimates the value of nonconductor by about 1 to 2 eV. We gaot some opinions as follows: cBN is indirect band semiconductor. The energy gap is 4.76 eV, less than our experiment. The reason may be defect that we ignored in calculating process. It was reported that the results by first principles method of calculation of the band generally was less than the experimental results. This paper shows good UV characteristics of cBN because of the good agreement of experimental results with the cBN band width. That is a kind of development prospect of UV photo-electronic devices and high-temperature semiconductor devices.
A potential half-Heusler thermoelectric material ScAuSn: A first principle study
NASA Astrophysics Data System (ADS)
Joshi, H.; Rai, D. P.; Thapa, R. K.
2018-04-01
Density Functional Theory along with semi classical Boltzmann transport theory have been applied to study the electronic and thermoelectric property of the Heusler alloy ScAuSn. It has been found that ScAuSn is an indirect band gap semiconductor with a gap of 0.344 eV. The thermoelectric properties such as electrical conductivity (σ), Seebeck coefficient (S), electronic thermal conductivity (κ) etc. are reported as a function of chemical potential in the region ± 2.0 eV, with respect to constant temperature. The calculated ZT value is almost equal to 1, thus making ScAuSn a potential thermoelectric candidate.
Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki
2016-01-01
The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092
NASA Astrophysics Data System (ADS)
Koo, Bon-Ryul; Oh, Dong-Hyeun; Ahn, Hyo-Jin
2018-03-01
Nb-doped TiO2 (Nb-TiO2) blocking layers (BLs) were developed using horizontal ultrasonic spray pyrolysis deposition (HUSPD). In order to improve the photovoltaic properties of the dye-sensitized solar cells (DSSCs), we optimized the Nb doping level of the Nb-TiO2 BLs by controlling the Nb/Ti molar ratio (0, 5, 6, and 7) of the precursor solution for HUSPD. Compared to bare TiO2 BLs, the Nb-TiO2 BLs formed a cascading band structure using the positive shift of the conduction band minimum of the Nb-TiO2 positioned between fluorine-doped tin oxide (FTO) and TiO2. This results in the increase of the potential current and the suppression of the electron recombination. Hence, it led to the improvement of the electrical conductivity, due to the increased electron concentration by the Nb doping into TiO2. Therefore, the DSSC fabricated with the Nb-TiO2 BLs at a Nb/Ti molar ratio of 6 showed superior photoconversion efficiency (∼7.50 ± 0.20%) as a result of the improved short-circuit current density. This is higher than those with the other Nb-TiO2 BLs and without BL. This improvement of the photovoltaic properties for the DSSCs can be attributed to the synergistic effects of uniform and compact BL relative to the prevention of the backward electron transport at the FTO/electrolyte interface, efficient electron transport at interfaces relative to a cascading band structure of FTO/Nb-TiO2/TiO2 multilayers and the facilitated electron transport at the BLs relative to the increased electrical conductivity of the optimized Nb-TiO2 BLs.
Electron-phonon relaxation and excited electron distribution in gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, V. P.; Donostia International Physics Center; Tyuterev, V. G., E-mail: valtyut00@mail.ru
2016-08-28
We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates ofmore » inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.« less
Transport coefficients for dense hard-disk systems.
García-Rojo, Ramón; Luding, Stefan; Brey, J Javier
2006-12-01
A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics algorithms with periodic boundary conditions. The density and size dependence of the results are analyzed, and comparison with the predictions from Enskog's theory is carried out. In particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is investigated and a striking power law divergence of the viscosity with density is obtained in this region, while all other examined transport coefficients show a drop in that density range in relation to the Enskog's prediction. Finally, the deviations are related to shear band instabilities and the concept of dilatancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nhalil, Hariharan; Han, Dan; Du, Mao-Hua
High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less
Nhalil, Hariharan; Han, Dan; Du, Mao-Hua; ...
2018-03-01
High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less
Electron-hole collision limited transport in charge-neutral bilayer graphene
NASA Astrophysics Data System (ADS)
Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.
2017-12-01
Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.
Tran, Fabien; Blaha, Peter
2017-05-04
Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.
NASA Astrophysics Data System (ADS)
Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong
2017-12-01
The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.
NASA Astrophysics Data System (ADS)
Hoat, D. M.; Rivas Silva, J. F.; Méndez Blas, A.
2018-07-01
The structural, electronic and optical properties of GaP, BP binary compounds and their ternary alloys Ga1-xBxP (x = 0.25, 0.5 and 0.75) have been studied by full-potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT) as implemented in WIEN2k package. Local density approximation (LDA) and generalized gradient approximation (GGA) as proposed by Perdew-Burke-Ernzerhof (PBE), Wu-Cohen (WC) and PBE for solid (PBESol) were used for treatment of exchange-correlation effect in calculations. Additionally, the Tran-Blaha modified Becke-Johnson (mBJ) potential was also employed for electronic and optical calculations due to that it gives very accurate band gap of solids. As B concentration increases, the lattice constant reduces and the energy band gap firstly decreases for small composition x and then it shows increasing trend until pure BP. Our results show that the indirect-direct band gap transition can be reached from x = 0.33. The linear optical properties, such as reflectivity, absorption coefficient, refractive index and optical conductivity of binary compounds and ternary alloys were derived from their calculated complex dielectric function in wide energy range up to 30 eV, and the alloying effect on these properties was also analyzed in detail.
Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru; Oreshkin, S. I.
2015-06-15
We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface mightmore » produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.« less
Fan, D D; Liu, H J; Cheng, L; Zhang, J; Jiang, P H; Wei, J; Liang, J H; Shi, J
2017-05-24
Using the first-principles pseudopotential method and Boltzmann transport theory, we give a comprehensive understanding of the electronic and phonon transport properties of the thermoelectric material BiCuSeO. By choosing an appropriate hybrid functional for the exchange-correlation energy, we find that the system is a semiconductor with a direct band gap of ∼0.8 eV, which is quite different from those obtained previously using standard functionals. Detailed analysis of a three-dimensional energy band structure indicates that there is a valley degeneracy of eight around the valence band maximum, which leads to a sharp density of states and is responsible for a large p-type Seebeck coefficient. Moreover, we find that the density of states effective mass is much larger and results in a very low hole mobility for BiCuSeO. On the other hand, we discover two flat phonon branches contributed by the Cu and Se atoms, which can effectively block heat transfer. Combined with large atomic displacement parameters of the Cu atom, we believe that the intrinsically low lattice thermal conductivity in BiCuSeO is mainly caused by the Cu atoms, instead of the prevailingly believed Bi atoms. The thermoelectric figure-of-merit is also predicted and compared with available experimental results.
Direct measurement of Dirac point energy at the graphene/oxide interface.
Xu, Kun; Zeng, Caifu; Zhang, Qin; Yan, Rusen; Ye, Peide; Wang, Kang; Seabaugh, Alan C; Xing, Huili Grace; Suehle, John S; Richter, Curt A; Gundlach, David J; Nguyen, N V
2013-01-09
We report the direct measurement of the Dirac point, the Fermi level, and the work function of graphene by performing internal photoemission measurements on a graphene/SiO(2)/Si structure with a unique optical-cavity enhanced test structure. A complete electronic band alignment at the graphene/SiO(2)/Si interfaces is accurately established. The observation of enhanced photoemission from a one-atom thick graphene layer was possible by taking advantage of the constructive optical interference in the SiO(2) cavity. The photoemission yield was found to follow the well-known linear density-of-states dispersion in the vicinity of the Dirac point. At the flat band condition, the Fermi level was extracted and found to reside 3.3 eV ± 0.05 eV below the bottom of the SiO(2) conduction band. When combined with the shift of the Fermi level from the Dirac point, we are able to ascertain the position of the Dirac point at 3.6 eV ± 0.05 eV with respect to the bottom of the SiO(2) conduction band edge, yielding a work function of 4.5 eV ± 0.05 eV which is in an excellent agreement with theory. The accurate determination of the work function of graphene is of significant importance to the engineering of graphene-based devices, and the measurement technique we have advanced in this Letter will have significant impact on numerous applications for emerging graphene-like 2-dimensional material systems.
Xin, Xukai; Li, Bo; Jung, Jaehan; ...
2014-07-24
Quantum dot-sensitized solar cells (QDSSCs) have emerged as a promising solar architecture for next-generation solar cells. The QDSSCs exhibit a remarkably fast electron transfer from the quantum dot (QD) donor to the TiO 2 acceptor with size quantization properties of QDs that allows for the modulation of band energies to control photoresponse and photoconversion efficiency of solar cells. In order to understand the mechanisms that underpin this rapid charge transfer, the electronic properties of CdSe and PbSe QDs with different sizes on the TiO 2 substrate are simulated using a rigorous ab initio density functional method. Our method capitalizes onmore » localized orbital basis set, which is computationally less intensive. Quite intriguingly, a remarkable set of electron bridging states between QDs and TiO 2 occurring via the strong bonding between the conduction bands of QDs and TiO 2 is revealed. Such bridging states account for the fast adiabatic charge transfer from the QD donor to the TiO 2 acceptor, and may be a general feature for strongly coupled donor/acceptor systems. All the QDs/TiO 2 systems exhibit type II band alignments, with conduction band offsets that increase with the decrease in QD size. This facilitates the charge transfer from QDs donors to TiO 2 acceptors and explains the dependence of the increased charge transfer rate with the decreased QD size.« less
Photoemission and Auger-electron spectroscopic study of the Chevrel-phase compound FexMo6S8
NASA Astrophysics Data System (ADS)
Fujimori, A.; Sekita, M.; Wada, H.
1986-05-01
The electronic structure of the Chevrel-phase compound FexMo6S8 has been studied by photoemission and Auger-electron spectroscopy. Core-level shifts suggest a large charge transfer from the Fe atoms to the Mo6S8 clusters and a small Mo-to-S charge transfer within the cluster. Line-shape asymmetry in the core levels indicates that the density of states (DOS) at the Fermi level has a finite S 3p component as well as the dominant Mo 3d character. Satellite structure and exchange splitting in the Fe core levels point to weak Fe 3d-S 3p hybridization in spite of the short Fe-S distances comparable to that in FeS. The x-ray and ultraviolet valence-band photoemission spectra and the Mo 4d partial DOS obtained by deconvoluting the Mo M4,5VV Auger spectrum are compared with existing band-structure calculations, and the Mo 4d-S 3p bonding character, the structure of the Mo 4d-derived conduction band etc., are discussed. In particular, it is shown that the conduction-band structure is sensitive to the noncubic distortion of the crystal through changes in the intercluster Mo 4d-S 3p hybridization. A pronounced final-state effect is found in the Mo M4,5N2,3V Auger spectrum and is attributed to strong 4p-4d intershell coupling.
Shuai, Jing; Geng, Huiyuan; Lan, Yucheng; Zhu, Zhuan; Wang, Chao; Liu, Zihang; Bao, Jiming; Chu, Ching-Wu; Sui, Jiehe; Ren, Zhifeng
2016-07-19
Complex Zintl phases, especially antimony (Sb)-based YbZn0.4Cd1.6Sb2 with figure-of-merit (ZT) of ∼1.2 at 700 K, are good candidates as thermoelectric materials because of their intrinsic "electron-crystal, phonon-glass" nature. Here, we report the rarely studied p-type bismuth (Bi)-based Zintl phases (Ca,Yb,Eu)Mg2Bi2 with a record thermoelectric performance. Phase-pure EuMg2Bi2 is successfully prepared with suppressed bipolar effect to reach ZT ∼ 1. Further partial substitution of Eu by Ca and Yb enhanced ZT to ∼1.3 for Eu0.2Yb0.2Ca0.6Mg2Bi2 at 873 K. Density-functional theory (DFT) simulation indicates the alloying has no effect on the valence band, but does affect the conduction band. Such band engineering results in good p-type thermoelectric properties with high carrier mobility. Using transmission electron microscopy, various types of strains are observed and are believed to be due to atomic mass and size fluctuations. Point defects, strain, dislocations, and nanostructures jointly contribute to phonon scattering, confirmed by the semiclassical theoretical calculations based on a modified Debye-Callaway model of lattice thermal conductivity. This work indicates Bi-based (Ca,Yb,Eu)Mg2Bi2 is better than the Sb-based Zintl phases.
Moroz, Nicholas A; Bauer, Christopher; Williams, Logan; Olvera, Alan; Casamento, Joseph; Page, Alexander A; Bailey, Trevor P; Weiland, Ashley; Stoyko, Stanislav S; Kioupakis, Emmanouil; Uher, Ctirad; Aitken, Jennifer A; Poudeu, Pierre F P
2018-06-18
Single-phase polycrystalline powders of Sr 1- x Sb x HfSe 3 ( x = 0, 0.005, 0.01), a new member of the chalcogenide perovskites, were synthesized using a combination of high temperature solid-state reaction and mechanical alloying approaches. Structural analysis using single-crystal as well as powder X-ray diffraction revealed that the synthesized materials are isostructural with SrZrSe 3 , crystallizing in the orthorhombic space group Pnma (#62) with lattice parameters a = 8.901(2) Å; b = 3.943(1) Å; c = 14.480(3) Å; and Z = 4 for the x = 0 composition. Thermal conductivity data of SrHfSe 3 revealed low values ranging from 0.9 to 1.3 W m -1 K -1 from 300 to 700 K, which is further lowered to 0.77 W m -1 K -1 by doping with 1 mol % Sb for Sr. Electronic property measurements indicate that the compound is quite insulating with an electrical conductivity of 2.9 S/cm at 873 K, which was improved to 6.7 S/cm by 0.5 mol % Sb doping. Thermopower data revealed that SrHfSe 3 is a p-type semiconductor with thermopower values reaching a maximum of 287 μV/K at 873 K for the 1.0 mol % Sb sample. The optical band gap of Sr 1- x Sb x HfSe 3 samples, as determined by density functional theory calculations and the diffuse reflectance method, is ∼1.00 eV and increases with Sb concentration to 1.15 eV. Careful analysis of the partial densities of states (PDOS) indicates that the band gap in SrHfSe 3 is essentially determined by the Se-4p and Hf-5d orbitals with little to no contribution from Sr atoms. Typically, band edges of p- and d-character are a good indication of potentially strong absorption coefficient due to the high density of states of the localized p and d orbitals. This points to potential application of SrHfSe 3 as absorbing layer in photovoltaic devices.
NASA Astrophysics Data System (ADS)
Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.
2009-12-01
We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.
NASA Astrophysics Data System (ADS)
Kandulna, R.; Choudhary, R. B.; Singh, R.
2018-04-01
PMMA, TiO2 and PMMA-TiO2 nanocomposite were successfully synthesized in the laboratory via free radical polymerization process. The formation of PMMA corresponding change in the nanostructure with the embodiment of TiO2 nanofillers was confirmed by X-ray diffraction technique (XRD) analysis. Irregular tetragonal bipyramidal arrangement of TiO2 was formed within the spherical type structure of PMMA polymeric matrix, as examined by the surface morphological image. Relatively higher electron-hole non-radiative recombination of PMMA-TiO2 nanocomposite corresponded to blue-violet band, blue band, and green band was examined from PL spectra. An enhanced current density ˜ 165 % was observed with significantly improved p-type conductivity for PMMA-TiO2 nanocomposite. The improved specific capacitance with high dielectric constant and high electron-hole recombination rate confirmed that it can possibly use as electron transport layer material in the OLED devices fabrication.
Strain engineering on electronic structure and carrier mobility in monolayer GeP3
NASA Astrophysics Data System (ADS)
Zeng, Bowen; Long, Mengqiu; Zhang, Xiaojiao; Dong, Yulan; Li, Mingjun; Yi, Yougen; Duan, Haiming
2018-06-01
Using density functional theory coupled with the Boltzmann transport equation with relaxation time approximation, we have studied the strain effect on the electronic structure and carrier mobility of two-dimensional monolayer GeP3. We find that the energies of valence band maximum and conduction band minimum are nearly linearly shifted with a biaxial strain in the range of ‑4% to 6%, and the band structure experiences a remarkable transition from semiconductor to metal with the appropriate compression (‑5% strain). Under biaxial strain, the mobility of the electron and hole in monolayer GeP3 reduces and increases by more than one order of magnitude, respectively. It is suggested that it is possible to perform successive transitions from an n-type semiconductor (‑4% strain) to a good performance p-semiconductor (+6% strain) by applying strain in monolayer GeP3, which is potentially useful for flexible electronics and nanosized mechanical sensors.
NASA Astrophysics Data System (ADS)
Shimazaki, Y.; Yamamoto, M.; Borzenets, I. V.; Watanabe, K.; Taniguchi, T.; Tarucha, S.
2015-12-01
The field of `Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical, magnetic and electrical control of the valley degree of freedom. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
Interplay between spin-orbit coupling and crystal-field effect in topological insulators
NASA Astrophysics Data System (ADS)
Lee, Hyungjun; Yazyev, Oleg V.
2015-07-01
Band inversion, one of the key signatures of time-reversal invariant topological insulators (TIs), arises mostly due to the spin-orbit (SO) coupling. Here, based on ab initio density-functional calculations, we report a theoretical investigation of the SO-driven band inversion in isostructural bismuth and antimony chalcogenide TIs from the viewpoint of its interplay with the crystal-field effect. We calculate the SO-induced energy shift of states in the top valence and bottom conduction manifolds and reproduce this behavior using a simple one-atom model adjusted to incorporate the crystal-field effect. The crystal-field splitting is shown to compete with the SO coupling, that is, stronger crystal-field splitting leads to weaker SO band shift. We further show how both these effects can be controlled by changing the chemical composition, whereas the crystal-field splitting can be tuned by means of uniaxial strain. These results provide a practical guidance to the rational design of novel TIs as well as to controlling the properties of existing materials.
Density-functional energy gaps of solids demystified
NASA Astrophysics Data System (ADS)
Perdew, John P.; Ruzsinszky, Adrienn
2018-06-01
The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?
Rabilloud, Franck
2014-10-14
Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.
UV irradiation-induced Raman spectra changes in lead silicate glasses
NASA Astrophysics Data System (ADS)
Jia, Hongzhi; Chen, Guanghui; Wang, Wencheng
2006-12-01
The Raman spectra for a series of lead silicate glasses with different PbO content before and after irradiation with different energy density by the frequency-quadrupled output of a Q-switched YAG laser (266 nm, 10 Hz repetition rate) were measured. The intensity of Pb-O band near 140 cm -1 in the Raman spectra decreases after UV irradiation and no new band appears in the Raman spectra. Exposed to the UV beam with high energy density (150 mJ/cm 2), although the total dose is smaller than the dose with low energy density (50 mJ/cm 2), the intensity of the 140 cm -1 band drops heavilier than exposed to the UV beam with low energy density. This shows that the UV irradiation can cause the broken of Pb-O bond in lead silicate glasses and the broken of Pb-O bond is related to the energy density of UV beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the Euler Φ angle of the grain average orientation, indicating an increased misorientation angle evolution.« less
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler; ...
2017-03-31
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the Euler Φ angle of the grain average orientation, indicating an increased misorientation angle evolution.« less
Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.
Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn
2002-03-08
We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.
NASA Astrophysics Data System (ADS)
Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Otani, Yohei; Ono, Toshiro
2011-09-01
We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeNx/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeNx/Ge interface properties. The GeNx/Ge formed at room temperature and treated by PMA at 400 °C exhibits the best interface properties with an interface trap density of 1 × 1011 cm-2 eV-1. The GeNx/Ge interface is unpinned and the Fermi level at the Ge surface can move from the valence band edge to the conduction band edge.
Electronic Structure of Two-Dimensional Hydrocarbon Networks of sp2 and sp3 C Atoms
NASA Astrophysics Data System (ADS)
Fujii, Yasumaru; Maruyama, Mina; Wakabayashi, Katsunori; Nakada, Kyoko; Okada, Susumu
2018-03-01
Based on density functional theory with the generalized gradient approximation, we have investigated the geometric and electronic structures of two-dimensional hexagonal covalent networks consisting of oligoacenes and fourfold coordinated hydrocarbon atoms, which are alternately arranged in a hexagonal manner. All networks were semiconductors with a finite energy gap at the Γ point, which monotonically decreased with the increase of the oligoacene length. As a result of a Kagome network of oligoacene connected through sp3 C atoms, the networks possess peculiar electron states in their valence and conduction bands, which consist of a flat dispersion band and a Dirac cone. The total energy of the networks depends on the oligoacene length and has a minimum for the network comprising naphthalene.
Photoemission spectra and band structures of simple metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shung, K.W.; Mahan, G.D.
1988-08-15
We present a detailed calculation of the angle-resolved photoemission spectra of Na. The calculation follows a theory by Mahan, which allows for the inclusion of various bulk and surface effects. We find it important to take into account various broadening effects in order to explain the anomalous structure at E/sub F/, which was found by Jensen and Plummer in the spectra of Na. The broadening effects also help to resolve the discrepancy of the conduction-band width. Efforts are made to compare our results with new measurements of Plummer and Lyo. We discuss the ambiguity concerning the sign of the crystalmore » potential and comment on charge-density waves in the systems. We have also generalized our discussions to other simple metals like K.« less
The soft X-ray diffuse background
NASA Technical Reports Server (NTRS)
Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.
1982-01-01
Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.
19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO 2 Contact
Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; ...
2014-09-25
We demonstrate an InP heterojunction solar cell employing an ultrathin layer (~10 nm) of amorphous TiO 2 deposited at 120°C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. Lastly, a hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency ofmore » 19.2%.« less
Generation of multiband chorus by lower band cascade in the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Gao, Xinliang; Lu, Quanming; Bortnik, Jacob; Li, Wen; Chen, Lunjin; Wang, Shui
2016-03-01
Chorus waves are intense electromagnetic whistler mode emissions in the magnetosphere, typically falling into two distinct frequency bands: a lower band (0.1-0.5fce) and an upper band (0.5-0.8fce) with a power gap at about 0.5fce. In this letter, with the Time History of Events and Macroscale Interactions during Substorms satellite, we observed two special chorus events, which are called as multiband chorus because upper band chorus is located at harmonics of lower band chorus. We propose a new potential generation mechanism for multiband chorus, which is called as lower band cascade. In this scenario, a density mode with a frequency equal to that of lower band chorus is generated by the ponderomotive effect (inhomogeneity of the electric amplitude) along the wave vector, and then upper band chorus with the frequency twice that of lower band chorus is generated through wave-wave couplings between lower band chorus and the density mode. The mechanism provides a new insight into the evolution of whistler mode chorus in the Earth's magnetosphere.
Chiral zero energy modes in two-dimensional disordered Dirac semimetals
NASA Astrophysics Data System (ADS)
Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen
2018-04-01
The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.
Valley-symmetric quasi-1D transport in ballistic graphene
NASA Astrophysics Data System (ADS)
Lee, Hu-Jong
We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.
Capacitance and conductance-frequency characteristics of In-pSi Schottky barrier diode
NASA Astrophysics Data System (ADS)
Dhimmar, J. M.; Desai, H. N.; Modi, B. P.
2015-06-01
The Schottky barrier height (SBH) values have been calculated by using the reverse bias capacitance-voltage (C-V) characteristics at temperature range of 120-360K. The forward bias capacitance-frequency (C-f) and conductance- frequency (G-f) measurement of In-pSi SBD have been carried out from 0-1.0 V with a step up 0.05 V whereby the energy distribution of the interface state has been determined from the forward bias I-V data taking the bias dependence of the effective barrier height and series resistance (RS) into account. The high value of ideality factor (n=2.12) was attributing to high density of interface states and interfacial oxide layer at metal semiconductor interface. The interface state density (NSS) shows a decrease with bias from bottom of conduction band toward the mid gap. In order to examine frequency dependence NSS, RS, C-V and G(ω)/ω-f measurement of the diode were performed at room temperature in the frequency range of 100Hz-100KHz. Experimental result confirmed that there is an influence in the electrical characteristic of Schottky diode.
NASA Astrophysics Data System (ADS)
Bhaskara Rao, B. V.; Kale, Nikita; Kothavale, B. S.; Kale, S. N.
2016-06-01
Radar X-band electromagnetic interference shielding (EMS) is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT) has been homogeneously integrated (0 - 9 wt%) with polymer, poly (vinylidene fluoride, PVDF) to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE) of 17.7 dB/(g/cm3) (99.6% EMS), with maintained hardness and improved conductivity. With multilayer stacking (900 microns) of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3) (99.93% EMS). Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.
First principles study of CuAlO2 doping with S
NASA Astrophysics Data System (ADS)
Gao, Haigen; Zhou, Jian; Lu, Minghui
2010-07-01
We study the electronic properties of CuAlO2 doped with S by the first principles calculations and find that the band gap of CuAlO2 is reduced after the doping. At the same time, the effective masses are also reduced and the density of states could cross the Fermi level. These results show that the conductivity of CuAlO2 could be enhanced by doping the impurities of S, which needs to be further studied.
Electron gas at the interface between two antiferromagnetic insulating manganites
NASA Astrophysics Data System (ADS)
Calderón, M. J.; Salafranca, J.; Brey, L.
2008-07-01
We study theoretically the magnetic and electric properties of the interface between two antiferromagnetic and insulating manganites: La0.5Ca0.5MnO3 , a strong correlated insulator, and CaMnO3 , a band insulator. We find that a ferromagnetic and metallic electron gas is formed at the interface between the two layers. We confirm the metallic character of the interface by calculating the in-plane conductance. The possibility of increasing the electron-gas density by selective doping is also discussed.
Electrochemical impedance analysis of perovskite–electrolyte interfaces
Li, Zhen; Mercado, Candy C.; Yang, Mengjin; ...
2017-01-31
Here, the flat band potentials and carrier densities of spin coated and sprayed MAPbI 3, FA 0.85Cs 0.15PbI 3, and MAPbBr 3 perovskite films were determined using the Mott-Schottky relation. The films developed a space charge layer and exhibited p-type conduction with carrier concentration ~ 10 16 cm -3 for spin coated films. Electrochemical impedance spectra showed typical space charge impedance at frequencies > 1 kHz with increasing capacitance < 1 kHz owing to an ion diffusion component.
NASA Astrophysics Data System (ADS)
Ardisana, R. N.; Miller, C. A.; Sivaguru, M.; Fouke, B. W.
2013-12-01
Corals are a key reservoir of biodiversity in coastal, shallow water tropical marine environments, and density banding in their aragonite skeletons is used as a sensitive record of paleoclimate. Therefore, the cellular response of corals to environmental change and its expression in skeletal structure is of significant importance. Chromatophores, pigment-bearing cells within the ectoderm of hermatypic corals, serve to both enhance the photosynthetic activity of zooxanthellae symbionts, as well as protect the coral animal from harmful UV radiation. Yet connections have not previously been drawn between chromatophore tissue density and the development of skeletal density bands. A histological analysis of the coral Montastrea faveolata has therefore been conducted across a bathymetric gradient of 1-20 m on the southern Caribbean island of Curaçao. A combination of field and laboratory photography, serial block face imaging (SBFI), two-photon laser scanning microscopy (TPLSM), and 3D image analysis has been applied to test whether M. faveolata adapts to increasing water depth and decreasing photosynthetically active radiation by shifting toward a more heterotrophic lifestyle (decreasing zooxanthellae tissue density, increasing mucocyte tissue density, and decreasing chromatophores density). This study is among the first to collect and evaluate histological data in the spatial context of an entire unprocessed coral polyp. TPLSM was used to optically thin section unprocessed tissue biopsies with quantitative image analysis to yield a nanometer-scale three-dimensional map of the quantity and distribution of the symbionts (zooxanthellae) and a host fluorescent pigments (chromatophores), which is thought to have photoprotective properties, within the context of an entire coral polyp. Preliminary results have offered new insight regarding the three-dimensional distribution and abundance of chromatophores and have identified: (1) M. faveolata tissue collected from 8M SWD do not contain the abundant chromatophores present in M. faveolata collected from 20M SWD; and (2) a distinct difference in size and distribution of chromatophores between M. faveolata collected from 8-20M SWD. These results suggest that chromatophore cells may have an important photoenhancing function (reflection of light to help facilitate the collection of usable light that reaches the symbiotic algae for effective photosynthesis) rather than a photoinhibitive function (absorbing or refract light that may be harmful to zooxanthellae) which has been previously hypothesized.
Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations
NASA Astrophysics Data System (ADS)
Gupta, M.; Singh, D. J.; Gupta, R.
2005-03-01
The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.
Numerical band structure calculations of plasma metamaterials
NASA Astrophysics Data System (ADS)
Pederson, Dylan; Kourtzanidis, Konstantinos; Raja, Laxminarayan
2015-09-01
Metamaterials (MM) are materials engineered to display negative macroscopic permittivity and permeability. These materials allow for designed control over electromagnetic energy flow, especially at frequencies where natural materials do not interact. Plasmas have recently found application in MM as a negative permittivity component. The permittivity of a plasma depends on its electron density, which can be controlled by an applied field. This means that plasmas can be used in MM to actively control the transmission or reflection of incident waves. This work focuses on a plasma MM geometry in which microplasmas are generated in perforations in a metal plate. We characterizethis material by its band structure, which describes its interaction with incident waves. The plasma-EM interactions are obtained by coupling Maxwell's equations to a simplified plasma momentum equation. A plasma density profile is prescribed, and its effect on the band structure is investigated. The band structure calculations are typically done for static structures, whereas our current density responds to the incident waves. The resulting band structures are compared with experimental results.
Li, Wenqing; Walther, Christian F J; Kuc, Agnieszka; Heine, Thomas
2013-07-09
The performance of a wide variety of commonly used density functionals, as well as two screened hybrid functionals (HSE06 and TB-mBJ), on predicting electronic structures of a large class of en vogue materials, such as metal oxides, chalcogenides, and nitrides, is discussed in terms of band gaps, band structures, and projected electronic densities of states. Contrary to GGA, hybrid functionals and GGA+U, both HSE06 and TB-mBJ are able to predict band gaps with an appreciable accuracy of 25% and thus allow the screening of various classes of transition-metal-based compounds, i.e., mixed or doped materials, at modest computational cost. The calculated electronic structures are largely unaffected by the choice of basis functions and software implementation, however, might be subject to the treatment of the core electrons.
Shear deformation-induced anisotropic thermal conductivity of graphene.
Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze
2018-01-03
Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.
Characterization and Mitigation of Resistive Losses in a Large Area Laser Power Converter
2014-03-27
level lies between the valence and conduction band such that relatively few electrons are thermally excited into the conduction band. Pure crystalline...have an equal number of electrons in the conduction band and holes in the valence band when it is in thermal equilibrium. That is, the electron...easily be thermally excited into the conduction band and act as a mobile charge carrier within the material, now considered n-type for it contains a
Edge effects on the electronic properties of phosphorene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun
2014-10-14
Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less
Mapping Calcium Rich Ejecta in Two Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Fesen, Robert
2016-10-01
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; ...
2017-11-10
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less
Varley, J. B.; Conway, A. M.; Voss, L. F.; ...
2015-02-09
Thallium bromide (TlBr) crystals subjected to hydrochloric acid (HCl) chemical treatments have been shown to advantageously affect device performance and longevity in TlBr-based room temperature radiation detectors, yet the exact mechanisms of the improvements remain poorly understood. Here in this paper, we investigate the influence of several HCl chemical treatments on device-grade TlBr and describe the changes in the composition and electronic structure of the surface. Composition analysis and depth profiles obtained from secondary ion mass spectrometry (SIMS) identify the extent to which each HCl etch condition affects the detector surface region and forms of a graded TlBr/TlBr 1-xCL xmore » surface heterojunction. Using a combination of X-ray photoemission spectroscopy (XPS) and hybrid density functional calculations, we are able to determine the valence band offsets, band gaps, and conduction band offsets as a function of Cl content over the entire composition range of TIBr 1-xC1 X. This study establishes a strong correlation between device process conditions, surface chemistry, and electronic structure with the goal of further optimizing the long-term stability and radiation response of TlBr-based detectors.« less
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less
Design and implementation of the next generation Landsat satellite communications system
Mah, Grant R.; O'Brien, Michael; Garon, Howard; Mott, Claire; Ames, Alan; Dearth, Ken
2012-01-01
The next generation Landsat satellite, Landsat 8 (L8), also known as the Landsat Data Continuity Mission (LDCM), uses a highly spectrally efficient modulation and data formatting approach to provide large amounts of downlink (D/L) bandwidth in a limited X-Band spectrum allocation. In addition to purely data throughput and bandwidth considerations, there were a number of additional constraints based on operational considerations for prevention of interference with the NASA Deep-Space Network (DSN) band just above the L8 D/L band, minimization of jitter contributions to prevent impacts to instrument performance, and the need to provide an interface to the Landsat International Cooperator (IC) community. A series of trade studies were conducted to consider either X- or Ka-Band, modulation type, and antenna coverage type, prior to the release of the request for proposal (RFP) for the spacecraft. Through use of the spectrally efficient rate-7/8 Low-Density Parity-Check error-correction coding and novel filtering, an XBand frequency plan was developed that balances all the constraints and considerations, while providing world-class link performance, fitting 384 Mbits/sec of data into the 375 MHz X-Band allocation with bit-error rates better than 10-12 using an earth-coverage antenna.
k - dependent Jeff=1/2 band splitting and the electron-hole asymmetry in SrIrO3
NASA Astrophysics Data System (ADS)
Singh, Vijeta; Pulikkotil, J. J.
2017-02-01
The Ir ion in Srn+1 IrnO 3 n + 1 series of compounds is octahedrally coordinated. However, unlike Sr2IrO4 (n=1) and Sr3Ir2O7 (n=2) which are insulating due to spin-orbit induced Jeff splitting of the t2g bands, SrIrO3 (n= ∞) is conducting. To explore whether such a splitting is relevant in SrIrO3, and if so to what extent, we investigate the electronic structure of orthorhombic SrIrO3 using density functional theory. Calculations reveal that the crystal field split Ir t2 g bands in SrIrO3 are indeed split into Jeff=3/2 and and Jeff=1/2 states. However, the splitting is found to be strongly k - dependent with its magnitude determined by the Ir - O orbital hybridization. Besides, we find that the spin-orbit induced pseudo-gap, into which the Fermi energy is positioned, is composed of both light electron-like and heavy hole-like bands. These features in the band structure of SrIrO3 suggest that variations in the carrier concentration control the electronic transport properties in SrIrO3, which is consistent with the experiments.
Determination of band alignment at two-dimensional MoS2/Si van der Waals heterojunction
NASA Astrophysics Data System (ADS)
Goel, Neeraj; Kumar, Rahul; Mishra, Monu; Gupta, Govind; Kumar, Mahesh
2018-06-01
To understand the different mechanism occurring at the MoS2-silicon interface, we have fabricated a MoS2/Si heterojunction by exfoliating MoS2 on top of the silicon substrate. Raman spectroscopy and atomic force microscopy (AFM) measurement expose the signature of few-layers in the deposited MoS2 flake. Herein, the temperature dependence of the energy barrier and carrier density at the MoS2/Si heterojunction has been extensively investigated. Furthermore, to study band alignment at the MoS2/Si interface, we have calculated a valence band offset of 0.66 ± 0.17 eV and a conduction band offset of 0.42 ± 0.17 eV using X-ray and Ultraviolet photoelectron spectroscopy. We determined a type-II band alignment at the interface which is very conducive for the transport of photoexcited carriers. As a proof-of-concept application, we extend our analysis of the photovoltaic behavior of the MoS2/Si heterojunction. This work provides not only a comparative study between MoS2/p-Si and MoS2/n-Si heterojunctions but also paves the way to engineer the properties of the interface for the future integration of MoS2 with silicon.
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
NASA Astrophysics Data System (ADS)
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
2017-10-01
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. Here we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling, and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Li Bin; Ye, Lingyun; Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn
2015-12-21
The electronic structure and thermoelectric properties of MTl{sub 9}Te{sub 6} (M = Bi, Sb) were studied using density functional theory and the semiclassical Boltzmann theory. It is found that the band gaps of BiTl{sub 9}Te{sub 6} and SbTl{sub 9}Te{sub 6} are equal to 0.59 eV and 0.72 eV, respectively. The relative large band gap and strong coupling between Sb s and Te p are helpful to the thermoelectric properties of SbTl{sub 9}Te{sub 6}. Near the bottom of the conduction bands, the number of band valleys of SbTl{sub 9}Te{sub 6} is four and is larger than that of BiTl{sub 9}Te{sub 6} (two band valleys),more » which will increase its Seebeck coefficient. Although BiTl{sub 9}Te{sub 6} has a larger electrical conductivity relative to relaxation time (σ/τ) along the z-direction than that of SbTl{sub 9}Te{sub 6}, the results show that the transport properties of SbTl{sub 9}Te{sub 6} are better than those of BiTl{sub 9}Te{sub 6} possibly due to its large Seebeck coefficient. The maximum value of power factor relative to relaxation time (S{sup 2}σ/τ) for SbTl{sub 9}Te{sub 6} reaches 4.30 × 10{sup 11 }W/K{sup 2} m s at 900 K, that is, originated from its relatively large Seebeck coefficient, suggesting its promising thermoelectric performance at high temperature.« less
Silva, F W N; Costa, A L M T; Liu, Lei; Barros, E B
2016-11-04
The effects of edge vacancies on the electron transport properties of zigzag MoS2/WSe2 nanoribbons are studied using a density functional theory (DFT)-based tight-binding model with a sp(3)d(5) basis set for the electronic structure calculation and applying the Landauer-Büttiker approach for the electronic transport. Our results show that the presence of a single edge vacancy, with a missing MoS2/WSe2 triplet, is enough to suppress the conductance of the system by almost one half for most energies around the Fermi level. Furthermore, the presence of other single defects along the same edge has little effect on the overall conductance, indicating that the conductance of that particular edge has been strongly suppressed by the first defect. The presence of another defect on the opposite edge further suppresses the quantum conductance, independently of the relative position between the two defects in opposite edges. The introduction of other defects cause the suppression to be energy dependent, leading to conductance peaks which depend on the geometry of the edges. The strong conductance dependence on the presence of edge defects is corroborated by DFT calculations using SIESTA, which show that the electronic bands near the Fermi energy are strongly localized at the edge.
Validity criteria for Fermi's golden rule scattering rates applied to metallic nanowires.
Moors, Kristof; Sorée, Bart; Magnus, Wim
2016-09-14
Fermi's golden rule underpins the investigation of mobile carriers propagating through various solids, being a standard tool to calculate their scattering rates. As such, it provides a perturbative estimate under the implicit assumption that the effect of the interaction Hamiltonian which causes the scattering events is sufficiently small. To check the validity of this assumption, we present a general framework to derive simple validity criteria in order to assess whether the scattering rates can be trusted for the system under consideration, given its statistical properties such as average size, electron density, impurity density et cetera. We derive concrete validity criteria for metallic nanowires with conduction electrons populating a single parabolic band subjected to different elastic scattering mechanisms: impurities, grain boundaries and surface roughness.
Effective g-factors of carriers in inverted InAs/GaSb bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Xiaoyang; Collaborative Innovation Center of Quantum Matter, Beijing 100871; Sullivan, Gerard
2016-01-04
We perform tilt-field transport experiment on inverted InAs/GaSb, which hosts quantum spin Hall insulator. By means of coincidence method, Landau level (LL) spectra of electron and hole carriers are systematically studied at different carrier densities tuned by gate voltages. When Fermi level stays in the conduction band, we observe LL crossing and anti-crossing behaviors at odd and even filling factors, respectively, with a corresponding g-factor of 11.5. It remains nearly constant for varying filling factors and electron densities. On the contrary, for GaSb holes, only a small Zeeman splitting is observed even at large tilt angles, indicating a g-factor ofmore » less than 3.« less
Copper interstitial recombination centers in Cu3N
NASA Astrophysics Data System (ADS)
Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam; Hanifi, David; Salleo, Alberto; Magyari-Köpe, Blanka; Nishi, Yoshio; Bent, Stacey F.; Clemens, Bruce M.
2018-06-01
We present a comprehensive study of the earth-abundant semiconductor Cu3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies VCu have shallow defect levels while copper interstitials Cui behave as deep potential wells in the conduction band, which mediate Shockley-Read-Hall recombination. The existence of Cui defects has been experimentally verified using photothermal deflection spectroscopy. A Cu3N /ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. The absence of photocurrent can be explained by a large concentration of Cui recombination centers capturing electrons in p -type Cu3N .
Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek
By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.
Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr
NASA Astrophysics Data System (ADS)
Tablero, C.
2010-11-01
There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.
NASA Astrophysics Data System (ADS)
Ito, S.; Feng, B.; Arita, M.; Someya, T.; Chen, W.-C.; Takayama, A.; Iimori, T.; Namatame, H.; Taniguchi, M.; Cheng, C.-M.; Tang, S.-J.; Komori, F.; Matsuda, I.
2018-04-01
Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal atoms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.
NASA Astrophysics Data System (ADS)
Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho
2014-01-01
A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.
A Density Functional Theory Study of New Boron Nanotubes
NASA Astrophysics Data System (ADS)
Chen, Zhao-Hua; Xie, Zun
2017-11-01
Using first-principles calculations, a series of new boron nanotubes (BNTs), which show various electronic properties, were theoretically predicted. Stable nanotubes with various chiral vectors and diameters can be formed by rolling up the boron sheet with relative stability [H. Tang and S. I. Beigi, Phys. Rev. B 82, 115412 (2010).]. By increasing the diameter for BNT, the stability is enhanced. The calculated density of states and band structures demonstrate that all the predicted BNTs are metallic, regardless of their diameter and chirality. The multicentre chemical bonds of the relatively stable boron sheet and BNTs are analysed using the deformation electron density. Within our study, the BNTs all have metallic conductive characteristics, in addition to having a low effective quality and high carrier concentration, which are very good nanoconductive material properties and could be combined to form high-power electrodes for lithium-ion batteries such as those used in many modern electronics.
NASA Astrophysics Data System (ADS)
Sugiura, M.; Seika, M.
1994-02-01
In this study, a new technique to measure the density of slip-bands automatically is developed, namely, a TV image of the slip-bands observed through a microscope is directly processed by an image-processing system using a personal computer and an accurate value of the density of slip-bands is measured quickly. In the case of measuring the local stresses in machine parts of large size with the copper plating foil, the direct observation of slip-bands through an optical microscope is difficult. In this study, to facilitate a technique close to the direct microscopic observation of slip-bands in the foil attached to a large-sized specimen, the replica method using a platic film of acetyl cellulose is applied to replicate the slip-bands in the attached foil.
Shockley-Read-Hall recombination in pre-filled and photo-filled intermediate band solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayani, Maryam Gholami; Reenaas, Turid Worren, E-mail: turid.reenaas@ntnu.no
2014-08-18
In this work, we study how Shockley-Read-Hall (SRH) recombination via energy levels in the bandgap, caused by defects or impurities, affects the performance of both photo-filled and pre-filled intermediate band solar cells (IBSCs). For a pre-filled cell, the IB is half-filled in equilibrium, while it is empty for the photo-filled cell in equilibrium. The energy level, density, and capture cross-sections of the defects/impurities are varied systematically. We find that the photo-filled cells are, in general, less efficient than pre-filled cells, except when the defect level is between the conduction band and the IB. In that case, for a range ofmore » light intensities, the photo-filled cell performs better than the pre-filled. When the defect level is at the same energy as the IB, the efficiency is above 82% of the defect-free case, when less than 50% of the states at the IB lead to SRH recombination. This shows that even if SRH recombination via the IB takes place, high efficiencies can be achieved. We also show that band gap optimization can be used to reduce the SRH recombination.« less
Prediction of direct band gap silicon superlattices with dipole-allowed optical transition
NASA Astrophysics Data System (ADS)
Kim, Sunghyun; Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Chang, K. J.
While cubic diamond silicon (c-Si) is an important element in electronic devices, it has poor optical properties owing to its indirect gap nature, thereby limiting its applications to optoelectronic devices. Here, we report Si superlattice structures which are computationally designed to possess direct band gaps and excellent optical properties. The computational approach adopts density functional calculations and conformational space annealing for global optimization. The Si superlattices, which consist of alternating stacks of Si(111) layers and a defective layer with Seiwatz chains, have either direct or quasi-direct band gaps depending on the details of attacking layers. The photovoltaic efficiencies are calculated by solving Bethe-Salpeter equation together with quasiparticle G0W0 calculations. The strong direct optical transition is attributed to the overlap of the valence and conduction band edge states in the interface region. Our Si superlattices exhibit high thermal stability, with the energies lower by an order of magnitude than those of the previously reported Si allotropes. We discuss a possible route to the synthesis of the superlattices through wafer bonding. This work is supported by Samsung Science and Technology Foundation under Grant No. SSTF-BA1401-08.
Pair Formation of Hard Core Bosons in Flat Band Systems
NASA Astrophysics Data System (ADS)
Mielke, Andreas
2018-05-01
Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rougieux, F. E.; Macdonald, D.
2014-03-24
The state of bistable defects in crystalline silicon such as iron-boron pairs or the boron-oxygen defect can be changed at room temperature. In this letter, we experimentally demonstrate that the chemical state of a group of defects can be changed to represent a bit of information. The state can then be read without direct contact via the intensity of the emitted band-band photoluminescence signal of the group of defects, via their impact on the carrier lifetime. The theoretical limit of the information density is then computed. The information density is shown to be low for two-dimensional storage but significant formore » three-dimensional data storage. Finally, we compute the maximum storage capacity as a function of the lower limit of the photoluminescence detector sensitivity.« less
K1.33Mn8O16 as an electrocatalyst and a cathode
NASA Astrophysics Data System (ADS)
Jalili, Seifollah; Moharramzadeh Goliaei, Elham; Schofield, Jeremy
2017-02-01
Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K1.33Mn8O16 materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K1.33Mn8O16 that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn4+ ions to Mn3+, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-band center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K1.33Mn8O16 structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of 1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K1.33Mn8O16 nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries.
NASA Astrophysics Data System (ADS)
Singh, Shashi B.; Wang, Yu-Fu; Shao, Yu-Cheng; Lai, Hsuan-Yu; Hsieh, Shang-Hsien; Limaye, Mukta V.; Chuang, Chen-Hao; Hsueh, Hung-Chung; Wang, Hsaiotsu; Chiou, Jau-Wern; Tsai, Hung-Ming; Pao, Chih-Wen; Chen, Chia-Hao; Lin, Hong-Ji; Lee, Jyh-Fu; Wu, Chun-Te; Wu, Jih-Jen; Pong, Way-Faung; Ohigashi, Takuji; Kosugi, Nobuhiro; Wang, Jian; Zhou, Jigang; Regier, Tom; Sham, Tsun-Kong
2014-07-01
Efforts have been made to elucidate the origin of d0 magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO.Efforts have been made to elucidate the origin of d0 magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO. Electronic supplementary information (ESI) available: Scanning photoelectron microscopy (SPEM) results of ZnO NCs and NWs. Computational details and calculated total and partial density of states (PDOS) of bulk wurtzite ZnO with oxygen anion vacancies (VO). See DOI: 10.1039/c4nr01961j
Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Byungki, E-mail: byungkiryu@keri.re.kr; Lee, Jae Ki; Lee, Ji Eun
Density functional calculations have been performed to investigate the role of Ag defects in PbTe thermoelectric materials. Ag-defects can be either donor, acceptor, or isovalent neutral defect. When Ag is heavily doped in PbTe, the neutral (Ag-Ag) dimer defect at Pb-site is formed and the environment changes to the Pb-rich/Te-poor condition. Under Pb-rich condition, the ionized Ag-interstitial defect (Ag{sub I}{sup +}) becomes the major donor. The formation energy of Ag{sub I}{sup +} is smaller than other native and Ag-related defects. Also it is found that Ag{sub I}{sup +} is an effective dopant. There is no additional impurity state near themore » band gap and the conduction band minimum. The charge state of Ag{sub I}{sup +} defect is maintained even when the Fermi level is located above the conduction band minimum. The diffusion constant of Ag{sub I}{sup +} is calculated based on the temperature dependent Fermi level, formation energy, and migration energy. When T > 550 K, the diffusion length of Ag within a few minutes is comparable to the grain size of the polycrystalline PbTe, implying that Ag is dissolved into PbTe and this donor defect is distributed over the whole lattice in Ag-excess doped polycrystalline PbTe. The predicted solubility of Ag{sub I}{sup +} well explains the increased electron carrier concentration and electrical conductivity reported in Ag-excess doped polycrystalline PbTe at T = 450–750 K [Pei et al., Adv. Energy Mater. 1, 291 (2011)]. In addition, we suggest that this abnormal doping behavior is also found for Au-doped PbTe.« less
NASA Astrophysics Data System (ADS)
Gaul, Christopher; Hutsch, Sebastian; Schwarze, Martin; Schellhammer, Karl Sebastian; Bussolotti, Fabio; Kera, Satoshi; Cuniberti, Gianaurelio; Leo, Karl; Ortmann, Frank
2018-05-01
Doping plays a crucial role in semiconductor physics, with n-doping being controlled by the ionization energy of the impurity relative to the conduction band edge. In organic semiconductors, efficient doping is dominated by various effects that are currently not well understood. Here, we simulate and experimentally measure, with direct and inverse photoemission spectroscopy, the density of states and the Fermi level position of the prototypical materials C60 and zinc phthalocyanine n-doped with highly efficient benzimidazoline radicals (2-Cyc-DMBI). We study the role of doping-induced gap states, and, in particular, of the difference Δ1 between the electron affinity of the undoped material and the ionization potential of its doped counterpart. We show that this parameter is critical for the generation of free carriers and influences the conductivity of the doped films. Tuning of Δ1 may provide alternative strategies to optimize the electronic properties of organic semiconductors.
Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy
NASA Astrophysics Data System (ADS)
Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun
2017-05-01
Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.
Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy.
Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun
2017-01-01
Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.
Origins of Persistent Photoconductivity in GaAsN Alloys
NASA Astrophysics Data System (ADS)
Field, R. L., III; Wang, Y. Q.; Kurdak, C.; Goldman, R. S.
2013-03-01
In GaAs1-xNx alloys, we observe significant persistent photoconductivity (PPC) at cryogenic temperatures for x > 0.006, with the PPC strength increasing with increasing x and decreasing upon rapid-thermal annealing (RTA). Since the RTA-induced suppression is accompanied by a reduction of the interstitial N fraction, the N-induced donor state is likely associated with N pairs. PPC is attributed to the promotion of carriers from a ground N-pair state to the conduction band edge, inducing modifications in the N-pair molecular bond configuration. When illumination is terminated, an energy barrier hinders the return of carriers to the N-pair induced complex. With the addition of thermal energy, the original N-pair configuration is restored and the N-pair induced complex is then able to accept carriers. We use PPC at cryogenic temperatures to go through a metal-insulator transition in GaAsN by increasing the carrier density with illumination. For different illumination durations we determine the minimum metallic conductivity, giving us the critical carrier density, nc, at the transition point. We then determine the effective mass, m * , using the Mott criterion nc1 / 3 aH = 0.26 where aH = (4 πɛ h2) /(e2 m *) is the Bohr radius. We use PPC to induce a metal-insulator transition in GaAsN. We will discuss the effective mass as a function of N concentration and compare to the predictions of the band anticrossing model.
NASA Astrophysics Data System (ADS)
Zheng, Peng; Zhang, Rui-zhi; Chen, Hao-ying; Hao, Wen-tao
2014-06-01
The Seebeck coefficient and electrical conductivity of CaCu3Ti4O12 (CCTO) ceramics were measured and analyzed in the high temperature range of 300°C to 800°C, and then the electrical conduction mechanism was investigated by using a combination of experimental data fitting and first-principles calculations. The Seebeck coefficient of the CCTO ceramic sintered at 1050°C is negative with largest absolute value of ˜650 μV/K at 300°C, and the electrical conductivity is 2-3 orders greater than the value reported previously by other researchers. With increasing sintering temperature, the Seebeck coefficient decreases while the electrical conductivity increases. The temperature dependence of the electrical conductivity follows the rule of adiabatic hopping conduction of small polarons. The calculated density of states of CCTO indicates that the conduction band is mainly contributed by the antibonding states of Cu 3 d electrons, therefore small-polaron hopping between CuO4 square planar clusters was proposed. Possible ways to further improve the thermoelectric properties of CCTO are also discussed.
NASA Astrophysics Data System (ADS)
Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias
2017-12-01
We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.
NASA Astrophysics Data System (ADS)
AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A.
2018-06-01
This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.
Hydrogen density of states and defects densities in a-Si:H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deane, S.C.; Powell, M.J.; Robertson, J.
1996-12-31
The properties of hydrogenated amorphous silicon (a-Si:H) and its devices depend fundamentally on the density of states (DOS) in the gap due to dangling bonds. It is generally believed that the density of dangling bonds is controlled by a chemical equilibrium with the weak Si-Si bonds which form the localized valence band tail states. Further details are given of a unified model of the hydrogen density of states and defect pool of a-Si:H. The model is compared to other defect models and extended to describe a-Si alloys and the creation of valence band tail states during growth.
ERIC Educational Resources Information Center
Silvey, Brian A.; Koerner, Bryan D.
2016-01-01
We investigated the effects of expressive and unexpressive conducting on secondary school band members' and experts' audio evaluations of band performance expressivity. A conductor, who demonstrated either expressive or unexpressive conducting techniques, led both an eighth-grade and a high school band in four separate "run-throughs" of…
Chambel, João; Severiano, Vera; Baptista, Teresa; Mendes, Susana; Pedrosa, Rui
2015-01-01
The aim of this study was to evaluate the influence of stocking density (0.5, 1, 2 and 3 fishL(-1)) and commercial marine fish diets (diet A, B, C and D) over four months on specific growth rate, condition factor, percentage without anomalous pigmentation (partial or total lack of white bands -miss-band) and survival of juvenile Amphiprion percula. Results showed that at 0.5 fishL(-1) densities induced the best survival (100%) and also the maximum percentage of fish without miss-band (58.33 +/-4.417%). The maximum SGR was obtained for the 0.5 fishL(-1) (0.459 ± 0.023% cm/day). However, the best condition factor (2.53 +/- 0.27) was achieved for 2 fishL(-1) densities. There were no significant differences in survival (68.9 to 84.5%), fish without miss-bands (18.03 to 26.92%) and condition factor (1.92 to 2.1) among diets during the experimental period. On the other hand, diet C (with 41% crude protein) supported the best SGR (0.485 ± 0.001% cmday(-1)). The results suggested that stocking density are critical and more relevant when compared with the different diet tested, namely on specific growth rate, condition factor, the miss-band and survival of juvenile percula clownfish. This study has particular significance with regards to anemonefishes husbandry in terms of survival and production efficiency.
Effect of traps on the charge transport in semiconducting polymer PCDTBT
NASA Astrophysics Data System (ADS)
Khan, Mohd Taukeer; Agrawal, Vikash; Almohammedi, Abdullah; Gupta, Vinay
2018-07-01
Organic semiconductors (OSCs) are nowadays called upon as promising candidates for next generation electronics devices. Due to disorder structure of these materials, a high density of traps are present in their energy band gap which affect the performance of these devices. In the present manuscript, we have investigated the role of traps on charge transport in PCDTBT thin film by measuring the temperature dependent J(V) characteristics in hole only device configuration. The obtained results were analyzed by space charge limited (SCL) conduction model. It has been found that the room temperature J(V) characteristics follow Mott-Gurney square law for trap-free SCL conduction. But below 278 K, the current increases according to trap-filling SCL law with traps distributed exponentially in the band gap of semiconductor. Furthermore, after reaching a crossover voltage of VC ∽ 12 V, all the traps filled by injected carriers and the trap-filling SCL current switch to trap-free SCL current. The hole mobility of trap-free SCL current is about one order higher as compared trap-filling SCL current and remains constant with temperature.
Study of Cs/NF3 adsorption on GaN (0 0 1) surface
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike
2017-03-01
To investigate the optoelectronics properties of Cs/NF3 adsorption on GaN (0 0 1) photocathode surface, different adsorption models of Cs-only, Cs/O, Cs/NF3 adsorption on GaN clean surface were established, respectively. Atomic structures, work function, adsorption energy, E-Mulliken charge distribution, density of states and optical properties of all these adsorption systems were calculated using first principles. Compared with Cs/O co-adsorption, Cs/NF3 co-adsorption show better stability and more decline of work function, which is more beneficial for photoemission efficiency. Besides, surface band structures of Cs/NF3 co-adsorption system exhibit metal properties, implying good conductivity. Meanwhile, near valence band minimum of Cs/NF3 co-adsorption system, more acceptor levels emerges to form a p-type emission surface, which is conductive to the escape of photoelectrons. In addition, imaginary part of dielectric function curve and absorption curve of Cs/NF3 co-adsorption system both move towards lower energy side. This work can direct the optimization of activation process of NEA GaN photocathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ünal, Hatice; Mete, Ersen, E-mail: emete@balikesir.edu.tr; Gunceler, Deniz
The adsorption of two different organic molecules cyanidin glucoside (C{sub 21}O{sub 11}H{sub 20}) and TA-St-CA on anatase (101) and (001) nanowires has been investigated using the standard and the range separated hybrid density functional theory calculations. The electronic structures and optical spectra of resulting dye–nanowire combined systems show distinct features for these types of photochromophores. The lowest unoccupied molecular orbital of the natural dye cyanidin glucoside is located below the conduction band of the semiconductor while, in the case of TA-St-CA, it resonates with the states inside the conduction band. The wide-bandgap anatase nanowires can be functionalized for solar cellsmore » through electron-hole generation and subsequent charge injection by these dye sensitizers. The intermolecular charge transfer character of Donor-π-Acceptor type dye TA-St-CA is substantially modified by its adsorption on TiO{sub 2} surfaces. Cyanidin glucoside exhibits relatively stronger anchoring on the nanowires through its hydroxyl groups. The atomic structures of dye–nanowire systems re-optimized with the inclusion of nonlinear solvation effects showed that the binding strengths of both dyes remain moderate even in ionic solutions.« less
Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors
NASA Astrophysics Data System (ADS)
Shah, Syed Hatim; Khan, Shah Haider; Laref, A.; Murtaza, G.
2018-02-01
Half-Heusler compounds LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) are comprehensively investigated using state of the art full potential linearized augmented plane wave (FP-LAPW) method. Stable geometry of the compounds obtained through energy minimization procedure. Lattice constant increased while bulk modulus decreased in replacing the ions of size increasing from top to bottom of the periodic table. Band structure calculations show LiInGe and LiInSn as direct bandgap while LiAlSi, LiInGe and LiGaSn indirect bandgap semiconductors. Density of states demonstrates mixed s, p, d states of cations and anions in the valence and conduction bands. These compounds have mixed ionic and covalent bonding. Compounds show dominant optical response in the visible and low frequency ultraviolet energy region. The transport properties of the compounds are described in terms of Seebeck coefficient, electrical and thermal conductivities. The calculated figure of merit of LiAlSi is in good agreement with the recent experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junay, A.; Guézo, S., E-mail: sophie.guezo@univ-rennes1.fr; Turban, P.
We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buriedmore » interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos
2016-11-01
We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources weremore » detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).« less
NASA Astrophysics Data System (ADS)
Jiang, Xuefan; Guo, G. Y.
2004-04-01
The electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite, the iron-rich end member of the olivine-type silicate, one of the most abundant minerals in Earth’s upper mantle, have been studied by density-functional theory within the generalized gradient approximation (GGA) with the on-site Coulomb energy U=4.5 eV taken into account (GGA+U). The stable insulating antiferromagnetic solution with an energy gap ˜1.49 eV and a spin magnetic moment of 3.65μB and an orbital magnetic moment of 0.044μB per iron atom is obtained. It is found that the gap opening in this fayalite results mainly from the strong on-site Coulomb interaction on the iron atoms. In this band structure, the top of valence bands consists mainly of the 3d orbitals of Fe2 atoms, and the bottom of the conduction bands is mainly composed of the 3d orbitals of Fe1 atoms. Therefore, since the electronic transition from the Fe2 3d to Fe1 3d states is weak, significant electronic transitions would appear only about 1 eV above the absorption edge when Fe-O orbitals are involved in the final states. In addition, our band-structure calculations can explain the observed phenomena including redshift near the absorption edge and the decrease of the electrical resistivity of Fe2SiO4 upon compression. The calculated Fe p partial density of states agree well with Fe K-edge x-ray absorption spectrum. The calculated lattice constants and atomic coordinates for Fe2SiO4 fayalite in orthorhombic structure are in good agreement with experiments.
Theoretical Investigations of Si-Ge Alloys in P42/ncm Phase: First-Principles Calculations
Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Yan, Fang
2017-01-01
The structural, mechanical, anisotropic, electronic and thermal properties of Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are investigated in this work. The calculations have been performed with an ultra-soft pseudopotential by using the generalized gradient approximation and local density approximation in the framework of density functional theory. The achieved results for the lattice constants and band gaps of P42/ncm-Si and P42/ncm-Ge in this research have good accordance with other results. The calculated elastic constants and elastic moduli of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are better than that of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/mnm phase. The Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit varying degrees of mechanical anisotropic properties in Poisson’s ratio, shear modulus, Young’s modulus, and universal anisotropic index. The band structures of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase show that they are all indirect band gap semiconductors with band gap of 1.46 eV, 1.25 eV, 1.36 eV and 1.00 eV, respectively. In addition, we also found that the minimum thermal conductivity κmin of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit different degrees of anisotropic properties in (001), (010), (100) and (01¯0) planes. PMID:28772964
NASA Astrophysics Data System (ADS)
Rahman, Altaf Ur; Rahman, Gul; Kratzer, Peter
2018-05-01
The structural, electronic, and magnetic properties of two-dimensional (2D) GaS are investigated using density functional theory (DFT). After confirming that the pristine 2D GaS is a non-magnetic, indirect band gap semiconductor, we consider N and F as substitutional dopants or adsorbed atoms. Except for N substituting for Ga (NGa), all considered cases are found to possess a magnetic moment. Fluorine, both in its atomic and molecular form, undergoes a highly exothermic reaction with GaS. Its site preference (FS or FGa) as substitutional dopant depends on Ga-rich or S-rich conditions. Both for FGa and F adsorption at the Ga site, a strong F–Ga bond is formed, resulting in broken bonds within the GaS monolayer. As a result, FGa induces p-type conductivity in GaS, whereas FS induces a dispersive, partly occupied impurity band about 0.5 e below the conduction band edge of GaS. Substitutional doping with N at both the S and the Ga site is exothermic when using N atoms, whereas only the more favourable site under the prevailing conditions can be accessed by the less reactive N2 molecules. While NGa induces a deep level occupied by one electron at 0.5 eV above the valence band, non-magnetic NS impurities in sufficiently high concentrations modify the band structure such that a direct transition between N-induced states becomes possible. This effect can be exploited to render monolayer GaS a direct-band gap semiconductor for optoelectronic applications. Moreover, functionalization by N or F adsorption on GaS leads to in-gap states with characteristic transition energies that can be used to tune light absorption and emission. These results suggest that GaS is a good candidate for design and construction of 2D optoelectronic and spintronics devices.
Ur Rahman, Altaf; Rahman, Gul; Kratzer, Peter
2018-05-16
The structural, electronic, and magnetic properties of two-dimensional (2D) GaS are investigated using density functional theory (DFT). After confirming that the pristine 2D GaS is a non-magnetic, indirect band gap semiconductor, we consider N and F as substitutional dopants or adsorbed atoms. Except for N substituting for Ga (N Ga ), all considered cases are found to possess a magnetic moment. Fluorine, both in its atomic and molecular form, undergoes a highly exothermic reaction with GaS. Its site preference (F S or F Ga ) as substitutional dopant depends on Ga-rich or S-rich conditions. Both for F Ga and F adsorption at the Ga site, a strong F-Ga bond is formed, resulting in broken bonds within the GaS monolayer. As a result, F Ga induces p-type conductivity in GaS, whereas F S induces a dispersive, partly occupied impurity band about 0.5 e below the conduction band edge of GaS. Substitutional doping with N at both the S and the Ga site is exothermic when using N atoms, whereas only the more favourable site under the prevailing conditions can be accessed by the less reactive N 2 molecules. While N Ga induces a deep level occupied by one electron at 0.5 eV above the valence band, non-magnetic N S impurities in sufficiently high concentrations modify the band structure such that a direct transition between N-induced states becomes possible. This effect can be exploited to render monolayer GaS a direct-band gap semiconductor for optoelectronic applications. Moreover, functionalization by N or F adsorption on GaS leads to in-gap states with characteristic transition energies that can be used to tune light absorption and emission. These results suggest that GaS is a good candidate for design and construction of 2D optoelectronic and spintronics devices.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1977-01-01
Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.
A first principles study of the electronic structure, elastic and thermal properties of UB2
NASA Astrophysics Data System (ADS)
Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.
2017-07-01
Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.
NASA Astrophysics Data System (ADS)
Yamamoto, Takahiro; Fukuyama, Hidetoshi
2018-02-01
We have theoretically investigated the thermoelectric properties of impurity-doped one-dimensional semiconductors, focusing on nitrogen-substituted (N-substituted) carbon nanotubes (CNTs), using the Kubo formula combined with a self-consistent t-matrix approximation. N-substituted CNTs exhibit extremely high thermoelectric power factor (PF) values originating from a characteristic of one-dimensional materials where decrease in the carrier density increase both the electrical conductivity and the Seebeck coefficient in the low-N regime. The chemical potential dependence of the PF values of semiconducting CNTs has also been studied as a field-effect transistor and it turns out that the PF values show a noticeable maximum in the vicinity of the band edges. This result demonstrates that "band-edge engineering" will be crucial for solid development of high-performance thermoelectric materials.
NASA Astrophysics Data System (ADS)
Zeng, Ke; Singisetti, Uttam
2017-09-01
The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.
NASA Astrophysics Data System (ADS)
Tresca, C.; Brun, C.; Bilgeri, T.; Menard, G.; Cherkez, V.; Federicci, R.; Longo, D.; Debontridder, F.; D'angelo, M.; Roditchev, D.; Profeta, G.; Calandra, M.; Cren, T.
2018-05-01
We investigate the 1 /3 monolayer α -Pb /Si (111 ) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature √{3 }×√{3 } and low-temperature 3 ×3 reconstructions and show that, in both phases, the spin-orbit interaction leads to an energy splitting as large as 25% of the valence-band bandwidth. Relativistic effects, electronic correlations, and Pb-substrate interaction cooperate to stabilize a correlated low-temperature paramagnetic phase with well-developed lower and upper Hubbard bands coexisting with 3 ×3 periodicity. By comparing the Fourier transform of STS conductance maps at the Fermi level with calculated quasiparticle interference from nonmagnetic impurities, we demonstrate the occurrence of two large hexagonal Fermi sheets with in-plane spin polarizations and opposite helicities.
2014-01-01
Nickel vapor-deposited on the SrTiO3(110) surface was studied using scanning tunneling microscopy, photoemission spectroscopy (PES), and density functional theory calculations. This surface forms a (4 × 1) reconstruction, composed of a 2-D titania structure with periodic six- and ten-membered nanopores. Anchored at these nanopores, Ni single adatoms are stabilized at room temperature. PES measurements show that the Ni adatoms create an in-gap state located at 1.9 eV below the conduction band minimum and induce an upward band bending. Both experimental and theoretical results suggest that Ni adatoms are positively charged. Our study produces well-dispersed single-adatom arrays on a well-characterized oxide support, providing a model system to investigate single-adatom catalytic and magnetic properties. PMID:25177410
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, C. A., E-mail: cstephe3@nd.edu; Stillwell, R. A.; Wistey, M. A.
Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge{sub 1−x}C{sub x} (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge{sub 0.998}C{sub 0.002} shows a bandgap reduction supporting these results. Growth of Ge{sub 0.998}C{sub 0.002} using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III–V materials due to a larger electronmore » population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhasker, H. P.; Dhar, S.; Thakur, Varun
2014-02-21
The transport and optical properties of wedge-shaped nanowall network of GaN grown spontaneously on cplane sapphire substrate by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) show interesting behavior. The electron mobility at room temperature in these samples is found to be orders of magnitude higher than that of a continuous film. Our study reveals a strong correlation between the mobility and the band gap in these nanowall network samples. However, it is seen that when the thickness of the tips of the walls increases to an extent such that more than 70% of the film area is covered, it behaves close tomore » a flat sample. In the sample with lower surface coverage (≈40% and ≈60%), it was observed that the conductivity, mobility as well as the band gap increase with the decrease in the average tip width of the walls. Photoluminescence (PL) experiments show a strong and broad band edge emission with a large (as high as ≈ 90 meV) blue shift, compared to that of a continuous film, suggesting a confinement of carriers on the top edges of the nanowalls. The PL peak width remains wide at all temperatures suggesting the existence of a high density of tail states at the band edge, which is further supported by the photoconductivity result. The high conductivity and mobility observed in these samples is believed to be due to a “dissipation less” transport of carriers, which are localized at the top edges (edge states) of the nanowalls.« less
The abnormal electrical and optical properties in Na and Ni codoped BiFeO{sub 3} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xunling; Liu, Weifang, E-mail: wfliu@tju.edu.cn, E-mail: shouyu.wang@yahoo.com; Zhang, Hong
2015-05-07
Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} (x = 0, 0.005, 0.01, 0.015) nanoparticles are prepared via a sol-gel method. Weak ferromagnetism and exchange bias phenomenon without field cooling are observed in the samples. The oxygen vacancy concentration and leakage current density are increased with increasing the Ni content. However, with the increase of Ni content, the band gap of Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} nanoparticles first decreases and then increases. To explain the abnormal phenomenon, the interplay of oxygen vacancy donor and hole acceptor is analyzed and a phenomenological qualitative model based on the electronic energy band is proposed. Additionally, themore » threshold switching behavior appears in Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} samples with x = 0.01, 0.015 and the effect is qualitatively explained by introducing a conducting channel model based on the high-density mobile charges.« less