NASA Astrophysics Data System (ADS)
Singh, Anil Kumar; Gupta, Anjan K.
2018-05-01
Evolution of electronic inhomogeneities with back-gate voltage in graphene on SiO2 was studied using room temperature scanning tunneling microscopy and spectroscopy. Reversal of contrast in some places in the conductance maps and sharp changes in cross correlations between topographic and conductance maps, when graphene Fermi energy approaches its Dirac point, are attributed to the change in charge state of interface defects. The spatial correlations in the conductance maps, described by two length scales, and their growth during approach to Dirac point, show a qualitative agreement with the predictions of the screening theory of graphene. Thus a sharp change in the two length scales close to the Dirac point, seen in our experiments, is interpreted in terms of the change in charge state of some of the interface defects. A systematic understanding and control of the charge state of defects can help in memory applications of graphene.
NASA Technical Reports Server (NTRS)
Goldfine, Neil; Zilberstei, Vladimir; Lawson, Ablode; Kinchen, David; Arbegast, William
2000-01-01
Al 2195-T8 plate specimens containing Friction Stir Welds (FSW), provided by Lockheed Martin, were inspected using directional conductivity measurements with the MWM sensor. Sensitivity to lack-of-penetration (LOP) defect size has been demonstrated. The feature used to determine defect size was the normalized longitudinal component of the MWM conductivity measurements. This directional conductivity component was insensitive to the presence of a discrete crack. This permitted correlation of MWM conductivity measurements with the LOP defect size as changes in conductivity were apparently associated with metallurgical features within the first 0.020 in. of the LOP defect zone. Transverse directional conductivity measurements also provided an indication of the presence of discrete cracks. Continued efforts are focussed on inspection of a larger set of welded panels and further refinement of LOP characterization tools.
Defect Genome of Cubic Perovskites for Fuel Cell Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.
Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less
Defect Genome of Cubic Perovskites for Fuel Cell Applications
Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...
2017-10-10
Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
Defect-Engineered Heat Transport in Graphene: A Route to High Efficient Thermal Rectification
Zhao, Weiwei; Wang, Yanlei; Wu, Zhangting; Wang, Wenhui; Bi, Kedong; Liang, Zheng; Yang, Juekuan; Chen, Yunfei; Xu, Zhiping; Ni, Zhenhua
2015-01-01
Low-dimensional materials such as graphene provide an ideal platform to probe the correlation between thermal transport and lattice defects, which could be engineered at the molecular level. In this work, we perform molecular dynamics simulations and non-contact optothermal Raman measurements to study this correlation. We find that oxygen plasma treatment could reduce the thermal conductivity of graphene significantly even at extremely low defect concentration (∼83% reduction for ∼0.1% defects), which could be attributed mainly to the creation of carbonyl pair defects. Other types of defects such as hydroxyl, epoxy groups and nano-holes demonstrate much weaker effects on the reduction where the sp2 nature of graphene is better preserved. With the capability of selectively functionalizing graphene, we propose an asymmetric junction between graphene and defective graphene with a high thermal rectification ratio of ∼46%, as demonstrated by our molecular dynamics simulation results. Our findings provide fundamental insights into the physics of thermal transport in defective graphene, and two-dimensional materials in general, which could help on the future design of functional applications such as optothermal and electrothermal devices. PMID:26132747
NASA Astrophysics Data System (ADS)
Rodriguez-Manzo, Julio Alejandro; Balan, Adrian; Nayor, Carl; Parkin, Will; Puster, Matthew; Johnson, A. T. Charlie; Drndic, Marija
2015-03-01
We present a study of the effects of the defects produced by electron irradiation on the electrical and crystalline properties of graphene and MoS2 monolayers. We realized back or side gated electrical devices from monolayer MoS2 or graphene crystals (triangles respectively hexagons) suspended on a 50nm SiNx m. The devices are exposed to electron irradiation inside a 200kV transmission electron microscope (TEM) and we perform in situ conductance measurements. The number of defects and the quality of the crystalline lattice obtained by diffraction are correlated with the observed decrease in mobility and conductivity of the devices. We observe a different behavior between MoS2 and graphene, and try to associate this with different models for conduction with defects. Finally, we use the TEM electron beam to tailor the macroscopic layers into ribbons to be used as the sensing element in MoS2 nanoribbon - nanopore devices for DNA detection and sequencing.
Defect Chemistry of Oxides for Energy Applications.
Schweke, Danielle; Mordehovitz, Yuval; Halabi, Mahdi; Shelly, Lee; Hayun, Shmuel
2018-05-31
Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO 2 ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO 2 and H 2 O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of impurities on the high temperature conductivity of SrTiO3
NASA Astrophysics Data System (ADS)
Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.
2018-01-01
In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.
NASA Technical Reports Server (NTRS)
Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)
2002-01-01
Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.
Novel wavelet threshold denoising method in axle press-fit zone ultrasonic detection
NASA Astrophysics Data System (ADS)
Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai
2017-02-01
Axles are important part of railway locomotives and vehicles. Periodic ultrasonic inspection of axles can effectively detect and monitor axle fatigue cracks. However, in the axle press-fit zone, the complex interface contact condition reduces the signal-noise ratio (SNR). Therefore, the probability of false positives and false negatives increases. In this work, a novel wavelet threshold function is created to remove noise and suppress press-fit interface echoes in axle ultrasonic defect detection. The novel wavelet threshold function with two variables is designed to ensure the precision of optimum searching process. Based on the positive correlation between the correlation coefficient and SNR and with the experiment phenomenon that the defect and the press-fit interface echo have different axle-circumferential correlation characteristics, a discrete optimum searching process for two undetermined variables in novel wavelet threshold function is conducted. The performance of the proposed method is assessed by comparing it with traditional threshold methods using real data. The statistic results of the amplitude and the peak SNR of defect echoes show that the proposed wavelet threshold denoising method not only maintains the amplitude of defect echoes but also has a higher peak SNR.
Influence of plasma conditions on the defect formation mechanism in amorphous hydrogenated silicon
NASA Astrophysics Data System (ADS)
Kounavis, P.; Mataras, D.; Spiliopoulos, N.; Mytilineou, E.; Rapakoulias, D.
1994-02-01
The variation of a-Si:H film quality, deposited by a rf glow discharge of pure silane, is examined as a function of the interelectrode distance for two different pressures. Constant photocurrent and modulated photocurrent methods are used to estimate the magnitude and the shape of the defect states in the valence band and the conduction band, respectively. An effort is made to correlate the film quality parameters and the defect formation with the plasma macroscopic and microscopic parameters. The results suggest that, at low interelectrode distances, high sticking coefficient radicals modify the film growth and the defect formation mechanisms, leading to the deterioration of the film quality. The conclusions drawn are compared with the predictions of recent theoretical models concerning the defect formation in a-Si:H.
NASA Astrophysics Data System (ADS)
Singh, Abhishek; Pandey, Tribhuwan
2014-03-01
The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.
NASA Astrophysics Data System (ADS)
Hassnain Jaffari, G.; Aftab, M.; Samad, Abdus; Mumtaz, Fiza; Awan, M. S.; Shah, S. Ismat
2018-01-01
Bi1-x Pb x FeO3 (0 ≤ x ≤ 0.3) has been characterized in detail with an aim to identify role of defect such as dopant, various vacancies, grain boundaries etc, and their effect on structural, optical and multiferroic properties. Structural analysis revealed that Pb substitution transforms the rhombohedral phase of BiFeO3 to the pseudocubic phase for x ≥ 0.15, consistently all vibrational Raman modes associated with the rhombohedral phase are found disappeared. Optical response revealed weakening of the d-d transitions with Pb addition indicating change in the Fe atoms environment consistent with the transition from non-centrosymmetric to the centrosymmetric structure. Transport and dielectric responses are explained in terms of hopping due to the presence of defects like oxygen vacancies and grain boundary conduction. In the high temperature regime, grain boundary conduction led to decrease in resistivity with the presence of a hump that is associated with hopping conduction. Extrinsic contributions in the transport properties correlate well with dielectric response. Magnetic and ferroelectric responses are also presented where role of oxygen vacancies defects has been clearly identified.
Optoelectronics and defect levels in hydroxyapatite by first-principles.
Avakyan, Leon A; Paramonova, Ekaterina V; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S; Bugaev, Lusegen A
2018-04-21
Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.
Optoelectronics and defect levels in hydroxyapatite by first-principles
NASA Astrophysics Data System (ADS)
Avakyan, Leon A.; Paramonova, Ekaterina V.; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S.; Bugaev, Lusegen A.
2018-04-01
Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.
Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.
2015-01-01
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.
2016-04-04
This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less
NASA Technical Reports Server (NTRS)
Becia, Piotr; Wiegel, Michaela E. K.
2004-01-01
A research carried out under Award Number NAG8-1487 was aimed at to the design, conduct and analysis of experiments directed at the identification and control of gravitational effects on crystal growth, segregation and defect formation in the Sillenite system: bismuth silicate (Bi(12)SiO(20)). Correlation analyses was conducted in order to establish the influence of gravity related defects introduced during crystal growth on critical, application specific properties. Achievement of the states objective was conducted during the period from Feb. 01, 1998 to Dec. 31, 2003 with the following anticipated milestones: 1. Establishment of capabilities for (a) reproducible Czochralski and Bridgman-type growth of BSO single crystals and (b) for comprehensive analysis of crystalline and chemical defects as well as for selective property characterization of grown crystals (year 1). 2. Design and execution of critical space growth experiment(s) based on analyses of prefatory space results (experiments aimed at establishing the viability of planned approaches and procedures) and on unresolved issues related to growth, segregation and defect formation associated with conventional growth in Bridgman geometries. Comparative analysis of growth under conventional and under mu-g conditions; identification of gravity related defect formation during conventional Bridgman growth and formulation of approaches for their control (years 2 and 3). Development of charge confinement system which permits growth interface demarcation (in a mu-g environment) as well as minimization of confinement related stress and contamination during growth; design of complementary mu-g growth experiments aimed at quantitative mu-g growth and segregation analyses (year 4). 3. Conduct of quantitative mu-g growth experiments directed at: (a) identification and control of gravity related crystalline and chemical defect formation during single crystal growth of Bi(12)SiO(20) and at (b) defect engineering -the development of approaches to the controlled generation during crystal growth of specified point defects in homogeneous distribution (year 5). The proposed research places focus on a class of materials which have outstanding electrical and optical properties but have so far failed to reach their potential, primarily because of our inability to control adequately their stoichiometry and crystal defect formation as well as confinement related contamination and lattice stress.
NASA Astrophysics Data System (ADS)
Li, Yi; Yin, Kang-Sheng; Zhang, Mei-Yun; Cheng, Long; Lu, Ke; Long, Shi-Bing; Zhou, Yaxiong; Wang, Zhuorui; Xue, Kan-Hao; Liu, Ming; Miao, Xiang-Shui
2017-11-01
Memristors are attracting considerable interest for their prospective applications in nonvolatile memory, neuromorphic computing, and in-memory computing. However, the nature of resistance switching is still under debate, and current fluctuation in memristors is one of the critical concerns for stable performance. In this work, random telegraph noise (RTN) as the indication of current instabilities in distinct resistance states of the Pt/Ti/HfO2/W memristor is thoroughly investigated. Standard two-level digital-like RTN, multilevel current instabilities with non-correlation/correlation defects, and irreversible current transitions are observed and analyzed. The dependence of RTN on the resistance and read bias reveals that the current fluctuation depends strongly on the morphology and evolution of the conductive filament composed of oxygen vacancies. Our results link the current fluctuation behaviors to the evolution of the conductive filament and will guide continuous optimization of memristive devices.
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang
2018-06-01
In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time-bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.
Lignin-Based Electrospun Nanofibers Reinforced with Cellulose Nanocrystals
Mariko Ago; Kunihiko Okajima; Joseph E. Jakes; Park Sunkyu; Orlando J. Rojas
2012-01-01
Lignin-based fibers were produced by electrospinning aqueous dispersions of lignin, poly(vinyl alcohol) (PVA), and cellulose nanocrystals (CNCs). Defect-free nanofibers with up to 90 wt % lignin and 15% CNCs were achieved. The properties of the aqueous dispersions, including viscosity, electrical conductivity, and surface tension, were examined and correlated to the...
The Correlation Between Dislocations and Vacancy Defects Using Positron Annihilation Spectroscopy
NASA Astrophysics Data System (ADS)
Pang, Jinbiao; Li, Hui; Zhou, Kai; Wang, Zhu
2012-07-01
An analysis program for positron annihilation lifetime spectra is only applicable to isolated defects, but is of no use in the presence of defective correlations. Such limitations have long caused problems for positron researchers in their studies of complicated defective systems. In order to solve this problem, we aim to take a semiconductor material, for example, to achieve a credible average lifetime of single crystal silicon under plastic deformation at different temperatures using positron life time spectroscopy. By establishing reasonable positron trapping models with defective correlations and sorting out four lifetime components with multiple parameters, as well as their respective intensities, information is obtained on the positron trapping centers, such as the positron trapping rates of defects, the density of the dislocation lines and correlation between the dislocation lines, and the vacancy defects, by fitting with the average lifetime with the aid of Matlab software. These results give strong grounds for the existence of dislocation-vacancy correlation in plastically deformed silicon, and lay a theoretical foundation for the analysis of positron lifetime spectra when the positron trapping model involves dislocation-related defects.
Severity of MIH findings at tooth surface level among German school children.
Petrou, M A; Giraki, M; Bissar, A-R; Wempe, C; Schäfer, M; Schiffner, U; Beikler, T; Schulte, A G; Splieth, C H
2015-06-01
This study was to investigate the distribution and clinical characteristics of teeth diagnosed with MIH at surface and defect type level in a cohort of German children. The study cohort included 242 children diagnosed with MIH which had been recorded during the compulsory dental school examinations of 20 German primary schools. The subjects had been enrolled by cluster sampling. All children attended the second to fourth grade (age 7-10 years, mean 8.1 ± 0.8). The children were examined by five calibrated examiners (kappa = 0.9) after tooth brushing. The recording comprised teeth, surfaces, type and severity of MIH defects and was conducted using a portable light, mirrors and cotton rolls. MIH was registered according to the EAPD criteria. Defects <1 mm were not recorded. Statistical analysis included descriptive statistics and Spearman's correlation. Most affected teeth were first permanent molars (71.4 %) followed by the maxillary central incisors (15.6 %). The most common defects were demarcated opacities (82.2 %), while the remaining 17.8 % of the affected teeth exhibited severe enamel defects. The most frequently affected surface in molars was the occlusal surface (72.4 %); in incisors, it was the buccal surface (73.5 %). There were no atypical restorations in the affected incisors. Different types of MIH defects at various surfaces of the same tooth were common. The number of affected tooth surfaces was positively correlated with the severity of MIH at child (p < 0.001). The study demonstrates severe enamel defects involving in almost one-fifth of all MIH teeth. The knowledge of the intra-oral distribution and severity of MIH findings at the enamel surface level is important for assessing the treatment needs.
Left-right correlation in coupled F-center defects.
Janesko, Benjamin G
2016-08-07
This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of "strong" left-right correlation, symptoms similar to those seen in stretched H2. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.
Thresholding Based on Maximum Weighted Object Correlation for Rail Defect Detection
NASA Astrophysics Data System (ADS)
Li, Qingyong; Huang, Yaping; Liang, Zhengping; Luo, Siwei
Automatic thresholding is an important technique for rail defect detection, but traditional methods are not competent enough to fit the characteristics of this application. This paper proposes the Maximum Weighted Object Correlation (MWOC) thresholding method, fitting the features that rail images are unimodal and defect proportion is small. MWOC selects a threshold by optimizing the product of object correlation and the weight term that expresses the proportion of thresholded defects. Our experimental results demonstrate that MWOC achieves misclassification error of 0.85%, and outperforms the other well-established thresholding methods, including Otsu, maximum correlation thresholding, maximum entropy thresholding and valley-emphasis method, for the application of rail defect detection.
Raman spectroscopy, "big data", and local heterogeneity of solid state synthesized lithium titanate
NASA Astrophysics Data System (ADS)
Pelegov, Dmitry V.; Slautin, Boris N.; Gorshkov, Vadim S.; Zelenovskiy, Pavel S.; Kiselev, Evgeny A.; Kholkin, Andrei L.; Shur, Vladimir Ya.
2017-04-01
Existence of defects is an inherent property of real materials. Due to an explicit correlation between defects concentration and conductivity, it is important to understand the level and origins of the structural heterogeneity for any particulate electrode material. Poor conductive lithium titanate Li4Ti5O12 (LTO), widely used in batteries for grids and electric buses, needs it like no one else. In this work, structural heterogeneity of compacted lithium titanate is measured locally in 100 different points by conventional micro-Raman technique, characterized in terms of variation of Raman spectra parameters and interpreted using our version of "big data" analysis. This very simple approach with automated measurement and treatment has allowed us to demonstrate inherent heterogeneity of solid-state synthesized LTO and attribute it to the existence of lithium and oxygen vacancies. The proposed approach can be used as a fast, convenient, and cost-effective defects-probing tool for a wide range of materials with defects-sensitive properties. In case of LTO, such an approach can be used to increase its charge/discharge rates by synthesis of materials with controlled nonstoichiometry. New approaches to solid state synthesis of LTO, suitable for high-power applications, will help to significantly reduce the costs of batteries for heavy-duty electric vehicles and smart-grids.
Quantum correlation of path-entangled two-photon states in waveguide arrays with defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Yiling; Xu, Lei; Han, Bin
We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled statesmore » in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.« less
Reading performance after vision rehabilitation of subjects with homonymous visual field defects.
Gall, Carolin; Sabel, Bernhard A
2012-12-01
To examine whether increased visual functioning after vision-restoration training (VRT) coincides with improved reading abilities. Prospective noncontrolled open-label trial. Controlled laboratory setting for all diagnostic procedures that were conducted before and after 6 months of home-based VRT with telemedicine support. Eleven subjects who had experienced a posterior-parietal stroke and have homonymous visual field defects. Six months of VRT (1 hour daily repeated light stimulation in the partially damaged visual field). VRT outcome measures were the number of detected light stimuli in eye-tracker controlled high-resolution perimetry and the spared visual field within the affected hemifield up to the relative and absolute defect visual field border (square degrees). Enlargements of spared visual field within the affected hemifield were correlated with changes of reading speed after VRT. After VRT, the number of detected light stimuli increased by 5.02 ± 4.31% (mean ± SD; P = .03). The spared visual field up to the relative defect visual field border increased from 18.09 ± 32.35 square degrees before to 137.40 ± 53.32 after VRT (P = .006), as well as for the absolute defect visual field border from 36.95 ± 33.77 square degrees before VRT to 152.02 ± 49.70 after VRT (P = .005). Reading speed increased from 108.95 ± 33.95 words per minute before VRT to 122.26 ± 30.35 after VRT (P = .017), which significantly correlated with increased spared visual field up to the relative defect visual field border (r = 0.73, P = .016). Measures of eye movement variability did not correlate with VRT outcome. VRT improved visual fields in parafoveal areas, which are most relevant for reading. This finding cannot be explained by changes in eye movement behavior. Because of a significant association between improvements of parafoveal vision and reading speed, we propose that patients with homonymous visual field defects who have reading deficits may benefit from visual stimulation by training. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
The effects of lithium counterdoping on radiation damage and annealing in n(+)p silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Brandhorst, H. W., Jr.; Mehta, S.; Swartz, C. K.
1984-01-01
Boron-doped silicon n(+)p solar cells were counterdoped with lithium by ion implantation and the resultant n(+)p cells irradiated by 1 MeV electrons. Performance parameters were determined as a function of fluence and a deep level transient spectroscopy (DLTS) study was conducted. The lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. Isochronal annealing studies of cell performance indicate that significant annealing occurs at 100 C. Isochronal annealing of the deep level defects showed a correlation between a single defect at E sub v + 0.43 eV and the annealing behavior of short circuit current in the counterdoped cells. The annealing behavior was controlled by dissociation and recombination of this defect. The DLTS studies showed that counterdoping with lithium eliminated three deep level defects and resulted in three new defects. The increased radiation resistance of the counterdoped cells is due to the interaction of lithium with oxygen, single vacancies and divacancies. The lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.
Experimental simulation of space plasma interactions with high voltage solar arrays
NASA Technical Reports Server (NTRS)
Stillwell, R. P.; Kaufman, H. R.; Robinson, R. S.
1981-01-01
Operating high voltage solar arrays in the space environment can result in anomalously large currents being collected through small insulation defects. Tests of simulated defects have been conducted in a 45-cm vacuum chamber with plasma densities of 100,000 to 1,000,000/cu cm. Plasmas were generated using an argon hollow cathode. The solar array elements were simulated by placing a thin sheet of polyimide (Kapton) insulation with a small hole in it over a conductor. Parameters tested were: hole size, adhesive, surface roughening, sample temperature, insulator thickness, insulator area. These results are discussed along with some preliminary empirical correlations.
Left-right correlation in coupled F-center defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesko, Benjamin G., E-mail: b.janesko@tcu.edu
This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of “strong” left-right correlation, symptoms similar to those seen in stretched H{sub 2}. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centersmore » may fail for adjacent F-centers.« less
Kim, Howon; Lin, Shi -Zeng; Graf, Matthias J.; ...
2016-09-08
Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy usingmore » scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Furthermore, superconductivity is enhanced between the first surface step and the superconductor–normal-metal interface by reflectionless tunneling when the step is located within a coherence length.« less
Kim, Howon; Lin, Shi-Zeng; Graf, Matthias J; Miyata, Yoshinori; Nagai, Yuki; Kato, Takeo; Hasegawa, Yukio
2016-09-09
Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy using scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Superconductivity is enhanced between the first surface step and the superconductor-normal-metal interface by reflectionless tunneling when the step is located within a coherence length.
Effects of wet etch processing on laser-induced damage of fused silica surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.
1998-12-22
Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, M., E-mail: makina.saito@elettra.eu; D’Amico, F.; Bencivenga, F.
2014-06-28
A spatial correlation between chemical and topological defects in the tetrahedron network in vitreous silica produced by a fusion process of natural quartz crystals was found by synchrotron-based UV resonance Raman experiments. Furthermore, a quantitative correlation between these defects was obtained by comparing visible Raman and UV absorption spectra. These results indicate that in vitreous silica produced by the fusion process the topological defects disturb the surrounding tetrahedral silica network and induce further disorder regions with sub nanometric sizes.
Studies of surface states in zinc oxide nanopowders
NASA Astrophysics Data System (ADS)
Peters, Raul Mugabe
The surface of ZnO semiconductor nanosystems is a key performance-defining factor in numerous applications. In this work we present experimental results for the surface defect-related properties of ZnO nanoscale systems. Surface photovoltage spectroscopy was used to determine the defect level energies within the band gap, the conduction vs. valence band nature of the defect-related transitions, and to probe key dynamic parameters of the surface on a number of commercially available ZnO nanopowders. In our experimental setup, surface photovoltage characterization is conducted in high vacuum in tandem with in situ oxygen remote plasma treatments. Surface photovoltage investigations of the as-received and plasma-processed samples revealed a number of common spectral features related to surface states. Furthermore, we observed significant plasma-induced changes in the surface defect properties. Ex situ positron annihilation and photoluminescence measurements were performed on the studied samples and correlated with surface photovoltage results. The average positron lifetimes were found to be substantially longer than in a bulk single crystalline sample, which is consistent with the model of grains with defect-rich surface and subsurface layers. Compression of the powders into pellets yielded reduction of the average positron lifetimes. Surface photovoltage, positron annihilation, and photoluminescence spectra consistently showed sample-to-sample differences due to the variation in the overall quality of the nanopowders, which partially obscures observation of the scaling effects. However, the results demonstrated that our approach is efficient in detecting specific surface states in nanoscale ZnO specimens and in elucidating their nature.
Evolution of thermo-physical properties and annealing of fast neutron irradiated boron carbide
NASA Astrophysics Data System (ADS)
Gosset, Dominique; Kryger, Bernard; Bonal, Jean-Pierre; Verdeau, Caroline; Froment, Karine
2018-03-01
Boron carbide is widely used as a neutron absorber in most nuclear reactors, in particular in fast neutron ones. The irradiation leads to a large helium production (up to 1022/cm3) together with a strong decrease of the thermal conductivity. In this paper, we have performed thermal diffusivity measurements and X-ray diffraction analyses on boron carbide samples coming from control rods of the French Phenix LMFBR reactor. The burnups range from 1021 to 8.1021/cm3. We first confirm the strong decrease of the thermal conductivity at the low burnup, together with high microstructural modifications: swelling, large micro-strains, high defects density, and disordered-like material conductivity. We observe the microstructural parameters are highly anisotropic, with high micro-strains and flattened coherent diffracting domains along the (00l) direction of the hexagonal structure. Performing heat treatments up to high temperature (2200 °C) allows us to observe the material thermal conductivity and microstructure restoration. It then appears the thermal conductivity healing is correlated to the micro-strain relaxation. We then assume the defects responsible for most of the damage are the helium bubbles and the associated stress fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guoqing; Myers, Rupert J.; Qomi, Mohammad Javad Abdolhosseini
Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here in this paper, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-To-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Simore » in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-Axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a-and b-Axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.« less
Geng, Guoqing; Myers, Rupert J.; Qomi, Mohammad Javad Abdolhosseini; ...
2017-09-08
Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here in this paper, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-To-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Simore » in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-Axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a-and b-Axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.« less
Geng, Guoqing; Myers, Rupert J; Qomi, Mohammad Javad Abdolhosseini; Monteiro, Paulo J M
2017-09-08
Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.
Influence of deep defects on device performance of thin-film polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Fehr, M.; Simon, P.; Sontheimer, T.; Leendertz, C.; Gorka, B.; Schnegg, A.; Rech, B.; Lips, K.
2012-09-01
Employing quantitative electron-paramagnetic resonance analysis and numerical simulations, we investigate the performance of thin-film polycrystalline silicon solar cells as a function of defect density. We find that the open-circuit voltage is correlated to the density of defects, which we assign to coordination defects at grain boundaries and in dislocation cores. Numerical device simulations confirm the observed correlation and indicate that the device performance is limited by deep defects in the absorber bulk. Analyzing the defect density as a function of grain size indicates a high concentration of intra-grain defects. For large grains (>2 μm), we find that intra-grain defects dominate over grain boundary defects and limit the solar cell performance.
A study of phase defect measurement on EUV mask by multiple detectors CD-SEM
NASA Astrophysics Data System (ADS)
Yonekura, Isao; Hakii, Hidemitsu; Morisaki, Shinya; Murakawa, Tsutomu; Shida, Soichi; Kuribara, Masayuki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki
2013-06-01
We have studied MVM (Multi Vision Metrology) -SEM® E3630 to measure 3D shape of defects. The four detectors (Detector A, B, C and D) are independently set up in symmetry for the primary electron beam axis. Signal processing of four direction images enables not only 2D (width) measurement but also 3D (height) measurement. At last PMJ, we have investigated the relation between the E3630's signal of programmed defect on MoSi-HT and defect height measured by AFM (Atomic Force Microscope). It was confirmed that height of integral profile by this tool is correlated with AFM. It was tested that E3630 has capability of observing multilayer defect on EUV. We have investigated correlation with AFM of width and depth or height of multilayer defect. As the result of observing programmed defects, it was confirmed that measurement result by E3630 is well correlated with AFM. And the function of 3D view image enables to show nm order defect.
The investigation of the lateral interaction effect's on traffic flow behavior under open boundaries
NASA Astrophysics Data System (ADS)
Bouadi, M.; Jetto, K.; Benyoussef, A.; El Kenz, A.
2017-11-01
In this paper, an open boundaries traffic flow system is studied by taking into account the lateral interaction with spatial defects. For a random defects distribution, if the vehicles velocities are weakly correlated, the traffic phases can be predicted by considering the corresponding inflow and outflow functions. Conversely, if the vehicles velocities are strongly correlated, a phase segregation appears inside the system's bulk which induces the maximum current appearance. Such velocity correlation depends mainly on the defects densities and the probabilities of lateral deceleration. However, for a compact defects distribution, the traffic phases are predictable by using the inflow in the system beginning, the inflow entering the defects zone and the outflow function.
Point defects in ZnO: an approach from first principles
Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao
2011-01-01
Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically inactive and, hence, are unlikely to play essential roles in electrical properties. Overall defect energetics suggests a preference for the native donor-type defects over acceptor-type defects in ZnO. The O vacancy, Zn interstitial and Zn anti-site have very low formation energies when the Fermi level is low. Therefore, these defects are expected to be sources of a strong hole compensation in p-type ZnO. For the n-type doping, the compensation of carrier electrons by the native acceptor-type defects can be mostly suppressed when O-poor chemical potential conditions, i.e. low O partial pressure conditions, are chosen during crystal growth and/or doping. PMID:27877390
Effect of Processing Conditions on the Anelastic Behavior of Plasma Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Viswanathan, Vaishak
2011-12-01
Plasma sprayed ceramic materials contain an assortment of micro-structural defects, including pores, cracks, and interfaces arising from the droplet based assemblage of the spray deposition technique. The defective architecture of the deposits introduces a novel "anelastic" response in the coatings comprising of their non-linear and hysteretic stress-strain relationship under mechanical loading. It has been established that this anelasticity can be attributed to the relative movement of the embedded defects under varying stresses. While the non-linear response of the coatings arises from the opening/closure of defects, hysteresis is produced by the frictional sliding among defect surfaces. Recent studies have indicated that anelastic behavior of coatings can be a unique descriptor of their mechanical behavior and related to the defect configuration. In this dissertation, a multi-variable study employing systematic processing strategies was conducted to augment the understanding on various aspects of the reported anelastic behavior. A bi-layer curvature measurement technique was adapted to measure the anelastic properties of plasma sprayed ceramic. The quantification of anelastic parameters was done using a non-linear model proposed by Nakamura et.al. An error analysis was conducted on the technique to know the available margins for both experimental as well as computational errors. The error analysis was extended to evaluate its sensitivity towards different coating microstructure. For this purpose, three coatings with significantly different microstructures were fabricated via tuning of process parameters. Later the three coatings were also subjected to different strain ranges systematically, in order to understand the origin and evolution of anelasticity on different microstructures. The last segment of this thesis attempts to capture the intricacies on the processing front and tries to evaluate and establish a correlation between them and the anelastic parameters.
Ionic Conductivity of TlBr1-xIx(x = 0, 0.2, 1): Candidate Gamma Ray Detector
NASA Astrophysics Data System (ADS)
Bishop, S. R.; Ciampi, G.; Lee, C. D.; Kuhn, M.; Tuller, H. L.; Higgins, W.; Shah, K. S.
2012-10-01
The ionic conductivity of TlBr, TlI and their solid solutions, candidates for high energy radiation detection, was examined using impedance spectroscopy. The orthorhombic to cubic phase change in TlI was observed via a steep change in conductivity with increasing temperature, whereas the TlBr-TlI solid solution was cubic throughout the measured temperature range, in agreement with the literature. The intrinsic conductivity of the cubic phase of each material showed nearly identical behavior, indicating that I substitution for Br has little to no effect on the combined defect formation and transport parameters in the studied range. Additionally, optical transmission was correlated with I concentration.
Atomic and electronic structure of oxygen vacancies and Nb-impurity in SrTiO3
NASA Astrophysics Data System (ADS)
Hamid, A. S.
2009-12-01
We present the results of a first-principle full-potential linearized augmented plane wave (FLAPW) method to study the effect of defects on the electronic structure of SrTiO3. In addition, the relaxation of nearest neighbor atoms around those defects were calculated self-consistently. The calculations were performed using the local (spin) density approximations (L(S)DA), for the exchange-correlation potential. SrTiO3 was found to experience an insulator-to-metal transition upon the formation of oxygen vacancies or the substitution of Nb at the Ti site. The formation of oxygen divacancy disclosed additional states below the conduction band edge. The crystalline lattice relaxation showed displacements of atoms in rather large defective region. The magnitudes of atomic movements, however, were not large, normally not exceeding 0.15 Å. Our results were compared to the available experimental observations.
NASA Astrophysics Data System (ADS)
Oruganti, Malavika
This thesis conducts an investigation to study the effects of hydrogen exposure at high temperature and pressure on the behavior of AISI 4140 steel. Piezoelectric ultrasonic technique was primarily used to evaluate surface longitudinal wave velocity and defect geometry variations, as related to time after exposure to hydrogen at high temperature and pressure. Critically refracted longitudinal wave technique was used for the former and pulse-echo technique for the latter. Optical microscopy and scanning electron microscopy were used to correlate the ultrasonic results with the microstructure of the steel and to provide better insight into the steel behavior. The results of the investigation indicate that frequency analysis of the defect echo, determined using the pulse-echo technique at regular intervals of time, appears to be a promising tool for monitoring defect growth induced by a high temperature and high pressure hydrogen-related attack.
Present knowledge of electronic properties and charge transport of icosahedral boron-rich solids
NASA Astrophysics Data System (ADS)
Werheit, Helmut
2009-06-01
B12 icosahedra or related structure elements determine the different modifications of elementary boron and numerous boron-rich compounds from α-rhombohedral boron with 12 to YB66 type with about 1584 atoms per unit cell. Typical are well-defined high density intrinsic defects: Jahn-Teller distorted icosahedra, vacancies, incomplete occupancies, statistical occupancies and antisite defects. The correlation between intrinsic point defects and electron deficiencies solves the discrepancy between theoretically predicted metal and experimentally proved semiconducting character. The electron deficiencies generate split-off valence states, which are decisive for the electronic transport, a superposition of band-type and hopping-type conduction. Their share depends on actual conditions like temperature or pre-excitation. The theoretical model of bipolaron hopping is incompatible with numerous experiments. Technical application of the typically p-type icosahedral boron-rich solids requires suitable n-type counterparts; doping and other possibilities are discussed.
Murad-Regadas, Sthela Maria; Dealcanfreitas, Iris Daiana; Regadas, Francisco Sergio Pinheiro; Rodrigues, Lusmar Veras; Fernandes, Graziela Olivia da Silva; Pereira, Jacyara de Jesus Rosa
2014-01-01
To evaluate anal sphincter anatomy using three-dimensional ultrasonography (3-DAUS) in incontinent women with vaginal delivery, correlate anatomical findings with symptoms of fecal incontinence and determine the effect of vaginal delivery on anal canal anatomy and function. Female with fecal incontinence and vaginal delivery were assessed with Wexner's score, manometry, and 3DAUS. A control group comprising asymptomatic nulliparous was included. Anal pressure, the angle of the defect and length of the external anal sphincter (EAS), the anterior and posterior internal anal sphincter (IAS), the EAS + puborectal and the gap were measured and correlated with score. Of the 62, 49 had fecal incontinence and 13 were asymptomatic. Twenty five had EAS defects, 8 had combined EAS+IAS defects, 16 had intact sphincters and continence scores were similar. Subjects with sphincter defects had a shorter anterior EAS, IAS and longer gap than women without defects. Those with a vaginal delivery and intact sphincters had a shorter anterior EAS and longer gap than nulliparous. We found correlations between resting pressure and anterior EAS and IAS length in patients with defects. Fecal incontinence symptoms did not correlate with anal pressures and anal sphincter anatomy changes, but women with sphincter defects have shorter anterior EAS and IAS and a longer gap.
NASA Astrophysics Data System (ADS)
Martinez, I. A.; Eisenmann, D.
2012-12-01
Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.
Tuning thermal conduction via extended defects in graphene
NASA Astrophysics Data System (ADS)
Huang, Huaqing; Xu, Yong; Zou, Xiaolong; Wu, Jian; Duan, Wenhui
2013-05-01
Designing materials for desired thermal conduction can be achieved via extended defects. We theoretically demonstrate the concept by investigating thermal transport in graphene nanoribbons (GNRs) with the extended line defects observed by recent experiments. Our nonequilibrium Green's function study excluding phonon-phonon interactions finds that thermal conductance can be tuned over wide ranges (more than 50% at room temperature), by controlling the orientation and the bond configuration of the embedded extended defect. Further transmission analysis reveals that the thermal-conduction tuning is attributed to two fundamentally different mechanisms, via modifying the phonon dispersion and/or tailoring the strength of defect scattering. The finding, applicable to other materials, provides useful guidance for designing materials with desired thermal conduction.
Correlation between He-Ne scatter and 2.7-microm pulsed laser damage at coating defects.
Porteus, J O; Spiker, C J; Franck, J B
1986-11-01
A reported correlation between defect-initiated pulsed laser damage and local predamage scatter in multilayer infrared mirror coatings has been analyzed in detail. Examination of a much larger data base confirms the previous result on dielectric-enhanced reflectors with polished substrates over a wide range of energy densities above the damage onset. Scatter signals from individual undamaged defects were detected using a He-Ne scatter probe with a focal spot that nearly coincides with the 150-microm-diam (D1/e(2)) focal spot of the damage-probe beam. Subsequent damage frequency measurements (1-on-1) were made near normal or at 45 degrees incidence with 100-ns pulses at 2.7-microm wavelength. The correlation is characterized by an increase in damage frequency with increasing predamage scatter signal and by equivalence of the defect densities indicated by the two probes. Characteristics of the correlation are compared with a simple model based on focal spot intensity profiles. Conditions that limit correlation are discussed, including variable scatter from defects and background scatter from diamond-turned substrates. Results have implication for nondestructive defect detection and coating quality control.
Dielectric properties of thin C r2O3 films grown on elemental and oxide metallic substrates
NASA Astrophysics Data System (ADS)
Mahmood, Ather; Street, Michael; Echtenkamp, Will; Kwan, Chun Pui; Bird, Jonathan P.; Binek, Christian
2018-04-01
In an attempt to optimize leakage characteristics of α-C r2O3 thin films, its dielectric properties were investigated at local and macroscopic scale. The films were grown on Pd(111), Pt(111), and V2O3 (0001), supported on A l2O3 substrate. The local conductivity was measured by conductive atomic force microscopy mapping of C r2O3 surfaces, which revealed the nature of defects that formed conducting paths with the bottom Pd or Pt layer. A strong correlation was found between these electrical defects and the grain boundaries revealed in the corresponding topographic scans. In comparison, the C r2O3 film on V2O3 exhibited no leakage paths at similar tip bias value. Electrical resistance measurements through e-beam patterned top electrodes confirmed the resistivity mismatch between the films grown on different electrodes. The x-ray analysis attributes this difference to the twin free C r2O3 growth on V2O3 seeding.
Sensitivity of thermal transport in thorium dioxide to defects
NASA Astrophysics Data System (ADS)
Park, Jungkyu; Farfán, Eduardo B.; Mitchell, Katherine; Resnick, Alex; Enriquez, Christian; Yee, Tien
2018-06-01
In this research, the reverse non-equilibrium molecular dynamics is employed to investigate the effect of vacancy and substitutional defects on the thermal transport in thorium dioxide (ThO2). Vacancy defects are shown to severely alter the thermal conductivity of ThO2. The thermal conductivity of ThO2 decreases significantly with increasing the defect concentration of oxygen vacancy; the thermal conductivity of ThO2 decreases by 20% when 0.1% oxygen vacancy defects are introduced in the 100 unit cells of ThO2. The effect of thorium vacancy defect on the thermal transport in ThO2 is even more detrimental; ThO2 with 0.1% thorium vacancy defect concentration exhibits a 38.2% reduction in its thermal conductivity and the thermal conductivity becomes only 8.2% of that of the pristine sample when the thorium vacancy defect concentration is increased to 5%. In addition, neutron activation of thorium produces uranium and this uranium substitutional defects in ThO2 are observed to affect the thermal transport in ThO2 marginally when compared to vacancy defects. This indicates that in the thorium fuel cycle, fissile products such as 233U is not likely to alter the thermal transport in ThO2 fuel.
125Te NMR and Seebeck Effect in Bi 2Te 3 Synthesized from Stoichiometric and Te-Rich Melts
Levin, E. M.; Iowa State Univ., Ames, IA; Riedemann, T. M.; ...
2016-10-14
Bi 2Te 3 is a well-known thermoelectric material and, as a new form of quantum matter, a topological insulator. Variation of local chemical composition in Bi2Te3 results in formation of several types of atomic defects, including Bi and Te vacancies and Bi and Te antisite defects; these defects can strongly affect material functionality via generation of free electrons and/or holes. Nonuniform distribution of atomic defects produces electronic inhomogeneity, which can be detected by 125Te nuclear magnetic resonance (NMR). Here we report on 125Te NMR and Seebeck effect (heat to electrical energy conversion) for two single crystalline samples: (#1) grown frommore » stoichiometric composition by Bridgman technique and (#2) grown out of Te-rich, high temperature flux. The Seebeck coefficients of these samples show p- and n-type conductivity, respectively, arising from different atomic defects. 125Te NMR spectra and spin–lattice relaxation measurements demonstrate that both Bi 2Te 3 samples are electronically inhomogeneous at the atomic scale, which can be attributed to a different Te environment due to spatial variation of the Bi/Te ratio and formation of atomic defects. In conclusion, correlations between 125Te NMR spectra, spin–lattice relaxation times, the Seebeck coefficients, carrier concentrations, and atomic defects are discussed. Our data demonstrate that 125Te NMR is an effective probe to study antisite defects in Bi 2Te 3.« less
125Te NMR and Seebeck Effect in Bi 2Te 3 Synthesized from Stoichiometric and Te-Rich Melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, E. M.; Iowa State Univ., Ames, IA; Riedemann, T. M.
Bi 2Te 3 is a well-known thermoelectric material and, as a new form of quantum matter, a topological insulator. Variation of local chemical composition in Bi2Te3 results in formation of several types of atomic defects, including Bi and Te vacancies and Bi and Te antisite defects; these defects can strongly affect material functionality via generation of free electrons and/or holes. Nonuniform distribution of atomic defects produces electronic inhomogeneity, which can be detected by 125Te nuclear magnetic resonance (NMR). Here we report on 125Te NMR and Seebeck effect (heat to electrical energy conversion) for two single crystalline samples: (#1) grown frommore » stoichiometric composition by Bridgman technique and (#2) grown out of Te-rich, high temperature flux. The Seebeck coefficients of these samples show p- and n-type conductivity, respectively, arising from different atomic defects. 125Te NMR spectra and spin–lattice relaxation measurements demonstrate that both Bi 2Te 3 samples are electronically inhomogeneous at the atomic scale, which can be attributed to a different Te environment due to spatial variation of the Bi/Te ratio and formation of atomic defects. In conclusion, correlations between 125Te NMR spectra, spin–lattice relaxation times, the Seebeck coefficients, carrier concentrations, and atomic defects are discussed. Our data demonstrate that 125Te NMR is an effective probe to study antisite defects in Bi 2Te 3.« less
Morphology, structure, optical, and electrical properties of AgSbO3
NASA Astrophysics Data System (ADS)
Yi, Z. G.; Liu, Y.; Withers, R. L.
2010-07-01
The morphology of defect pyrochlore-type, AgSbO3 microparticle/nanoparticles obtained via solid state reaction evolve from irregular to Fullerene-like polyhedra before finally decomposing into metal-organic framework-5 like particles with increase in sintering temperature. The defect pyrochlore-type AgSbO3 particles are slightly Ag deficient while the valence of the antimony ion is shown to be +5 giving rise to a probable stoichiometry of Ag1-xSbVO3-x/2, with x˜0.01-0.04. A highly structured diffuse intensity distribution observed via electron diffraction is interpreted in terms of correlated displacements of one-dimensional (1D) silver ion chains along ⟨110⟩ directions. A redshifting in the absorption edges in UV-visible absorption spectra is observed for samples prepared at sintering temperatures higher than 1000 °C and attributed to the surface plasma resonance effect associated with small amounts of excess metallic Ag on the Ag1-xSbVO3-x/2 particles. An electrical properties investigation of the silver antimonate samples via dielectric, conductivity, and electric modulus spectroscopy shows a prominent dielectric relaxation associated with grain boundaries. The silver ion conductivity is associated with correlated displacements of 1D silver ion chains along ⟨110⟩ directions.
NASA Astrophysics Data System (ADS)
Janesko, Benjamin G.
2018-02-01
Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.
Thermal conductivity of electron-irradiated graphene
NASA Astrophysics Data System (ADS)
Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios
2017-10-01
We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.
NASA Astrophysics Data System (ADS)
Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung
2017-02-01
The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO-based optoelectronic devices for industrial production.
Dargahi, Hossein; Einollahi, Nahid; Dashti, Nasrin
2010-01-01
Color-blindness is the inability to perceive differences between some color that other people can distinguish. Using a literature search, the results indicate the prevalence of color vision deficiency in the medical profession and its on medical skills. Medical laboratory technicians and technologists employees should also screen for color blindness. This research aimed to study color blindness prevalence among Hospitals' Clinical Laboratories' Employees and Students in Tehran University of Medical Sciences (TUMS). A cross-sectional descriptive and analytical study was conducted among 633 TUMS Clinical Laboratory Sciences' Students and Hospitals' Clinical Laboratories' Employees to detect color-blindness problems by Ishihara Test. The tests were first screened with certain pictures, then compared to the Ishihara criteria to be possible color defective were tested further with other plates to determine color - blindness defects. The data was saved using with SPSS software and analyzed by statistical methods. This is the first study to determine the prevalence of color - blindness in Clinical Laboratory Sciences' Students and Employees. 2.4% of TUMS Medical Laboratory Sciences Students and Hospitals' Clinical Laboratories' Employees are color-blind. There is significant correlation between color-blindness and sex and age. But the results showed that there is not significant correlation between color-blindness defect and exposure to chemical agents, type of job, trauma and surgery history, history of familial defect and race. It would be a wide range of difficulties by color blinded students and employees in their practice of laboratory diagnosis and techniques with a potentially of errors. We suggest color blindness as a medical conditions should restrict employment choices for medical laboratory technicians and technologists job in Iran.
G, Vidya; H Y, Suma; Bhat B, Vishnu; Chand, Parkash; Rao K, Ramachandra
2014-04-01
In Congenital Heart Disease (CHD), shunting of blood occurs through the anatomical defects which lead to mixing of oxygenated and deoxygenated blood. Chronic hypoxia which occurs due to the above said mechanism has the potency to cause DNA damage in children with CHD. In chronic hypoxia, there is a liberation of Reactive Oxygen Species (ROS) due to tissue injury as a result of ischemia and induction of hypoxia inducible factor - 1HIF-1 and p53 which in turn activates pro-apoptotic factors leading to alteration in the regulation of pro-apoptotic gene Blc-2 to be involved in causing the DNA damage. The extent of chronic hypoxia and the DNA damage depends on the nature of the anatomical heart defect. Hence, the present case-control study was conducted to find out the DNA damage in children with isolated septal defect and septal defect with great vessel anomaly of heart and to compare the same. The study group was categorized into those with isolated septal defects and septal defects associated with great vessel anomaly based on echo-cardiogram. Age and sex matched healthy children were taken as controls. Single-cell gel electrophoresis - Comet Assay of Alkaline Version was performed conventionally and the comets were analyzed using comet score software. The comet metrics was found to be statistically significant in children with isolated septal defect and septal defect with great vessel anomaly when compared with that of the controls. In addition, comet metrics also showed significantly increased DNA damage among children with septal defects associated with great vessel anomaly when compared to isolated septal defects. The data strongly suggests a linear correlation of severity of the anomaly involved with the degree of DNA damage as evidenced by lesser extent of DNA damage in isolated septal defect and greater in septal defect with great vessel anomaly.
Houly, Jacques Ramos; Veloso, Carlos Eduardo; Passos, Elke; Nehemy, Márcio Bittar
2017-07-01
To investigate the correlation between the length of external limiting membrane (ELM), ellipsoid zone (EZ) and interdigitation zone (IZ) defects and visual prognosis in patients undergoing macular hole (MH) surgery, using spectral-domain optical coherence tomography (SD-OCT). This is a retrospective, consecutive, observational case series study. Fifty-two eyes of 52 patients with primary MH were evaluated. A quantitative analysis of ELM, EZ and IZ defects was performed preoperatively and at 3 and 6 months postoperatively using SD-OCT. The correlation between pre- and postoperative ELM, EZ and IZ defects and the best-corrected visual acuity (BCVA) was investigated. The lengths of ELM, EZ and IZ defects correlated significantly with BCVA in each study period (P < 0.001). Preoperative measures of these band defects were also associated with visual outcomes 3 and 6 months after surgery (P < 0.05). Considering all preoperative parameters, the length of the ELM defect was the factor most strongly correlated with BCVA at 6 months (β = 0.643, P < 0.012). The integrity of the ELM was the only factor significantly associated with BCVA at 6 months (β = 0.427; P = 0.004). The preoperative length of the ELM defect is the strongest predictor of visual acuity after MH surgery. Postoperative integrity of the ELM is significantly associated with visual restoration after surgical treatment of MH.
Thermal conductivity of graphene with defects induced by electron beam irradiation
NASA Astrophysics Data System (ADS)
Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.
2016-07-01
We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management. Electronic supplementary information (ESI) available: Additional thermal conductivity measurements data. See DOI: 10.1039/c6nr03470e
Study of the relationship between myopia and personality.
Rodríguez Uña, I; Pérez Bartolomé, F; Urriés Ortiz, M; Arriola Villalobos, P; Bermúdez Vallecilla, M; Fernández-Vega Cueto, L; Martín Villaescusa, C; Marticorena Álvarez, P
2015-08-01
To study the correlation between the myopic refractive error and certain personality traits, and to determine whether there is a correlation between the degree of myopia and an increased frequency in personality disorders. Cross-sectional observational multicenter study conducted on 82 subjects (26 men, 56 women) age over 18 years with myopia (spherical defect ≤ -0.5 D), with 30 subjects having high myopia (<-6 D). age and gender, academic level, result in the Neo PI-R personality test, autorefractometry, myopic pathology, and ophthalmological treatment. Correlation (Spearman's) between the magnitude of the spherical defect and the 5 personality traits studied in the total sample was not statistically significant: neuroticism (-0.057; P=.610), extroversion (-0.020; P=.857), openness (-0.032; P=.774), kindness (-0.060; P=.592), and responsibility (-0.034; P=.765). By dividing them into subgroups of low and high significance (t-test), a significant (P=.002) upward trend of the myopic defect with increasing scores on extraversion was found. When comparing high myopic subjects to the non-high myopic ones, there were significant differences between the 2 groups in terms of the associated pathology (P=.001), received treatment (P=.001) and the level of studies (P=.013). There were no differences in the variables of personality: neuroticism (P=.852), extroversion (P=.199), openness (P=.560), kindness (P=.584), and responsibility (P=.722). A low correlation was found between myopia and personality. There was no difference in the degree of myopia between the groups with different education levels. Subjects with more severe ocular pathology associated with myopia had higher scores in neuroticism, without finding any significant association. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaldi, O.; Kassmi, M.; El Manar University, LMOP, 2092 Tunis
2014-08-28
Capacitance nonlinearities were studied in atomic layer deposited HfO{sub 2} films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearitiesmore » are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.« less
Sarfraz, Muhammad Haroon; Mehboob, Mohammad Asim; Haq, Rana Intisar Ul
2017-01-01
To evaluate the correlation between Central Corneal Thickness (CCT) and Visual Field (VF) defect parameters like Mean Deviation (MD) and Pattern Standard Deviation (PSD), Cup-to-Disc Ratio (CDR) and Retinal Nerve Fibre Layer Thickness (RNFL-T) in Primary Open-Angle Glaucoma (POAG) patients. This cross sectional study was conducted at Armed Forces Institute of Ophthalmology (AFIO), Rawalpindi from September 2015 to September 2016. Sixty eyes of 30 patients with diagnosed POAG were analysed. Correlation of CCT with other variables was studied. Mean age of study population was 43.13±7.54 years. Out of 30 patients, 19 (63.33%) were males and 11 (36.67%) were females. Mean CCT, MD, PSD, CDR and RNFL-T of study population was 528.57±25.47µm, -9.11±3.07, 6.93±2.73, 0.63±0.13 and 77.79±10.44µm respectively. There was significant correlation of CCT with MD, PSD and CDR (r=-0.52, p<0.001; r=-0.59, p<0.001;r=-0.41, p=0.001 respectively). The correlation of CCT with RNFL-T was not statistically significant (r=-0.14, p=0.284). Central corneal thickness had significant correlation with visual field parameters like mean deviation and pattern standard deviation, as well as with cup-to-disc ratio. However, central corneal thickness had no significant relationship with retinal nerve fibre layer thickness.
Detection of small-size solder ball defects through heat conduction analysis
NASA Astrophysics Data System (ADS)
Zhou, Xiuyun; Chen, Yaqiu; Lu, Xiaochuan
2018-02-01
Aiming to solve the defect detection problem of a small-size solder ball in the high density chip, heat conduction analysis based on eddy current pulsed thermography is put forward to differentiate various defects. With establishing the 3D finite element model about induction heating, defects such as cracks and void can be distinguished by temperature difference resulting from heat conduction. Furthermore, the experiment of 0.4 mm-diameter solder balls with different defects is carried out to prove that crack and void solder can be distinguished. Three kinds of crack length on a gull-wing pin are selected, including 0.24 mm, 1.2 mm, and 2.16 mm, to verify that the small defect can be discriminated. Both the simulation study and experiment result show that the heat conduction analysis method is reliable and convenient.
NASA Astrophysics Data System (ADS)
Ghosh, Shyamsundar; Dev, Bhupendra Nath
2018-05-01
Indium-tin oxide (ITO) 1D nanostructures with tunable morphologies i.e. nanorods, nanocombs and nanowires are grown on c-axis (0 0 0 1) sapphire (Al2O3) substrate in oxygen deficient atmosphere through pulsed laser deposition (PLD) technique and the effect of oxygen vacancies on optical, electrical, magnetic and photoresponse properties is investigated using spectroscopic methods. ITO nanostructures are found to be enriched with significant oxygen vacancy defects as evident from X-ray photoelectron and Raman spectroscopic analysis. Photoluminescence spectra exhibited intense mid-band blue emission at wavelength of region of 400-450 nm due to the electronic transition from conduction band maxima (CBM) to the singly ionized oxygen-vacancy (VO+) defect level within the band-gap. Interestingly, ITO nanostructures exhibited significant room-temperature ferromagnetism (RTFM) and the magnetic moment found proportional to concentration of VO+ defects which indicates VO+ defects are mainly responsible for the observed RTFM in nanostructures. ITO nanowires being enriched with more VO+ defects exhibited strongest RTFM as compared to other morphologies. Current voltage (I-V) characteristics of ITO nanostructures showed an enhancement of current under UV light as compared to dark which indicates such 1D nanostructure can be used as photovoltaic material. Hence, the study shows that there is ample opportunity to tailor the properties of ITOs through proper defect engineering's and such photosensitive ferromagnetic semiconductors might be promising for spintronic and photovoltaic applications.
Pregnancy Outcome of Abnormal Nuchal Translucency: A Systematic Review
Roozbeh, Nasibeh; Azizi, Maryam
2017-01-01
Introduction Nuchal Translucency (NT) is the sonographic form of subcutaneous gathering of liquid behind the foetal neck in the first trimester of pregnancy. There is association of increased NT with chromosomal and non-chromosomal abnormalities. Aim The purpose of this systemic review was to review the pregnancy outcome of abnormal nuchal translucency. Materials and Methods The present systematic review was conducted by searching English language articles from sources such as International Medical Sciences, Medline, Web of science, Scopus, Google Scholar, PubMed, Index Copernicus, DOAJ, EBSCO-CINAHL. Persian articles were searched from Iranmedex and SID sources. Related key words were “outcome”, “pregnancy”, “abnormal”, and “Nuchal Translucency” (NT). All, randomized, descriptive, analytic-descriptive, case control study conducted during 1997-2015 were included. Results Including duplicate articles, 95 related articles were found. After reviewing article titles, 30 unrelated article and abstracts were removed, and 65 articles were evaluated of which 30 articles were duplicate. Finally 22 articles were selected for final analysis. Exclusion criteria were, case studies and reports and quasi experimental designs. This evaluation has optioned negative relationship between nuchal translucency and pregnancy result. Rate of cardiac, chromosomal and other defects are correlated with increased NT≥2.5mm. Cardiac disease which were associated to the increased NT are heart murmur, systolic organic murmur, Atrial Septal Defect (ASD), Ventricular Septal Defect (VSD), tricuspid valve insufficiency and pulmonary valve insufficiency, Inferior Vena Cava (IVC) and Patent Ductus Arteriosus (PDA). The most common problems that related with increased NT were allergic symptoms. Conclusion According to this systematic review, increased NT is associated with various foetal defects. To verify the presence of malformations, birth defect consultations with a perinatologist and additional tests are required. PMID:28511453
Pregnancy Outcome of Abnormal Nuchal Translucency: A Systematic Review.
Roozbeh, Nasibeh; Azizi, Maryam; Darvish, Leili
2017-03-01
Nuchal Translucency (NT) is the sonographic form of subcutaneous gathering of liquid behind the foetal neck in the first trimester of pregnancy. There is association of increased NT with chromosomal and non-chromosomal abnormalities. The purpose of this systemic review was to review the pregnancy outcome of abnormal nuchal translucency. The present systematic review was conducted by searching English language articles from sources such as International Medical Sciences, Medline, Web of science, Scopus, Google Scholar, PubMed, Index Copernicus, DOAJ, EBSCO-CINAHL. Persian articles were searched from Iranmedex and SID sources. Related key words were "outcome", "pregnancy", "abnormal", and "Nuchal Translucency" (NT). All, randomized, descriptive, analytic-descriptive, case control study conducted during 1997-2015 were included. Including duplicate articles, 95 related articles were found. After reviewing article titles, 30 unrelated article and abstracts were removed, and 65 articles were evaluated of which 30 articles were duplicate. Finally 22 articles were selected for final analysis. Exclusion criteria were, case studies and reports and quasi experimental designs. This evaluation has optioned negative relationship between nuchal translucency and pregnancy result. Rate of cardiac, chromosomal and other defects are correlated with increased NT≥2.5mm. Cardiac disease which were associated to the increased NT are heart murmur, systolic organic murmur, Atrial Septal Defect (ASD), Ventricular Septal Defect (VSD), tricuspid valve insufficiency and pulmonary valve insufficiency, Inferior Vena Cava (IVC) and Patent Ductus Arteriosus (PDA). The most common problems that related with increased NT were allergic symptoms. According to this systematic review, increased NT is associated with various foetal defects. To verify the presence of malformations, birth defect consultations with a perinatologist and additional tests are required.
Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils
NASA Astrophysics Data System (ADS)
Mohapatra, J. N.; Chakradhar, I.; Rao, K. R. C.; Rao, V. V. L.; Kaza, Marutiram
2015-06-01
Weld quality evaluation was conducted on laser welded thin sectsions (2 mm) of hot-rolled (HR) low-carbon steel coils during cold rolling process. The analysis revealed that the poor welds consisting of the weld defects like incomplete fusion, cluster of porosity, and large difference in hardness between the weld zone and base metal were responsible for the weld failures. Experiments were conducted by varying the welding parameters; laser power and welding speed to optimize the parameters for minimizing the weld defects. The optimized weld process parameters have helped elimination of weld defects and the results are verified with microscopy and microhardness measurements. As destructive evaluation techniques are time consuming and not always permitted in industrial applications, attempts have been made in the present investigation for the utilization of suitable non-destructive techniques for the evaluation of weld quality. Non-destructive magnetic techniques of magnetic hysteresis loop and magnetic Barkhausen emissions were used in the present investigation to establish possible correlations of magnetic properties across the weld seam with the mechanical property (microhardness) for evaluation of weld quality. It is inferred that the magnetic properties of coercivity and inverse of root mean square voltage can be effectively utilized to determine weld quality in HR steel coils.
NASA Astrophysics Data System (ADS)
Parmar, Devendra
2006-04-01
Acoustic emission (AE) experiments were conducted on a strained aluminum (10 cm x 9 cm x 0.25 cm) specimen. Studies were conducted with the goal to characterize AE associated with material yield developed due to high loading and to correlate the course of the yield with AE signals. The American Association of State Highway and Transport Officials (AASHTO) listed aluminum as one of the structural components of highway brides^1 with unit weight of 2800 kg.m-3. The specimen, mounted on the load frame, was held on each end by the wedge grips and was electromechanically tested in a tension mode at rates of extension of 0.0333 mm/s and 0.0666 mm/s. Load was applied to the test frame via moving cross heads. A load transducer (load cell) mounted in series with the specimen measured the applied load by converting it into an electrical signal. Results are analyzed using defect zone model in which location of the defect is determined from the measurement of the arrival time of the signal at two different sensors placed at strategically around the source of emission from the test object. The sensor that detects the signal first is identified to be in the defect zone. ^1AASHTO LRFD Bridge Design Specifications, 1994.
Dynamic defect correlations dominate activated electronic transport in SrTiO3
Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac
2016-01-01
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503
Dynamic defect correlations dominate activated electronic transport in SrTiO 3
Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...
2016-07-22
Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less
Defects and Transport in Lithium Niobium Trioxide
NASA Astrophysics Data System (ADS)
Mehta, Apurva
1990-01-01
This dissertation presents work done on characterizing the defects and transport properties of congruent LiNbO _3. The focus of the study is the high temperature (800^circC to 1000^circC) equilibrium defect structure. The majority defects are described in terms of the 'LiNbO_3-ilmenite' defect model previously presented (26). Here the emphasis is placed on quantifying the defect concentrations. Congruent LiNbO_3 is highly nonstoichiometric. The large concentration of ionic defects present are mobile and contribute to electrical conduction. The ionic conduction was separated from the total conduction using defect chemistry and the transference number thus obtained was checked against the transference number obtained in a galvanic cell measurement. LiNbO_3 is an insulator (band gap = 4 eV). Hence one assumes that almost all of the conduction electrons are created by reduction. The degree of oxygen nonstoichiometry, a measure of the extent of chemical reduction, and the electron concentrations, were quantified as a function of oxygen partial pressure and the temperature by coulometric titration. The nonstoichiometry thus obtained was compared with nonstoichiometry obtained by TGA measurements. By fixing the phase composition of the sample in a buffered system, a set of constant composition measurements could be undertaken. These constant composition measurements were used to obtain the enthalpy of formation of conduction electrons, 1.95 eV, and the hopping energy for their motion at elevated temperatures, 0.55 eV, independently. The sum of the two energies was obtained by measuring the temperature dependence of the electronic conduction. The sum of the energies was found to be in excellent agreement with the energy obtained from equilibrium conduction. In conclusion, a quantitative and self-consistent picture of defects and their migration in LiNbO _3 was obtained.
Phonon Scattering in Silicon by Multiple Morphological Defects: A Multiscale Analysis
NASA Astrophysics Data System (ADS)
Lorenzi, Bruno; Dettori, Riccardo; Dunham, Marc T.; Melis, Claudio; Tonini, Rita; Colombo, Luciano; Sood, Aditya; Goodson, Kenneth E.; Narducci, Dario
2018-05-01
Ideal thermoelectric materials should possess low thermal conductivity κ along with high electrical conductivity σ . Thus, strategies are needed to impede the propagation of phonons mostly responsible for thermal conduction while only marginally affecting charge carrier diffusion. Defect engineering may provide tools to fulfill this aim, provided that one can achieve an adequate understanding of the role played by multiple morphological defects in scattering thermal energy carriers. In this paper, we study how various morphological defects such as grain boundaries and dispersed nanovoids reduce the thermal conductivity of silicon. A blended approach has been adopted, using data from both simulations and experiments in order to cover a wide range of defect densities. We show that the co-presence of morphological defects with different characteristic scattering length scales is effective in reducing the thermal conductivity. We also point out that non-gray models (i.e. models with spectral resolution) are required to improve the accuracy of predictive models explaining the dependence of κ on the density of morphological defects. Finally, the application of spectral models to Matthiessen's rule is critically addressed with the aim of arriving at a compact model of phonon scattering in highly defective materials showing that non-local descriptors would be needed to account for lattice distortion due to nanometric voids.
This Issue: Correlates of a Defective School.
ERIC Educational Resources Information Center
Gilman, David Alan
1992-01-01
Describes correlates of defective schools: perks for very few; faulty communication; adult-centered programs; special interest group indulgence; poor professional relationships; personnel warehousing; incompetent consultants; literal interpretation of technicalities; imperial leadership; intimate relationships among personnel; incoherent…
Silva, F W N; Costa, A L M T; Liu, Lei; Barros, E B
2016-11-04
The effects of edge vacancies on the electron transport properties of zigzag MoS2/WSe2 nanoribbons are studied using a density functional theory (DFT)-based tight-binding model with a sp(3)d(5) basis set for the electronic structure calculation and applying the Landauer-Büttiker approach for the electronic transport. Our results show that the presence of a single edge vacancy, with a missing MoS2/WSe2 triplet, is enough to suppress the conductance of the system by almost one half for most energies around the Fermi level. Furthermore, the presence of other single defects along the same edge has little effect on the overall conductance, indicating that the conductance of that particular edge has been strongly suppressed by the first defect. The presence of another defect on the opposite edge further suppresses the quantum conductance, independently of the relative position between the two defects in opposite edges. The introduction of other defects cause the suppression to be energy dependent, leading to conductance peaks which depend on the geometry of the edges. The strong conductance dependence on the presence of edge defects is corroborated by DFT calculations using SIESTA, which show that the electronic bands near the Fermi energy are strongly localized at the edge.
NASA Astrophysics Data System (ADS)
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2012-02-01
We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on TiO2-terminated SrTiO3(001) thin film surfaces. The conductance map exhibited electronic modulations that were completely different from the surface structure. We also found that the electronic modulations were strongly dependent on temperature and the density of atomic defects associated with oxygen vacancies. These results suggest the existence of strongly correlated two-dimensional electronic states near the SrTiO3 surface, implying the importance of electron correlation at the interfaces of SrTiO3-related heterostructures.
Method for localizing and isolating an errant process step
Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Ferrell, Regina K.
2003-01-01
A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.
Topological Defects in Liquid Crystals: Studying the Correlation between Defects and Curvature
NASA Astrophysics Data System (ADS)
Melton, Charles
2015-03-01
Topological defects have recently been the subject of many fascinating studies in soft condensed matter physics. In particular, linking the evolution of topological defects to curvature changes has been a focus, leading possible applications in the areas such as cosmetics, pharmaceuticals, and electronics. In this study, defects in nematic liquid crystal droplets are investigated via laboratory and theoretical techniques. Nematic liquid crystal defects are reproduced via Monte Carlo simulations using a modified 2D XY-Model Hamiltonian. The simulation is performed on a curved surface to replicate a nematic droplet and examine possible defect configurations. To complement this theoretical work, we have trapped nematic droplets inside a dual-beam optical trap. This system allows controllable non-contact droplet deformation on a microscope based platform. Future work will focus on using the trap to stretch nematic droplets, correlating the changing topological defects with theoretical predictions.
Eddy current technique for predicting burst pressure
Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.
2003-01-01
A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.
Thermal conductivity of graphene with defects induced by electron beam irradiation.
Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L; Mulchandani, Ashok; Lake, Roger K; Balandin, Alexander A
2016-08-14
We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2) the thermal conductivity decreases from ∼(1.8 ± 0.2) × 10(3) W mK(-1) to ∼(4.0 ± 0.2) × 10(2) W mK(-1) near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ∼400 W mK(-1). The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.
NASA Astrophysics Data System (ADS)
Si, Chao; Li, Liang; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai
2018-04-01
Graphene has received great attention due to its fascinating thermal properties. The inevitable defects in graphene, such as single vacancy, doping, and functional group, greatly affect the thermal conductivity. The sole effect of these defects on the thermal conductivity has been widely studied, while the mechanisms of the coupling effects are still open. We studied the combined effect of defects with N-doping, the -CH3 group, and single vacancy on the thermal conductivity of multi-layer graphene at various temperatures using equilibrium molecular dynamics with the Green-Kubo theory. The Taguchi orthogonal algorithm is used to evaluate the sensitivity of N-doping, the -CH3 group, and single vacancy. Sole factor analysis shows that the effect of single vacancy on thermal conductivity is always the strongest at 300 K, 700 K, and 1500 K. However, for the graphene with three defects, the single vacancy defect only plays a significant role in the thermal conductivity modification at 300 K and 700 K, while the -CH3 group dominates the thermal conductivity reduction at 1500 K. The phonon dispersion is calculated using a spectral energy density approach to explain such a temperature dependence. The combined effect of the three defects further decreases the thermal conductivity compared to any sole defect at both 300 K and 700 K. The weaker single vacancy effect is due to the stronger Umklapp scattering at 1500 K, at which the combined effect seriously covers almost all the energy gaps in the phonon dispersion relation, significantly reducing the phonon lifetimes. Therefore, the temperature dependence only appears on the multi-layer graphene with combined defects.
NASA Astrophysics Data System (ADS)
Schmidt, Rainer; Wu, J.; Leighton, C.; Terry, I.
2009-03-01
The dielectric and magnetic properties and their correlations were investigated in polycrystalline perovskite LaCoO3-δ . The intrinsic bulk and grain-boundary (GB) dielectric relaxation processes were deconvoluted using impedance spectroscopy between 20 and 120 K, and resistivity and capacitance were analyzed separately. A thermally induced magnetic transition from a Co3+ low-spin (LS) (S=0;t2g6eg0) to a higher spin state occurs at Ts1≈80K , which is controversial in nature and has been suggested to be an intermediate-spin (IS) state (S=1;t2g5eg1) or a high-spin (HS) state (S=2;t2g4eg2) transition. This spin state transition was confirmed by magnetic-susceptibility measurements and was reflected in the impedance by a split of the single GB relaxation process into two coexisting contributions. This apparent electronic phase coexistence at T>80K was interpreted as a reflection of the coexistence of magnetic LS and IS/HS states. At lower temperatures (T≤40K) perceptible variation in bulk dielectric permittivity with temperature appeared to be correlated with the magnetic susceptibility associated with a magnetic defect structure. At 40K
Influence of point defects on the thermal conductivity in FeSi
NASA Astrophysics Data System (ADS)
Stern, Robin; Wang, Tao; Carrete, Jesús; Mingo, Natalio; Madsen, Georg K. H.
2018-05-01
The unique transport properties of B20 FeSi have been investigated for decades. The progress in theoretical calculations allows the explanation and prediction of more and more of such properties. In this paper we investigate the lattice thermal conductivity of FeSi. Calculation for pristine FeSi severely overestimates the lattice thermal conductivity compared to experiment. We point out that the defect concentration can be considerably larger than indicated by the Hall coefficient. The defect formation energies are calculated and it is found that a substantial amount of iron vacancies can form at thermal equilibrium. These will lead to an increased phonon scattering. To explain the thermal conductivity of FeSi, we consider phonon-phonon, isotope, and phonon-defect scattering to assess possible scattering mechanisms. The calculated thermal conductivities indicate that phonon-defect scattering is important in order to explain the reported experimental values.
Basal-plane thermal conductivity of nanocrystalline and amorphized thin germanane
Coloyan, Gabriella; Cultrara, Nicholas D.; Katre, Ankita; ...
2016-09-30
Recently, we synthesized Germanane (GeH), a hydrogen-terminated layered germanium structure. We employed a four-probe thermal transport measurement method to obtain the basal-plane thermal conductivity of thin exfoliated GeH flakes and correlated the measurement results with the crystal structure. Furthermore, the obtained thermal conductivity increases with increasing temperature, suggesting that extrinsic grain boundary and defect scattering dominate intrinsic phonon-phonon scattering. Annealing a polycrystalline GeH sample at 195 C caused it to become amorphous, reducing the room-temperature thermal conductivity from 0.53± 0.03 W m -1 K -1, which is close to the value calculated for 3.3 nm grain size, to 0.29± 0.02more » W m -1 K -1, which approaches the calculated amorphous limit in the basal plane thermal conductivity.« less
Basal-plane thermal conductivity of nanocrystalline and amorphized thin germanane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coloyan, Gabriella; Cultrara, Nicholas D.; Katre, Ankita
Recently, we synthesized Germanane (GeH), a hydrogen-terminated layered germanium structure. We employed a four-probe thermal transport measurement method to obtain the basal-plane thermal conductivity of thin exfoliated GeH flakes and correlated the measurement results with the crystal structure. Furthermore, the obtained thermal conductivity increases with increasing temperature, suggesting that extrinsic grain boundary and defect scattering dominate intrinsic phonon-phonon scattering. Annealing a polycrystalline GeH sample at 195 C caused it to become amorphous, reducing the room-temperature thermal conductivity from 0.53± 0.03 W m -1 K -1, which is close to the value calculated for 3.3 nm grain size, to 0.29± 0.02more » W m -1 K -1, which approaches the calculated amorphous limit in the basal plane thermal conductivity.« less
Anti-resonance scattering at defect levels in the quantum conductance of a one-dimensional system
NASA Astrophysics Data System (ADS)
Sun, Z. Z.; Wang, Y. P.; Wang, X. R.
2002-03-01
For the ballistic quantum transport, the conductance of one channel is quantized to a value of 2e^2/h described by the Landauer formula. In the presence of defects, electrons will be scattered by these defects. Thus the conductance will deviate from the values of the quantized conductance. We show that an anti-resonance scattering can occur when an extra defect level is introduced into a conduction band. At the anti-resonance scattering, exact one quantum conductance is destroyed. The conductance takes a non-zero value when the Fermi energy is away from the anti-resonance scattering. The result is consistent with recent numerical calculations given by H. J. Choi et al. (Phys. Rev. Lett. 84, 2917(2000)) and P. L. McEuen et al. (Phys. Rev. Lett. 83, 5098(1999)).
Wolke, Julia; Herrmann, Diem Anh; Krannich, Alexander; Scheibel, Markus
2016-05-01
Recurrent anteroinferior shoulder dislocations are often associated with bony glenoid and humeral defects. The influence of those bony lesions on the postoperative outcomes after arthroscopic shoulder stabilization procedures has been the subject of many studies. Little is known about the influence of those lesions on preoperative function. To evaluate the influence of glenoid and humeral bony defects on preoperative shoulder function in recurrent anteroinferior shoulder instability. Cross-sectional study; Level of evidence, 3. Included in the study were 90 patients (70 men, 20 women; mean age, 27.1 years; 24 patients with prior failed stabilization) with posttraumatic recurrent anteroinferior shoulder instability who underwent preoperative computed tomography (CT) of both shoulders. The glenoid index was used to measure glenoid defect on a 3-dimensional CT. Humeral head defect was measured on a 2-dimensional CT with evaluation of the Hill-Sachs quotient, product, sum, and difference. Preoperative evaluation also included the Rowe score, Constant score, Walch-Duplay score, Melbourne Instability Shoulder Score (MISS), Western Ontario Shoulder Instability Index (WOSI), and Subjective Shoulder Value (SSV). There was a weak but significant correlation of the Hill-Sachs quotient and the glenoid index with the Rowe score (P = .03, r = -0.22 and P = .03, r = 0.23, respectively). Furthermore, the Hill-Sachs product significantly correlated with the WOSI (P = .02); in particular, the physical symptoms subscore showed a significant correlation (P = .04). The glenoid index showed a significant correlation with the SSV (P < .01). No significant correlation was found between the Walch-Duplay score, Constant score, or MISS and bony defects. The results of this study show that objective and subjective scoring systems correlate significantly with the clinical condition of patients with recurrent shoulder instability and associated bony defects. It is recommended that clinicians use the Rowe score, WOSI, and SSV for the clinical evaluation of patients with recurrent anteroinferior shoulder instability and associated bony defects. These evaluation systems may provide an early clinical indication of bony defects. Furthermore, very poor results on these evaluations could underline the necessity of a CT scan for the diagnosis of bony defects in recurrent shoulder instability and might be helpful for decision making concerning the indication of a CT. © 2016 The Author(s).
Enhanced thermoelectric performance of defected silicene nanoribbons
NASA Astrophysics Data System (ADS)
Zhao, W.; Guo, Z. X.; Zhang, Y.; Ding, J. W.; Zheng, X. J.
2016-02-01
Based on non-equilibrium Green's function method, we investigate the thermoelectric performance for both zigzag (ZSiNRs) and armchair (ASiNRs) silicene nanoribbons with central or edge defects. For perfect silicene nanoribbons (SiNRs), it is shown that with its width increasing, the maximum of ZT values (ZTM) decreases monotonously while the phononic thermal conductance increases linearly. For various types of edges and defects, with increasing defect numbers in longitudinal direction, ZTM increases monotonously while the phononic thermal conductance decreases. Comparing with ZSiNRs, defected ASiNRs possess higher thermoelectric performance due to higher Seebeck coefficient and lower thermal conductance. In particular, about 2.5 times enhancement to ZT values is obtained in ASiNRs with edge defects. Our theoretical simulations indicate that by controlling the type and number of defects, ZT values of SiNRs could be enhanced greatly which suggests their very appealing thermoelectric applications.
NASA Astrophysics Data System (ADS)
Roy, Rajarshi; Thapa, Ranjit; Chakrabarty, Soubhik; Jha, Arunava; Midya, Priyanka R.; Kumar, E. Mathan; Chattopadhyay, Kalyan K.
2017-06-01
Here we report, structural and electrical transport properties of reduced graphene oxide as a function of oxygen bonding configuration. We find that mainly epoxy (Csbnd Osbnd C) and carbonyl (Cdbnd O) functional groups remain as major residual components after reduction using three different reducing agents. We calculate the band structure in the presence of epoxy and carbonyl groups and defects. Finally, we calculate the theoretical band mobility and find that it is less for the carbonyl with epoxy system. We correlate the distortion of linear dispersion and opening of bandgap at K-point with conductance for different graphene system in presence of oxygen moieties.
Dong, Yan; Zhong, Zhao-hui; Li, Hong; Li, Jie; Wang, Ying-xiong; Peng, Bin; Zhang, Mao-zhong; Huang, Qiao; Yan, Ju; Xu, Fei-long
2013-10-01
To explore the correlation between the incidence of birth defects and the contents of soil elements so as to provide a scientific basis for screening the related pathogenic factors that inducing birth defects for the development of related preventive and control strategies. MapInfo 7.0 software was used to draw the maps on spatial distribution regarding the incidence rates of birth defects and the contents of 11 chemical elements in soil in the 33 studied areas. Variables on the two maps were superposed for analyzing the spatial correlation. SAS 8.0 software was used to analyze single factor, multi-factors and principal components as well as to comprehensively evaluate the degrees of relevance. Different incidence rates of birth defects showed in the maps of spatial distribution presented certain degrees of negative correlation with anomalies of soil chemical elements, including copper, chrome, iodine, selenium, zinc while positively correlated with the levels of lead. Results from the principal component regression equation indicating that the contents of copper(0.002), arsenic(-0.07), cadmium(0.05), chrome (-0.001), zinc (0.001), iodine(-0.03), lead (0.08), fluorine(-0.002)might serve as important factors that related to the prevalence of birth defects. Through the study on spatial distribution, we noticed that the incidence rates of birth defects were related to the contents of copper, chrome, iodine, selenium, zinc, lead in soil while the contents of chrome, iodine and lead might lead to the occurrence of birth defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuckelberger, Michael; Nietzold, Tara; Hall, Genevieve N.
Unveiling the correlation between elemental composition, Fermi-level splitting, and charge collection in perovskite solar cells (PSCs) when exposed to different environments is crucial to understanding the origin of defects. This will enable defect engineering to achieve high-performance and long-lasting PSCs. Here, in this paper, we measured, for the first time, the spatial distribution and charge-collection efficiency at the nanoscale by synchrotron-based X-ray fluorescence (XRF) and X-ray beam-induced current (XBIC) with subgrain resolution, and we observe a correlation between Pb/I ratio and charge-collection efficiency. In contrast with other thin-film solar cells, PSCs are highly sensitive to ambient conditions (atmosphere and illumination).more » As the XRF and XBIC measurements were conducted in vacuum under an X-ray source illumination, the impact of measurement conditions on the cells needs to be taken into account. Furthermore, necessary conditions for quantification of XRF/XBIC measurements, such as film homogeneity, are not fulfilled in the case of PSCs. Finally, we will discuss fundamentals of XRF/XBIC measurements of PSCs that will enable reliable, quantitative, high-resolution measurements of elemental distribution and charge collection.« less
Jeon, WooTaek; Hong, ChangHyung; Lee, ChangHo; Kim, Dong Kee; Han, Mooyoung; Min, SungKil
2005-04-01
The number of North Korean defectors entering South Korea has been increasing rapidly since 1994. Two hundred North Korean defectors in South Korea were studied to identify their experiences of traumatic events in North Korea and during defection, and the correlation with Posttraumatic Stress Disorder (PTSD). Researchers conducted face-to-face interviews and assisted defectors in performing a self-report assessment of this survey. The study questionnaire consisted of demographic characteristics, the Traumatic Experiences Scale for North Korean Defectors, and the PTSD part of the Structured Clinical Interview for DSM-III-R Korean version. Prevalence rate of PTSD in defectors was 29.5%, with a higher rate for women. In factor analysis, the 25 items of traumatic events experienced in North Korea were divided into three factors: Physical Trauma, Political-Ideological Trauma, and Family-Related Trauma. In addition, the 19 items of traumatic events during defection were grouped into four factors: Physical Trauma, Detection and Capture-Related Trauma, Family-Related Trauma, and Betrayal-Related Trauma. In multifactorial logistic regression analysis, Family-Related Trauma in North Korea had a significant odds ratio.
Templates Aid Removal Of Defects From Castings
NASA Technical Reports Server (NTRS)
Hendrickson, Robert G.
1992-01-01
Templates used to correlate defects in castings with local wall thicknesses. Placed on part to be inspected after coated with penetrant dye. Positions of colored spots (indicative of defects) noted. Ultrasonic inspector measures thickness of wall at unacceptable defects only - overall inspection not necessary.
NASA Astrophysics Data System (ADS)
Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto
2017-08-01
The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.
NASA Astrophysics Data System (ADS)
Wiedigen, S.; Kramer, T.; Feuchter, M.; Knorr, I.; Nee, N.; Hoffmann, J.; Kamlah, M.; Volkert, C. A.; Jooss, Ch.
2012-02-01
Separating out effects of point defects and lattice strain on thermal conductivity is essential for improvement of thermoelectric properties of SrTiO3. We study relations between defects generated during deposition, induced lattice strain, and their impact on thermal conductivity κ in homoepitaxial SrTiO3 films prepared by ion-beam sputtering. Lowering the deposition temperature gives rise to lattice expansion by enhancement of point defect density which increases the hardness of the films. Due to a fully coherent substrate-film interface, the lattice misfit induces a large biaxial strain. However, we can show that the temperature dependence of κ is mainly sensitive on the defect concentration.
Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors
NASA Astrophysics Data System (ADS)
Peaker, A. R.; Markevich, V. P.; Coutinho, J.
2018-04-01
The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.
Magnetoencephalography signals are influenced by skull defects.
Lau, S; Flemming, L; Haueisen, J
2014-08-01
Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Zhang, Jian; Su, Jie; Hu, Shuxiang; Zhang, Jindun; Ding, Rui; Guo, Jitong; Cao, Guifang; Li, Rongfeng; Sun, Qing-Yuan; Li, Xihe
2018-05-01
Ubiquitination is an important cellular process in spermatogenesis and involves the regulation of spermatid differentiation and spermiogenesis. In the current study, the correlation between bull sperm ubiquitination and sperm defects was analyzed, and the feasibility using anti-ubiquitin specific antibody immobilized magnetic beads to remove the spermatozoa with defects was assessed. A total of nine bulls were examined, and the amount of sperm ubiquitination ranged from 55 to 151. Correspondingly, the percentage of sperm deformity ranged from 9.3% to 28.1%. The coefficient of correlation was r = 0.92, indicating a significant correlation between the percentage of sperm deformity and the amount of ubiquitination (P < 0.05). The results from use of fluorescence staining and single-channel flow cytometry indicated there was a significant correlation between the sperm deformity and amount of ubiquitination (r = 0.86, P < 0.05). Results gained by use of the TUNEL and ubiquitination assays by double-channel flow cytometry indicated that the proportion of genetically defective spermatozoa with ubiquitination in Q3 and Q2 quartiles was markedly greater than that of spermatozoa with ubiquitination in Q1 and Q4 quartiles (82.1% compared with 17.9%). All these results confirmed that sperm ubiquitination is associated with genetic DNA defects (P < 0.01). Furthermore, nine semen samples with sperm motility of less than 50% (minimal motility), 50% to 70% (moderate motility) and greater than 70% (greatest motility) were selected for sorting defective spermatozoa using anti-ubiquitin specific antibody-coated magnetic beads. Strikingly, the percentage of sperm deformity significantly decreased from 18.8%, 19.0% and 17.1% to 11.7%, 11.0% and 11.0%, respectively (P < 0.05), suggesting that this method might be a feasible technology to improve the productivity via removal of the defective spermatozoa from bull semen. Copyright © 2018 Elsevier B.V. All rights reserved.
Phonon-defect scattering and thermal transport in semiconductors: developing guiding principles
NASA Astrophysics Data System (ADS)
Polanco, Carlos; Lindsay, Lucas
First principles calculations of thermal conductivity have shown remarkable agreement with measurements for high-quality crystals. Nevertheless, most materials contain defects that provide significant extrinsic resistance and lower the conductivity from that of a perfect sample. This effect is usually accounted for with simplified analytical models that neglect the atomistic details of the defect and the exact dynamical properties of the system, which limits prediction capabilities. Recently, a method based on Greens functions was developed to calculate the phonon-defect scattering rates from first principles. This method has shown the important role of point defects in determining thermal transport in diamond and boron arsenide, two competitors for the highest bulk thermal conductivity. Here, we study the role of point defects on other relatively high thermal conductivity semiconductors, e.g., BN, BeSe, SiC, GaN and Si. We compare their first principles defect-phonon scattering rates and effects on transport properties with those from simplified models and explore common principles that determine these. Efforts will focus on basic vibrational properties that vary from system to system, such as density of states, interatomic force constants and defect deformation. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.
Positive holes in magnesium oxide - Correlation between magnetic, electric, and dielectric anomalies
NASA Technical Reports Server (NTRS)
Batllo, F.; Leroy, R. C.; Parvin, K.; Freund, F.; Freund, M. M.
1991-01-01
The present magnetic susceptibility investigation of high purity MgO single crystals notes an anomally at 800 K which is associated with increasing electrical conductivity, a rise in static dielectric constant from 9 to 150, and the appearance of a pronounced positive surface charge. These phenomena can be accounted for in terms of peroxy defects which represent self-trapped, spin-paired positive holes at Mg(2+) vacancy sites. The holes begin to decouple their spins above 600 K.
Kim, Do Yun; Hänni, Simon; Schüttauf, Jan-Willem; van Swaaij, René A C M M; Zeman, Miro
2016-08-17
Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Voc and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130° (ρ<130). This ρ<130 is subsequently compared with the solar-cell performance and the defect density of i-nc-Si:H (ρdefect), which is obtained by fitting external photovoltaic parameters from experimental results and simulations. We confirm that when ρ<130 increases the Voc and FF significantly drops. It is also observed that ρdefect increases following a power law dependence of ρ<130. This result is attributed to more frequently formed defective regions for substrates having higher ρ<130.
NASA Astrophysics Data System (ADS)
El-Azhari, O. A.; Gajam, S. Y.
2015-03-01
The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.
Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects
Liu, Ying; Hu, Chongze; Huang, Jingsong; ...
2015-06-23
Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. Wemore » show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.« less
NASA Technical Reports Server (NTRS)
Porter, W. A.; Mckee, W. R.
1974-01-01
An overview of major causes of device yield degradation is presented. The relationships of device types to critical processes and typical defects are discussed, and the influence of the defect on device yield and performance is demonstrated. Various defect characterization techniques are described and applied. A correlation of device failure, defect type, and cause of defect is presented in tabular form with accompanying illustrations.
Defect engineering of the electronic transport through cuprous oxide interlayers
NASA Astrophysics Data System (ADS)
Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo
2016-06-01
The electronic transport through Au-(Cu2O)n-Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.
Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens
2016-01-01
Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044
Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications
NASA Astrophysics Data System (ADS)
Suh, Joonki
Recent advances in material science and semiconductor processing have been achieved largely based on in-depth understanding, efficient management and advanced application of point defects in host semiconductors, thus finding the relevant techniques such as doping and defect engineering as a traditional scientific and technological solution. Meanwhile, two- dimensional (2D) layered semiconductors currently draw tremendous attentions due to industrial needs and their rich physics at the nanoscale; as we approach the end of critical device dimensions in silicon-based technology, ultra-thin semiconductors have the potential as next- generation channel materials, and new physics also emerges at such reduced dimensions where confinement of electrons, phonons, and other quasi-particles is significant. It is therefore rewarding and interesting to understand and redefine the impact of lattice defects by investigating their interactions with energy/charge carriers of the host matter. Potentially, the established understanding will provide unprecedented opportunities for realizing new functionalities and enhancing the performance of energy harvesting and optoelectronic devices. In this thesis, multiple novel 2D layered semiconductors, such as bismuth and transition- metal chalcogenides, are explored. Following an introduction of conventional effects induced by point defects in semiconductors, the related physics of electronically active amphoteric defects is revisited in greater details. This can elucidate the complication of a two-dimensional electron gas coexisting with the topological states on the surface of bismuth chalcogenides, recently suggested as topological insulators. Therefore, native point defects are still one of the keys to understand and exploit topological insulators. In addition to from a fundamental science point of view, the effects of point defects on the integrated thermal-electrical transport, as well as the entropy-transporting process in thermoelectric materials are thoroughly investigated. Point defects can potentially beat the undesired coupling, often term "thermoelectric Bermuda triangle", among electrical conductivity, thermal conductivity and thermopower. The maximum thermoelectric performance is demonstrated with an intermediate density of defects when they beneficially and multi-functionally act as electron donors, as well as strongly energy-dependent electron and phonon scatterers. Therefore, this is a good example of how fundamental defect physics can be applied for practical devices toward renewable energy technology. Another interesting field of layered nanomaterials is on transition-metal dichalcogenides (TMDs), sensational candidates for 2D semiconductor physics and applications. At the reduced dimensionality of 2D where a far stronger correlation between point defects and charge carriers is expected, it is studied how chalcogen vacancies alter optical properties of monolayer TMDs. A new, sub-bandgap broad emission lines as well as increase in the overall photoluminescence intensity at low temperatures are reported as a result of high quantum efficiency of excitons, i.e., bound electron-hole pairs, localized at defect sites. On electrical transport, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction while typically only one type of doping is stable for a particular TMD. For example, MoS2 is natively n-type, thus the lack of p-type doping hampers the development of charge-splitting p-n junctions of MoS2. To address this issue, we demonstrate stable p-type conduction in MoS2 by substitutional Nb doping up to the degenerate level. Proof-of-concept, van der Waals p-n homo-junctions based on vertically stacked MoS2 layers are also fabricated which enable gate-tuneable current rectification. Various electronic devices fabricated are stable in ambient air even without additional treatment such as capping layer protection, thanks to the substitutionality nature of the doping; this is in stark contrast to the existing approach of using molecular doping, which usually suffers from volatility and reactivity with air and/or water molecules.
Martinerie, Laetitia; Pussard, Eric; Yousef, Nadya; Cosson, Claudine; Lema, Ingrid; Husseini, Khaled; Mur, Sébastien; Lombès, Marc; Boileau, Pascal
2015-11-01
The neonatal period, notably in preterm infants, is characterized by high sodium wasting, implying that aldosterone, the main hormone regulating sodium reabsorption, is unable to maintain sodium homeostasis. This study sought to assess aldosterone secretion and action in neonates according to gestational age (GA). This was a multicenter prospective study (NCT01176162) conducted between 2011 and 2014 at five neonatology departments in France. Infants were followed during their first 3 months. The 155 newborns included were classified into three groups: Group 1 (n = 46 patients), <33 gestational weeks (GW); Group 2 (n = 67 patients), 33-36 GW; and Group 3 (n = 42 patients), ≥37 GW. Plasma aldosterone was measured in umbilical cord blood. Urinary aldosterone (UAldo) was assessed at day 0, day 3, month 1, and month 3 postnatal. The correlation between UAldo and the urinary Na/K ratio was determined as an index of renal aldosterone sensitivity. UAldo significantly increased with GA: from 8.8 ± 7.5 μg/mmol of creatinine (Group 1) to 21.1 ± 21.0 (Group 3) in correlation with plasma aldosterone levels in all groups (P < .001), demonstrating its reliability. The aldosterone/renin ratio significantly increased with GA, suggesting an aldosterone secretion defect in preterm infants. UAldo and urinary Na/K were correlated in very preterm but not in term neonates, consistent with very preterm neonates being renal-aldosterone sensitive and term neonates being aldosterone resistant. Very preterm infants have a previously unrecognized defective aldosterone secretion but conserved renal aldosterone sensitivity in the neonatal period, which modifies the current view of sodium balance in these infants and suggests alternative management approaches.
Computational modeling of properties
NASA Technical Reports Server (NTRS)
Franz, Judy R.
1994-01-01
A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wise-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid II-VI semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.
Computational modeling of properties
NASA Technical Reports Server (NTRS)
Franz, Judy R.
1994-01-01
A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wide-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid 2-6 semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.
Cystic fibrosis gene expression is not correlated with rectifying Cl sup minus channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.L.; Krouse, M.E.; Kopito, R.R.
1991-06-15
Cystic fibrosis (CF) involves a profound reduction of Cl{sup {minus}} permeability in several exocrine tissues. A distinctive, outwardly rectifying, depolarization-induced Cl{sup {minus}} channel (ORDIC channel) has been proposed to account for the Cl{sup {minus}} conductance that is defective in CF. The recently identified CF gene is predicted to code for a 1480-amino acid integral membrane protein termed the CF transmembrane conductance regulator (CFTR). The CFTR shares sequence similarity with a superfamily of ATP-binding membrane transport proteins such as P-glycoprotein and STE6, but it also has features consistent with an ion channel function. It has been proposed that the CFTR mightmore » be an ORDIC channel. To determine if CFTR and ORDIC channel expression are correlated, the authors surveyed various cell lines for natural variation in CFTR and ORDIC channel expression. In four human epithelial cell lines (T84, CaCo2, PANC-1, and 9HTEo-/S) that encompass the full observed range of CFTR mRNA levels and ORDIC channel density the authors found no correlation.« less
Influence of defects on the thermal conductivity of compressed LiF
Jones, R. E.; Ward, D. K.
2018-02-08
We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less
Influence of defects on the thermal conductivity of compressed LiF
NASA Astrophysics Data System (ADS)
Jones, R. E.; Ward, D. K.
2018-02-01
Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.
Influence of defects on the thermal conductivity of compressed LiF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R. E.; Ward, D. K.
We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less
Structure and Properties of Al and Ga- Doped ZnO
NASA Astrophysics Data System (ADS)
Temizer, Namik Kemal
Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior. Micro-structural, transport, optical and magnetic properties in ZnGa0.002Al 0.02O films grown by pulsed laser deposition under different growth conditions was studied. In ZnO films grown at substrate temperatures of 600°C most interesting features are the concomitant occurrence of high temperature resistivity minima and room temperature ferromagnetism with a high saturation magnetic moment and considerable coercivity. The temperature dependent resistivity data has been interpreted in the light of quantum corrections to conductivity in disordered systems, suggesting that the e-e interactions is the dominant mechanism in the weak-localization (WL) limit in the case of films showing resistivity minima. We propose that formation of oxygen vacancy-Zinc interstitial defect complex (VO-IZn) is responsible for the enhancement in n-type conductivity, and zinc vacancies (VZn) for the observed room temperature ferromagnetism. ZnO nanostructures are gaining importance in various applications, from gas sensing to thin film transistors (TFTs). We have studied the micro-structural, transport, optical and magnetic properties in ZnO nanostructured films grown by pulsed laser deposition under different ambient conditions. We have investigated the nanostructures in detail through x-ray diffraction, SEM and TEM techniques. We have achieved relatively low room temperature resistivity and the occurrence of room temperature ferromagnetism with significant saturation magnetic moment of 1000 A/m with coercivity in the range of 100-150 Oe. Photoluminescence measurements were conducted to get an insight about the types of defects that occur under different growth conditions. Correlations between transport, optical and magnetic properties has been established in terms of these defects and their complexes. These nanostructured oxides with magnetic and optical properties are promising candidates in multifunctional spintronic and photonic devices.
Significance of ERa and c-Src Interaction in the Progression of Hormone Independent Breast Cancer
2005-12-01
defects in estrogen signaling [1]. Because of global defects in estrogen signaling observed in these c-Src deficient mice, we have recently generated...1998). Interestingly, the region of the kinase domain of ErbB-2 that correlates with c-Src association, referred to as TK2 (Segatto et al., 1991...ductive organs that are dependent on ERa in c-Src- deficient mice. We show that the loss of the c-Src tyrosine kinase correlates with defects in ductal
NASA Technical Reports Server (NTRS)
Han, J.; Liu, M.-C..; Keller, L. P.; Davis, A. M.
2017-01-01
Introduction: Hibonite is a primary refractory phase occurring in many CAIs, typically with spinel and perovskite. Our microstructural studies of CAIs from carbonaceous chondrites reveal a range of stacking defect densities and correlated non-stoichiometry in hibonite. We also conducted a series of annealing experiments, demonstrating that the Mg-Al substitution stabilized the formation of defect-structured hibonite. Here, we continue a detailed TEM analysis of hibonite-bearing inclusions from CM chondrites that have been well-characterized isotopically. We examine possible correlations of microstructure, morphology, mineralogy, and chemical and isotopic systematics of CM hibonites in order to better understand the formation history of hibonite in the early solar nebula. Methods: Fifteen hibonite-bearing inclusions from the Paris CM chondrite were analyzed using a JEOL 7600F SEM and a JEOL 8530F electron microprobe. In addition to three hibonite-bearing inclusions from the Murchison CM chondrite previously reported, we selected three inclusions from Paris, Pmt1-6, 1-9, and 1-10, representing a range of 26Al/27Al ratios and minor element concentrations for a detailed TEM study. We extracted TEM sections from hibonite grains using a FEI Quanta 3D field emission gun SEM/FIB. The sections were then examined using a JEOL 2500SE field-emission scanning TEM equipped with a Thermo-Noran thin window EDX spectrometer. Results and Discussion: A total of six hibonite-bearing inclusions, including two platy hibonite crystals (PLACs) and four spinel-hibonite inclusions (SHIBs), were studied. There are notable differences in chemical and isotopic compositions between the inclusions (Table 1), indicative of their different formation environment or timing. Our TEM observations show perfectly-ordered, stoichiometric hibonite crystals without stacking defects in two PLACs, 2-7-1 and 2-8-2, and in three SHIBs, Pmt1-6, 1-9, and 1-10. In contrast, SHIB 1-9-5 hibonite grains contain a low density of stacking defects linked to an increase in MgO contents, indicating complex, disordered intergrowths of stoichiometric and MgO-enriched hibonites. From the data collected to date, we find no clear correlation between the microstructures of hibonite and its morphological and mineralogical types that reflect distinct chemical and isotopic systematics [6-8,10]. Interestingly, the presence of no or few stacking defects in hibonite from the PLACs and SHIBs are in contrast to our experimental studies that produced very high densities of stacking defects in hibonite [3-5]. Unlike our experi-ments, electron microprobe data from the PLACs and SHIBs hibonite grains show a strong correlation between (Ti4++Si4+) and Mg2+ cations, suggesting that coupled substitutions of (Ti4++Mg2+) and (Si4++Mg2+) for 2Al3+ inhibit the formation of defect-structured hibonite. However, our experimental studies suggest that kinetics (e.g., cooling rate) or other thermal effects also exert a strong control on the microstructures and chemical compositions of hibonite. In Pmt1-6, elongated perovskite grains present at the hibonite grain boundaries display (121) twinning, indicative of a fast cooling (>50degC/min) after high-temperature events. Therefore, the nebular microstructural characteristics of hibonite, at least in this inclusion, would not have destroyed by subsequent high-temperature annealing. Conclusions: Our TEM observations thus far show no clear correlation in microstructures, morphological and mineralogical characteristics, and chemical and isotopic systematics of hibonites from CM chondrites. The observed variation in stacking defect densities in the hibonites may be controlled by thermal processes in the early solar nebula. A detailed TEM analysis of additional CM hibonite samples is underway to evaluate this hypothesis.
Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G
2015-12-01
The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Dorn, D.
2012-06-01
Photoluminescence (PL) imaging techniques can be applied to multicrystalline silicon wafers throughout the manufacturing process. Both band-to-band PL and defect-band emissions, which are longer-wavelength emissions from sub-bandgap transitions, are used to characterize wafer quality and defect content on starting multicrystalline silicon wafers and neighboring wafers processed at each step through completion of finished cells. Both PL imaging techniques spatially highlight defect regions that represent dislocations and defect clusters. The relative intensities of these imaged defect regions change with processing. Band-to-band PL on wafers in the later steps of processing shows good correlation to cell quality and performance. The defect bandmore » images show regions that change relative intensity through processing, and better correlation to cell efficiency and reverse-bias breakdown is more evident at the starting wafer stage as opposed to later process steps. We show that thermal processing in the 200 degrees - 400 degrees C range causes impurities to diffuse to different defect regions, changing their relative defect band emissions.« less
Concentration and Mobility of Electrically-Conducting Defects in Olivine
NASA Astrophysics Data System (ADS)
Constable, S.; Roberts, J.; Duba, A.
2002-12-01
We have collected measurements of electrical conductivity and thermopower as a function of temperature and oxygen fugacity (f O2) on a sample of San Quintin dunite (95% olivine), and measurements of electrical conductivity equilibration after changes in f O2 on Mt.Porndon lherzolite (65% olivine). Both data sets have been analysed using nonlinear parameter inversion of mathematical models relating conductivity, thermopower, and diffusion kinetics to temperature, f O2, time, and defect concentration and mobility. From the dunite thermopower/conductivity data we are able to estimate the concentration and mobilities of electrically conducting defects. Our model allows electrons, small polarons (Fe+++ on Fe++ sites), and magnesium vacancies (V'' Mg) to contribute to conduction, but only polarons and V'' Mg are required by our data. Polarons dominate conduction below 1300°~C; at this temperature conduction, is equal for the two defects at all f O2 tested. Thermopower measurements allow us to estimate defect concentration independently from mobility, and so we can back out polaron mobility as 12.2x 10-6 exp(-1.05~eV/kT) m2V-1s-1 and magnesium vacancy mobility as 2.72x 10-6 exp(-1.09~eV/kT) m2V-1s-1. Electrical conductivity of the lherzolite, measured as a function of time after changes in the oxygen fugacity of the surrounding CO2/CO atmosphere, is used to infer the diffusivity of the point defects associated with the oxidation reactions. An observed f O2 dependence in the time constants associated with equilibration implies two species of fixed diffusivity, each with f O2-dependent concentrations. Although the rate-limiting step may not necessarily be associated with conducting defects, when time constants are converted to mobilities, the magnitudes and activation energies agree extremely well with the model presented above for the dunite, after one free parameter (effective grain size) is fit at a plausible 1.6~mm diameter. Not only does this study represent one of the few direct measurements of polaron mobility, but the very good agreement between two independent measurement techniques (thermopower versus equilibration kinetics) and two independent samples (dunite versus lherzolite) provides some level of confidence in the results. We are currently extending these modeling techniques to study olivine defect mobility anisotropy.
Defect control of conventional and anomalous electron transport at complex oxide interfaces
Gunkel, F.; Bell, Chris; Inoue, Hisashi; ...
2016-08-30
Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO 3/SrTiO 3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K. Considering these two sources of nonlinearity, we suggest a phenomenological modelmore » capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. In conclusion, the most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.« less
NASA Technical Reports Server (NTRS)
Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.
1999-01-01
One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.
Repairing Nanoparticle Surface Defects.
Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter
2017-10-23
Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Shevah, O; Kornreich, L; Galatzer, A; Laron, Z
2005-12-01
The correlation between the molecular defects of the GH receptor (R), psychosocial development and brain abnormalities were evaluated in 10 patients with Laron syndrome (LS), in whom all data were available. The findings revealed that the intelligence quotient (IQ) and abnormalities in the brain of the patients with LS differ with various molecular defects of the GH-receptor. The most severe mental deficits and brain pathology occurred in patients with 3, 5, 6 exon deletion. Patients with point mutations in exons 2, 4 and 7 presented various degrees of medium to mild CNS abnormalities that correlated with the IQ. Notably, the patient with the E180 splice mutation in exon 6 had a normal IQ, which fits the report on normal IQ in a large Ecuadorian cohort with the same mutation. This is the first report to support a correlation between IQ, brain abnormalities and localization of the molecular defects in the GH-R gene. As all patients with LS are IGF-I-deficient, it must be assumed that other as yet unknown factors related to the molecular defects in the GH-R are the major cause of the differences in intellect and brain abnormalities.
Validation of an internal hardwood log defect prediction model
R. Edward Thomas
2011-01-01
The type, size, and location of internal defects dictate the grade and value of lumber sawn from hardwood logs. However, acquiring internal defect knowledge with x-ray/computed-tomography or magnetic-resonance imaging technology can be expensive both in time and cost. An alternative approach uses prediction models based on correlations among external defect indicators...
González, Gabriela B.
2012-01-01
Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010
Charge Collection in Hybrid Perovskite Solar Cells: Relation to the Nanoscale Elemental Distribution
Stuckelberger, Michael; Nietzold, Tara; Hall, Genevieve N.; ...
2016-12-19
Unveiling the correlation between elemental composition, Fermi-level splitting, and charge collection in perovskite solar cells (PSCs) when exposed to different environments is crucial to understanding the origin of defects. This will enable defect engineering to achieve high-performance and long-lasting PSCs. Here, in this paper, we measured, for the first time, the spatial distribution and charge-collection efficiency at the nanoscale by synchrotron-based X-ray fluorescence (XRF) and X-ray beam-induced current (XBIC) with subgrain resolution, and we observe a correlation between Pb/I ratio and charge-collection efficiency. In contrast with other thin-film solar cells, PSCs are highly sensitive to ambient conditions (atmosphere and illumination).more » As the XRF and XBIC measurements were conducted in vacuum under an X-ray source illumination, the impact of measurement conditions on the cells needs to be taken into account. Furthermore, necessary conditions for quantification of XRF/XBIC measurements, such as film homogeneity, are not fulfilled in the case of PSCs. Finally, we will discuss fundamentals of XRF/XBIC measurements of PSCs that will enable reliable, quantitative, high-resolution measurements of elemental distribution and charge collection.« less
NASA Astrophysics Data System (ADS)
Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.
2017-09-01
We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.
NASA Astrophysics Data System (ADS)
Pan, Jie; Cheng, Yang-Tse; Qi, Yue
2015-04-01
Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative electrodes. Our results provide an understanding of the influence of the environment on defect formation and demonstrate a linkage between defect concentration in a solid electrolyte and the voltage of the electrode.
Automated Defect and Correlation Length Analysis of Block Copolymer Thin Film Nanopatterns
Murphy, Jeffrey N.; Harris, Kenneth D.; Buriak, Jillian M.
2015-01-01
Line patterns produced by lamellae- and cylinder-forming block copolymer (BCP) thin films are of widespread interest for their potential to enable nanoscale patterning over large areas. In order for such patterning methods to effectively integrate with current technologies, the resulting patterns need to have low defect densities, and be produced in a short timescale. To understand whether a given polymer or annealing method might potentially meet such challenges, it is necessary to examine the evolution of defects. Unfortunately, few tools are readily available to researchers, particularly those engaged in the synthesis and design of new polymeric systems with the potential for patterning, to measure defects in such line patterns. To this end, we present an image analysis tool, which we have developed and made available, to measure the characteristics of such patterns in an automated fashion. Additionally we apply the tool to six cylinder-forming polystyrene-block-poly(2-vinylpyridine) polymers thermally annealed to explore the relationship between the size of each polymer and measured characteristics including line period, line-width, defect density, line-edge roughness (LER), line-width roughness (LWR), and correlation length. Finally, we explore the line-edge roughness, line-width roughness, defect density, and correlation length as a function of the image area sampled to determine each in a more rigorous fashion. PMID:26207990
Effect of Grain Refining on Defect Formation in DC Cast Al-Zn-Mg-Cu Alloy Billet
NASA Astrophysics Data System (ADS)
Nadella, Ravi; Eskin, Dmitry; Katgerman, Laurens
In direct chill (DC) casting, the effect of grain refining on the prominent defects such as hot cracking and macrosegregation remains poorly understood, especially for multi-component commercial aluminum alloys. In this work, DC casting experiments were conducted on a 7075 alloy with and without grain refining at two casting speeds. The grain refiner was introduced either in the launder or in the furnace. The concentration profiles of Zn, Cu and Mg, measured along the billet diameter, showed that the increasing casting speed raises the segregation levels but grain refining does not seem to have a noticeable effect. However, hot cracking tendency is significantly reduced with grain refining and it is observed that crack is terminated with the introduction of grain refiner at a lower casting speed. These experimental results are correlated with microstructural observations such as grain size and morphology, and the occurrence of floating grains.
Correlating electronic transport to atomic structures in self-assembled quantum wires.
Qin, Shengyong; Kim, Tae-Hwan; Zhang, Yanning; Ouyang, Wenjie; Weitering, Hanno H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruqian; Li, An-Ping
2012-02-08
Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi(2) are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale. © 2012 American Chemical Society
Eddy current characterization of small cracks using least square support vector machine
NASA Astrophysics Data System (ADS)
Chelabi, M.; Hacib, T.; Le Bihan, Y.; Ikhlef, N.; Boughedda, H.; Mekideche, M. R.
2016-04-01
Eddy current (EC) sensors are used for non-destructive testing since they are able to probe conductive materials. Despite being a conventional technique for defect detection and localization, the main weakness of this technique is that defect characterization, of the exact determination of the shape and dimension, is still a question to be answered. In this work, we demonstrate the capability of small crack sizing using signals acquired from an EC sensor. We report our effort to develop a systematic approach to estimate the size of rectangular and thin defects (length and depth) in a conductive plate. The achieved approach by the novel combination of a finite element method (FEM) with a statistical learning method is called least square support vector machines (LS-SVM). First, we use the FEM to design the forward problem. Next, an algorithm is used to find an adaptive database. Finally, the LS-SVM is used to solve the inverse problems, creating polynomial functions able to approximate the correlation between the crack dimension and the signal picked up from the EC sensor. Several methods are used to find the parameters of the LS-SVM. In this study, the particle swarm optimization (PSO) and genetic algorithm (GA) are proposed for tuning the LS-SVM. The results of the design and the inversions were compared to both simulated and experimental data, with accuracy experimentally verified. These suggested results prove the applicability of the presented approach.
The capability of lithography simulation based on MVM-SEM® system
NASA Astrophysics Data System (ADS)
Yoshikawa, Shingo; Fujii, Nobuaki; Kanno, Koichi; Imai, Hidemichi; Hayano, Katsuya; Miyashita, Hiroyuki; Shida, Soichi; Murakawa, Tsutomu; Kuribara, Masayuki; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hara, Daisuke; Pang, Linyong
2015-10-01
The 1Xnm technology node lithography is using SMO-ILT, NTD or more complex pattern. Therefore in mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask feature. One key Technology of mask manufacture is defect verification to use aerial image simulator or other printability simulation. AIMS™ Technology is excellent correlation for the wafer and standards tool for defect verification however it is difficult for verification over hundred numbers or more. We reported capability of defect verification based on lithography simulation with a SEM system that architecture and software is excellent correlation for simple line and space.[1] In this paper, we use a SEM system for the next generation combined with a lithography simulation tool for SMO-ILT, NTD and other complex pattern lithography. Furthermore we will use three dimension (3D) lithography simulation based on Multi Vision Metrology SEM system. Finally, we will confirm the performance of the 2D and 3D lithography simulation based on SEM system for a photomask verification.
Exact results for quench dynamics and defect production in a two-dimensional model.
Sengupta, K; Sen, Diptiman; Mondal, Shreyoshi
2008-02-22
We show that for a d-dimensional model in which a quench with a rate tau(-1) takes the system across a (d-m)-dimensional critical surface, the defect density scales as n approximately 1/tau(mnu/(znu+1)), where nu and z are the correlation length and dynamical critical exponents characterizing the critical surface. We explicitly demonstrate that the Kitaev model provides an example of such a scaling with d = 2 and m = nu = z = 1. We also provide the first example of an exact calculation of some multispin correlation functions for a two-dimensional model that can be used to determine the correlation between the defects. We suggest possible experiments to test our theory.
NASA Astrophysics Data System (ADS)
McCold, Cliff E.; Fu, Qiang; Howe, Jane Y.; Hihath, Joshua
2015-09-01
Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems. Electronic supplementary information (ESI) available: Temperature dependent measurements, activation energies, particle size distributions, void density-polydispersity relation, and DLS data. See DOI: 10.1039/c5nr04460j
NASA Astrophysics Data System (ADS)
Rich, Devra P.; Anderson, Matthew P.; Gregory, Richard J.; Cheng, Seng H.; Paul, Sucharita; Jefferson, Douglas M.; McCann, John D.; Klinger, Katherine W.; Smith, Alan E.; Welsh, Michael J.
1990-09-01
The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (ΔF508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.
NASA Astrophysics Data System (ADS)
Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu
2018-04-01
Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).
Dholabhai, Pratik P; Aguiar, Jeffery A; Misra, Amit; Uberuaga, Blas P
2014-05-21
Due to reduced dimensions and increased interfacial content, nanocomposite oxides offer improved functionalities in a wide variety of advanced technological applications, including their potential use as radiation tolerant materials. To better understand the role of interface structures in influencing the radiation damage tolerance of oxides, we have conducted atomistic calculations to elucidate the behavior of radiation-induced point defects (vacancies and interstitials) at interface steps in a model CeO2/SrTiO3 system. We find that atomic-scale steps at the interface have substantial influence on the defect behavior, which ultimately dictate the material performance in hostile irradiation environments. Distinctive steps react dissimilarly to cation and anion defects, effectively becoming biased sinks for different types of defects. Steps also attract cation interstitials, leaving behind an excess of immobile vacancies. Further, defects introduce significant structural and chemical distortions primarily at the steps. These two factors are plausible origins for the enhanced amorphization at steps seen in our recent experiments. The present work indicates that comprehensive examination of the interaction of radiation-induced point defects with the atomic-scale topology and defect structure of heterointerfaces is essential to evaluate the radiation tolerance of nanocomposites. Finally, our results have implications for other applications, such as fast ion conduction.
NASA Astrophysics Data System (ADS)
Steidl, Rebecca J.; Lampa-Pastirk, Sanela; Reguera, Gemma
2016-08-01
Electricity generation by Geobacter sulfurreducens biofilms grown on electrodes involves matrix-associated electron carriers, such as c-type cytochromes. Yet, the contribution of the biofilm's conductive pili remains uncertain, largely because pili-defective mutants also have cytochrome defects. Here we report that a pili-deficient mutant carrying an inactivating mutation in the pilus assembly motor PilB has no measurable defects in cytochrome expression, yet forms anode biofilms with reduced electroactivity and is unable to grow beyond a threshold distance (~10 μm) from the underlying electrode. The defects are similar to those of a Tyr3 mutant, which produces poorly conductive pili. The results support a model in which the conductive pili permeate the biofilms to wire the cells to the conductive biofilm matrix and the underlying electrode, operating coordinately with cytochromes until the biofilm reaches a threshold thickness that limits the efficiency of the cytochrome pathway but not the functioning of the conductive pili network.
Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Byungki, E-mail: byungkiryu@keri.re.kr; Lee, Jae Ki; Lee, Ji Eun
Density functional calculations have been performed to investigate the role of Ag defects in PbTe thermoelectric materials. Ag-defects can be either donor, acceptor, or isovalent neutral defect. When Ag is heavily doped in PbTe, the neutral (Ag-Ag) dimer defect at Pb-site is formed and the environment changes to the Pb-rich/Te-poor condition. Under Pb-rich condition, the ionized Ag-interstitial defect (Ag{sub I}{sup +}) becomes the major donor. The formation energy of Ag{sub I}{sup +} is smaller than other native and Ag-related defects. Also it is found that Ag{sub I}{sup +} is an effective dopant. There is no additional impurity state near themore » band gap and the conduction band minimum. The charge state of Ag{sub I}{sup +} defect is maintained even when the Fermi level is located above the conduction band minimum. The diffusion constant of Ag{sub I}{sup +} is calculated based on the temperature dependent Fermi level, formation energy, and migration energy. When T > 550 K, the diffusion length of Ag within a few minutes is comparable to the grain size of the polycrystalline PbTe, implying that Ag is dissolved into PbTe and this donor defect is distributed over the whole lattice in Ag-excess doped polycrystalline PbTe. The predicted solubility of Ag{sub I}{sup +} well explains the increased electron carrier concentration and electrical conductivity reported in Ag-excess doped polycrystalline PbTe at T = 450–750 K [Pei et al., Adv. Energy Mater. 1, 291 (2011)]. In addition, we suggest that this abnormal doping behavior is also found for Au-doped PbTe.« less
Grawe, Brian; Burge, Alissa; Nguyen, Joseph; Strickland, Sabrina; Warren, Russell; Rodeo, Scott; Shubin Stein, Beth
2017-10-01
Background Full-thickness cartilage lesions of the patella represent a common source of pain and dysfunction. Previously reported surgical treatment options include marrow stimulation, cell-based treatments, and osteochondral transfer. Minced juvenile allograft cartilage is a novel treatment option that allows for a single stage approach for these lesions. Hypothesis Particulated juvenile allograft cartilage (PJAC) for the treatment of chondral defects of the patella would offer acceptable lesion fill rates, mature over time, and not be associated with any negative biologic effects on the surrounding tissue. Methods A retrospective chart review of prospectively collected data was conducted to identify consecutive patients who were treated with PJAC for a full thickness symptomatic cartilage lesion. Qualitative (fast spin echo) and quantitative (T2 mapping) magnetic resonance imaging (MRI) was undertaken at the 6-, 12-, and 24-month postoperative mark. Numerous patient, lesion, and graft specific factors were assessed against MRI scores and percent defect fill of the graft. Graft maturation over time was also assessed. Results Forty-five patients total were included in the study. Average age at the time of surgery was 26.5 years (range 13-45 years), average lesion size was 208 mm 2 (range 4-500 mm 2 ), and average donor age was 49.5 months (range 3-120 months). Sixty percent of the patients were female, while 93% of all patients underwent a concomitant procedure at the time of the index operation. Six-month MRI findings revealed that no patient-, graft-, or donor-specific factors correlated with MR scores, and 82% of the knees demonstrated good to excellent fill. Twelve-month MRI findings revealed that T2 relaxation times of deep graft demonstrated negative correlation with patient age ( P = 0.049) and donor age ( P = 0.006), the integration zone showed a negative correlation with donor age ( P = 0.026). In all, 85% of patients at 12 months displayed good to moderate fill of the graft. At 24 months, patient age demonstrated negative correlation with average T2 relaxation times of the deep and superficial graft ( P = 0.005; P = 0.0029) and positive correlation with the superficial zone of the adjacent cartilage ( P = 0.001). Donor age showed negative correlation with grayscale score ( P = 0.004) and T2 relaxation times at deep integration zone ( P = 0.018). T2 relaxation times of deep and superficial graft and integration zone improved over time ( P < 0.001) and between each time point. Conclusions Particulated juvenile allograft tissue appears to be an acceptable reconstructive option for full-thickness cartilage lesions of the patella, offering satisfactory tissue defect fill at 6, 12, and 24 months after surgery. Imaging of the repaired cartilage demonstrates progressive graft maturation over time.
Increased p-type conductivity in GaN{sub x}Sb{sub 1−x}, experimental and theoretical aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi; Makkonen, I.; Slotte, J.
2015-08-28
The large increase in the p-type conductivity observed when nitrogen is added to GaSb has been studied using positron annihilation spectroscopy and ab initio calculations. Doppler broadening measurements have been conducted on samples of GaN{sub x}Sb{sub 1−x} layers grown by molecular beam epitaxy, and the results have been compared with calculated first-principle results corresponding to different defect structures. From the calculated data, binding energies for nitrogen-related defects have also been estimated. Based on the results, the increase in residual hole concentration is explained by an increase in the fraction of negative acceptor-type defects in the material. As the band gapmore » decreases with increasing N concentration, the ionization levels of the defects move closer to the valence band. Ga vacancy-type defects are found to act as positron trapping defects in the material, and the ratio of Ga vacancy-type defects to Ga antisites is found to be higher than that of the p-type bulk GaSb substrate. Beside Ga vacancies, the calculated results imply that complexes of a Ga vacancy and nitrogen could be present in the material.« less
Mean Glenoid Defect Size and Location Associated With Anterior Shoulder Instability
Gottschalk, Lionel J.; Bois, Aaron J.; Shelby, Marcus A.; Miniaci, Anthony; Jones, Morgan H.
2017-01-01
Background: There is a strong correlation between glenoid defect size and recurrent anterior shoulder instability. A better understanding of glenoid defects could lead to improved treatments and outcomes. Purpose: To (1) determine the rate of reporting numeric measurements for glenoid defect size, (2) determine the consistency of glenoid defect size and location reported within the literature, (3) define the typical size and location of glenoid defects, and (4) determine whether a correlation exists between defect size and treatment outcome. Study Design: Systematic review; Level of evidence, 4. Methods: PubMed, Ovid, and Cochrane databases were searched for clinical studies measuring glenoid defect size or location. We excluded studies with defect size requirements or pathology other than anterior instability and studies that included patients with known prior surgery. Our search produced 83 studies; 38 studies provided numeric measurements for glenoid defect size and 2 for defect location. Results: From 1981 to 2000, a total of 5.6% (1 of 18) of the studies reported numeric measurements for glenoid defect size; from 2001 to 2014, the rate of reporting glenoid defects increased to 58.7% (37 of 63). Fourteen studies (n = 1363 shoulders) reported defect size ranges for percentage loss of glenoid width, and 9 studies (n = 570 shoulders) reported defect size ranges for percentage loss of glenoid surface area. According to 2 studies, the mean glenoid defect orientation was pointing toward the 3:01 and 3:20 positions on the glenoid clock face. Conclusion: Since 2001, the rate of reporting numeric measurements for glenoid defect size was only 58.7%. Among studies reporting the percentage loss of glenoid width, 23.6% of shoulders had a defect between 10% and 25%, and among studies reporting the percentage loss of glenoid surface area, 44.7% of shoulders had a defect between 5% and 20%. There is significant variability in the way glenoid bone loss is measured, calculated, and reported. PMID:28203591
Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering
NASA Astrophysics Data System (ADS)
Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.
2018-04-01
We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.
Conduction in Carbon Nanotubes Through Metastable Resonant States
NASA Astrophysics Data System (ADS)
Zhang, Zhengfan; Chandrasekhar, Venkat; Dikin, Dmitriy A.; Ruoff, Rodney S.
2004-03-01
We have made transport measurements on individual multi-walled carbon nanotubes [1]. The measurements show that the presence or movement of impurities or defects in the carbon nanotube can radically change its low temperature transport characteristics. The low temperature conductance can either decrease monotonically with decreasing temperature, or show a sudden increase at very low temperatures, sometimes in the same sample. This unusual behavior of the temperature dependence of the conductance is correlated with large variations in the differential conductance as a function of the dc voltage across the wire. The effect is well described as arising from quantum interference of conduction channels corresponding to direct transmission through the nanotube and resonant transmission through a discrete electron state, the so-called Fano resonance. We thank the group of R. P. H. Chang for providing us the nanotubes used in these experiments. Funding for this work was provided by a NASA/MSFC Phase II SBIR, Contract No. NAS8-02102, through a subcontract from Lytec, LLC. [1] Z. Zhang et al., cond-mat/0311360.
Defect annealing of alpha-particle irradiated n-GaAs
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Myburg, G.
1994-09-01
The annealing behaviour of irradiation induced defects in n-type GaAs irradiated at 300 K with 5.4 MeV alpha-particles from an americium-241 (Am-241) radio nuclide have been investigated. The annealing kinetics are presented for the alpha-particle induced defects Eα1 Eα5 detected in Organo-Metallic Vapor Phase Epitaxially (OMVPE) grown n-GaAs doped with silicon to 1.2×1016 cm-3, these kinetics are compared to those obtained for similar defects (E1 E5) detected after electron irradiation. While defects Pα1 and Pα2 were detected after removal of the electron defects Eα4 and Eα5, respectively, a new defect labelled Pα0, located 0.152 eV below the conduction band, was introduced by annealing. The thermal behaviour and trap characteristics of these three defects (Pα0 Pα2) are presented. In an attempt to further characterise defects Pα0 and Pα1 a preiliminary study investigating the emission rate field dependence of these defects was conducted, it was observed that defect Pα0 exhibited a fairly strong field dependence while Pα1 exhibited a much weaker dependence.
NASA Astrophysics Data System (ADS)
Sahoo, Deepak Ranjan; Szlufarska, Izabela; Morgan, Dane; Swaminathan, Narasimhan
2018-01-01
Molecular dynamics simulations of displacement cascades were conducted to study the effect of point defects on the primary damage production in β-SiC. Although all types of point defects and Frenkel pairs were considered, Si interstitials and Si Frenkel pairs were unstable and hence excluded from the cascade studies. Si (C) vacancies had the maximum influence, enhancing C (Si) antisites and suppressing C interstitial production, when compared to the sample without any defects. The intracascade recombination mechanisms, in the presence of pre-existing defects, is explored by examining the evolution of point defects during the cascade. To ascertain the role of the unstable Si defects on amorphization, simulations involving explicit displacements of Si atoms were conducted. The dose to amorphization with only Si displacements was much lower than what was observed with only C displacements. The release of elastic energy accumulated due to Si defects, is found to be the amorphizing mechanism.
The Development of Spectroscopic Techniques to Study Defects in Thin Film Silicon-Dioxide
NASA Astrophysics Data System (ADS)
Zvanut, Mary Ellen
This dissertation research concerns the study of defects in thin film sputtered SiO_2 which is used as an optical coating material. The capacitance-voltage and current-voltage techniques typically used in microelectronics investigations were used to examine the concentration, location, and kinetics of charge in an aluminum-sputtered oxide-native oxide-silicon capacitor. The response of the capacitor to low field bias stress reveals a hysteretic trapping behavior similar to that observed in microelectronic grade oxide films. In an effort to understand this phenomenon, a band-to-trap tunneling model was developed based on the assumption that the defect involved exhibits a delta function spatial distribution and an extended energy distribution. The central feature of this model, defect relaxation, provides a physical explanation for the hysteretic trapping behavior. Analysis yields that the trap is located spatially within 2 nm of the Si/SiO _2 interface and energetically less than 5 eV from the SiO_2 conduction band edge. The relaxation energy associated with the capture of an electron at the trap is 0.1-2.2 eV. Correlation of the electrical measurements executed for this investigation with electron paramagnetic resonance (EPR) data obtained by Dr. P. Caplan provides structural information about the defect involved with the hysteretic trapping phenomenon. EPR results obtained before and after subjecting an oxide-silicon structure to corona discharge suggest that the trapping center is an E^ ' defect. The technique of band-to-trap tunneling spectroscopy combined with the EPR experiments provides the first reported trap depth associated with the capture of a hole at an E^' center located near the silicon surface of an oxide/silicon system.
Point-defect energies in the nitrides of aluminum, gallium, and indium
NASA Astrophysics Data System (ADS)
Tansley, T. L.; Egan, R. J.
1992-05-01
Experimental data on the nature and energetic location of levels associated with native point defects in the group-III metal nitrides are critically reviewed and compared with theoretical estimates. All three show strong evidence of the existence of a triplet of donorlike states associated with the nitrogen vacancy. Ground states are at about 150, 400, and 900 meV from the conduction-band edge in InN, GaN, and AlN, respectively, with their charged derivatives lying closer to the band edge. These values agree with both modified-hydrogenic and deep-level calculations, surprisingly well in view of the inherent approximations in each in this depth range. The InN donor ground state is both optically active and usually occupied, showing a distinctive absorption band which is very well described by quantum-defect analysis. Variation of threshold with electron concentration shows a Moss-Burstein shift commensurate with that observed in band-to-band absorption. In both GaN and AlN, levels have been identified at about 1/4EG and about 3/4EG, which correlate well with predictions for the antisite defects NM and MN, respectively, while similar behavior in InN is at odds with theory. The metal-vacancy defect appears to generate a level somewhat below midgap in AlN and close to the valence-band edge in GaN, but has not been located experimentally in InN, where it is predicted to lie very close to the valence-band edge. A tentative scheme for the participation of two of the native defects in GaN, namely VN and NGa, in the four broad emission bands found in Zn-compensated and undoped GaN is offered.
Exact correlators on the Wilson loop in N=4 SYM: localization, defect CFT, and integrability
NASA Astrophysics Data System (ADS)
Giombi, Simone; Komatsu, Shota
2018-05-01
We compute a set of correlation functions of operator insertions on the 1 /8 BPS Wilson loop in N=4 SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the 't Hooft coupling and the rank of the gauge group. When applied to the 1 /2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the "generalized Bremsstrahlung functions" previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.
NASA Astrophysics Data System (ADS)
Kwak, Ji Hye; Chun, Su Jin; Shon, Chae-Hwa; Jung, Sunshin
2018-04-01
Photonic sintering has attracted considerable attention for printed electronics. It irradiates high-intensity light onto the front surface of metal nanoparticle patterns, which often causes defects such as delamination, cavities, and cracks in the patterns. Here, a back-irradiation photonic sintering method is developed for obtaining defect-free high-conductivity metal patterns on a transparent plastic substrate, through which high-intensity light is irradiated onto the back surface of the patterns for a few milliseconds. Ag patterns back-irradiated with ˜10.0 J cm-2 are defect-free in contrast to front-irradiated patterns and exhibited an electrical conductivity of ˜2.3 × 107 S m-1. Furthermore, real-time high-speed observation reveals that the mechanisms that generate defects in the front-irradiated patterns and prevent defects in the back-irradiated patterns are closely related to vapor trapping. In contrast to the latter, in the former, vapor is trapped and delaminates the patterns from the substrate because the front of the patterns acts as a barrier to vapor venting.
Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-04-13
The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less
Characterisation of irradiation-induced defects in ZnO single crystals
NASA Astrophysics Data System (ADS)
Prochazka, I.; Cizek, J.; Lukac, F.; Melikhova, O.; Valenta, J.; Havranek, V.; Anwand, W.; Skuratov, V. A.; Strukova, T. S.
2016-01-01
Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.
Helium interaction with vacancy-type defects created in silicon carbide single crystal
NASA Astrophysics Data System (ADS)
Linez, F.; Gilabert, E.; Debelle, A.; Desgardin, P.; Barthe, M.-F.
2013-05-01
Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H-SiC single crystals have been implanted with 50 keV-He ions at 2 × 1014 and 1015 cm-2 and successively annealed at various temperatures from 150 to 1400 °C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400 °C for both fluences, (2) at 850 °C for the low fluence and 950 °C for the high one, (3) at 950 °C for the low fluence and 1050 °C for the high one and (4) at 1300 °C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.
Kill ratio calculation for in-line yield prediction
NASA Astrophysics Data System (ADS)
Lorenzo, Alfonso; Oter, David; Cruceta, Sergio; Valtuena, Juan F.; Gonzalez, Gerardo; Mata, Carlos
1999-04-01
The search for better yields in IC manufacturing calls for a smarter use of the vast amount of data that can be generated by a world class production line.In this scenario, in-line inspection processes produce thousands of wafer maps, number of defects, defect type and pictures every day. A step forward is to correlate these with the other big data- generator area: test. In this paper, we present how these data can be put together and correlated to obtain a very useful yield predicting tool. This correlation will first allow us to calculate the kill ratio, i.e. the probability for a defect of a certain size in a certain layer to kill the die. Then we will use that number to estimate the cosmetic yield that a wafer will have.
One-stop shop assessment for atrial septal defect closure using 256-slice coronary CT angiography.
Yamasaki, Yuzo; Nagao, Michinobu; Kawanami, Satoshi; Kamitani, Takeshi; Sagiyama, Koji; Yamanouchi, Torahiko; Sakamoto, Ichiro; Yamamura, Kenichiro; Yabuuchi, Hidetake; Honda, Hiroshi
2017-02-01
To investigate the feasibility and accuracy of measurement of the pulmonary to systemic blood flow ratio (Qp/Qs) and defect and rim sizes in secundum atrial septal defects (ASDs) using 256-slice CT, compared to the reference transoesophageal echocardiography (TEE) and right heart catheterization (RHC) measurements. Twenty-three consecutive adult patients with secundum ASDs who underwent retrospective ECG-gated coronary CT angiography (CCTA), TEE and RHC were enrolled in this study. Right ventricular (RV) and left ventricular (LV) stroke volumes (SV) were calculated by biventricular volumetry of CCTA. Qp/Qs-CT was defined as RVSV/LVSV. The sizes of the defect and rim were measured by multi-planar reconstruction CT images. Correlations between Qp/Qs-CT and Qp/Qs-RHC and between the defect diameter obtained by CT and TEE were analyzed by Pearson's coefficient analysis. Rim sizes by CT and TEE were compared by paired t-test. Qp/Qs-CT was significantly correlated with Qp/Qs-RHC (r = 0.83, p < 0.0001), and the defect diameter by CT was significantly correlated with that by TEE (r = 0.95, p < 0.0001). There was no significant difference between CT and TEE in measurements of rim size. 256-slice CCTA allows measuring Qp/Qs and size of defects and rims in patients with secundum ASDs, accomplishing pretreatment evaluation non-invasively and comprehensively. • Quantification of left-to-right shunting can be performed reliably and accurately by CT. • The sizes of defects and rims can be measured accurately using 256-slice CT. • 256-slice CT permits pretreatment evaluation of ASD non-invasively and comprehensively.
An open-architecture approach to defect analysis software for mask inspection systems
NASA Astrophysics Data System (ADS)
Pereira, Mark; Pai, Ravi R.; Reddy, Murali Mohan; Krishna, Ravi M.
2009-04-01
Industry data suggests that Mask Inspection represents the second biggest component of Mask Cost and Mask Turn Around Time (TAT). Ever decreasing defect size targets lead to more sensitive mask inspection across the chip, thus generating too many defects. Hence, more operator time is being spent in analyzing and disposition of defects. Also, the fact that multiple Mask Inspection Systems and Defect Analysis strategies would typically be in use in a Mask Shop or a Wafer Foundry further complicates the situation. In this scenario, there is a need for a versatile, user friendly and extensible Defect Analysis software that reduces operator analysis time and enables correct classification and disposition of mask defects by providing intuitive visual and analysis aids. We propose a new vendor-neutral defect analysis software, NxDAT, based on an open architecture. The open architecture of NxDAT makes it easily extensible to support defect analysis for mask inspection systems from different vendors. The capability to load results from mask inspection systems from different vendors either directly or through a common interface enables the functionality of establishing correlation between inspections carried out by mask inspection systems from different vendors. This capability of NxDAT enhances the effectiveness of defect analysis as it directly addresses the real-life scenario where multiple types of mask inspection systems from different vendors co-exist in mask shops or wafer foundries. The open architecture also potentially enables loading wafer inspection results as well as loading data from other related tools such as Review Tools, Repair Tools, CD-SEM tools etc, and correlating them with the corresponding mask inspection results. A unique concept of Plug-In interface to NxDAT further enhances the openness of the architecture of NxDAT by enabling end-users to add their own proprietary defect analysis and image processing algorithms. The plug-in interface makes it possible for the end-users to make use of their collected knowledge through the years of experience in mask inspection process by encapsulating the knowledge into software utilities and plugging them into NxDAT. The plug-in interface is designed with the intent of enabling the pro-active mask defect analysis teams to build competitive differentiation into their defect analysis process while protecting their knowledge internally within their company. By providing interface with all major standard layout and mask data formats, NxDAT enables correlation of defect data on reticles with design and mask databases, further extending the effectiveness of defect analysis for D2DB inspection. NxDAT also includes many other advanced features for easy and fast navigation, visual display of defects, defect selection, multi-tier classification, defect clustering and gridding, sophisticated CD and contact measurement analysis, repeatability analysis such as adder analysis, defect trend, capture rate etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.
2016-01-14
Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.
2016-01-12
In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
Subsurface defects of fused silica optics and laser induced damage at 351 nm.
Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng
2013-05-20
Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.
The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less
Kegel, Jan; Zubialevich, Vitaly Z; Schmidt, Michael; Povey, Ian M; Pemble, Martyn E
2018-05-30
Due to the abundance of intrinsic defects in zinc oxide (ZnO), the material properties are often governed by same. Knowledge of the defect chemistry has proven to be highly important, especially in terms of the photocatalytic degradation of pollutants. Given the fact that defect-free materials or structures exhibiting only one type of defect are extremely difficult to produce, it is necessary to evaluate what influence various defects may have when present together in the material. In this study, intentionally defect-rich ZnO nanorod (NR) arrays are grown using a simple low-temperature solution-based growth technique. Upon changing the defect chemistry using rapid thermal annealing (RTA) the material properties are carefully assessed and correlated to the resulting photocatalytic properties. Special focus is put on the investigation of these properties for samples showing strong orange photoluminescence (PL). It is shown that intense orange emitting NR arrays exhibit improved dye-degradation rates under UV-light irradiation. Furthermore, strong dye-adsorption has been observed for some samples. This behavior is found to stem from a graphitic surface structure (e.g., shell) formed during RTA in vacuum. Since orange-luminescent samples also exhibit an enhancement of the dye adsorption a possible interplay and synergy of these two defects is elucidated. Additionally, evidence is presented suggesting that in annealed ZnO NRs structural defects may be responsible for the often observed PL emission at 3.31 eV. However, a clear correlation with the photocatalytic properties could not be established for these defects. Building on the specific findings presented here, this study also presents some more general guidelines which, it is suggested, should be employed when assessing the photocatalytic properties of defect-rich ZnO.
Ciais, Grégoire; Klouche, Shahnaz; Fournier, Alexandre; Rousseau, Benoit; Bauer, Thomas; Hardy, Philippe
2016-08-01
The prevalence of combined humeral and glenoid defects varies between 79 and 84 % in case of chronic posttraumatic anterior shoulder instability. The main goal of this study was to evaluate the relationship between humeral and glenoid defects based on quantitative radiological criteria. A retrospective study was performed between 2000 and 2011 including patients who underwent primary surgical shoulder stabilization for chronic posttraumatic anterior shoulder instability, with bone defects in both the glenoid and humerus and a healthy contralateral shoulder. The following measurements were taken: D/R ratio (Hill-Sachs lesion depth/humeral head radius) on an AP X-ray in internal rotation and the D1/D2 ratio [diameter of the involved glenoid articular surfaces (D1)/the healthy one (D2)] on a comparative Bernageau glenoid profile view. Measurements were taken by two observers. Correlations were determined by the Spearman correlation coefficients (r), Bland and Altman diagrams, and intra-class correlation coefficients (ICC). A sample size calculation was done. Thirty patients were included, 25 men/5 women, mean age 29.8 ± 11.2 years. The mean D/R was 23 ± 12 % for observer 1 and 23 ± 10 % for observer 2. The mean D1/D2 was 95 ± 4 % for observer 1 and 94 ± 6 % for observer 2. No significant correlation was found between humeral and glenoid bone defects by observer 1 (r = 0.23, p = 0.22) or observer 2 (r = 0.05, p = 0.78). Agreement of the observers for the D/R ratio was excellent (ICC = 0.89 ± 0.04, p < 0.00001) and good for the D1/D2 ratio (ICC = 0.54 ± 0.14, p = 0.006). Humeral and glenoid bone defects were not correlated. Inter-observer reliability was excellent for the D/R ratio and good for the D1/D2 ratio. Nonconsecutive Patients, Diagnostic Study, Level III.
Zhu, Weimin; Guo, Daiqi; Peng, Liangquan; Chen, Yun Fang; Cui, Jiaming; Xiong, Jianyi; Lu, Wei; Duan, Li; Chen, Kang; Zeng, Yanjun; Wang, Daping
2017-02-01
Objective To assess the effect of the fusion of rabbit bone marrow stromal cells (rBMSCs) and Nano-hydroxyapatite/poly (l-lactic acid) (Nano-HA/PLLA) in repairing the rabbit knee joint with full-thickness cartilage defect. Method The rBMSCs were isolated and cultured in vitro, and the third generation of rBMSCs was co-cultured with the Nano-HA/PLLA to construct the tissue-engineered cartilage (TEC). Eighteen New Zealand white rabbits were selected and randomly divided into three groups, namely, TEC group, Nano-HA/PLLA group, and control group. A cartilage defect model with the diameter of 4.5 mm and depth of 5 mm was constructed on the articular surface of medial malleolus of rabbit femur. General observation, histological observation, and Wakitani's histological scoring were conducted in the 12th and 24th week postoperatively. Results The results of TEC group indicated that new cartilage tissue was formed on the defect site and subchondral bone achieved physiological integration basically. Histological and immunohistochemical analyses indicated the generation of massive extracellular matrix. In contrast, limited regeneration and reconstruction of cartilage was achieved in the Nano-HA/PLLA group and control group, with a significant difference from the TEC group (p < 0.05). Moreover, the effect of cartilage repair was positively correlated with time. Conclusion The porous Nano-HA/PLLA combined with BMSCs promoted the repair of weight-bearing bone of adult rabbit's knee joint with cartilage defect.
Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.
Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam
2014-07-11
The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Ali, G.N.; Mikhov, M.K.
2005-01-01
Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier heightmore » within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang,Y.; Ali, G.; Mikhov, M.
2005-01-01
Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier heightmore » within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.« less
Photoexcited ZnO nanoparticles with controlled defects as a highly sensitive oxygen sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Taku; Ito, Tsuyohito, E-mail: tsuyohito@ppl.eng.osaka-u.ac.jp; Shimizu, Yoshiki
Conductance of photoexcited ZnO nanoparticles with various defects has been investigated in oxygen. ZnO nanoparticles, which show strong photoluminescence peaks originating from interstitial zinc atom (Zn{sub i}) and singly charged oxygen vacancy (V{sub O}{sup +}), show oxygen-pressure-dependent conductance changes caused by photoexcitation. Herein, a model is proposed to simulate the conductance changes.
Topological defects in extended inflation
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.
1990-01-01
The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.
Point defects in Cd(Zn)Te and TlBr: Theory
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo
2013-09-01
The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.
NASA Astrophysics Data System (ADS)
Suproniuk, M.; Pawłowski, M.; Wierzbowski, M.; Majda-Zdancewicz, E.; Pawłowski, Ma.
2018-04-01
The procedure for determination of trap parameters by photo-induced transient spectroscopy is based on the Arrhenius plot that illustrates a thermal dependence of the emission rate. In this paper, we show that the Arrhenius plot obtained by the correlation method is shifted toward lower temperatures as compared to the one obtained with the inverse Laplace transformation. This shift is caused by the model adequacy error of the correlation method and introduces errors to a calculation procedure of defect center parameters. The effect is exemplified by comparing the results of the determination of trap parameters with both methods based on photocurrent transients for defect centers observed in tin-doped neutron-irradiated silicon crystals and in gallium arsenide grown with the Vertical Gradient Freeze method.
Lan, Jin-Le; Liu, Yaochun; Lin, Yuan-Hua; Nan, Ce-Wen; Cai, Qing; Yang, Xiaoping
2015-01-01
The issue of how to improve the thermoelectric figure of merit (ZT) in oxide semiconductors has been challenging for more than 20 years. In this work, we report an effective path to substantial reduction in thermal conductivity and increment in carrier concentration, and thus a remarkable enhancement in the ZT value is achieved. The ZT value of In2O3 system was enhanced 4-fold by nanostructuing (nano-grains and nano-inclusions) and point defect engineering. The introduction of point defects in In2O3 results in a glass-like thermal conductivity. The lattice thermal conductivity could be reduced by 60%, and extraordinary low lattice thermal conductivity (1.2 W m−1 K−1 @ 973 K) below the amorphous limit was achieved. Our work paves a path for enhancing the ZT in oxides by both the nanosturcturing and the point defect engineering for better phonon-glasses and electron-crystal (PGEC) materials. PMID:25586762
NASA Astrophysics Data System (ADS)
Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume
2017-10-01
Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.
Change in prevalence of congenital defects in children with Prader-Willi syndrome.
Torrado, M; Foncuberta, M E; Perez, M F de Castro; Gravina, L P; Araoz, H V; Baialardo, E; Chertkoff, L P
2013-02-01
The aim of this study was to assess the prevalence of congenital defects observed in patients with Prader-Willi syndrome (PWS) and to compare this prevalence with that described in the general population. In addition, these findings were correlated with the different etiologic subtypes. A total of 180 children with PWS followed for 13 years were included in this study. Diagnosis was confirmed by the methylation test, and genetic subtypes were established by using fluorescence in situ hybridization or multiplex ligation-dependent probe amplification and microsatellite analyses. The prevalence of congenital defects was compared with national and international registries of congenital defects in the general population (Estudio Colaborativo Latinoamericano de Malformaciones Congénitas, European Surveillance of Congenital Anomalies, and the New York Registry). Twenty-two percent of the patients presented congenital defects with a risk of 5.4 to 18.7 times higher than that of the general population. The most frequent congenital defects were heart defects, renoureteral malformations, vertebral anomalies, hip dysplasia, clubfoot, and agenesis/hypoplasia of the corpus callosum. Each of these congenital defects was significantly more frequent in the children with PWS than in the general population. The congenital heart defects were more frequent in girls than in boys with PWS. No significant differences were found when the defects were correlated with the different etiologic subtypes. An increased prevalence of congenital defects was found in our PWS patients. This finding suggests the need for further studies in PWS children that allow physicians to detect the congenital defects found in this series and, thus, to anticipate complications, with the ultimate aim of enhancing the management of PWS patients.
Defects and Disorder in the Drosophila Eye
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Carthew, Richard; Hilgenfeldt, Sascha
Cell division and differentiation tightly control the regular pattern in the normal eye of the Drosophila fruit fly while certain genetic mutations introduce disorder in the form of topological defects. Analyzing data from pupal retinas, we develop a model based on Voronoi construction that explains the defect statistics as a consequence of area variation of individual facets (ommatidia). The analysis reveals a previously unknown systematic long-range area variation that spans the entire eye, with distinct effects on topological disorder compared to local fluctuations. The internal structure of the ommatidia and the stiffness of their interior cells also plays a crucial role in the defect generation. Accurate predictions of the correlation between the area variation and the defect density in both normal and mutant animals are obtained without free parameters. This approach can potentially be applied to cellular systems in many other contexts to identify size-topology correlations near the onset of symmetry breaking. This work has been supported by the NIH (GM098077) and the NSF (Grant No. 1504301).
Lattice distortion and electron charge redistribution induced by defects in graphene
Zhang, Wei; Lu, Wen -Cai; Zhang, Hong -Xing; ...
2016-09-14
Lattice distortion and electronic charge localization induced by vacancy and embedded-atom defects in graphene were studied by tight-binding (TB) calculations using the recently developed three-center TB potential model. We showed that the formation energies of the defects are strongly correlated with the number of dangling bonds and number of embedded atoms, as well as the magnitude of the graphene lattice distortion induced by the defects. Lastly, we also showed that the defects introduce localized electronic states in the graphene which would affect the electron transport properties of graphene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates
NASA Astrophysics Data System (ADS)
Blunt, Liam; Robbins, David; Fleming, Leigh; Elrawemi, Mohamed
2014-03-01
This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuInxGa(1-x)Se2) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al2O3. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al2O3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to characterise the uncoated and coated polymer film surface topography using feature parameter analysis. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. Feature parameter analysis allows the efficient separation of small insignificant defects from large defects. The presence of both large and insignificant defects is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON test. The paper finishes by drawing conclusions based on analysis of WVTR and defect size, where it is postulated that small numbers of large defects play a significant role in higher levels of WVTR.
NASA Astrophysics Data System (ADS)
Wang, Hui; Shi, Jun-jie; Huang, Pu; Ding, Yi-min; Wu, Meng; Cen, Yu-lang; Yu, Tongjun
2018-04-01
Recently, two-dimensional (2D) InSe nanosheet becomes a promising material for electronic and optoelectronic nano-devices due to its excellent electron transport, wide bandgap tunability and good metal contact. The inevitable native point defects are essential in determining its characteristics and device performance. Here we investigate the defect formation energy and thermodynamic transition levels for the most important native defects and clarify the physical origin of n-type conductivity in unintentionally doped 2D InSe by using the powerful first-principles calculations. We find that both surface In adatom and Se vacancy are the key defects, and the In adatom, donated 0.65 electrons to the host, causes the n-type conductivity in monolayer InSe under In-rich conditions. For bilayer or few-layer InSe, the In interstitial within the van der Waals gap, transferred 0.68 electrons to InSe, is found to be the most stable donor defect, which dominates the n-type character. Our results are significant for understanding the defect nature of 2D InSe and improving the related nano-device performance.
Reliability-based management of buried pipelines considering external corrosion defects
NASA Astrophysics Data System (ADS)
Miran, Seyedeh Azadeh
Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub-system. Sensitivity analysis is also performed to determine to which incorporated parameter(s) in the growth models reliability of the studied pipeline is most sensitive. The reliability analysis results suggest that newly generated defects should be considered in calculating failure probability, especially for prediction of long-term performance of the pipeline and also, impact of the statistical uncertainty in the model parameters is significant that should be considered in the reliability analysis. Finally, with the evaluated time-dependent failure probabilities, a life cycle-cost analysis is conducted to determine optimal inspection interval of studied pipeline. The expected total life-cycle costs consists construction cost and expected costs of inspections, repair, and failure. The repair is conducted when failure probability from any described failure mode exceeds pre-defined probability threshold after each inspection. Moreover, this study also investigates impact of repair threshold values and unit costs of inspection and failure on the expected total life-cycle cost and optimal inspection interval through a parametric study. The analysis suggests that a smaller inspection interval leads to higher inspection costs, but can lower failure cost and also repair cost is less significant compared to inspection and failure costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S.; Farmer, J.
2011-01-01
We report the structure and physical properties of novel hybrids of multiwalled carbon nanotubes (MWCNTs) and ultradispersed diamond (UDD) forming nanocomposite ensemble that were subjected to 50, 100, and 10{sup 3} kGy gamma ray doses and characterized using various analytical tools to investigate hierarchical defects evolution. This work is prompted by recent work on single-walled CNTs and UDD ensemble [Gupta et al., J. Appl. Phys. 107, 104308 (2010)] where radiation-induced microscopic defects seem to be stabilized by UDD. The present experiments show similar effects where these hybrids display only a minimal structural modification under the maximum dose. Quantitative analyses ofmore » multiwavelength Raman spectra revealed lattice defects induced by irradiation assessed through the variation in prominent D, G, and 2D bands. A minimal change in the position of D, G, and 2D bands and a marginal increase in intensity of the defect-induced double resonant Raman scattered D and 2D bands are some of the implications suggesting the radiation coupling. The in-plane correlation length (L{sub a}) was also determined following Tunistra-Koenig relation from the ratio of D to G band (I{sub D}/I{sub G}) besides microscopic stress. However, we also suggest the following taking into account of intrinsic defects of the constituents: (a) charge transfer arising at the interface due to the difference in electronegativity of MWCNT C sp{sup 2} and UDD core (C sp{sup 3}) leading to phonon and electron energy renormalization; (b) misorientation of C sp{sup 2} at the interface of MWCNT and UDD shell (C sp{sup 2}) resulting in structural disorder; (c) softening or violation of the q{approx}0 selection rule leading to D band broadening and a minimal change in G band intensity; and (d) normalized intensity of D and G bands with 2D band help to distinguish defect-induced double resonance phenomena. The MWCNT when combined with nanodiamond showed a slight decrease in their conductance further affected by irradiation pointing at relatively good interfacial contact. Furthermore, owing to high thermal and electrical conductivity properties, they can facilitate potentially efficient heat-transfer applications and some results deduced using Nielsen's model is provided.« less
Huang, Bolong; Sun, Mingzi
2017-04-05
An energy conversion model has been established for the intrinsic persistent luminescence in solids related to the native point defect levels, formations, and transitions. In this study, we showed how the recombination of charge carriers between different defect levels along the zero phonon line (ZPL) can lead to energy conversions supporting the intrinsic persistent phosphorescence in solids. This suggests that the key driving force for this optical phenomenon is the pair of electrons hopping between different charged defects with negative-U eff . Such a negative correlation energy will provide a sustainable energy source for electron-holes to further recombine in a new cycle with a specific quantum yield. This will help us to understand the intrinsic persistent luminescence with respect to native point defect levels as well as the correlations of electronics and energetics.
Degradation sources in GaAs--AlGaAs double-heterostructure lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, R.; Nakashima, H.; Kishino, S.
1975-07-01
Several sources of the dark-line defect (DLD) that causes rapid degradation of GaAs-AlGaAs double-heterostructure (DH) lasers have been identified by means of photoluminescence (PL) topography and a laser-induced degradation technique. All the sources that have been identified correspond to crystal defects, among which dark-spot defects (DSD) that are native to as-grown wafers are found to be most important. The growth and propagation processes of DLDs and DSDs have also been investigated. These defects are found to be highly mobile under high-intensity laser pumping. The correlation between the substrate dislocations and the DSDs has been examined by etching and x-ray topography.more » Although most DSDs correspond to etch-pits in epilayers, they are not always correlated with substrate dislocations. (auth)« less
Kinetics of Schottky defect formation and annihilation in single crystal TlBr.
Bishop, Sean R; Tuller, Harry L; Kuhn, Melanie; Ciampi, Guido; Higgins, William; Shah, Kanai S
2013-07-28
The kinetics for Schottky defect (Tl and Br vacancy pair) formation and annihilation in ionically conducting TlBr are characterized through a temperature induced conductivity relaxation technique. Near room temperature, defect generation-annihilation was found to take on the order of hours before equilibrium was reached after a step change in temperature, and that mechanical damage imparted on the sample rapidly increases this rate. The rate limiting step to Schottky defect formation-annihilation is identified as being the migration of lower mobility Tl (versus Br), with an estimate for source-sink density derived from calculated diffusion lengths. This study represents one of the first investigations of Schottky defect generation-annihilation kinetics and demonstrates its utility in quantifying detrimental mechanical damage in radiation detector materials.
Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography
NASA Astrophysics Data System (ADS)
Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting
2018-05-01
Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.
1993-10-01
sealant was determined by noting the type and number of defects each sealant incurred. Figure 4 provides a sample evaluation sheet used dur- ing the field...was conducted by visually inspect- ing the mater~al for defects . If any defects were noted, the type of defect was described and the quant~ty of that... defect was measured. The quantity of the defect was dividted by the total quantity of sealant and the result reported as percent defect . Adhesion and
Quantitative determination of anti-structured defects applied to alloys of a wide chemical range
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Zheng; Wang, Yongxin; Lu, Yanli
2016-11-01
Anti-structured defects bridge atom migration among heterogeneous sublattices facilitating diffusion but could also result in the collapse of ordered structure. Component distribution Ni75Al x V25-x alloys are investigated using a microscopic phase field model to illuminate relations between anti-structured defects and composition, precipitate order, precipitate type, and phase stability. The Ni75Al x V25-x alloys undergo single Ni3V (stage I), dual Ni3Al and Ni3V (stage II with Ni3V prior; and stage III with Ni3Al prior), and single Ni3Al (stage IV) with enhanced aluminum level. For Ni3V phase, anti-structured defects (VNi1, NiV, except VNi2) and substitution defects (AlNi1, AlNi2, AlV) exhibit a positive correlation to aluminum in stage I, the positive trend becomes to negative correlation or smooth during stage II. For Ni3Al phase, anti-structured defects (AlNi, NiAl) and substitution defects (VNi, VAl) have a positive correlation to aluminum in stage II, but NiAl goes down since stage III and lasts to stage IV. VNi and VAl fluctuate when Ni3Al precipitates prior, but go down drastically in stage IV. Precipitate type conversion of single Ni3V/dual (Ni3V+Ni3Al) affects Ni3V defects, while dual (Ni3V+Ni3Al)/single Ni3Al has little effect on Ni3Al defects. Precipitate order swap occurred in the dual phase region affects on Ni3Al defects but not on Ni3V. Project supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JQ5014), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102014JCQ01024), the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 114-QP-2014), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136102120021), and the National Natural Science Foundation of China (Grant Nos. 51474716 and 51475378).
Role of Defects on Regioselectivity of Nano Pristine Graphene.
Kudur Jayaprakash, Gururaj; Casillas, Norberto; Astudillo-Sánchez, Pablo D; Flores-Moreno, Roberto
2016-11-17
Here analytical Fukui functions based on density functional theory are applied to investigate the redox reactivity of pristine and defected graphene lattices. A carbon H-terminated graphene structure (with 96 carbon atoms) and a graphene defected surface with Stone-Wales rearrangement and double vacancy defects are used as models. Pristine sp 2 -hybridized, hexagonal arranged carbon atoms exhibit a symmetric reactivity. In contrast, common carbon atoms at reconstructed polygons in Stone-Wales and double vacancy graphene display large reactivity variations. The improved reactivity and the regioselectivity at defected graphene is correlated to structural changes that caused carbon-carbon bond length variations at defected zones.
Hoch, Laura B.; Szymanski, Paul; Ghuman, Kulbir Kaur; ...
2016-11-28
In 2O 3-x(OH) y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO 2 to CO via the reverse water–gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In 2O 3-x(OH) y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play amore » significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO 2 reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoch, Laura B.; Szymanski, Paul; Ghuman, Kulbir Kaur
In 2O 3-x(OH) y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO 2 to CO via the reverse water–gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In 2O 3-x(OH) y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play amore » significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO 2 reduction.« less
San Román, J A; Vilacosta, I; Zamorano, J; Castillo, J A; Rollán, M J; Villanueva, M A; Almería, C; Sánchez-Harguindey, L
1993-12-01
Transthoracic echocardiography is the most useful noninvasive method to diagnose atrial septal defect. It is suggested by some authors that transesophageal echocardiography is more accurate than transthoracic echocardiography in this setting. Our aim was to compare the usefulness of both techniques in: 1) diagnosing atrial septal defect, 2) detecting associated anomalies and 3) postoperative assessment. Pre and postoperative transthoracic and transesophageal echocardiography were performed in 27 patients in whom diagnosis of atrial septal defect was confirmed at surgery. Transthoracic echocardiography demonstrated the defect in 20 patients (74%) (8 ostium primum, 10 ostium secundum and 2 sinus venosus). The 27 patients (100%) were correctly diagnosed by transesophageal echocardiography (8 ostium primum, 12 ostium secundum and 7 sinus venosus). Defect size determined by transthoracic echocardiography had a poor correlation with the surgical measurement (r = 0.34). A good correlation was obtained when transesophageal versus surgical defect size measurements were compared (r = 0.85; p < 0.05). Transesophageal echocardiography was superior in detecting associated anomalies (5 patients with anomalous partial pulmonary venous drainage, 3 persistence of left superior vena cava and 1 atrial septal aneurysm). Moreover, this technique better determined residual atrial septal defect, and detected a postsurgical inferior vena cava connection to the left atrium. Transesophageal echocardiography is superior to transthoracic echocardiography in diagnosing atrial septal defect sinus venosus type, detecting associated anomalies and postoperative assessment. Transthoracic echocardiography is diagnostic in the majority of patients with atrial septal defect ostium primum and ostium secundum types.
Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar
2015-07-21
The thermal conductivity of uranium dioxide (UO 2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO 2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO 2, as a function of defectmore » concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].« less
Saberi, Bardia Vadiati; Nemati, Somayeh; Malekzadeh, Meisam; Javanmard, Afrooz
2017-01-01
Assessment of alveolar bone level in periodontitis is very important in determining prognosis and treatment plan. Panoramic radiography is a diagnostic tool used to screen patients. The aim of the present study was to assess the diagnostic value of digital panoramic radiography in angular bony defects with 5 mm or deeper pocket depth in mandibular molars. In this cross-sectional study, ninety angular bony defects in mandibular molars teeth with 5 mm or deeper pocket depth were selected in sixty patients with the diagnosis of chronic periodontitis. Before surgery, bone probing was performed. During the surgery, the vertical distance from cementoenamel junction to the most apical part of bony defect was measured using a Williams probe and this measurements were employed as gold standard. This distance was measured on the panoramic radiographs by a Digital Calliper and Digital Ruler. All data were compare dusing independent samples t -test and Pearson's correlation coefficient. No significant difference was found between the results of bone probing and intra-surgical measurements ( P = 0.377). The mean defect depth determined by Digital Caliper and Digital Ruler on panoramic radiographs was significantly less than surgical measurements ( P < 0.001). The correlation between bone probing and surgical measurements in determining the defect depth was strong ( r = 0.98, P < 0.001). Radiographic measurements made by Digital Ruler ( r = 0.86), comparing to Digital Caliper ( r = 0.79), showed a higher degree of correlation with surgical measurements. Based on this study, bone probing is a reliable method in vertical alveolar bone defect measurements. While the information obtained from digital panoramic radiographs should be used with caution and the ability of digital panoramic radiography in the determination of defect depth is limited.
NASA Astrophysics Data System (ADS)
Buyukkilic, Salih
Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations with charge-balancing oxygen vacancies. At higher temperatures near 700 °C, maximum enthalpy of formation shifts toward higher dopant concentrations, as a result of defect disordering. This concentration coincides with that of maximum ionic conductivity, extending the correlation seen previously near room temperature. It is also possible to co-dope these systems with Sm and Nd to further enhance ionic conductivity. For doubly doped ceria electrolytes, the solid solution phase of Ce1-xSm0.5xNd0.5xO2-0.5x (0 ≤ x ≤ 0.30) was investigated. It has been shown that for doubly doped ceria, the maximum enthalpy of formation occurs towards higher dopant concentration than that of singly doped counterparts, with less exothermic association enthalpies. These studies provide insight into the structure-composition-property-stability relations and aid in the rational design of the future SOFCs electrolytes.
NASA Astrophysics Data System (ADS)
Li, Yan; Kowalski, Piotr M.
2018-07-01
In order to get better understanding of the selective order-disorder transition in pyrochlore compounds, using ab initio methods we calculated the formation energies of coupled cation anti-site and anion Frenkel pair defects and the energy barriers for the oxygen migration for number of families of A2B2 O7 pyrochlore-type compounds. While these parameters have been previously computed with force field-based methods, the ab initio results provide more reliable values that can be confidently used in subsequent analysis. We found a fairly good correlation between the formation energies of the coupled defects and the stability field of pyrochlores. In line with previous studies, the compounds that crystallize in defect fluorite structure are found to have smaller values of coupled defect formation energies than those crystallizing in the pyrochlore phase, although the correlation is not that sharp as in the case of isolated anion Frenkel pair defect. The investigation of the energy barriers for the oxygen migration shows that it is not a good, sole indicator of the tendency of the order-disorder phase transition in pyrochlores. However, we found that the oxygen migration barrier is reduced in the presence of the cation antisite defect. This points at disordering-induced enhancement of oxygen diffusion in pyrochlore compounds.
Haque, Rubaiyet Iftekharul; Ogam, Erick; Benaben, Patrick; Boddaert, Xavier
2017-01-01
This paper describes the fabrication process and the method to determine the membrane tension and defects of an inkjet-printed circular diaphragm. The membrane tension is an important parameter to design and fabricate an acoustic sensor and resonator with the highest sensitivity and selectivity over a determined range of frequency. During this work, the diaphragms are fabricated by inkjet printing of conductive silver ink on pre-strained Mylar thin films, and the membrane tension is determined using the resonant frequency obtained from its measured surface velocity response to an acoustic excitation. The membrane is excited by an acoustic pressure generated by a loudspeaker, and its displacement (response) is acquired using a laser Doppler vibrometer (LDV). The response of the fabricated membrane demonstrates good correlation with the numerical result. However, the inkjet-printed membrane exhibits undesired peaks, which appeared to be due to defects at their boundaries as observed from the scanning mode of LDV. PMID:28481267
Charge states and lattice sites of dilute implanted Sn in ZnO
NASA Astrophysics Data System (ADS)
Mølholt, T. E.; Gunnlaugsson, H. P.; Johnston, K.; Mantovan, R.; Röder, J.; Adoons, V.; Mokhles Gerami, A.; Masenda, H.; Matveyev, Y. A.; Ncube, M.; Unzueta, I.; Bharuth-Ram, K.; Gislason, H. P.; Krastev, P.; Langouche, G.; Naidoo, D.; Ólafsson, S.; Zenkevich, A.; ISOLDE Collaboration
2017-04-01
The common charge states of Sn are 2+ and 4+. While charge neutrality considerations favour 2+ to be the natural charge state of Sn in ZnO, there are several reports suggesting the 4+ state instead. In order to investigate the charge states, lattice sites, and the effect of the ion implantation process of dilute Sn atoms in ZnO, we have performed 119Sn emission Mössbauer spectroscopy on ZnO single crystal samples following ion implantation of radioactive 119In (T ½ = 2.4 min) at temperatures between 96 K and 762 K. Complementary perturbed angular correlation measurements on 111mCd implanted ZnO were also conducted. Our results show that the 2+ state is the natural charge state for Sn in defect free ZnO and that the 4+ charge state is stabilized by acceptor defects created in the implantation process.
Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films
NASA Astrophysics Data System (ADS)
Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.
2017-05-01
ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.
Haque, Rubaiyet Iftekharul; Ogam, Erick; Benaben, Patrick; Boddaert, Xavier
2017-05-06
This paper describes the fabrication process and the method to determine the membrane tension and defects of an inkjet-printed circular diaphragm. The membrane tension is an important parameter to design and fabricate an acoustic sensor and resonator with the highest sensitivity and selectivity over a determined range of frequency. During this work, the diaphragms are fabricated by inkjet printing of conductive silver ink on pre-strained Mylar thin films, and the membrane tension is determined using the resonant frequency obtained from its measured surface velocity response to an acoustic excitation. The membrane is excited by an acoustic pressure generated by a loudspeaker, and its displacement (response) is acquired using a laser Doppler vibrometer (LDV). The response of the fabricated membrane demonstrates good correlation with the numerical result. However, the inkjet-printed membrane exhibits undesired peaks, which appeared to be due to defects at their boundaries as observed from the scanning mode of LDV.
Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T
2014-11-17
The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.
NASA Astrophysics Data System (ADS)
Li, Minghui; Hayward, Gordon
2018-04-01
Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.
The effect of self-assembled monolayers on graphene conductivity and morphology
NASA Astrophysics Data System (ADS)
Moore, T. L.; Chen, J. H.; Riddick, B.; Williams, E. D.
2009-03-01
Graphene transport properties are limited by charge defects in SiO2, and by large charge density due to strong interaction with SiC. To modify these effects we have treated 300 nm SiO2 with tricholosilanes with different termination groups including pure and fluoro and amino-terminated hydrocarbons for use as substrates for mechanical exfoliation of graphene. XPS measurements verify the presence of the expected termination groups. AFM measurements reveal modified monolayer roughness and correlation lengths; for a fluorinated carbon chain the RMS roughness is 0.266 ± 0.017 nm and the correlation length is 10.2 ± 0.7 nm compared to 0.187 ± 0.011 nm and 19.8 ± 2.5 nm for SiO2. Surface free energies of the monolayers and the SiO2 blank have been computed from static contact angle measurements and all decrease the SiO2 surface free energy; for the fluorinated carbon chain monolayer a decrease of 20 mJ/m^2 from SiO2. We will discuss the ease of exfoliation, and the morphology and conductivity of graphene on these monolayers.
Zhang, Lan; Lü, Lei; Wu, Hua-wei; Zhang, Hao; Zhang, Ji-wei
2011-12-06
To present our initial experiences with pulmonary high-definition multidetector computed tomography (HDCT) in patients with acute venous thromboembolism (AVTE) to evaluate their corresponding clinical manifestations. Since December 2009 to March 2010, 23 AVTE patients underwent HDCT at our hospital. Pulmonary embolism (PE) was diagnosed based on the 3D-reconstructed images of computed tomography pulmonary angiography (CTPA). The post processed data were collected by spectral imaging system software to detect the iodine distribution maps. Perfusion defects, calculated as the values of iodine content, were compared with those of normal lung parenchymal perfusion in the absence of PE. Among them, 14 AVTE patients were definitely diagnosed with PE. Prior to anticoagulant therapy, their values of iodine content in defective perfusion area were significantly lower than those in normal perfusion area. After a 3-month anticoagulant therapy, the values of iodine content for the defective perfusion area increased significantly (P < 0.05). There was no significant correlation between the values of iodine content for segmental/subsegmental filling defect area and clinical risk score of DVT (r = 2.68, P > 0.05). But there was a significant negative correlation between the values of iodine content for segmental/subsegmental filling defection area and clinical probability score of PE (r = 0.78, P < 0.05). HDCT is a promising modality of visualizing pulmonary microvasculature as a correlative manifestation of regional perfusion. PE results in hypoperfusion with decreased values of iodine content in affected lung parenchyma. Hemodynamic changes in affected areas correlate with the severity of clinical manifestations of PE.
Correlated resistive/capacitive state variability in solid TiO2 based memory devices
NASA Astrophysics Data System (ADS)
Li, Qingjiang; Salaoru, Iulia; Khiat, Ali; Xu, Hui; Prodromakis, Themistoklis
2017-05-01
In this work, we experimentally demonstrated the correlated resistive/capacitive switching and state variability in practical TiO2 based memory devices. Based on filamentary functional mechanism, we argue that the impedance state variability stems from the randomly distributed defects inside the oxide bulk. Finally, our assumption was verified via a current percolation circuit model, by taking into account of random defects distribution and coexistence of memristor and memcapacitor.
Vines, L; Bhoodoo, C; von Wenckstern, H; Grundmann, M
2017-12-13
The evolution of sheet resistance of n-type In 2 O 3 and Ga 2 O 3 exposed to bombardment with MeV 12 C and 28 Si ions at 35 K is studied in situ. While the sheet resistance of Ga 2 O 3 increased by more than eight orders of magnitude as a result of ion irradiation, In 2 O 3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga 2 O 3 remained highly resistive, while In 2 O 3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to [Formula: see text] cm -2 . A model where larger defect complexes preferentially produce donor like defects in In 2 O 3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
NASA Astrophysics Data System (ADS)
Vines, L.; Bhoodoo, C.; von Wenckstern, H.; Grundmann, M.
2018-01-01
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than eight orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 × 1012 cm-2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
76 FR 73771 - Denial of Motor Vehicle Defect Petition, DP10-002
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
...This notice describes the reasons for denying a petition (DP10-002) submitted to NHTSA under 49 U.S.C. Subtitle B, Chapter V, Part 552, Subpart A, requesting that the agency conduct ``an investigation of defective products manufactured by Dayton Wheel Concepts, Inc. (`Dayton Wheel' and American Wire Wheel, LLC (`American Wheel').'' The petition listed the allegedly defective products and the alleged defect (which varied by allegedly defective product).
NASA Astrophysics Data System (ADS)
Naumovich, E. N.; Kharton, V. V.; Yaremchenko, A. A.; Patrakeev, M. V.; Kellerman, D. G.; Logvinovich, D. I.; Kozhevnikov, V. L.
2006-08-01
A statistical thermodynamic approach to analyze defect thermodynamics in strongly nonideal solid solutions was proposed and validated by a case study focused on the oxygen intercalation processes in mixed-conducting LaGa0.65Mg0.15Ni0.20O3-δ perovskite. The oxygen nonstoichiometry of Ni-doped lanthanum gallate, measured by coulometric titration and thermogravimetric analysis at 923-1223K in the oxygen partial pressure range 5×10-5to0.9atm , indicates the coexistence of Ni2+ , Ni3+ , and Ni4+ oxidation states. The formation of tetravalent nickel was also confirmed by the magnetic susceptibility data at 77-600K , and by the analysis of p -type electronic conductivity and Seebeck coefficient as function of the oxygen pressure at 1023-1223K . The oxygen thermodynamics and the partial ionic and hole conductivities are strongly affected by the point-defect interactions, primarily the Coulombic repulsion between oxygen vacancies and/or electron holes and the vacancy association with Mg2+ cations. These factors can be analyzed by introducing the defect interaction energy in the concentration-dependent part of defect chemical potentials expressed by the discrete Fermi-Dirac distribution, and taking into account the probabilities of local configurations calculated via binomial distributions.
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...
2017-07-01
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
2011-01-01
Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized > 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested. PMID:21878100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
Public Health Practice of Population-Based Birth Defects Surveillance Programs in the United States.
Mai, Cara T; Kirby, Russell S; Correa, Adolfo; Rosenberg, Deborah; Petros, Michael; Fagen, Michael C
2016-01-01
Birth defects remain a leading cause of infant mortality in the United States and contribute substantially to health care costs and lifelong disabilities. State population-based surveillance systems have been established to monitor birth defects, yet no recent systematic examination of their efforts in the United States has been conducted. To understand the current population-based birth defects surveillance practices in the United States. The National Birth Defects Prevention Network conducted a survey of US population-based birth defects activities that included questions about operational status, case ascertainment methodology, program infrastructure, data collection and utilization, as well as priorities and challenges for surveillance programs. Birth defects contacts in the United States, including District of Columbia and Puerto Rico, received the survey via e-mail; follow-up reminders via e-mails and telephone were used to ensure a 100% response rate. Forty-three states perform population-based surveillance for birth defects, covering approximately 80% of the live births in the United States. Seventeen primarily use an active case-finding approach and 26 use a passive case-finding approach. These programs all monitor major structural malformations; however, passive case-finding programs more often monitor a broader list of conditions, including developmental conditions and newborn screening conditions. Active case-finding programs more often use clinical reviewers, cover broader pregnancy outcomes, and collect more extensive information, such as family history. More than half of the programs (24 of 43) reported an ability to conduct follow-up studies of children with birth defects. The breadth and depth of information collected at a population level by birth defects surveillance programs in the United States serve as an important data source to guide public health action. Collaborative efforts at the state and national levels can help harmonize data collection and increase utility of birth defects programs.
Horizontal alveolar bone loss: A periodontal orphan
Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya
2010-01-01
Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for this type of bone loss. This study should be an impetus for greater attention to an otherwise ubiquitous periodontal challenge. PMID:21760673
Ab initio theory of the N2V defect in diamond for quantum memory implementation
NASA Astrophysics Data System (ADS)
Udvarhelyi, Péter; Thiering, Gergő; Londero, Elisa; Gali, Adam
2017-10-01
The N2V defect in diamond is characterized by means of ab initio methods relying on density functional theory calculated parameters of a Hubbard model Hamiltonian. It is shown that this approach appropriately describes the energy levels of correlated excited states induced by this defect. By determining its critical magneto-optical parameters, we propose to realize a long-living quantum memory by N2V defect, i.e., H 3 color center in diamond.
Anurag, Meenakshi; Punturi, Nindo; Hoog, Jeremy; Bainbridge, Matthew N; Ellis, Matthew J; Haricharan, Svasti
2018-05-23
This study was undertaken to conduct a comprehensive investigation of the role of DNA damage repair (DDR) defects in poor outcome ER+ disease. Expression and mutational status of DDR genes in ER+ breast tumors were correlated with proliferative response in neoadjuvant aromatase inhibitor therapy trials (discovery data set), with outcomes in METABRIC, TCGA and Loi data sets (validation data sets), and in patient derived xenografts. A causal relationship between candidate DDR genes and endocrine treatment response, and the underlying mechanism, was then tested in ER+ breast cancer cell lines. Correlations between loss of expression of three genes: CETN2 (p<0.001) and ERCC1 (p=0.01) from the nucleotide excision repair (NER) and NEIL2 (p=0.04) from the base excision repair (BER) pathways were associated with endocrine treatment resistance in discovery data sets, and subsequently validated in independent patient cohorts. Complementary mutation analysis supported associations between mutations in NER and BER pathways and reduced endocrine treatment response. A causal role for CETN2, NEIL2 and ERCC1 loss in intrinsic endocrine resistance was experimentally validated in ER+ breast cancer cell lines, and in ER+ patient-derived xenograft models. Loss of CETN2, NEIL2 or ERCC1 induced endocrine treatment response by dysregulating G1/S transition, and therefore, increased sensitivity to CDK4/6 inhibitors. A combined DDR signature score was developed that predicted poor outcome in multiple patient cohorts. This report identifies DDR defects as a new class of endocrine treatment resistance drivers and indicates new avenues for predicting efficacy of CDK4/6 inhibition in the adjuvant treatment setting. Copyright ©2018, American Association for Cancer Research.
Electron Correlation in Oxygen Vacancy in SrTiO3
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Demkov, Alexander A.
2014-03-01
Oxygen vacancies are an important type of defect in transition metal oxides. In SrTiO3 they are believed to be the main donors in an otherwise intrinsic crystal. At the same time, a relatively deep gap state associated with the vacancy is widely reported. To explain this inconsistency we investigate the effect of electron correlation in an oxygen vacancy (OV) in SrTiO3. When taking correlation into account, we find that the OV-induced localized level can at most trap one electron, while the second electron occupies the conduction band. Our results offer a natural explanation of how the OV in SrTiO3 can produce a deep in-gap level (about 1 eV below the conduction band bottom) in photoemission, and at the same time be an electron donor. Our analysis implies an OV in SrTiO3 should be fundamentally regarded as a magnetic impurity, whose deep level is always partially occupied due to the strong Coulomb repulsion. An OV-based Anderson impurity model is derived, and its implications are discussed. This work was supported by Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences under award number DESC0008877.
Placental perfusion in 3rd trimester pregnancy
NASA Astrophysics Data System (ADS)
Sitepu, M.; Syahriza, A.; Sibuea, D.; Hanafiah, T. M.
2018-03-01
The placenta is an organ for transmitting nutrition and oxygen to thefetus; it means if there is a defect in the placenta could make growth restriction to the fetus, even death. Uterine artery flow escalated since the halfway point of the pregnancy or the complete trophoblast invasion of spiralis artery, and keep going in every week. 3D power Doppler examination on placenta could show the uterineplacenta circulation and fetoplacental at once so could give themore accurate result. A cross-sectional study in RSUP HAM and theprivate specialist clinic was conducted in 100 pregnant samples with 28-40 week gestational age, exact last menstrual period date, and no underlying disease to examine the alteration of placental perfusion by gestationalage and placental location. There was a correlation between VI and VFI in placenta toward umbilical artery flow, but no correlation in FI. The placental location also plays a role in interval blood flow, especially FI and VFI, it means the VFI hold the strongest correlation in both ways.
Light-induced defects in hybrid lead halide perovskite
NASA Astrophysics Data System (ADS)
Sharia, Onise; Schneider, William
One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clima, Sergiu, E-mail: clima@imec.be; Chen, Yang Yin; Goux, Ludovic
Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottommore » Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices.« less
Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie
2014-09-10
Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.
Rana, Abu Ul Hassan Sarwar; Lee, Ji Young; Shahid, Areej; Kim, Hyun-Seok
2017-09-10
It is time for industry to pay a serious heed to the application and quality-dependent research on the most important solution growth methods for ZnO, namely, aqueous chemical growth (ACG) and microwave-assisted growth (MAG) methods. This study proffers a critical analysis on how the defect density and formation behavior of ZnO nanostructures (ZNSs) are growth method-dependent. Both antithetical and facile methods are exploited to control the ZnO defect density and the growth mechanism. In this context, the growth of ZnO nanorods (ZNRs), nanoflowers, and nanotubes (ZNTs) are considered. The aforementioned growth methods directly stimulate the nanostructure crystal growth and, depending upon the defect density, ZNSs show different trends in structural, optical, etching, and conductive properties. The defect density of MAG ZNRs is the least because of an ample amount of thermal energy catered by high-power microwaves to the atoms to grow on appropriate crystallographic planes, which is not the case in faulty convective ACG ZNSs. Defect-centric etching of ZNRs into ZNTs is also probed and methodological constraints are proposed. ZNS optical properties are different in the visible region, which are quite peculiar, but outstanding for ZNRs. Hall effect measurements illustrate incongruent conductive trends in both samples.
NASA Astrophysics Data System (ADS)
Ozawa, Ken; Komizo, Tooru; Ohnuma, Hidetoshi
2002-07-01
An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a single-trench type with undercut for ArF exposure, with programmed phase defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM193 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topographies of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors, are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated bump defect identified by the alt-PSM of a single-trench type with undercut for ArF exposure are 300 nm in bottom dimension and 74 degrees in height (phase) for the real shape, where the depth of wet-etching is 100 nm and the CD error limit is +/- 5 percent.
NASA Astrophysics Data System (ADS)
Ozawa, Ken; Komizo, Tooru; Kikuchi, Koji; Ohnuma, Hidetoshi; Kawahira, Hiroichi
2002-07-01
An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a dual-trench type for KrF exposure, with programmed quartz defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM100 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topography of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated defect identified by the alt-PSM of a single-trench type for ArF exposure are 240 nm in bottom diameter and 50 degrees in height (phase) for the cylindrical shape and 240 nm in bottom diameter and 90 degrees in height (phase) for the rotating trapezoidal shape, where the CD error limit is +/- 5%.
Li, Weidong; Gao, Yanfei; Bei, Hongbin
2015-01-01
In order to establish a relationship between microstructure and mechanical properties, we systematically annealed a Zr-based bulk metallic glass (BMG) at 100 ~ 300 °C and measured their mechanical and thermal properties. The as-cast BMG exhibits some ductility, while the increase of annealing temperature and time leads to the transition to a brittle behavior that can reach nearly-zero fracture energy. The differential scanning calorimetry did not find any significant changes in crystallization temperature and enthalpy, indicating that the materials still remained fully amorphous. Elastic constants measured by ultrasonic technique vary only slightly with respect to annealing temperature and time, which does obey the empirical relationship between Poisson’s ratio and fracture behavior. Nanoindentation pop-in tests were conducted, from which the pop-in strength mapping provides a “mechanical probe” of the microscopic structural heterogeneities in these metallic glasses. Based on stochastically statistic defect model, we found that the defect density decreases with increasing annealing temperature and annealing time and is exponentially related to the fracture energy. A ductile-versus-brittle behavior (DBB) model based on the structural heterogeneity is developed to identify the physical origins of the embrittlement behavior through the interactions between these defects and crack tip. PMID:26435318
Li, Weidong; Gao, Yanfei; Bei, Hongbin
2015-10-05
To establish a relationship between microstructure and mechanical properties, we systematically annealed a Zr-based bulk metallic glass (BMG) at 100 ~ 300°C and measured their mechanical and thermal properties. The as-cast BMG exhibits some ductility, while the increase of annealing temperature and time leads to the transition to a brittle behavior that can reach nearly-zero fracture energy. The differential scanning calorimetry did not find any significant changes in crystallization temperature and enthalpy, indicating that the materials still remained fully amorphous. Elastic constants measured by ultrasonic technique vary only slightly with respect to annealing temperature and time, which does obey themore » empirical relationship between Poisson’s ratio and fracture behavior. Nanoindentation pop-in tests were conducted, from which the pop-in strength mapping provides a “mechanical probe” of the microscopic structural heterogeneities in these metallic glasses. Based on stochastically statistic defect model, we found that the defect density decreases with increasing annealing temperature and annealing time and is exponentially related to the fracture energy. A ductile-versus-brittle behavior (DBB) model based on the structural heterogeneity is developed to identify the physical origins of the embrittlement behavior through the interactions between these defects and crack tip.« less
Djedovic, Gabriel; Morandi, Evi M; Metzler, Julia; Wirthmann, Anna; Matiasek, Johannes; Bauer, Thomas; Rieger, Ulrich M
2017-12-01
The development of pressure sores is still not only an enormous economical but also a medical burden. Especially in the ischial region, the local defect coverage remains demanding as it is the main weight-bearing area in wheelchair-mobilised patients and is prone to high mobility. The purpose of our study was to report our long-time experience with the reconstruction of ischial pressure ulcers with the medially based posterior thigh flap. A retrospective analysis of all primary pressure sores grade III-IV in the ischial area, which were covered with a medially based posterior thigh flap between January 2008 and December 2014, at our department was conducted. A total of 28 patients underwent defect coverage of an ischial pressure sore with the aforementioned flap. The subgroup with complications showed a statistically significant longer hospital stay. A statistically significant correlation between age and the coincidence of comorbidities could be seen. Older patients showed significantly higher grades of pressure sores. The medially based posterior thigh flap is a safe and reliable flap design. Complication rates are comparable to other flaps. Nevertheless, in case of complications, a significantly longer duration of hospitalisation has to be taken into account. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
The influence of point defects on the thermal conductivity of AlN crystals
NASA Astrophysics Data System (ADS)
Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón
2018-05-01
The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.
Imaging Study of Multi-Crystalline Silicon Wafers Throughout the Manufacturing Process: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Zaunbracher, K.
2011-07-01
Imaging techniques are applied to multi-crystalline silicon bricks, wafers at various process steps, and finished solar cells. Photoluminescence (PL) imaging is used to characterize defects and material quality on bricks and wafers. Defect regions within the wafers are influenced by brick position within an ingot and height within the brick. The defect areas in as-cut wafers are compared to imaging results from reverse-bias electroluminescence and dark lock-in thermography and cell parameters of near-neighbor finished cells. Defect areas are also characterized by defect band emissions. The defect areas measured by these techniques on as-cut wafers are shown to correlate to finishedmore » cell performance.« less
Beta-Ga2O3: A transparent conductive oxide for potential resistive switching applications
NASA Astrophysics Data System (ADS)
Zheng, Xiaohao
My primary research focus is controlling conductivity in Ga2O3, with the broader goal of seeking both new materials science and possible applications. Regarding new materials science, the key goal is to elucidate connections between defects and conductivity in β- Ga2O3, then, based on an understanding of the conduction mechanism of Ga2O3, determine and evaluate the potential of β-Ga2O3 as a resistive switching (RS) material. To systematically investigate the feasibility of Ga2O3 in memristor applications, several aspects was examined. One of the first questions to be answered is how defects play a role in the conductivity of Ga2O3. To establish connections between conductivity and defects, a direct approach is to investigate the connections between the local structure and the concomitant electronic responses, paying particular attention to the role of both intrinsic and extrinsic defects. The approach I used was to compare the directional and thermal dependence of the conductivity induced through annealing in various environments (i.e., intentionally changing the intrinsic and extrinsic defect concentrations), and elucidate the roles of dimensionality and sample processing in controlling these processes through a comparison of the bulk. Such a strategy involves careful characterization of both the atomic and electronic structure at both nanoscopic and macroscopic length scales. Although various calculations has predicted conductivity is independent from oxygen vacancy, no experimental work is reported as supports to theoretical studies due to the hardness to dissociate oxygen vacancy increase from other defect changes, such as Hydrogen interstitial increase, surface band bending reduction from surface population of charged vacancies, metal contact to Ga2O3 interface changes, etc . We intentionally inject and/or remove oxygen defects through annealing in oxidizing and reducing atmospheres. The effects of such annealing treatments were investigated using X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and a physical property measurement system (PPMS) to determine chemical and electronic structure, surface characteristics, and transport properties, respectively. Next, we want to determine the most efficient way to induce a defect concentration change. Electrical field-induced redox reactions and thermal power-induced defect migration are two major driving forces of current RS materials. In this case, I employed two approaches when annealing samples: applying a direct current to the sample, which subjects the material to both an electric field and an elevated temperature, and thermally heating the sample using a resistive heating block. The contribution of contact to Ga2O3 interfaces are also intensively investigated, opposed to in single crystal study, experiments were designed to avoid contact uncertainties. Changes in the conductivity were subsequently examined by electrical measurements. By seeking answers to the above questions, we found evidences to defect agglomerations, likely Ga vacancies, in single crystal Ga2O3 and determined its potentials to be controlled thermally and electrically. As a result, we can switch bulk single crystal Ga2O3 between high conductivity and low conductivity states. To realize this resistive switching behavior in a device, a set of experiments to synthesize Ga2O3 films with desired properties and optimize both the device geometry and contact conditions was conducted. A subsequent investigation into device performance and analyses of the structural and interfacial characteristics of the devices was performed. Thus, this thesis aims to answer three major questions, two of which relate to the intrinsic properties of Ga2O3 and one that is associated with device fabrication and characterization. In this report, common "to understand" and "to utilize" strategies were followed to address Ga2O3 resistive switching in two parts: Ga2O3 material investigation and Ga2O3 resistive switching applications.
Hydrogen molecule defect in proton-conductive SrTiO3 Perovskite
NASA Astrophysics Data System (ADS)
Onishi, Taku
2017-11-01
In proton-conductive SrTiO3 perovskite, no hydrogen molecule defect ideally exists. However, the unforeseen chemical reaction is often observed after the use of fuel cell. From the viewpoint of battery safety, we have investigated the effect of hydrogen molecule defect by molecular orbital analysis. When counter cation vacancy exists, the activation energy for hydrogen molecule migration was 1.39 - 1.50 eV, which is much smaller than the dissociation energy of hydrogen molecule. It implies that hydrogen molecule may migrate without its dissociation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontheimer, Tobias, E-mail: tobias.sontheimer@helmholtz-berlin.de; Schnegg, Alexander; Lips, Klaus
2013-11-07
By employing electron paramagnetic resonance spectroscopy, transmission electron microscopy, and optical measurements, we systematically correlate the structural and optical properties with the deep-level defect characteristics of various tailored periodic Si microhole arrays, which are manufactured in an easily scalable and versatile process on nanoimprinted sol-gel coated glass. While tapered microhole arrays in a structured base layer are characterized by partly nanocrystalline features, poor electronic quality with a defect concentration of 10{sup 17} cm{sup −3} and a high optical sub-band gap absorption, planar polycrystalline Si layers perforated with periodic arrays of tapered microholes are composed of a compact crystalline structure and amore » defect concentration in the low 10{sup 16} cm{sup −3} regime. The low defect concentration is equivalent to the one in planar state-of-the-art solid phase crystallized Si films and correlates with a low optical sub-band gap absorption. By complementing the experimental characterization with 3-dimensional finite element simulations, we provide the basis for a computer-aided approach for the low-cost fabrication of novel high-quality structures on large areas featuring tailored opto-electronic properties.« less
Zhang, Peng; Shang, Qingli; Ma, Jingxue; Hao, Yuhua; Ye, Cunxi
2017-03-20
To determine the correlation between the preoperative basal diameter of macular hole, the postoperative area of high autofluorescence (AF) in macula, and visual acuity in full-thickness macular hole. Forty-nine patients with full-thickness macular hole who underwent vitrectomy and C3F8 filling were reviewed. The preoperative diameter of macular hole, the 6 months postoperative area of high AF in macula if it existed, the length of inner segment/outer segment (IS/OS) defect, and visual acuity were obtained. The correlation between them was determined. At postoperative 6 months, the rate of high AF in macula was 63.3%. There were statistical differences between with and without high AF groups in postoperative best-corrected visual acuity (BCVA) (t = -2.751, p = 0.008), preoperative basal diameter of macular hole (t = -4.946, p = 0.00001), and postoperative length of IS/OS defect (t = -8.351, p<0.00001). Simple linear regression analysis showed high positive correlations between preoperative basal diameter of macular hole and area of high AF (p<0.00001, r = 0.893), postoperative length of IS/OS defect and area of high fundus AF (FAF) (p<0.00001, r = 0.779), and negative correlations between area of high AF and postoperative BCVA (p = 0.037, r = 0.375). There was low correlation between diameter of macular hole and postoperative BCVA (p = 0.112). The preoperative basal diameter of macular hole and postoperative length of IS/OS defect decides the postoperative area of high AF in macula to some degree, and the postoperative area of high AF in macula can be an evaluating indicator for poor macular function recovery.
Goebel, L; Orth, P; Cucchiarini, M; Pape, D; Madry, H
2017-04-01
To correlate osteochondral repair assessed by validated macroscopic scoring systems with established semiquantitative histological analyses in an ovine model and to test the hypothesis that important macroscopic individual categories correlate with their corresponding histological counterparts. In the weight-bearing portion of medial femoral condyles (n = 38) of 19 female adult Merino sheep (age 2-4 years; weight 70 ± 20 kg) full-thickness chondral defects were created (size 4 × 8 mm; International Cartilage Repair Society (ICRS) grade 3C) and treated with Pridie drilling. After sacrifice, 1520 blinded macroscopic observations from three observers at 2-3 time points including five different macroscopic scoring systems demonstrating all grades of cartilage repair where correlated with corresponding categories from 418 blinded histological sections. Categories "defect fill" and "total points" of different macroscopic scoring systems correlated well with their histological counterparts from the Wakitani and Sellers scores (all P ≤ 0.001). "Integration" was assessed in both histological scoring systems and in the macroscopic ICRS, Oswestry and Jung scores. Here, a significant relationship always existed (0.020 ≤ P ≤ 0.049), except for Wakitani and Oswestry (P = 0.054). No relationship was observed for the "surface" between histology and macroscopy (all P > 0.05). Major individual morphological categories "defect fill" and "integration", and "total points" of macroscopic scoring systems correlate with their corresponding categories in elementary and complex histological scoring systems. Thus, macroscopy allows to precisely predict key histological aspects of articular cartilage repair, underlining the specific value of macroscopic scoring for examining cartilage repair. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Trotta, Lucia; Biagi, Federico; Bianchi, Paola I; Marchese, Alessandra; Vattiato, Claudia; Balduzzi, Davide; Collesano, Vittorio; Corazza, Gino R
2013-12-01
Coeliac disease is a condition characterized by a wide spectrum of clinical manifestations. Any organ can be affected and, among others, dental enamel defects have been described. Our aims were to study the prevalence of dental enamel defects in adults with coeliac disease and to investigate a correlation between the grade of teeth lesion and clinical parameters present at the time of diagnosis of coeliac disease. A dental examination was performed in 54 coeliac disease patients (41 F, mean age 37 ± 13 years, mean age at diagnosis 31 ± 14 years). Symptoms leading to diagnosis were diarrhoea/weight loss (32 pts.), anaemia (19 pts.), familiarity (3 pts.); none of the patients was diagnosed because of enamel defects. At the time of evaluation, they were all on a gluten-free diet. Enamel defects were classified from grade 0 to 4 according to its severity. Enamel defects were observed in 46/54 patients (85.2%): grade 1 defects were seen in 18 patients (33.3%) grade 2 in 16 (29.6%), grade 3 in 8 (14.8%), and grade 4 in 4 (7.4%). We also observed that grades 3 and 4 were more frequent in patients diagnosed with classical rather than non-classical coeliac disease (10/32 vs. 2/20). However, this was not statistically significant. This study confirms that enamel defects are common in adult coeliac disease. Observation of enamel defects is an opportunity to diagnose coeliac disease. Copyright © 2013 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Vehicle response-based track geometry assessment using multi-body simulation
NASA Astrophysics Data System (ADS)
Kraft, Sönke; Causse, Julien; Coudert, Frédéric
2018-02-01
The assessment of the geometry of railway tracks is an indispensable requirement for safe rail traffic. Defects which represent a risk for the safety of the train have to be identified and the necessary measures taken. According to current standards, amplitude thresholds are applied to the track geometry parameters measured by recording cars. This geometry-based assessment has proved its value but suffers from the low correlation between the geometry parameters and the vehicle reactions. Experience shows that some defects leading to critical vehicle reactions are underestimated by this approach. The use of vehicle responses in the track geometry assessment process allows identifying critical defects and improving the maintenance operations. This work presents a vehicle response-based assessment method using multi-body simulation. The choice of the relevant operation conditions and the estimation of the simulation uncertainty are outlined. The defects are identified from exceedances of track geometry and vehicle response parameters. They are then classified using clustering methods and the correlation with vehicle response is analysed. The use of vehicle responses allows the detection of critical defects which are not identified from geometry parameters.
Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.; ...
2017-02-20
From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.
From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less
Automated defect spatial signature analysis for semiconductor manufacturing process
Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed
1999-01-01
An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.
Factors associated with birth defects in the region of Corpus Christi, Texas
In recent years, the Birth Defects Epidemiology & Surveillance Branch of the Texas Department of State Health Services (DSHS) has documented a high prevalence of certain birth defects in the Corpus Christi, TX region. We conducted a case-control study to evaluate associations...
Defect Detectability Improvement for Conventional Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hill, Chris
2013-01-01
This research was conducted to evaluate the effects of defect detectability via phased array ultrasound technology in conventional friction stir welds by comparing conventionally prepped post weld surfaces to a machined surface finish. A machined surface is hypothesized to improve defect detectability and increase material strength.
Hybrid Defect Phase Transition: Renormalization Group and Monte Carlo Analysis
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Diep, H. T.
2010-03-01
For the q-state Potts model with 2 < q <= 4 on the square lattice with a defect line, the order parameter on the defect line jumps discontinuously from zero to a nonzero value while the defect energy varies continuously with the temperature at the critical temperature. Monte-Carlo simulations (H. T. Diep, M. Kaufman, Phys Rev E 2009) of the q-state Potts model on a square lattice with a line of defects verify the renormalization group prediction (M. Kaufman, R. B. Griffiths, Phys Rev B 1982) on the occurrence of the hybrid transition on the defect line. This is interesting since for those q values the bulk transition is continuous. This hybrid (continuous - discontinuous) defect transition is induced by the infinite range correlations at the bulk critical point.
Debye screening in single-molecule carbon nanotube field-effect sensors.
Sorgenfrei, Sebastian; Chiu, Chien-Yang; Johnston, Matthew; Nuckolls, Colin; Shepard, Kenneth L
2011-09-14
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough gate potentials, the target DNA is completely repelled and RTN is suppressed.
Debye screening in single-molecule carbon nanotube field-effect transistors
Sorgenfrei, Sebastian; Chiu, Chien-yang; Johnston, Matthew; Nuckolls, Colin; Shepard, Kenneth L.
2013-01-01
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough repulsive potentials, the target DNA is completely repelled and RTN is suppressed. PMID:21806018
Effect of point defects and disorder on structural phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toulouse, J.
1997-06-01
Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods tomore » study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.« less
Hurd, Elizabeth A; Adams, Meredith E; Layman, Wanda S; Swiderski, Donald L; Beyer, Lisa A; Halsey, Karin E; Benson, Jennifer M; Gong, Tzy-Wen; Dolan, David F; Raphael, Yehoash; Martin, Donna M
2011-12-01
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt)(/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt)(/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt)(/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt)(/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. Copyright © 2011 Elsevier B.V. All rights reserved.
Hurd, Elizabeth A.; Adams, Meredith E.; Layman, Wanda S.; Swiderski, Donald L.; Beyer, Lisa A.; Halsey, Karin E.; Benson, Jennifer M.; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash; Martin, Donna M.
2011-01-01
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by Prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7Gt/+ mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7Gt/+ mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7Gt/+ mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7Gt/+ mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. PMID:21875659
Compera, Denise; Schumann, Ricarda G; Cereda, Matteo G; Acquistapace, Alessandra; Lita, Viviane; Priglinger, Siegfried G; Staurenghi, Giovanni; Bottoni, Ferdinando
2018-01-01
To report on progression of lamellar hole-associated epiretinal proliferation (LHEP) in eyes with lamellar macular holes (LMH) using spectral-domain optical coherence tomography (SD-OCT), and to correlate with intraretinal changes and visual function. From a retrospectively reviewed series of 167 eyes with non-full-thickness macular holes, we exclusively included a subgroup of 34 eyes with LMH and LHEP by SD-OCT evaluation. In these eyes, area of LHEP, intraretinal changes of defect diameter, central retinal thickness, defects of the ellipsoid zone and occurrence of a contractive epiretinal membrane were analysed. Additionally, clinical data were documented. Area of LHEP significantly increased during a mean follow-up period of 40.5 months (median 52 months). Analysing intraretinal changes, a significant enlargement of minimum and maximum horizontal lamellar hole diameter was found that correlated with the area of LHEP. Defects of the ellipsoid zone were seen in 65% of the eyes at baseline and in 85% at the end of follow-up. Increase of maximum horizontal hole diameter and ellipsoid zone defects correlated with a decline of visual acuity. Fifty per cent of patients with LMH and LHEP also demonstrated extrafoveal typical contractive epiretinal membranes with retinal folds. Long-term follow-up revealed an increase of the area of LHEP in eyes with LMH that correlated with the enlargement of lamellar hole diameter and ellipsoid zone defects. Our data delineate the progression of intraretinal changes in association with a decline of visual function in this subgroup of LMH eyes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Aydin, Serdar; Bakar, Rabia Zehra; Arioğlu Aydin, Çağri; Ateş, Seda
The aim of this study is to investigate the association of sexual functions with levator hiatus biometry measurements and levator ani muscle defect. In 62 heterosexual, sexually active premenopausal women without pelvic floor disorders or urinary incontinence, 3-dimensional transperineal ultrasound imaging was used. Two 3-dimensional volumes were recorded, one at rest and one on Valsalva maneuver. Levator biometry measurements and levator defect were evaluated in an axial plane. Sexual function was assessed by a validated questionnaire, Female Sexual Function Index (FSFI). The primary outcome measure was correlation of sexual functions with the levator hiatus area, transverse and anteroposterior diameters, levator ani muscle thickness, vaginal length, and changes in measurements with Valsalva and levator defect. Forty-two women (67.7%) had low total FSFI scores (<26.55). Levator defect rates were similar in female sexual dysfunction (7/42, 16.7%) and women without female sexual dysfunction (5/20, 25%). The FSFI was negatively and weakly correlated with Δhiatal anteroposterior diameter (r = -0.33, P < 0.009) in the study population. There was a weak and inverse correlation between Δhiatal anteroposterior diameter and arousal (r = -0.35, P < 0.002), desire (r = -0.38, P < 0.001), and orgasm (r = -0.33, P < 0.007). Pain and lubrication did not correlate with any measurement. Hiatal area and diameters at rest are not related to sexual functions. Changes in anteroposterior diameter of the levator hiatus during Valsalva, which may be a sign of pelvic floor laxity or levator muscle weakness, are weakly associated with sexual functions, particularly desire, arousal, and orgasm domains.
NASA Astrophysics Data System (ADS)
Komogortsev, S. V.; Fel'k, V. A.; Iskhakov, R. S.; Shadrina, G. V.
2017-08-01
The hysteresis loops and the micromagnetic structure of a ferromagnetic nanolayer with a randomly oriented local easy magnetization axis and two-dimensional magnetization correlations are studied using a micromagnetic simulation. The properties and the micromagnetic structure of the nanolayer are determined by the competition between the anisotropy and exchange energies and by the dipole-dipole interaction energy. The magnetic microstructure can be described as an ensemble of stochastic magnetic domains and topological magnetization defects. Dipole-dipole interaction suppresses the formation of topological magnetization defects. The topological defects in the magnetic microstructure can cause a sharper change in the coercive force with the crystallite size than that predicted by the random magnetic anisotropy model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Mao-Hua
2010-01-01
First-principles calculations are carried out to study the native defect properties in TlBr. Three important results emerge: (1) the native defects are benign in terms of electron trapping because the low-energy defects do not induce electron traps; (2) the dominant defects in nearly stoichiometric TlBr are Schottky defects that pin the Fermi level near the midgap, leading to high resistivity; and (3) the calculated low diffusion barriers for several native defects show that ionic conductivity can occur at room temperature. The important impacts of these material properties on the room-temperature radiation detection using TlBr are discussed.
NASA Astrophysics Data System (ADS)
Du, Mao-Hua
2010-09-01
First-principles calculations are carried out to study the native defect properties in TlBr. Three important results emerge: (1) the native defects are benign in terms of electron trapping because the low-energy defects do not induce electron traps; (2) the dominant defects in nearly stoichiometric TlBr are Schottky defects that pin the Fermi level near the midgap, leading to high resistivity; and (3) the calculated low diffusion barriers for several native defects show that ionic conductivity can occur at room temperature. The important impacts of these material properties on the room-temperature radiation detection using TlBr are discussed.
Anosognosia for obvious visual field defects in stroke patients.
Baier, Bernhard; Geber, Christian; Müller-Forell, Wiebke; Müller, Notger; Dieterich, Marianne; Karnath, Hans-Otto
2015-01-01
Patients with anosognosia for visual field defect (AVFD) fail to recognize consciously their visual field defect. There is still unclarity whether specific neural correlates are associated with AVFD. We studied AVFD in 54 patients with acute stroke and a visual field defect. Nineteen percent of this unselected sample showed AVFD. By using modern voxelwise lesion-behaviour mapping techniques we found an association between AVFD and parts of the lingual gyrus, the cuneus as well as the posterior cingulate and corpus callosum. Damage to these regions appears to induce unawareness of visual field defects and thus may play a significant role for conscious visual perception.
Mechanisms of oxygen permeation through plastic films and barrier coatings
NASA Astrophysics Data System (ADS)
Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian
2017-10-01
Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µm) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.
Olive Oil Headspace Characterization by a Gas Sensor Array
NASA Astrophysics Data System (ADS)
Santonico, Marco; Gianni, Giacomo; Capuano, Rosamaria; Migliorini, Marzia; Catini, Alexandro; Dini, Francesca; Martinelli, Eugenio; Paolesse, Roberto; D'Amico, Arnaldo; Di Natale, Corrado
2011-09-01
Olive oil quality is strictly correlated to the volatile compounds profile. Both quality and defects can be connected to the presence of specific volatile compounds in the oil headspace. In this paper, olive oil samples have been artificially modified by adding a number of compounds known to be typical of the more frequent defects: fusty, musty, muddy and rancid. Results demonstrate the sensitivity of the electronic nose to the compounds characterizing the defects and then the capability of the instrument to identify the defects in real samples.
Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd 2Ti 2O 7
Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; ...
2015-11-10
In this research, the structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd 2Ti 2O 7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region ismore » predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. From these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less
Summary report on UO 2 thermal conductivity model refinement and assessment studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James
Uranium dioxide (UO 2) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to eachmore » individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel performance codes. The model is validated by comparison to low-temperature experimental measurements on single crystal hyper-stoichiometric UO 2+x samples and high-temperature literature data. Ongoing works include investigation of the effect of phase separation to UO 2+U 4O 9 on the low temperature thermal conductivity of UO 2+x, and modeling of thermal conductivity using the Green-Kubo method. Ultimately, this work will enable more accurate fuel performance simulations as well as extension to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less
Stensrud, Kjetil J; Emblem, Ragnhild; Bjørnland, Kristin
2015-08-01
The reasons for fecal incontinence after surgery for Hirschsprung disease (HD) remain unclear. The aim of this study was to examine the anal sphincters by anal endosonography and manometry after transanal endorectal pull-through, with or without laparotomy or laparoscopy, in HD patients. Furthermore, we aimed to correlate these findings to bowel function. Fifty-two HD patients were followed after endorectal pull-through. Anal endosonography and manometry were performed without sedation at the age of 3 to 16 years. Endosonographic internal anal sphincter (IAS) defects were found in 24/50 patients, more frequently after transanal than transabdominal procedures (69 vs. 19%, p=0.001). In a multiple variable logistic regression model, operative approach was the only significant predictor for IAS defects. Anal resting pressure (median 40mm Hg, range 15-120) was not correlated to presence of IAS defects. Daily fecal incontinence occurred more often in patients with IAS defects (54 vs. 25%, p=0.03). Postoperative IAS defects were frequently detected and were associated with daily fecal incontinence. IAS defects occurred more often after solely transanal procedures. We propose that these surgical approaches are compared in a randomized controlled trial before solely transanal endorectal pull-through is performed as a routine procedure. Copyright © 2015 Elsevier Inc. All rights reserved.
Modification of graphene by ion beam
NASA Astrophysics Data System (ADS)
Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.
2017-09-01
Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.
Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo
2013-03-01
The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.
Hydrogen mobility in transition zone silicates
NASA Astrophysics Data System (ADS)
Caracas, R.; Panero, W. R.
2016-12-01
Hydrogen defects in mantle silicates adopt a variety of charge-balanced defects, including VMg''+2(H*), VSi''''+4(H*), and VSi'+(Mg+2H*). Constraining the defect mechanism experimentally can be quite difficult, as it relies almost entirely on vibrational spectroscopy whose interpretation can often be controversial. Here we use a computational alternative: we study the above-mentioned defect mechanisms using molecular dynamics simulations based on the density-functional theory, in the VASP implementation. We perform isokinetical NVT simulations over a 1500 - 2500K temperature range using supercells containing 16 equivalent formula units of Mg2SiO4. Our results show that temperature has a tremendous effect on mobility. H is significantly more mobile when incorporated as VMg''+2H* defects than as hydrogarnet defects and that VMg''+2H* defects are more mobile in wadsleyite than ringwoodite. This result is the opposite from the proton conductivity inferences of Yoshino et al. [2008] and Huang et al [2006], as well as the observed increase in electrical conductivity with depth through the transition zone [e.g. Kuvshinov et al, 2005; Olsen 1998]. Over the simulation time of several tens of picoseconds the H travel over several lattice sites. However, during its path it spends a considerable amount of time pinned in the defect sites. The lowest mobility is for the VSi''''+4(H*) defect, where the H atoms remain inside the octahedron from which they replaced the Si.
Cabib, Christopher; Llufriu, Sara; Casanova-Molla, Jordi; Saiz, Albert; Valls-Solé, Josep
2015-03-01
Slowness of voluntary movements in patients with multiple sclerosis (MS) may be due to various factors, including attentional and cognitive deficits, delays in motor conduction time, and impairment of specific central nervous system circuits. In 13 healthy volunteers and 20 mildly disabled, relapsing-remitting MS patients, we examined simple reaction time (SRT) tasks requiring sensorimotor integration in circuits involving the corpus callosum and the brain stem. A somatosensory stimulus was used as the imperative signal (IS), and subjects were requested to react with either the ipsilateral or the contralateral hand (uncrossed vs. crossed SRT). In 33% of trials, a startling auditory stimulus was presented together with the IS, and the percentage reaction time change with respect to baseline SRT trials was measured (StartReact effect). The difference between crossed and uncrossed SRT, which requires interhemispheric conduction, was significantly larger in patients than in healthy subjects (P = 0.021). The StartReact effect, which involves activation of brain stem motor pathways, was reduced significantly in patients with respect to healthy subjects (uncrossed trials: P = 0.015; crossed trials: P = 0.005). In patients, a barely significant correlation was found between SRT delay and conduction abnormalities in motor and sensory pathways (P = 0.02 and P = 0.04, respectively). The abnormalities found specifically in trials reflecting interhemispheric transfer of information, as well as the evidence for reduced subcortical motor preparation, indicate that a delay in reaction time execution in MS patients cannot be explained solely by conduction slowing in motor and sensory pathways but suggest, instead, defective sensorimotor integration mechanisms in at least the two circuits examined. Copyright © 2015 The American Physiological Society.
Zhu, Huayang; Ricote, Sandrine; Coors, W Grover; Kee, Robert J
2015-01-01
A model-based interpretation of measured equilibrium conductivity and conductivity relaxation is developed to establish thermodynamic, transport, and kinetics parameters for multiple charged defect conducting (MCDC) ceramic materials. The present study focuses on 10% yttrium-doped barium zirconate (BZY10). In principle, using the Nernst-Einstein relationship, equilibrium conductivity measurements are sufficient to establish thermodynamic and transport properties. However, in practice it is difficult to establish unique sets of properties using equilibrium conductivity alone. Combining equilibrium and conductivity-relaxation measurements serves to significantly improve the quantitative fidelity of the derived material properties. The models are developed using a Nernst-Planck-Poisson (NPP) formulation, which enables the quantitative representation of conductivity relaxations caused by very large changes in oxygen partial pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkin, William M.; Balan, Adrian; Liang, Liangbo
Here, we report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy (TEM) two-terminal conductivity of monolayer MoS 2 under electron irradiation. We observe a redshift in the E Raman peak and a less pronounced blueshift in the A' 1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy (EDS), we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %), which is confirmed by first-principles density functional theory calculations. Inmore » situ device current measurements show exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS 2-based transport channels.« less
Sato, Takahiro; Orai, Yoshihisa; Suzuki, Yuya; Ito, Hiroyuki; Isshiki, Toshiyuki; Fukui, Munetoshi; Nakamura, Kuniyasu; Schamp, C T
2017-10-01
To improve the reliability of silicon carbide (SiC) electronic power devices, the characteristics of various kinds of crystal defects should be precisely understood. Of particular importance is understanding the correlation between the surface morphology and the near surface dislocations. In order to analyze the dislocations near the surface of 4H-SiC wafers, a dislocation analysis protocol has been developed. This protocol consists of the following process: (1) inspection of surface defects using low energy scanning electron microscopy (LESEM), (2) identification of small and shallow etch pits using KOH low temperature etching, (3) classification of etch pits using LESEM, (4) specimen preparation of several hundred nanometer thick sample using the in-situ focused ion beam micro-sampling® technique, (5) crystallographic analysis using the selected diffraction mode of the scanning transmission electron microscope (STEM), and (6) determination of the Burgers vector using multi-directional STEM (MD-STEM). The results show a correlation between the triangular terrace shaped surface defects and an hexagonal etch pit arising from threading dislocations, linear shaped surface defects and elliptical shaped etch pits arising from basal plane dislocations. Through the observation of the sample from two orthogonal directions via the MD-STEM technique, a basal plane dislocation is found to dissociate into an extended dislocation bound by two partial dislocations. A protocol developed and presented in this paper enables one to correlate near surface defects of a 4H-SiC wafer with the root cause dislocations giving rise to those surface defects. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Tewari, S.; Ghosh, A.; Bhattacharjee, A.
2016-11-01
Sintered pellets of zinc oxide (ZnO), both undoped and Al-doped are prepared through a chemical process. Dopant concentration of Aluminium in ZnO [Al/Zn in weight percentage (wt%)] is varied from 0 to 3 wt%. After synthesis structural characterisation of the samples are performed with XRD and SEM-EDAX which confirm that all the samples are of ZnO having polycrystalline nature with particle size from 108.6 to 116 nm. Frequency dependent properties like a.c. conductivity, capacitance, impedance and phase angle are measured in the frequency range 10 Hz to 100 kHz as a function of temperature (in the range 25-150 °C). Nature of a.c. conductivity in these samples indicates hopping type of conduction arising from localised defect states. The frequency and temperature dependent properties under study are found to be as per correlated barrier hoping model. Dielectric and impedance properties studied in the samples indicate distributed relaxation, showing decrease of relaxation time with temperature.
Defect-mediated magnetism of transition metal doped zinc oxide thin films
NASA Astrophysics Data System (ADS)
Roberts, Bradley Kirk
Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which is may be magnetically active as mediator. Measurements suggest that this defect contribution is strongest (or concentration higher) near the surface too. This study concerns the wide-gap oxide ZnO when doped with the transition metal Cr, below the percolation threshold, and subject to defects that mediate ferromagnetism independent of polarized free carriers. Ultimately, by adjusting the volumetric concentration of certain defects, ferromagnetic ordering in ZnO:Cr can be controlled. The potential applicability of novel theories of defect-mediated magnetism to this system is discussed.
The Sequelae of Acute Purulent Meningitis in Childhood
Hutchison, Patricia A.; Kovacs, Michael C.
1963-01-01
Of a series of 122 children suffering from acute purulent meningitis at the Children's Hospital, Winnipeg, in the years 1952-56, 12 (9.8%) succumbed, all deaths occurring in those 12 months of age or less. Fortyone of the survivors were re-studied 2.5 to 7.5 years after their acute illness to assess the nature and incidence of sequelae, the relationship of sequelae to the severity of the acute illness, and the correlation between the various methods of identifying sequelae. Five children exhibited psychiatric evidence of organic brain damage; seven, neurological abnormality; 11, electroencephalographic abnormality. Three had defective intelligence and nine psychological test evidence of organic brain damage. Children with sequelae tended to have several abnormal test results, the total number with neuropsychiatric and/or psychological sequelae being 11 (26%). There was a positive correlation between the severity of the acute illness and the presence of neuropsychiatric sequelae; also between neuropsychiatric sequelae, defective intelligence and psychological evidence of brain damage. No correlation existed between the electroencephalographic abnormality and neuropsychiatric defect. PMID:13955939
Perfusion lung imaging in the adult respiratory distress syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistolesi, M.; Miniati, M.; Di Ricco, G.
1986-07-01
In 29 perfusion lung scans (PLS) of 19 patients with ARDS, 20 of which were obtained within six days from the onset of respiratory symptoms, perfusion abnormalities were the rule. These included focal, nonsegmental defects, mostly peripheral and dorsal, and perfusion redistribution away from the dependent lung zones. PLS were scored for the presence and intensity of perfusion abnormalities and the scores of perfusion redistribution were validated against numerical indices of blood flow distribution per unit lung volume. PLS scores were correlated with arterial blood gas values, hemodynamic parameters, and chest radiographic scores of ARDS. Arterial oxygen tension correlated withmore » the scores of both perfusion defects and redistribution. Perfusion defects correlated better with the radiographic score of ARDS, and perfusion redistribution with PAP and vascular resistance. ARDS patients exhibit peculiar patterns of PLS abnormalities not observed in other disorders. Thus, PLS may help considerably in the detection and evaluation of pulmonary vascular injury in ARDS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur
2010-09-01
We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such asmore » ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.« less
Chaotic electron transport in semiconductor devices
NASA Astrophysics Data System (ADS)
Scannell, William Christian
The field of quantum chaos investigates the quantum mechanical behavior of classically chaotic systems. This dissertation begins by describing an experiment conducted on an apparatus constructed to represent a three dimensional analog of a classically chaotic system. Patterns of reflected light are shown to produce fractals, and the behavior of the fractal dimension D F is shown to depend on the light's ability to escape the apparatus. The classically chaotic system is then used to investigate the conductance properties of semiconductor heterostructures engineered to produce a conducting plane relatively free of impurities and defects. Introducing walls that inhibit conduction to partition off sections considerably smaller than the mean distance between impurities defines devices called 'billiards'. Cooling to low temperatures enables the electrons traveling through the billiard to maintain quantum mechanical phase. Exposure to a changing electric or magnetic field alters the electron's phase, leading to fluctuations in the conductance through the billiard. Magnetoconductance fluctuations in billiards have previously been shown to be fractal. This behavior has been charted using an empirical parameter, Q, that is a measure of the resolution of the energy levels within the billiard. The relationship with Q is shown to extend beyond the ballistic regime into the 'quasi-ballistic' and 'diffusive' regimes, characterized by having defects within the conduction plane. A model analogous to the classically chaotic system is proposed as the origin of the fractal conductance fluctuations. This model is shown to be consistent with experiment and to account for changes of fine scale features in MCF known to occur when a billiard is brought to room temperature between low temperature measurements. An experiment is conducted in which fractal conductance fluctuations (FCF) are produced by exposing a billiard to a changing electric field. Comparison of DF values of FCF produced by electric fields is made to FCF produced by magnetic fields. FCF with high DF values are shown to de-correlate at smaller increments of field than the FCF with lower DF values. This indicates that FCF may be used as a novel sensor of external fields, so the response of FCF to high bias voltages is investigated.
Birth defects are responsible for a large proportion of disability and infant mortality. Exposure to a variety of pesticides have been linked to increased risk of birth defects. We conducted a case-control study to estimate the associations between a residence-based metric of agr...
Functional resurfacing of the palm: flap selection based on defect analysis.
Engelhardt, T O; Rieger, U M; Schwabegger, A H; Pierer, G
2012-02-01
Extensive defect coverage of the palm and anatomical reconstruction of its unique functional capacity remains difficult. In manual laborers, reconstruction of sensation, range of motion, grip strength but also mechanical stability is required. Sensate musculo-/fasciocutaneous flaps bear disadvantages of tissue mobility with shifting/bulkiness under stress. Thin muscle and fascial flaps show adherence but preclude sensory nerve coaptation. The purpose of this review is to present our algorithm for reliable selection of the most appropriate procedure based on defect analysis. Defect analysis focusing on units of tactile gnosis provides information to weigh needs for sensation or soft tissue stability. We distinguish radial unit (r)-thenar, ulnar unit (u)-hypothenar and unit (c)-central plus distal palm. Individual parameters need similar consideration to choose adequate treatment. Unit (r) and unit (u) are regions of secondary touch demanding protective sensation. Restoration of sensation using neurovascular, fasciocutaneous flaps is recommended. In unit (c), tactile gnosis is of less, mechanical resistance of greater value. Reconstruction of soft tissue resistance is suggested first in this unit. In laborers, free fascial- or muscle flaps with plantar instep skin grafts may achieve near to anatomical reconstruction with minimal sensation. Combined defects involving unit (c) require correlation with individual parameters for optimal flap selection. Defect coverage of the palm should not consist of merely providing sensate vascularized tissue. The most appropriate procedure should be derived from careful defect analysis to achieve near to anatomical reconstruction. In laborers, defect related demands need close correlation with sensation and mechanical stability to be expected. Copyright © 2011 Wiley Periodicals, Inc.
Inspecting Friction Stir Welding using Electromagnetic Probes
NASA Technical Reports Server (NTRS)
Kinchen, David G.
2004-01-01
A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.
Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James; ...
2016-10-25
Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO 2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James
Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO 2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less
Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; Voter, Arthur F.
2015-01-01
Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus, sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary. PMID:25766999
Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; ...
2015-03-13
Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus,more » sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary.« less
Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alimardani, Nasir; Conley, John F., E-mail: jconley@eecs.oregonstate.edu
Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling,more » and operation is relatively insensitive to temperature.« less
DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects
NASA Astrophysics Data System (ADS)
Albuquerque, E. L.; Fulco, U. L.; Freire, V. N.; Caetano, E. W. S.; Lyra, M. L.; de Moura, F. A. B. F.
2014-02-01
The purpose of this review is to present a comprehensive and up-to-date account of the main physical properties of DNA-based nanobiostructured devices, stressing the role played by their quasi-periodicity arrangement and correlation effects. Although the DNA-like molecule is usually described as a short-ranged correlated random ladder, artificial segments can be grown following quasiperiodic sequences as, for instance, the Fibonacci and Rudin-Shapiro ones. They have interesting properties like a complex fractal spectra of energy, which can be considered as their indelible mark, and collective properties that are not shared by their constituents. These collective properties are due to the presence of long-range correlations, which are expected to be reflected somehow in their various spectra (electronic transmission, density of states, etc.) defining another description of disorder. Although long-range correlations are responsible for the effective electronic transport at specific resonant energies of finite DNA segments, much of the anomalous spread of an initially localized electron wave-packet can be accounted by short-range pair correlations, suggesting that an approach based on the inclusion of further short-range correlations on the nucleotide distribution leads to an adequate description of the electronic properties of DNA segments. The introduction of defects may generate states within the gap, and substantially improves the conductance, specially of finite branches. They usually become exponentially localized for any amount of disorder, and have the property to tailor the electronic transport properties of DNA-based nanoelectronic devices. In particular, symmetric and antisymmetric correlations have quite distinct influence on the nature of the electronic states, and a diluted distribution of defects lead to an anomalous diffusion of the electronic wave-packet. Nonlinear contributions, arising from the coupling between electrons and the molecular vibrations, promote an electronic self-trapping, thus opening up the possibility of controlling the spreading of the electronic density by an external field. The main features of DNA-based nanobiostructured devices presented in this review will include their electronic density of states, energy profiles, thermodynamic properties, localization, correlation effects, scale laws, fractal and multifractal analysis, and anhydrous crystals of their bases, among others. New features, like other nanobiostructured devices, as well as the future directions in this field are also presented and discussed.
Related Structure Characters and Stability of Structural Defects in a Metallic Glass
Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng
2018-01-01
Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298
NASA Astrophysics Data System (ADS)
Sadeghzadeh, Sadegh; Rezapour, Navid
2016-12-01
In this paper, the effect of the presence of cavities resulting from the fabrication process and the effect of common metal impurities added during the synthesis process on the thermal conductivity of single-layer graphene sheets, diodes and transistors have been investigated by using the Reverse Non Equilibrium Molecular Dynamics (RNEMD) method. The obtained results show that thermal conductivity generally diminishes by increasing the concentration of nanoparticles and increases when porosities and impurities are at the edges of sheets. Regarding a better thermal management in graphene with the addition of nanoparticles, and considering its existing porosity, a lower thermal conductivity is achieved by adding more nanoparticles. By increasing the diameter of pores from 0.5 nm to 4.4 nm in a specific single-layer graphene sheet, thermal conductivity diminishes from 67 W/mk to 1.43 W/mk; while it diminishes from 45 to 1.0 W/mk for the same structure containing both the defects and nanoparticles over the defects. In evaluating the influences of cavities and metallic nanoparticles on thermal conductivity, it was observed that changing the share of cavities or nanoparticles has a significant effect on the thermal conductivity of graphene diodes and transistors. The rectification efficiency of diodes diminished from about 100% for the defect-free diode to about 19% for the diode containing 2 nm cavities and then increased to 75% for the diode with 5 nm cavities. While, with the increase in the concentration of iron nanoparticles, the rectification efficiency increased from about 100% for the diode with no iron particles to about 255% for the diode containing 13 wt % of iron particles. Final results demonstrate that the metallic nanoparticles and also defects with specific diameters can be effectively exploited to increase or decrease the efficiency of nanodiodes and nanotransistors. This leads to engineered design of nanodiodes and nanotransistors for various applications.
Spahn, G; Wittig, R; Kahl, E; Klinger, H M; Mückley, T; Hofmann, G O
2007-05-01
The study was aimed to evaluate the validity of clinical, radiological and MRI examination for cartilage defects of the knee compared with arthroscopic finding. Seven-hundred seventy-two patients who were suffering from knee pain over more than 3 months were evaluated clinical (grinding-sign) and with radiography and magnetic resonance imaging (MRI) and subsequent arthroscopy. The grinding sign had a sensitivity of 0.39. The association of a positive grinding test with high grade cartilage defects was significant (p<0.000). In 97.4% an intact chondral surface correlated with a normal radiological finding. Subchondral sclerosis, exophytes and a joint space narrowing was significantly associated with high grade cartilage defects (p<0.000). The accuracy of MRI was 59.5%. The MRI resulted in an overestimation in 36.6% and an underestimation in 3.9%. False-positive results were significant more often assessed in low-grade cartilage defects (p<0.000). Clinical signs, x-ray imaging and MRI correlate with arthroscopic findings in cases of deep cartilage lesions. In intact or low-grade degenerated cartilage often results an overestimating of these findings.
Markers of Vascular Perturbation Correlate with Airway Structural Change in Asthma
Kruger, Stanley J.; Schiebler, Mark L.; Evans, Michael D.; Sorkness, Ronald L.; Denlinger, Loren C.; Busse, William W.; Jarjour, Nizar N.; Montgomery, Robert R.; Mosher, Deane F.; Fain, Sean B.
2013-01-01
Rationale: Air trapping and ventilation defects on imaging are characteristics of asthma. Airway wall thickening occurs in asthma and is associated with increased bronchial vascularity and vascular permeability. Vascular endothelial cell products have not been explored as a surrogate to mark structural airway changes in asthma. Objectives: Determine whether reporters of vascular endothelial cell perturbation correlate with airway imaging metrics in patients with asthma of varying severity. Methods: Plasma from Severe Asthma Research Program subjects was analyzed by ELISAs for soluble von Willebrand factor mature protein (VWF:Ag) and propeptide (VWFpp), P-selectin, and platelet factor 4. Additional subjects were analyzed over 48 hours after whole-lung antigen challenge. We calculated ventilation defect volume by hyperpolarized helium-3 magnetic resonance imaging and areas of low signal density by multidetector computed tomography (less than −856 Hounsfield units [HU] at functional residual capacity and −950 HU at total lung capacity [TLC]). Measurements and Main Results: VWFpp and VWFpp/Ag ratio correlated with and predicted greater percentage defect volume on hyperpolarized helium-3 magnetic resonance imaging. P-selectin correlated with and predicted greater area of low density on chest multidetector computed tomography less than −950 HU at TLC. Platelet factor 4 did not correlate. Following whole-lung antigen challenge, variation in VWFpp, VWFpp/Ag, and P-selectin among time-points was less than that among subjects, indicating stability and repeatability of the measurements. Conclusions: Plasma VWFpp and P-selectin may be useful as surrogates of functional and structural defects that are evident on imaging. The results raise important questions about why VWFpp and P-selectin are associated specifically with different imaging abnormalities. PMID:23855693
Holographic Chern-Simons defects
Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; ...
2016-06-28
Here, we study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of themore » defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.« less
Observation of interface defects in thermally oxidized SiC using positron annihilation
NASA Astrophysics Data System (ADS)
Dekker, James; Saarinen, Kimmo; Ólafsson, Halldór; Sveinbjörnsson, Einar Ö.
2003-03-01
Positron annihilation has been applied to study thermally oxidized 4H- and 6H-SiC. The SiC/SiO2 interface is found to contain a high density of open-volume defects. The positron trapping at the interface defects correlates with the charge of the interface determined by capacitance-voltage experiments. For oxides grown on n-SiC substrates, the positron annihilation characteristics at these defects are nearly indistinguishable from those of a silicon/oxide interface, with no discernable contribution from C-related bonds or carbon clusters. These results indicate that those defects at the SiC/oxide interface, which are visible to positrons, are similar to those at the Si/oxide interface. The positron annihilation characteristics suggest that these defects are vacancies surrounded by oxygen atoms.
Carbon Nanotube Based Molecular Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Saini, Subhash; Menon, Madhu
1998-01-01
Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.
Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.
Mu, Xin; Wang, Lili; Yang, Xueming; Zhang, Pu; To, Albert C; Luo, Tengfei
2015-11-16
Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics.
Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire
Mu, Xin; Wang, Lili; Yang, Xueming; Zhang, Pu; To, Albert C.; Luo, Tengfei
2015-01-01
Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics. PMID:26568511
An Automated Classification Technique for Detecting Defects in Battery Cells
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2006-01-01
Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.
The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.
2015-02-28
Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less
Unsound defect volume in hardwood pallet cants
Philip Araman; Matt Winn; Firoz Kabir; Xavier Torcheux; Guillaume Loizeaud
2003-01-01
A study was conducted to determine the percentage of unsound defect volume to sound/clear wood in pallet cants at selected sawmills in Virginia and West Virginia. Splits,wane, shake, holes, decay, unsound knots, bark pockets, and mechanical defects were all considered to be unsound. Data were collected from seven Appalachian area sawmills for four hardwood species: red...
Defect modes in a stacked structure of chiral photonic crystals.
Chen, Jiun-Yeu; Chen, Lien-Wen
2005-06-01
An optical propagation simulation is carried out for the study of photonic defect modes in a stacked structure of cholesteric liquid crystal films with spatially varying pitch. The defects are introduced by a pitch jump and a phase jump in the cholesteric helix. The effect of a finite sample thickness on transmission of the defect mode and on the required polarization of incident light to create the defect mode is discussed. For normal and near-normal incidence of circularly polarized light with the same handedness as structure, the defect caused by a pitch jump results in discrete peaks within a forbidden band in the transmission. The particular spectrum is similar to the feature of a Fabry-Pérot interferometer. By introducing an additional phase jump, linear blueshifts of the defect modes in transmission spectra are correlated with an increase in the twist angle.
Shaikh, Ayaz Hussain; Hanif, Bashir; Siddiqui, Adeel M; Shahab, Hunaina; Qazi, Hammad Ali; Mujtaba, Iqbal
2010-04-01
To determine the association of prolonged ST segment depression after an exercise test with severity of coronary artery disease. A cross sectional study of 100 consecutive patients referred to the cardiology laboratory for stress myocardial perfusion imaging (MPI) conducted between April-August 2008. All selected patients were monitored until their ST segment depression was recovered to baseline. ST segment recovery time was categorized into less and more than 5 minutes. Subsequent gated SPECT-MPI was performed and stratified according to severity of perfusion defect. Association was determined between post exercise ST segment depression recovery time (<5 minutes and >5 minutes) and severity of perfusion defect on MPI. The mean age of the patients was 57.12 +/- 9.0 years. The results showed statistically insignificant association (p > 0.05) between ST segment recovery time of <5 minutes and >5 minutes with low, intermediate or high risk MPI. Our findings suggest that the commonly used cut-off levels used in literature for prolonged, post exercise ST segment depression (>5 minutes into recovery phase) does not correlate with severity of ischaemia based on MPI results.
Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors
2006-07-01
Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors Joshua A . Robinson, Eric S. Snow,* Ştefan C. Bǎdescu, Thomas L. Reinecke, and F...of chemical vapors. We find adsorption at defect sites produces a large electronic response that dominates the SWNT capacitance and conductance...introduction of oxidation defects can be used to enhance sensitivity of a SWNT network sensor to a variety of chemical vapors. The use of single-walled
Polaronic and ionic conduction in NaMnO2: influence of native point defects
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.
Layered NaMnO2 has promising applications as a cathode material for sodium ion batteries. We will discuss strategies to improve the electrical performance of NaMnO2, including how to optimize the conditions of synthesis and how impurity doping affects the performance. Using hybrid density functional theory, we explored the structural, electronic, and defect properties of bulk NaMnO2. It is antiferromagnetic in the ground state with a band gap of 3.75 eV. Small hole and electron polarons can form in the bulk either through self-trapping or adjacent to point defects. We find that both Na and Mn vacancies are shallow acceptors with the induced holes trapped as small polarons, while O vacancies are deep defect centers. Cation antisites, especially MnNa, are found to have low formation energies. As a result, we expect that MnNa exists in as-grown NaMnO2 in moderate concentrations, rather than forming only at a later stage of the charging process, at which point it causes undesirable structural phase transitions. Both electronic conduction, via polaron hopping, and ionic conduction, through VNa migration, are significantly affected by the presence of point defects. This work was supported by DOE.
Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.
Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco
2015-12-28
Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10(-3) S cm(-1) at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.
A conduction model for contacts to Si-doped AlGaN grown on sapphire and single-crystalline AlN
NASA Astrophysics Data System (ADS)
Haidet, Brian B.; Bryan, Isaac; Reddy, Pramod; Bryan, Zachary; Collazo, Ramón; Sitar, Zlatko
2015-06-01
Ohmic contacts to AlGaN grown on sapphire substrates have been previously demonstrated for various compositions of AlGaN, but contacts to AlGaN grown on native AlN substrates are more difficult to obtain. In this paper, a model is developed that describes current flow through contacts to Si-doped AlGaN. This model treats the current through reverse-biased Schottky barriers as a consequence of two different tunneling-dependent conduction mechanisms in parallel, i.e., Fowler-Nordheim emission and defect-assisted Frenkel-Poole emission. At low bias, the defect-assisted tunneling dominates, but as the potential across the depletion region increases, tunneling begins to occur without the assistance of defects, and the Fowler-Nordheim emission becomes the dominant conduction mechanism. Transfer length method measurements and temperature-dependent current-voltage (I-V) measurements of Ti/Al-based contacts to Si-doped AlGaN grown on sapphire and AlN substrates support this model. Defect-assisted tunneling plays a much larger role in the contacts to AlGaN on sapphire, resulting in nearly linear I-V characteristics. In contrast, contacts to AlGaN on AlN show limited defect-assisted tunneling appear to be only semi-Ohmic.
Vines, Lasse; Bhoodoo, Chidanand; von Wenckstern, Holger; Grundmann, Marius
2017-11-29
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than 8 orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 1012 cm2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed. © 2017 IOP Publishing Ltd.
Growth and analysis of micro and nano CdTe arrays for solar cell applications
NASA Astrophysics Data System (ADS)
Aguirre, Brandon Adrian
CdTe is an excellent material for infrared detectors and photovoltaic applications. The efficiency of CdTe/CdS solar cells has increased very rapidly in the last 3 years to ˜20% but is still below the maximum theoretical value of 30%. Although the short-circuit current density is close to its maximum of 30 mA/cm2, the open circuit voltage has potential to be increased further to over 1 Volt. The main limitation that prevents further increase in the open-circuit voltage and therefore efficiency is the high defect density in the CdTe absorber layer. Reducing the defect density will increase the open-circuit voltage above 1 V through an increase in the carrier lifetime and concentration to tau >10 ns and p > 10 16 cm-3, respectively. However, the large lattice mismatch (10%) between CdTe and CdS and the polycrystalline nature of the CdTe film are the fundamental reasons for the high defect density and pose a difficult challenge to solve. In this work, a method to physically and electrically isolate the different kinds of defects at the nanoscale and understand their effect on the electrical performance of CdTe is presented. A SiO2 template with arrays of window openings was deposited between the CdTe and CdS to achieve selective-area growth of the CdTe via close-space sublimation. The diameter of the window openings was varied from the micro to the nanoscale to study the effect of size on nucleation, grain growth, and defect density. The resulting structures enabled the possibility to electrically isolate and individually probe micrometer and nanoscale sized CdTe/CdS cells. Electron back-scattered diffraction was used to observe grain orientation and defects in the miniature cells. Scanning and transmission electron microscopy was used to study the morphology, grain boundaries, grain orientation, defect structure, and strain in the layers. Finally, conducting atomic force microscopy was used to study the current-voltage characteristics of the solar cells. An important part of this work was the ability to directly correlate the one-to-one relationship between the electrical performance and defect structure of individual nanoscale cells. This method is general and can be applied to other material systems to study the electrical-microstructure relationship on a one-to-one basis with nanoscale resolution.
On Defect Cluster Aggregation and Non-Reducibilty in Tin-Doped Indium Oxide
NASA Astrophysics Data System (ADS)
Warschkow, Oliver; Ellis, Donald E.; Gonzalez, Gabriela; Mason, Thomas O.
2003-03-01
The conductivity of tin-doped indium oxide (ITO), a transparent conductor, is critically dependent on the amount of tin-doping and oxygen partial pressure during preparation and annealing. Frank and Kostlin (Appl. Phys. A 27 (1982) 197-206) rationalized the carrier concentration dependence by postulating the formation of two types of neutral defect clusters at medium tin-doping levels: "Reducible" and "non-reducible" defect clusters; so named to indicate their ability to create carriers under reduction. According to Frank and Kostlin, both are composed of a single oxygen interstitial and two tin atoms substituting for indium, positioned in non-nearest and nearest coordination, respectively. This present work, seeking to distinguish reducible and non-reducible clusters by use of an atomistic model, finds only a weak correlation of oxygen interstitial binding energies with the relative positioning of dopants. Instead, the number of tin-dopants in the vicinity of the interstitial has a much larger effect on how strongly it is bound, a simple consequence of Coulomb interactions. We postulate that oxygen interstitials become non-reducible when clustered with three or more Sn_In. This occurs at higher doping levels as reducible clusters aggregate and share tin atoms. A simple probabilistic model, estimating the average number of clusters so aggregated, provides a qualitatively correct description of the carrier density in reduced ITO as a function of Sn doping level.
NASA Astrophysics Data System (ADS)
Macchi, C.; Ponce, M. A.; Desimone, P. M.; Aldao, C. M.; Somoza, A.
2018-03-01
The study of electronic and chemical properties of semiconductor oxides is motivated by their several applications. In particular, tin oxide is widely used as a solid state gas sensor material. In this regard, the defect structure has been proposed to be crucial in determining the resulting film conductivity and then its sensitivity. Here, the characteristics of vacancy-like defects in nanocrystalline commercial high-purity tin oxide powders and the influence of the annealing treatment under different atmospheres are presented. Specifically, SnO2 nanopowders were annealed at 330 °C under three different types of atmospheres: inert (vacuum), oxidative (oxygen) and reductive (hydrogen). The obtained experimental results are discussed in terms of the vacancy-like defects detected, shedding light to the basic conduction mechanisms, which are responsible for gas detection.
Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel
NASA Astrophysics Data System (ADS)
Lewis, operating defective fuel B. J.; Thompson, W. T.; Akbari, F.; Thompson, D. M.; Thurgood, C.; Higgs, J.
2004-07-01
A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor.
A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.
2016-07-12
Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less
The role of acids in electrical conduction through ice
NASA Astrophysics Data System (ADS)
Stillman, David E.; MacGregor, Joseph A.; Grimm, Robert E.
2013-03-01
Electrical conduction through meteoric polar ice is controlled by soluble impurities that originate mostly from sea salt, biomass burning, and volcanic eruptions. The strongest conductivity response is to acids, yet the mechanism causing this response has been unclear. Here we elucidate conduction mechanisms in ice using broadband dielectric spectroscopy of meteoric polar ice cores. We find that conduction through polycrystalline polar ice is consistent with Jaccard theory for migration of charged protonic point defects through single ice crystals, except that bulk DC conduction is impeded by grain boundaries. Neither our observations nor modeling using Archie's Law support the hypothesis that grain-boundary networks of unfrozen acids cause significant electrolytic conduction. Common electrical logs of ice cores (by electrical conductivity measurement [ECM] or dielectric profiling [DEP]) and the attenuation of radio waves in ice sheets thus respond to protonic point defects only. This response implies that joint interpretation of electrical and chemical logs can determine impurity partitioning between the lattice and grain boundaries or inclusions. For example, in the Greenland Ice Core Project (GRIP) ice core from central Greenland, on average more than half of the available lattice-soluble impurities (H+, Cl-, NH4+) create defects. Understanding this partitioning could help further resolve the nature of past changes in atmospheric chemistry.
Ba 2TeO as an optoelectronic material: First-principles study
Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; ...
2015-05-21
The band structure, optical and defects properties of Ba 2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba 2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba 2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneousmore » formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.« less
Sheikh, Shahid I; Long, Frederick R; McCoy, Karen S; Johnson, Terri; Ryan-Wenger, Nancy A; Hayes, Don
2015-01-01
Ivacaftor corrects the cystic fibrosis transmembrane conductance regulator (CFTR) gating defect associated with G551D mutation and is quickly becoming an important treatment in patients with cystic fibrosis (CF) due to this genetic mutation. A single-center study was performed in CF patients receiving ivacaftor to evaluate the usefulness of high resolution computed tomography (HRCT) of the chest as a way to gauge response to ivacaftor therapy. Ten patients with CF were enrolled for at least one year before and after starting ivacaftor. At time of enrollment, mean age was 20.9 ± 10.8 (range 10-44) years. There were significant improvements from baseline to 6 months in mean %FVC (93 ± 16 to 99 ± 16) and %FEV1 (79 ± 26 to 87 ± 28) but reverted to baseline at one year. Mean sweat chloride levels decreased significantly from baseline to one year. Mean weight and BMI improved at 6 months. Weight continued to improve with stabilization of BMI at one year. Chest HRCT showed significant improvement at one year in mean modified Brody scores for bronchiectasis, mucous plugging, airway wall thickness, and total Brody scores. Elevated bronchiectasis and airway wall thickness scores correlated significantly with lower %FEV1, while higher airway wall thickness and mucus plugging scores correlated with more pulmonary exacerbations requiring IV and oral antibiotics respectively. Based on our findings, HRCT imaging is a useful tool in monitoring response to ivacaftor therapy that corrects the gating defect associated with the G551D-CFTR mutation. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Wake Nonuniformity in AN MHD Channel.
NASA Astrophysics Data System (ADS)
Hruby, Vladimir J.
The influence of a wake type nonuniformity on the effective plasma electrical conductivity and Hall parameters ((sigma)(,eff) and (beta)(,eff)) was investigated experimentally and theoretically. The experimental device consisted of a combustion -driven 1 m long linear magnetohydrodynamic generator designated Mk VII and located at the Avco Everett Research Laboratory, Inc. (AERL). The reactants were oxygen-enriched air and No. 2 fuel oil. The combustion gases were seeded with potassium carbonate in a 50 percent water solution. The nominal thermal input was 10 MW, the inlet Mach number was 1.4 and the maximum magnetic field was B = 2.3 T. The channel was resistively Faraday loaded. The nonuniformity was produced by a flat plate (a vane) located in the supersonic nozzle, which created a wake lying in a plane parallel to the magnetic field. The vane removed approximately 1 percent of the channel thermal input, which resulted in a 6 percent stagnation enthalpy defect in its wake. Traversing optical probes at three locations along the channel detected little or no conductivity defect. The absence of conductivity defect was confirmed by the generator performance which remained the same with or without the vane, all other conditions being the same. An approximate analytical model showed that conductivity in the wake can be, under certain conditions, larger than that in the free stream. A traversing stagnation pressure probe however, did detect a velocity wake at the same conditions. A small amount of water (approximately 1 percent of the total mass flow) was then injected into the plasma from the trailing edge of the vane. That resulted in a strong initial conductivity defect which completely diffused and merged with boundary layers within 0.75 m. The conductivity ((TURN) thermal) profile was recorded by means of optical diagnostics. The stagnation pressure probe recorded both thermal and stagnation pressure defects. The generated power was reduced to a fraction of the power generated without the water injection. Electrical data together with the optical data were combined to evaluate the so -called plasma nonuniformity factor (G). The experimental G fell below that predicted by an approximate analytical expression derived by Rosa (G(,R)). Numerical investigation showed that the analytical approximations are not valid for large conductivity defects. A modified analytical expression resulted in better agreement between the theory and data. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI.
Xie, Yangsu; Xu, Zaoli; Xu, Shen; Cheng, Zhe; Hashemi, Nastaran; Deng, Cheng; Wang, Xinwei
2015-06-14
Due to its intriguing thermal and electrical properties, graphene has been widely studied for potential applications in sensor and energy devices. However, the reported value for its thermal conductivity spans from dozens to thousands of W m(-1) K(-1) due to different levels of alternations and defects in graphene samples. In this work, the thermal diffusivity of suspended four-layered graphene foam (GF) is characterized from room temperature (RT) down to 17 K. For the first time, we identify the defect level in graphene by evaluating the inverse of thermal diffusivity (termed "thermal reffusivity": Θ) at the 0 K limit. By using the Debye model of Θ = Θ0 + C× e(-θ/2T) and fitting the Θ-T curve to the point of T = 0 K, we identify the defect level (Θ0) and determine the Debye temperature of graphene. Θ0 is found to be 1878 s m(-2) for the studied GF and 43-112 s m(-2) for three highly crystalline graphite materials. This uncovers a 16-43-fold higher defect level in GF than that in pyrolytic graphite. In GF, the phonon mean free path solely induced by defects and boundary scattering is determined as 166 nm. The Debye temperature of graphene is determined to be 1813 K, which is very close to the average theoretical Debye temperature (1911 K) of the three acoustic phonon modes in graphene. By subtracting the defect effect, we report the ideal thermal diffusivity and conductivity (κideal) of graphene presented in the 3D foam structure in the range of 33-299 K. Detailed physics based on chemical composition and structure analysis are given to explain the κideal-T profile by comparing with those reported for suspended graphene.
NASA Astrophysics Data System (ADS)
Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter
2016-05-01
At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts printability of defects at wafer level and automates the process of defect dispositioning from images captured using high resolution inspection machine. It first eliminates false defects due to registration, focus errors, image capture errors and random noise caused during inspection. For the remaining real defects, actual mask-like contours are generated using the Calibre® ILT solution [1][2], which is enhanced to predict the actual mask contours from high resolution defect images. It enables accurate prediction of defect contours, which is not possible from images captured using inspection machine because some information is already lost due to optical effects. Calibre's simulation engine is used to generate images at wafer level using scanner optical conditions and mask-like contours as input. The tool then analyses simulated images and predicts defect printability. It automatically calculates maximum CD variation and decides which defects are severe to affect patterns on wafer. In this paper, we assess the printability of defects for the mask of advanced technology nodes. In particular, we will compare the recovered mask contours with contours extracted from SEM image of the mask and compare simulation results with AIMSTM for a variety of defects and patterns. The results of printability assessment and the accuracy of comparison are presented in this paper. We also suggest how this method can be extended to predict printability of defects identified on EUV photomasks.
NASA Astrophysics Data System (ADS)
van't Erve, Olaf
2014-03-01
New paradigms for spin-based devices, such as spin-FETs and reconfigurable logic, have been proposed and modeled. These devices rely on electron spin being injected, transported, manipulated and detected in a semiconductor channel. This work is the first demonstration on how a single layer of graphene can be used as a low resistance tunnel barrier solution for electrical spin injection into Silicon at room temperature. We will show that a FM metal / monolayer graphene contact serves as a spin-polarized tunnel barrier which successfully circumvents the classic metal / semiconductor conductivity mismatch issue for electrical spin injection. We demonstrate electrical injection and detection of spin accumulation in Si above room temperature, and show that the corresponding spin lifetimes correlate with the Si carrier concentration, confirming that the spin accumulation measured occurs in the Si and not in interface trap states. An ideal tunnel barrier should exhibit several key material characteristics: a uniform and planar habit with well-controlled thickness, minimal defect / trapped charge density, a low resistance-area product for minimal power consumption, and compatibility with both the FM metal and semiconductor, insuring minimal diffusion to/from the surrounding materials at temperatures required for device processing. Graphene, offers all of the above, while preserving spin injection properties, making it a compelling solution to the conductivity mismatch for spin injection into Si. Although Graphene is very conductive in plane, it exhibits poor conductivity perpendicular to the plane. Its sp2 bonding results in a highly uniform, defect free layer, which is chemically inert, thermally robust, and essentially impervious to diffusion. The use of a single monolayer of graphene at the Si interface provides a much lower RA product than any film of an oxide thick enough to prevent pinholes (1 nm). Our results identify a new route to low resistance-area product spin-polarized contacts, a crucial requirement enabling future semiconductor spintronic devices, which rely upon two-terminal magnetoresistance, including spin-based transistors, logic and memory.
EMBRYOLOGY OF THE LITTLE AND BAGG X-RAYED MOUSE STOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, T.C.
1959-12-01
The morphology and development of the many defects in mice of the Little and Bagg x-rayed stock have been reinvestigated in an attempt to resolve the conflicts in the findings of earlier investigators. The observation that blebs occur on pseudencephalic embryos is incompatible with Bonnevie's hypothesis that they originate as cerebrospinal fluid in the myelencephalon; other observations support Plagens' hypothesis that the blebs originate as mesenchymal intercellular fluid. No unitary gene action was found. Four pedigrees of causes were constructed covering, respectively, defects of the central nervous system, bleb- induced lesions and defects of the body wall, morphological defects ofmore » the hind limbs, and defects of the urogenital system; there were cross-correlations between defects in the first three pedigrees, but the underlying mechanisms were not identified. (auth)« less
Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro
In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the lattermore » signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.« less
NASA Astrophysics Data System (ADS)
Soto, Matias; Barrera, Enrique
Using carbon nanotubes for electrical conduction applications at the macroscale has proven to be a difficult task, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route and the topic of this work is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present, so that the electrical conduction of a bundle or even wire may be enhanced. We used density functional theory calculations to study the effect of defects and doping on the electronic structure of metallic, semi-metal and semiconducting carbon nanotubes in order to gain a clear picture of their properties. Additionally, using dopants to increase the conductance across a junction between two carbon nanotubes was studied for different configurations. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics. Partial funding was received from CONACyT Scholarship 314419.
NASA Astrophysics Data System (ADS)
Witantyo; Setyawan, David
2018-03-01
In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.
NASA Astrophysics Data System (ADS)
Satheesh Kumar, S. S.; Raghu, T.
2015-02-01
Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zulueta, Y.A., E-mail: yohandysalexis.zuluetaleyva@student.kuleuven.be; Department of Chemistry, KU Leuven, B-3001 Leuven; Dawson, J.A.
In combination with the dielectric modulus formalism and theoretical calculations, a newly developed defect incorporation mode, which is a combination of the standard A- and B-site doping mechanisms, is used to explain the conducting properties in 5 mol% Ca-doped BaTiO{sub 3}. Simulation results for Ca solution energies in the BaTiO{sub 3} lattice show that the new oxygen vacancy inducing mixed mode exhibits low defect energies. A reduction in dc conductivity compared with undoped BaTiO{sub 3} is witnessed for the incorporation of Ca. The conducting properties of 5 mol% Ca-doped BaTiO{sub 3} are analyzed using molecular dynamics and impedance spectroscopy. Themore » ionic conductivity activation energies for each incorporation mode are calculated and good agreement with experimental data for oxygen migration is observed. The likely existence of the proposed defect configuration is also analyzed on the basis of these methods. - Graphical abstract: Oxygen vacancy formation as a result of self-compensation in Ca-doped BaTiO{sub 3}.« less
Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory
NASA Astrophysics Data System (ADS)
Ghorbani, Elaheh; Albe, Karsten
2018-03-01
We have employed first principles total energy calculations in the framework of density functional theory, with plane wave basis sets and screened exchange hybrid functionals to study the incorporation of intrinsic defects in bulk β-In2S3. The results are obtained for In-rich and S-rich experimental growth conditions. The charge transition level is discussed for all native defects, including VIn, VS, Ini, Si, SIn, and InS, and a comparison between the theoretically calculated charge transition levels and the available experimental findings is presented. The results imply that β-In2S3 shows n-type conductivity under both In-rich and S-rich growth conditions. The indium antiisite (InS), the indium interstitial (Ini), and the sulfur vacancy ( VS ' ) are found to be the leading sources of sample's n-type conductivity. When going from the In-rich to the S-rich condition, the conductivity of the material decreases; however, the type of conductivity remains unchanged.
Bond strength evaluation in adhesive joints using NDE and DIC methods
NASA Astrophysics Data System (ADS)
Poudel, Anish
Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a decrease of bond shear strength in single lap shear test samples. Through-transmission ultrasonics (TTU) Acoustography at 3.8 MHz showed promising results on the detectability of bondline defects in adhesively bonded CFRP-Al lap shear test samples. A correlation between Acoustography ultrasonic attenuation and average bond shear strength in CFRP-Al lap shear panels demonstrated that differential attenuation increased with the reduction of the bond shear strength. Similarly, optical DIC tests were conducted to identify and quantify kissing bond defects in CFRP-Al single lap shear joints. DIC results demonstrated changes in the normal strain (epsilonyy) contour map of the contaminated specimens at relatively lower load levels (15% ~ 30% of failure loads). Kissing bond regions were characterized by negative strains, and these were attributed to high compressive bending strains and the localized disbonding taking placed at the bondline interface as a result of the load application. It was also observed that contaminated samples suffered from more compressive strains (epsilonyy) compared to the baseline sample along the loading direction and they suffered from less compressive strains (epsilonxx) compared to the baseline sample perpendicular to the loading direction. This demonstrated the adverse effect of the kissing bond on the adhesive joint integrity. This was a very significant finding for the reason that hybrid ultrasonic DIC is being developed as a faster, more efficient, and more reliable NDE technique for determining bond quality and predicting bond shear strength in adhesively bonded structures.
Detection of defects in red oak deckboards by ultrasonic scanning
Mohammed F. Kabir; Daniel L. Schmoldt; Mark E. Schafer
2000-01-01
Experiments were conducted to detect defects in red oak (Quercus rubra, L.) deckboards by ultrasonic scanning. Scanning of the deckboards was carried out with two rolling transducers in a pitch-catch arrangement with pallet parts moving between the transducers at 70 ft/m and 220 ft/m. Data were collected, stored and processed using LabViewTM software. The defects...
Nondestructive evaluation of defects in wood pallet parts by ultrasonic scanning
M. Firoz Kabir; Philip A. Araman
2003-01-01
Ultrasonic scanning experiments were conducted for detecting defects in wood pallet parts using rolling transducers. The characterization of defects is important for sorting and grading pallet parts, as well as for manufacturing quality and durable pallets. This paper reports the scanning results for stringers and deckboards â the two main components of pallet for red...
USDA-ARS?s Scientific Manuscript database
A comprehensive characterization of C-glycosyl flavones in wheat germ has been conducted using multi-stage high resolution mass spectrometry (HRMS) combined with mass defect filter (MDF). MDF performed the initial search of raw data with defined mass ranges and mass defect windows to generate the n...
Electronic transport of bilayer graphene with asymmetry line defects
NASA Astrophysics Data System (ADS)
Zhao, Xiao-Ming; Wu, Ya-Jie; Chen, Chan; Liang, Ying; Kou, Su-Peng
2016-11-01
In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921803 and 2012CB921704), the National Natural Science Foundation of China (Grant Nos. 11174035, 11474025, 11504285, and 11404090), the Specialized Research Fund for the Doctoral Program of Higher Education, China, the Fundamental Research Funds for the Central Universities, China, the Scientific Research Program Fund of the Shaanxi Provincial Education Department, China (Grant No. 15JK1363), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China.
Elli, Francesca M; de Sanctis, Luisa; Bollati, Valentina; Tarantini, Letizia; Filopanti, Marcello; Barbieri, Anna Maria; Peverelli, Erika; Beck-Peccoz, Paolo; Spada, Anna; Mantovani, Giovanna
2014-03-01
Pseudohypoparathyroidism type I (PHP-I) includes two main subtypes, PHP-Ia and -Ib. About 70% of PHP-Ia patients, who show Albright hereditary osteodystrophy (AHO) associated with resistance toward multiple hormones (PTH/TSH/GHRH/gonadotropins), carry heterozygous mutations in the α-subunit of the stimulatory G protein (Gsα) exons 1-13, encoded by the guanine nucleotide binding-protein α-stimulating activity polypeptide 1 (GNAS), whereas the majority of PHP-Ib patients, who classically display hormone resistance limited to PTH and TSH with no AHO sign, have methylation defects in the imprinted GNAS cluster. Recently methylation defects have been detected also in patients with PHP and different degrees of AHO, indicating a molecular overlap between the two forms. The objectives of the study were to collect patients with the following characteristics: clinical PHP-I (with or without AHO), no mutation in Gsα coding sequence, but the presence of GNAS methylation alterations and to investigate the existence of correlations between the degree of the epigenetic defect and the severity of the disease. We quantified GNAS methylation alterations by both PCR-pyrosequencing and methylation specific-multiplex ligation-dependent probe amplification assay in genomic DNA from 63 patients with PHP-I and correlated these findings with clinical parameters (age at diagnosis; calcium, phosphorus, PTH, TSH levels; presence or absence of each AHO sign). By both approaches, the degree of the imprinting defect did not correlate with the onset of the disease, the severity of endocrine resistances, or with the presence/absence of specific AHO signs. Similar molecular alterations may lead to a broad spectrum of diseases, from isolated PTH resistance to complete PHP-Ia, and the degree of methylation alterations does not reflect or anticipate the severity and the type of different PHP/AHO manifestations.
Anisotropic thermal transport property of defect-free GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Wenjing; Zhou, Zhongyuan, E-mail: zyzhou@seu.edu.cn, E-mail: zywei@seu.edu.cn; Wei, Zhiyong, E-mail: zyzhou@seu.edu.cn, E-mail: zywei@seu.edu.cn
2016-06-15
Non-equilibrium molecular dynamics (MD) simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly resultmore » from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to the commonly used phonon dispersion relation. The present investigations uncover the physical origin of the anisotropic thermal conductivity in defect-free GaN, which would provide an important guide for optimizing the thermal management of GaN-based device.« less
Adsorption effect on the formation of conductive path in defective TiO2: ab initio calculations
NASA Astrophysics Data System (ADS)
Li, Lei; Li, Wenshi; Qin, Han; Yang, Jianfeng; Mao, Ling-Feng
2017-10-01
Although the metal/TiO2/metal junctions providing resistive switching properties have attracted lots of attention in recent decades, revealing the atomic-nature of conductive path in TiO2 active layer remains a critical challenge. Here the effects of metal adsorption on defective TiO2(1 1 0) surface are theoretically investigated via ab initio calculations. The dependence of the conductive path on the adsorption of Ti/Zr/Cu/Pt/O atoms above a lattice Ti-ion in (1 1 0) plane and at 〈1 1 0〉 direction of the defective TiO2(0 0 1) surface are compared. It is found that Ti adsorptions in both sites give larger contributions to the presence of conductive path with more stability and larger transport coefficients at Fermi level, whereas the O adsorptions at both sites fail to produce conductive path. Moreover, the adsorptions of Zr/Cu/Pt atoms reduce the existence possibility of conductive path, especially absorbed above the lattice Ti-ion at 〈1 1 0〉 direction. Thus, it is helpful to clarify the interaction of the metal electrode and oxide layer in resistive random access memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Deciphering chemical order/disorder and material properties at the single-atom level.
Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.
Raisutis, Renaldas; Samaitis, Vykintas
2017-01-01
This work proposes a novel hybrid signal processing technique to extract information on disbond-type defects from a single B-scan in the process of non-destructive testing (NDT) of glass fiber reinforced plastic (GFRP) material using ultrasonic guided waves (GW). The selected GFRP sample has been a segment of wind turbine blade, which possessed an aerodynamic shape. Two disbond type defects having diameters of 15 mm and 25 mm were artificially constructed on its trailing edge. The experiment has been performed using the low-frequency ultrasonic system developed at the Ultrasound Institute of Kaunas University of Technology and only one side of the sample was accessed. A special configuration of the transmitting and receiving transducers fixed on a movable panel with a separation distance of 50 mm was proposed for recording the ultrasonic guided wave signals at each one-millimeter step along the scanning distance up to 500 mm. Finally, the hybrid signal processing technique comprising the valuable features of the three most promising signal processing techniques: cross-correlation, wavelet transform, and Hilbert–Huang transform has been applied to the received signals for the extraction of defects information from a single B-scan image. The wavelet transform and cross-correlation techniques have been combined in order to extract the approximated size and location of the defects and measurements of time delays. Thereafter, Hilbert–Huang transform has been applied to the wavelet transformed signal to compare the variation of instantaneous frequencies and instantaneous amplitudes of the defect-free and defective signals. PMID:29232845
Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels
Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...
2015-12-22
The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less
Doozandeh, Azadeh; Irandoost, Farnoosh; Mirzajani, Ali; Yazdani, Shahin; Pakravan, Mohammad; Esfandiari, Hamed
2017-01-01
This study aimed to compare second-generation frequency-doubling technology (FDT) perimetry with standard automated perimetry (SAP) in mild glaucoma. Forty-seven eyes of 47 participants who had mild visual field defect by SAP were included in this study. All participants were examined using SITA 24-2 (SITA-SAP) and matrix 24-2 (Matrix-FDT). The correlations of global indices and the number of defects on pattern deviation (PD) plots were determined. Agreement between two sets regarding the stage of visual field damage was assessed. Pearson's correlation, intra-cluster comparison, paired t-test, and 95% limit of agreement were calculated. Although there was no significant difference between global indices, the agreement between the two devices regarding the global indices was weak (the limit of agreement for mean deviation was -6.08 to 6.08 and that for pattern standard deviation was -4.42 to 3.42). The agreement between SITA-SAP and Matrix-FDT regarding the Glaucoma Hemifield Test (GHT) and the number of defective points in each quadrant and staging of the visual field damage was also weak. Because the correlation between SITA-SAP and Matrix-FDT regarding global indices, GHT, number of defective points, and stage of the visual field damage in mild glaucoma is weak, Matrix-FDT cannot be used interchangeably with SITA-SAP in the early stages of glaucoma.
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.
2015-08-01
Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, < {{h}2}> , shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.
Jiang, Tengfei; Li, Xueyan; Bujoli-Doeuff, Martine; Gautron, Eric; Cario, Laurent; Jobic, Stéphane; Gautier, Romain
2016-08-01
Optical and electrical characteristics of solid materials are well-known to be intimately related to the presence of intrinsic or extrinsic defects. Hence, the control of defects in semiconductors is of great importance to achieve specific properties, for example, transparency and conductivity. Herein, a facile and controllable reduction method for modulating the defects is proposed and used for the case of p-type delafossite CuCrO2 nanoparticles. The optical absorption in the infrared region of the CuCrO2 material can then be fine-tuned via the continuous reduction of nonstoichiometric Cu(II), naturally stabilized in small amounts. This reduction modifies the concentration of positive charge carriers in the material, and thus the conductive and reflective properties, as well as the flat band potential. Indeed, this controllable reduction methodology provides a novel strategy to modulate the (opto-) electronic characteristics of semiconductors.
Solid State Lighting Program (Falcon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeks, Steven
2012-06-30
Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.« less
Evaluation of a New Scoring System for Retinal Nerve Fiber Layer Photography Using HRA1 in 964 Eyes
Hong, Samin; Moon, Jong Wook; Ha, Seung Joo; Kim, Chan Yun; Seong, Gong Je
2007-01-01
Purpose To evaluate retinal nerve fiber layer (RNFL) defect by a new scoring system for RNFL photography using the Heidelberg Retina Angiograph 1 (HRA1). Methods This retrospective study included 128 healthy eyes and 836 primary open-angle glaucoma eyes. The RNFL photography using HRA1 was interpreted using a new scoring system, and correlated with visual field indices of standard automated perimetry (SAP). Using the presence of RNFL defect, darkness, width, and location, we established the new scoring system of RNFL photos. Results The mean RNFL defect score I in the early, moderate, severe, and control groups were 7.3, 9.2, 10.4, and 3.6, respectively. The mean RNFL defect score II in the early, moderate, severe, and control groups were 14.5, 28.5, 43.4, and 3.4, respectively. Correlations between the RNFL defect score II and the mean deviation of SAP was the strongest of the various combinations (r=-0.675, P<.001). Conclusions Using a new scoring system, we propose a method for semi-quantitative interpretation of RNFL photographs. This scoring system may be helpful to distinguish between normal and glaucomatous eyes, and the score is associated with the severity of visual field loss. PMID:18063886
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice
2014-03-01
In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.
Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Kang, Hyunkyoo; Kim, Hojoon; Shin, Keehyun
2010-05-01
The use of roll-to-roll (R2R) printed electronics is a relatively new method of mass producing flexible electronic devices while keeping production costs down. The geometrical qualities of a printed pattern, such as surface roughness and uniformity, could deteriorate. Moreover, the geometric qualities of a printed layer affect the functional qualities of a printed electronic device directly. Therefore, the functional qualities (conductivity and mobility) of a multilayer electronic device could deteriorate in the presence of a scratch defect on the printed layer. In general, a scratch on a printed pattern on a flexible substrate is induced by contact between the rolls and printed pattern in R2R printing systems. To prevent such contact, one of the best solutions is to use an air flotation unit. However, a scratch defect could be induced even though an air flotation process is used to minimize contact, because the flotation height of a moving web is affected by web tension. In this paper, we discuss an analytical model of an air-floated moving substrate. For the noncontacting transfer of a moving web without a scratch defect, a mathematical tension model has been developed by considering an induced strain due to aerodynamic forces and verified by numerical and experimental studies. Additionally, the correlation between the flotation height of an air-floated moving web and speed compensation used to control the tension are investigated. The analysis shows that tension fluctuations can cause the substrate to touch the air-flotation subsystem, which is installed to prevent contact, resulting in defects such as scratches on the printed layer. On the basis of the proposed model, a logic is developed to minimize scratch defects on R2R printed layers in noncontacting transportation. Through a guideline based on this logic, the scratched area density on R2R printed layers can be reduced by approximately 70%.
Grading of Total Mesorectal Excision Specimens: Assessment of Interrater Agreement.
Goebel, Emily A; Stegmaier, Melissa; Gorassini, Donald R; Kubica, Matthew; Parfitt, Jeremy R; Driman, David K
2018-06-01
Total mesorectal excision is the standard of care for patients with rectal cancer. Pathological evaluation of the quality of the total mesorectal excision specimen is an important prognostic factor that correlates with local recurrence, but is potentially subjective. This study aimed to determine the degree of variation in grading, both between assessors and between fresh and formalin-fixed specimens. Raters included surgeons, pathologists, pathology residents, pathologists' assistants, and pathologists' assistant trainees. Specimens were assessed by up to 6 raters in the fresh state and by 2 raters postfixation. Four parameters were evaluated: mesorectal bulk, surface regularity, defects, and coning. Interrater agreement was measured using ordinal α-values. The study was conducted at a single academic center. The primary outcome was agreement between individuals when grading total mesorectal excision specimens. A total of 37 total mesorectal excision specimens were assessed. Reliability between all raters for fresh specimens for mesorectal bulk, surface regularity, defects, coning, and overall grade were 0.85, 0.85, 0.92, 0.84, and 0.91. When compared with all raters, pathologists and residents had higher agreement and pathologists and surgeons had lower agreement. Ordinal α-values comparing pathologist and pathologist's assistant agreement for overall grade were similar pre- and postfixation (0.78 vs 0.80), but agreement for assessing defects decreased postfixation. Among pathologists' assistants, agreement was higher when grading specimens postfixation than when grading fresh specimens. Assessment bias may have occurred because of the greater number of pathologists' assistants participating than the number of residents and pathologists. The results indicate good interrater agreement for the assessment of overall grade, with defects showing the best interrater agreement in fresh specimens. Although total mesorectal excision specimens may be consistently graded postfixation, the assessment of defects postfixation may be less reliable. This study highlights the need for additional knowledge-transfer activities to ensure consistency and accurate grading of total mesorectal excision specimens. See Video Abstract at http://links.lww.com/DCR/A497.
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
2016-01-01
Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Conclusions Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils. PMID:27658310
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils.
Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De
2016-05-01
The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.
NASA Astrophysics Data System (ADS)
Shropshire, Steven Leslie
Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of interstitial species in the flux were determined. Deformation of Au was found to produce only mono- and di-interstitial fluxes in a 1:2 ratio. Cross-sections increased rapidly with the number of vacancies, which is attributed to the amount of relaxation of lattice strains around solute-vacancy complexes.
Influence of defects and doping on phonon transport properties of monolayer MoSe2
NASA Astrophysics Data System (ADS)
Yan, Zhequan; Yoon, Mina; Kumar, Satish
2018-07-01
The doping of monolayer MoSe2 by tungsten (W) can suppress the Se vacancy concentration, but how doping and resulting change in defect concentration can tune its thermal properties is not understood yet. We use first-principles density functional theory (DFT) along with the phonon Boltzmann transport equation (BTE) to study the phonon transport properties of pristine MoSe2 and W doped MoSe2 with and without the presence of Se vacancies. We found that for samples without Se vacancy, the W doping could enhance the thermal transport of monolayer MoSe2 due to reduced three-phonon scattering phase space. For example, we observed that the 16.7% W doping increases the thermal conductivity of the monolayer MoSe2 with 2% Se vacancy by 80% if all vacancies can be suppressed by W-doping. However, the W doping in the defective MoSe2 amplifies the influence of the phonon scattering caused by the Se vacancies, which results in a further decrease in thermal conductivity of monolayer MoSe2 with defects. This is found to be related with higher phonon density of states of Mo0.83W0.17Se2 and larger mass difference between W and Se atoms compared to Mo and Se atoms. This study deciphers the effect of defects and doping on the thermal conductivity of monolayer MoSe2, which helps us understand the mechanism of defect-induced phonon transport, and provides insights into enhancing the heat dissipation in MoSe2-based electronic devices.
NASA Astrophysics Data System (ADS)
Zhou, Yuan-Qi; Zhan, Li-Hua
2016-05-01
Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.
NASA Astrophysics Data System (ADS)
Flores, Jorge L.; García-Torales, G.; Ponce Ávila, Cristina
2006-08-01
This paper describes an in situ image recognition system designed to inspect the quality standards of the chocolate pops during their production. The essence of the recognition system is the localization of the events (i.e., defects) in the input images that affect the quality standards of pops. To this end, processing modules, based on correlation filter, and segmentation of images are employed with the objective of measuring the quality standards. Therefore, we designed the correlation filter and defined a set of features from the correlation plane. The desired values for these parameters are obtained by exploiting information about objects to be rejected in order to find the optimal discrimination capability of the system. Regarding this set of features, the pop can be correctly classified. The efficacy of the system has been tested thoroughly under laboratory conditions using at least 50 images, containing 3 different types of possible defects.
Toward superconducting critical current by design
Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...
2016-03-31
The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less
Thermal conductivity of bulk and thin film β-Ga2O3 measured by the 3ω technique
NASA Astrophysics Data System (ADS)
Blumenschein, N.; Slomski, M.; Paskov, P. P.; Kaess, F.; Breckenridge, M. H.; Muth, J. F.; Paskova, T.
2018-02-01
Thermal conductivity of undoped and Sn-doped β-Ga2O3 bulk and single-crystalline thin films have been measured by the 3ω technique. The bulk samples were grown by edge-defined film-field growth (EFG) method, while the thin films were grown on c-plane sapphire by pulsed-laser deposition (PLD). All samples were with (-201) surface orientation. Thermal conductivity of bulk samples was calculated along the in-plane and cross-plane crystallographic directions, yielding a maximum value of 29 W/m-K in the [010] direction at room temperature. A slight thermal conductivity decrease was observed in the Sn-doped bulk samples, which was attributed to enhanced phonon-impurity scattering. The differential 3ω method was used for β-Ga2O3 thin film samples due to the small film thickness. Results show that both undoped and Sndoped films have a much lower thermal conductivity than that of the bulk samples, which is consistent with previous reports in the literature showing a linear relationship between thermal conductivity and film thickness. Similarly to bulk samples, Sn-doped thin films have exhibited a thermal conductivity decrease. However, this decrease was found to be much greater in thin film samples, and increased with Sn doping concentration. A correlation between thermal conductivity and defect/dislocation density was made for the undoped thin films.
NASA Astrophysics Data System (ADS)
Delachat, F.; Phillipe, J.-C.; Larrey, V.; Fournel, F.; Bos, S.; Teyssèdre, H.; Chevalier, Xavier; Nicolet, Célia; Navarro, Christophe; Cayrefourcq, Ian
2018-03-01
In this work, an evaluation of various ASL processes for 200 mm wafer scale in the HERCULES® NIL equipment platform available at the CEA-Leti through the INSPIRE program is reported. The surface and adherence energies were correlated to the AFM and defectivity results in order to select the most promising ASL process for high resolution etch mask applications. The ASL performances of the selected process were evaluated by multiple working stamp fabrication using unpatterned and patterned masters though defectivity monitoring on optical based-inspection tools. Optical and SEM defect reviews were systematically performed. Multiple working stamps fabrication without degradation of the master defectivity was witnessed. This evaluation enabled to benchmark several ASL solutions based on the grafted technology develop by ARKEMA in order to reduce and optimize the soft stamp defectivity prior to its replication and therefore considerably reduce the final imprint defectivity for the Smart NIL process.
NASA Astrophysics Data System (ADS)
Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.
2014-10-01
We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.
Esposito, Stefano Andrea; Huybrechts, Bart; Slagmolen, Pieter; Cotti, Elisabetta; Coucke, Wim; Pauwels, Ruben; Lambrechts, Paul; Jacobs, Reinhilde
2013-09-01
The routine use of high-resolution images derived from 3-dimensional cone-beam computed tomography (CBCT) datasets enables the linear measurement of lesions in the maxillary and mandibular bones on 3 planes of space. Measurements on different planes would make it possible to obtain real volumetric assessments. In this study, we tested, in vitro, the accuracy and reliability of new dedicated software developed for volumetric lesion assessment in clinical endodontics. Twenty-seven bone defects were created around the apices of 8 teeth in 1 young bovine mandible to simulate periapical lesions of different sizes and shapes. The volume of each defect was determined by taking an impression of the defect using a silicone material. The samples were scanned using an Accuitomo 170 CBCT (J. Morita Mfg Co, Kyoto, Japan), and the data were uploaded into a newly developed dedicated software tool. Two endodontists acted as independent and calibrated observers. They analyzed each bone defect for volume. The difference between the direct volumetric measurements and the measurements obtained with the CBCT images was statistically assessed using a lack-of-fit test. A correlation study was undertaken using the Pearson product-moment correlation coefficient. Intra- and interobserver agreement was also evaluated. The results showed a good fit and strong correlation between both volume measurements (ρ > 0.9) with excellent inter- and intraobserver agreement. Using this software, CBCT proved to be a reliable method in vitro for the estimation of endodontic lesion volumes in bovine jaws. Therefore, it may constitute a new, validated technique for the accurate evaluation and follow-up of apical periodontitis. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Characterization of point defects in monolayer arsenene
NASA Astrophysics Data System (ADS)
Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence
2018-06-01
Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.
Chen, J C; Lee, L R
2008-01-01
Objective: To present the clinical spectrum of lamellar macular defects and describe the different subtypes based on their optical coherence tomography (OCT) configuration and visual prognosis. Methods: The retrospective observational case series reviewed OCT scans of 92 eyes with lamellar macular defects. Lamellar macular defects were categorised into subtypes of macular pseudohole (MPH), lamellar macular hole (LMH) and foveal pseudocyst (FP) according to their OCT morphology. The defects were quantitatively characterised in terms of base diameter, depth and central foveal thickness, and examined for the presence of associated epiretinal membranes (ERM). Results: Visual acuity (VA) was significantly correlated with the central foveal thickness and depth of the lamellar defect. MPH was associated with better VA compared with LMH and FP. MPH was of a smaller base diameter and had a greater central foveal thickness than that of LMH and FP. Fifty-per cent of all lamellar defects had an associated ERM. Conclusions: Different profiles of lamellar macular defects were characterised and quantified by OCT. Deeper and wider lamellar defects were associated with poorer visual outcome. Such objective parameters lamellar macular defects are of value when explaining to patients regarding their decreased acuity. Future prospective investigations are required to study the natural history of lamellar defects of different aetiology and surgical indications. PMID:18684752
Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films
Farrow, Tim; Yang, Nan; Doria, Sandra; ...
2015-03-17
Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunnelingmore » barriers« less
Health Monitoring of a Rotating Disk Using a Combined Analytical-Experimental Approach
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Woike, Mark R.; Lekki, John D.; Baaklini, George Y.
2009-01-01
Rotating disks undergo rigorous mechanical loading conditions that make them subject to a variety of failure mechanisms leading to structural deformities and cracking. During operation, periodic loading fluctuations and other related factors cause fractures and hidden internal cracks that can only be detected via noninvasive types of health monitoring and/or nondestructive evaluation. These evaluations go further to inspect material discontinuities and other irregularities that have grown to become critical defects that can lead to failure. Hence, the objectives of this work is to conduct a collective analytical and experimental study to present a well-rounded structural assessment of a rotating disk by means of a health monitoring approach and to appraise the capabilities of an in-house rotor spin system. The analyses utilized the finite element method to analyze the disk with and without an induced crack at different loading levels, such as rotational speeds starting at 3000 up to 10 000 rpm. A parallel experiment was conducted to spin the disk at the desired speeds in an attempt to correlate the experimental findings with the analytical results. The testing involved conducting spin experiments which, covered the rotor in both damaged and undamaged (i.e., notched and unnotched) states. Damaged disks had artificially induced through-thickness flaws represented in the web region ranging from 2.54 to 5.08 cm (1 to 2 in.) in length. This study aims to identify defects that are greater than 1.27 cm (0.5 in.), applying available means of structural health monitoring and nondestructive evaluation, and documenting failure mechanisms experienced by the rotor system under typical turbine engine operating conditions.
Silva, Joana Vieira; Freitas, Maria João; Correia, Bárbara Regadas; Korrodi-Gregório, Luís; Patrício, António; Pelech, Steven; Fardilha, Margarida
2015-10-01
To determine the correlation between semen basic parameters and the expression and activity of signaling proteins. In vitro studies with human spermatozoa. Academic research institute. Thirty-seven men provided semen samples for routine analysis. None. Basic semen parameters tracked included sperm DNA fragmentation (SDF), the expression levels of 75 protein kinases, and the phosphorylation/cleavage patterns of 18 signaling proteins in human spermatozoa. The results indicated that the phosphorylated levels of several proteins (Bad, GSK-3β, HSP27, JNK/SAPK, mTOR, p38 MAPK, and p53), as well as cleavage of PARP (at D214) and Caspase-3 (at D175), were significantly correlated with motility parameters. Additionally, the percentage of morphologically normal spermatozoa demonstrated a significant positive correlation with the phosphorylated levels of p70 S6 kinase and, in turn, head defects and the teratozoospermia index (TZI) showed a significant negative correlation with the phosphorylated levels of Stat3. There was a significant positive correlation between SDF and the teratozoospermia index, as well as the presence of head defects. In contrast, SDF negatively correlated with the percentage of morphologically normal spermatozoa and the phosphorylation of Akt and p70 S6 kinase. Subjects with varicocele demonstrated a significant negative correlation between head morphological defects and the phosphorylated levels of Akt, GSK3β, p38 MAPK, and Stat1. Additionally, 34 protein kinases were identified as expressed in their total protein levels in normozoospermic samples. This study contributed toward establishing a biomarker "fingerprint" to assess sperm quality on the basis of molecular parameters. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-03-01
Sr(1-x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-07-01
Sr(1- x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
Katz, A; Awad, I A; Kong, A K; Chelune, G J; Naugle, R I; Wyllie, E; Beauchamp, G; Lüders, H
1989-01-01
We present correlations of extent of temporal lobectomy for intractable epilepsy with postoperative memory changes (20 cases) and abnormalities of visual field and neurologic examination (45 cases). Postoperative magnetic resonance imaging (MRI) in the coronal plane was used to quantify anteroposterior extent of resection of various quadrants of the temporal lobe, using a 20-compartment model of that structure. The Wechsler Memory Scale-Revised (WMS-R) was administered preoperatively and postoperatively. Postoperative decrease in percentage of retention of verbal material correlated with extent of medial resection of left temporal lobe, whereas decrease in percentage of retention of visual material correlated with extent of medial resection of right temporal lobe. These correlations approached but did not reach statistical significance. Extent of resection correlated significantly with the presence of visual field defect on perimetry testing but not with severity, denseness, or congruity of the defect. There was no correlation between postoperative dysphasia and extent of resection in any quadrant. Assessment of extent of resection after temporal lobectomy allows a rational interpretation of postoperative neurologic deficits in light of functional anatomy of the temporal lobe.
Maternal obesity and congenital heart defects: a population-based study123
Mills, James L; Troendle, James; Conley, Mary R; Carter, Tonia; Druschel, Charlotte M
2010-01-01
Background: Obesity affects almost one-third of pregnant women and causes many complications, including neural tube defects. It is not clear whether the risk of congenital heart defects, the most common malformations, is also increased. Objective: This study was conducted to determine whether obesity is associated with an increased risk of congenital heart defects. Design: A population-based, nested, case-control study was conducted in infants born with congenital heart defects and unaffected controls from the cohort of all births (n = 1,536,828) between 1993 and 2003 in New York State, excluding New York City. The type of congenital heart defect, maternal body mass index (BMI; in kg/m2), and other risk factors were obtained from the Congenital Malformations Registry and vital records. Mothers of 7392 congenital heart defect cases and 56,304 unaffected controls were studied. Results: All obese women (BMI ≥ 30) were significantly more likely than normal-weight women (BMI: 19–24.9) to have children with a congenital heart defect [odds ratio (OR): 1.15; 95% CI: 1.07, 1.23; P < 0.0001]. Overweight women were not at increased risk (OR: 1.00; 95% CI: 0.94, 1.06). The risk in morbidly obese women (BMI ≥ 40) was higher (OR: 1.33; 95% CI: 1.15, 1.54; P = 0.0001) than that in obese women with a BMI of 30–39.9 (OR: 1.11; 95% CI: 1.04, 1.20; P = 0.004). There was a highly significant trend of increasing OR for congenital heart defects with increasing maternal obesity (P < 0.0001). The offspring of obese women had significantly higher ORs for atrial septal defects, hypoplastic left heart syndrome, aortic stenosis, pulmonic stenosis, and tetralogy of Fallot. Conclusions: Obese, but not overweight, women are at significantly increased risk of bearing children with a range of congenital heart defects, and the risk increases with increasing BMI. Weight reduction as a way to reduce risk should be investigated. PMID:20375192
Deciphering chemical order/disorder and material properties at the single-atom level
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Tahara, Tomomitsu; Yamazaki, Jumpei; Tahara, Sayumi; Okubo, Masaaki; Kawamura, Tomohiko; Horiguchi, Noriyuki; Ishizuka, Takamitsu; Nagasaka, Mitsuo; Nakagawa, Yoshihito; Shibata, Tomoyuki; Kuroda, Makoto; Ohmiya, Naoki
2017-06-08
DNA methylation is associated with "field defect" in the gastric mucosa. To characterize "field defect" morphologically, we examined DNA methylation of non-neoplastic gastric mucosa in relation to their morphology seen by narrow-band imaging (NBI) with magnifying endoscopy. Magnifying NBI of non-neoplastic gastric body was classified as follows: normal-small and round pits with uniform subepithelial capillary networks; type 1-a little enlarged round pits with indistinct subepithelial capillary networks; type 2-remarkably enlarged pits with irregular vessels; and type 3-clearly demarcated oval or tubulovillous pits with bulky coiled or wavy vessels. Methylation of nine candidate genes (MYOD1, SLC16A12, GDNF, IGF2, MIR 124A1, CDH1, PRDM5, RORA and MLF1) were determined by bisulfite pyrosequencing. Infinium HumanMethylation450 array was used to characterize the methylation of >450,000 CpG sites. Mean Z score methylation of nine genes positively correlated with the changes of mucosal patterns from normal to types 1, 2, and 3 (P < 0.0001). Genome-wide analysis showed that development of mucosal patterns correlated with methylation accumulation especially at CpG islands. Genes with promoter CpG islands that were gradually methylated with the development of mucosal patterns significantly enriched the genes involved in zinc-related pathways. The results indicates that gastric mucosal morphology predicts a "field defect" in this tissue type. Accumulation of DNA methylation is associated with "field defect" in the non-neoplastic gastric mucosa. Endoscopic identification of "field defect" has important implications for preventing gastric cancer. Our results suggest that magnifying NBI of gastric mucosal morphology predicts a "field defect" in the gastric mucosa.
Intrinsic defects and spectral characteristics of SrZrO3 perovskite
NASA Astrophysics Data System (ADS)
Li, Zhenzhang; Duan, He; Jin, Yahong; Zhang, Shaoan; Lv, Yang; Xu, Qinfang; Hu, Yihua
2018-04-01
First-principles calculations and experiment analysis were performed to study the internal relation between seven types of intrinsic defects and the persistent luminescence in SrZrO3 host material. The calculation shows that rich zirconium defects have the low energy cost and thus are easy to form. Zr vacancies are too high energy to play any role in defect which is related luminescence phenomenon of SrZrO3 phosphor. However, oxygen vacancies stand out as a likely candidate, because it can yield two carrier reservoirs: a fully-occupied singlet electron's reservoir which lies above the valence band maximum, and an empty triply degenerate hole's reservoir which is just below the conduction band minimum. Sr vacancies are not directly relevant to the persistent luminescence due to its too shallow electron trap level. The characteristics of these defects are fully explained by the equilibrium properties of SrZrO3. An experimental study of the thermoluminescence glow for these defects is conducted and the calculation is consistent with the experimental results. A mechanism of the persistent luminescence for SrZrO3:Pr3+, Eu3+ is explained according to oxygen vacancies trap center. Findings of this study may serve as theoretical references for controlling intrinsic traps by more refined experiments.
NASA Astrophysics Data System (ADS)
Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen
2016-10-01
Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.
NASA Astrophysics Data System (ADS)
Gui-Li, Zheng; Hui, Zhang; Wen-Jiang, Ye; Zhi-Dong, Zhang; Hong-Wei, Song; Li, Xuan
2016-03-01
Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and -1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and -1 defects obtained in the experiment conducted by Kumar et al. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087, 11274088, and 11304074), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2016202282), the Research Project of Hebei Education Department, China (Grant Nos. QN2014130 and QN2015260), and the Key Subject Construction Project of Hebei Province University, China.
Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema
Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae
2017-01-01
Background Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). Objectives We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Methods Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients’ entire thorax was taken from apex to base after a patient’s single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. Results The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. Conclusion The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE. PMID:28107411
Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema.
Sugino, Keishi; Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae
2017-01-01
Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients' entire thorax was taken from apex to base after a patient's single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE.
Gonçalves, Luís F; Romero, Roberto; Espinoza, Jimmy; Lee, Wesley; Treadwell, Marjorie; Chintala, Kavitha; Brandl, Helmut; Chaiworapongsa, Tinnakorn
2004-04-01
To describe clinical and research applications of 4-dimensional imaging of the fetal heart using color Doppler spatiotemporal image correlation. Forty-four volume data sets were acquired by color Doppler spatiotemporal image correlation. Seven subjects were examined: 4 fetuses without abnormalities, 1 fetus with ventriculomegaly and a hypoplastic cerebellum but normal cardiac anatomy, and 2 fetuses with cardiac anomalies detected by fetal echocardiography (1 case of a ventricular septal defect associated with trisomy 21 and 1 case of a double-inlet right ventricle with a 46,XX karyotype). The median gestational age at the time of examination was 21 3/7 weeks (range, 19 5/7-34 0/7 weeks). Volume data sets were reviewed offline by multiplanar display and volume-rendering methods. Representative images and online video clips illustrating the diagnostic potential of this technology are presented. Color Doppler spatiotemporal image correlation allowed multiplanar visualization of ventricular septal defects, multiplanar display and volume rendering of tricuspid regurgitation, volume rendering of the outflow tracts by color and power Doppler ultrasonography (both in a normal case and in a case of a double-inlet right ventricle with a double-outlet right ventricle), and visualization of venous streams at the level of the foramen ovale. Color Doppler spatiotemporal image correlation has the potential to simplify visualization of the outflow tracts and improve the evaluation of the location and extent of ventricular septal defects. Other applications include 3-dimensional evaluation of regurgitation jets and venous streams at the level of the foramen ovale.
Allagh, Komal Preet; Shamanna, B. R.; Murthy, Gudlavalleti V. S.; Ness, Andy R.; Doyle, Pat; Neogi, Sutapa B.; Pant, Hira B.
2015-01-01
Background In the last two decades, India has witnessed a substantial decrease in infant mortality attributed to infectious disease and malnutrition. However, the mortality attributed to birth defects remains constant. Studies on the prevalence of birth defects such as neural tube defects and orofacial clefts in India have reported inconsistent results. Therefore, we conducted a systematic review of observational studies to document the birth prevalence of neural tube defects and orofacial clefts. Methods A comprehensive literature search for observational studies was conducted in MEDLINE and EMBASE databases using key MeSH terms (neural tube defects OR cleft lip OR cleft palate AND Prevalence AND India). Two reviewers independently reviewed the retrieved studies, and studies satisfying the eligibility were included. The quality of included studies was assessed using selected criteria from STROBE statement. Results The overall pooled birth prevalence (random effect) of neural tube defects in India is 4.5 per 1000 total births (95% CI 4.2 to 4.9). The overall pooled birth prevalence (random effect) of orofacial clefts is 1.3 per 1000 total births (95% CI 1.1 to 1.5). Subgroup analyses were performed by region, time period, consanguinity, and gender of newborn. Conclusion The overall prevalence of neural tube defects from India is high compared to other regions of the world, while that of orofacial clefts is similar to other countries. The majority of studies included in the review were hospital based. The quality of these studies ranged from low to moderate. Further well-designed, high quality community-based observational studies are needed to accurately estimate the burden of neural tube defects and orofacial clefts in India. PMID:25768737
Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures
NASA Astrophysics Data System (ADS)
Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.
1989-11-01
The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.
Raman shifts in electron-irradiated monolayer MoS 2
Parkin, William M.; Balan, Adrian; Liang, Liangbo; ...
2016-03-21
Here, we report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy (TEM) two-terminal conductivity of monolayer MoS 2 under electron irradiation. We observe a redshift in the E Raman peak and a less pronounced blueshift in the A' 1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy (EDS), we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %), which is confirmed by first-principles density functional theory calculations. Inmore » situ device current measurements show exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS 2-based transport channels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R., E-mail: wrwampl@sandia.gov; Myers, Samuel M.
A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers,more » and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.« less
NASA Astrophysics Data System (ADS)
Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing
2017-12-01
We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.
OPTOELECTRONIC PROPERTIES AND THE GAP STATE DISTRIBUTION IN a-Si, Ge ALLOYS
NASA Astrophysics Data System (ADS)
Aljishi, S.; Smith, Z. E.; Wagner, S.
In this article we review optical and electronic transport data measured in amorphous silicon-germanium alloys with the goal of identifying the density of states as a function of alloy composition. The results show that while alloying a-Si:H with germanium has little effect on the valence band tail, the conduction band tail density of states is increased dramatically. Defect distributions both above and below midgap are detected and identified with the dangling bond D+/° and D°/- states. The density of deep defects below midgap increases exponentially with germanium content. Above midgap, a large concentration of defects lying between 0.3 and 0.5 eV below the conduction band edge has a strong effect on transient electron transport.
Identification of Surface and Near Surface Defects and Damage Evaluation by Laser Speckle Techniques
NASA Technical Reports Server (NTRS)
Gowda, Chandrakanth H.
2001-01-01
As a part of the grant activity, a laboratory was established within the Department of Electrical Engineering for the study for measurements of surface defects and damage evaluation. This facility has been utilized for implementing several algorithms for accurate measurements of defects. Experiments were conducted using simulated images and multiple images were fused to achieve accurate measurements. During the nine months of the grants when the principal investigator was transferred in my name, experiments were conducted using simulated synthetic aperture radar (SAR) images. This proved useful when several algorithms were used on images of smooth objects with minor deformalities. Given the time constraint, the derived algorithms could not be applied to actual images of smooth objects with minor abnormalities.
Electrical properties of graphene film for counter electrode in dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Khalifa, Ali; Shafie, S.; Hasan, W. Z. W.; Lim, H. N.; Rusop, M.; Samaila, Buda
2018-05-01
A graphene counter electrode for dye-sensitized solar cell was prepared simply by drop casting method on a conducting FTO glass at room temperature. Raman spectroscopy was used to study the defection in the graphene films. The sheet resistance was also measured and recoded minimum value of 7.04 Ω/□ at 22.19µm thickness. The casted films show good adhesion to substrates with low defects. A DSSC based on graphene counter electrode demonstrates reasonable conversion efficiency of 2.78% with short circuit current of 7.60mA, open circuit voltage of 0.69V and fill factor of 0.52. The high conductivity and low defects render the prepared graphene dispersion for DSSCs' CE application.
Han, Dan; Du, Mao -Hua; Dai, Chen -Min; ...
2017-02-23
Bi 2S 3 has attracted extensive attention recently as a light-absorber, sensitizer or electron acceptor material in various solar cells. Using first-principles calculations, we find that the photovoltaic efficiency of Bi 2S 3 solar cells is limited by its intrinsic point defects, i.e., both S vacancy and S interstitial can have high concentration and produce deep defect levels in the bandgap, leading to non-radiative recombination of electron–hole carriers and reduced minority carrier lifetime. Unexpectedly most of the intrinsic defects in Bi 2S 3, including even the S interstitial, act as donor defects, explaining the observed n-type conductivity and also causingmore » the high p-type conductivity impossible thermodynamically. Doping in Bi 2S 3 by a series of extrinsic elements is studied, showing that most of the dopant elements such as Cu, Br and Cl make the material even more n-type and only Pb doping makes it weakly p-type. Based on this, we propose that the surface region of n-type Bi 2S 3 nanocrystals in p-PbS/n-Bi 2S 3 nano-heterojunction solar cells may be type-inverted into p-type due to Pb doping, with a buried p–n junction formed in the Bi 2S 3 nanocrystals, which provides a new explanation to the longer carrier lifetime and higher efficiency. Lastly, considering the relatively low conduction band and high n-type conductivity, we predict that Cu, Br and Cl doped Bi 2S 3 may be an ideal n-type electron acceptor or counter electrode material, while the performance of Bi 2S 3 as a light-absorber or sensitizer material is intrinsically limited.« less
38 CFR 21.8360 - Satisfactory conduct and cooperation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Satisfactory conduct and... Children of Vietnam Veterans-Spina Bifida and Covered Birth Defects Satisfactory Conduct and Cooperation § 21.8360 Satisfactory conduct and cooperation. The provisions for satisfactory conduct and cooperation...
Defect Engineering in SrI 2:Eu 2+ Single Crystal Scintillators
Wu, Yuntao; Boatner, Lynn A.; Lindsey, Adam C.; ...
2015-06-23
Eu 2+-activated strontium iodide is an excellent single crystal scintillator used for gamma-ray detection and significant effort is currently focused on the development of large-scale crystal growth techniques. A new approach of molten-salt pumping or so-called melt aging was recently applied to optimize the crystal quality and scintillation performance. Nevertheless, a detailed understanding of the underlying mechanism of this technique is still lacking. The main purpose of this paper is to conduct an in-depth study of the interplay between microstructure, trap centers and scintillation efficiency after melt aging treatment. Three SrI 2:2 mol% Eu2+ single crystals with 16 mm diametermore » were grown using the Bridgman method under identical growth conditions with the exception of the melt aging time (e.g. 0, 24 and 72 hours). Using energy-dispersive X-ray spectroscopy, it is found that the matrix composition of the finished crystal after melt aging treatment approaches the stoichiometric composition. The mechanism responsible for the formation of secondary phase inclusions in melt-aged SrI 2:Eu 2+ is discussed. Simultaneous improvement in light yield, energy resolution, scintillation decay-time and afterglow is achieved in melt-aged SrI 2:Eu 2+. The correlation between performance improvement and defect structure is addressed. The results of this paper lead to a better understanding of the effects of defect engineering in control and optimization of metal halide scintillators using the melt aging technique.« less
UCSD/FRA non-contact ultrasonic guided-wave system for rail inspection: an update
NASA Astrophysics Data System (ADS)
Coccia, Stefano; Phillips, Robert; Nucera, Claudio; Bartoli, Ivan; Salamone, Salvatore; Lanza di Scalea, Francesco; Fateh, Mahmood; Carr, Gary
2011-04-01
The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype has been designed and field tested with the support of Volpe National Transportation Systems Center and ENSCO, Inc. The goal of this project is to develop a rail defect detection system that provides (a) better defect detection reliability (including internal transverse head defects under shelling and vertical split head defects), and (b) higher inspection speed than achievable by current rail inspection systems. This effort is also in direct response to Safety Recommendations issued by the National Transportation Safety Board (NTSB) following the disastrous train derailments at Superior, WI in 1992 and Oneida, NY in 2007 among others. The UCSD prototype uses non-contact ultrasonic probing of the rail head (laser and air-coupled), ultrasonic guided waves, and a proprietary real-time statistical analysis algorithm that maximizes the sensitivity to defects while minimizing false positives. The current design allows potential inspection speeds up to 40 mph, although all field tests have been conducted up to 15 mph so far. This paper summarizes (a) the latest technology development test conducted at the rail defect farm of Herzog, Inc. in St Joseph, MO in June 2010, and (b) the completion of the new Rail Defect Farm facility at the UCSD Camp Elliott Field Station with partial in-kind donations from the Burlington Northern Santa Fe (BNSF) Railway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorai, Prashun; Stevanovic, Vladan; Toberer, Eric
In this work, we discover anomalously low lattice thermal conductivity (<0.25 W/mK at 300 degrees C) in the Hg-containing quaternary diamond-like semiconductors within the Cu2IIBIVTe4 (IIB: Zn, Cd, Hg) (IV: Si, Ge, Sn) set of compositions. Using high-temperature X-ray diffraction, resonant ultrasound spectroscopy, and transport properties, we uncover the critical role of the antisite defects HgCu and CuHg on phonon transport within the Hg-containing systems. Despite the differences in chemistry between Hg and Cu, the high concentration of these antisite defects emerges from the energetic proximity of the kesterite and stannite cation motifs. Our phonon calculations reveal that heavier groupmore » IIB elements not only introduce low-lying optical modes, but the subsequent antisite defects also possess unusually strong point defect phonon scattering power. The scattering strength stems from the fundamentally different vibrational modes supported by the constituent elements (e.g., Hg and Cu). Despite the significant impact on the thermal properties, antisite defects do not negatively impact the mobility (>50 cm2/(Vs) at 300 degrees C) in Hg-containing systems, leading to predicted zT > 1.5 in Cu2HgGeTe4 and Cu2HgSnTe4 under optimized doping. In addition to introducing a potentially new p-type thermoelectric material, this work provides (1) a strategy to use the proximity of phase transitions to increase point defect phonon scattering, and (2) a means to quantify the power of a given point defect through inexpensive phonon calculations.« less
Electrodes mitigating effects of defects in organic electronic devices
Heller, Christian Maria Anton [Albany, NY
2008-05-06
A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kujala, J.; Segercrantz, N.; Tuomisto, F.
2014-10-14
We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less
Study of critical defects in ablative heat shield systems for the space shuttle
NASA Technical Reports Server (NTRS)
Miller, C. C.; Rummel, W. D.
1974-01-01
Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb.
NASA Astrophysics Data System (ADS)
Yamamoto, Takashi; Kimikawa, Yuichi
1992-10-01
The conformational motion of a polymethylene molecule constrained by a cylindrical potential is simulated up to 100 ps. The molecule consists of 60 CH2 groups and has variable bond lengths, bond angles, and dihedral angles. Our main concern here is the excitation and the dynamics of the conformational defects: kinks, jogs, etc. Under weaker constraint a number of gauche bonds are excited; they mostly form pairs such as gtḡ kinks or gtttḡ jogs. These conformational defects show no continuous drift in space. Instead they often annihilate and then recreate at different sites showing apparently random positional changes. The conformational defects produce characteristic strain fields around them. It seems that the conformational defects interact attractively through these strain fields. This is evidenced by remarkably correlated spatial distributions of the gauche bonds.
Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong
2016-09-14
Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (<200 K), and the low spin-injection efficiencies of existing III-V, II-VI, and transparent conductive oxide semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials.
Irradiation-induced defect formation and damage accumulation in single crystal CeO 2
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
2017-11-15
Here, the accumulation of irradiation-induced disorder in single crystal CeO 2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO 2 thin films using 2 MeV Au 2+ ions were carried out up to a total fluence of 1.3 x 10 16 cm –2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes inmore » correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.« less
Irradiation-induced defect formation and damage accumulation in single crystal CeO2
NASA Astrophysics Data System (ADS)
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
2018-01-01
The accumulation of irradiation-induced disorder in single crystal CeO2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO2 thin films using 2 MeV Au2+ ions were carried out up to a total fluence of 1.3 ×1016 cm-2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes in correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.
Irradiation-induced defect formation and damage accumulation in single crystal CeO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
Here, the accumulation of irradiation-induced disorder in single crystal CeO 2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO 2 thin films using 2 MeV Au 2+ ions were carried out up to a total fluence of 1.3 x 10 16 cm –2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes inmore » correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.« less
NASA Astrophysics Data System (ADS)
Xie, Yangsu; Xu, Zaoli; Xu, Shen; Cheng, Zhe; Hashemi, Nastaran; Deng, Cheng; Wang, Xinwei
2015-05-01
Due to its intriguing thermal and electrical properties, graphene has been widely studied for potential applications in sensor and energy devices. However, the reported value for its thermal conductivity spans from dozens to thousands of W m-1 K-1 due to different levels of alternations and defects in graphene samples. In this work, the thermal diffusivity of suspended four-layered graphene foam (GF) is characterized from room temperature (RT) down to 17 K. For the first time, we identify the defect level in graphene by evaluating the inverse of thermal diffusivity (termed ``thermal reffusivity'': Θ) at the 0 K limit. By using the Debye model of Θ = Θ0 + C × e-θ/2T and fitting the Θ-T curve to the point of T = 0 K, we identify the defect level (Θ0) and determine the Debye temperature of graphene. Θ0 is found to be 1878 s m-2 for the studied GF and 43-112 s m-2 for three highly crystalline graphite materials. This uncovers a 16-43-fold higher defect level in GF than that in pyrolytic graphite. In GF, the phonon mean free path solely induced by defects and boundary scattering is determined as 166 nm. The Debye temperature of graphene is determined to be 1813 K, which is very close to the average theoretical Debye temperature (1911 K) of the three acoustic phonon modes in graphene. By subtracting the defect effect, we report the ideal thermal diffusivity and conductivity (κideal) of graphene presented in the 3D foam structure in the range of 33-299 K. Detailed physics based on chemical composition and structure analysis are given to explain the κideal-T profile by comparing with those reported for suspended graphene.Due to its intriguing thermal and electrical properties, graphene has been widely studied for potential applications in sensor and energy devices. However, the reported value for its thermal conductivity spans from dozens to thousands of W m-1 K-1 due to different levels of alternations and defects in graphene samples. In this work, the thermal diffusivity of suspended four-layered graphene foam (GF) is characterized from room temperature (RT) down to 17 K. For the first time, we identify the defect level in graphene by evaluating the inverse of thermal diffusivity (termed ``thermal reffusivity'': Θ) at the 0 K limit. By using the Debye model of Θ = Θ0 + C × e-θ/2T and fitting the Θ-T curve to the point of T = 0 K, we identify the defect level (Θ0) and determine the Debye temperature of graphene. Θ0 is found to be 1878 s m-2 for the studied GF and 43-112 s m-2 for three highly crystalline graphite materials. This uncovers a 16-43-fold higher defect level in GF than that in pyrolytic graphite. In GF, the phonon mean free path solely induced by defects and boundary scattering is determined as 166 nm. The Debye temperature of graphene is determined to be 1813 K, which is very close to the average theoretical Debye temperature (1911 K) of the three acoustic phonon modes in graphene. By subtracting the defect effect, we report the ideal thermal diffusivity and conductivity (κideal) of graphene presented in the 3D foam structure in the range of 33-299 K. Detailed physics based on chemical composition and structure analysis are given to explain the κideal-T profile by comparing with those reported for suspended graphene. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02012c
How Does CIGS Performance Depend on Temperature at the Microscale?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.
Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less
How Does CIGS Performance Depend on Temperature at the Microscale?
Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.; ...
2017-11-03
Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less
NASA Astrophysics Data System (ADS)
Wang, Qi
Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs. The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to obtain a mechanistic understanding of the charge transfer process. We have developed a spectroscopic technique for studying vacancy defects in TMOs using near-infrared photoluminescence (NIR-PL) spectroscopy and showed that this technique is uniquely suited for studying defect-adsorbate interactions. In this work, a series of studies were carried out to elucidate the underlying structure-defect-property correlations of TMOs and their role in catalyzing electrical and electrochemical properties. In the first study, we report a new type of electrical phase transition in p-type, non-stoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete change of conductivity from p- to n-type at room temperature induced by electrochemical Li+ intercalation. Direct observation of vacancy-ion interactions using in-situ NIR-PL show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. X-ray photoemission spectroscopy studies performed to examine the changes in the oxidation states of nickel due to defect interactions support the above conclusions. In the second study, main effects of oxygen vacancy defects on the electronic and optical properties of V2O5 nanowires were studied using in-situ Raman, photoluminescence, absorption, and photoemission spectroscopy. We show that both thermal reduction and electrochemical reduction via Li+ insertion results in the creation of oxygen vacancy defects in the crystal that leads to band filling and an increase in the optical band gap of V2O5 from 1.95 eV to 2.45 eV, an effect known as the Burstein-Moss effect. In the third study, we report a new type of semiconductor-adsorbed water interaction in metal oxides known as "electrochemical surface transfer doping," a phenomenon that has been previously been observed on hydrogen-terminated diamond, carbon nanotube, gallium nitride and zinc oxide. Most TMOs at room temperature are known to be strongly hydrated. We show that an adsorbed water film present on the surface of TMOs facilitates the dissolution of gaseous species and promotes charge transfers at the adsorbed-water/oxide interfaces. Further, we show the role of vacancy defects in enhancing catalytic processes by directly monitoring the charge transfer process between gaseous species and vacancy defects in non-stoichiometric p-type nickel oxide and n-type tungsten oxide using in-situ NIR-PL, electrical resistance, and X-ray photoelectron spectroscopy. We find the importance of adsorbed water and vacancy defects in affecting catalytic, electronic, electrical, and optical changes such as insulator-to-metal transitions and radiative emissions during electrochemical reactions. In addition, we demonstrate that electrochemical surface transfer doping exists in another system, specifically, in gallium nitride, and the presence of this adsorbed water film present on the surface of GaN induces electron transfer from GaN that leads to the formation of an electron depletion region on the surface.
Effect of composition and strain on the electrical properties of LaNiO3 thin films
NASA Astrophysics Data System (ADS)
Zhu, Mingwei; Komissinskiy, Philipp; Radetinac, Aldin; Vafaee, Mehran; Wang, Zhanjie; Alff, Lambert
2013-09-01
The Ni content of LaNi1-xO3 epitaxial thin films grown by pulsed laser deposition has been varied by ablation from targets with different composition. While tensile strain and Ni substoichiometry reduce the conductivity, nearly stoichiometric and unstrained films show reproducibly resistivities below 100 μΩ × cm. Since the thermodynamic instability of the Ni3+ state drives defect formation, Ni defect engineering is the key to obtain highly conducting LaNiO3 thin films.
Inferior sinus venosus defects: anatomic features and echocardiographic correlates.
Plymale, Jennifer; Kolinski, Kellen; Frommelt, Peter; Bartz, Peter; Tweddell, James; Earing, Michael G
2013-02-01
Inferior sinus venosus defects (SVDs) are rare imperfections located in the inferior portion of the atrial septum, leading to an overriding inferior vena cava (IVC) and an interatrial connection. These defects have increased risk of anomalous pulmonary venous return (PAPVR) and often are confused with secundum atrial septal defects (ASDs) with inferior extension. The authors sought to review their experience with inferior SVDs and to establish at their institution an echocardiographic definition that differentiates inferior SVDs from secundum ASDs with inferior extension. The study identified 161 patients 1.5 to 32 years of age who had undergone repair of a secundum ASD with inferior extension or inferior SVD over the preceding 10 years. All surgical notes, preoperative transthoracic echocardiograms (TTEs), and preoperative transesophageal echocardiograms (TEEs) were reviewed. Based on the surgical notes, 147 patients were classified as having a secundum ASD (147/161, 91 %) and 14 patients (9 %) as having an inferior SVD. The study identified PAPVR in 7 % (1/14) of the patients with inferior SVDs and 3.5 % (5/14) of the patients with secundum ASDs. Surgical diagnosis and preoperative TTE correlated for 143 (89 %) of the 161 patients. Using a strict anatomic and echocardiographic definition with a blinded observer, the majority of the defects (14/18, 78 %) were reclassified correctly after review of their TTE images, and 100 % of the defects were correctly reclassified after TEE image review. Accurate diagnosis of inferior SVDs remains challenging. The data from this study demonstrate that use of a strict anatomic and echocardiographic definition (a defect that originates in the mouth of the IVC and continues into the inferoposterior border of the left atrium, leaving no residual atrial septal tissue at the inferior margin) allows for accurate differentiation between secundum ASDs with inferior extension and inferior SVDs. This differentiation is extremely important in planning for surgical versus device closure of these rare defects.
Ab initio DFT+U study of He atom incorporation into UO(2) crystals.
Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene
2009-09-07
We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.
Vision-based surface defect inspection for thick steel plates
NASA Astrophysics Data System (ADS)
Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo
2017-05-01
There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.
Defect-Engineered Metal–Organic Frameworks
Fang, Zhenlan; Bueken, Bart; De Vos, Dirk E; Fischer, Roland A
2015-01-01
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect-engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs. PMID:26036179
NASA Astrophysics Data System (ADS)
Crespillo, M. L.; Agulló-López, F.; Zucchiatti, A.
2017-03-01
An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO3 crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.
Yanke, Adam B; Shin, Jason J; Pearson, Ian; Bach, Bernard R; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N
2017-04-01
To assess the ability of 3-dimensional (3D) magnetic resonance imaging (MRI, 1.5 and 3 tesla [T]) to quantify glenoid bone loss in a cadaveric model compared with the current gold standard, 3D computed tomography (CT). Six cadaveric shoulders were used to create a bone loss model, leaving the surrounding soft tissues intact. The anteroposterior (AP) dimension of the glenoid was measured at the glenoid equator and after soft tissue layer closure the specimen underwent scanning (CT, 1.5-T MRI, and 3-T MRI) with the following methods (0%, 10%, and 25% defect by area). Raw axial data from the scans were segmented using manual mask manipulation for bone and reconstructed using Mimics software to obtain a 3D en face glenoid view. Using calibrated Digital Imaging and Communications in Medicine images, the diameter of the glenoid at the equator and the area of the glenoid defect was measured on all imaging modalities. In specimens with 10% or 25% defects, no difference was detected between imaging modalities when comparing the measured defect size (10% defect P = .27, 25% defect P = .73). All 3 modalities demonstrated a strong correlation with the actual defect size (CT, ρ = .97; 1.5-T MRI, ρ = .93; 3-T MRI, ρ = .92, P < .0001). When looking at the absolute difference between the actual and measured defect area, no significance was noted between imaging modalities (10% defect P = .34, 25% defect P = .47). The error of 3-T 3D MRI increased with increasing defect size (P = .02). Both 1.5- and 3-T-based 3D MRI reconstructions of glenoid bone loss correlate with measurements from 3D CT scan data and actual defect size in a cadaveric model. Regardless of imaging modality, the error in bone loss measurement tends to increase with increased defect size. Use of 3D MRI in the setting of shoulder instability could obviate the need for CT scans. The goal of our work was to develop a reproducible method of determining glenoid bone loss from 3D MRI data and hence eliminate the need for CT scans in this setting. This will lead to decreased cost of care as well as decreased radiation exposure to patients. The long-term goal is a fully automated system that is as approachable for clinicians as current 3D CT technology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukrittanon, Supanee; Liu, Ren; Pan, Janet L.
2016-08-07
We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in themore » GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.« less
Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current
NASA Astrophysics Data System (ADS)
Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; Pan, Janet L.; Jungjohann, K. L.; Tu, Charles W.; Dayeh, Shadi A.
2016-08-01
We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.
Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current
Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; ...
2016-08-07
Here, we report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We also show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface andmore » in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. Finally, we present performance benefits of dilute nitride microwire solar cells and show that it can be achieved by further tuning of the epitaxial quality of the underlying materials.« less
NASA Astrophysics Data System (ADS)
Hirasawa, Kazunori; Shoji, Nobuyuki; Kasahara, Masayuki; Matsumura, Kazuhiro; Shimizu, Kimiya
2016-05-01
This prospective randomized study compared test results of size modulation standard automated perimetry (SM-SAP) performed with the Octopus 600 and conventional SAP (C-SAP) performed with the Humphrey Field Analyzer (HFA) in glaucoma patients. Eighty-eight eyes of 88 glaucoma patients underwent SM-SAP and C-SAP tests with the Octopus 600 24-2 Dynamic and HFA 24-2 SITA-Standard, respectively. Fovea threshold, mean defect, and square loss variance of SM-SAP were significantly correlated with the corresponding C-SAP indices (P < 0.001). The false-positive rate was slightly lower, and false-negative rate slightly higher, with SM-SAP than C-SAP (P = 0.002). Point-wise threshold values obtained with SM-SAP were moderately to strongly correlated with those obtained with C-SAP (P < 0.001). The correlation coefficients of the central zone were significantly lower than those of the middle to peripheral zone (P = 0.031). The size and depth of the visual field (VF) defect were smaller (P = 0.039) and greater (P = 0.043), respectively, on SM-SAP than on C-SAP. Although small differences were observed in VF sensitivity in the central zone, the defect size and depth and the reliability indices between SM-SAP and C-SAP, global indices of the two testing modalities were well correlated.
Sofou, Kalliopi; de Coo, Irenaeus F M; Ostergaard, Elsebet; Isohanni, Pirjo; Naess, Karin; De Meirleir, Linda; Tzoulis, Charalampos; Uusimaa, Johanna; Lönnqvist, Tuula; Bindoff, Laurence Albert; Tulinius, Már; Darin, Niklas
2018-01-01
Leigh syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder. While some genetic defects are associated with well-described phenotypes, phenotype-genotype correlations in Leigh syndrome are not fully explored. We aimed to identify phenotype-genotype correlations in Leigh syndrome in a large cohort of systematically evaluated patients. We studied 96 patients with genetically confirmed Leigh syndrome diagnosed and followed in eight European centres specialising in mitochondrial diseases. We found that ataxia, ophthalmoplegia and cardiomyopathy were more prevalent among patients with mitochondrial DNA defects. Patients with mutations in MT-ND and NDUF genes with complex I deficiency shared common phenotypic features, such as early development of central nervous system disease, followed by high occurrence of cardiac and ocular manifestations. The cerebral cortex was affected in patients with NDUF mutations significantly more often than the rest of the cohort. Patients with the m.8993T>G mutation in MT-ATP6 gene had more severe clinical and radiological manifestations and poorer disease outcome compared with patients with the m.8993T>C mutation. Our study provides new insights into phenotype-genotype correlations in Leigh syndrome and particularly in patients with complex I deficiency and with defects in the mitochondrial ATP synthase. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Development and application of rail defect fracture models to assess remedial actions
DOT National Transportation Integrated Search
1993-08-01
The fracture mechanics models were refined for two types of rail defects - the bolt hole crack and the vertical split head. Beam-type finite element analysis was conducted to determine the effects of joint bar looseness, rail height mismatch and trai...
Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.
Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R
2017-04-01
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Research study on materials processing in space, M566 experiment
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Galasso, F. S.
1974-01-01
Specimens of the aluminum-33 wt% copper eutectic partially melted and resolidified in the low effective gravity of the orbiting Skylab were examined and characterized with respect to microstructural defects and thermal conductivity values. The results obtained were compared with similar evaluations of ground-based simulation melt-resolidification experiments and as-prepared unidirectionally solidified specimens. Thermal conductivity data and electrical resistivity data at temperatures from 25 C to 400 C did not show significant differences between ground and space processed specimens. A methology of evaluating the defects in the Al-Al2Cu structure was implemented. A specimen from Skylab 3 showed signs of instability in growth and several grains were found in the ingot. The specimen from Skylab 4 did not show such marked instability in growth and was found to contain fewer defects than the ground-processed specimens. This agrees with data from Georgia Institute of Technology which showed that there were fewer defects in both their Skylab 3 and 4 specimens than in ground processed specimens.
On the origin of blue emission from ZnO quantum dots synthesized by a sol-gel route
NASA Astrophysics Data System (ADS)
Han, Li-Li; Cui, Lan; Wang, Wei-Hua; Wang, Jiang-Long; Du, Xi-Wen
2012-06-01
ZnO quantum dots (QDs) with blue emission were synthesized by a sol-gel method. A series of control experiments were conducted to explore the origin of the blue emission. It is found that the blue emission arises from neither the quantum confinement nor intermediate products, and it can be achieved only in the presence of Li+ cations and excessive OH- anions. Moreover, the long decay time of the blue emission suggests a defect-related de-excitation process. On the basis of the experimental and calculation results, possible de-excitation paths for light emission were discussed, and the origin of the blue emission was determined as the electron transition from the conduction band to interstitial oxygen defects. Excessive OH- anions are responsible for the formation of interstitial oxygen defects, and Li+ ions can stabilize the defects by substituting for Zn atoms. Besides, Li+ ions can block the growth of ZnO QDs, broaden their band gap and cause a blue shift of the blue emission.
The Workshop on Conductive Polymers: Final Report
DOE R&D Accomplishments Database
1985-10-01
Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)
Vacancy Defects as Compensating Centers in Mg-Doped GaN
NASA Astrophysics Data System (ADS)
Hautakangas, S.; Oila, J.; Alatalo, M.; Saarinen, K.; Liszkay, L.; Seghier, D.; Gislason, H. P.
2003-04-01
We apply positron annihilation spectroscopy to identify VN-MgGa complexes as native defects in Mg-doped GaN. These defects dissociate in postgrowth annealings at 500 800 °C. We conclude that VN-MgGa complexes contribute to the electrical compensation of Mg as well as the activation of p-type conductivity in the annealing. The observation of VN-MgGa complexes confirms that vacancy defects in either the N or Ga sublattice are abundant in GaN at any position of the Fermi level during growth, as predicted previously by theoretical calculations.
Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F
2015-11-01
Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.
Influence of native defects on structural and electronic properties of magnesium silicide
NASA Astrophysics Data System (ADS)
Hirayama, Naomi; Iida, Tsutomu; Nishio, Keishi; Kogo, Yasuo; Takarabe, Kenji; Hamada, Noriaki
2017-05-01
The narrow-gap semiconductor magnesium silicide (Mg2Si) is a promising candidate for mid-temperature (500-800 K) thermoelectric applications. Mg2Si exhibits intrinsic n-type conductivity because of its interstitial Mg defects and is generally doped with n-type dopants; however, the synthesis of p-type Mg2Si has proven difficult. In the present study, we examined several types of defects, such as vacancies and the insertion of constituent atoms (Mg and Si) into crystals, to elucidate their stability in Mg2Si and their influence on its electronic states. A first-principles calculation has revealed that the insertion of Mg into a cell is the most stable and causes n-type conductivity in terms of formation energy. In contrast, the vacancy of Mg produces hole doping although its formation energy per conventional unit cell is approximately 0.07 eV higher than that of the insertion of Mg, at their concentration of 1.04 at. %. Furthermore, the insertion and vacancy of Si atoms generate electrons with higher formation energies compared to the Mg-related defects. As these defects alter the carrier concentration, they can compensate for intentional doping because of the added impurity atoms.
Effect of simvastatin versus low level laser therapy (LLLT) on bone regeneration in rabbit's tibia
NASA Astrophysics Data System (ADS)
Gheith, Mostafa E.; Khairy, Maggie A.
2014-02-01
Simvastatin is a cholesterol lowering drug which proved effective on promoting bone healing. Recently low level laser therapy (LLLT) proved its effect as a biostimulator promoting bone regeneration. This study aims to compare the effect of both Simvastatin versus low level laser on bone healing in surgically created bone defects in rabbit's tibia. Material and methods: The study included 12 New Zealand white rabbits. Three successive 3mm defects were created in rabbits tibia first defect was left as control, second defect was filled with Simvastatin while the third defect was acted on with Low Level Laser (optical fiber 320micrometer). Rabbits were sacrificed after 48 hours, 1 week and 2 weeks intervals. Histopathology was conducted on the three defects Results: The histopathologic studies showed that the bony defects treated with the Low Level Laser showed superior healing patterns and bone regeneration than those treated with Simvastatin. While the control defect showed the least healing pattern.
Endoscopic vacuum therapy for various defects of the upper gastrointestinal tract.
Kuehn, Florian; Loske, Gunnar; Schiffmann, Leif; Gock, Michael; Klar, Ernst
2017-09-01
Postoperative, iatrogenic or spontaneous upper gastrointestinal defects result in significant morbidity and mortality of the patients. In the last few years, endoscopic vacuum therapy (EVT) has been recognized as a new promising method for repairing upper gastrointestinal defects of different etiology. However, probably due to insufficient data and no commercially available system for EVT of the upper gastrointestinal tract, until the end of 2014, covering of esophageal defects with self-expanding metal stents (SEMS) were still the mainstay of endoscopic therapy. The aim of this article is to review the data available about EVT for various upper gastrointestinal defects. A selective literature search was conducted in Medline and PubMed (2007-2016), taking into account all the published case series and case reports reporting on the use of EVT in the management of upper gastrointestinal defects. EVT works through intracorporal application of negative pressure at the defect zone with an electronic controlled vacuum device along a polyurethane sponge drainage. This results in closure of the esophageal defect and internal drainage of the septic focus, simultaneously. Compared to stenting, EVT enables regular viewing of wound conditions with control of the septic focus and adjustment of therapy. Moreover, endoscopical negative pressure is applicable in all esophageal regions (cricopharygeal, tubular, gastroesophageal junction) and in anastomotic anatomic variants. EVT can be used solely as a definite treatment or as a complimentary therapy combined with operative revision. In total, there are published data of more than 200 patients with upper gastrointestinal defects treated with EVT, showing succes rates from 70-100%. The available data indicate that EVT is feasible, safe and effective with good short-term and long-term clinical outcomes in the damage control of upper GI-tract leaks. Still, a prospective multi-center study has to be conducted to proof the definite benefit of EVT for patients with esophageal defects.
Maternal butalbital use and selected defects in the national birth defects prevention study.
Browne, Marilyn L; Van Zutphen, Alissa R; Botto, Lorenzo D; Louik, Carol; Richardson, Sandra; Druschel, Charlotte M
2014-01-01
Butalbital is a barbiturate contained in combination products with caffeine and an analgesic prescribed for the treatment of migraine and tension-type headaches. Controversy exists as to whether butalbital should continue to be prescribed in the United States because of the potential for abuse, overuse headache, and withdrawal syndromes. Butalbital crosses the placenta but there is limited information about potential teratogenicity. To evaluate associations between butalbital and a wide range of specific birth defects. The National Birth Defects Prevention Study is an ongoing, case-control study of nonsyndromic, major birth defects conducted in 10 states. The detailed case classification and large number of cases in the National Birth Defects Prevention Study allowed us to examine the association between maternal self-reported butalbital use and specific birth defects. We conducted an analysis of 8373 unaffected controls and 21,090 case infants with estimated dates of delivery between 1997 and 2007; included were birth defects with 250 or more cases. An exploratory analysis examined groups with 100 to 249 cases. Seventy-three case mothers and 15 control mothers reported periconceptional butalbital use. Of 30 specific defect groups evaluated, adjusted odds ratios for maternal periconceptional butalbital use were statistically significant for 3 congenital heart defects: tetralogy of Fallot (adjusted odds ratio = 3.04; 95% confidence interval = 1.07-8.62), pulmonary valve stenosis (adjusted odds ratio = 5.73; 95% confidence interval = 2.25-14.62), and secundum-type atrial septal defect (adjusted odds ratio = 3.06; 95% confidence interval = 1.07-8.79). In the exploratory analysis, an elevated odds ratio was detected for 1 congenital heart defect, single ventricle. We observed relationships between maternal periconceptional butalbital use and certain congenital heart defects. These associations have not been reported before, and some may be spurious. Butalbital use was rare and despite the large size of the National Birth Defects Prevention Study, the number of exposed case and control infants was small. However, if confirmed in additional studies, our findings will be useful in weighing the risks and benefits of butalbital for the treatment of migraine and tension-type headaches. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Mihir; Jindal, Vibhu; Basavalingappa, Adarsh
The availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the printability of the native EUV mask defects. In this work, we performed a systematic study of native mask defects to understand the defect printability caused by them. The multilayer growth over native substrate mask blank defects was correlated to the multilayer growth over regular-shaped defects having similar profiles in terms of their width and height. To model themore » multilayer growth over the defects, a novel level-set multilayer growth model was used that took into account the tool deposition conditions of the Veeco Nexus ion beam deposition tool. The same tool was used for performing the actual deposition of the multilayer stack over the characterized native defects, thus ensuring a fair comparison between the actual multilayer growth over native defects, and modeled multilayer growth over regular-shaped defects. Further, the printability of the characterized native defects was studied with the SEMATECH-Berkeley Actinic Inspection Tool (AIT), an EUV mask-imaging microscope at Lawrence Berkeley National Laboratory (LBNL). Printability of the modeled regular-shaped defects, which were propagated up the multilayer stack using level-set growth model was studied using defect printability simulations implementing the waveguide algorithm. Good comparison was observed between AIT and the simulation results, thus demonstrating that multilayer growth over a defect is primarily a function of a defect’s width and height, irrespective of its shape. This would allow us to predict printability of the arbitrarily-shaped native EUV mask defects in a systematic and robust manner.« less
Alternative acceptance criteria of girth weld defects in cross country pipelines. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Lefevre, T.
1997-06-01
The failure behaviour of defective girth welds in large diameter pipe lines was assessed using radiographic and mechanised ultrasonic inspection, small scale (tensile, hardness, Charpy and CTOD) and wide plate tests. The specimens were taken from girth welds in API 5LX70 pipe of 1219 mm (48 inches) in diameter by 8,0 mm (0,323 inch) and 13,3 mm (0,524 inch) wall. The test welds were made with the SMAW (8 welds) and GMAW (9 welds) welding processes. Upon completion of the non-destructive tests, 96 curved wide plate specimens were tested to destruction under tensile load. Testing was performed at low temperaturemore » (-50{degrees}C/-58{degrees}F). Defect type, defect position and size were determined from photographs of the fracture face and macro sections (defect characterisation and sizing). In total, 290 typical surface breaking and embedded defects in SMAW or GMAW girth welds have been evaluated. The vast majority of these defects were grossly out of tolerance with respect to current weld quality (workmanship) acceptance levels. To allow the defect tolerance to be determined, the failure strains and stresses were correlated with a defect length determined for an equivalent 3 mm (0, 118 inch) deep defect. This target depth was chosen to represent the average height of one weld pass. The results of this approach have been compared to wall thickness, current workmanship and the EPRG Tier 2 defect limit for planar defects. The defect lengths were derived for rectangular, parabolic and elliptical defect representations.« less
O'Hara, Mackie
2017-05-01
Recently, studies have interpreted regular spacing and average number of perikymata between dental enamel defects in orangutans to reflect seasonal episodes of physiological stress. To estimate the amount of time between developmental defects (enamel hypoplasia), studies have relied on perikymata counts. Unfortunately, perikymata are frequently not continuously visible between defects, significantly reducing data sets. A method is presented here for estimating the number of perikymata between defects using standard perikymata profiles (SPP) that allow the number of perikymata between all pairs of defects across a tooth to be analyzed. The SPP method should allow the entire complement of defects to be analyzed within the context of an individual's crown formation time. The average number of perikymata were established per decile and charted to create male and female Pongo pygmaeus SPPs. The position of the beginning of each defect was recorded for lower canines from males (n = 6) and females (n = 17). The number of perikymata between defects estimated by the SPP was compared to the actual count (where perikymata were continuously visible). The number of perikymata between defects estimated by the SPPs was accurate within three perikymata and highly correlated with the actual counts, significantly increasing the number of analyzable defect pairs. SPPs allow all defect pairs to be included in studies of defect timing, not just those with continuously visible perikymata. Establishing an individual's entire complement of dental defects makes it possible to calculate the regularity (and potential seasonality) of defects. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Li, J.
2011-01-01
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from {approx}85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Li, J.
2011-07-01
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ~85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodo-luminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less
Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells
NASA Technical Reports Server (NTRS)
Li, S. S.
1981-01-01
Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.
NASA Technical Reports Server (NTRS)
Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving
1987-01-01
Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.
Riffet, Vanessa; Vidal, Julien
2017-06-01
The search for functional materials is currently hindered by the difficulty to find significant correlation between constitutive properties of a material and its functional properties. In the case of amorphous materials, the diversity of local structures, chemical composition, impurities and mass densities makes such a connection difficult to be addressed. In this Letter, the relation between refractive index and composition has been investigated for amorphous AlO x materials, including nonstoichiometric AlO x , emphasizing the role of structural defects and the absence of effect of the band gap variation. It is found that the Newton-Drude (ND) relation predicts the refractive index from mass density with a rather high level of precision apart from some structures displaying structural defects. Our results show especially that O- and Al-based defects act as additive local disturbance in the vicinity of band gap, allowing us to decouple the mass density effects from defect effects (n = n[ND] + Δn defect ).
Intersecting surface defects and two-dimensional CFT
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Le Floch, Bruno; Pan, Yiwen; Peelaers, Wolfger
2017-08-01
We initiate the study of intersecting surface operators/defects in 4D quantum field theories (QFTs). We characterize these defects by coupled 4D/2D/0D theories constructed by coupling the degrees of freedom localized at a point and on intersecting surfaces in spacetime to each other and to the 4D QFT. We construct supersymmetric intersecting surface defects preserving just two supercharges in N =2 gauge theories. These defects are amenable to exact analysis by localization of the partition function of the underlying 4D/2D/0D QFT. We identify the 4D/2D/0D QFTs that describe intersecting surface operators in N =2 gauge theories realized by intersecting M2 branes ending on N M5 branes wrapping a Riemann surface. We conjecture and provide evidence for an explicit equivalence between the squashed four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by two representations of S U (N ).
The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Inoue, N.; Wilmsen, C. W.; Jones, K. A.
1981-02-01
Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.
NASA Astrophysics Data System (ADS)
Yang, Pei; Shi, Li-Jie; Zhang, Jian-Min; Liu, Gui-Bin; Yang, Shengyuan A.; Guo, Wei; Yao, Yugui
2018-01-01
Tuning band gaps of semiconductors in terms of defect control is essential for the optical and electronic properties of photon emission or photon harvesting devices. By using first-principles calculations, we study the stability condition of bulk CuInS2 and formation energies of point and complex defects in CuInS2 with hybrid exchange-correlation functionals. We find that at Cu-rich and In-poor conditions, 2Cui + CuIn is the main complex defect, while InCu + 2VCu is the main complex defect at In-rich and Cu-poor conditions. Such stable complex defects provide the feasibility of tuning band gaps by varying the [Cu]/[In] molar ratios. These results present how the off-stoichiometry CuInS2 crystal structures, and electronic and optical properties can be optimized by tuning the [Cu]/[In] ratio and Fermi level, and highlight the importance of complex defects in achieving better photoelectric performance in CuInS2. Such band gap tuning in terms of complex defect engineering is a general approach and thus applicable to other photo-harvest or light-emission semiconductors.
Tuning the formation of p-type defects by peroxidation of CuAlO2 films
NASA Astrophysics Data System (ADS)
Luo, Jie; Lin, Yow-Jon; Hung, Hao-Che; Liu, Chia-Jyi; Yang, Yao-Wei
2013-07-01
p-type conduction of CuAlO2 thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (VCu), and interstitial oxygen (Oi) was established. It is shown that peroxidation of CuAlO2 films may lead to the increased formation probability of acceptors (VCu and Oi), thus, increasing the hole concentration. The dependence of the VCu density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO2. Understanding the defect-related p-type conductivity of CuAlO2 is essential for designing optoelectronic devices and improving their performance.
NASA Astrophysics Data System (ADS)
Zhu, G. H.; Lee, H.; Lan, Y. C.; Wang, X. W.; Joshi, G.; Wang, D. Z.; Yang, J.; Vashaee, D.; Guilbert, H.; Pillitteri, A.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F.
2009-05-01
The mechanism for phonon scattering by nanostructures and by point defects in nanostructured silicon (Si) and the silicon germanium (Ge) alloy and their thermoelectric properties are investigated. We found that the thermal conductivity is reduced by a factor of 10 in nanostructured Si in comparison with bulk crystalline Si. However, nanosize interfaces are not as effective as point defects in scattering phonons with wavelengths shorter than 1 nm. We further found that a 5at.% Ge replacing Si is very efficient in scattering phonons shorter than 1 nm, resulting in a further thermal conductivity reduction by a factor of 2, thereby leading to a thermoelectric figure of merit 0.95 for Si95Ge5, similar to that of large grained Si80Ge20 alloys.
A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.
Jiang, M; Zheng, J W; Xiao, H Y; Liu, Z J; Zu, X T
2017-08-24
ZrC and TiC have been proposed to be alternatives to SiC as fuel-cladding and structural materials in nuclear reactors due to their strong radiation tolerance and high thermal conductivity at high temperatures. To unravel how the presence of defects affects the thermo-physical properties under irradiation, first-principles calculations based on density function theory were carried out to investigate the mechanical and thermal properties of defective ZrC, TiC and SiC. As compared with the defective SiC, the ZrC and TiC always exhibit larger bulk modulus, smaller changes in the Young's and shear moduli, as well as better ductility. The total thermal conductivity of ZrC and TiC are much larger than that of SiC, implying that under radiation environment the ZrC and TiC will exhibit superior heat conduction ability than the SiC. One disadvantage for ZrC and TiC is that their Debye temperatures are generally lower than that of SiC. These results suggest that further improving the Debye temperature of ZrC and TiC will be more beneficial for their applications as fuel-cladding and structural materials in nuclear reactors.
NASA Astrophysics Data System (ADS)
Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.
2013-01-01
The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.
Determination of aflatoxin risk components for in-shell Brazil nuts.
Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B
2011-09-01
A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis
Topological defects after a quench in a Bénard-Marangoni convection system.
Casado, S; González-Viñas, W; Mancini, H; Boccaletti, S
2001-05-01
We report experimental evidence of the fact that, in a Bénard-Marangoni conduction-convection transition, the density of defects in the emerging structure scales as a power law in the quench time needed for the control parameter to ramp through the threshold. The obtained scaling exponents differ from the ones predicted and observed in the case in which the defects correspond to zeros in the amplitude of the global two-dimensional field.
NASA Astrophysics Data System (ADS)
He, Hanna; Zhang, Qi; Wang, Haiyan; Zhang, Hehe; Li, Jiadong; Peng, Zhiguang; Tang, Yougen; Shao, Minhua
2017-06-01
Inferior electronic conductivity and sluggish sodium ion diffusion are still two big challenges for TiO2 anode material for Na ion batteries (SIBs). Herein, we synthesize TiO2/C composites by the pyrolysis of MIL-125(Ti) precursor and successfully introduce defects to TiO2/C composite by a simple magnesium reduction. The as-prepared defect-rich TiO2-δ/C composite shows mooncake-shaped morphology consisting of TiO2-δ nanocrystals with an average particle size of 5 nm well dispersed in the carbon matrix. When used as a SIBs anode, the defect-rich TiO2-δ/C composite exhibits a high reversible capacity of 330.2 mAh g-1 at 50 mA g-1 at the voltage range of 0.001-3.0 V and long-term cycling stability with negligible decay after 5000 cycles. Compared with other four TiO2/C samples, the electrochemical performance of defect-rich TiO2-δ/C is highly improved, which may benefit from the enhanced electronic/ionic conductivities owing to the defect-rich features, high surface area rendering shortened electronic and ionic diffusion path, and the suppress of the TiO2 crystal aggregation during sodiation and desodiation process by the carbon matrix.
X-Ray Topography of Tetragonal Lysozyme Grown by the Temperature-Controlled Technique
NASA Technical Reports Server (NTRS)
Stojanoff, V.; Siddons, D. P.; Monaco, Lisa A.; Vekilov, Peter; Rosenberger, Franz
1997-01-01
Growth-induced defects in lysozyme crystals were observed by white-beam and monochromatic X-ray topography at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). The topographic methods were non-destructive to the extent that traditional diffraction data collection could be performed to high resolution after topography. It was found that changes in growth parameters, defect concentration as detected by X-ray topography, and the diffraction quality obtainable from the crystals were all strongly correlated. In addition, crystals with fewer defects showed lower mosaicity and higher diffraction resolution as expected.
Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure
NASA Astrophysics Data System (ADS)
Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.
2018-04-01
Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.
Zhu, Zhonghai; Cheng, Yue; Yang, Wenfang; Li, Danyang; Yang, Xue; Liu, Danli; Zhang, Min; Yan, Hong; Zeng, Lingxia
2016-01-01
The wide range and complex combinations of factors that cause birth defects impede the development of primary prevention strategies targeted at high-risk subpopulations. Latent class analysis (LCA) was conducted to identify mutually exclusive profiles of factors associated with birth defects among women between 15 and 49 years of age using data from a large, population-based, cross-sectional study conducted in Shaanxi Province, western China, between August and October, 2013. The odds ratios (ORs) and 95% confidence intervals (CIs) of associated factors and the latent profiles of indicators of birth defects and congenital heart defects were computed using a logistic regression model. Five discrete subpopulations of participants were identified as follows: No folic acid supplementation in the periconceptional period (reference class, 21.37%); low maternal education level + unhealthy lifestyle (class 2, 39.75%); low maternal education level + unhealthy lifestyle + disease (class 3, 23.71%); unhealthy maternal lifestyle + advanced age (class 4, 4.71%); and multi-risk factor exposure (class 5, 10.45%). Compared with the reference subgroup, the other subgroups consistently had a significantly increased risk of birth defects (ORs and 95% CIs: class 2, 1.75 and 1.21-2.54; class 3, 3.13 and 2.17-4.52; class 4, 5.02 and 3.20-7.88; and class 5, 12.25 and 8.61-17.42, respectively). For congenital heart defects, the ORs and 95% CIs were all higher, and the magnitude of OR differences ranged from 1.59 to 16.15. A comprehensive intervention strategy targeting maternal exposure to multiple risk factors is expected to show the strongest results in preventing birth defects.
Sakai, Takashi; Matsutani, Noriyuki; Kanai, Eiichi; Yamauchi, Yoshikane; Uehara, Hirofumi; Iinuma, Hisae; Kawamura, Masafumi
2018-02-01
Polyglycolic acid and oxidized regenerated cellulose have been widely used as a sealant for repairing pulmonary air leakage during respiratory surgery. However, fundamental research of these materials has not been sufficiently conducted. Therefore, we conducted studies to assess the pressure resistance ability of these materials using a canine visceral pleural defect model at the early phase. The 6-mm circular defect and the 12-mm square defect were created on the visceral pleura of anesthetized beagles. These defects were then repaired using one of four methods: method A using polyglycolic acid and fibrin glue; method B using oxidized regenerated cellulose and fibrin glue; method C using oxidized regenerated cellulose; method D using fibrin glue. Airway pressure was measured as bursting pressure when air leakage from the repaired areas occurred at 5 min, 3 h, and 24 h after repair. For the 6-mm circle defect, method A showed higher bursting pressures than the other methods at 5 min and 3 h (p < 0.05); method B showed higher than methods C and D at 5 min and 3 h (p < 0.05). For the 12-mm square defect, method A showed higher bursting pressures than the other methods at all time points (p < 0.05). Moreover, method B showed higher than method C at 24 h (p < 0.05). Visceral pleural repairs using polyglycolic acid combined with fibrin glue showed the highest bursting pressure. Oxidized regenerated cellulose combined with fibrin glue showed sufficiently high bursting pressure in repair of small 6-mm circular defects.
NASA Astrophysics Data System (ADS)
Gul, Rubi; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; Didic, Václav; Egarievwe, Stephen U.; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.
2016-09-01
In our prior research we investigated room-temperature radiation detectors (CZT, CMT, CdMgTe, CTS, among other compound semiconductors) for point defects related to different dopants and impurities. In this talk we will report on our most recent research on newly grown CZT crystals doped with In, In+Al, In+Ni, and In+Sn. The main focus will be on the study of dopant-induced point defects using deep-level current transient spectroscopy (i-DLTS). In addition the performance, ? product, gamma-ray spectral response and internal electric field of the detectors were measured and correlated with the dopant-induced point defects and their concentrations. Characterization of the detectors was carried out using i-DLTS for the point defects, Pockels effect for the internal electric-field distribution, and γ-ray spectroscopy for the spectral properties.
Transformation between divacancy defects induced by an energy pulse in graphene.
Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn
2016-07-08
The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.
Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.
Tan, C F; Ng, K K; Ng, S H; Cheung, Y C
2003-12-01
The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.
Radiation damage and defect behavior in ion-implanted, lithium counterdoped silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Mehta, S.; Swartz, C. K.
1984-01-01
Boron doped silicon n+p solar cells were counterdoped with lithium by ion implantation and the resuitant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacanies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.
Radiation damage and defect behavior in ion-implanted, lithium counterdoped silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Mehta, S.; Swartz, C. K.
1984-01-01
Boron doped silicon n+p solar cells were counterdoped with lithium by ion implanation and the resultant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacancies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.
NASA Astrophysics Data System (ADS)
Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin
2016-12-01
A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.
Alnawaiseh, Maged; Hömberg, Lisann; Eter, Nicole; Prokosch, Verena
2017-01-01
To compare the structure-function relationships between retinal nerve fiber layer thickness (RNFLT) and visual field defects measured either by standard automated perimetry (SAP) or by Pulsar perimetry (PP). 263 eyes of 143 patients were prospectively included. Depending on the RNFLT, patients were assigned to the glaucoma group (group A: RNFL score 3-6) or the control group (group B: RNFL score 0-2). Structure-function relationships between RNFLT and mean sensitivity (MS) measured by SAP and PP were analyzed. Throughout the entire group, the MS assessed by PP and SAP correlated significantly with RNFLT in all sectors. In the glaucoma group, there was no significant difference between the correlations RNFL-SAP and RNFL-PP, whereas a significant difference was found in the control group. In the control group, the correlation between structure and function based on the PP data was significantly stronger than that based on SAP.
Opting out against defection leads to stable coexistence with cooperation.
Zhang, Bo-Yu; Fan, Song-Jia; Li, Cong; Zheng, Xiu-Deng; Bao, Jian-Zhang; Cressman, Ross; Tao, Yi
2016-10-24
Cooperation coexisting with defection is a common phenomenon in nature and human society. Previous studies for promoting cooperation based on kin selection, direct and indirect reciprocity, graph selection and group selection have provided conditions that cooperators outcompete defectors. However, a simple mechanism of the long-term stable coexistence of cooperation and defection is still lacking. To reveal the effect of direct reciprocity on the coexistence of cooperation and defection, we conducted a simple experiment based on the Prisoner's Dilemma (PD) game, where the basic idea behind our experiment is that all players in a PD game should prefer a cooperator as an opponent. Our experimental and theoretical results show clearly that the strategies allowing opting out against defection are able to maintain this stable coexistence.
Cochran, Meagan E; Nelson, Katherine R; Robin, Nathaniel H
2014-12-01
To summarize the existing literature on the international adoption of children with birth defects and identify areas for further research. International adoption brings thousands of children to the United States each year, and children with birth defects are overrepresented in this population. Studies have demonstrated disparities in the health of children adopted from different countries as well as the complexity of medical care needed after adoption. Although the health of children involved in international adoption has been well studied, there is a lack of information about the experiences of the adoptive parents of children with birth defects. We discuss a pilot study conducted on adoptive parents of children with a specific birth defect, orofacial clefting, and discuss areas for future research.
Coating-Free, Air-Stable Silver Nanowires for High-performance Transparent Conductive Film.
Tang, Long; Zhang, Jiajia; Dong, Lei; Pan, Yunmei; Yang, Chongyang; Li, Mengxiong; Ruan, Yingbo; Ma, Jianhua; Lu, Hongbin
2018-06-21
Silver nanowires (Ag NWs) based films are considered as a promising alternative for traditional indium tin oxide (ITO) but still suffer from some limitations, including insufficient conductivity, transparency and environmental instability. We here report a novel etching synthesis strategy to improve the performance of Ag NW films. Different from the traditional methods to synthesize high aspect ratios of NWs or employ electrically conductive coatings, we find it effective to reduce the high-reactivity defects of NWs for optimizing the comprehensive performance of Ag NW films. In this strategy etching can suppress the generation of high-reactivity defects and meanwhile the etching growth of NWs can be accomplished in an uneven ligand distribution environment. The resulting Ag NWs are uniformly straight and sharp-edged structure. The transparent conductive film (TCF) obtained exhibits simultaneous improvements in electrical conductivity, transparency and air-stability. Even after exposure in air for 200 days and no any protective coatings, the film can still meet the highest requirement of practical applications, with a figure of merit 361 (i.e., FoM > 350). These results not only demonstrate the importance of defect control in the synthesis of Ag NWs, but also pave a way for further optimizing the performance of Ag NW-based films. © 2018 IOP Publishing Ltd.
Extended defects and hydrogen interactions in ion implanted silicon
NASA Astrophysics Data System (ADS)
Rangan, Sanjay
The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (<650°C) defect dissolution and defect injection dominates, resulting in increased junction depths. At higher anneal temperatures, however, repair dominates over defect injection resulting in shallower junctions. Hydrogenation experiments shows that hydrogen enhances dopant activation and reduces TED at low anneal temperatures (<550°C). At anneal temperatures >550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for along time (300min). Also presented is the recipe for formation of multiple cavity layers and the electrical and optical properties of these cavities. Electrically, these cavities are metastable, with two strong minority carrier peaks formed by multiple defect levels. Photoluminescence measurements reveal a strong 0.8eV photon peak.
Pirinen, Eija; Canto, Carles; Jo, Young-Suk; Morato, Laia; Zhang, Hongbo; Menzies, Keir; Williams, Evan G.; Mouchiroud, Laurent; Moullan, Norman; Hagberg, Carolina; Li, Wei; Timmers, Silvie; Imhof, Ralph; Verbeek, Jef; Pujol, Aurora; van Loon, Barbara; Viscomi, Carlo; Zeviani, Massimo; Schrauwen, Patrick; Sauve, Anthony; Schoonjans, Kristina; Auwerx, Johan
2014-01-01
SUMMARY We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function. PMID:24814482
Fang, L; Jia, Y; Mishra, V; Chaparro, C; Vlasko-Vlasov, V K; Koshelev, A E; Welp, U; Crabtree, G W; Zhu, S; Zhigadlo, N D; Katrych, S; Karpinski, J; Kwok, W K
2013-01-01
Iron-based superconductors could be useful for electricity distribution and superconducting magnet applications because of their relatively high critical current densities and upper critical fields. SmFeAsO₀.₈F₀.₁₅ is of particular interest as it has the highest transition temperature among these materials. Here we show that by introducing a low density of correlated nano-scale defects into this material by heavy-ion irradiation, we can increase its critical current density to up to 2 × 10⁷ A cm⁻² at 5 K--the highest ever reported for an iron-based superconductor--without reducing its critical temperature of 50 K. We also observe a notable reduction in the thermodynamic superconducting anisotropy, from 8 to 4 upon irradiation. We develop a model based on anisotropic electron scattering that predicts that the superconducting anisotropy can be tailored via correlated defects in semimetallic, fully gapped type II superconductors.
Characterization of oxygen defects in diamond by means of density functional theory calculations
NASA Astrophysics Data System (ADS)
Thiering, Gergő; Gali, Adam
2016-09-01
Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.
Pulmonary outcome of esophageal atresia patients and its potential causes in early childhood.
Dittrich, René; Stock, Philippe; Rothe, Karin; Degenhardt, Petra
2017-08-01
The aim of this study was to illustrate the pulmonary long term outcome of patients with repaired esophageal atresia and to further examine causes and correlations that might have led to this outcome. Twenty-seven of 62 possible patients (43%) aged 5-20years, with repaired esophageal atresia were recruited. Body plethysmography and spirometry were performed to evaluate lung function, and the Bruce protocol treadmill exercise test to assess physical fitness. Results were correlated to conditions such as interpouch distance, gastroesophageal reflux or duration of post-operative mechanical ventilation. Seventeen participants (63%) showed abnormal lung function at rest or after exercise. Restrictive ventilatory defects (solely restrictive or combined) were found in 11 participants (41%), and obstructive ventilatory defects (solely obstructive or combined) in 13 subjects (48%). Twenty-two participants (81%) performed the Bruce protocol treadmill exercise test to standard. The treadmill exercise results were expressed in z-score and revealed to be significantly below the standard population mean (z-score=-1.40). Moreover, significant correlations between restrictive ventilatory defects and the interpouch distance; duration of post-operative ventilation; gastroesophageal reflux disease; plus recurrent aspiration pneumonia during infancy; were described. It was shown that esophageal atresia and associated early complications have significant impact on pulmonary long term outcomes such as abnormal lung function and, in particular restrictive ventilatory defects. Long-running and regular follow-ups of patients with congenital esophageal atresia are necessary in order to detect and react to the development and progression of associated complications such as ventilation disorders or gastroesophageal reflux disease. Prognosis study, Level II. Copyright © 2016 Elsevier Inc. All rights reserved.
Single closed contact for 0.18-micron photolithography process
NASA Astrophysics Data System (ADS)
Cheung, Cristina; Phan, Khoi A.; Chiu, Robert J.
2000-06-01
With the rapid advances of deep submicron semiconductor technology, identifying defects is converted into a challenge for different modules in the fabrication of chips. Yield engineers often do bitmap on a memory circuit array (SRAM) to identify the failure bits. This is followed by a wafer stripback to look for visual defects at each deprocessed layer for feedback to the Fab. However, to identify the root cause of a problem, Fab engineers must be able to detect similar defects either on the product wafers in process or some short loop test wafers. In the photolithography process, we recognize that the detection of defects is becoming as important as satisfying the critical dimension (CD) of the device. For a multi-level metallization chemically mechanical polish backend process, it is very difficult to detect missing contacts or via at the masking steps due to metal grain roughness, film color variation and/or previous layer defects. Often, photolithography engineer must depend on Photo Cell Monitor (PCM) and short loop experiments for controlling baseline defects and improvement. In this paper, we discuss the findings on the Poly mask PCM and the Contact mask PCM. We present the comparison between the Poly mask and the Contact mask of the I-line Phase Shifted Via mask and DUV mask process for a 0.18 micron process technology. The correlation and the different type of defects between the Contact PCM and the Poly Mask are discussed. The Contact PCM was found to be more sensitive and correlated to contact failure at sort yield better. We also dedicate to study the root cause of a single closed contact hole in the Contact mask short loop experiment for a 0.18 micron process technology. A single closed contact defect was often caused by the developer process, such as bubbles in the line, resist residue left behind, and the rinse mechanism. We also found surfactant solution helps to improve the surface tension of the wafer for the developer process and this prevents/eliminates a single closed contact hole defects. The applications and effects of using different substrates like SiON, different thicknesses of Oxides, and Poly in the Contact Photo Mask is shown. Finally, some defect troubleshooting techniques and the root cause analysis are also discussed.
Wire insulation defect detector
NASA Technical Reports Server (NTRS)
Greulich, Owen R. (Inventor)
2004-01-01
Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures
NASA Astrophysics Data System (ADS)
Santara, Batakrushna; Giri, P. K.; Imakita, Kenji; Fujii, Minoru
2014-05-01
We have investigated the microscopic origin of lattice expansion and contraction in undoped rutile TiO2 nanostructures by employing several structural and optical spectroscopic tools. Rutile TiO2 nanostructures with morphologies such as nanorods, nanopillars and nanoflowers, depending upon the growth conditions, are synthesized by an acid-hydrothermal process. Depending on the growth conditions and post-growth annealing, lattice contraction and expansion are observed in the nanostructures and it is found to correlate with the nature and density of intrinsic defects in rutile TiO2. The change in lattice volume correlates well with the optical bandgap energy. Irrespective of growth conditions, theTiO2 nanostructures exhibit strong near infrared (NIR) photoluminescence (PL) at 1.43 eV and a weak visible PL, which are attributed to the Ti interstitials and O vacancies, respectively, in rutile TiO2 nanostructures. Further, ESR study reveals the presence of singly ionized oxygen vacancy defects. It is observed that lattice distortion depends systematically on the relative concentration and type of defects such as oxygen vacancies and Ti interstitials. XPS analyses revealed a downshift in energy for both Ti 2p and O 1s core level spectra for various growth conditions, which is believed to arise from the lattice distortions. It is proposed that the Ti4+ interstitial and F+ oxygen vacancy defects are primarily responsible for lattice expansion, whereas the electrostatic attraction between Ti4+ interstitial and O2- interstitial defects causes the lattice contraction in the undoped TiO2 nanostructures. The control of lattice parameters through the intrinsic defects may provide new routes to achieving novel functionalities in advanced materials that can be tailored for future technological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Yang; Liu, Yang; Zhu, Guanghui
Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Noda, Isao; Ozaki, Yukihiro
2008-07-01
The amount of nonplanar gauche bonds was monitored as a function of increasing temperature in three different polyethylene (PE) samples by means of mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The hetero-spectral two-dimensional (2D) correlation analysis was carried out between the NIR spectral region of 4365-4235 cm -1 and the well-established MIR spectral region of 1375-1265 cm -1, where bands due to nonplanar conformer are detected. This approach allowed us to identify the NIR band at 4265 cm -1, which behaves in a way similar to MIR bands originating from conformational-defect sequences. By combining the result of our current study and that of our previous report obtained on different types of PE, it is suggested that the NIR band originates from conformational-defect sequences in PE. This finding opens up a unique and useful way to study the state of conformational disorder in PE crystal by NIR spectroscopy, monitoring the intensity of the NIR band at 4265 cm -1. The use of NIR spectroscopy allows researchers to directly probe the degree in the formation of conformational-defect sequences in thick, real-world PE samples that cannot be studied by conventional MIR spectroscopy. The 2D correlation spectroscopy analysis among the MIR CH 2 wagging conformational-defect-mode bands on linear low-density PE (LLDPE) and low-density PE (LDPE) revealed the formation of nonplanar conformer represented by the band at 1368 cm -1 proceeds prior to those by other band at 1308 cm -1. This result agrees well with our previous finding on high-density PE (HDPE). We therefore propose with strong confidence that the bands at 1368 and 1308 cm -1 arise from different conformational-defect sequences, even though both of the bands have been proposed to arise from the same conformer of gtg' ( kink) + gtg sequence.
3D displacement field measurement with correlation based on the micro-geometrical surface texture
NASA Astrophysics Data System (ADS)
Bubaker-Isheil, Halima; Serri, Jérôme; Fontaine, Jean-François
2011-07-01
Image correlation methods are widely used in experimental mechanics to obtain displacement field measurements. Currently, these methods are applied using digital images of the initial and deformed surfaces sprayed with black or white paint. Speckle patterns are then captured and the correlation is performed with a high degree of accuracy to an order of 0.01 pixels. In 3D, however, stereo-correlation leads to a lower degree of accuracy. Correlation techniques are based on the search for a sub-image (or pattern) displacement field. The work presented in this paper introduces a new correlation-based approach for 3D displacement field measurement that uses an additional 3D laser scanner and a CMM (Coordinate Measurement Machine). Unlike most existing methods that require the presence of markers on the observed object (such as black speckle, grids or random patterns), this approach relies solely on micro-geometrical surface textures such as waviness, roughness and aperiodic random defects. The latter are assumed to remain sufficiently small thus providing an adequate estimate of the particle displacement. The proposed approach can be used in a wide range of applications such as sheet metal forming with large strains. The method proceeds by first obtaining cloud points using the 3D laser scanner mounted on a CMM. These points are used to create 2D maps that are then correlated. In this respect, various criteria have been investigated for creating maps consisting of patterns, which facilitate the correlation procedure. Once the maps are created, the correlation between both configurations (initial and moved) is carried out using traditional methods developed for field measurements. Measurement validation was conducted using experiments in 2D and 3D with good results for rigid displacements in 2D, 3D and 2D rotations.
Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; Valdez, James A.; Smith, Roger; Wang, Yongqiang; Sickafus, Kurt E.
2015-01-01
Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. These results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives. PMID:26510750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, Michael, E-mail: mlorenz@physik.uni-leipzig.de; Schwinkendorf, Peter; Grundmann, Marius
2015-01-05
Multiferroic (BaTiO{sub 3}-BiFeO{sub 3}) × 15 multilayer heterostructures show high magnetoelectric (ME) coefficients α{sub ME} up to 24 V/cm·Oe at 300 K. This value is much higher than that of a single-phase BiFeO{sub 3} reference film (α{sub ME} = 4.2 V/cm·Oe). We found clear correlation of ME coefficients with increasing oxygen partial pressure during growth. ME coupling is highest for lower density of oxygen vacancy-related defects. Detailed scanning transmission electron microscopy and selected area electron diffraction microstructural investigations at 300 K revealed antiphase rotations of the oxygen octahedra in the BaTiO{sub 3} single layers, which are an additional correlated defect structure of the multilayers.
Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; ...
2015-10-29
Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinelmore » that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. Furthermore, these results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.« less
Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; Valdez, James A; Smith, Roger; Wang, Yongqiang; Sickafus, Kurt E
2015-10-29
Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. These results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Zeng, Zhi; Shen, Jingling; Zhang, Cunlin; Zhao, Yuejin
2018-03-01
Logarithmic peak second derivative (LPSD) method is the most popular method for depth prediction in pulsed thermography. It is widely accepted that this method is independent of defect size. The theoretical model for LPSD method is based on the one-dimensional solution of heat conduction without considering the effect of defect size. When a decay term considering defect aspect ratio is introduced into the solution to correct the three-dimensional thermal diffusion effect, we found that LPSD method is affected by defect size by analytical model. Furthermore, we constructed the relation between the characteristic time of LPSD method and defect aspect ratio, which was verified with the experimental results of stainless steel and glass fiber reinforced plate (GFRP) samples. We also proposed an improved LPSD method for depth prediction when the effect of defect size was considered, and the rectification results of stainless steel and GFRP samples were presented and discussed.
NASA Astrophysics Data System (ADS)
Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai
2018-01-01
The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.
Ranjbartoreh, A R; Su, D; Wang, G
2012-06-01
Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.
Defect engineering of the electrochemical characteristics of carbon nanotube varieties
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.; Bandaru, Prabhakar R.
2010-08-01
The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multiwalled CNT morphologies. The controlled addition of argon ions was used for varying the charge and type of extrinsic defects. It was indicated from Raman spectroscopy and voltammetry that the electrocatalytic response of hollow type CNTs could be tailored more significantly, compared to bamboo type CNTs which have innately high reactive site densities and are less amenable to modification. An in-plane correlation length parameter was used to understand the variation of the defect density as a function of argon ion irradiation. The work has implications in the design of nanotube based chemical sensors, facilitated through the introduction of suitable reactive sites.
The Strength and Characteristics of VPPA Welded 2219-T87 Aluminum Alloy
NASA Technical Reports Server (NTRS)
Jemian, W. A.
1985-01-01
A study of the variable polarity plasma arc (VPPA) welding process and those factors that control the structure and properties of VPPA welded aluminum alloy 2219-T87 was conducted. The importance of joint preparation, alignment of parts and welding process variables are already established. Internal weld defects have been eliminated. However, a variation of properties was found to be due to the size variation of interdendritic particles in the fusion zone. These particles contribute to the void formation process, which controls the ultimate tensile strength of the welded alloy. A variation of 150 microns in particle size correlated with a 10 ksi variation of ultimate tensile strength. It was found that all fracture surfaces were of the dimple rupture type, with fracture initiating within the fusion zone.
Critical phenomena of emergent monopoles in a chiral magnet
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Xiao; Nagaosa, Naoto
A three-dimensional cubic Skyrmion crystal in the bulk, which is simultaneously a lattice of monopole-antimonopole pairs predicted theoretically, has been recently identified experimentally in MnGe. Adopting appropriate temperature Green's function technique for optical conductivity and devising a solvable phonon-magnon interaction, we systematically developed the theory of coupling spin-waves to both itinerant electrons and mechanical degrees of freedom in this chiral magnet, describing the latest experimental observations including anomalies and critical phenomena in magnetotransport and magnetoelasticity, which are identified as hallmarks of fluctuations of the emergent monopolar fields upon the nontrivial monopole dynamics and especially a topological phase transition signifying strong correlation. As a whole, they speak for a crucial role played by the monopole defects and hence the real-space spin topology in this material.
Entanglement negativity and sudden death in the toric code at finite temperature
NASA Astrophysics Data System (ADS)
Hart, O.; Castelnovo, C.
2018-04-01
We study the fate of quantum correlations at finite temperature in the two-dimensional toric code using the logarithmic entanglement negativity. We are able to obtain exact results that give us insight into how thermal excitations affect quantum entanglement. The toric code has two types of elementary excitations (defects) costing different energies. We show that an O (1 ) density of the lower energy defect is required to degrade the zero-temperature entanglement between two subsystems in contact with one another. However, one type of excitation alone is not sufficient to kill all quantum correlations, and an O (1 ) density of the higher energy defect is required to cause the so-called sudden death of the negativity. Interestingly, if the energy cost of one of the excitations is taken to infinity, quantum correlations survive up to arbitrarily high temperatures, a feature that is likely shared with other quantum spin liquids and frustrated systems in general, when projected down to their low-energy states. We demonstrate this behavior both for small subsystems, where we can prove that the negativity is a necessary and sufficient condition for separability, as well as for extended subsystems, where it is only a necessary condition. We further observe that the negativity per boundary degree of freedom at a given temperature increases (parametrically) with the size of the boundary, and that quantum correlations between subsystems with extended boundaries are more robust to thermal fluctuations.
Phosphorus-defect interactions during thermal annealing of ion implanted silicon
NASA Astrophysics Data System (ADS)
Keys, Patrick Henry
Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.
NASA Astrophysics Data System (ADS)
Hamdani, Irfan Hilmi; Jauhari, Wakhid Ahmad; Rosyidi, Cucuk Nur
2017-11-01
This paper develops an integrated inventory model consisting of single-vendor and single-buyer system. The demand in buyer side is deterministic and the production process is imperfect and produces a certain number of defective items. The delivery within a single production batch from vendor to buyer is increasing by a fixed factor. After the delivery arrives at the buyer, an inspection process is conducted. The inspection process in not perfect. Errors may occur when the inspector is misclassifies a non-defective item as defective ne, or incorrectly classifies a defective item as non-defective. All the product which defective will be repair by repair-shop. After the defective arrives at repair shop, will perfect inspection. The defective item will repair and back to buyer. This model provides an optimal solution for the expected integrated total annual cost of the vendor and the buyer. The result from numerical examples shows that the integrated model will result in lower joint total cost in comparison with the equal-sized policy.
Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients
Harwerth, Ronald S.; Quigley, Harry A.
2007-01-01
Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839
Neural correlates of social cooperation and non-cooperation as a function of psychopathy.
Rilling, James K; Glenn, Andrea L; Jairam, Meeta R; Pagnoni, Giuseppe; Goldsmith, David R; Elfenbein, Hanie A; Lilienfeld, Scott O
2007-06-01
Psychopathy is a disorder involving a failure to experience many emotions that are necessary for appropriate social behavior. In this study, we probed the behavioral, emotional, and neural correlates of psychopathic traits within the context of a dyadic social interaction. Thirty subjects were imaged with functional magnetic resonance imaging while playing an iterated Prisoner's Dilemma game with human confederates who were outside the scanner. Subjects also completed two self-report psychopathy questionnaires. Subjects scoring higher on psychopathy, particularly males, defected more often and were less likely to continue cooperating after establishing mutual cooperation with a partner. Further, they experienced more outcomes in which their cooperation was not reciprocated (cooperate-defect outcome). After such outcomes, subjects scoring high in psychopathy showed less amygdala activation, suggesting weaker aversive conditioning to those outcomes. Compared with low-psychopathy subjects, subjects higher in psychopathy also showed weaker activation within orbitofrontal cortex when choosing to cooperate and showed weaker activation within dorsolateral prefrontal and rostral anterior cingulate cortex when choosing to defect. These findings suggest that whereas subjects scoring low on psychopathy have emotional biases toward cooperation that can only be overcome with effortful cognitive control, subjects scoring high on psychopathy have an opposing bias toward defection that likewise can only be overcome with cognitive effort.
Disruptive behavior - child; Impulse control problem - child ... Conduct disorder has been linked to: Child abuse Drug or alcohol use in the parents Family conflicts Genetic defects Poverty The diagnosis is more common among boys. It is ...
Yu, Cilong; Chen, Peibing; Zhong, Xiaopin; Pan, Xizhou; Deng, Yuanlong
2018-05-07
Machine vision systems have been widely used in industrial production lines because of their automation and contactless inspection mode. In polymeric polarizers, extremely slight transparent aesthetic defects are difficult to detect and characterize through conventional illumination. To inspect such defects rapidly and accurately, a saturated imaging technique was proposed, which innovatively uses the characteristics of saturated light in imaging by adjusting the light intensity, exposure time, and camera gain. An optical model of defect was established to explain the theory by simulation. Based on the optimum experimental conditions, active two-step scanning was conducted to demonstrate the feasibility of this detection scheme, and the proposed method was found to be efficient for real-time and in situ inspection of defects in polymer films and products.
Tuckerman, Mark E; Chandra, Amalendu; Marx, Dominik
2010-09-28
Extraction of relaxation times, lifetimes, and rates associated with the transport of topological charge defects in hydrogen-bonded networks from molecular dynamics simulations is a challenge because proton transfer reactions continually change the identity of the defect core. In this paper, we present a statistical mechanical theory that allows these quantities to be computed in an unbiased manner. The theory employs a set of suitably defined indicator or population functions for locating a defect structure and their associated correlation functions. These functions are then used to develop a chemical master equation framework from which the rates and lifetimes can be determined. Furthermore, we develop an integral equation formalism for connecting various types of population correlation functions and derive an iterative solution to the equation, which is given a graphical interpretation. The chemical master equation framework is applied to the problems of both hydronium and hydroxide transport in bulk water. For each case it is shown that the theory establishes direct links between the defect's dominant solvation structures, the kinetics of charge transfer, and the mechanism of structural diffusion. A detailed analysis is presented for aqueous hydroxide, examining both reorientational time scales and relaxation of the rotational anisotropy, which is correlated with recent experimental results for these quantities. Finally, for OH(-)(aq) it is demonstrated that the "dynamical hypercoordination mechanism" is consistent with available experimental data while other mechanistic proposals are shown to fail. As a means of going beyond the linear rate theory valid from short up to intermediate time scales, a fractional kinetic model is introduced in the Appendix in order to describe the nonexponential long-time behavior of time-correlation functions. Within the mathematical framework of fractional calculus the power law decay ∼t(-σ), where σ is a parameter of the model and depends on the dimensionality of the system, is obtained from Mittag-Leffler functions due to their long-time asymptotics, whereas (stretched) exponential behavior is found for short times.
In-line inspection of unpiggable buried live gas pipes using circumferential EMAT guided waves
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Xin, Junjun
2018-04-01
Unpiggable buried gas pipes need to be inspected to ensure their structural integrity and safe operation. The CIRRIS XITM robot, developed and operated by ULC Robotics, conducts in-line nondestructive inspection of live gas pipes. With the no-blow launching system, the inspection operation has reduced disruption to the public and by eliminating the need to dig trenches, has minimized the site footprint. This provides a highly time and cost effective solution for gas pipe maintenance. However, the current sensor on the robot performs a point-by-point measurement of the pipe wall thickness which cannot cover the whole volume of the pipe in a reasonable timeframe. The study of ultrasonic guided wave technique is discussed to improve the volume coverage as well as the scanning speed. Circumferential guided wave is employed to perform axial scanning. Mode selection is discussed in terms of sensitivity to different defects and defect characterization capability. To assist with the mode selection, finite element analysis is performed to evaluate the wave-defect interaction and to identify potential defect features. Pulse-echo and through-transmission mode are evaluated and compared for their pros and cons in axial scanning. Experiments are also conducted to verify the mode selection and detect and characterize artificial defects introduced into pipe samples.
Abdulkadir, Mohammed; Abdulkadir, Zainab
2016-06-01
Congenital heart diseases cause significant childhood morbidity and mortality. Several restricted studies have been conducted on the epidemiology in Nigeria. No truly nationwide data on patterns of congenital heart disease exists. To determine the patterns of congenital heart disease in children in Nigeria and examine trends in the occurrence of individual defects across 5 decades. We searched PubMed database, Google scholar, TRIP database, World Health Organisation libraries and reference lists of selected articles for studies on patterns of congenital heart disease among children in Nigeria between 1964 and 2015. Two researchers reviewed the papers independently and extracted the data. Seventeen studies were selected that included 2,953 children with congenital heart disease. The commonest congenital heart diseases in Nigeria are ventricular septal defect (40.6%), patent ductus arteriosus (18.4%), atrial septal defect (11.3%) and tetralogy of Fallot (11.8%). There has been a 6% increase in the burden of VSD in every decade for the 5 decades studied and a decline in the occurrence of pulmonary stenosis. Studies conducted in Northern Nigeria demonstrated higher proportions of atrial septal defects than patent ductus arteriosus. Ventricular septal defects are the commonest congenital heart diseases in Nigeria with a rising burden.
Roller-transducer scanning of wooden pallet parts for defect detection
Mohammed F. Kabir; Daniel L. Schmoldt; Mark E. Schafer
2001-01-01
Ultrasonic scanning experiments were conducted on two species of pallet deckboards using rolling transducers in a pitch-catch arrangement. Sound and unsound knots, cross grain, bark pockets, holes, splits, decay, and wane were characterized using several ultrasound parameters. Almost all parameters displayed sensitivity to defects distinctly from clear wood regionsâ...
Defects in middle ear cavitation cause conductive hearing loss in the Tcof1 mutant mouse.
Richter, Carol A; Amin, Susan; Linden, Jennifer; Dixon, Jill; Dixon, Michael J; Tucker, Abigail S
2010-04-15
Conductive hearing loss (CHL) is one of the most common forms of human deafness. Despite this observation, a surprising gap in our understanding of the mechanisms underlying CHL remains, particularly with respect to the molecular mechanisms underlying middle ear development and disease. Treacher Collins syndrome (TCS) is an autosomal dominant disorder of facial development that results from mutations in the gene TCOF1. CHL is a common feature of TCS but the causes of the hearing defect have not been studied. In this study, we have utilized Tcof1 mutant mice to dissect the developmental mechanisms underlying CHL. Our results demonstrate that effective cavitation of the middle ear is intimately linked to growth of the auditory bulla, the neural crest cell-derived structure that encapsulates all middle ear components, and that defects in these processes have a profoundly detrimental effect on hearing. This research provides important insights into a poorly characterized cause of human deafness, and provides the first mouse model for the study of middle ear cavity defects, while also being of direct relevance to a human genetic disorder.
Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies
Jiao, Yang; Liu, Yang; Zhu, Guanghui; ...
2017-09-21
Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less
Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder
NASA Astrophysics Data System (ADS)
You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.
2018-01-01
To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.
Raveau, Matthieu; Lignon, Jacques M.; Nalesso, Valérie; Duchon, Arnaud; Groner, Yoram; Sharp, Andrew J.; Dembele, Doulaye; Brault, Véronique; Hérault, Yann
2012-01-01
Down syndrome (DS) leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG) with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App-Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy number. Whole-genome expression studies confirmed gene dosage effect in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah hearts and showed an overall perturbation of pathways connected to post-natal lethality (Coq7, Dyrk1a, F5, Gabpa, Hmgn1, Pde10a, Morc3, Slc5a3, and Vwf) and heart function (Tfb1m, Adam19, Slc8a1/Ncx1, and Rcan1). In addition cardiac connexins (Cx40, Cx43) and sodium channel sub-units (Scn5a, Scn1b, Scn10a) were found down-regulated in Ts65Dn atria with additional down-regulation of Cx40 in Ts65Dn ventricles and were likely contributing to conduction defects. All these data pinpoint new cardiac phenotypes in the Ts65Dn, mimicking aspects of human DS features and pathways altered in the mouse model. In addition they highlight the role of the App-Runx1 interval, including Sod1 and Tiam1, in the induction of post-natal lethality and of the cardiac conduction defects in Ts65Dn. These results might lead to new therapeutic strategies to improve the care of DS people. PMID:22693452
NASA Astrophysics Data System (ADS)
Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng
2016-07-01
The effects of Na, Mg and Al doping on the structure, electronic property, defect property and Li ions migration of LiVPO4F were investigated by the first-principles method. Calculations show that the processes of forming Li0.875Na0.125VPO4F, α- and β-LiMg0.375V0.75PO4F, α- and β-LiAl0.125V0.875PO4F are all feasible. Na, Mg and Al doping significantly improve the electrical conductivity of LiVPO4F and simultaneously maintain their structural stability attributing to the reduction of band gaps through variations of V-3d spin up orbitals. Li vacancy defects of LiVPO4F are not ignorable, and vacancy defects with a lower activation energy for Li atom are far more likely to occur than Frenkel defects for Li and vacancy defects for other atoms. For pristine LiVPO4F, path D along [0.012 0 . 17 ̅ 0.572] direction is found to have the lowest activation energy of 0.418 eV, suggesting that anisotropic nature of Li ion conduction and LiVPO4F is a one-dimensional (1D)-ion conductor. The corresponding diffusion coefficient was estimated to be 2.82×10-9 cm2/s, which is in good agreement with those experimental values.
Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature.
Morad, Golnaz; Kheiri, Lida; Khojasteh, Arash
2013-12-01
This review of literature was aimed to assess in vivo experiments which have evaluated the efficacy of dental pulp stem cells (DPSCs) for bone regeneration. An electronic search of English-language papers was conducted on PubMed database. Studies that assessed the use of DPSCs in bone regeneration in vivo were included and experiments evaluating regeneration of hard tissues other than bone were excluded. The retrieved articles were thoroughly reviewed according to the source of stem cell, cell carrier, the in vivo experimental model, defect type, method of evaluating bone regeneration, and the obtained results. Further assessment of the results was conducted by classifying the studies based on the defect type. Seventeen papers formed the basis of this systematic review. Sixteen out of 17 experiments were performed on animal models with mouse and rat being the most frequently used animal models. Seven out of 17 animal studies, contained subcutaneous pockets on back of the animal for stem cell implantation. In only one study hard tissue formation was not observed. Other types of defects used in the retrieved studies, included cranial defects and mandibular bone defects, in all of which bone formation was reported. When applied in actual bone defects, DPSCs were capable of regenerating bone. Nevertheless, a precise conclusion regarding the efficiency of DPSCs for bone regeneration is yet to be made, considering the limited number of the in vivo experiments and the heterogeneity within their methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Myers, Samuel M.
2014-02-01
A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defectsmore » within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.« less
Defect evolution and impurity migration in Na-implanted ZnO
NASA Astrophysics Data System (ADS)
Neuvonen, Pekka T.; Vines, Lasse; Venkatachalapathy, Vishnukanthan; Zubiaga, Asier; Tuomisto, Filip; Hallén, Anders; Svensson, Bengt G.; Kuznetsov, Andrej Yu.
2011-11-01
Secondary ion mass spectrometry (SIMS) and positron annihilation spectroscopy (PAS) have been applied to study impurity migration and open volume defect evolution in Na+ implanted hydrothermally grown ZnO samples. In contrast to most other elements, the presence of Na tends to decrease the concentration of open volume defects upon annealing and for temperatures above 600∘C, Na exhibits trap-limited diffusion correlating with the concentration of Li. A dominating trap for the migrating Na atoms is most likely Li residing on Zn site, but a systematic analysis of the data suggests that zinc vacancies also play an important role in the trapping process.
Nielsen, Michele D.; Jaworski, Christopher M.; Heremans, Joseph P.
2015-03-20
AgSbTe 2 is a thermoelectric semiconductor with an intrinsically low thermal conductivity and a valence band structure that is favorable to obtaining a high thermoelectric figure of merit zT. It also has a very small energy gap Eg ~ 7.6 ± 3 meV. As this gap is less than the thermal excitation energy at room temperature, near-intrinsic AgSbTe 2 is a two carrier system having both holes (concentration p) and electrons ( n). Good thermoelectric performance requires heavy p-type doping ( p > > n). This can be achieved with native defects or with extrinsic doping, e.g. with transition metalmore » element. The use of defect doping is complicated by the fact that many of the ternary Ag-Sb-Te and pseudo-binary Sb 2Te 3-Ag 2Te phase diagrams are contradictory. This paper determines the compositional region most favorable to creating a single phase material. Through a combination of intrinsic and extrinsic doping, values of zT > 1 are achieved, though not on single-phased material. In addition, we show that thermal conductivity is not affected by defects, further demonstrating that the low lattice thermal conductivity of I-V-VI 2 materials is due to an intrinsic mechanism, insensitive to changes in defect structure.« less
Intentional defect array wafers: their practical use in semiconductor control and monitoring systems
NASA Astrophysics Data System (ADS)
Emami, Iraj; McIntyre, Michael; Retersdorf, Michael
2003-07-01
In the competitive world of semiconductor manufacturing today, control of the process and manufacturing equipment is paramount to success of the business. Consistent with the need for rapid development of process technology, is a need for development wiht respect to equipment control including defect metrology tools. Historical control methods for defect metrology tools included a raw count of defects detected on a characterized production or test wafer with little or not regard to the attributes of the detected defects. Over time, these characterized wafers degrade with multiple passes on the tools and handling requiring the tool owner to create and characterize new samples periodically. With the complex engineering software analysis systems used today, there is a strong reliance on the accuracy of defect size, location, and classification in order to provide the best value when correlating the in line to sort type of data. Intentional Defect Array (IDA) wafers were designed and manufacturered at International Sematech (ISMT) in Austin, Texas and is a product of collaboration between ISMT member companies and suppliers of advanced defect inspection equipment. These wafers provide the use with known defect types and sizes in predetermined locations across the entire wafer. The wafers are designed to incorporate several desired flows and use critical dimensions consistent with current and future technology nodes. This paper briefly describes the design of the IDA wafer and details many practical applications in the control of advanced defect inspection equipment.
Micro-bridge defects: characterization and root cause analysis
NASA Astrophysics Data System (ADS)
Santoro, Gaetano; Van den Heuvel, Dieter; Braggin, Jennifer; Rosslee, Craig; Leray, Philippe J.; Cheng, Shaunee; Jehoul, Christiane; Schreutelkamp, Robert; Hillel, Noam
2010-03-01
Defect review of advanced lithography processes is becoming more and more challenging as feature sizes decrease. Previous studies using a defect review SEM on immersion lithography generated wafers have resulted in a defect classification scheme which, among others, includes a category for micro-bridges. Micro-bridges are small connections between two adjacent lines in photo-resist and are considered device killing defects. Micro-bridge rates also tend to increase as feature sizes decrease, making them even more important for the next technology nodes. Especially because micro-bridge defects can originate from different root causes, the need to further refine and split up the classification of this type of defect into sub groups may become a necessity. This paper focuses on finding the correlation of the different types of micro-bridge defects to a particular root cause based on a full characterization and root cause analysis of this class of defects, by using advanced SEM review capabilities like high quality imaging in very low FOV, Multi Perspective SEM Imaging (MPSI), tilted column and rotated stage (Tilt&Rotation) imaging and Focused Ion Beam (FIB) cross sectioning. Immersion lithography material has been mainly used to generate the set of data presented in this work even though, in the last part of the results, some EUV lithography data will be presented as part of the continuing effort to extend the micro-bridge defect characterization to the EUV technology on 40 nm technology node and beyond.