NASA Astrophysics Data System (ADS)
Chen, Lin; Ren, Jing; Guo, Fan; Zhou, LiangJi; Li, Ye; He, An; Jiang, Wei
2014-03-01
To understand the formation process of vacuum gap in coaxial microsecond conduction time plasma opening switch (POS), we have made measurements of the line-integrated plasma density during switch operation using a time-resolved sensitive He-Ne interferometer. The conduction current and conduction time in experiments are about 120 kA and 1 μs, respectively. As a result, more than 85% of conduction current has been transferred to an inductive load with rise time of 130 ns. The radial dependence of the density is measured by changing the radial location of the line-of-sight for shots with the same nominal POS parameters. During the conduction phase, the line-integrated plasma density in POS increases at all radial locations over the gun-only case by further ionization of material injected from the guns. The current conduction is observed to cause a radial redistribution of the switch plasma. A vacuum gap forms rapidly in the plasma at 5.5 mm from the center conductor, which is consistent with the location where magnetic pressure is the largest, allowing current to be transferred from the POS to the load.
Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI
2009-03-03
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2011-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2009-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
Application of nonlocal plasma technology for controlling plasma conductivity
NASA Astrophysics Data System (ADS)
Yuan, Chengxun; Demidov, V. I.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Rudakova, T. V.; Zhou, Z. X.
2017-10-01
A promising approach for better control of the plasma parameters involves the exploitation of peculiarities of plasmas with a nonlocal electron energy distribution. Nonlocal plasma technology (NLP-technology) is based on the effect of energetic electrons in the plasma volume. In this work, an experimental study of influence of the chemo-ionization processes on non-stationary plasma conductivity has been conducted. Due to energetic, supra-thermal electrons, which appear in the chemo-ionization reactions, the highly non-equilibrium and time dependent nonlocal electron energy distribution function is formed. In such a plasma thermal electrons always have positive conductivity (mobility), while supra-thermal, energetic electrons may have negative conductivity in heavy (argon, krypton and xenon) noble gases dependently on conditions. Experiments demonstrate that this effect may lead to the non-monotonic temporal behavior of plasma conductivity and may potentially create the negative electron mobility.
Galář, Pavel; Khun, Josef; Kopecký, Dušan; Scholtz, Vladimír; Trchová, Miroslava; Fučíková, Anna; Jirešová, Jana; Fišer, Ladislav
2017-11-08
Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.
Transport studies in high-performance field reversed configuration plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S., E-mail: sgupta@trialphaenergy.com; Barnes, D. C.; Dettrick, S. A.
2016-05-15
A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (butmore » with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.« less
Calculation of Thermal Conductivity Coefficients of Electrons in Magnetized Dense Matter
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Glushikhina, M. V.
2018-04-01
The solution of Boltzmann equation for plasma in magnetic field with arbitrarily degenerate electrons and nondegenerate nuclei is obtained by Chapman-Enskog method. Functions generalizing Sonine polynomials are used for obtaining an approximate solution. Fully ionized plasma is considered. The tensor of the heat conductivity coefficients in nonquantized magnetic field is calculated. For nondegenerate and strongly degenerate plasma the asymptotic analytic formulas are obtained and compared with results of previous authors. The Lorentz approximation with neglecting of electron-electron encounters is asymptotically exact for strongly degenerate plasma. For the first time, analytical expressions for the heat conductivity tensor for nondegenerate electrons in the presence of a magnetic field are obtained in the three-polynomial approximation with account of electron-electron collisions. Account of the third polynomial improved substantially the precision of results. In the two-polynomial approximation, the obtained solution coincides with the published results. For strongly degenerate electrons, an asymptotically exact analytical solution for the heat conductivity tensor in the presence of a magnetic field is obtained for the first time. This solution has a considerably more complicated dependence on the magnetic field than those in previous publications and gives a several times smaller relative value of the thermal conductivity across the magnetic field at ωτ * 0.8.
Li, Chun-Yi; Liao, Ying-Chih
2016-05-11
In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices.
Visible light emission measurements from a dense electrothermal launcher plasma
NASA Astrophysics Data System (ADS)
Hankins, O. E.; Bourham, M. A.; Earnhart, J.; Gilligan, J. G.
1993-01-01
Measurements of the visible light emission from dense, weakly non-ideal plasmas have been performed on the experimental electrothermal launcher device 'SIRENS'. The plasma is created by the ablation or a Lexan insulator in the source, which then flows through a cylindrical barrel which serves as the material sample. Visible light emission spectra have been observed both in-bore and from the muzzle flash or the barrel, and from the flash or the source. Due to high plasma opacity (the plasma emits as a near blackbody) and absorption by the molecular components of the vapor shield, the hotter core or the arc has been difficult to observe. Recent measurements along the axis or the device indicate time-averaged plasma temperatures in the barrel or about 1 eV for lower energy shots, which agree with experimental measurements of the average heat flux and plasma conductivity along the barrel. Measurements or visible emission from the source indicate time averaged temperatures of 1 to 2 eV which agree with the theoretical estimates derived from ablated mass measurements and calculated estimates derived from plasma conductivity measurements.
Trends of Blood and Plasma Donations in Kazakhstan: 12-Years Retrospective Analysis.
Igissinov, Nurbek; Kulmirzayeva, Dariyana; Magzumova, Raushan; Sibinga, Cees Th Smit; Alpeissova, Sholpan
2014-05-01
Each country faces a continuing challenge to collect enough blood to meet the national needs. According to WHO, there should be at least 20 blood donations per 1,000 population for developing countries, in Kazakhstan this indicator was only 16.8 in 2011. Thus, we conducted an epidemiological assessment and drew a map of the regional distribution of blood and plasma donations in Kazakhstan during the years 2000-2011. The retrospective study was conducted from 2000 to 2011. Data on blood and its components donations were acquired from the Ministry of Health (annual statistical reporting form N° 39). During 2000-2011, number of blood donors decreased to 17.4% and blood donations to 6.3%. The proportion of non-remunerated blood donations and donors decreased from 97.6% to 77.9% and 97.9% to 87.7%, respectively. The paid donations had the opposite trend. Number of plasma donors increased in 2.1 times, plasma donations in 2.4 times, nevertheless the proportion of non-remunerated plasma donations decreased from 60.1% to 29.8%. The average number of blood donations per 1,000 population decreased from 19.8 (2000) to 16.8 (2011), plasma donations increased from 1.4 to 3.1. Regionally, annual average rates of blood and plasma donations per 1,000 population over 12 years varied greatly. This is the first study conducted in Kazakhstan to provide detailed information, including the regional characteristics of blood and plasma donations over an extended period of time, which can be used in blood transfusion services work.
Trends of Blood and Plasma Donations in Kazakhstan: 12-Years Retrospective Analysis
IGISSINOV, Nurbek; KULMIRZAYEVA, Dariyana; MAGZUMOVA, Raushan; SIBINGA, Cees Th. Smit; ALPEISSOVA, Sholpan
2014-01-01
Abstract Background Each country faces a continuing challenge to collect enough blood to meet the national needs. According to WHO, there should be at least 20 blood donations per 1,000 population for developing countries, in Kazakhstan this indicator was only 16.8 in 2011. Thus, we conducted an epidemiological assessment and drew a map of the regional distribution of blood and plasma donations in Kazakhstan during the years 2000-2011. Methods The retrospective study was conducted from 2000 to 2011. Data on blood and its components donations were acquired from the Ministry of Health (annual statistical reporting form N° 39). Results During 2000-2011, number of blood donors decreased to 17.4% and blood donations to 6.3%. The proportion of non-remunerated blood donations and donors decreased from 97.6% to 77.9% and 97.9% to 87.7%, respectively. The paid donations had the opposite trend. Number of plasma donors increased in 2.1 times, plasma donations in 2.4 times, nevertheless the proportion of non-remunerated plasma donations decreased from 60.1% to 29.8%. The average number of blood donations per 1,000 population decreased from 19.8 (2000) to 16.8 (2011), plasma donations increased from 1.4 to 3.1. Regionally, annual average rates of blood and plasma donations per 1,000 population over 12 years varied greatly. Conclusion This is the first study conducted in Kazakhstan to provide detailed information, including the regional characteristics of blood and plasma donations over an extended period of time, which can be used in blood transfusion services work. PMID:26060761
Cooling of solar flares plasmas. 1: Theoretical considerations
NASA Technical Reports Server (NTRS)
Cargill, Peter J.; Mariska, John T.; Antiochos, Spiro K.
1995-01-01
Theoretical models of the cooling of flare plasma are reexamined. By assuming that the cooling occurs in two separate phase where conduction and radiation, respectively, dominate, a simple analytic formula for the cooling time of a flare plasma is derived. Unlike earlier order-of-magnitude scalings, this result accounts for the effect of the evolution of the loop plasma parameters on the cooling time. When the conductive cooling leads to an 'evaporation' of chromospheric material, the cooling time scales L(exp 5/6)/p(exp 1/6), where the coronal phase (defined as the time maximum temperature). When the conductive cooling is static, the cooling time scales as L(exp 3/4)n(exp 1/4). In deriving these results, use was made of an important scaling law (T proportional to n(exp 2)) during the radiative cooling phase that was forst noted in one-dimensional hydrodynamic numerical simulations (Serio et al. 1991; Jakimiec et al. 1992). Our own simulations show that this result is restricted to approximately the radiative loss function of Rosner, Tucker, & Vaiana (1978). for different radiative loss functions, other scaling result, with T and n scaling almost linearly when the radiative loss falls off as T(exp -2). It is shown that these scaling laws are part of a class of analytic solutions developed by Antiocos (1980).
Electrical Conductivity of Dense Al, Ti, Fe, Ni, Cu, Mo, Ta, and W Plasmas
2011-06-01
for all but tantalum and titanium shows a minimum at approximately 0.01 times solid density, followed by an increase as the density decreases further...internal energy and specific volume. Conductivity is observed to fall as the plasma expands for fixed internal energy, and for all but tantalum and...plasmas formed from elemental metal wires heated rapidly in a water bath by the electric current from discharge of a charged capacitor . Electrical
Wiedemann-Franz ratio in high-pressure and low-temperature thermal xenon plasma with 10% caesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novakovic, N.V.; Milic, B.S.; Stojilkovic, S.M.
1995-12-31
Theoretical investigations of various transport properties of low-temperature noble-gas plasmas with additives has aroused a continuous interest over a considerable spall of time, due to numerous applications. In this paper the results of a theoretical evaluation of electrical conductivity, thermal conductivity and their ratio (the Wiedemann-Franz ratio) in xenon plasma with 10% of argon and 10% of caesium are presented, for the temperature range from 2000 K to 20000 K, and for pressures equal to or 5, 10, and 15 time higher than the normal atmospheric pressure. The plasma was regarded as weakly non-ideal and in the state of localmore » thermodynamical equilibrium with the assumption that the equilibrium is attained with the pressure kept constant. The plasma composition was determined on the ground of a set of Saha equations; the ionization energy lowerings were expressed with the aid of a modified plasma Debye radius r*{sub D} (rather than the standard r{sub D}), as proposed previously.« less
Investigation of Nonideal Plasma Properties
1981-05-01
5-8) of nonideal cesium and noble gas plasmas available , theoretical explanations of these results are still missing. The momentum and energy...solution. In the following, the momentum relaxation time and the electrical conductivity of (i) classical and (ii) quantum plasmas is calculated for... momentum <mv > of the electrons (m is the electron mass and e > 0 is the elementary charge) a = (ne 2/m)T. () The relaxation time T is determined by
Optical Boron Nitride Insulator Erosion Characterization of a 200 W Xenon Hall Thruster
2005-05-01
Hall thruster boron nitride insulator is evaluated as a diagnostic for real-time evaluation of thruster insulator erosion. Three Hall thruster plasma control variables are examined: ion energy (discharge potential), ion flux (propellant flow), and plasma conductivity (magnetic field strength). The boron emission, and hence the insulator erosion rate, varies linearly with ion energy and ion flux. A minimum erosion rate appears at intermediate magnetic field strengths. This may indicate that local plasma conductivity significantly affects the divergence
NASA Astrophysics Data System (ADS)
Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.
2018-03-01
Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xaplanteris, C. L., E-mail: cxaplanteris@yahoo.com; Xaplanteris, S. C.
2016-05-15
In the present manuscript enough observations and interpretations of three issues of Plasma Physics are presented. The first issue is linked to the common experimental confirmation of plasma waves which appear to be repeated in a standard way while there are also cases where plasma waves change to an unstable state or even to chaotic state. The second issue is associated with a mathematical analysis of the movement of a charged particle using the perturbation theory; which could be used as a guide for new researchers on similar issues. Finally, the suitability and applicability of the perturbation theory or themore » chaotic theory is presented. Although this study could be conducted on many plasma phenomena (e.g. plasma diffusion) or plasma quantities (e.g. plasma conductivity), here it was decided this study to be conducted on plasma waves and particularly on drift waves. This was because of the significance of waves on the plasmatic state and especially their negative impact on the thermonuclear fusion, but also due to the long-time experience of the plasma laboratory of Demokritos on drift waves.« less
Jauchem, James R; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L
2014-12-01
In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER (®) C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures.
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.
2018-02-01
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
NASA Astrophysics Data System (ADS)
Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.
2018-04-01
We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.
Continuous, real time microwave plasma element sensor
Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.
1995-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.
NASA Astrophysics Data System (ADS)
Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming
2018-01-01
The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.
NASA Astrophysics Data System (ADS)
Ma, T.-Z.; Schunk, R. W.
1994-07-01
Experiments involving the interaction of spherical conducting objects biases with hight voltages in the Low-Earth-Orbit (LEO) environment have been conducted and designed. In these experiments, both positive and negative voltages have been applied to the spheres. Previously, there have been theoretical and numerical studies of positive voltage spheres in plasmas with and without magnetic fields. There also have been studies of negative voltage objects in unmagnetized plasmas. Here, we used a fluid model to study the plasma response to a negative voltage sphere immersed in a magnetized plasma. Our main purpose was to investigate the role of the magnetic field during the early-time interaction between the negative voltage sphere and the ambient plasma in the LEO environment. In this study, different applied voltages, magnetic field strengths, and rise-times of the applied voltages were considered. It was found that with the strength of the geomagnetic field the ions are basically not affected by the magnetic field on the time scale of hundreds of plasma periods considered in this study. The ion density distribution around the sphere and the collected ion flux by the sphere are basically the same as in the case without the magnetic field. The electron motion is strongly affected by the magnetic field. One effect is to change the nature of the electron over-shoot oscillation from regular to somewhat turbulent. Although the electrons move along the magnetic field much more easily than across the magnetic field, some redirection effect causes the electron density to distribute as if the magnetic field effect is minimal. The sheath struture and the electric field around the sphere tend to be spherical. A finite rise-time of the applied voltage reduces the oscillatory activities and delays the ion acceleration. However, the effect of the rise-time depends on both the duration of the rise-time and the ion plasma period.
Continuous, real time microwave plasma element sensor
Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.
1995-12-26
Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.
Confinement time exceeding one second for a toroidal electron plasma.
Marler, J P; Stoneking, M R
2008-04-18
Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; ...
2018-02-16
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. Here, this Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and timemore » scales of cold-pulse experiments in tokamak plasmas.« less
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. Here, this Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and timemore » scales of cold-pulse experiments in tokamak plasmas.« less
NASA Technical Reports Server (NTRS)
Giersch, L.; Winglee, R.; Slough, J.; Ziemba, T.; Euripides, P.
2003-01-01
Mini-Magnetospheric Plasma Propulsion (M2P2) seeks to create a plasma-inflated magnetic bubble capable of intercepting significant thrust from the solar wind for the purposes of high speed, high efficiency spacecraft propulsion. Previous laboratory experiments into the M2P2 concept have primarily used helicon plasma sources to inflate the dipole magnetic field. The work presented here uses an alternative plasma source, the cascaded arc, in a geometry similar to that used in previous helicon experiments. Time resolved measurements of the equatorial plasma density have been conducted and the results are discussed. The equatorial plasma density transitions from an initially asymmetric configuration early in the shot to a quasisymmetric configuration during plasma production, and then returns to an asymmetric configuration when the source is shut off. The exact reasons for these changes in configuration are unknown, but convection of the loaded flux tube is suspected. The diffusion time was found to be an order of magnitude longer than the Bohm diffusion time for the period of time after the plasma source was shut off. The data collected indicate the plasma has an electron temperature of approximately 11 eV, an order of magnitude hotter than plasmas generated by cascaded arcs operating under different conditions. In addition, indirect evidence suggests that the plasma has a beta of order unity in the source region.
Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)
NASA Astrophysics Data System (ADS)
Reece Roth, J.
2000-10-01
The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.
Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.
Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.
Magnetic Flux Compression Experiments Using Plasma Armatures
NASA Technical Reports Server (NTRS)
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2003-01-01
Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, Leonic E.; Li, Xujing
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L.E. Zakharov [Plasma Science and Technology, accepted, ID:2013-257 (2013)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electricmore » conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.« less
NASA Astrophysics Data System (ADS)
Hollmann, E. M.; Commaux, N.; Eidietis, N. W.; Lasnier, C. J.; Moyer, R. A.; Parks, P. B.; Shiraki, D.
2015-10-01
Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.
Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean
NASA Astrophysics Data System (ADS)
Hartkorn, Oliver; Saur, Joachim
2017-11-01
We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.
NASA Astrophysics Data System (ADS)
Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei
2014-10-01
Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.
NASA Astrophysics Data System (ADS)
Bagiya, Mala S.; Vichare, Geeta; Sinha, A. K.; Sripathi, S.
2018-02-01
During quiet period, the nocturnal equatorial ionospheric plasma drifts eastward in the zonal direction and downward in the vertical direction. This quiet time drift pattern could be understood through dynamo processes in the nighttime equatorial ionosphere. The present case study reports the nocturnal simultaneous occurrence of the vertically downward and zonally westward plasma drifts over the Indian latitudes during the geomagnetic storm of 17 March 2015. After 17:00 UT ( 22:10 local time), the vertical plasma drift became downward and coincided with the westward zonal drift, a rarely observed feature of low latitude plasma drifts. The vertical drift turned upward after 18:00 UT, while the zonal drift became eastward. We mainly emphasize here the distinct bipolar type variations of vertical and zonal plasma drifts observed around 18:00 UT. We explain the vertical plasma drift in terms of the competing effects between the storm time prompt penetration and disturbance dynamo electric fields. Whereas, the westward drift is attributed to the storm time local electrodynamical changes mainly through the disturbance dynamo field in addition to the vertical Pedersen current arising from the spatial (longitudinal) gradient of the field aligned Pedersen conductivity.
NASA Astrophysics Data System (ADS)
Kwon, Deuk-Chul; Shin, Sung-Sik; Yu, Dong-Hun
2017-10-01
In order to reduce the computing time in simulation of radio frequency (rf) plasma sources, various numerical schemes were developed. It is well known that the upwind, exponential, and power-law schemes can efficiently overcome the limitation on the grid size for fluid transport simulations of high density plasma discharges. Also, the semi-implicit method is a well-known numerical scheme to overcome on the simulation time step. However, despite remarkable advances in numerical techniques and computing power over the last few decades, efficient multi-dimensional modeling of low temperature plasma discharges has remained a considerable challenge. In particular, there was a difficulty on parallelization in time for the time periodic steady state problems such as capacitively coupled plasma discharges and rf sheath dynamics because values of plasma parameters in previous time step are used to calculate new values each time step. Therefore, we present a parallelization method for the time periodic steady state problems by using period-slices. In order to evaluate the efficiency of the developed method, one-dimensional fluid simulations are conducted for describing rf sheath dynamics. The result shows that speedup can be achieved by using a multithreading method.
Synthesis and characterization of carbon nanofilms for chemical sensing
NASA Astrophysics Data System (ADS)
Kumar, Vivek
Carbon nanofilms obtained by high temperature graphitization of diamond surface in inert atmospheres or vacuum are modified by treatment in plasma of different precursor gases. At temperatures above 1000 °C, a stable conductive film of thickness between 10 - 100 nm and specific resistivity 10-3-10-4 Ωm, depending upon the heating conditions and the growth atmosphere, is formed on diamond surface. A gray, thin film of high surface resistivity is obtained in high vacuum, while at low vacuum (below 10-4 mbar), a thick black film of low surface resistivity forms. It is observed that the exposure to plasma reduces the surface conductance of carbon nanofilms as result of a partial removal of carbon and the plasma-stimulated amorphization. The rate of the reduction of conductance and hence the etching ability of plasma depends on the type of precursor gas. Hydrogen reveals the strongest etching ability, followed by oxygen and argon, whereas SF6 is ineffective. The carbon nanofilms show significant sensitivity of their electrical conductance to temperature and exposure to the vapors of common organic compounds. The oxygen plasma treated films exhibit selective response to acetone and water vapors. The fast response and recovery of the conductance are the features of the carbon nanofilms. The plasma-treated carbon nanofilm on graphitized diamond surface is discussed as a promising sensing material for development of all-carbon chemical sensors, which may be suitable for biological and medical applications. An alternative approach of fabrication of temperature and chemical sensitive carbon nanofilms on insulating substrates is proposed. The films are obtained by direct deposition of sputtered carbon on highly polished quartz substrates followed by subsequent annealing at temperatures above 400 °C. It is observed that the as-deposited films are essentially amorphous, while the heating induces irreversible structural ordering and gradual conversion of amorphous carbon in disordered graphite. This evolution is confirmed by Raman spectroscopy and electrical measurements. The carbon nanofilms grown on diamond and deposited on quartz both show similar exponential dependence of their conductance on temperature, which is essentially different from the usual behavior of the thermally activated conduction and the conduction due to variable range hopping of charge carriers. The observed exponential dependence of conductance is explained by a model based on the thermally vibrating energy barriers. The as-grown nanofilms on diamond surface show a negative response (decrease in conductance) to the vapors of acetone, toluene and hexane, and a positive response (increase in conductance) to the water vapor. Sensitivity (relative change in conductance) to toluene is greater than to water, acetone, and hexane, in that order. Plasma exposure alters the sensitivity to positive for all the organic vapors. Overall, an increase in sensitivity is observed with the plasma exposure time. For acetone and water, an increased exponential dependence on vapor concentration is also observed. The exposure to oxygen plasma renders the carbon films on diamond selectively sensitive to acetone and water vapors. The hydrogen plasma exposure makes the films selectively sensitive to toluene vapor. It is found that the carbon nanofilms on quartz have p-type conductivity, as indicated by the opposite response to NO2 and NH3 analytes. NO2, a known electron acceptor, increases the conductance. NH3, a known electron donor, decreases the conductance. The phenomenological description of the chemical sensitivity of the carbon nanofilms σ = β/τ is proposed as a function of two main parameters: the time constant τ and the maximum relative change in conductance β. τ and β are described as the parameters related to the surface and bulk material properties of the films, respectively.
Nonlinear penetration of whistler pulses into collisional plasmas via conductivity modifications
NASA Technical Reports Server (NTRS)
Urrutia, J. M.; Stenzel, R. L.
1991-01-01
A strong electromagnetic impulse (about 0.2 microsec) with central frequency in the whistler-wave regime is applied to a large laboratory plasma dominated by Coulomb collisions. Local electron heating at the antenna and transport along B0 create a channel of high conductivity along which the whistler pulse penetrates with little damping. Because of its rapid temporal evolution, this new form of modulational instability does not involve ducting by density gradients which require ion time scales to develop.
Evidence that the X-Ray Plasma in Microflares is in a Sequence of Subresolution Magnetic Tubes
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.
1998-01-01
We analyze the cooling of the X-ray emitting thermal plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope. A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approximately 2 x 10(exp 8) cm) (Shimizu 1995, PASJ, 47, 251). The X-ray plasma in the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is filled by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (1995) (X-ray brightness through the thin aluminum filter approximately 4 x 10(exp 3) DN/s/pixel, lifetime approximately 5 min, temperature approximately 6 x 10(exp 6) K, loop length approximately 10(exp 9) cm, loop diameter approximately 3 x 10(exp 8) cm), we find that for filling factors greater than approximately 1% (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that (1) heating to X-ray temperatures continues through nearly the entire life of a microflare, (2) the heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (less than approximately 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from Yohkoh will show plenty of rapidly changing filamentary substructure in microflares.
Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry.
Quental, P B; Policarpo, H; Luís, R; Varela, P
2016-11-01
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.
Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.
Baker, W.R.
1961-08-22
A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)
Decoration of vertical graphene with aerosol nanoparticles for gas sensing
NASA Astrophysics Data System (ADS)
Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong
2015-08-01
A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.
Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates
NASA Astrophysics Data System (ADS)
Banerjee, Indrani; Mahapatra, Santosh K.; Pal, Chandana; Sharma, Ashwani K.; Ray, Asim K.
2018-05-01
Room temperature hydrogen plasma treatment on solution processed 300 nm graphene oxide (GO) films on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates has been performed by varying the plasma power between 20 W and 60 W at a constant exposure time of 30 min with a view to examining the effect of plasma power on reduction of GO. X-ray powder diffraction (XRD) and Raman spectroscopic studies show that high energy hydrogen species generated in the plasma assist fast exfoliation of the oxygenated functional groups present in the GO samples. Significant decrease in the optical band gap is observed from 4.1 eV for untreated samples to 0.5 eV for 60 W plasma treated samples. The conductivity of the films treated with 60 W plasma power is estimated to be six orders of magnitude greater than untreated GO films and this enhancement of conductivity on plasma reduction has been interpreted in terms of UV-visible absorption spectra and density functional based first principle computational calculations. Plasma reduction of GO/ITO/PET structures can be used for efficiently tuning the electrical and optical properties of reduced graphene oxide (rGO) for flexible electronics applications.
Improved methods for nightside time domain Lunar Electromagnetic Sounding
NASA Astrophysics Data System (ADS)
Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.
2017-12-01
Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to any driving transient event for any specified 3D conductivity profile. Our models fit the analytic solutions to a Root-Mean-Square Error of better than 1%. Solutions are non-unique, however, serve to better understand and constrain the global interior composition and 3D structure of the Moon. [1] Dyal & Parkin (1971) JGR; [2] Fatemi et al. (2013) GRL.
Study of the transport parameters of cloud lightning plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z. S.; Yuan, P.; Zhao, N.
2010-11-15
Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud lightning channel.« less
Plasma polymer-functionalized silica particles for heavy metals removal.
Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter
2015-02-25
Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.
The calculation of thermophysical properties of nickel plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apfelbaum, E. M.
2015-09-15
The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data ofmore » measurements.« less
Noble Gas Plasmas with Metallic Conductivity: A New Light Source from a New State of Matter
2015-11-01
light, Applied Physics Letters, (12 2014): 223501. doi: A. Bataller, B. Kappus , C. Camara, S. Putterman. Collision Time Measurements in a...Plasma Extremes Seen through Gas Bubble, Physics, (07 2014): 0. doi: 10.1103/Physics.7.72 A. Bataller, G.?R. Plateau, B. Kappus , S. Putterman
Plasma formation in water vapour layers in high conductivity liquids
NASA Astrophysics Data System (ADS)
Kelsey, C. P.; Schaper, L.; Stalder, K. R.; Graham, W. G.
2011-10-01
The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current-voltage characteristics) they can be correlated with the spectra features. Initial measurements reveal two apparently different plasma formations. Stark broadening of the hydrogen Balmer beta line indicate electron densities of 3 to 5 ×1020 m-3 for plasmas produced early in the voltage pulse and an order of magnitude less for the later plasmas. The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current-voltage characteristics) they can be correlated with the spectra features. Initial measurements reveal two apparently different plasma formations. Stark broadening of the hydrogen Balmer beta line indicate electron densities of 3 to 5 ×1020 m-3 for plasmas produced early in the voltage pulse and an order of magnitude less for the later plasmas. Colin Kelsey is supported by a DEL NI PhD studentship.
Spectroscopic investigation of species separation in opening switch plasmas
NASA Astrophysics Data System (ADS)
Jackson, S. L.; Phipps, D. G.; Richardson, A. S.; Commisso, R. J.; Hinshelwood, D. D.; Murphy, D. P.; Schumer, J. W.; Weber, B. V.; Boyer, C. N.; Doron, R.; Biswas, S.; Maron, Y.
2015-11-01
Interactions between magnetic fields and current-carrying plasmas that lead to the separation of plasma species in multi-species plasmas are being studied in a plasma opening switch geometry. Several Marshall guns are used to inject single or multi-species plasmas between coaxial conductors connected to the output of the Naval Research Laboratory's Hawk pulsed-power generator. Following injection of the plasma, the generator is used at roughly half power to apply an electrical pulse with a peak current of 450 kA, a peak voltage of 400 kV, and a rise time of 1.2 μs. The resulting magnetic field interacts with the plasma through a combination of field penetration and magnetohydrodynamic (MHD) pushing that is not well understood but can lead to the separation of plasma species in multi-species plasmas. An ICCD-coupled spectrometer has been used in combination with magnetic probes, a ribbon-beam interferometer, and particle-in-cell (PIC) modeling to diagnose and understand conditions in the plasma from the time it is injected until the end of the conduction phase of the opening switch. This work supported by the Naval Research Laboratory Base Program and the Office of Naval Research.
The impact of plasma dynamics on the self-magnetic-pinch diode impedance
Bennett, Nichelle; Crain, M. Dale; Droemer, Darryl W.; ...
2015-03-20
In this study, the self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. The basic operation of this diode has long been understood in the context of pinched diodes, including the dynamic effect that the diode impedance decreases during the pulse due to electrode plasma formation and expansion. Experiments being conducted at Sandia National Laboratories' RITS-6 accelerator are helping to characterize these plasmas using time-resolved and time-integrated camera systems in the x-ray and visible. These diagnostics are analyzed in conjunction with particle-in-cell simulations of anode plasma formation and evolution. The results confirm the long-standingmore » theory of critical-current operation with the addition of a time-dependent anode-cathode gap length. Finally, the results may suggest that anomalous impedance collapse is driven by increased plasma radial drift, leading to larger-than-average ion v r × B θ acceleration into the gap.« less
NASA Astrophysics Data System (ADS)
Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi
2018-06-01
Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, Leonid E.; Li, Xujing
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasmamore » electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.« less
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
NASA Astrophysics Data System (ADS)
McCourt, Michael; Sharma, Prateek; Quataert, Eliot; Parrish, Ian J.
2012-02-01
We study the interplay among cooling, heating, conduction and magnetic fields in gravitationally stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive haloes such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling time-scale to the dynamical time-scale tcool/tff controls the non-linear evolution and saturation of the thermal instability: when tcool/tff≲ 1, the plasma develops extended multiphase structure, whereas when tcool/tff≳ 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool/tff≲ 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multiphase gas is essentially independent of the thermal conductivity of the plasma. Our criterion for local thermal instability to produce multiphase structure is an extension of the cold versus hot accretion modes in galaxy formation that applies at all radii in hot haloes, not just to the virial shock. We show that this criterion is consistent with data on multiphase gas in galaxy groups and clusters; in addition, when tcool/tff≳ 1, the net cooling rate to low temperatures and the mass flux to small radii are suppressed enough relative to models without heating to be qualitatively consistent with star formation rates and X-ray line emission in groups and clusters.
Plasma process control with optical emission spectroscopy
NASA Astrophysics Data System (ADS)
Ward, P. P.
Plasma processes for cleaning, etching and desmear of electronic components and printed wiring boards (PWB) are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. The problem with these techniques is that they are not real-time methods and do not allow for immediate diagnosis and process correction. These methods often require scrapping some fraction of a batch to insure the integrity of the rest. Since these methods verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. Both of these methods are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process failures should be detected before the parts being treated. are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored. A discussion of this technique as it applies towards process control, failure analysis and endpoint determination will be conducted. Methods for identifying process failures, progress and end of etch back and desmear processes will be discussed.
Non-local electron transport validation using 2D DRACO simulations
NASA Astrophysics Data System (ADS)
Cao, Duc; Chenhall, Jeff; Moll, Eli; Prochaska, Alex; Moses, Gregory; Delettrez, Jacques; Collins, Tim
2012-10-01
Comparison of 2D DRACO simulations, using a modified versionfootnotetextprivate communications with M. Marinak and G. Zimmerman, LLNL. of the Schurtz, Nicolai and Busquet (SNB) algorithmfootnotetextSchurtz, Nicolai and Busquet, ``A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,'' Phys. Plasmas 7, 4238(2000). for non-local electron transport, with direct drive shock timing experimentsfootnotetextT. Boehly, et. al., ``Multiple spherically converging shock waves in liquid deuterium,'' Phys. Plasmas 18, 092706(2011). and with the Goncharov non-local modelfootnotetextV. Goncharov, et. al., ``Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution,'' Phys. Plasmas 13, 012702(2006). in 1D LILAC will be presented. Addition of an improved SNB non-local electron transport algorithm in DRACO allows direct drive simulations with no need for an electron conduction flux limiter. Validation with shock timing experiments that mimic the laser pulse profile of direct drive ignition targets gives a higher confidence level in the predictive capability of the DRACO code. This research was supported by the University of Rochester Laboratory for Laser Energetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Commaux, Nicolas J. C.; Eidietis, N. W.
Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but thismore » phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. Furthermore, this IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Moyer, R. A.; Commaux, N.
Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but thismore » phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.« less
Hollmann, E. M.; Commaux, Nicolas J. C.; Eidietis, N. W.; ...
2015-10-12
Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but thismore » phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. Furthermore, this IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.« less
Wang, Chuji; Winstead, Christopher; Duan, Yixiang
2006-05-30
Provided is a novel system for conducting elemental measurements using cavity ring-down spectroscopy (CRDS). The present invention provides sensitivity thousands of times improved over conventional devices and does so with the advantages of low power, low plasma flow rate, and the ability being sustained with various gases.
NASA Astrophysics Data System (ADS)
Alexandrov, A. L.; Schweigert, I. V.
2018-05-01
The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6-20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm-3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10-20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage U c to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As U c increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.
Analysis of a gas-liquid film plasma reactor for organic compound oxidation.
Hsieh, Kevin; Wang, Huijuan; Locke, Bruce R
2016-11-05
A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Darny, T.; Pouvesle, J.-M.; Puech, V.; Douat, C.; Dozias, S.; Robert, Eric
2017-04-01
The use of cold atmospheric pressure plasma jets for in vivo treatments implies most of the time plasma interaction with conductive targets. The effect of conductive target contact on the discharge behavior is studied here for a grounded metallic target and compared to the free jet configuration. In this work, realized with a plasma gun, we measured helium metastable HeM (23S1) concentration (by laser absorption spectroscopy) and electric field (EF) longitudinal and radial components (by electro-optic probe). Both diagnostics were temporally and spatially resolved. Mechanisms after ionization front impact on the target surface have been identified. The remnant conductive ionized channel behind the ionization front electrically transiently connects the inner high voltage electrode to the target. Due to impedance mismatching between the ionized channel and the target, a secondary ionization front is initiated and rapidly propagates from the target surface to the inner electrode through this ionized channel. This leads to a greatly enhanced HeM production inside the plasma plume and the capillary. Forward and reverse dynamics occur with further multi reflections of more or less damped ionization fronts between the inner electrode and the target as long as the ionized channel is persisting. This phenomenon is very sensitive to parameters such as target distance and ionized channel conductivity affecting electrical coupling between these two and evidenced using positive or negative voltage polarity and nitrogen admixture. In typical operating conditions for the plasma gun used in this work, it has been found that after the secondary ionization front propagation, when the ionized channel is conductive enough, a glow like discharge occurs with strong conduction current. HeM production and all species excitation, especially reactive ones, are then driven by high voltage pulse evolution. The control of forward and reverse dynamics, impacting on the production of the glow like discharge, will be useful for biomedical applications on living tissues.
Plasma Formation and Evolution on Cu, Al, Ti, and Ni Surfaces Driven by a Mega-Ampere Current Pulse
NASA Astrophysics Data System (ADS)
Yates, Kevin C.
Metal alloy mm-diameter rods have been driven by a 1-MA, 100-ns current pulse from the Zebra z-pinch. The intense current produces megagauss surface magnetic fields that diffuse into the load, ohmically heating the metal until plasma forms. Because the radius is much thicker than the skin depth, the magnetic field reaches a much higher value than around a thin-wire load. With the "barbell" load design, plasma formation in the region of interest due to contact arcing or electron avalanche is avoided, allowing for the study of ohmically heated loads. Work presented here will show first evidence of a magnetic field threshold for plasma formation in copper 101, copper 145, titanium, and nickel, and compare with previous work done with aluminum. Copper alloys 101 and 145, titanium grade II, and nickel alloy 200 form plasma when the surface magnetic field reaches 3.5, 3.0, 2.2, and 2.6 megagauss, respectively. Varying the element metal, as well as the alloy, changes multiple physical properties of the load and affects the evolution of the surface material through the multiple phase changes. Similarities and differences between these metals will be presented, giving motivation for continued work with different material loads. During the current rise, the metal is heated to temperatures that cause multiple phase changes. When the surface magnetic field reaches a threshold, the metal ionizes and the plasma becomes pinched against the underlying cooler, dense material. Diagnostics fielded have included visible light radiometry, two-frame shadowgraphy (266 and 532 nm wavelengths), time-gated EUV spectroscopy, single-frame/2ns gated imaging, and multi-frame/4ns gated imaging with an intensified CCD camera (ICCD). Surface temperature, expansion speeds, instability growth, time of plasma formation, and plasma uniformity are determined from the data. The time-period of potential plasma formation is scrutinized to understand if and when plasma forms on the surface of a heated conductor. When photodiode signals of visible light surface emission reach values indicating temperatures consistent with plasma formation, a sharp increase in signal is observed, which can be interpreted as related to an abrupt increase in conductivity when plasma forms, as has been observed experimentally as well as in Quantum Molecular Dynamic simulations. The increase in conductivity, in the context of an overall rising current, causes an abrupt increase in current density in the plasma-forming layer, leading to an increase in temperature that reinforces the increase in conductivity. Laser shadowgaphy images allow for the observation of expansion as well as the development and evolution of surface instabilities. The sudden expansion of the surface of a heated conductor is not sufficient to claim plasma formation. The development of late-time surface instabilities does indicate surface plasma formed, although it does not pinpoint the moment of plasma formation. The self-emission images captured by ICCD cameras provide a third indicator of plasma formation. The images first show non-uniform dots begin to glow, then show bright filaments in the direction of current flow, and eventually show a uniform surface emission. The early dots are believed to be plasma; however, the filamentation occurs near the time of the abrupt increase in the visible diode signal. The filaments are likely caused by electrothermal instabilities a formation attributed to a plasma. The interplay between an ohmically heated conductor and a magnetic field is important for the field of Magnetized Target Fusion (MTF). MTF compresses a magnetized fuel by imploding a flux-conserving metal liner. During compression, fields reach several megagauss, with a fraction of the flux diffusing into the metal liner. The magnetic field induces eddy currents in the metal, leading to ionization and potential mixing of metal contaminant into the fusion fuel.
Method of Electrolyte-Plasma Surface Hardening of 65G and 20GL Low-Alloy Steels Samples
NASA Astrophysics Data System (ADS)
Rakhadilov, Bauyrzhan; Zhurerova, Laila; Pavlov, Alexander
2016-08-01
This work is devoted to formation of modified surface layers in 65G and 20GL steels which using for the manufacture of railway transport parts, as well as the study of influence of the parametersof electrolyte-plasma surface hardening methodon the changes in structural-phase states, improving of wear-resistance. The process of electrolyte-plasma surface hardening of 65G and 20GL steels samples conducted in the electrolyte from water solution of 20% sodium carbonate, in the mode ~850°C - 2 seconds, ∼⃒1200°C - 3 seconds. It is established that in the initial state 20GL steel has ferrite-pearlite structure, and the 60G steel consists of pearlite and cement structure. After application of electrolyte-plasma surface hardening is observed the formation of carbides particles and martensite phase components in the structure of 20GL and 60G steels. It is determined that after electrolyte-plasma surface hardening with heating time - 2 seconds, the abrasive wear-resistance of 65G and 20GL steels increased to 1.3 times and 1.2 times, respectively, and the microhardness is increased to 1.6 times and 1.3 times, respectively.
Sanjay, Rashmi; Flanagan, Janice; Sodano, Donata; Gorson, Kenneth C; Ropper, Allan H; Weinstein, Robert
2006-07-01
The Guillian Barré syndrome is an acute inflammatory disorder for which plasma exchange is effective treatment. Up to 10% relapse after plasma exchange suggesting that treatment sometimes finishes before disease activity has resolved. We studied whether plasma fibrinogen, an inflammatory marker, might be used to determine when to discontinue plasma exchange in patients with acute Guillain-Barré syndrome. We conducted a post-hoc analysis of apheresis database and hospital records of patients treated with plasma exchange for acute Guillain-Barré syndrome during 1999-2004. Data were analyzed from 28 patients who underwent a total of 29 courses of plasma exchange for acute Guillain-Barré syndrome. The mean (+/-SD) plasma fibrinogen concentration was 422.5 (+/-96.4) mg/dl at the time of presentation and, in 17 of the 29, it was above 400 mg/dl (reference range 200-400). Twenty of the 21 patients whose fibrinogen fell by more than 30% from baseline by the time of the final plasma exchange treatment had neurological improvement. There was improvement in only 3 of the 8 instances where fibrinogen decreased by less than 30% by the end of plasma exchange therapy. A > or =30% decrease in fibrinogen by the conclusion of plasma exchange was significantly associated with sustained neurological improvement (P = 0.0025). The plasma fibrinogen level appears to reflect disease activity in acute Guillain-Barré syndrome. A <30% fall in fibrinogen level despite plasma exchange may indicate the need to continue plasma exchange to maximize the benefit of treatment or minimize the risk of relapse. Therapeutic plasma exchange need not be extended when plasma fibrinogen remains > or =30% below its level at presentation by the time of the final planned plasma exchange procedure.
Advanced Plasma Shape Control to Enable High-Performance Divertor Operation on NSTX-U
NASA Astrophysics Data System (ADS)
Vail, Patrick; Kolemen, Egemen; Boyer, Mark; Welander, Anders
2017-10-01
This work presents the development of an advanced framework for control of the global plasma shape and its application to a variety of shape control challenges on NSTX-U. Operations in high-performance plasma scenarios will require highly-accurate and robust control of the plasma poloidal shape to accomplish such tasks as obtaining the strong-shaping required for the avoidance of MHD instabilities and mitigating heat flux through regulation of the divertor magnetic geometry. The new control system employs a high-fidelity model of the toroidal current dynamics in NSTX-U poloidal field coils and conducting structures as well as a first-principles driven calculation of the axisymmetric plasma response. The model-based nature of the control system enables real-time optimization of controller parameters in response to time-varying plasma conditions and control objectives. The new control scheme is shown to enable stable and on-demand plasma operations in complicated magnetic geometries such as the snowflake divertor. A recently-developed code that simulates the nonlinear evolution of the plasma equilibrium is used to demonstrate the capabilities of the designed shape controllers. Plans for future real-time implementations on NSTX-U and elsewhere are also presented. Supported by the US DOE under DE-AC02-09CH11466.
Pulsed-DC DBD Plasma Actuators
NASA Astrophysics Data System (ADS)
Duong, Alan; Corke, Thomas; Thomas, Flint
2017-11-01
A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.
Vacuum arc plasma thrusters with inductive energy storage driver
NASA Technical Reports Server (NTRS)
Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)
2004-01-01
An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.
Magnetic field in expanding quark-gluon plasma
NASA Astrophysics Data System (ADS)
Stewart, Evan; Tuchin, Kirill
2018-04-01
Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grach, V. S., E-mail: vsgrach@app.sci-nnov.ru; Garasev, M. A.
2015-07-15
We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of themore » stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.« less
Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R
2014-02-01
Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.
Capacitively coupled RF diamond-like-carbon reactor
Devlin, David James; Coates, Don Mayo; Archuleta, Thomas Arthur; Barbero, Robert Steven
2000-01-01
A process of coating a non-conductive fiber with diamond-like carbon, including passing a non-conductive fiber between a pair of parallel metal grids within a reaction chamber, introducing a hydrocarbon gas into the reaction chamber, forming a plasma within the reaction chamber for a sufficient period of time whereby diamond-like carbon is formed upon the non-conductive fiber, is provided together with a reactor chamber for deposition of diamond-like carbon upon a non-conductive fiber, including a vacuum chamber, a cathode assembly including a pair of electrically isolated opposingly parallel metal grids spaced apart at a distance of less than about 1 centimeter, an anode, a means of introducing a hydrocarbon gas into said vacuum chamber, and a means of generating a plasma within said vacuum chamber.
Currents between tethered electrodes in a magnetized laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Urrutia, J. M.
1989-01-01
Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.
2009-01-01
Knudsen Kn λ/L Hydrodynamic time / collision time Lewis Le κ/D *Thermal conduction/molecular diffusion Lorentz Lo V/c Magnitude of relativistic effects...to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...44 Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . . 46 Beam Instabilities
Generation of Vorticity by Slow Conductive Cooling Flows.
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Glasner, Ami; Livne, Eli
1996-11-01
Rapid energy release in a gas produces a ``hot channel" or ``fireball", depending on the energy release geometry. During its relaxation, the ``hot channel" develops significant vorticity and turbulence(J.M. Picone, J.P. Boris, J.R. Greig, M. Raleigh, and R.F. Fernsler, J. Atmos. Sci. 38), 2056 (1981). that strongly enhance its cooling. Picone and Boris(J.M. Picone and J.P. Boris, Phys. Fluids 26), 365 (1983). attributed the effect to an earlier, plasma-expansion-related stage of the process. We show that vorticity can also be produced on a longer time scale. After a few acoustic times, the plasma pressure becomes very close to the ambient pressure. As the temperature is still high, slow (subacoustic) conductive cooling flow (CCF) develops that cools the cavity and fills it with gas from the periphery(B. Meerson, Phys. Fluids A 1), 887 (1989); D. Kaganovich, B. Meerson, A. Zigler, C. Cohen, and J. Levin, Phys. Plasmas 3, 631 (1996).. Due to asymmetries, this flow develops significant vorticity on the heat-conduction time scale. We present a simplified theory for this effect that employs, as a zero-order solution, a novel two-dimensional (2d) similarity solution for an irrotational isobaric CCF. We also report on gas-dynamic simulations in 2d (with the heat transfer taken into account) which show vorticity generation by the slow CCF.
Subresolution Fibrillation in X-Ray Microflares Observed by Yohkoh SXT
NASA Technical Reports Server (NTRS)
Moore, Ron; Falconer, David; Porter, Jason
1999-01-01
We analyze the cooling of the X-ray plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope (SXT). A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approx. 2 x 10(exp 8) cm). The plasma heated to X-ray temperatures in the body of the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is fluid by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (X-ray brightness through the thin aluminum filter - 4 x 10(exp 3) DN/s/pixeL lifetime approx. 5 min, temperature approx. 6 x 10(exp 6) K, loop length approx. 10(exp 9) cm, loop diameter approx. 3 x 10(exp 8) cm), we find that for filling factors greater than approx. 1%: (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that: (1) heating to X-ray temperatures continues through nearly the entire lifetime of the microflare, (2) die heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (approx. 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from the Yohkoh SXT will show plenty of rapidly changing filamentary substructure in microflares. Our results also suggest that the heating in microflares may result from progressive reconnection similar to that inferred in many larger flares.
Properties of radio-frequency heated argon confined uranium plasmas
NASA Technical Reports Server (NTRS)
1976-01-01
Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.
NASA Astrophysics Data System (ADS)
Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M.; Samulyak, R.; Stoltz, P.; the PLX-α Team
2015-11-01
Under ARPA-E's ALPHA program, the Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability and scalability of spherically imploding plasma liners as a standoff, high-implosion-velocity magneto-inertial-fusion (MIF) driver that is potentially compatible with both low- and high- β targets. The project has three major objectives: (a) advancing existing contoured-gap coaxial-gun technology to achieve higher operational reliability/precision and better control/reproducibility of plasma-jet properties and profiles; (2) conducting ~ π / 2 -solid-angle plasma-liner experiments with 9 guns to demonstrate (along with extrapolations from modeling) that the jet-merging process leads to Mach-number degradation and liner uniformity that are acceptable for MIF; and (3) conducting 4 π experiments with up to 60 guns to demonstrate the formation of an imploding spherical plasma liner for the first time, and to provide empirical ram-pressure and uniformity scaling data for benchmarking our codes and informing us whether the scalings justify further development beyond ALPHA. This talk will provide an overview of the PLX- α project as well as key research results to date. Supported by ARPA-E's ALPHA program; original PLX construction supported by DOE Fusion Energy Sciences.
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
NASA Astrophysics Data System (ADS)
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.
Excess plasma membrane and effects of ionic amphipaths on mechanics of outer hair cell lateral wall.
Morimoto, Noriko; Raphael, Robert M; Nygren, Anders; Brownell, William E
2002-05-01
The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312
Inductive Pulsed Plasma Thruster Development and Testing at NASA-MSFC
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2013-01-01
THE inductive pulsed plasma thruster (IPPT) is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. In the present work, we present a summary of the IPPT research and development conducted at NASA's Marshall Space Flight Center (MSFC). As a higher-power, still relatively low readiness level system, there are many issues associated with the eventual deployment and use of the IPPT as a primary propulsion system on spacecraft that remain to be addressed. The present program aimed to fabricate and test hardware to explore how these issues could be addressed. The following specific areas were addressed within the program and will be discussed within this paper. a) Conical theta-pinch IPPT geometry thruster configuration. b) Repetition-rate multi-kW thruster pulsing. c) Long-lifetime pulsed gas valve. d) Fast pulsed gas valve driver and controller. e) High-voltage, repetitive capacitor charging power processing unit. During the course of testing, a number of specific tests were conducted, including several that, to our knowledge, have either never been previously conducted (such as multi-KW repetition-rate operation) or have not been performed since the early 1990s (direct IPPT thrust measurements).2 Conical theta-pinch IPPT thrust stand measurements are presented in Fig. 1 while various time-integrated and time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu
We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.
Explosive instability and erupting flux tubes in a magnetized plasma
Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.
2015-01-01
The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193
Thermal conductivity of zirconia thermal barrier coatings
NASA Technical Reports Server (NTRS)
Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.
1995-01-01
Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.
Thermal conductivity of zirconia thermal barrier coatings
NASA Technical Reports Server (NTRS)
Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.
1995-01-01
Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.
Performance Modeling of Experimental Laser Lightcrafts
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)
2001-01-01
A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
da Silva, F; Heuraux, S; Ricardo, E; Quental, P; Ferreira, J
2016-11-01
We conducted a first assessment of the measurement performance of the in-vessel components at gap 6 of the ITER plasma position reflectometry with the aid of a synthetic Ordinary Mode (O-mode) broadband frequency-modulated continuous-wave reflectometer implemented with REFMUL, a 2D finite-difference time-domain full-wave Maxwell code. These simulations take into account the system location within the vacuum vessel as well as its access to the plasma. The plasma case considered is a baseline scenario from Fusion for Energy. We concluded that for the analyzed scenario, (i) the plasma curvature and non-equatorial position of the antenna have neglectable impact on the measurements; (ii) the cavity-like space surrounding the antenna can cause deflection and splitting of the probing beam; and (iii) multi-reflections on the blanket wall cause a substantial error preventing the system from operating within the required error margin.
Effect of heat wave at the initial stage in spark plasma sintering.
Zhang, Long; Zhang, Xiaomin; Chu, Zhongxiang; Peng, Song; Yan, Zimin; Liang, Yuan
2016-01-01
Thermal effects are important considerations at the initial stage in spark plasma sintering of non-conductive Al2O3 powders. The generalized thermo-elastic theory is introduced to describe the influence of the heat transport and thermal focusing caused by thermal wave propagation within a constrained space and transient time. Simulations show that low sintering temperature can realize high local temperature because of the superposition effect of heat waves. Thus, vacancy concentration differences between the sink and the cross section of the particles increase relative to that observed during pressure-less and hot-pressure sintering. Results show that vacancy concentration differences are significantly improved during spark plasma sintering, thereby decreasing the time required for sintering.
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1993-01-01
A sample of Z-93 thermal control paint was exposed to a simulated space environment in a plasma chamber. The sample was biased through a series of voltages ranging from -100 volts to +300 volts and electron and ion currents were measured. Currents were found to be in the micro-ampere range indicating that the material remains a reasonably good insulator under plasma conditions. As a second step, the sample was left in the chamber for six days and retested. Collected currents were reduced by from two to five times from the previous values indicating a substantial loss of conductivity. As a final test, the sample was removed, exposed to room conditions for two days, and returned to the chamber. Current measurements showed that the sample had partially recovered the lost conductivity. In addition to presenting these results, this report documents all of the experimental data as well as the statistical analyses performed.
Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E. L.; Molvig, K.; Joglekar, A. S.
2015-11-15
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less
Terahertz conductivity of MnSi thin films
NASA Astrophysics Data System (ADS)
Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore
2013-03-01
We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.
Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; ...
2015-11-19
In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less
NASA Astrophysics Data System (ADS)
Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.
2015-11-01
In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.
In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less
Determination of eddy current response with magnetic measurements.
Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B
2017-09-01
Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.
NASA Technical Reports Server (NTRS)
Ray, P. K.
1984-01-01
The equations describing the performance of an inductively-driven rail gun are analyzed numerically. Friction between the projectile and rails is included through an empirical formulation. The equations are applied to the experiment of Rashleigh and Marshall to obtain an estimate of energy distribution in rail guns as a function of time. The effect of frictional heat dissipation on the bore of the gun is calculated. The mechanism of plasma and projectile acceleration in a dc rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipated in the plasma with the radiation heat loss, the properties of the plasma are determined.
Theoretical relation between halo current-plasma energy displacement/deformation in EAST
NASA Astrophysics Data System (ADS)
Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen
2018-04-01
In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.
NASA Astrophysics Data System (ADS)
Kan, C. W.; Yuen, C. W. M.
2008-01-01
Low temperature plasma treatment has been conducted in textile industry and has some success in the dyeing and finishing processes. In this paper, an attempt was made to apply low temperature plasma treatment to improve the anti-static property of polyester fabric. The polyester fabrics were treated under different conditions using low temperature plasma. An Orthogonal Array Testing Strategy was employed to determine the optimum treatment condition. After low temperature plasma treatment, the polyester fabrics were evaluated with different characterisation methods. Under the observation of scanning electron microscope, the surface structure of low temperature plasma-treated polyester fabric was seriously altered. This provided more capacity for polyester to capture moisture and hence increase the dissipation of static charges. The relationship between moisture content and half-life decay time for static charges was studied and the results showed that the increment of moisture content would result in shortening the time for the dissipation of static charges. Moreover, there was a great improvement in the anti-static property of the low temperature plasma-treated polyester fabric after comparing with that of the polyester fabric treated with commercial anti-static finishing agent.
Bioavailability of fluoride in drinking water: a human experimental study.
Maguire, A; Zohouri, F V; Mathers, J C; Steen, I N; Hindmarch, P N; Moynihan, P J
2005-11-01
It has been suggested that systemic fluoride absorption from drinking water may be influenced by the type of fluoride compound in the water and by water hardness. Using a human double-blind cross-over trial, we conducted this study to measure c(max), T(max), and Area Under the Curve (AUC) for plasma F concentration against time, following the ingestion of naturally fluoridated hard and soft waters, artificially fluoridated hard and soft waters, and a reference water. Mean AUC over 0 to 8 hours was 1330, 1440, 1679, 1566, and 1328 ng F.min.mL(-1) for naturally fluoridated soft, naturally fluoridated hard, artificially fluoridated soft, artificially fluoridated hard, and reference waters, respectively, with no statistically significant differences among waters for AUC, c(max), or T(max). Any differences in fluoride bioavailability between drinking waters in which fluoride is present naturally or added artificially, or the waters are hard or soft, were small compared with large within- and between-subject variations in F absorption. Abbreviations used: F, fluoride; AUC, Area under the Curve for plasma F concentration against time; AUC(0-3), Area under the Curve for plasma F concentration against time for 0 to 3 hours following water ingestion; AUC(0-8), Area under the Curve for plasma F concentration against time for 0 to 8 hours following water ingestion; c(max), maximum plasma F concentration corrected for baseline plasma F and dose (i.e., F concentration of individual waters); T(max), time of c(max).
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
Real-Time Fault Classification for Plasma Processes
Yang, Ryan; Chen, Rongshun
2011-01-01
Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703–5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success. PMID:22164001
NASA Astrophysics Data System (ADS)
Sheftman, D.; Shafer, D.; Efimov, S.; Krasik, Ya. E.
2012-03-01
Sub-microsecond timescale underwater electrical wire explosions using Cu and Al materials have been conducted. Current and voltage waveforms and time-resolved streak images of the discharge channel, coupled to 1D magneto-hydrodynamic simulations, have been used to determine the electrical conductivity of the metals for the range of conditions between hot liquid metal and strongly coupled non-ideal plasma, in the temperature range of 10-60 KK. The results of these studies showed that the conductivity values obtained are typically lower than those corresponding to modern theoretical electrical conductivity models and provide a transition between the conductivity values obtained in microsecond time scale explosions and those obtained in nanosecond time scale wire explosions. In addition, the measured wire expansion shows good agreement with equation of state tables.
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Winget, C. M.
1979-01-01
A series of experiments was conducted to assess the role of photoperiodic postural and social cues in the regulation of the plasma cortisol rhythm in normal human subjects. Young healthy adult male volunteers, aged 20-25, were used as the test subjects and were selected following extensive physical and psychological examinations. The time at which peak plasma cortisol concentration occurred was calculated from harmonic curves fitted to each set of 24-hr data from each subject. The findings suggest that the plasma cortisol rhythm is not affected appreciably by the absence of postural change, whereas light and social interaction affect this rhythm profoundly.
NASA Astrophysics Data System (ADS)
Smith, Edward; Dougherty, Michele K.
The global distribution of plasma and its flows inside Saturn's magnetosphere is complex. The large satellites in the inner magnetosphere are a persistent source of plasma that must make its way into the outer magnetosphere and exit through the magnetotail. The mass loaded into the magnetic field stretches the field lines outward resulting in the formation of the equatorial current sheet. The outward radial flow causes the closed stretched fields to spiral out of magnetic meridian planes. The angle associated with the spiralling is given by the ratio of the azimuthal field component, B , to the radial component Br : tan = B / Br . The magnetic spiral is directly related to the corresponding components of plasma velocity, v and v r, provided the conductivity of the ionosphere, , is high enough to enforce co-rotation of the field lines. If, as has been inferred, the conductivity is low, the field and plasma do not co-rotate and the conductivity also enters the expression for . Conditions are more uncertain further out in the magnetosphere where convective motions associated with magnetic reconnection between planetary and interplanetary fields and the motion of the shocked solar wind become dominant. The prevailing model is a superposition of two modes of plasma circulation inside the magnetosphere and magnetotail, the Dungey and Vasyliunas cycles, that depend on radial distance and local time with an x-line in the midnight sector that separates the two cycles. The measured spiral angle will be affected by this complexity and holds the promise of distinguishing the relative influences of v ,v r and . The two field components that define the spiral angle are also involved in the transfer of angular momentum from the ionosphere to the magnetospheric plasma and the outward mass flux. The spiral should also contain evidence, especially at high latitudes, of the return of the current to the ionosphere from the current sheet. Our major objective, therefore, is to characterize as a function of radius, latitude and local time using the global coverage provided by Cassini and apply the findings to the topics listed above.
RF H-minus ion source development in China spallation neutron source
NASA Astrophysics Data System (ADS)
Chen, W.; Ouyang, H.; Xiao, Y.; Liu, S.; Lü, Y.; Cao, X.; Huang, T.; Xue, K.
2017-08-01
China Spallation Neutron Source (CSNS) phase-I project currently uses a Penning surface plasma H- ion source, which has a life time of several weeks with occasional sparks between high voltage electrodes. To extend the life time of the ion source and prepare for the CSNS phase-II, we are trying to develop a RF negative hydrogen ion source with external antenna. The configuration of the source is similar to the DESY external antenna ion source and SNS ion source. However several changes are made to improve the stability and the life time. Firstly, Si3N4 ceramic with high thermal shock resistance, and high thermal conductivity is used for plasma chamber, which can endure an average power of 2000W. Secondly, the water-cooled antenna is brazed on the chamber to improve the energy efficiency. Thirdly, cesium is injected directly to the plasma chamber if necessary, to simplify the design of the converter and the extraction. Area of stainless steel exposed to plasma is minimized to reduce the sputtering and degassing. Instead Mo, Ta, and Pt coated materials are used to face the plasma, which makes the self-cleaning of the source possible.
Results of subscale MTF compression experiments
NASA Astrophysics Data System (ADS)
Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General
2016-10-01
In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.
Abdel Gader, Abdel Galil M.; Al Momen, Abdul Karim M.; Alhaider, Abdulqader; Brooks, Marjory B.; Catalfamo, James L.; Al Haidary, Ahmed A.; Hussain, Mansour F.
2013-01-01
The objective of this study was to characterize the highly elevated levels of clotting factor VIII (FVIII) in camel plasma. Whole blood was collected from healthy camels and factor VIII clotting activity (FVIII:C) assays were conducted using both the clotting and the chromogenic techniques. The anticoagulant citrate phosphate dextrose adenine (CPDA) produced the highest harvest of FVIII:C, the level of plasma factor VIII, compared to heparin:saline and heparin:CPDA anticoagulants. Camel FVIII can be concentrated 2 to 3 times in cryoprecipitate. There was a significant loss of camel FVIII when comparing levels of FVIII in camel plasma after 1 h of incubation at 37°C (533%), 40°C (364%), and 50°C (223%). Thrombin generation of camel plasma is comparable to that of human plasma. It was concluded that camel plasma contains very elevated levels of FVIII:C, approaching 8 times the levels in human plasma, and that these elevated levels could not be attributed to excessive thrombin generation. Unlike human FVIII:C, camel FVIII:C is remarkably heat stable. Taken together, these unique features of camel FVIII could be part of the physiological adaptation of hemostasis of the Arabian camel in order to survive in the hot desert environment. PMID:24082408
Yang, Li-Chiu; Hu, Suh-Woan; Yan, Min; Yang, Jaw-Ji; Tsou, Sing-Hua; Lin, Yuh-Yih
2015-02-01
In addition to releasing a pool of growth factors during activation, platelets have many features that indicate their role in the anti-infective host defense. The antimicrobial activities of platelet-rich plasma (PRP) and related plasma preparations against periodontal disease-associated bacteria were evaluated. Four distinct plasma fractions were extracted in the formulation used commonly in dentistry and were tested for their antibacterial properties against three periodontal bacteria: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. The minimum inhibitory concentration of each plasma preparation was determined, and in vitro time-kill assays were used to detect their abilities to inhibit bacterial growth. Bacterial adhesion interference and the susceptibility of bacterial adherence by these plasma preparations were also conducted. All plasma preparations can inhibit bacterial growth, with PRP showing the superior activity. Bacterial growth inhibition by PRP occurred in the first 24 hours after application in the time-kill assay. PRP interfered with P. gingivalis and A. actinomycetemcomitans attachment and enhanced exfoliation of attached P. gingivalis but had no influences on F. nucleatum bacterial adherence. PRP expressed antibacterial properties, which may be attributed to platelets possessing additional antimicrobial molecules. The application of PRP on periodontal surgical sites is advisable because of its regenerative potential and its antibacterial effects.
Measurements of uranium mass confined in high density plasmas
NASA Technical Reports Server (NTRS)
Stoeffler, R. C.
1976-01-01
An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.
Performance Modeling of an Experimental Laser Propelled Lightcraft
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.
2000-01-01
A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
Schachter, L; Dobrescu, S; Stiebing, K E; Thuillier, T; Lamy, T
2008-02-01
Charge diffusion in an electron cyclotron resonance ion source (ECRIS) discharge is usually characterized by nonambipolar behavior. While the ions are transported to the radial walls, electrons are lost axially from the magnetic trap. Global neutrality is maintained via compensating currents in the conducting walls of the vacuum chamber. It is assumed that this behavior reduces the ion breeding times compared to a truly ambipolar plasma. We have carried out a series of dedicated experiments in which the ambipolarity of the ECRIS plasma was influenced by inserting special metal-dielectric structures (MD layers) into the plasma chamber of the Frankfurt 14 GHz ECRIS. The measurements demonstrate the positive influence on the source performance when the ECR plasma is changed toward more ambipolar behavior.
Bragg scattering of electromagnetic waves by microwave-produced plasma layers
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Zhang, Y. S.
1990-01-01
A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.
Planar controlled zone microwave plasma system
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxvlle, TN
2011-10-04
An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
Controlled zone microwave plasma system
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN
2009-10-20
An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices
NASA Astrophysics Data System (ADS)
Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim
2017-08-01
Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells in 3D collagen matrix indicates a therapeutic potential that warrants further research.
Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A
2013-09-01
Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.
Hall-MHD and PIC Modeling of the Conduction-to-Opening Transition in a Plasma Opening Switch
NASA Astrophysics Data System (ADS)
Schumer, J. W.; SwanekampDdagger, S. B.; Ottinger, P. F.; Commisso, R. J.; Weber, B. V.
1998-11-01
Utilizing the fast opening characteristics of a plasma opening switch (POS), inductive energy storage devices can generate short-duration high-power pulses (<0.1 μ s, >1 TW) with current rise-times on the order of 10 ns. Plasma redistribution and thinning during the POS conduction phase can be modeled adequately with MHD methods. By including the Hall term in Ohm's Law, MHD methods can simulate plasmas with density gradient scale lengths between c/ω_pe < Ln < c/ω_pi. However, the neglect of electron inertia (c/ω_pe) and space-charge separation (λ_De) by single-fluid theory eventually becomes invalid in small gap regions that form during POS opening. PIC methods are well-suited for low-density plasmas, but are numerically taxed by high-density POS regions. An interface converts MHD (Mach2) output into PIC (Magic) input suitable for validating various transition criteria through comparison of current and density distributions from both methods. We will discuss recent progress in interfacing Hall-MHD and PIC simulations. Work supported by Defense Special Weapons Agency. ^ NRL-NRC Research Associate. hspace0.25in ^ JAYCOR, Vienna, VA 22102.
Unveiling the spatial structure of the overionized plasma in the supernova remnant W49B
NASA Astrophysics Data System (ADS)
Zhou, Xin; Miceli, Marco; Bocchino, Fabrizio; Orlando, Salvatore; Chen, Yang
2011-07-01
W49B is a mixed-morphology supernova remnant with thermal X-ray emission dominated by the ejecta. In this remnant, the presence of overionized plasma has been directly established, with information about its spatial structure. However, the physical origin of the overionized plasma in W49B has not yet been understood. We investigate this intriguing issue through a 2D hydrodynamic model that takes into account, for the first time, the mixing of ejecta with the inhomogeneous circumstellar and interstellar medium, the thermal conduction, the radiative losses from optically thin plasma and the deviations from equilibrium of ionization induced by plasma dynamics. The model was set up on the basis of the observational results. We found that the thermal conduction plays an important role in the evolution of W49B, inducing the evaporation of the circumstellar ring-like cloud (whose presence has been deduced from previous observations) that mingles with the surrounding hot medium, cooling down the shocked plasma, and pushes the ejecta backwards to the centre of the remnant, forming there a jet-like structure. During the evolution, a large region of overionized plasma forms within the remnant. The overionized plasma originates from the rapid cooling of the hot plasma originally heated by the shock reflected from the dense ring-like cloud. In particular, we found two different ways for the rapid cooling of plasma to appear: (i) the mixing of relatively cold and dense material evaporated from the ring with the hot shocked plasma and (ii) the rapid adiabatic expansion of the ejecta. The spatial distribution of the radiative recombination continuum predicted by the numerical model is in good agreement with that observed.
3D Hybrid Simulations of Interactions of High-Velocity Plasmoids with Obstacles
NASA Astrophysics Data System (ADS)
Omelchenko, Y. A.; Weber, T. E.; Smith, R. J.
2015-11-01
Interactions of fast plasma streams and objects with magnetic obstacles (dipoles, mirrors, etc) lie at the core of many space and laboratory plasma phenomena ranging from magnetoshells and solar wind interactions with planetary magnetospheres to compact fusion plasmas (spheromaks and FRCs) to astrophysics-in-lab experiments. Properly modeling ion kinetic, finite-Larmor radius and Hall effects is essential for describing large-scale plasma dynamics, turbulence and heating in complex magnetic field geometries. Using an asynchronous parallel hybrid code, HYPERS, we conduct 3D hybrid (particle-in-cell ion, fluid electron) simulations of such interactions under realistic conditions that include magnetic flux coils, ion-ion collisions and the Chodura resistivity. HYPERS does not step simulation variables synchronously in time but instead performs time integration by executing asynchronous discrete events: updates of particles and fields carried out as frequently as dictated by local physical time scales. Simulations are compared with data from the MSX experiment which studies the physics of magnetized collisionless shocks through the acceleration and subsequent stagnation of FRC plasmoids against a strong magnetic mirror and flux-conserving boundary.
Plasma wave observations during ion gun experiments
NASA Astrophysics Data System (ADS)
Olsen, R. C.; Weddle, L. E.; Roeder, J. L.
1990-06-01
Experiments in charge control on the AF/NASA P78-2 (SCATHA) satellite were conducted with a plasma/ion source in the inner magnetosphere. These experiments were monitored with plasma wave instruments capable of high temporal and frequency resolution in the 0-6 kHz frequency range. Ion gun experiments revealed two distinct classes of behavior. Nonneutralized ion beam operation at 1 mA, 1kV resulted in arcing signatures (spiky in time, broad frequency range), coincident with induced satellite potentials of -600 to -900 V. This signature disappeared when the accelerating voltage was switched off or the beam was neutralized. The signal is attributed to arcing between differentially charged surfaces. An additional feature was noted in the 100-kHz channel of the wave receiver. During emission of dense, low-energy plasma, a signal is generated which may be at the upper hybrid, or plasma frequency for the local plasma.
Time- and space-resolved light emission and spectroscopic research of the flashover plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleizer, J. Z.; Krasik, Ya. E.; Leopold, J.
2015-02-21
The results of an experimental study of the evolution of surface flashover across the surface of an insulator in vacuum subject to a high-voltage pulse and the parameters of the flashover plasma are reported. For the system studied, flashover is always initiated at the cathode triple junctions. Using time-resolved framing photography of the plasma light emission the velocity of the light emission propagation along the surface of the insulator was found to be ∼2.5·10{sup 8} cm/s. Spectroscopic measurements show that the flashover is characterized by a plasma density of 2–4 × 10{sup 14} cm{sup −3} and neutral and electron temperatures of 2–4 eV and 1–3 eV,more » respectively, corresponding to a plasma conductivity of ∼0.2 Ω{sup −1} cm{sup −1} and a discharge current density of up to ∼10 kA/cm{sup 2}.« less
Plasma-water interactions at atmospheric pressure in a dc microplasma
NASA Astrophysics Data System (ADS)
Patel, Jenish; Němcová, Lucie; Mitra, Somak; Graham, William; Maguire, Paul; Švrček, Vladimir; Mariotti, Davide
2013-09-01
Plasma-liquid interactions generate a variety of chemical species that are very useful for the treatment of many materials and that makes plasma-induced liquid chemistry (PiLC) very attractive for industrial applications. The understanding of plasma-induced chemistry with water can open up a vast range of plasma-activated chemistry in liquid with enormous potential for the synthesis of chemical compounds, nanomaterials synthesis and functionalization. However, this basic understanding of the chemistry occurring at the plasma-liquid interface is still poor. In the present study, different properties of water are analysed when processed by plasma at atmospheric-pressure with different conditions. In particular, pH, temperature and conductivity of water are measured against current and time of plasma processing. We also observed the formation of molecular oxygen (O2) and hydrogen peroxide (H2O2) for the same plasma conditions. The current of plasma processing was found to affect the water properties and the production of hydrogen peroxide in water. The relation between the number of electrons injected from plasma in water and the number of H2O2 molecules was established and based on these results a scenario of reactions channels activated by plasma-water interface is concluded.
Recombining plasma in the remnant of a core-collapsed supernova, Kes 17
NASA Astrophysics Data System (ADS)
Washino, Ryosaku; Uchida, Hiroyuki; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Kawabata Nobukawa, Kumiko; Koyama, Katsuji
2016-06-01
We report on Suzaku results concerning Kes 17, a Galactic mixed-morphology supernova remnant. The X-ray spectrum of the whole Kes 17 is well explained by a pure thermal plasma, in which we found Lyα of Al XIII and Heα of Al XII, Ar XVII, and Ca XIX lines for the first time. The abundance pattern and the plasma mass suggest that Kes 17 is a remnant of a core-collapsed supernova of a 25-30 M⊙ progenitor star. The X-ray spectrum of the north region is expressed by a recombining plasma. The origin would be due to the cooling of electrons by thermal conduction to molecular clouds located near the north region.
Degradation of bromophenol blue molecule during argon plasma jet irradiation
NASA Astrophysics Data System (ADS)
Matinzadeh, Ziba; Shahgoli, Farhad; Abbasi, Hamed; Ghoranneviss, Mahmood; Salem, Mohammad Kazem
2017-06-01
The aim of this paper is to study degradation of a bromophenol blue molecule (C19H10Br4O5S) using direct irradiation of cold atmospheric argon plasma jet. The pH of the bromophenol blue solution has been measured as well as its absorbance spectra and conductivity before and after the irradiation of non-thermal plasma jet in various time durations. The results indicated that the lengths of conjugated systems in the molecular structure of bromophenol blue decreased, and that the bromophenol blue solution was decolorized as a result of the decomposition of bromophenol blue. This result shows that non-thermal plasma jet irradiation is capable of decomposing, and can also be used for water purification.
Campaign for Levitation in LDX
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Kesner, J.; Michael, P. C.; Zhukovsky, A.
2006-10-01
In the past year, preparations have been made for the first flight of the Levitated Dipole Experiment (LDX). LDX, which consists of a 560 kg superconducting coil floating within a 5 m diameter vacuum chamber, is designed to study fusion relevant plasmas confined in a dipole magnetic field. During the spring, a high temperature superconducting levitation coil was integrated into the LDX facility. Testing was undertaken to verify the thermal performance of the coil under expected levitation conditions. In addition, a real-time operating system digital control system was developed that will be used for the levitation control. In July, plasma experiments were conducted with all superconducting magnets in operation. While still supported, roughly 75% of the weight of the floating coil was magnetically lifted by the levitation coil above. A series of plasma experiments were conducted with the same magnetic geometry as will be the case during levitation. During August, the second generation launcher system will be installed. The launcher, which retracts beyond the plasma's last closed field lines during operation, is designed to safely catch the floating coil following an unexpected loss of control. After this installation, levitation experiments will commence.
Multi-scale simulations of space problems with iPIC3D
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano
The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038
Performance modelling of plasma microthruster nozzles in vacuum
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.
Confinement of nonneutral plasmas in the Prototype Ring Trap device
NASA Astrophysics Data System (ADS)
Himura, Haruhiko; Yoshida, Zensho; Nakashima, Chihiro; Morikawa, Junji; Kakuno, Hidekazu; Tahara, Shigeru; Shibayama, Norihisa
1999-12-01
Recently, an internal-ring device named Proto-RT (Prototype Ring Trap) was constructed at University of Tokyo, and experiments on the device have been intensively conducted. The main goal of Proto-RT is to explore an innovative method to attain a plasma equilibrium with extremely high-β (β>1) in a toroidal geometry using non-neutral condition. At the first series of the experiments, pure electron plasmas (ne˜1013m-3) have been successfully confined inside a separatrix. No disruption is so far observed. The confinement time of the electron plasmas is of order 0.1 ms for an X point configuration. The non-neutrality of Δne˜1013m-3 is already beyond the critical value which is required to produce an enough self-electric field E in non-neutral plasmas with n0˜1019m-3, causing a strong E×B flow thoroughly over the plasmas where the hydrodynamic pressure of the flow is predicted to balance with the thermal pressure of the plasmas.
Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process.
Olszewski, P; Li, J F; Liu, D X; Walsh, J L
2014-08-30
The impact of pulse-modulated generation of atmospheric pressure plasma on the efficiency of organic dye degradation has been investigated. Aqueous samples of methyl orange were exposed to low temperature air plasma and the degradation efficiency was determined by absorbance spectroscopy. The plasma was driven at a constant frequency of 35kHz with a duty cycle of 25%, 50%, 75% and 100%. Relative concentrations of dissolved nitrogen oxides, pH, conductivity and the time evolution of gas phase ozone were measured to identify key parameters responsible for the changes observed in degradation efficiency. The results indicate that pulse modulation significantly improved dye degradation efficiency, with a plasma pulsed at 25% duty showing a two-fold enhancement. Additionally, pulse modulation led to a reduction in the amount of nitrate contamination added to the solution by the plasma. The results clearly demonstrate that optimization of the electrical excitation of the plasma can enhance both degradation efficiency and the final water quality. Copyright © 2014 Elsevier B.V. All rights reserved.
Markus, Corey; Metz, Michael
2017-04-01
The clinical catchment area for the Metabolic service at the Women's and Children's Hospital in Adelaide, South Australia, covers nearly 2.5millionkm 2 . Care of children with metabolic disorders in these remote areas is assisted from Adelaide, and at times, using plasma ammonia results from laboratories up to 3000km away. There are seven different platforms measuring plasma ammonia within this vast clinical catchment area. Hence, a correlation study was conducted to examine the relationship between plasma ammonia results from the seven different platforms in use throughout central Australia. Multiple aliquots of plasma from remainder EDTA samples for haematological investigations were frozen. Samples were then dispatched on dry ice to the laboratories being correlated. At an agreed date and time correlation samples were thawed and plasma ammonia measured. Passing-Bablok regression analysis showed slopes ranging from 1.00 to 1.10 and y-intercepts ranging from -10μmol/L to 1μmol/L. Despite the absence of a reference method or reference material and troublesome pre-analytical effects in ammonia measurement, plasma ammonia results from the different platforms in general compare well. The study also demonstrates that samples for ammonia measurement can be transported over great distances and still correlate well. Furthermore, a common reference interval for plasma ammonia may be a possibility. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Automated plasma control with optical emission spectroscopy
NASA Astrophysics Data System (ADS)
Ward, P. P.
Plasma etching and desmear processes for printed wiring board (PWB) manufacture are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. These techniques are not real-time methods however, and do not allow for immediate diagnosis and process correction. These tests often require scrapping some fraction of a batch to insure the integrity of the rest. Since these tests verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. These tests are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process anomalies should be detected and corrected before the parts being treated are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored along with applications of this technique to for process control, failure analysis and endpoint determination in PWB manufacture.
On-line depth measurement for laser-drilled holes based on the intensity of plasma emission
NASA Astrophysics Data System (ADS)
Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung
2014-09-01
The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.
Momentum-transport studies in high E x B shear plasmas in the National Spherical Torus Experiment.
Solomon, W M; Kaye, S M; Bell, R E; Leblanc, B P; Menard, J E; Rewoldt, G; Wang, W; Levinton, F M; Yuh, H; Sabbagh, S A
2008-08-08
Experiments have been conducted at the National Sperical Torus Experiment (NSTX) to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with ExB shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after nonresonant magnetic perturbations are applied to brake the plasma.
NASA Astrophysics Data System (ADS)
Winfrey, A. Leigh
Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An ablation-free capillary discharge computer code has been developed to model plasma flow and acceleration of pellets for fusion fueling in magnetic fusion reactors. Two case studies with and without ablation, including different source configurations have been studied here. Velocities necessary for fusion fueling have been achieved. New additions made to the code model incorporate radial heat and energy transfer and move ETFLOW towards being a 2-D model of the plasma flow. This semi 2-D approach gives a view of the behavior of the plasma inside the capillary as it is affected by important physical parameters such as radial thermal heat conduction and their effect on wall ablation.
Yusni, Yusni; Zufry, Hendra; Meutia, Firdalena; Sucipto, Krishna W.
2018-01-01
Objectives: To analyze the effect of celery leaf extract on blood glucose and plasma insulin levels in elderly pre-diabetics. Methods: This study was conducted between March and November 2014 at the Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia. A quasi-experimental pretest-posttest with a control group was conducted with elderly pre-diabetic volunteers. The subjects included 16 elderly pre-diabetics older than 60 (6 males and 10 females). The subjects were randomly divided into 2 groups: a control group (placebo-treated) and a treatment group (celery-treated). The treatment consisted of celery leaf extract capsules at the dose of 250 mg, 3 times per day (morning, afternoon and evening), 30 minutes before a meal, for 12 days. Data analysis was performed using the t-test (p<0.05). Results: There was a significant decrease in pre-prandial plasma glucose levels (p=0.01) and post-prandial plasma glucose levels (p=0.00), but no significant increase in plasma insulin levels (p=0.15) after celery leaf treatment in elderly pre-diabetics. Conclusion: Celery was effective at reducing blood glucose levels, but there was a lack of association between blood glucose levels and plasma insulin levels in elderly pre-diabetics. PMID:29436564
Solar Cycle Changes in the Position of the Intermediate Transition in the Venus Ionosheath.
NASA Astrophysics Data System (ADS)
Perez De Tejada, H. A.; Lundin, R. N. A.; Durand-Manterola, H. J.; Reyes-Ruiz, M.; Barabash, S.; Zhang, T.; Sauvaud, J. A.
2014-12-01
Measurements conducted with the ASPERA plasma probe and the magnetometer of the Venus Express (VEX) spacecraft in orbits that probed by the midnight plane within the Venus wake show the presence of a sharp plasma transition outside the region where enhanced fluxes of planetary ions are observed. That transition agrees with a feature reported earlier [1] from the VEX electron measurements and that is now also characterized by a sharp change in the speed and density of the solar wind H+ ions [2]. From the analysis of the plasma data of 10 VEX orbits in two different time periods (August 2006 and September 2009) it is possible to derive the position of the VEX spacecraft at the time when the plasma transition is observed in all 10 orbits. The data show a collection of different distances downstream from Venus where the plasma transition is detected and that are grouped for each time period. As a whole the X-distance on the sun-Venus line downstream from the planet for each of the 5 orbits corresponding to the August 2006 time period is smaller than that corresponding to the 5 orbits of the September 2009 time period. The average distance difference between both sets of data points is nearly one half planetary radius thus leading to two different groups in their distribution. The position of the plasma transition downstream from Venus will vary along the solar cycle being displaced to regions that extend farther away from the inner wake under solar maximum conditions. [1] Pérez-de-Tejada, H.et al., JGR, 116, JA015216, 2011. [2] Pérez-de-Tejada, H.et al., JGR, 118, JA019029, 2013.
LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications
NASA Astrophysics Data System (ADS)
Riès, D.; Dilecce, G.; Robert, E.; Ambrico, P. F.; Dozias, S.; Pouvesle, J.-M.
2014-07-01
In the field of biomedical application, many publications report on non-thermal plasma jet potentialities for cell behaviour modifications in cancer treatment, wound healing or sterilization. However most previous plasma jet characterizations were performed when jets expend freely in air. Only recently has the influence of the targeted surface been properly considered. In this work, modifications induced by various types of targets, mimicking the biological samples, in the plasma propagation and production of hydroxyl radicals are evidenced through time-resolved intensified charge-coupled device imaging and laser-induced fluorescence (LIF) measurements. A LIF model, also specifically dedicated to estimate air and water penetration inside the jet, is used and proves to be well adapted to characterize the plasma jet under biomedical application conditions. It is shown that the plasma produced by the plasma gun counter-propagates after impinging the surface which, for the same operating parameters, leads to an increase of almost one order of magnitude in the maximum OH density (from ˜2 × 1013 cm-3 for open-air propagation to ˜1 × 1014 cm-3 for a grounded metal target). The nature of the target, especially its electrical conductivity, as well as gas flow rate and voltage amplitude are playing a key role in the production of hydroxyl radicals. The strong interplay between gas flow dynamics and plasma propagation is here confirmed by air and water distribution measurements. The need for a multi-diagnostic approach, as well as great care in setting up the in situ characterization of plasma jets, is here emphasized. Special attention must not only be paid to voltage amplitude and gas flow rate but also to the nature, humidity and conductivity of the target.
Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code
NASA Astrophysics Data System (ADS)
Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.
The structural and electrical evolution of graphene by oxygen plasma-induced disorder.
Kim, Dong Chul; Jeon, Dae-Young; Chung, Hyun-Jong; Woo, YunSung; Shin, Jai Kwang; Seo, Sunae
2009-09-16
Evolution of a single graphene layer with disorder generated by remote oxygen plasma irradiation is investigated using atomic force microscopy, Raman spectroscopy and electrical measurement. Gradual changes of surface morphology from planar graphene to isolated granular structure associated with a decrease of transconductance are accounted for by two-dimensional percolative conduction by disorder and the oxygen plasma-induced doping effect. The corresponding evolution of Raman spectra of graphene shows several peculiarities such as a sudden appearance of a saturated D peak followed by a linear decrease in its intensity, a relatively inert characteristic of a D' peak and a monotonic increase of a G peak position as the exposure time to oxygen plasma increases. These are discussed in terms of a disorder-induced change of Raman spectra in the graphite system.
Filevich, Jorge; Grava, Jonathan; Purvis, Mike; Marconi, Mario C; Rocca, Jorge J; Nilsen, Joseph; Dunn, James; Johnson, Walter R
2006-07-01
We present the calculated prediction and the experimental confirmation that doubly ionized Ag and Sn plasmas can have an index of refraction greater than one for soft x-ray wavelengths. Interferometry experiments conducted using a capillary discharge soft x-ray laser operating at a wavelength of confirm that in few times ionized laser-created plasmas of these elements the anomalous dispersion from bound electrons can dominate the free electron contribution, making the index of refraction greater than one. The results confirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths confirming recent observations. The understanding of index of refraction at short wavelengths will become even more essential during the next decade as x-ray free electron lasers will become available to probe a wider variety of plasmas at higher densities and shorter wavelengths.
Analysis on laser plasma emission for characterization of colloids by video-based computer program
NASA Astrophysics Data System (ADS)
Putri, Kirana Yuniati; Lumbantoruan, Hendra Damos; Isnaeni
2016-02-01
Laser-induced breakdown detection (LIBD) is a sensitive technique for characterization of colloids with small size and low concentration. There are two types of detection, optical and acoustic. Optical LIBD employs CCD camera to capture the plasma emission and uses the information to quantify the colloids. This technique requires sophisticated technology which is often pricey. In order to build a simple, home-made LIBD system, a dedicated computer program based on MATLAB™ for analyzing laser plasma emission was developed. The analysis was conducted by counting the number of plasma emissions (breakdowns) during a certain period of time. Breakdown probability provided information on colloid size and concentration. Validation experiment showed that the computer program performed well on analyzing the plasma emissions. Optical LIBD has A graphical user interface (GUI) was also developed to make the program more user-friendly.
Plasma bicarbonate and odds of incident hypertension.
Mandel, Ernest I; Forman, John P; Curhan, Gary C; Taylor, Eric N
2013-12-01
Several biomarkers of metabolic acidosis, including lower plasma bicarbonate, have been associated with prevalent hypertension in cross-sectional studies. We sought to examine prospectively whether lower plasma bicarbonate is associated with incident hypertension. We conducted a prospective case-control study nested within the Nurses' Health Study II. Plasma bicarbonate was measured in 695 nonobese women without hypertension at time of blood draw who subsequently developed hypertension during 6 years of follow-up. Control subjects were matched to case subjects according to age, race, time and day of blood draw, and day of menstrual cycle. We used unconditional logistic regression to generate odds ratios (ORs) for development of hypertension by quintile of baseline plasma bicarbonate. After adjusting for matching factors, body mass index, family history of hypertension, plasma creatinine, and dietary and lifestyle factors, higher plasma bicarbonate was associated with lower odds of developing hypertension across quintiles (P for linear trend = 0.04). Those in the highest compared with the lowest quintile of plasma bicarbonate had 31% lower odds of developing hypertension (OR = 0.69; 95% confidence interval = 0.48-0.99). Further adjustment for diet-estimated net endogenous acid production, plasma insulin, 25-hydroxyvitamin D, and uric acid did not alter these findings. Our case-control study is consistent with a modest association between higher plasma bicarbonate and reduced odds of developing hypertension among nonobese women, although our findings are of borderline statistical significance. Further research is required to confirm this finding as part of a larger prospective cohort study and to elucidate the mechanism for this relation.
Physical-chemical characterization of the textile dye Azo Ab52 degradation by corona plasma
NASA Astrophysics Data System (ADS)
Gómez, A.; Torres-Arenas, A. J.; Vergara-Sánchez, J.; Torres, C.; Reyes, P. G.; Martínez, H.; Saldarriaga-Noreña, Hugo
2017-10-01
This work characterizes the degradation of the textile dye azo Acid Black 52 by measuring several physical and chemical parameters. A corona plasma was created at atmospheric pressure and applied on the liquid-air interface of water samples containing the dye. 1.0 mM of ferrous sulfate (FeSO4) was added to 1.0 mM dye solution, for a total volume of 250 mL. For each treatment, a number of parameters were quantified. These were voltage, current, temperature, loss of volume, pH, electrical conductivity, concentration, optical mission spectra, chemical oxygen demand (COD), total organic carbon (TOC), and the removal ratio. Because of the increase in the sample temperature, the volume lost by evaporation was explored. The results show that the efficiency of the dye degradation by plasma is a function of treatment time. Moreover, the reactive concentration of FeSO4 and the exposition time of the plasma were varied at a constant volume, leading to the determination of the concentrations and optimal times. Considering the degradation and removal parameters, at the maximum treated time of 80 min, it found that COD was of 96.36%, TOC of 93.93%, and the removal ratio of 97.47%.
Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor
NASA Astrophysics Data System (ADS)
Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.
2017-12-01
A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.
Impact of Solar Array Position on ISS Vehicle Charging
NASA Technical Reports Server (NTRS)
Alred, John; Mikatarian, Ronald; Koontz, Steve
2006-01-01
The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA. Arcing from the EMU is classified as a catastrophic hazard, which requires two-failure tolerant controls, i.e., three hazard controls. Each PCU is capable of maintaining the ISS floating potential below the requirement during EVA. The two PCUs provide a single failure tolerant control of ISS floating potential. In the event of the failure of one or two PCUs, a combination of solar array shunting and turning the solar arrays into their own wakes will be used to supply control of the plasma hazard (Reference 3). The purpose of this paper is to present on-orbit information that shows that ISS solar array placement with respect to the ISS velocity vector can control solar array plasma charging, and hence, provide an operational control for the plasma hazard. Also, this paper will present on-orbit information that shows that shunting of the ISS solar arrays can control solar array plasma charging, and hence, provide an additional operational control for the plasma hazard.
NASA Astrophysics Data System (ADS)
Li, Zhaorui; Livescu, Daniel
2017-11-01
The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.
NASA Astrophysics Data System (ADS)
Mostajeran Goortani, Behnam; Gitzhofer, François; Bouyer, Etienne; Mousavi, Mehdi
2009-03-01
An innovative method, namely ultrafast plasma surface melting, is developed to fabricate solid films of silicon with very high rates (150 cm2/min). The method is composed of preparing a suspension of solid particles in a volatile solvent and spreading it on a refractory substrate such as Mo. After solvent evaporation, the resulting porous layer is exposed to the flame tale of inductively coupled RF plasma to sinter and melt the surface particles and to prepare a solid film of silicon. It is shown that by controlling the flow dynamics and heat transfer around the substrate, and managing the kinetic parameters (i.e., exposure time, substrate transport speed, and reaction kinetics) in the reactor, we can produce solid crystalline Si films with the potential applications in photovoltaic cells industry. The results indicate that the optimum formation conditions with a film thickness of 250-700 μm is when the exposure time in the plasma is in the range of 5-12.5 s for a 100 × 50 mm large layer. By combining the Fourier’s law of conduction with the experimental measurements, we obtained an effective heat diffusivity and developed a model to obtain heat diffusion in the porous layer exposed to the plasma. The model further predicts the minimum and maximum exposure time for the substrate in the plasma flame as a function of material properties, the porous layer thickness and of the imposed heat flux.
Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code
NASA Astrophysics Data System (ADS)
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2017-10-01
FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.
NASA Astrophysics Data System (ADS)
Liu, Ning; Li, Ziyun; Chen, George; Chen, Qiang; Li, Shengtao
2017-07-01
Taking advantage of plasma technology using mixing gas CF4/H2, a fluorination process was performed on LDPE samples in the present paper. Different exposure times and discharge voltage levels were applied to produce four different types of samples. It has been found that after fluorination, space charge injection is obviously suppressed. And with longer fluorination times and higher discharge voltage, injected homocharges are reduced. By employing x-ray photoelectron spectroscopy, new chemical groups of C-F bindings are confirmed to be introduced by fluorination process of the plasma treatment. The charge suppression effect can be explained as: surface traps introduced by fluorination will reduce the interface field at both electrodes. Moreover, for fluorinated samples, heterocharge emerges obviously under 30 kV \\text{m}{{\\text{m}}-1} , which are considered as charges ionized from degradation products of etching and/or lower weight molecular specifies. Through the conductivity measurements also performed at 30 kV \\text{m}{{\\text{m}}-1} , it is found that, for the fluorinated samples with the better charge blocking effect, the conductivity is lowered. However, the conductivity of the fluorinated sample with the lightest degree of fluorination is found to be higher than that of normal samples.
Rezaei, Fatemeh; Nikiforov, Anton; Morent, Rino; De Geyter, Nathalie
2018-02-02
Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.
NASA Technical Reports Server (NTRS)
Bonifazi, C.; Lebreton, J. P.; Vannaroni, G.; Cosmovici, C.; Debrie, R.; Hamelin, M.; Pomathiod, L.; Arends, H.
1986-01-01
An improved experimental set-up in the Orleans Plasma Chamber allowed investigations of the I-V characteristics of a conductive spherical body (10 cm diameter) in a plasma environment. Moreover, the influence of a transversal magnetic field at 0.6 and 1.2 G was investigated, for the first time, both on the sheath potential profile and current collection. Floating potential profiles were measured at 16 different radial distances from the test body up to 9 body radii in 8 different angular positions. The test body potential could be increased in the range from -200 V up to +100 V. Preliminary results are shown and discussed.
Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas
NASA Astrophysics Data System (ADS)
Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen
2017-03-01
Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ > 1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urstöger, Georg; Resel, Roland; Coclite, Anna Maria, E-mail: anna.coclite@tugraz.at
2016-04-07
A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and watermore » were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm{sup −1}. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.« less
Numerical simulation of hydrodynamic flows in the jet electric
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.
2016-02-01
On the basis of concepts from magnetic hydrodynamics the mathematical model of hydrodynamic flows in the stream of electric arc plasma, obtained between the rod electrode and the target located perpendicular to the flat conductive, was developed. The same phenomenon occurs in the welding arc, arc plasma and other injection sources of charged particles. The model is based on the equations of magnetic hydrodynamics with special boundary conditions. The obtained system of equations was solved by the numerical method of finite elements with an automatic selection of the time step. Calculations were carried out with regard to the normal plasma inleakage on the solid conducting surface and the surface with the orifice. It was found that the solid surface facilitates three swirling zones. Interaction of these zones leads to the formation of two stable swirling zones, one of which is located at a distance of two radii from the axis and midway between the electrodes, another is located in the immediate vicinity of the continuous electrode. In this zone plasma backflow scattering fine particles is created. Swirling zones are not formed by using the plane electrode with an orifice. Thus, the fine particles can pass through it and consolidate.
Thermal instability in post-flare plasmas
NASA Technical Reports Server (NTRS)
Antiochos, S. K.
1976-01-01
The cooling of post-flare plasmas is discussed and the formation of loop prominences is explained as due to a thermal instability. A one-dimensional model was developed for active loop prominences. Only the motion and heat fluxes parallel to the existing magnetic fields are considered. The relevant size scales and time scales are such that single-fluid MHD equations are valid. The effects of gravity, the geometry of the field and conduction losses to the chromosphere are included. A computer code was constructed to solve the model equations. Basically, the system is treated as an initial value problem (with certain boundary conditions at the chromosphere-corona transition region), and a two-step time differencing scheme is used.
Wurden, G.A.
1999-01-19
Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.
Wurden, Glen A.
1999-01-01
Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.
Effects of transport coefficients on excitation of flare-induced standing slow-mode waves
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Davila, Joseph
2017-08-01
The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA, and interpreted as the slow-mode standing waves. By means of the seismology technique we have, for the first time, determined the transport coefficients in the hot (>9 MK) flare plasma, and found that thermal conductivity is suppressed by at least 3 times and viscosity coefficient is enhanced by a factor of 15 as the upper limit (Wang et al. 2015, ApJL, 811, L13). In this presentation, we first discuss possible causes for conduction suppression and viscosity enhancements. Then we use the nonlinear MHD simulations to validate the seismology method that is based on linear analytical analysis, and demonstrate the inversion scheme for determining transport coefficients using numerical parametric study. Finally, we show how the seismologically-determined transport coefficients are crucial for understanding the excitation of the observed standing slow-mode waves in coronal loops and the heating of the loop plasma by a footpoint flare.
Long Term Monitoring of the Io Plasma Torus During the Galileo Encounter
NASA Technical Reports Server (NTRS)
Brown, Michael E.
2002-01-01
In the fall of 1999, the Galileo spacecraft made four passes into the Io plasma torus, obtaining the best in situ measurements ever of the particle and field environment in this densest region of the Jovian magnetosphere. Supporting observations from the ground are vital for understanding the global and temporal context of the in situ observations. We conducted a three-month-long Io plasma torus monitoring campaign centered on the time of the Galileo plasma torus passes to support this aspect of the Galileo mission. The almost-daily plasma density and temperature measurements obtained from our campaign allow the much more sparse but also much more detailed Galileo data to be used to address the issues of the structure of the Io plasma torus, the stability mechanism of the Jovian magnetosphere, the transport of material from the source region near Io, and the nature and source of persistent longitudinal variations. Combining the ground-based monitoring data with the detailed in situ data offers the only possibility for answering some of the most fundamental questions about the nature of the Io plasma torus.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2017-10-01
We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weening, R. H.
2012-06-15
In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport inmore » regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.« less
Exploding Pusher Targets for Electron-Ion Coupling Measurements
NASA Astrophysics Data System (ADS)
Whitley, Heather D.; Pino, Jesse; Schneider, Marilyn; Shepherd, Ronnie; Benedict, Lorin; Bauer, Joseph; Graziani, Frank; Garbett, Warren
2015-11-01
Over the past several years, we have conducted theoretical investigations of electron-ion coupling and electronic transport in plasmas. In the regime of weakly coupled plasmas, we have identified models that we believe describe the physics well, but experimental data is still needed to validate the models. We are currently designing spectroscopic experiments to study electron-ion equilibration and/or electron heat transport using exploding pusher (XP) targets for experiments at the National Ignition Facility. Two platforms are being investigated: an indirect drive XP (IDXP) with a plastic ablator and a polar-direct drive XP (PDXP) with a glass ablator. The fill gas for both designs is D2. We propose to use a higher-Z dopant, such as Ar, as a spectroscopic tracer for time-resolved electron and ion temperature measurements. We perform 1D simulations using the ARES hydrodynamic code, in order to produce the time-resolved plasma conditions, which are then post-processed with CRETIN to assess the feasibility of a spectroscopic measurement. We examine target performance with respect to variations in gas fill pressure, ablator thickness, atom fraction of the Ar dopant, and drive energy, and assess the sensitivity of the predicted spectra to variations in the models for electron-ion equilibration and thermal conductivity. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675219.
Reversed Hall effect and plasma conductivity in the presence of charged impurities
NASA Astrophysics Data System (ADS)
Yaroshenko, V. V.; Lühr, H.
2018-01-01
The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.
Potential of mean force for electrical conductivity of dense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starrett, C. E.
The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less
Potential of mean force for electrical conductivity of dense plasmas
Starrett, C. E.
2017-09-28
The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less
Potential of mean force for electrical conductivity of dense plasmas
NASA Astrophysics Data System (ADS)
Starrett, C. E.
2017-12-01
The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. Current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. We present a new way to define this potential, drawing on ideas from classical fluid theory to define a potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.
Liu, Jufen; Gao, Lili; Zhang, Yali; Jin, Lei; Li, Zhiwen; Zhang, Le; Meng, Qinqin; Ye, Rongwei; Wang, Linlin; Ren, Aiguo
2015-06-01
Folic acid supplementation is recommended for all women of child-bearing age to prevent neural tube defects (NTDs). A nation-wide folic acid supplementation program was implemented in rural areas of China since 2009; however, changes in plasma folate levels in pregnant women were unknown. A cross-sectional survey was conducted in 2011 to 2012, with 1736 pregnant women enrolled, and results were compared with a previous survey in 2002 to 2004. A microbiological method was used to determine plasma folate levels. Preprogram and postprogram median plasma folate concentrations were compared while stratified by prevalence of NTDs and residence. In the high NTD prevalence population, plasma folate concentration increased to 33.4 (18.7, 58.4) nmol/L in the postprogram sample, which is 2.9 times of the preprogram. In the low NTD prevalence population, plasma folate increased to 67.9 (44.5, 101.9) nmol/L, which is 1.9 times of the preprogram. Gaps remained in plasma folate levels with respect to prevalence of NTDs and residence. Folic acid supplementation has a strong impact on plasma folate concentrations. Earlier supplementation (before the last menstrual period), increased supplementation frequency and more total days of supplementation were associated with a higher plasma folate concentration as demonstrated in both the high- and low-prevalence populations. Plasma folate levels among pregnant Chinese women increased dramatically after the nation-wide folic acid supplementation program in both rural and urban areas, and in populations of high and low NTD prevalence. The nation-wide program should have a component to ensure that supplementation begins before pregnancy. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koliner, J. J.; Boguski, J., E-mail: boguski@wisc.edu; Anderson, J. K.
2016-03-15
In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B{sub θ} measurement loops around the plasma minor diameter with qualitative agreementmore » between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B{sub θ} at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.« less
Zhang, Ri-Chao; Sun, Dan; Zhang, Ruirui; Lin, Wen-Feng; Macias-Montero, Manuel; Patel, Jenish; Askari, Sadegh; McDonald, Calum; Mariotti, Davide; Maguire, Paul
2017-01-01
Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The resulting AuNPs/PEDOT:PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT:PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT:PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT:PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces. PMID:28436454
NASA Astrophysics Data System (ADS)
Zhang, Ri-Chao; Sun, Dan; Zhang, Ruirui; Lin, Wen-Feng; Macias-Montero, Manuel; Patel, Jenish; Askari, Sadegh; McDonald, Calum; Mariotti, Davide; Maguire, Paul
2017-04-01
Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The resulting AuNPs/PEDOT:PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT:PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT:PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT:PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces.
Stabilizing windings for tilting and shifting modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardin, S.C.; Christensen, U.R.
1982-02-26
This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less
Properties of thermal air plasma with admixing of copper and carbon
NASA Astrophysics Data System (ADS)
Fesenko, S.; Veklich, A.; Boretskij, V.; Cressault, Y.; Gleizes, A.; Teulet, Ph
2014-11-01
This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors.
NASA Astrophysics Data System (ADS)
Kabouzi, Yassine
The remediation of greenhouse gases, such as perfluorinated compounds (PFCs), constitutes a major environmental concern. Plasmas operating at atmospheric pressure offer an efficient technology for the control of toxic and greenhouse gas emission. The two main objectives of the thesis were to investigate the mechanisms of contraction and filamentation in atmospheric-pressure microwave discharges, and to examine their influence on the plasma abatement process of PFC gases in these discharges. The finite thermal conductivity of the gas discharge is responsible for the gas nonuniform heating leading to a contracted discharge column. The gas thermal conductivity and the penetration depth of the microwave electric field in the plasma are shown to set the value of the plasma radius. The degree of contraction and filamentation of microwave discharges can be controlled, and even reduced, by modulating adequately the incident microwave power. The relaxation times of heat conduction and heat release are actually observed to be of the same magnitude, and correspond to the modulation period for which the discharge shows less contraction. PFC molecules are eliminated through their fragmentation by inelastic collisions with electrons and the subsequent oxidation of these fragments. Reformation of PFC molecules is the main process limiting the abatement efficiency in atmospheric-pressure microwave discharges. As a result of discharge radial contraction, a relative "colder" space between the plasma filament and the discharge tube wall favors PFC reformation and, therefore, lowers the destruction efficiency. The PFC destruction efficiency is found to increase with absorbed microwave power. Surface-wave microwave discharges sustained at atmospheric pressure prove to be an efficient and ecological solution for emission reduction of greenhouse gases.
Celik, I; Duda, D; Stinner, B; Kimura, K; Gajek, H; Lorenz, W
2003-10-01
The perioperative use of colloidal plasma substitutes is still under discussion. We therefore conducted a prospective randomised study with three commonly used plasma substitutes to examine their histamine releasing effects in 21 volunteers. MATERIAL OR SUBJETS: 21 male volunteers were enrolled in this prospective, randomised, controlled clinical study. Endpoints were the incidence of early and late histamine release and the time course of the release kinetics. Normovolemic hemodilution technique was used with hydroxyethyl starch (n = 6), human albumin (n = 6) and polygeline (n = 9). Measurement and observation period was 240 min after the start of the plasma substitute infusion. Heart rate, blood pressure, SaO(2), clinical symptoms/signs and plasma histamine were measured during the observation period. The incidence of histamine release over the whole observation period in all three groups was 100%. Histamine release occurred frequently in all three groups until 30 min (50%-78%) and up to 240 min (late release reaction: 67%-83%) after the start of infusion. Surprisingly even hydroxyethyl starch, which is regarded as a generally safe and effective plasma substitute, caused high incidences of late histamine release (67%). Histamine release is a well known side effect of polygeline and - to a lesser extent - also of albumin, but was a novel finding for hydroxyethyl starch. We demonstrated for the first time histamine releasing effects of hydroxyethyl starch over a long period of time after administration. This perioperatively and for intensive care possibly relevant finding should make clinicians aware of late side effects not yet connected with the clinical use of these colloidal plasma substitutes.
Wang, Lei; Qiang, Wei; Li, Ying; Cheng, Zeneng; Xie, Mengmeng
2017-09-01
Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL -1 , with both intra- and inter-day precision being <7% and biases <10%. The freeze-dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Abdu, M. A.; Batista, I. S.; Sobral, J. H. A.; Souza, J.; Santos, A.
2016-12-01
Equatorial and low - midlatitude ionospheric plasma dynamics and related phenomenology can be severely affected by disturbance electric fields associated with magnetic storms. Penetration electric fields, of under-shielding or over-shielding types, can cause anomalous development of plasma bubbles even during their non-occurrence season, or can lead to suppression of their normal development. Depending upon the longitude sector and local time, large relative changes in the Hall and Pedersen conductivities can occur due to storm induced extra E layer ionization or modifications in F layer plasma density, as a result of which the penetration electric fields may produce, among other effects, (1) plasma bubble zonal drift velocity reversal to westward, (2) large/abnormal F layer plasma uplift, (3) sporadic E layer disruption or its formation with instabilities. Beside these effects, the equatorial ionization anomaly is known to suffer latitudinal expansion and retraction. In this paper we will discuss some outstanding response features of the low altitude ionosphere under disturbance electric field as diagnosed by Digisondes, radars and optical imagers in the South American longitude sector, a region that is strongly influenced by the South Atlantic Magnetic anomaly (SAMA). The results will be discussed in the context of satellite observations (from C/NOFS) and modeling results based on SUPIM simulation of a realistic low latitude ionosphere.
Diagnosis of femtosecond plasma filament by channeling microwaves along the filament
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshershby, Mostafa; Ren, Yu; Qin, Jiang
2013-05-20
We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.
Analysis of ISS Plasma Interaction
NASA Technical Reports Server (NTRS)
Reddell, Brandon; Alred, John; Kramer, Leonard; Mikatarian, Ron; Minow, Joe; Koontz, Steve
2006-01-01
To date, the International Space Station (ISS) has been one of the largest objects flown in lower earth orbit (LEO). The ISS utilizes high voltage solar arrays (160V) that are negatively grounded leading to pressurized elements that can float negatively with respect to the plasma. Because laboratory measurements indicate a dielectric breakdown potential difference of 80V, arcing could occur on the ISS structure. To overcome the possibility of arcing and clamp the potential of the structure, two Plasma Contactor Units (PCUs) were designed, built, and flown. Also a limited amount of measurements of the floating potential for the present ISS configuration were made by a Floating Potential Probe (FPP), indicating a minimum potential of 24 Volts at the measurement location. A predictive tool, the ISS Plasma Interaction Model (PIM) has been developed accounting for the solar array electron collection, solar array mast wire and effective conductive area on the structure. The model has been used for predictions of the present ISS configuration. The conductive area has been inferred based on available floating potential measurements. Analysis of FPP and PCU data indicated distribution of the conductive area along the Russian segment of the ISS structure. A significant input to PIM is the plasma environment. The International Reference Ionosphere (IRI 2001) was initially used to obtain plasma temperature and density values. However, IRI provides mean parameters, leading to difficulties in interpretation of on-orbit data, especially at eclipse exit where maximum charging can occur. This limits our predicative capability. Satellite and Incoherent Scatter Radar (ISR) data of plasma parameters have also been collected. Approximately 130,000 electron temperature (Te) and density (Ne) pairs for typical ISS eclipse exit conditions have been extracted from the reduced Langmuir probe data flown aboard the NASA DE-2 satellite. Additionally, another 18,000 Te and Ne pairs of ISR data from several radar locations around the globe were used to assure consistency of the satellite data. PIM predictions for ISS charging made with this data correlated very well with FPP data, indicating that the general physics of spacecraft charging with high voltage solar arrays have been captured. The predictions also provided the probabilities of occurrences for ISS charging. These probabilities give a numerical measure of the number of times when the ISS will approach or exceed the vehicle plasma hazard conditions for each configuration. In this paper we shall present the interaction mechanisms between the ISS and the surrounding plasma and give an overview of the PIM components. PIM predictions are compared with available data followed by a discussion of the variability of plasma parameters and the conductive area on the ISS. The ISS PIM will be further tested and verified as data from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
Analysis of plasma characteristics and conductive mechanism of laser assisted pulsed arc welding
NASA Astrophysics Data System (ADS)
Liu, Shuangyu; Chen, Shixian; Wang, Qinghua; Li, Yanqing; Zhang, Hong; Ding, Hongtao
2017-05-01
This study aims to investigate the arc plasma shape and the spectral characteristics during the laser assisted pulsed arc welding process. The arc plasma shape was synchronously observed using a high speed camera, and the emission spectrum of plasma was obtained by spectrometer. The well-known Boltzmann plot method and Stark broadening were used to calculate the electron temperature and density respectively. The conductive mechanism of arc ignition in laser assisted arc hybrid welding was investigated, and it was found that the plasma current moved to the arc anode under the action of electric field. Thus, a significant parabolic channel was formed between the keyhole and the wire tip. This channel became the main method of energy transformation between the arc and the molten pool. The calculation results of plasma resistivity show that the laser plasma has low resistivity as the starting point of conductive channel formation. When the laser pulse duration increases, the intensity of the plasma radiation spectrum and the plasma electron density will increase, and the electron temperature will decrease.
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2018-03-01
In some laboratory and most astrophysical situations, plasma wake-field acceleration of electrons is one dimensional, i.e., variation transverse to the beam's motion can be ignored. Thus, one dimensional, particle-in-cell (PIC), fully electromagnetic simulations of electron plasma wake field acceleration are conducted in order to study the differences in electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes. First, we show that caution needs to be taken when using fluid simulations, as PIC simulations prove that an approximation for an electron bunch not to evolve in time for a few hundred plasma periods only applies when it is sufficiently relativistic. This conclusion is true irrespective of the plasma temperature. We find that in the linear regime and GeV energies, the accelerating electric field generated by the plasma wake is similar to the linear and MeV regimes. However, because GeV energy driving bunch stays intact for a much longer time, the final acceleration energies are much larger in the GeV energies case. In the GeV energy range and blowout regime, the wake's accelerating electric field is much larger in amplitude compared with the linear case and also plasma wake geometrical size is much larger. Thus, the correct positioning of the trailing bunch is needed to achieve the efficient acceleration. For the considered case, optimally, there should be approximately (90-100)c/ωpe distance between the trailing and driving electron bunches in the GeV blowout regime.
NASA Astrophysics Data System (ADS)
Hong, J. P.; Kim, C. O.; Nahm, T. U.; Kim, C. M.
2000-02-01
Microcrystalline silicon films have been prepared on indium-coated glass utilizing a layer-by-layer technique with a plasma-enhanced chemical-vapor deposition system. The microcrystalline films were fabricated by varying the number of cycles from 10 to 60 under a fixed H2 time (t2) of 120 s, where the corresponding deposition time (t1) of amorphous silicon thin film was 60 s. Structural properties, such as the crystalline volume fraction (Xc) and grain sizes were analyzed by using Raman spectroscopy and a scanning electron microscopy. The carrier transport was characterized by the temperature dependence of dark conductivity, giving rise to the calculation of activation energy (Ea). Optical energy gaps (Eg) were also investigated using an ultraviolet spectrophotometer. In addition, the process under different hydrogen plasma time (t2) at a fixed number of 20 cycles was extensively carried out to study the dominant role of hydrogen atoms in layer-by-layer deposition. Finally, the correlation between structural and electrical properties has been discussed on the basis of experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.
Atlas is a high current ({approximately} 30 MA peak, with a current risetime {approximately} 4.5 {micro}sec), high energy (E{sub stored} = 24 MJ, E{sub load} = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression ({rho}/{rho}{sub 0} > 5, P > 10 Mbar), high magnetic fields ({approximately} 2,000 T), high strain and strain rates ({var_epsilon} > 200%, d{var_epsilon}/dt {approximately} 10{sup 4} to 10{sup 6} s{sup {minus}1}), hydrodynamicmore » instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold ({approximately} 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of {approximately} 1.1 times solid, achieve ion and electron temperatures of {approximately} 10 eV, and pressures of {approximately} 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are being planned on an existing pulsed power facility at LANL and will be completed before the start of operation of Atlas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp
2015-08-03
Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced inmore » conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.« less
The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel
NASA Astrophysics Data System (ADS)
Li, Yang; Wang, Liang; Zhang, Dandan; Shen, Lie
2010-11-01
A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 °C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 °C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 °C within the same time.
Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.
2013-01-01
Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).
Combustion flame-plasma hybrid reactor systems, and chemical reactant sources
Kong, Peter C
2013-11-26
Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.
NASA Astrophysics Data System (ADS)
Steinhauer, Loren C.; Milroy, Richard D.; Slough, John T.
1985-03-01
A one-dimensional transport model is developed to simulate the confinement of plasma and magnetic flux in a field-reversed configuration. Given the resistivity, the confinement times can be calculated. Approximate expressions are found which yield the magnitude and gross profile of the resistivity if the confinement times are known. These results are applied to experimental data from experiments, primarily TRX-1, to uncover trends in the transport properties. Several important conclusions emerge. The transport depends profoundly, and inexplicably, on the plasma formation mode. The inferred transport differs in several ways from the predictions of local lower-hybrid-drift turbulence theory. Finally, the gross resistivity exhibits an unusual trend with xs (separatrix radius rs divided by the conducting wall radius rc ), and is peaked near the magnetic axis for certain predictable conditions.
Algebraic motion of vertically displacing plasmas
NASA Astrophysics Data System (ADS)
Pfefferlé, D.; Bhattacharjee, A.
2018-02-01
The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.
Does Formaldehyde Increase Cell Free DNA in Maternal Plasma Specimens?
Jacob, Rintu R; Saxena, Renu; Verma, Ishwar C
2016-11-01
There have been conflicting observations reported in the literature regarding the effects of formaldehyde in the recovery of cell free fetal DNA (CFF DNA) from maternal plasma. The aim of the present study was to assess the effect of formaldehyde treatment on circulating cell free DNA. We conducted this study using blood specimens collected from 11 pregnant women, each of whom was carrying a male fetus. DYS14 and HBB real time assays were performed to quantify fetal and total circulating cell free DNA from formaldehyde treated and untreated maternal plasma specimens, respectively. The concentration of total circulating cell free DNA in formaldehyde-treated maternal plasma was reduced, compared with untreated maternal plasma (n = 11; P = .02). The percentage of CFF DNA between formaldehyde-treated and untreated maternal plasma specimens did not differ significantly (n = 11; P = .15). Addition of formaldehyde does not significantly enhance the proportion of cell free fetal DNA when blood specimens are processed without delay. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Barnes, W. T.; Cargill, P. J.; Bradshaw, S. J.
2016-09-01
The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures of the actual heating may be detectable in some instances.
"Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares
NASA Astrophysics Data System (ADS)
Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen
2016-05-01
We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.
Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.
Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E
2008-06-25
Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.
Contra-rotating homopolar motor-generator for energy storage and return
Kustom, Robert L.; Wehrle, Robert B.
1978-01-01
An apparatus for receiving electrical energy in amounts of the order of hundreds of megajoules, converting the electrical energy to mechanical energy for storage, and delivering the stored energy as electrical energy in times of the order of a second comprises a sequence of stacked electrically conducting cylindrical shells having a common axis. The conducting shells are free to rotate and are separated by stationary insulating cylindrical shells. Adjacent conducting shells are connected electrically by brushes at the edges and a radial magnetic field is caused to pass through the conductors. The apparatus permits the reversal in a plasma heating coil of electric currents of amplitudes up to 100,000 amperes in a time of the order of a second.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.
2014-09-01
Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less
Plasma-catalyzed fuel reformer
Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele
2013-06-11
A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
C/NOFS, SWARM, and LISN Observations of Equatorial Plasma Bubbles
NASA Astrophysics Data System (ADS)
Valladares, C. E.; Coisson, P.; Buchert, S. C.; Huang, C.; Sheehan, R.
2017-12-01
We have used Langmuir Probe densities measured during the early commissioning phase of the SWARM mission and simultaneous number densities recorded with the PLP instrument on board the C/NOFS satellite to investigate the geometric characteristics of equatorial plasma bubbles (EPB). The SWARM satellites orbit in a polar orbit and the C/NOFS satellite has a near equatorial trajectory making it possible to precisely measure the north-south and the east-west width of plasma depletions. This unique satellite database is complemented with TEC values collected with hundreds of GPS receivers that belong to LISN and other networks that operate in South and Central America. The GPS receivers provide multiple and almost concurrent observations of the TEC depletions that are required to calculate the velocity of plasma bubbles as a function of time, latitude, and longitude. The bubble velocity field commonly decreases through the night from 150 to 0 m/s and from low to higher latitudes at a rate equal to 5 m/s/degree. This bubble velocity field is used to trace backward and forward in time the satellite and GPS observations and reconstruct plasma depletions in 3 dimensions. The 3-D geometry indicates that in December 2013, the EPBs most of the time correspond to a series of embedded shells that drift eastward with velocities that vary between 125 and 20 m/s. The 3-D reconstructed EPBs can be used to perform close comparisons with results of numerical simulations and 2-D observations conducted with coherent radars or imagers.
Investigation of plasma contactors for use with orbiting wires
NASA Technical Reports Server (NTRS)
Estes, Robert D.; Grossi, Mario D.; Hohlfeld, Robert
1987-01-01
The proposed Shuttle-based short tether experiments with hollow cathodes have the potential for providing important data that will not be obtained in long tether experiments. A critical property for hollow cathode effectiveness as a plasma contactor is the cross magnetic field conductivity of the emitted plasma. The different effects of hollow cathode cloud overlap in the cases of motion-driven and battery-driven operation are emphasized. The calculations presented on the size and shape of the hollow cathode cloud improve the qualitative picture of hollow cathodes in low Earth orbit and provide estimates of time constants for establishing the fully-expanded cloud. The magnetic boundary value problem calculations indicate the way in which the magnetic field will effect the shape of the cloud by resisting expansion in the direction perpendicular to the field. The large-scale interactions of the system were also considered. It was concluded that recent plasma chamber experiments by Stenzel and Urrutia do not model an electrodynamic tether well enough to apply the results to tethered system behavior. Orbiting short tether experiments on hollow cathodes will provide critical information on hollow cathode performance and the underlying physics that cannot be obtained any other way. Experiments should be conducted as soon as funding and a suitable space vehicle are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilczek, Sebastian; Trieschmann, Jan; Eremin, Denis
Low pressure capacitive radio frequency (RF) plasmas are often described by equivalent circuit models based on fluid approaches that predict the self-excitation of resonances, e.g., high frequency oscillations of the total current in asymmetric discharges, but do not provide a kinetic interpretation of these effects. In fact, they leave important questions open: How is current continuity ensured in the presence of energetic electron beams generated by the expanding sheaths that lead to a local enhancement of the conduction current propagating through the bulk? How do the beam electrons interact with cold bulk electrons? What is the kinetic origin of resonancemore » phenomena? Based on kinetic simulations, we find that the energetic beam electrons interact with cold bulk electrons (modulated on a timescale of the inverse local electron plasma frequency) via a time dependent electric field outside the sheaths. This electric field is caused by the electron beam itself, which leaves behind a positive space charge, that attracts cold bulk electrons towards the expanding sheath. The resulting displacement current ensures current continuity by locally compensating the enhancement of the conduction current. The backflow of cold electrons and their interaction with the nonlinear plasma sheath cause the generation of multiple electron beams during one phase of sheath expansion and contribute to a strongly non-sinusoidal RF current. These kinetic mechanisms are the basis for a fundamental understanding of the electron power absorption dynamics and resonance phenomena in such plasmas, which are found to occur in discharges of different symmetries including perfectly symmetric plasmas.« less
NASA Technical Reports Server (NTRS)
Williamson, P. R.; Banks, P. M.
1976-01-01
The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.
Research in pulsed power plasma physics
NASA Astrophysics Data System (ADS)
Hinshelwood, David; Rose, David
1993-11-01
The research was conducted in support of light-ion-driven inertial confinement fusion (ICF) for the Department of Energy (DOE), and nuclear weapon effects simulation (NWES) for the Defense Nuclear Agency (DNA). Accomplishments related to ion beams include: development of a practical backup approach to ion beam transport; the first studies of ion-beam interaction with a neutral gas; initial investigations of a promising industrial application of ion beam technology; and detailed theoretical evaluation of several different ion beam transport schemes. Major accomplishments relating to opening switches include: the first direct measurement of the electron density in an opening switch; detailed studies of switch conduction-time scaling; evaluation of several different switch plasma sources; and extensive studies of switch performance into diode loads, leading to the development of a new (and now generally accepted) model of switch behavior.
NASA Astrophysics Data System (ADS)
Fang, Z.; Qiu, Y.; Kuffel, E.
2004-08-01
Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics.
NASA Astrophysics Data System (ADS)
Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko
In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.
NASA Astrophysics Data System (ADS)
Semena, Andrey
It is widely accepted that accretion onto magnetized compact objects is channelled to some areas close to magnetic poles of the star. Thickness of this channelled accretion flow intimately depends on details of penetration of highly conducting plasma of the flow to the compact object magnetosphere, i.e. on magnetic diffusivity etc. Until now our knowledge of these plasma properties is scarce. In our work we present our attempts to estimate the thickness of the plasma flow on top of the magnetosphere from observations of accreting intermediate polars (magnetized white dwarfs). We show that properties of aperiodic noise of accreting intermediate polars can be used to put constrains on cooling time of hot plasma, heated in the standing shock wave above the WD surface. Estimates of the cooling time and the mass accretion rate provide us a tool to measure the density of post-shock plasma and the cross-sectional area of the accretion funnel at the WD surface. We have studied aperiodic noise of emission of one of the brightest intermediate polar EX Hya with the help of data in optical and X-ray energy bands. We put an upper limit on the plasma cooling timescale tau <0.2-0.5 sec, on the fractional area of the accretion curtain footprint f < 1.6 × 10(-4) . We show that measurements of accretion column footprints, combined with results of the eclipse mapping, can be used to obtain an upper limit on the penetration depth of the accretion disc plasma at the boundary of the magnetosphere, Delta r / r ≈ 10(-3) If the magnetospheres of accreting neutron stars have similar plasma penetration depths at their boundaries, we predict that footprints of their accretion columns should be very small, with fractional areas < 10(-6) .
Asymptotic regimes for the electrical and thermal conductivities in dense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.
2015-04-15
We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester–Thellung–Kubo–Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann–Franz law is obtained in the degenerate case.
An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor
NASA Astrophysics Data System (ADS)
Buchholtz, Brett W.; Wilbur, Paul J.
1993-07-01
An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.
An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor
NASA Technical Reports Server (NTRS)
Buchholtz, Brett W.; Wilbur, Paul J.
1993-01-01
An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.
Koliner, J. J.; Boguski, J.; Anderson, J. K.; ...
2016-03-25
In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch(RFP)plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFPplasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B measurement loops around the plasma minor diameter with qualitative agreement between each other andmore » the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.« less
NASA Astrophysics Data System (ADS)
Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Schaffner, D. A.; Brown, M. B.; Woodruff, S.; Meyer, T.
2018-02-01
We have explored the thermodynamics of compressed magnetized plasmas in laboratory experiments and we call these studies `magnetothermodynamics'. The experiments are carried out in the Swarthmore Spheromak eXperiment device. In this device, a magnetized plasma source is located at one end and at the other end, a closed conducting can is installed. We generate parcels of magnetized plasma and observe their compression against the end wall of the conducting cylinder. The plasma parameters such as plasma density, temperature and magnetic field are measured during compression using HeNe laser interferometry, ion Doppler spectroscopy and a linear probe array, respectively. To identify the instances of ion heating during compression, a PV diagram is constructed using measured density, temperature and a proxy for the volume of the magnetized plasma. Different equations of state are analysed to evaluate the adiabatic nature of the compressed plasma. A three-dimensional resistive magnetohydrodynamic code (NIMROD) is employed to simulate the twisted Taylor states and shows stagnation against the end wall of the closed conducting can. The simulation results are consistent to what we observe in our experiments.
Tůma, Petr; Gojda, Jan
2015-08-01
A CE method with contactless conductivity detection has been developed for the clinical determination of the branched chain amino acids (BCAAs) valine, isoleucine and leucine in human blood plasma. The CE separation was performed in an optimised BGE with composition of 3.2 M acetic acid in 20% v/v methanol, pH 2.0. The achieved separation time was 125 s when using a capillary with an effective length of 14.7 cm, electric field intensity of 0.96 kV/cm and simultaneous application of a hydrodynamic pressure of 50 mbar. The separation efficiency in blood plasma equalled 461 000 theoretical plates/m for valine and isoleucine, and 455 000 theoretical plates/m for leucine; the detection limits are equal to 0.4 μM for all three amino acids. The RSD values for repeatability of the migration time equalled 0.1% for measurements during a single day and 0.3% for measurements on different days; the RSD values for repeatability of the peak areas equalled 2.3-2.6% for measurements during a single day and 2.7-4.6% for measurements on different days. It followed from the performed tests that the plasmatic levels of BCAAs attain a maximum 60 min after intravenous application of an infusion of BCAAs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of gas adsorption on as-produced and modified carbon nanotubes
NASA Astrophysics Data System (ADS)
Rawat, Dinesh Singh
Volumetric adsorption isotherm measurements were used to study the adsorption characteristics of Ethane (C2H6) and Butane (C 4H10) on as-produced single-walled carbon nanotubes. The binding energy of the adsorbed alkane molecule was found to increase with increasing carbon chain length. Two adsorption substeps were obtained for each alkane molecule. However, the size of the high pressure substep was found to be gradually smearing with the increase in size of the adsorbed molecule. This phenomenon is interpreted as size entropy effect for linear molecules. This interpretation was also verified by determining the specific surface area of the substrate using linear molecules of different sizes. Kinetics measurements of alkane adsorption on SWNTs were also conducted and their dependence on the molecular length was determined. Similar adsorption measurements were performed for Argon (Ar) on as-produced single-walled carbon nanotubes and nanotubes that were structurally modified using acid treatment. Enhancement of the sorptive capacity and the presence of two distinct kinetics of gas adsorption verified partial opening of single walled carbon nanotubes as a result of chemical treatment. Mutiwalled carbon nanotubes were exposed to oxygen plasma treatment for varying time periods. Afterwards, adsorption measurements of Methane (CH 4) were conducted on untreated and oxygen plasma treated tubes. The presence of an additional substep, after exposing multiwalled carbon nanotubes to oxygen plasma for varying time periods, suggested progressive cleaning of nanotube surface.
Monte Carlo Modeling of Non-Local Electron Conduction in High Energy Density Plasmas
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey John
The implicit SNB (iSNB) non-local multigroup thermal electron conduction method of Schurtz et. al. [Phys. Plasmas 7, 4238 (2000)] and Cao et. al. [Phys. Plasmas 22, 082308 (2015)] is adapted into an electron thermal transport Monte Carlo (ETTMC) transport method to better model higher order angular and long mean free path non-local effects. The ETTMC model is used to simulate the electron thermal transport within inertial confinement fusion (ICF) type problems. The new model aims to improve upon the currently used iSNB, in particular by using finite particle ranges in comparison to the exponential solution of a diffusion method and by improved higher order angular modeling. The new method has been implemented in the 1D LILAC and 2D DRACO multiphysics production codes developed by the University of Rochester Laboratory for Laser Energetics. The ETTMC model is compared to iSNB for several direct drive ICF type simulations: Omega shot 60303 a shock timing experiment, Omega shot 59529 a shock timing experiment, Omega shot 68951 a cryogenic target implosion and a NIF polar direct drive phase plate design. Overall, the ETTMC method performs at least as well as the iSNB method and predicts lower preheating ahead of the shock fronts. This research was supported by University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories and the University of Wisconsin-Madison Foundation.
NASA Astrophysics Data System (ADS)
Goto, Taku; Iida, Masaki; Tan, Helen; Liu, Chang; Mayumi, Koichi; Maeda, Rina; Kitahara, Koichi; Hatakeyama, Kazuto; Ito, Tsuyohito; Shimizu, Yoshiki; Yokoyama, Hideaki; Kimura, Kaoru; Ito, Kohzo; Hakuta, Yukiya; Terashima, Kazuo
2018-03-01
We have developed a thermally conductive flexible elastomer as a composite material with slide-ring (SR) materials and boron nitride (BN) particles surface-modified via plasma in solution. This composite shows excellent properties as a flexible insulator for thermal management. Surface modification of BN particles using plasma in solution increases the tensile strength, extension ratio at break, toughness, and rubber characteristics of the composites, compared to SR and non-modified BN, while the Young's modulus values are identical. Furthermore, the thermal conductivity also improved as a result of plasma surface modification.
Development of FullWave : Hot Plasma RF Simulation Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei
2017-10-01
Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshcheryakov, A. I., E-mail: meshch@fpl.gpi.ru; Vafin, I. Yu., E-mail: ildar@fpl.gpi.ru
2016-07-15
Boronization of the vacuum chamber wall results in a considerable change in the composition of the plasma generated in working pulses of the L-2M stellarator and, accordingly, in the plasma effective charge. The paper presents results of measurements of the plasma effective charge carried out by two methods in the ohmic heating mode: from the data on the plasma conductivity and from the soft X-ray spectrum of plasma emission. Comparison of the values of the plasma effective charge obtained by these two methods makes it possible to determine the conditions in which the two values are in good agreement. Undermore » these conditions, the plasma effective charge can be correctly estimated from spectral measurements.« less
2016-06-08
forces. Plasmas in hypersonic and astrophysical flows are one of the most typical examples of such conductive fluids. Though MHD models are a low...remain powerful tools in helping researchers to understand the complex physical processes in the geospace environment. For example, the ideal MHD...vertex level within each physical time step. For this reason and the method’s DG ingredient, the method was named as the space-time discontinuous Galerkin
Inductive Measurement of Plasma Jet Electrical Conductivity
NASA Technical Reports Server (NTRS)
Turner, Matthew W.; Hawk, Clark W.; Litchford, Ron J.
2005-01-01
An inductive probing scheme, originally developed for shock tube studies, has been adapted to measure explosive plasma jet conductivities. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-inch diameter probe was designed and constructed, and calibration was accomplished by firing an aluminum slug through the probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-gram high explosive shaped charges. Measured conductivities were in the range of 3 kS/m for unseeded octol charges and 20 kS/m for seeded octol charges containing 2% potassium carbonate by mass.
Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.
2000-01-01
The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.
Studies on rock characteristics and timing of creep at selected landslide sites in Taiwan
Cheng-Yi Lee
2000-01-01
A study was conducted to investigate the causes of and rock characteristics at three landslide sites in the Tesngwen Reservoir watershed of southern Taiwan. Research methods used included the petrographic microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), inductively coupled plasma spectroscope (ICP), constant head permeameter in triaxial...
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.
Johnson, W R; Nilsen, J
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter
Johnson, W. R.; Nilsen, J.
2016-03-14
Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Bogatu, I. N.; Svidzinski, V. A.
2015-11-01
A novel project to develop Disruption Prediction And Simulation Suite (DPASS) of comprehensive computational tools to predict, model, and analyze disruption events in tokamaks has been recently started at FAR-TECH Inc. DPASS will eventually address the following aspects of the disruption problem: MHD, plasma edge dynamics, plasma-wall interaction, generation and losses of runaway electrons. DPASS uses the 3-D Disruption Simulation Code (DSC-3D) as a core tool and will have a modular structure. DSC is a one fluid non-linear, time-dependent 3D MHD code to simulate dynamics of tokamak plasma surrounded by pure vacuum B-field in the real geometry of a conducting tokamak vessel. DSC utilizes the adaptive meshless technique with adaptation to the moving plasma boundary, with accurate magnetic flux conservation and resolution of the plasma surface current. DSC has also an option to neglect the plasma inertia to eliminate fast magnetosonic scale. This option can be turned on/off as needed. During Phase I of the project, two modules will be developed: the computational module for modeling the massive gas injection and main plasma respond; and the module for nanoparticle plasma jet injection as an innovative disruption mitigation scheme. We will report on this development progress. Work is supported by the US DOE SBIR grant # DE-SC0013727.
NASA Astrophysics Data System (ADS)
Petorak, Christopher
The understanding of failure mechanisms in plasma sprayed 7 wt% yttria stabilized zirconia (YSZ) is a key step toward optimizing thermal barrier coating (TBC) usage, design, and life prediction. The purpose of the present work is to characterize and understand the stress relaxation behavior occurring in plasma-sprayed YSZ coatings, so that the correlating magnitude of unfavorable tensile stress, which coatings experienced upon cooling, may be reduced through microstructural design. The microstructure and properties of as-sprayed coatings changes immensely during service at high temperature, and therefore the effects of long heat-treatment times, and the concomitant change within the microstructure, on the time-dependent mechanical behavior of stand-alone YSZ coatings was studied in parallel with the as-sprayed coating condition. Aside from influencing the mechanical properties, stress relaxation also affects the insulating efficiency of plasma-sprayed 7wt% YSZ coatings. Directionally dependent changes in microstructure due to stress relaxation of a uniaxially applied stress at 1200°C were observed in plasma-sprayed coatings. Small angle neutron scattering (SANS) investigation of coatings after stress relaxation displayed a 46% reduction in the specific surface area connected to the load-orientation dependent closure of void surface area perpendicular to the applied load when compared to coatings sintered in air, i.e. no applied load. These anisotropic microstructural changes were linked to the thermal properties of the coating. For example, a coating stress relaxed from 60 MPa for 5-min at 1200°C exhibited a thermal conductivity of 2.1 W/m-K. A coating that was only heat-treated for 5-min at 1200°C (i.e. no stress applied) exhibited a thermal conductivity of 1.7 W/m·K. In the current study, uniaxial stress relaxation in plasma-sprayed 7wt% YSZ coatings was determined the result of: (1) A more uniform distribution of the applied load with time, (2) A reduction in the SSA associated with void systems due to sintering, specifically the closing and healing of intralamellar cracks perpendicular to the applied stress, and (3) A compaction and closure of void systems under the applied load. These anisotropic changes in microstructure result in distinguishable changes in thermo-mechanical properties, with very minute changes to the overall bulk density.
Algebraic motion of vertically displacing plasmas
Pfefferle, D.; Bhattacharjee, A.
2018-02-27
In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less
Algebraic motion of vertically displacing plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfefferle, D.; Bhattacharjee, A.
In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less
Influence of time, temperature and coagulation on the measurement of C3, C3 split products and C4.
Sinosich, M J; Teisner, B; Brandslund, I; Fisher, M; Grudzinskas, J G
1982-11-26
Quantitative and qualitative immunoelectrophoretic analyses of circulating C3, C3 split products and C4 were performed in matched EDTA plasma and serum obtained from 5 normal subjects and stored for up to 48 h at room temperature (18 degrees C-22 degrees C) and 4 degrees C. Fluctuations in apparent levels of C3 were greater in serum than plasma stored at room temperature, a fall in levels seen by 24 h being followed by a significant increase. By contrast, levels of C3 did not alter if stored at 4 degrees C. C4 levels in both EDTA plasma and serum remained unchanged for 24 h, a slight decrease being seen at 48 h. Levels of C4 remained constant if samples were stored at 4 degrees C. Crossed immunoelectrophoresis revealed a significant progressive decrease in C3 levels and a simultaneous increase in C3c occurring after 4 h in serum and 8 h in EDTA plasma, stored at room temperature. In studies conducted at 4 degrees C, similar but delayed fluctuations were seen. A progressive and significant increase in C3d levels was seen in both plasma and serum samples stored at room temperature, levels rising to 276% (plasma) and 308% (serum) of levels seen at zero time. At 4 degrees C marginal increases in C3d levels only were observed. These results suggest that in vitro degradation of C3 and C4 are readily facilitated by temperature, time and coagulation, and that conditions of collection and storage of samples must be optimized for the accurate definition of activation of the complement cascade.
NASA Astrophysics Data System (ADS)
Bravenec, R. V.; Ross, D. W.; Austin, M. E.; Gentle, K. W.; Deboo, J. C.; DIII-D Team; McKee, G. R.; Dorland, W.; Rhodes, T. L.; Zeng, L.
2002-11-01
Experiments to elucidate the nature of electron thermal transport have been conducted in DIII-D plasmas using modulated off-axis electron-cyclotron heating (ECH). Density fluctuations were measured using beam-emission spectroscopy, microwave reflectometry, and far-infrared scattering. Simulations of the experiment are performed with the gyrokinetic and gyrofluid flux-tube codes GS2(F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7), 1904 (2000) and refs. therein. and GRYFFIN,(W. Dorland and G.W. Hammett, Phys. Fluids B 5), 812 (1993); M.A. Beer and G.W. Hammett, Phys. Plasmas 3, 4046 (1996). respectively. Comparisons of experiment and simulation results for the fluctuations and transport fluxes (ion and electron) will be presented for both time-averaged and modulated quantities.
Germovsek, Eva; Lutsar, Irja; Kipper, Karin; Karlsson, Mats O; Planche, Tim; Chazallon, Corine; Meyer, Laurence; Trafojer, Ursula M T; Metsvaht, Tuuli; Fournier, Isabelle; Sharland, Mike; Heath, Paul; Standing, Joseph F
2018-04-19
Sepsis and bacterial meningitis are major causes of mortality and morbidity in neonates and infants. Meropenem, a broad-spectrum antibiotic, is not licensed for use in neonates and infants below 3 months of age and sufficient information on its plasma and CSF disposition and dosing in neonates and infants is lacking. To determine plasma and CSF pharmacokinetics of meropenem in neonates and young infants and the link between pharmacokinetics and clinical outcomes in babies with late-onset sepsis (LOS). Data were collected in two recently conducted studies, i.e. NeoMero-1 (neonatal LOS) and NeoMero-2 (neonatal meningitis). Optimally timed plasma samples (n = 401) from 167 patients and opportunistic CSF samples (n = 78) from 56 patients were analysed. A one-compartment model with allometric scaling and fixed maturation gave adequate fit to both plasma and CSF data; the CL and volume (standardized to 70 kg) were 16.7 (95% CI 14.7, 18.9) L/h and 38.6 (95% CI 34.9, 43.4) L, respectively. CSF penetration was low (8%), but rose with increasing CSF protein, with 40% penetration predicted at a protein concentration of 6 g/L. Increased infusion time improved plasma target attainment, but lowered CSF concentrations. For 24 patients with culture-proven Gram-negative LOS, pharmacodynamic target attainment was similar regardless of the test-of-cure visit outcome. Simulations showed that longer infusions increase plasma PTA but decrease CSF PTA. CSF penetration is worsened with long infusions so increasing dose frequency to achieve therapeutic targets should be considered.
Triggered plasma opening switch
Mendel, Clifford W.
1988-01-01
A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.
NASA Astrophysics Data System (ADS)
Parali, Levent; Kurbanov, Mirza A.; Bayramov, Azad A.; Tatardar, Farida N.; Sultanakhmedova, Ramazanova I.; Xanlar, Huseynova Gulnara
2015-11-01
High-density polymer composites with semiconductor or dielectric fillers such as aluminum nitride (AIN), aluminum oxide (Al2O3), titanium carbide (TiC), titanium nitride (TiN), boron nitride (BN), silicon nitride (Si3N4), and titanium carbonitride (TiCN) were prepared by the hot pressing method. Each powder phase of the composites was exposed to an electric discharge plasma process before composite formation. The effects of the electric discharge plasma process and the filler content (volume fraction) on the thermal conductivity, volt-ampere characteristics, thermally stimulated depolarization current, as well as electrical and mechanical strength were investigated. The results of the study indicate that, with increasing filler volume fraction, the thermal conductivity of the samples also increased. Furthermore, the thermal conductivity, and electrophysical and mechanical properties of the high-density polyethylene + 70% BN composite modified using the electric discharge plasma showed improvement when compared with that without electric discharge plasma treatment.
Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech
NASA Astrophysics Data System (ADS)
Murakami, T.; Okuno, Y.; Yamasaki, H.
2008-02-01
This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
The spatial distribution and time evolution of impact-generated magnetic fields
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Schultz, P. H.
1991-01-01
The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.
Song, Helen; Li, Hung-Wing; Munson, Matthew S.; Van Ha, Thuong G.; Ismagilov, Rustem F.
2006-01-01
This paper describes extending plug-based microfluidics to handling complex biological fluids such as blood, solving the problem of injecting additional reagents into plugs, and applying this system to measuring of clotting time in small volumes of whole blood and plasma. Plugs are droplets transported through microchannels by fluorocarbon fluids. A plug-based microfluidic system was developed to titrate an anticoagulant (argatroban) into blood samples and to measure the clotting time using the activated partial thromboplastin time (APTT) test. To carry out these experiments, the following techniques were developed for a plug-based system: (i) using Teflon AF coating on the microchannel wall to enable formation of plugs containing blood and transport of the solid fibrin clots within plugs, (ii) using a hydrophilic glass capillary to enable reliable merging of a reagent from an aqueous stream into plugs, (iii) using bright-field microscopy to detect the formation of a fibrin clot within plugs and using fluorescent microscopy to detect the production of thrombin using a fluorogenic substrate, and (iv) titration of argatroban (0–1.5 μg/mL) into plugs and measurement of the resulting APTTs at room temperature (23 °C) and physiological temperature (37 °C). APTT measurements were conducted with normal pooled plasma (platelet-poor plasma) and with donor’s blood samples (both whole blood and platelet-rich plasma). APTT values and APTT ratios measured by the plug-based microfluidic device were compared to the results from a clinical laboratory at 37 °C. APTT obtained from the on-chip assay were about double those from the clinical laboratory but the APTT ratios from these two methods agreed well with each other. PMID:16841902
Plasma Mesothelin as a Novel Diagnostic and Prognostic Biomarker in Colorectal Cancer
Li, Shuwei; Xie, Lisheng; He, Lei; Fan, Zhimin; Xu, Junhua; Xu, Kaili; Zhu, Lingjun; Ma, Gaoxiang; Du, Mulong; Chu, Haiyan; Zhang, Zhengdong; Ni, Min; Wang, Meilin
2017-01-01
Objective Mesothelin is a cell surface protein and overexpressed in many cancers. However, the potential value of mesothelin as plasma biomarker in colorectal cancer has not been explored. The purpose of this study was to identify whether plasma mesothelin is a suitable diagnostic and prognostic biomarker for colorectal cancer. Methods We performed a two-stage case-control study to evaluate plasma mesothelin levels in colorectal cancer using enzyme-linked immunosorbent assay (ELISA). Preoperative and postoperative plasma were collected to examine the level changes influenced by surgery. Receiver operating characteristic (ROC) curves were applied to identify the diagnostic value of plasma mesothelin. We also conducted univariate Kaplan-Meier survival analysis and Cox regression analysis of patients with survival information. Results We found that the plasma mesothelin levels in colorectal cancer patients were significantly higher than that in the controls (P < 0.001) with an AUC value of 0.690 (95% CI = 0.625 to 0.752). Individuals with lower mesothelin level had a longer survival time (adjusted HR = 4.43, 95% CI = 1.93-10.15, P < 0.001). Furthermore, Patients had slightly decreased mesothelin levels in postoperative plasma than preoperative plasma, although the alteration was not statistically significant (P = 0.052). Conclusion Our findings highlight the correlative relationship between plasma mesothelin levels and the presence and progression of colorectal cancer. Plasma mesothelin may be a potential diagnostic and, or prognostic biomarker for colorectal cancer. PMID:28638449
Development of a Real Time Internal Charging Tool for Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Posey, Nathaniel A.; Minow, Joesph I.
2013-01-01
The high-energy electron fluxes encountered by satellites in geosynchronous orbit pose a serious threat to onboard instrumentation and other circuitry. A substantial build-up of charge within a satellite's insulators can lead to electric fields in excess of the breakdown strength, which can result in destructive electrostatic discharges. The software tool we've developed uses data on the plasma environment taken from NOAA's GOES-13 satellite to track the resulting electric field strength within a material of arbitrary depth and conductivity and allows us to monitor the risk of material failure in real time. The tool also utilizes a transport algorithm to simulate the effects of shielding on the dielectric. Data on the plasma environment and the resulting electric fields are logged to allow for playback at a variable frame rate.
Grande, Silvia; Van Guyse, Joachim; Nikiforov, Anton Y; Onyshchenko, Iuliia; Asadian, Mahtab; Morent, Rino; Hoogenboom, Richard; De Geyter, Nathalie
2017-09-27
An atmospheric pressure plasma jet (APPJ) specifically designed for liquid treatment has been used in this work to improve the electrospinnability of a 5 w/v % solution of poly-ε-caprolactone (PCL) in a mixture of chloroform and N,N-dimethylformamide. Untreated PCL solutions were found to result in nonuniform fibers containing a large number of beads, whereas plasma-treated solutions (exposure time of 2-5 min) enabled the generation of beadless, uniform nanofibers with an average diameter of 450 nm. This enhanced electrospinnability was found to be mainly due to the highly increased conductivity of the plasma-modified PCL solutions. Consequently, more stretching of the polymer jet occurred during electrospinning, leading to the generation of bead-free fibers. Plasma treatment also results in an increased viscosity and decreased pH values. To explain these observed changes, optical emission spectroscopy (OES) has been used to examine the excited species present in the APPJ in contact with the PCL solution. This study revealed that the peaks attributed to H, CH, CH 2 , and C 2 species could be responsible for the degradation of solvent molecules and/or PCL structures during the plasma treatment. Size exclusion chromatography and X-ray photoelectron spectroscopy results showed that the molecular weight and the chemical composition of PCL were not significantly affected by the APPJ treatment. Plasma exposure mainly results in the degradation of the solvent molecules instead of modifying the PCL macromolecules, preserving the original polymer as much as possible. A hypothesis for the observed macroscopic changes in viscosity and pH values could be the generation of new chemical species such as HCl and/or HNO 3 . These species are characterized by their high conductivity, low pH values, and strong polarity and could enhance the solvent quality for PCL, leading to the expansion of the polymer coil, which could in turn explain the observed enhanced viscosity after plasma modification.
NASA Technical Reports Server (NTRS)
Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.
1998-01-01
Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, W. A.; Koning, J. M.; Strozzi, D. J.
Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the fieldmore » is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ω eτ ei≲1, where Ω e = eB/m ec and τ ei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high- Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P 2/P 0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.« less
Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
Farmer, W. A.; Koning, J. M.; Strozzi, D. J.; ...
2017-05-09
Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the fieldmore » is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ω eτ ei≲1, where Ω e = eB/m ec and τ ei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high- Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P 2/P 0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.« less
Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
NASA Astrophysics Data System (ADS)
Farmer, W. A.; Koning, J. M.; Strozzi, D. J.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O. S.; Rosen, M. D.
2017-05-01
We present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the "Biermann battery" mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the field is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ωeτei≲1 , where Ωe=e B /mec and τei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high-Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P2/P0 by ˜20 % . This indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.
Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.
2016-01-01
We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704
NASA Astrophysics Data System (ADS)
Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.
2016-06-01
We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.
Lu, Dan; Xu, Xiao; Li, Chunlei; Wang, Sicen
2018-01-01
A rapid and precise liquid chromatography coupled with hybrid ion trap/time-of-flight mass spectrometry method to detect and quantify caulophine and its possible active metabolites in rat plasma and urine was developed. Samples were prepared by plasma protein precipitation combined with a liquid-liquid extraction method. The separation was carried out on an InertSustain® C18 column with a mobile phase comprising methanol and 0.1% aqueous formic acid solution. The analysis was complete in 20 min with a flow rate of 0.4 mL/min. Taspine was used as the internal standard. Mass spectrometric detection was conducted with hybrid ion trap/time-of-flight equipped with electrospray ionization in the positive ion mode. The calibration curves of caulophine were linear over the concentration ranges of 0.002-0.20 μg/mL for plasma and 0.005-0.50 μg/mL for urine with the correlation coefficients greater than 0.998 in both cases. The method was successfully used to investigate the pharmacokinetics and bioavailability in rat plasma and urine samples after intragastric and intraperitoneal administration of caulophine sodium salt. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of magnetic field structure on the conduction cooling of flare loops
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Sturrock, P. A.
1976-01-01
A simple model facilitates calculation of the influence of magnetic-field configuration on the conduction cooling rate of a hot post-flare coronal plasma. The magnetic field is taken to be that produced by a line dipole or point dipole at an arbitrary depth below the chromosphere. For the high temperatures (at least 10 million K) produced by flares, the plasma may remain static and isobaric. The influence of the field is such as to increase the heat flux (per unit area) into the chromosphere, but to decrease the total conduction cooling of the flare plasma. This leads to a significant enhancement of the total energy radiated by the flare plasma.
Henderson, O.A.
1962-07-17
An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)
Method for forming synthesis gas using a plasma-catalyzed fuel reformer
Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele
2015-04-28
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
NASA Technical Reports Server (NTRS)
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2001-01-01
Measurement of plasma jet electrical conductivity has utility in the development of explosively driven magnetohydrodynamic (MHD) energy converters as well as magnetic flux compression reaction chambers for nuclear/chemical pulse propulsion and power. Within these types of reactors, the physical parameter of critical importance to underlying MHD processes is the magnetic Reynolds number, the value of which depends upon the product of plasma electrical conductivity and velocity. Therefore, a thorough understanding of MHD phenomena at high magnetic Reynolds number is essential, and methods are needed for the accurate and reliable measurement of electrical conductivity in high-speed plasma jets. It is well known that direct measurements using electrodes suffer from large surface resistance, and an electrodeless technique is desired. To address this need, an inductive probing scheme, originally developed for shock tube studies, has been adapted. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-in.-diameter probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-g shaped charges. Measured conductivities were in the range of 4 kS/m for unseeded octol charges and 26 kS/m for seeded octol charges containing 2-percent potassium carbonate by mass.
NASA Astrophysics Data System (ADS)
Shmeleva, O. P.
The flare transition layer exists as a relatively steady formation even during impulsive heating. It is maintained by a heat flow from the high-temperature plasma, where the major part of the electron beam energy is absorbed. The lifetime of this plasma is much greater than the impulsive heating time. Intensities of resonance UV lines are calculated using both the model of impulsive nonthermal heating by energetic electrons and the model of continuous thermal heating. The calculated line intensity is almost constant during a long time. The line Doppler shifts predicted by the former model match observations. This suggests that the model represents sufficiently well the actual dynamics of the flare plasma. The flare transition layer is a thin formation, its thickness being Δξ = 1021m-2. It is therefore described adequately within the p = const approximation though the picture of hydrodynamic response of the solar atmosphere to the impulsive heating by energy flows is rather complicated and nonsteady, of course. The intensities of the C IV λλ154.8, 155.1 nm and O VI λλ103.2, 103.8 nm lines are calculated within the scope of the model of continuous thermal heating, in which the conductive heating of the flare transition layer is balanced by radiative cooling. The line intensities are proportional to the pressure in the layer, which permits the pressure to be found from the observed line intensities. The analysis reveals that both heating models adequately represent the actual structure and dynamics of plasma in a flare. In the flare transition layer, the classical heat conduction always does work.
Vanadium dioxide-based materials for potential thermal switching applications
NASA Astrophysics Data System (ADS)
Jeong, Minyoung
One of the materials able to exhibit a transition from insulators to metals (IMT materials) is vanadium dioxide (VO2). Through IMT, VO2 shows a drop of resistivity of five orders of magnitude at a picosecond timescale. In this work, the feasibility of using VO2 as an efficient thermal switching device is discussed. Several synthesis methods (sol-gel, hot press and spark plasma sintering) were attempted to obtain VO2 sample in pellet form. From the X-ray diffraction results, it was found that spark plasma sintering (SPS) yielded the highest phase purity. Several sintering parameters such as temperature or sintering time were tested to determine the optimal sintering conditions. For better thermal switching behavior, high-energy ball milling was used to reduce lattice thermal conductivity (klat.) in the insulator phase. Ball-milling time was varied from 30 minutes to 2 hours. It was found that with increasing milling time, the k lat. was reduced. Thus, it was demonstrated that thermal switching behavior was most efficient with 2 hour-milling. To improve electronic thermal conductivity ( kelec.) in the metallic state, nano-sized copper particles were added to the VO2 system with a subtle amount variation ranging from 3at % to 5 at%. Results show that a composite with 5 at% Cu (copper) addition exhibited the largest increase in thermal conductivity ( k) in the metallic state. In addition to this, a basic mechanism behind IMT and some of the exemplary IMT-based applications were introduced.
High energy density Z-pinch plasmas using flow stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. Amore » sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.« less
NASA Astrophysics Data System (ADS)
Loebner, Keith; Wang, Benjamin; Cappelli, Mark
2014-10-01
The formation and propagation of high velocity plasma jets in a pulsed, coaxial, deflagration-type discharge is examined experimentally. A sensitive, miniaturized, immersed probe array is used to map out magnetic flux density and associated radial current density as a function of time and axial position. This array is also used to probe the magnetic field gradient across the exit of the accelerator and in the jet formation region. Sensitive interferometry via a continuous-wave helium-neon laser source is used to probe the structure of the plasma jet over multiple chords and axial locations. A two dimensional plasma density gradient profile at an instant in time during jet formation is compiled via Shack-Hartmann wavefront sensor analysis. The qualitative characteristics of rarefaction and/or shock wave formation as a function of chamber back-pressure is examined via fast-framing ICCD imaging. These measurements are compared to existing resistive MHD simulations of the coaxial deflagration accelerator and the ensuing rarefaction jet that is expelled from the electrode assembly. The physical mechanisms governing the behavior of the discharge and the formation of these high energy density plasma jets are proposed and validated against both theoretical models and numerically simulated behavior. This research was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
Algebraic motion of vertically displacing plasmas
NASA Astrophysics Data System (ADS)
Bhattacharjee, Amitava; Pfefferle, David; Hirvijoki, Eero
2017-10-01
The vertical displacement of tokamak plasmas is modelled during the non-linear phase by a free-moving current-carrying rod coupled to a set of fixed conducting wires and a cylindrical conducting shell. The models capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the vacuum vessel. The plasma is assumed not to vary during the VDE such that it behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented from coming in contact with the wall due to steep effective potential barriers by the eddy currents, and will hence oscillate at Alfvénic frequencies about a given force-free position. In addition to damping oscillations, resistivity allows for the column to drift towards the vessel on slow flux penetration timescales. The initial exponential motion of the plasma, i.e. the resistive vertical instability, is succeeded by a non-linear sinking behaviour, that is shown analytically to be algebraic and decelerative. The acceleration of the plasma column often observed in experiments is thus conjectured to originate from an early sharing of toroidal current between the core, the halo plasma and the wall or from the thermal quench dynamics precipitating loss of plasma current
Marshall, W.S.; Emberley, T.R.; Singer, T.D.; Bryson, S.E.; McCormick, S.D.
1999-01-01
Freshwater-adapted killifish (Fundulus heteroclitus) were transferred directly from soft fresh water to full-strength sea water for periods of 1h, 3h, 8h and 1, 2, 7, 14 and 30 days. Controls were transferred to fresh water for 24 h. Measured variables included: blood [Na+], osmolality, glucose and cortisol levels, basal and stimulated rates of ion transport and permeability of in vitro opercular epithelium, gill Na+/K+-ATPase and citrate synthase activity and chloride cell ultrastructure. These data were compared with previously published killifish cystic fibrosis transmembrane conductance regulator (kfCFTR) expression in the gills measured over a similar time course. Plasma cortisol levels peaked at 1 h, coincident with a rise in plasma [Na+]. At 8 h after transfer to sea water, a time at which previous work has shown kfCFTR expression to be elevated, blood osmolality and [Na+] were high, and cortisol levels and opercular membrane short-circuit current (I(SC); a measure of Cl- secretion rate) were low. The 24h group, which showed the highest level of kfCFTR expression, had the highest plasma [Na+] and osmolality, elevated plasma cortisol levels, significantly lower opercular membrane resistance, an increased opercular membrane ion secretion rate and collapsed tubule inclusions in mitochondria-rich cells, but no change in gill Na+/K+-ATPase and citrate synthase activity or plasma glucose levels. Apparently, killifish have a rapid (<1h) cortisol response to salinity coupled to subsequent (8-48 h) expression of kfCFTR anion channel proteins in existing mitochondria-rich cells that convert transport from ion uptake to ion secretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiler, Benedikt, E-mail: benedikt.weiler@nano.ei.tum.de; Nagel, Robin; Albes, Tim
2016-04-14
Highly-ordered, sub-70 nm-MOS-junctions of Au/Ti/TiO{sub x}/p{sup +}-Si were efficiently and reliably fabricated by nanotransfer-printing (nTP) over large areas and their functionality was investigated with respect to their application as MOS-devices. First, we used a temperature-enhanced nTP process and integrated the plasma-oxidation of a nm-thin titanium film being e-beam evaporated directly on the stamp before the printing step without affecting the p{sup +}-Si substrate. Second, morphological investigations (scanning electron microscopy) of the nanostructures confirm the reliable transfer of Au/Ti/TiO{sub x}-pillars of 50 nm, 75 nm, and 100 nm size of superior quality on p{sup +}-Si by our transfer protocol. Third, the fabricated nanodevices are alsomore » characterized electrically by conductive AFM. Fourth, the results are compared to probe station measurements on identically processed, i.e., transfer-printed μm-MOS-structures including a systematic investigation of the oxide formation. The jV-characteristics of these MOS-junctions demonstrate the electrical functionality as plasma-grown tunneling oxides and the effectivity of the transfer-printing process for their large-scale fabrication. Next, our findings are supported by fits to the jV-curves of the plasma-grown titanium oxide by kinetic-Monte-Carlo simulations. These fits allowed us to determine the dominant conduction mechanisms, the material parameters of the oxides and, in particular, a calibration of the thickness depending on applied plasma time and power. Finally, also a relative dielectric permittivity of 12 was found for such plasma-grown TiO{sub x}-layers.« less
Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature
NASA Astrophysics Data System (ADS)
Pascal, Andre; William, Bussiere; Alain, Coulbois; Jean-Louis, Gelet; David, Rochette
2016-08-01
During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.
NASA Astrophysics Data System (ADS)
Timmermann, E.; Prehn, F.; Schmidt, M.; Höft, H.; Brandenburg, R.; Kettlitz, M.
2018-04-01
A non-thermal plasma source based on a surface dielectric barrier discharge (DBD) is developed for purification of recirculating air in operating theatres in hospitals. This is a challenging application due to high flow rates, short treatment times and the low threshold for ozone in the ventilated air. Therefore, the surface DBD was enhanced in order to generate an ionic wind, which can deflect and thus, filter out airborne microorganisms. Electrical and gas diagnostics as well as microbiological experiments were performed in a downscaled plasma source under variation of various electrical parameters, but application-oriented airflow velocity and humidity. The dependence of electrical power and ozone concentration as well as charged particles in the plasma treated air on frequency, voltage and relative humidity is presented and discussed. The presence of humidity causes a more conductive dielectric surface and thus a weaker plasma formation, especially at low frequency. The airborne test bacteria, Escherichia coli, showed significant effect to plasma treatment (up to 20% reduction) and to plasma with ionic wind (up to 90% removal); especially a configuration with 70% removal and an accompanying ozone concentration of only 360 ppb is promising for future application.
Magnetic Field Tailored Annular Hall Thruster with Anode Layer
NASA Astrophysics Data System (ADS)
Lee, Seunghun; Kim, Holak; Kim, Junbum; Lim, Youbong; Choe, Wonho; Korea Institute of Materials Science Collaboration
2016-09-01
Plasma propulsion system is one of the key components for advanced missions of satellites as well as deep space exploration. A typical plasma propulsion system is Hall effect thruster that uses crossed electric and magnetic fields to ionize a propellant gas and to accelerate the ionized gas to generate momentum. In Hall thruster plasmas, magnetic field configuration is important due to the fact that electron confinement in the electromagnetic fields affects both plasma and ion beam characteristics as well as thruster performance parameters including thrust, specific impulse, power efficiency, and life time. In this work, development of an anode layer Hall thruster (TAL) with magnetic field tailoring has been attempted. The TAL is possible to keep discharge in 1 to 2 kilovolts of anode voltage, which is useful to obtain high specific impulse. The magnetic field tailoring is used to minimize undesirable heat dissipation and secondary electron emission from the wall surrounding the plasma. We will report 3 W and 200 W thrusters performances measured by a pendulum thrust stand according to the magnetic field configuration. Also, the measured result will be compared with the plasma diagnostics conducted by an angular Faraday probe, a retarding potential analyzer, and a ExB probe.
Optical properties of embedded metal nanoparticles at low temperatures
NASA Astrophysics Data System (ADS)
Heilmann, A.; Kreibig, U.
2000-06-01
Metal nanoparticles (gold, silver, copper) that are embedded in an insulating organic host material exhibit optical plasma resonance absorption in the visible and near-infrared region. The spectral position, the half width and the intensity of the plasma resonance absorption all depend on the particle size, the particle shape, and the optical behavior of the cluster and the host material. The optical extinction of various gold, silver or copper particle assemblies embedded in plasma polymer or gelatin was measured at 4.2 K and 1.2 K as well as at room temperature. The packing density of several samples was high enough to resolve a reversible increase of the plasma resonance absorption intensity towards lower temperatures. Additionally, at larger silver particles D_m > 50 nm a significant blue shift of the plasma resonance absorption was measured. Particle size and shape distribution were determined by transmission electron microscopy (TEM). For the first time, simultaneous measurements of the electrical and optical properties at one and the same particle assembly were performed at low temperatures. Contrary to the increasing optical extinction, the d.c. conductivity decreased to two orders of magnitude. At silver particles embedded in a plasma polymer made from thiophene a significant photocurrent was measured.
Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K
2008-04-01
A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.
NASA Technical Reports Server (NTRS)
Banks, P. M.; Raitt, W. J.; Denig, W. F.
1982-01-01
In March, 1981, electron beam experiments were conducted in a large space simulation chamber using equipment destined to be flown aboard NASA's Office of Space Science-1 pallet (OSS-1). Two major flight experiments were involved. They include the Vehicle Charging and Potential (VCAP) experiment and the Plasma Diagnostics Package (PDP). Apparatus connected with VCAP included a Fast Pulse Electron Gun (FPEG), and a Charge and Current Probe (CCP). A preliminary view is provided of the results obtained when the electron emissions were held steady over relatively long periods of time such that steady state conditions could be obtained with respect to the electron beam interaction with the neutral gases and plasma of the vacuum chamber. Of particular interest was the plasma instability feature known as the Beam Plasma Discharge. For the present experiments the FPEG was used in a dc mode with a range of currents of 2 to 80 mA at a beam energy of 970 eV. Attention is given to the emissions of VLF and HF noise associated with the dc beam.
NASA Astrophysics Data System (ADS)
Parashar, T.; Yang, Y.; Chasapis, A.; Matthaeus, W. H.
2017-12-01
High resolution Magnetospheric Multiscale (MMS) plasma and magnetic field data obtained in the inhomogeneous turbulent magnetosheath directly reveals the exchanges of energy between electromagnetic, flow and random kinetic energy. The parameters that quantify these exchanges are based on standard manipulations of the collisionless Vlasov model of plasma dynamics [1], without appeal to viscous or other closures. No analysis of heat transport or heat conduction is carried out. Several intervals of burst mode data in the magnetosheath are considered. Time series of the work done by the electromagnetic field, and the pressure-stress interaction enable description of the pathways to dissipation in this low collisionality plasma. Using these examples we demonstrate that the pressure-stress interaction provides important information not readily revealed in other diagnostics concerning the physical processes that are observed. This method does not require any specific mechanism for its application such as reconnection or a selected mode, although with increased experience it will be useful in distinguishing among proposed possibilities. [1] Y. Yang et al, Phys. Plasmas 24, 072306 (2017); doi: 10.1063/1.4990421.
Multiply charged ion generation according to magnetic field configurations in Hall thruster plasmas
NASA Astrophysics Data System (ADS)
Kim, Holak; Lee, Seunghun; Kim, Junbum; Lim, Youbong; Choe, Wonho; KIMS Collaboration
2016-09-01
Plasma propulsion is the most promising techniques to operate satellites for low earth orbit as well as deep space exploration. A typical plasma propulsion system is Hall thruster (HT) that uses crossed electromagnetic fields to ionize a propellant gas and to accelerate the ionized gas. In HT the tailoring of magnetic fields is significant due to that the electron confinement in the electromagnetic fields affects thruster performances such as thrust force, specific impulse, power efficiency, and life time. We designed an anode layer HT (TAL) with the magnetic field tailoring. The TAL is possible to keep discharge in 1 2 kilovolts, which voltage is useful to obtain high specific impulse The magnetic field tailoring is adapted to minimize undesirable heat dissipations and secondary electron emissions at a wall surrounding plasma In presentation, we will report TAL performances including thrust force, specific impulse, and anode efficiency measured by a pendulum thrust stand. This mechanical measurement will be compared to the plasma diagnostics conducted by angular Faraday probe, retarding potential analyzer, and ExB probe Grant No. 2014M1A3A3A02034510.
NASA Astrophysics Data System (ADS)
Hwang, Seok Won; Lee, Ho-Jun; Lee, Hae June
2014-12-01
Fluid models have been widely used and conducted successfully in high pressure plasma simulations where the drift-diffusion and the local-field approximation are valid. However, fluid models are not able to demonstrate non-local effects related to large electron energy relaxation mean free path in low pressure plasmas. To overcome this weakness, a hybrid model coupling electron Monte Carlo collision (EMCC) method with the fluid model is introduced to obtain precise electron energy distribution functions using pseudo-particles. Steady state simulation results by a one-dimensional hybrid model which includes EMCC method for the collisional reactions but uses drift-diffusion approximation for electron transport in a fluid model are compared with those of a conventional particle-in-cell (PIC) and a fluid model for low pressure capacitively coupled plasmas. At a wide range of pressure, the hybrid model agrees well with the PIC simulation with a reduced calculation time while the fluid model shows discrepancy in the results of the plasma density and the electron temperature.
Atomic Processes in a Plasma Opening Switch.
NASA Astrophysics Data System (ADS)
Klepper, C. C.; Moschella, J. J.; Hazelton, R. C.; Yadlowsky, E. J.; Maron, Y.
1998-11-01
Detailed measurements of carbon emission have been carried out in a Plasma Opening Switch (POS) with a planar geometry, in order to characterize the plasma conditions and the ionization process in the POS. Emission from various transitions of C^circ to C^3+ has been measured as a function of time from several viewing chords. For these experiments, the POS was operated with a shorted load at 130kA and with a ~700ns conduction time. A single-chord, heterodyne interferometer measured the electron density evolution along a chord coincident with one of the spectroscopic views. The passage of the ionization front across the line of sight is witnessed by both diagnostics. The data are interpreted by analyzing the time-dependent atomic processes. The measured ne rises from 1.5×10^15 to 3×10^15cm-3 as the current crosses the view. An initial electron temperature in the 1.3-2 eV range is obtained from the ratio of the C II 4267 Åand 6578 Ålines. The time dependent line emission of the various charge states shows that Te rises to a few tens of eV at the peak current. The charge state distribution during the pulse will be discussed.
Low Temperature Plasma for the Treatment of Epithelial Cancer Cells
NASA Astrophysics Data System (ADS)
Mohades, Soheila
Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media leading to their activation. The effectiveness of PAM against SCaBER cells is the highest when it is used immediately after preparation. It is found that the killing effect of PAM decreases gradually over time, depending on the dose of plasma exposure. Hydrogen peroxide is known as one of the most stable and impactful ROS in biological systems. Measurements show that the plasma pencil generates a significant amount of hydrogen peroxide in PAM. Interestingly, the concentration of hydrogen peroxide in PAM decreases gradually over time, which correlates well with the decrease of PAM effectiveness with storage time. While the effects of PAM treatment on cancerous epithelial cell lines have been studied, much less is known about the interaction of PAM with normal epithelial cells. Effects of PAM on non-cancerous Madin-Darby Canine kidney (MDCK) epithelial cells indicates that MDCK cells are much more robust than SCaBER cells against PAM treatment. The dose of PAM, which causes a widespread death in SCaBER cells, does not significantly impact viability and morphology of MDCK cells. Time-lapse imaging of normal cells shows that PAM treatment inhibits cell proliferation and random migration. In addition, immunofluorescence staining shows that PAM treatment causes a significant reduction in the nuclear localization of proliferation marker, Ki-67, without any damage to the morphological properties of cells including adhesions and cytoskeleton function. This dissertation clearly demonstrates the capability of PAM treatment in inducing death in cancerous cells that can be important for cancer therapy. Hydrogen peroxide is identified as an important ROS responsible for the anti-tumor properties of PAM, although much additional work remains to comprehensively understand all the involved ROS/RNS and their role in PAM treatment.
Kubo conductivity of a strongly magnetized two-dimensional plasma.
NASA Technical Reports Server (NTRS)
Montgomery, D.; Tappert, F.
1971-01-01
The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.
On axisymmetric resistive MHD equilibria with flow free of Pfirsch-Schlüter diffusion
NASA Astrophysics Data System (ADS)
Throumoulopoulos, George N.; Tasso, Henri
2002-11-01
The equilibrium of an axisymmetric magnetically confined plasma with anisotropic electrical conductivity and flows parallel to the magnetic field is investigated within the framework of the MHD theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order partial differential equation for the poloidal magnetic flux function along with a Bernoulli equation for the density identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the conductivities σ_allel and σ_⊥ parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic conductivity and parallel flows (see [1]) the equilibrium is compatible with non-vanishing poloidal currents. For incompressible flows exact solutions of the above mentioned set of equations can be constructed with σ_allel and σ_⊥ profiles compatible with collisional conductivity profiles, i.e. profiles peaked close to the magnetic axis, vanishing on the boundary and such that σ_allel> σ_⊥. In particular, an exact equilibrium describing a toroidal plasma of arbitrary aspect ratio being contained within a perfectly conducting boundary of rectangular cross-section and peaked toroidal current density profile vanishing on the boundary is further considered. For this equilibrium in the case of vanishing flows the difference σ_allel-σ_⊥ for the reversed field pinch scaling Bp Bt (where Bp and Bt are the poloidal and toroidal magnetic field components) is nearly two times larger than that for the tokamak scaling B_p 0.1 B_t. [1] G. N. Throumoulopoulos, H. Tasso, J. Plasma Physics 64, 601 (2000).
Composite plasma polymerized sulfonated polystyrene membrane for PEMFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com
2015-10-15
Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemicalmore » composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.« less
[The vision of welders in France].
Boissin, J P; Peyresblanques, J; Rollin, J P; Marini, F; Beaufils, D
2002-10-01
A study was conducted to measure the impact of welding on the vision of welders. This study was conducted in France by the occupational medicine staff of large companies on 1.131 people, namely 850 welders and 281 control subjects. This investigation included two examinations at the beginning and the end of a year. The investigative procedure examined the different welding processes, the percentage of working time spent on welding activity, the length of exposure in years, as well as the medical variables: the optical correction type and history of ocular traumatology. The Visiotest or the Ergovision were used for the visual examination, equipment in common use by occupational medicine departments. The welders were comparatively young (59.53% of them were less than 45 years old). Moreover, for 69.75% of the welders, more than 75% of their activity was devoted to welding. All currently used welding processes were represented, including the modern PLASMA-TIG welding process. No excessive blood alcohol levels were observed in all subjects, but welders did smoke slightly more than the control subjects (40% vs 33%). Self-medication was rather less frequent among the welders, except as regards the use of eye drops, where the proportions were clearly inverted. Optical correction for hyperopia was similar between the two groups; however, as regards myopia, the welders were corrected less often. Lastly, contact lens use was exceptional among the welders. Nearsightedness varied logically with age, but also, inexplicably, with the welding processes. Vision recovery time after exposure to glare was much longer among the welders, except for the PLASMA-TIG processes. No difference was observed in the other parameters of the study. No change in the visual functions studied was noted between the two examinations. The examination techniques used showed no impairment of the studied visual functions, probably because companies use protective and preventive eye care methods. Moreover this study is the first to examine the type of welding used by workers and particularly the modern PLASMA-TIG process. The vision recovery time after exposure to glare seems better for the PLASMA-TIG process may be the result of the lower luminous intensity of this process. This study was conducted for preventive purposes to contribute to better monitoring of safety and comfort for welding workers and has shown no alteration of the visual function among welders in general.
Autologous Platelet-Poor Plasma Gel for Injection Laryngoplasty
Woo, Seung Hoon; Kim, Jin Pyeong; Park, Jung Je; Chung, Phil-Sang
2013-01-01
Purpose To overcome the potential disadvantages of the use of foreign materials and autologous fat or collagen, we introduce here an autologous plasma gel for injection laryngoplasty. The purpose of this study was to present a new injection material, a plasma gel, and to discuss its clinical effectiveness. Materials and Methods From 2 mL of blood, the platelet poor serum layer was collected and heated at 100℃ for 12 min to form a plasma gel. The plasma gel was then injected into a targeted site; the safety and efficacy thereof were evaluated in 30 rats. We also conducted a phase I/II clinical study of plasma gel injection laryngoplasty in 11 unilateral vocal fold paralysis patients. Results The plasma gel was semi-solid and an easily injectable material. Of note, plasma gel maintains the same consistency for up to 1 year in a sealed bottle. However, exposure to room air causes the plasma gel to disappear within 1 month. In our animal study, the autologous plasma gel remained in situ for 6 months in animals with minimal inflammation. Clinical study showed that vocal cord palsy was well compensated for with the plasma gel in all patients at two months after injection with no significant complications. Jitter, shimmer, maximum, maximum phonation time (MPT) and mean voice handicap index (VHI) also improved significantly after plasma gel injection. However, because the injected plasma gel was gradually absorbed, 6 patients needed another injection, while the gel remained in place in 2 patients. Conclusion Injection laryngoplasty with autologous plasma gel may be a useful and safe treatment option for temporary vocal cord palsy. PMID:24142660
System And Method Of Applying Energetic Ions For Sterlization
Schmidt, John A.
2002-06-11
A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, W. R.; Nilsen, J.
Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less
The design and development of a space laboratory to conduct magnetospheric and plasma research
NASA Technical Reports Server (NTRS)
Rosen, A.
1974-01-01
A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.
Influence of magnetic field structure on the conduction cooling of flare loops
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Sturrock, P. A.
1976-01-01
A simple model facilitates calculation of the influence of magnetic field configuration on the conduction cooling rate of a hot post-flare coronal plasma. The magnetic field is taken to be that produced by a line dipole or point dipole at an arbitrary depth below the chromosphere. For the high temperatures (T greater than or equal to 10 to the 7th power K) produced by flares, the plasma may remain static and isobaric. The influence of the field is such as to increase the heat flux (per unit area) into the chromosphere, but to decrease the total conduction cooling of the flare plasma. This leads to a significant enhancement of the total energy radiated by the flare plasma.
NASA Astrophysics Data System (ADS)
Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo
2018-03-01
Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.
Optical and electrical characterization methods of plasma-induced damage in silicon nitride films
NASA Astrophysics Data System (ADS)
Kuyama, Tomohiro; Eriguchi, Koji
2018-06-01
We proposed evaluation methods of plasma-induced damage (PID) in silicon nitride (SiN) films. The formation of an oxide layer by air exposure was identified for damaged SiN films by X-ray photoelectron spectroscopy (XPS). Bruggeman’s effective medium approximation was employed for an optical model consisting of damaged and undamaged layers, which is applicable to an in-line monitoring by spectroscopic ellipsometry (SE). The optical thickness of the damaged layer — an oxidized layer — extended after plasma exposure, which was consistent with the results obtained by a diluted hydrofluoric acid (DHF) wet etching. The change in the conduction band edge of the damaged SiN films was presumed from two electrical techniques, i.e., current–voltage (I–V) measurement and time-dependent dielectric breakdown (TDDB) test with a constant voltage stress. The proposed techniques can be used for assigning the plasma-induced structural change in an SiN film widely used as an etch-protecting layer.
Study of indium tin oxide films exposed to atomic axygen
NASA Technical Reports Server (NTRS)
Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.
1989-01-01
A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.
Effect of rotating electric field on 3D complex (dusty) plasma
NASA Astrophysics Data System (ADS)
Wörner, L.; Nosenko, V.; Ivlev, A. V.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Kroll, M.; Schablinski, J.; Block, D.
2011-06-01
The effect of rotating electric field on 3D particle clusters suspended in rf plasma was studied experimentally. Spheroidal clusters were suspended inside a glass box mounted on the lower horizontal rf electrode, with gravity partially balanced by thermophoretic force. Clusters rotated in the horizontal plane, in response to rotating electric field that was created inside the box using conducting coating on its inner surfaces ("rotating wall" technique). Cluster rotation was always in the direction of applied field and had a shear in the vertical direction. The angular speed of rotation was 104-107 times lower than applied frequency. The experiment is compared to a recent theory.
Three-dimensional magnetohydrodynamical simulation of expanding magnetic flux ropes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, L.; Dreher, J.; Grauer, R.
Three-dimensional, time-dependent numerical simulations of the dynamics of magnetic flux ropes are presented. The simulations are targeted towards an experiment previously conducted at California Institute of Technology [P. M. Bellan and J. F. Hansen, Phys. Plasmas 5, 1991 (1998)] which aimed at simulating solar prominence eruptions in the laboratory. The plasma dynamics is described by ideal magnetohydrodynamics using different models for the evolution of the mass density. The initial current distribution represents the situation at the plasma creation phase, while it is not increased during the simulation. Key features of the reported experimental observations like pinching of the current loop,more » its expansion and distortion into helical shape are reproduced in the numerical simulations. Details of the final structure depend on the choice of a specific model for the mass density.« less
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, James A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.
Electrodynamic Tether Operations beyond the Ionosphere in the Low-Density Magnetosphere
NASA Technical Reports Server (NTRS)
Stone, Nobie H.
2007-01-01
In the classical concept for the operation of electrodynamic tethers in space, a voltage is generated across the tether, either by the tether's orbital motion through the earth's planetary magnetic field or by a power supply; electrons are then collected from the ionospheric plasma at the positive pole; actively emitted back into space at the negative pole; and the circuit is closed by currents driven through the ambient conducting ionosphere. This concept has been proven to work in space by the Tethered Satellite System TSS-1 and TSS-1R Space Shuttle missions; and the Plasma Motor-Generator (PMG) tether flight experiment. However, it limits electrodynamic tether operations to the F-region of the ionosphere where the plasma density is sufficient to conduct the required currents--in other words, between altitudes of approximately 200 to 1000 km in sunlight. In the earth's shadow, the ionospheric density drops precipitously and tether operations, using the above approach, are not effective--even within this altitude range. There are numerous missions that require in-space propulsion in the Earth's shadow and/or outside of the above altitude range. This paper will, therefore, present the fundamentals of a concept that would allow electrodynamic tethers to operate almost anywhere within the magnetosphere, the region of space containing the earth's planetary magnetic field. In other words, because operations would be virtually independent of any ambient plasma, the range of electrodynamic operations would be extended into the earth's shadow and out to synchronous orbit--forty times the present operational range. The key to this concept is the active generation of plasma at each pole of the tether so that current generation ,does not depend on the conductivity of the ambient ionosphere. Arguments will be presented, based on ,existing flight data, which shed light on the behavior of charge emissions in space and show the plausibility of the concept.
Cawello, Willi; Bökens, Hilmar; Nickel, Brunhild; Andreas, Jens-Otto; Halabi, Atef
2013-01-01
To test for bioequivalence of 200 mg lacosamide oral tablet and syrup formulations. Additional objectives were to compare the pharmacokinetic profile of lacosamide in saliva and plasma, and to evaluate its tolerability. This open-label, randomized, two-way crossover trial was conducted in 16 healthy Caucasian male participants in Germany. The bioequivalence of 200 mg lacosamide tablet and syrup was evaluated using plasma to determine maximum measured concentration (C(max)) and area under the curve from zero to the last time point (AUC)(0-tz). Plasma and saliva samples for evaluation of pharmacokinetic parameters of lacosamide and the major metabolite O-desmethyl lacosamide (SPM 12809) were taken over 15 time points (0.5-72 h) and used to statistically compare bioavailability of the two. Urine samples were collected predose and over five time points (0-48 h) to evaluate the cumulative amount of unchanged drug and metabolite. Lacosamide median time to reach C(max) (t(max)) was 1 h for tablet and 0.5 h for syrup in plasma and saliva. Mean terminal half life (t(½)) for tablet and syrup was 12.5 and 12.4 h in plasma, and 13.1 and 13.3 h in saliva, respectively. Tablet and syrup mean plasma AUC(0-tz) was 84.5 and 83.3 μg/mL*h, respectively. Mean AUC(0-tz) in saliva was 93.2 μg/mL*h for tablet and syrup. Mean C(max) for tablet was 5.26 μg/mL in plasma and 5.63 μg/mL in saliva. Syrup mean C(max) was 5.14 and 8.32 μg/mL in plasma and saliva, respectively. Within 2 h of syrup administration, elevated lacosamide concentration in saliva compared to plasma was observed. The ratio of lacosamide syrup to tablet was 0.98 for C(max) and 0.99 for AUC(0-tz) in plasma, and 1.00 for AUC((0-tz)) in saliva; the 90% confidence intervals (CIs) for these parameters were within the range of 0.80-1.25, which meets accepted bioequivalence criteria. The syrup-to-tablet ratio for C(max) in saliva was 1.48, and the 90% CIs exceeded the accepted upper boundary for bioequivalence (1.32-1.66). Both formulations were well tolerated. Metabolite concentration versus time profiles for saliva were similar to plasma following tablet and syrup administration. The tablet and syrup formulations of lacosamide 200 mg were bioequivalent and well tolerated. Saliva samples were demonstrated to be a suitable surrogate to evaluate lacosamide tablet pharmacokinetics in the central compartment. Due to residual syrup in the buccal cavity, limitations exist when using saliva to evaluate the pharmacokinetics of lacosamide syrup <2 h after administration. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
NASA Astrophysics Data System (ADS)
Kovačević, Vesna V.; Sretenović, Goran B.; Slikboer, Elmar; Guaitella, Olivier; Sobota, Ana; Kuraica, Milorad M.
2018-02-01
The article describes the complex study of the interaction of a helium plasma jet with distilled water and saline. The discharge development, spatial distribution of the excited species, electric field measurement results and the results of the Schlieren imaging are presented. The results of the experiments showed that the plasma-liquid interaction could be prolonged with the proper choice of the gas composition between the jet nozzle and the target. This depends on the gas flow and the target distance. Increased conductivity of the liquid does not affect the discharge properties significantly. An increase of the gas flow enables an extension of the plasma duration on the liquid surface up to 10 µs, but with a moderate electric field strength in the ionization wave. In contrast, there is a significant enhancement of the electric field on the liquid surface, up to 30 kV cm-1 for low flows, but with a shorter time of the overall plasma liquid interaction. Ignition of the plasma jet induces a gas flow modification and may cause turbulences in the gas flow. A significant influence of the plasma jet causing a mixing in the liquid is also recorded and it is found that the plasma jet ignition changes the direction of the liquid circulation.
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Graves, D. B.
2014-12-01
A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.
The effect of the plasma needle on the human keratinocytes related to the wound healing process
NASA Astrophysics Data System (ADS)
Korolov, Ihor; Fazekas, Barbara; Széll, Márta; Kemény, Lajos; Kutasi, Kinga
2016-01-01
In the present study we aim to verify the influence of a non-thermal atmospheric pressure plasma on the wound healing process. In this process the major contributors are the keratinocytes, which migrate to fill in the gap created by the wound. Therefore, we performed the direct treatment of HPV-immortalized human keratinocytes, protected by a layer of phosphate buffered saline (PBS) solution, with the glow discharge generated in flowing helium by a plasma needle. To mimick a wound, a 4 mm scratch was performed on the cell culture (scratch assay). We conducted two types of experiments: (i) cell proliferation and (ii) wound-healing model experiments. The plasma needle configuration, the plasma treatment conditions and the thickness of the protecting PBS layer were set based on viability experiments. The proliferation studies showed that short, 5-10 s, and low power treatments, such as 18 W and 20 W input power, could positively influence the cell proliferation when keratinocytes were protected by PBS. On the other hand, the plasma treatment of cell medium covered keratinocytes resulted in the decrease of proliferation. The wound-healing model (scratch assay) studies showed, that there was a maximum in the wound reduction as a function of the input power and treatment time, namely, at 18 W and 5 s. Furthermore, the wound reduction strongly depended on the treated cell—PBS interaction time. To mimic an infected wound, the scratch assay was covered with a 1× {{10}9} cfu ml-1 Propionibacterium acnes suspension. The plasma treatment of this infected assay resulted in closing of the scratch, while in the non-treated assay the wound did not close at all.
Cellular membrane collapse by atmospheric-pressure plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak
2014-01-06
Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation,more » and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.« less
NASA Astrophysics Data System (ADS)
Lipatov, A. S.; Sarantos, M.; Farrell, W. M.; Cooper, J. F.
2018-07-01
The study of multiscale pickup ion phase-mixing in the lunar plasma wake with a hybrid model is the main subject of our investigation in this paper. Photoionization and charge exchange of protons with the lunar exosphere are the ionization processes included in our model. The computational model includes the self-consistent dynamics of the light (H+ or H2+ and He+), and heavy (Na+) pickup ions. The electrons are considered as a fluid. The lunar interior is considered as a weakly conducting body. In this paper we considered for the first time the cumulative effect of heavy neutrals in the lunar exosphere (e.g., Al, Ar), an effect which was simulated with one species of Na+ but with a tenfold increase in total production rates. We find that various species produce various types of plasma tail in the lunar plasma wake. Specifically, Na+ and He+ pickup ions form a cycloid-like tail, whereas the H+ or H2+ pickup ions form a tail with a high density core and saw-like periodic structures in the flank region. The length of these structures varies from 1.5RM to 3.3RM depending on the value of gyroradius for H+ or H2+ pickup ions. The light pickup ions produce more symmetrical jump in the density and magnetic field at the Mach cone which is mainly controlled by the conductivity of the interior, an effect previously unappreciated. Although other pickup ion species had little effect on the nature of the interaction of the Moon with the solar wind, the global structure of the lunar tail in these simulations appeared quite different when the H2+ production rate was high.
Experimental measurements of hydrodynamic instabilities on NOVA of relevance to astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budil, K S; Cherfils, C; Drake, R P
1998-09-11
Large lasers such as Nova allow the possibility of achieving regimes of high energy densities in plasmas of millimeter spatial scales and nanosecond time scales. In those plasmas where thermal conductivity and viscosity do not play a significant role, the hydrodynamic evolution is suitable for benchmarking hydrodynamics modeling in astrophysical codes. Several experiments on Nova examine hydrodynamically unstable interfaces. A typical Nova experiment uses a gold millimeter-scale hohlraum to convert the laser energy to a 200 eV blackbody source lasting about a nanosecond. The x-rays ablate a planar target, generating a series of shocks and accelerating the target. The evolvingmore » area1 density is diagnosed by time-resolved radiography, using a second x-ray source. Data from several experiments are presented and diagnostic techniques are discussed.« less
Thermal conduction study of warm dense aluminum by proton differential heating
NASA Astrophysics Data System (ADS)
Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.
2016-10-01
A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.
A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices.
Li, Jun; Tao, Ye; Chen, Shufen; Li, Huiying; Chen, Ping; Wei, Meng-Zhu; Wang, Hu; Li, Kun; Mazzeo, Marco; Duan, Yu
2017-11-28
Silver nanowires (AgNWs) are a promising candidate to replace indium tin oxide (ITO) as transparent electrode material. However, the loose contact at the junction of the AgNWs and residual surfactant polyvinylpyrrolidone (PVP) increase the sheet resistance of the AgNWs. In this paper, an argon (Ar) plasma treatment method is applied to pristine AgNWs to remove the PVP layer and enhance the contact between AgNWs. By adjusting the processing time, we obtained AgNWs with a sheet resistance of 7.2Ω/□ and a transmittance of 78% at 550 nm. To reduce the surface roughness of the AgNWs, a peel-off process was used to transfer the AgNWs to a flexible NOA63 substrate. Then, an OLED was fabricated with the plasma-treated AgNWs electrode as anode. The highest brightness (27000 cd/m 2 ) and current efficiency (11.8 cd/A) was achieved with a 30 nm thick light emitting layer of tris-(8-hydroxyquinoline) aluminum doped with 1% 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5 H,11H-(1)-benzopyropyrano(6,7-8-I,j)quinolizin-11-one. Compared to thermal annealing, the plasma-treated AgNW film has a lower sheet resistance, a shorter processing time, and a better hole-injection. Our results indicate that plasma treatment is an effective and efficient method to enhance the conductivity of AgNW films, and the plasma-treated AgNW electrode is suitable to manufacture flexible organic optoelectronic devices.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-07-30
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-01-01
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295
Lee, Hee Joo; Joung, Sun Koung; Kim, Yoon Gyoon; Yoo, Jeong-Yeon; Han, Sang Beom
2004-01-01
A bioequivalence study of the ambroxol hydrochloride tablets was conducted. Twenty-four healthy male Korean volunteers received each medicine at the ambroxol hydrochloride dose of 30 mg in a 2 x 2 cross-over study. There was a 1-week washout period between the doses. Plasma concentrations of ambroxol were monitored by a high-performance liquid chromatography (HPLC) for over a period of 24h after the administration. AUC(t) (the area under the plasma concentration-time curve from time 0 to last sampling time, 24h) was calculated by the linear-log trapezoidal rule method. C(max) (maximum plasma drug concentration) and T(max) (time to reach C(max)) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed AUC(t) and C(max), and untransformed T(max). The geometric mean of AUC(t) was 495.8 ng ml(-1)h(-1) (test medication) and 468.3 ng ml(-1)h(-1) (reference medication). C(max) of 61.5 and 57.3 ng ml(-1) were achieved for the test and the reference medication, respectively. The point estimates and 90% confidence intervals for AUC(t) (parametric) and C(max) (parametric) were, in point estimate (90% confidence interval), 1.058 (0.989-1.134) and 1.073 (1.007-1.142), respectively, satisfying the bioequivalence criteria of the European Committee for Proprietary Medicinal Products and the US Food and Drug Administration Guidelines. The corresponding value of T(max) was 0.229 (0.015-0.444). These results indicate that the two medications of ambroxol hydrochloride are bioequivalent and, thus, may be prescribed interchangeably.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.
Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasingmore » ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.« less
Robe Development for Electrical Conductivity Analysis in an Electron Gun Produced Helium Plasma
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Bitteker, Leo; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
The use of magnetohydrodynamic (MHD) power conversion systems, potentially coupled with a fission power source, is currently being investigated as a driver for an advanced propulsion system, such as a plasma thruster. The efficiency of a MHD generator is strongly dependent on the electrical conductivity of the fluid that passes through the generator; power density increases as fluid conductivity increases. Although traditional MHD flows depend on thermal ionization to enhance the electrical conductivity, ionization due to nuclear interactions may achieve a comparable or improved conductivity enhancement while avoiding many of the limitations inherent to thermal ionization. Calculations suggest that nuclear-enhanced electrical conductivity increases as the neutron flux increases; conductivity of pure He-3 greater than 10 mho/m may be achievable if exposed to a flux greater than 10(exp 12) neutrons/cm2/s.) However, this remains to be demonstrated experimentally. An experimental facility has been constructed at the Propulsion Research Center at the NASA Marshall Space Flight Center, using helium as the test fluid. High energy electrons will be used to simulate the effects of neutron-induced ionization of helium gas to produce a plasma. These experiments will be focused on diagnosis of the plasma in a virtually static system; results will be applied to future tests with a MHD system. Initial experiments will utilize a 50 keV electron gun that can operate at up to a current of 200 micro A. Spreading the electron beam over a four inch diameter window results in an electron flux of 1.5x 10(exp 13) e/sq cm/s. The equivalent neutron flux that would produce the same ionization fraction in helium is 1x10(exp 12) n/sq cm/s. Experiments will simulate the neutron generated plasma modeled by Bitteker, which takes into account the products of thermal neutron absorption in He-3, and includes various ion species in estimating the conductivity of the resulting plasma. Several different probes will be designed and implemented to verify the plasma kinetics model. System parameters and estimated operating ranges are summarized. The predicted ionization fraction, electron density, and conductivity levels are provided in for an equivalent neutron flux of 1x10(exp 12) n/cm2/s. Understanding the complex plasma kinetics throughout a MHD channel is necessary to design an optimal power conversion system for space propulsion applications. The proposed experiments seek to fully characterize the helium plasma and to determine the reliability of each measurement technique, such that they may be applied to more advanced MHD studies. The expected value of each plasma parameter determined from theoretical models will be verified experimentally by several independent techniques to determine the most reliable method of obtaining each parameter. The results of these experiments will be presented in the final paper.
NASA Astrophysics Data System (ADS)
Kudryavtsev, A. A.; Serditov, K. Yu.
2012-07-01
This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.
System and method of applying energetic ions for sterilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, John A.
2003-12-23
A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and acrossmore » the cold plasma, is provided.« less
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, J.A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.
Transient Electromagnetic Wave Propagation in a Plasma Waveguide
2011-10-24
dielectric. The calculation of the propagation characteristics is based upon tangential continuity of the electric and magnetic field components...filament as a time-dependent resistance , we have determined the electron density, the kinetic parameters for electron attachment and recombination, and...wall conductivity simplifies the imposition of the boundary conditions. The tangential component of the electric field and the normal component of the
Plasma Spraying of Ceramics with Particular Difficulties in Processing
NASA Astrophysics Data System (ADS)
Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.
2015-01-01
Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.
NASA Astrophysics Data System (ADS)
Simeonsson, J. B.; Williamson, L. J.
2011-09-01
Studies have been performed to characterize laser induced breakdown spectroscopy (LIBS) plasmas formed in Ar/H 2 gas mixtures that are used for hydride generation (HG) LIBS measurements of arsenic (As), antimony (Sb) and selenium (Se) hydrides. The plasma electron density and plasma excitation temperature have been determined through hydrogen, argon and arsenic emission measurements. The electron density ranges from 4.5 × 10 17 to 8.3 × 10 15 cm -3 over time delays of 0.2 to 15 μs. The plasma temperatures range from 8800 to 7700 K for Ar and from 8800 to 6500 K for As in the HG LIBS plasmas. Evaluation of the plasma properties leads to the conclusion that partial local thermodynamic equilibrium conditions are present in the HG LIBS plasmas. Comparison measurements in LIBS plasmas formed in Ar gas only indicate that the temperatures are similar in both plasmas. However it is also observed that the electron density is higher in the Ar only plasmas and that the emission intensities of Ar are higher and decay more slowly in the Ar only plasmas. These differences are attributed to the presence of H 2 which has a higher thermal conductivity and provides additional dissociation, excitation and ionization processes in the HG LIBS plasma environment. Based on the observed results, it is anticipated that changes to the HG conditions that change the amount of H 2 in the plasma will have a significant effect on analyte emission in the HG LIBS plasmas that is independent of changes in the HG efficiency. The HG LIBS plasmas have been evaluated for measurements of elements hydrides using a constant set of HG LIBS plasma conditions. Linear responses are observed and limits of detection of 0.7, 0.2 and 0.6 mg/L are reported for As, Sb and Se, respectively.
Plasma physics analysis of SERT-2 operation
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1980-01-01
An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.
Final Report: Levitated Dipole Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamicsmore » and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross-field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.« less
Hafer, Carsten; Golla, Paulina; Gericke, Marion; Eden, Gabriele; Beutel, Gernot; Schmidt, Julius J; Schmidt, Bernhard M W; De Reys, Stef; Kielstein, Jan T
2016-01-01
Therapeutic plasma exchange (TPE) is either performed using a highly permeable filter with standard multifunctional renal replacement equipment (mTPE) or a centrifugation device (cTPE). Although both techniques are well established in clinical practice, performance of these two modes of TPE was never compared in a prospective randomized fashion. Thus we aimed to compare two commercially available therapeutic apheresis systems: mTPE (Octonova with Plasmaflo filter) and cTPE (Spectra Optia apheresis system). Twenty-one patients (age 51.6 ± 13.5 years; 10 F/11 M; BMI 25.1 ± 5.0 kg/m(2)) were enrolled in this randomized, prospective, paired, crossover study performed in the Hannover Medical School, Germany. First treatment (either mTPE or cTPE) was chosen by an online randomization list. The primary endpoints were plasma removal efficiency with 1.2× of the total plasma volume exchanged. Secondary endpoints were total amount of plasma substances removed, such as IgG and fibrinogen. Further, the treatment effect on platelet count and complications were evaluated. Despite a comparable volume of the processed plasma, mTPE treatment time was 10.5 % longer than cTPE treatment time (p < 0.05), resulting in a 10 % lower plasma removal rate of the mTPE treatment. Both treatments were comparable in terms of decrease in median (IQR) IgG [pre-mTPE 5.34 (3.48-8.37), post-mTPE 1.96 (1.43-2.84) g/L; pre-cTPE 5.88 (3.42-8.84), post-cTPE 1.89 (1.21-3.52) g/L]. Also the median (IQR) amount of IgG removed in mTPE [13.14 (7.42-16.10) g] was not different from the cTPE treatment [9.30 (6.26-15.69) g]. This was also true for IgM removal. Platelet loss during mTPE was nearly twice as much as with cTPE (15 ± 9 versus 7 ± 9 %, p < 0.05). Although the centrifugal procedures were conducted using flow rates that could easily be obtained using peripheral access, plasma removal efficiency was significantly higher and treatment time was significantly lower in cTPE as compared to mTPE. Despite this lower treatment time, the decline in markers of procedure efficacy was comparable. Especially in centers performing many procedures per year, cTPE in contrast to mTPE can reduce treatment time without compromising treatment efficacy.
Core plasma design of the compact helical reactor with a consideration of the equipartition effect
NASA Astrophysics Data System (ADS)
Goto, T.; Miyazawa, J.; Yanagi, N.; Tamura, H.; Tanaka, T.; Sakamoto, R.; Suzuki, C.; Seki, R.; Satake, S.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group
2018-07-01
Integrated physics analysis of plasma operation scenario of the compact helical reactor FFHR-c1 has been conducted. The DPE method, which predicts radial profiles in a reactor by direct extrapolation from the reference experimental data, has been extended to implement the equipartition effect. Close investigation of the plasma operation regime has been conducted and a candidate plasma operation point of FFHR-c1 has been identified within the parameter regime that has already been confirmed in LHD experiment in view of MHD equilibrium, MHD stability and neoclassical transport.
[Pharmacokinetics of magnolol and honokiol in Weichang'an pill].
Chen, Yu-Ling; Wang, Shu-Ping; Wang, Lei; Jin, Zhao-Xiang; Zhang, Jing-Ze; Chen, Hong; Gao, Wen-Yuan
2016-05-01
To conduct multiple-reaction monitoring(MRM) quantitative analysis with high-performance liquid chromatography coupled with mass spectrometry method, establish the quantification method of magnolol and honokiol in blood sample under negative ion mode with ibuprofen as internal standard, investigate the pharmacokinetic process of lignans constituents after oral administration of Weichang'an pill(WCA) at different doses, and provide theoretical basis to further reveal the material basis of WCA's anti-diarrhea effect. In the plasma samples, the linear relationship was good over the concentration range of 5.25 to 1 344.00 μg•L ⁻¹ for magnolol and 10.08 to 2 580.00 μg•L ⁻¹ for honokiol. The results of precision, stability, and extraction recovery tests showed that the determination method of plasma concentration for such compositions was stable and reliable. Dose-dependence was shown for magnolol and honokiol in the plasma concentration-time profile. The results indicated that the time to reach the maximum plasma concentration(Tmax) for lignanoids was 0.55-1.42 h, when the maximum plasma concentration(Cmax) could reach 996.36-2 330.96,189.87-1 469.43 μg•L ⁻¹ respectively for magnolol and honokiol. The lignanoids could be absorbed rapidly in the blood after oral administration of WAC pills, providing experimental basis to prove rapid and long-acting anti-diarrhea effect of WAC pills after oral administration. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.
2017-11-01
The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.
NASA Technical Reports Server (NTRS)
Liemohn, M.; Ridley, A. J.; Kozyra, J. U.; Gallagher, D. L.; Brandt, P. C.; Henderson, M. G.; Denton, M. H.; Jahn, J. M.; Roelof, E. C.; DeMajistre, R. M.
2004-01-01
Modeling results of the inner magnetosphere showing the influence of the ionospheric conductance on the inner magnetospheric electric fields during the April 17, 2002 magnetic storm are presented. Kinetic plasma transport code results are analyzed in combination with observations of the inner magnetospheric plasma populations, in particular those from the IMAGE satellite. Qualitative and quantitative comparisons are made with the observations from EW, MENA, and HENA, covering the entire energy range simulated by the model (0 to 300 keV). The electric field description, and in particular the ionospheric conductance, is the only variable between the simulations. Results from the data-model comparisons are discussed, detailing the strengths and weaknesses of each conductance choice for each energy channel.
Electron density measurements for plasma adaptive optics
NASA Astrophysics Data System (ADS)
Neiswander, Brian W.
Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.
NASA Astrophysics Data System (ADS)
Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.
2015-07-01
Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.
Influence of particle velocity on the conductivity of dusty plasma
NASA Astrophysics Data System (ADS)
Xu, C. M.; Chen, Y. Y.; Yu, R. J.; Zhang, Y. Y.
2018-06-01
Conductivity is a popular branch of dusty plasma research. In this paper, on the basis of considering the influence of charged particles' (electrons and ions) flow velocity, the conductivity of dusty plasma is derived and studied. Firstly, the charging currents are deduced on considering the influence of flow velocity, and the theoretical results manifest that it increases with the increase of flow velocity. Secondly, both the real and imaginary parts of the conductivity are derived, based on which, the dependence of conductivity on the flow velocity is discussed. In further, it is found that both the real and imaginary parts have a turning point. Finally, a ratio defined as charged particles' flow velocity to thermal velocity is proposed to analyze the dependence of the conductivity on the velocities. The involved results reveal that both the real and imaginary parts of the conductivity have a turning point in their dependence on the ratio, but the specific ratio value is different.
Observation of Langmuir Cascade in Single Hot Spot Laser-Plasma Experiments
NASA Astrophysics Data System (ADS)
Johnson, R. P.; Montgomery, D. S.; Fernandez, J. C.; Focia, R. J.
2001-10-01
We present results from the sixth in a series of experiments designed to investigate the interaction of a single laser hot spot, or speckle, with a preformed, quasi-homogeneous plasma. The experiments were conducted at the Los Alamos National Laboratory (LANL) using the TRIDENT laser. Thomson scattering was used to probe plasma waves driven by stimulated Raman scattering (SRS) and structure was observed in the scattered spectra consistent with multiple steps of the Langmuir decay instability (LDI).(R. J. Focia et al., PSFC Report PSFC/JA-01-17, M.I.T.) The experimental setup is described. The Thomson scattered spectra, resolved in both wavelength versus time and wavelength versus wave vector (effectively ω vs. k), are well-correlated with measurements of the backscattered SRS light and calculations based on linear theory. Parameter regimes are identified in which the LDI cascade exists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, W. T.; Bradshaw, S. J.; Cargill, P. J., E-mail: will.t.barnes@rice.edu
The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal densitymore » to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 10{sup 6.6} and 10{sup 7} K. Signatures of the actual heating may be detectable in some instances.« less
Filonovich, Sergej Alexandrovich; Águas, Hugo; Busani, Tito; Vicente, António; Araújo, Andreia; Gaspar, Diana; Vilarigues, Marcia; Leitão, Joaquim; Fortunato, Elvira; Martins, Rodrigo
2012-01-01
We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (∼20 nm) films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times) owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film. PMID:27877504
NASA Technical Reports Server (NTRS)
Dennis, Brian R.
2006-01-01
This lecture will cover solar thermal radiation, particularly as it relates to the high energy solar processes that are the subject of this summer school. After a general review of thermal radiation from the Sun and a discussion of basic definitions, the various emission and absorption mechanisms will be described including black-body emission, bremsstrahlung, free-bound, and atomic line emissions of all kinds. The bulk of the time will be spent discussing the observational characteristics of thermal flare plasma and what can be learned about the flare energy release process from observations of the thermal radiation at all wavelengths. Information that has been learned about the morphology, temperature distribution, and composition of the flare plasma will be presented. The energetics of the thermal flare plasma will be discussed in relation to the nonthermal energy of the particles accelerated during the flare. This includes the total energy, the radiated and conductive cooling processes, and the total irradiated energy.
Investigation of the ion beam emission from a pulsed power plasma device
NASA Astrophysics Data System (ADS)
Henríquez, A.; Bhuyan, H.; Favre, M.; Retamal, M. J.; Volkmann, U.; Wyndham, E.; Chuaqui, H.
2014-05-01
Plasma Focus (PF) devices are well known as ion beam sources with characteristic energy among the hundreds of keV to tens of MeV. The information on ion beam energy, ion distribution and composition is essential from the viewpoint of understanding fundamental physics behind their production and acceleration and also their applications in various fields, such as surface properties modification, ion implantation, thin film deposition, semiconductor doping and ion assisted coating. An investigation from a low energy, 1.8 kJ 160 kA, Mather type plasma focus device operating with nitrogen using CR-39 detectors was conducted to study the emission of ions at different angular positions. Tracks on CR-39 detectors at different angular positions reveal the existence of angular ion anisotropy. The results obtained are comparable with the time integrated measurements using FC. Preliminary results of this work are presented.
Plasma jet printing of electronic materials on flexible and nonconformal objects.
Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M
2014-12-10
We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.
Staged Z-pinch experiments on the Mega-Ampere current driver COBRA
NASA Astrophysics Data System (ADS)
Valenzuela, Julio; Banasek, Jacob; Byvank, Thomas; Conti, Fabio; Greenly, John; Hammer, David; Potter, William; Rocco, Sophia; Ross, Michael; Wessel, Frank; Narkis, Jeff; Rahman, Hafiz; Ruskov, Emil; Beg, Farhat
2017-10-01
Experiments were conducted on the Cornell's 1 MA, 100 ns current driver COBRA with the goal of better understanding the Staged Z-pinch physics and validating MHD codes. We used a gas injector composed of an annular (1.2 cm radius) high atomic number (e.g., Ar or Kr) gas-puff and an on-axis plasma gun that delivers the ionized hydrogen target. Liner implosion velocity and stability were studied using laser shadowgraphy and interferometry as well as XUV imaging. From the data, the signature of the MRT instability and zippering effect can be seen, but time integrated X-ray imaging show a stable target plasma. A key component of the experiment was the use of optical Thomson scattering (TS) diagnostics to characterize the liner and target plasmas. By fitting the experimental scattered spectra with synthetic data, electron and ion temperature as well as density can be obtained. Preliminary analysis shows significant scattered line broadening from the plasma on-axis ( 0.5 mm diameter) which can be explained by either a low temperature H plasma with Te =Ti =75eV, or by a hot plasma with Ti =3keV, Te =350eV if an Ar-H mixture is present with an Ar fraction higher than 10%. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.
Complex Plasmas under free fall conditions aboard the International Space Station
NASA Astrophysics Data System (ADS)
Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus
2017-10-01
Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).
Ricci, A; Carvalho, P D; Amundson, M C; Fourdraine, R H; Vincenti, L; Fricke, P M
2015-04-01
Lactating Holstein cows (n = 141) were synchronized to receive their first timed artificial insemination (TAI). Blood and milk samples were collected 25 and 32 d after TAI, and pregnancy status was determined 32 d after TAI using transrectal ultrasonography. Cows diagnosed pregnant with singletons (n = 48) continued the experiment in which blood and milk samples were collected and pregnancy status was assessed weekly using transrectal ultrasonography from 39 to 102 d after TAI. Plasma and milk samples were assayed for pregnancy-associated glycoprotein (PAG) levels using commercial ELISA kits. Compared to ultrasonography, accuracy was 92% for the plasma PAG ELISA test and 89% for the milk PAG ELISA test 32 d after TAI. Plasma and milk PAG levels for pregnant cows increased from 25 d to an early peak 32 d after TAI. Plasma and milk PAG levels then decreased from 32 d after TAI to a nadir from 53 to 60 d after TAI for the plasma PAG assay and from 46 to 67 d after TAI for the milk PAG assay followed by an increase from 74 to 102 d after TAI. Overall, plasma PAG levels were approximately 2-fold greater compared with milk PAG levels, and primiparous cows had greater PAG levels in plasma and milk compared with multiparous cows. The incidence of pregnancy loss from 32 to 102 d after TAI based on ultrasonography was 13% for cows diagnosed with singleton pregnancies, and plasma and milk PAG levels decreased to nonpregnant levels within 7 to 14 d after pregnancy loss. Both plasma and milk PAG levels were negatively correlated with milk production for both primiparous and multiparous cows. We conclude that stage of gestation, parity, pregnancy loss, and milk production were associated with plasma and milk PAG levels after TAI similarly. Based on plasma and milk PAG profiles, the optimal time to conduct a first pregnancy diagnosis is around 32 d after AI, coinciding with an early peak in PAG levels. Because of the occurrence of pregnancy loss, all pregnant cows should be retested 74 d after AI or later when plasma and milk PAG levels in pregnant cows have rebounded from their nadir. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, Sadaharu; Goto, Tetsuya; Nagase, Masaaki
Multiprocesses in a single plasma process chamber with high throughput require precise, sequential, high-speed alteration of partial pressures of multiple gas species. A conventional gas-distribution system cannot realize this because the system seriously overshoots gas pressure immediately following valve operation. Furthermore, chamber volume and conductance of gas piping between the system and chamber should both be considered because they delay the stabilizing time of gas pressure. Therefore, the authors proposed a new gas-distribution system without overshoot by controlling gas flow rate based on pressure measurement, as well as a method of pulse-controlled gas injection immediately following valve operation. Time variationmore » of measured partial pressure agrees well with a calculation based on an equivalent-circuit model that represents the chamber and gas piping between the system and chamber. Using pulse-controlled gas injection, the stabilizing time can be reduced drastically to 0.6 s for HBr added to pure Ar plasma, and 0.7 s for O{sub 2} added to Ar/HBr plasma; without the pulse control, the stabilizing times are 3 and 7 s, respectively. In the O{sub 2} addition case, rapid stabilization can be achieved during the period of line/space pattern etching of poly-Si on a thin SiO{sub 2} film. This occurs without anomalous etching of the underlying SiO{sub 2} film or the Si substrate near the sidewall, thus obtaining a wide process margin with high throughput.« less
Blum, R. A.; Schentag, J. J.; Gardner, M. J.; Wilner, K. D.
1995-01-01
1 The effects of tenidap sodium 120 mg day-1 at steady state and placebo on the plasma protein binding and pharmacokinetics of phenytoin were compared in this randomised, double-blind, placebo-controlled, parallel-group study, involving 12 healthy young men, conducted over 34 days. 2 Single oral doses of phenytoin 200 mg were given on days 1-3 and 29-31, and intravenous phenytoin, 250 mg infused over 20 min, was given on days 4 and 32. Tenidap (120 mg day-1), or matching placebo, was administered as single oral daily doses from days 8 to 34 inclusive. 3 The plasma protein binding of phenytoin was determined immediately before oral phenytoin administration on days 1 and 29. Pharmacokinetic parameters were estimated from the serum phenytoin concentration-time curves derived on days 4 and 32 following the phenytoin infusions. The differences between the pre- and post-treatment mean percentage of unbound plasma phenytoin and mean pharmacokinetic parameters were compared between treatment groups. 4 Tenidap sodium 120 mg day-1, at steady state, increased the percentage of unbound phenytoin in plasma by approximately 25%, but did not significantly affect AUC(0,48h) or Cmax. 5 Since tenidap increases the percentage of unbound phenytoin in plasma, when monitoring phenytoin plasma concentrations free concentrations of phenytoin should be considered. 6 Tenidap was well tolerated throughout the study. PMID:7547092
da Silva, A R M; Farias, M L; da Silva, D L S; Vitoriano, J O; de Sousa, R C; Alves-Junior, C
2017-09-01
In this study, we analyzed seed wettability as well as imbibition and germination after treatment with atmospheric pressure cold plasma (APCP) using dielectric barrier discharge (DBD) in seeds that have very low germination rates. To aid industrial applications, several seeds were simultaneously treated with plasma within a space between two coaxial glass tubes sandwiched by two metal mesh screens that produced high-voltage pulses at 17.5kV with a frequency of 990Hz. Three treatment times (3min, 9min and 15min) as well as untreated seeds were used to conduct the wettability, imbibition and germination tests. The wettability and imbibition were found to be directly related to the treatment duration, but saturation of the imbibition was found for treatment durations greater than 9min. Plasma treatment was also effective in improving germination, but shorter treatment duration presented greater germination. This apparent contradiction is explained by the cell damage caused by the increased exposure to plasma, as observed in other studies. The results suggest that there must be an optimal wettability and imbibition condition that ensures that excessive moisture does not harm the germination process. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Liming; Hao, Xinfeng
2009-11-01
In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.
Analysis of staged Z-pinch implosion trajectories from experiments on Zebra
NASA Astrophysics Data System (ADS)
Ross, Mike P.; Conti, F.; Darling, T. W.; Ruskov, E.; Valenzuela, J.; Wessel, F. J.; Beg, F.; Narkis, J.; Rahman, H. U.
2017-10-01
The Staged Z-pinch plasma confinement concept relies on compressing an annular liner of high-Z plasma onto a target plasma column of deuterium fuel. The interface between the liner and target is stable against the Magneto-Rayleigh-Taylor Instability, which leads to effective fuel compression and makes the concept interesting as a potential fusion reactor. The liner initiates as a neutral gas puff, while the target plasma is a partially ionized (Zeff < 10 percent column ejected from a coaxial plasma gun. The Zebra pulsed power generator (1 MA peak current, 100 ns rise time) provides the discharge that ionizes the liner and drives the Z-pinch implosion. Diverse diagnostics observe the 100-300 km/s implosions including silicon diodes, photo-conducting detectors (PCDs), laser shadowgraphy, an XUV framing camera, and a visible streak camera. The imaging diagnostics track instabilities smaller than 0.1 mm, and Z-pinch diameters below 2.5 mm are seen at peak compression. This poster correlates the data from these diagnostics to elucidate implosion behavior dependencies on liner gas, liner pressure, target pressure, and applied, axial-magnetic field. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.
Yamada, Masaaki
2016-01-01
This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less
NASA Astrophysics Data System (ADS)
Yamada, Masaaki
2016-03-01
This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Masaaki
2016-03-25
This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less
NASA Astrophysics Data System (ADS)
Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Bronin, S. Ya; Bobrov, A. A.; Khikhlukha, D. R.
2018-01-01
We present results of calculations by the method of molecular dynamics of self-diffusion and conductivity of electron and ion components of ultracold plasma in a comparison with available theoretical and experimental data. For the ion self-diffusion coefficient, good agreement was obtained with experiments on ultracold plasma. The results of the calculation of self-diffusion also agree well with other calculations performed for the same values of the coupling parameter, but at high temperatures. The difference in the results of the conductivity calculations on the basis of the current autocorrelation function and on the basis of the diffusion coefficient is discussed.
Active shield technology for space craft protection revisited in new laboratory results and analysis
NASA Astrophysics Data System (ADS)
Bamford, R.; Gibson, K. J.; Thornton, A. T.; Bradford, J.; Bingham, R.; Gargate, L.; Silva, L. O.; Fonseca, R. A.; Hapgood, M.; Norberg, C.; Todd, T.; Stamper, R.
2009-04-01
Energetic ions in the solar wind plasma are a known hazard to both spacecraft electronics and to astronaut's health. Of primary concern is the exposure to keV--MeV protons on manned space flights to the Moon and Mars that extend over long periods of time. Attempts to protect the spacecraft include active shields that are reminiscent of Star Trek "deflector" shields. Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding the spacecraft forming a "mini magnetosphere". Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the Solar Wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity, and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small "hole" in a Solar Wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared to a 3D particle-in-cell ‘hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers. [1] [1] R Bamford et al., "The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection." 2008 Plasma Phys. Control. Fusion 50 124025 (11pp) doi: 10.1088/0741-3335/50/12/124025
Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation
NASA Astrophysics Data System (ADS)
Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG
2018-01-01
The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.
NASA Astrophysics Data System (ADS)
Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.
2010-03-01
Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.
Tailoring the charged particle fluxes across the target surface of Magnum-PSI
NASA Astrophysics Data System (ADS)
Costin, C.; Anita, V.; Popa, G.; Scholten, J.; De Temmerman, G.
2016-04-01
Linear plasma generators are plasma devices designed to study fusion-relevant plasma-surface interactions. The first requirement for such devices is to operate with adjustable and well characterized plasma parameters. In the linear plasma device Magnum-PSI, the distribution of the charged particle flux across the target surface can be tailored by the target bias. The process is based on the radial inhomogeneity of the plasma column and it is evidenced by electrical measurements via a 2D multi-probe system installed as target. Typical results are reported for a hydrogen discharge operated at 125 A and confined by a magnetic field strength of 0.95 T in the middle of the coils. The probes were biased in the range of -80 to -25 V, while the floating potential of the target was about -35 V. The results were obtained in steady-state regime of Magnum-PSI, being time-averaged over any type of fluctuations. Depending on the relative value of the target bias voltage with respect to the local floating potential in the plasma column, the entire target surface can be exposed to ion or electron dominated flux, respectively, or it can be divided into two adjacent zones: one exposed to electron flux and the other to ion flux. As a consequence of this effect, a floating conductive surface that interacts with an inhomogeneous plasma is exposed to non-zero local currents despite its overall null current and it is subjected to internal current flows.
Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D
Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...
2015-09-04
In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less
Shigeta, Masaya; Watanabe, Takayuki
2016-01-01
A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size–composition distribution for a metal–silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal–silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder. PMID:28344300
Shigeta, Masaya; Watanabe, Takayuki
2016-03-07
A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size-composition distribution for a metal-silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal-silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder.
NASA Astrophysics Data System (ADS)
Mahamud, Rajib; Farouk, Tanvir I.
2015-09-01
Microplasma devices have been the subject of considerable interest and research during the last decade. In a DC system most of the operation regime of the plasma discharges studied fall in the ``abnormal,'' ``normal'' and ``corona'' modes - where a quasi-steady state is achieved. It is well known that even in a DC system the negative differential resistance (NDR) regime can trigger self pulsing discharges. These pulsations are initiated by the parasitic capacitance of the system hence governed by the response time of the power circuit. The circuit response time is required to be larger than the ion transit time to initiate the oscillations. In this present study a suppressor circuit element in the form of an inductor is used to restrain the plasma from switching to a self pulsing mode. It has been identified that the combined response time of the inductor and the plasma discharge (L/Rplasma) has to be larger than the power circuit time constant (RC) to achieve suppression. Inhibition of oscillation has been observed in both experiments and numerical simulations. The obtained voltage-current characteristics show that the inductor element extends the normal glow regime to lower current. Additional parametric simulations are conducted to map out a ``stable'' operation regime. The author would like to thank DARPA (ARO Grant No. W911NF1210007) and University of South Carolina (USC) for the financial support of the work.
Surface-wave-sustained plasma torch for water treatment
NASA Astrophysics Data System (ADS)
Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F.
2018-02-01
In this study the effects of water treatment by surface-wave-sustained plasma torch at 2.45 GHz are studied. Changes in two directions are obtained: (i) changes of the plasma characteristics during the interaction with the water; (ii) water physical and chemical characteristics modification as a result of the plasma treatment. In addition, deactivation of Gram positive and Gram negative bacteria in suspension are registered. A number of charged and excited particles from the plasma interact with the water. As a result the water chemical and physical characteristics such as the water conductivity, pH, H2O2 concentration are modified. It is observed that the effect depends on the treatment time, wave power, and volume of the treated liquid. At specific discharge conditions determined by the wave power, gas flow, discharge tube radius, thickness and permittivity, the surface-wave-sustained discharge (SWD) operating at atmospheric pressure in argon is strongly non-equilibrium with electron temperature T e much higher than the temperature of the heavy particles (gas temperature T g). It has been observed that SWD argon plasma with T g close to the room temperature is able to produce H2O2 in the water with high efficiency at short exposure times (less than 60 sec). The H2O2 decomposition is strongly dependant on the temperature thus the low operating gas temperature is crucial for the H2O2 production efficiency. After scaling up the device, the observed effects can be applied for the waste water treatment in different facilities. The innovation will be useful especially for the treatment of waters and materials for medical application.
Control of External Kink Instability
NASA Astrophysics Data System (ADS)
Navratil, Gerald
2004-11-01
A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.
Miyajima, Atsushi; Hirota, Takashi; Sugioka, Akihito; Fukuzawa, Masao; Sekine, Mari; Yamamoto, Yosuke; Yoshimasu, Takashi; Kigure, Akira; Anata, Taichi; Noguchi, Wataru; Akagi, Keita; Komoda, Masayo
2016-09-01
Ivermectin (IVM) is used as an anthelmintic agent in many countries. To evaluate the effect of high-fat (HF) meal intake on the pharmacokinetics of IVM, a clinical trial was conducted in Japanese patients with scabies. The patients were administrated Stromectol(®) tablets in the fasted state, and after 1 week they were also administrated it after a HF meal (fed state). After the administration, IVM concentrations in plasma and the stratum corneum were determined. The geometric mean of fed/fasted ratio of area under IVM concentration-time curve (AUC) in plasma was 1.25 (90% confidence interval, 1.09-1.43), suggesting the tendency to increased absorption after a HF meal. The fed/fasted ratio of the maximum IVM concentration in the stratum corneum was well correlated with that in plasma. In addition, no serious adverse events were observed during the trial, while a mild increase of aspartate aminotransferase and alanine aminotransferase activity in plasma was observed under the fed state in two patients. The mean AUC of IVM in plasma of those two patients were approximately threefold higher than that of the other patients at that time. On the other hand, the treatment success rate was 76.9% at 7 days after the second administration, which was comparable with the expected level. The present study not only demonstrates that HF meal intake increases the IVM concentration in plasma and the stratum corneum in Japanese patients with scabies, but also suggests the possibility that HF meals increase the risk of hepatic dysfunction by the increased exposure of IVM. © 2016 Japanese Dermatological Association.
Gravitational instability in isotropic MHD plasma waves
NASA Astrophysics Data System (ADS)
Cherkos, Alemayehu Mengesha
2018-04-01
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.
Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.
Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju
2013-11-01
To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.
Coating of plasma polymerized film
NASA Technical Reports Server (NTRS)
Morita, S.; Ishibashi, S.
1980-01-01
Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.
A generalized plasma dispersion function for electron damping in tokamak plasmas
Berry, L. A.; Jaeger, E. F.; Phillips, C. K.; ...
2016-10-14
Radio frequency wave propagation in finite temperature, magnetized plasmas exhibits a wide range of physics phenomena. The plasma response is nonlocal in space and time, and numerous modes are possible with the potential for mode conversions and transformations. Additionally, diffraction effects are important due to finite wavelength and finite-size wave launchers. Multidimensional simulations are required to describe these phenomena, but even with this complexity, the fundamental plasma response is assumed to be the uniform plasma response with the assumption that the local plasma current for a Fourier mode can be described by the Stix conductivity. But, for plasmas with non-uniformmore » magnetic fields, the wave vector itself is nonlocal. When resolved into components perpendicular (k ) and parallel (k ||) to the magnetic field, locality of the parallel component can easily be violated when the wavelength is large. The impact of this inconsistency is that estimates of the wave damping can be incorrect (typically low) due to unresolved resonances. For the case of ion cyclotron damping, this issue has already been addressed by including the effect of parallel magnetic field gradients. In this case, a modified plasma response (Z function) allows resonance broadening even when k || = 0, and this improves the convergence and accuracy of wave simulations. In our paper, we extend this formalism to include electron damping and find improved convergence and accuracy for parameters where electron damping is dominant, such as high harmonic fast wave heating in the NSTX-U tokamak, and helicon wave launch for off-axis current drive in the DIII-D tokamak.« less
Impact of storage prior to cryopreservation on plasma membrane function and fertility of boar sperm.
Guthrie, H D; Welch, G R
2005-01-15
Occasionally, boar semen must be shipped to another location for cryopreservation. We increased the initial holding time for the cooling of extended semen at 15 degrees C from 3 to 24 h to determine the effects on sperm characteristics and fertility. Thirty-one gilts and sows were inseminated once with subsequently cryopreserved and thawed semen. Increasing the holding time from 3 to 24 h had no significant effect on pregnancy rate 23 days after AI with frozen-thawed semen (64.5%) but decreased (P<0.05) embryo number from 15 to 9 and recovered embryos as fraction of CL from 73 to 47%. While the longer holding time at 15 degrees C did decrease potential litter size, the loss incurred was not too great to preclude the incorporation of a longer holding time into the cryopreservation protocol. An experiment was conducted to test the hypothesis that processing and freeze-thawing of boar semen would induce phospholipid scrambling in the plasma membrane similar to that evoked by incubation in bicarbonate-containing media. Merocyanine staining after incubation in the presence and absence of bicarbonate indicated that changes in plasma membrane phospholipid scrambling of processed and cryopreserved sperm differed from those in fresh semen undergoing bicarbonate-induced capacitation. The level of Annexin-V binding in boar spermatozoa increased from 1.6% in live spermatozoa in fresh semen to 18.7% in cryopreserved sperm. Apoptosis is unlikely to operate in mature spermatozoa. Apoptotic morphology in ejaculated spermatozoa is probably a result of incomplete deletion of apoptotic spermatocytes during spermatogenesis. Increased Annexin-V binding in thawed spermatozoa probably results from plasma membrane damage incurred during freezing and thawing.
NASA Technical Reports Server (NTRS)
Podojil, Gregg M.; Jaworske, Donald A.
1993-01-01
Atomic oxygen degradation is one of several major threats to the durability of spaceborne systems in low Earth orbit. Ground-based simulations are conducted to learn how to minimize the adverse effects of atomic oxygen exposure. Assessing the fluence of atomic oxygen in test chambers such as a plasma asher over long periods of time is necessary for accurate determination of atomic oxygen exposure. Currently, an atomic oxygen susceptible organic material such as Kapton is placed next to samples as a witness coupon and its mass loss is monitored and used to determine the effective atomic oxygen fluence. However, degradation of the Kapton witness coupons occurs so rapidly in plasma ashers that for any long term test many witness coupons must be used sequentially in order to keep track of the fluence. This necessitates opening vacuum to substitute fresh coupons. A passive dosimetry technique was sought to monitor atomic oxygen exposure over longer periods without the need to open the plasma asher to the atmosphere. This paper investigates the use of spectrophotometric analysis of durable IR transparent witness coupons to measure atomic oxygen exposure for longer duration testing. The method considered would be conductive to making in situ measurements of atomic oxygen fluence.
NASA Astrophysics Data System (ADS)
Vladimir, Saenko; Novikov, Lev; Tyutnev, Andrey
Radiation induced conductivity (RIC) of polymers widely used on present-day spacecraft plays is an important factor affecting their charging by the hot plasma of the Earth’s magnetosphere. As a result, researchers pay special attention to laboratory investigations of RIC in polymers excited by 10 -100 keV electrons prevailing in the hot magnetospheric plasma, including auroral radiation. Due to fluctuating fluxes of plasma electrons and especially of auroral electrons, it is very important to know how RIC depends on time. In our report we present RIC results observed in polycarbonate (PC) molecularly doped with aromatic hydrazone DEH (10 to 30 mas. percent) under continuous irradiation with 50 keV electrons. It has been found that RIC behavior in this material differs markedly from what we observed earlier in most of the polymers. After beginning of the stepwise irradiation, the RIC of PC+DEH rises fast to the quasistationary level but unlike common polymers, does not fall by an order of magnitude, instead it starts to increase further thus causing the accumulating space charge to decrease. This fact combined with the confirmed high radiation and temperature tolerance allows us to recommend this material for application on the spacecraft outer surface and specifically, as a thermal blanket.
Experimental characterization of hollow-cathode plasma sources at Frascati
NASA Technical Reports Server (NTRS)
Vannaroni, G.; Cosmovici, C. B.; Bonifazi, C.; Mccoy, J.
1988-01-01
An experimental characterization has been conducted for hollow cathodes applicable as plasma contactors on Space Shuttle-based experiments. The diagnostics tests were conducted in an 0.5 cu m vacuum chamber by means of Langmuir probes at various distances from the source. Two electron populations are noted, one in the 0.3-1 eV and the other in the 7-11 eV temperature range. Current developments in the design of plasma chambers incorporating magnetic field compensation are noted.
A transverse Kelvin-Helmholtz instability in a magnetized plasma
NASA Technical Reports Server (NTRS)
Kintner, P.; Dangelo, N.
1977-01-01
An analysis is conducted of the transverse Kelvin-Helmholtz instability in a magnetized plasma for unstable flute modes. The analysis makes use of a two-fluid model. Details regarding the instability calculation are discussed, taking into account the ion continuity and momentum equations, the solution of a zero-order and a first-order component, and the properties of the solution. It is expected that the linear calculation conducted will apply to situations in which the plasma has experienced no more than a few growth periods.
Investigation of mechanism of anode plasma formation in ion diode with dielectric anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushkarev, A., E-mail: aipush@mail.ru
The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B{sub r} external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction inmore » the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°.« less
Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; Wang, Shoujun; Oliva, E
2014-01-01
Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionallymore » excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.« less
Tsuyuki, Kenichiro; Miura, Satoru; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro
2006-01-01
An experiment to investigate the potential of a laser-induced plasma method for determining concrete compressive strength was conducted by focusing a Nd:YAG laser on concrete samples with different degrees of compressive strength. This technique was developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was found that the speed of the shock front depends on the hardness of the sample. It was also found that a positive relationship exists between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Ca(II) 396.8 nm and Ca(I) 422.6 nm emission lines detected from the laser-induced plasma can be used to examine the hardness of the material. In fact, it was observed that the ratio changes with respect to the change in the concrete compressive strength. The findings also show that the ratio increases with time after the cement is mixed with water.
Thermal conductivity measurements of proton-heated warm dense aluminum
McKelvey, A.; Kemp, G. E.; Sterne, P. A.; ...
2017-08-01
Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less
Thermal conductivity measurements of proton-heated warm dense aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKelvey, A.; Kemp, G. E.; Sterne, P. A.
Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less
Plasma diagnostics of non-equilibrium atmospheric plasma jets
NASA Astrophysics Data System (ADS)
Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail
2014-10-01
Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, David J.; Perkins, L. J.; Marinak, M. M.
The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less
6-7 Mev Characteristic Gamma-Ray Source Using A Plasma Opening Switch And A Marx Bank
2011-06-01
of Hawk, including the POS, is shown in Fig. 2a. The POS consists of 12 plasma guns made from coaxial cables that inject ionized plasma radially...inward between two coaxial conductors prior to firing the generator. The POS plasma conducts the generator current as a short circuit for about 700...vacuum gap in the plasma . High-energy electron- and ion-beams form in the plasma -filled coaxial region, with ions from the plasma and the polyethylene
The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation
NASA Technical Reports Server (NTRS)
Whipple, E. C.
1986-01-01
Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.
Tungsten-microdiamond composites for plasma facing components
NASA Astrophysics Data System (ADS)
Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.
2011-09-01
Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.
NASA Astrophysics Data System (ADS)
Yan, Wen; Economou, Demetre J.
2017-10-01
A 2D (axisymmetric) computational study of the discharge characteristics of an atmospheric pressure plasma jet as a function of gas flow rate was performed. The helium jet emerged from a dielectric tube, with an average gas flow velocity in the range 2.5-20 m s-1 (1 atm, 300 K) in a nitrogen ambient, and impinged on a substrate a short distance dowstream. The effect of the substrate conductivity (conductror versus insulator) was also studied. Whenever possible, simulation predictions were compared with published experimental observations. Discharge ignition and propagation in the dielectric tube were hardly affected by the He gas flow velocity. Most properties of the plasma jet, however, depended sensitively on the He gas flow velocity, which determined the concentration distributions of helium and nitrogen in the mixing layer forming in the gap between the tube exit and the substrate. At low gas flow velocity, the plasma jet evolved from a hollow (donut-shaped) feature to one where the maximum of electron density was on axis. When the gas flow velocity was high, the plasma jet maintained its hollow structure until it struck the substrate. For a conductive substrate, the radial ion fluxes to the surface were relatively uniform over a radius of ~0.4-0.8 mm, and the dominant ion flux was that of He+. For a dielectric substrate, the radial ion fluxes to the surface peaked on the symmetry axis at low He gas flow velocity, but a hollow ion flux distribution was observed at high gas flow velocity. At the same time, the main ion flux switched from N2+ to He2+ as the He gas flow velocity increased from a low to a high value. The diameter of the plasma ‘footprint’ on the substrate first increased with increasing He gas flow velocity, and eventually saturated with further increases in velocity.
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Three-dimensional particle-particle simulations: Dependence of relaxation time on plasma parameter
NASA Astrophysics Data System (ADS)
Zhao, Yinjian
2018-05-01
A particle-particle simulation model is applied to investigate the dependence of the relaxation time on the plasma parameter in a three-dimensional unmagnetized plasma. It is found that the relaxation time increases linearly as the plasma parameter increases within the range of the plasma parameter from 2 to 10; when the plasma parameter equals 2, the relaxation time is independent of the total number of particles, but when the plasma parameter equals 10, the relaxation time slightly increases as the total number of particles increases, which indicates the transition of a plasma from collisional to collisionless. In addition, ions with initial Maxwell-Boltzmann (MB) distribution are found to stay in the MB distribution during the whole simulation time, and the mass of ions does not significantly affect the relaxation time of electrons. This work also shows the feasibility of the particle-particle model when using GPU parallel computing techniques.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Coffey, Victoria; Wright, Kenneth; Craven, Paul; Koontz, Steven
2010-01-01
The near circular, 51.6deg inclination orbit of the International Space Station (ISS) is maintained within an altitude range of approximately 300 km to 400 km providing an ideal platform for conducting in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) is a suite of instruments installed on the ISS in August 2006 which includes a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). The primary purpose for deploying the FPMU is to characterize ambient plasma temperatures and densities in which the ISS operates and to obtain measurements of the ISS potential relative to the space plasma environment for use in characterizing and mitigating spacecraft charging hazards to the vehicle and crew. In addition to the engineering goals, data from the FPMU instrument package is available for collaborative multi-satellite and ground based instrument studies of the F-region ionosphere during both quiet and disturbed periods. Finally, the FPMU measurements supported by ISS engineering telemetry data provides a unique opportunity to investigate interactions of the ISS high voltage (160 volt) solar array system with the plasma environment. This presentation will provide examples of FPMU measurements along the ISS orbit including night-time equatorial plasma density depletions sampled near the peak electron density in the F2-region ionosphere, charging phenomenon due to interaction of the ISS solar arrays with the plasma environment, and modification of ISS charging due to visiting vehicles demonstrating the capabilities of the FPMU probes for monitoring mid and low latitude plasma processes as well as vehicle interactions with the plasma environment.
OʼHalloran, Sean J; Wong, Antonia; Joyce, David A
2016-08-01
Amisulpride is a second generation atypical antipsychotic drug. The management of psychosis exacerbation in late pregnancy or during lactation is often hampered by inadequate knowledge of risk to the baby from placental transfer or breast milk transfer of drugs. There is no specific information on adverse effects from amisulpride. To gather guiding information from one mother-baby pair, we conducted a drug concentration study on the fourth post-natal day and developed a novel liquid chromatography-tandem mass spectrometry method with application to the very small plasma volumes obtainable from a neonate, requiring 15 μL of plasma, and with application to human breast milk. Plasma and breast milk extracts, spiked with deuterated internal standard (amisulpride-d5) were separated isocratically with a buffered water-methanol-acetonitrile mobile phase. A tandem mass spectrometer in positive electrospray ionisation mode with multiple reaction monitoring was used for detection. Method linearity, sensitivity, imprecision, matrix effects, recovery, and overall process efficiency were satisfactory for milk and plasma. No interferences were found from a broad range of psychotropic and general drugs. The breast milk area under the concentration-time curve for the interval 0-12 hours was 10,726 mcg·h·L, corresponding to a mean breast milk concentration of 894 mcg/L. Breast milk amisulpride was 12-fold higher than the simultaneous plasma concentration. The baby's plasma amisulpride concentration was 10.5% of the maternal plasma concentration. An assay was developed that is suitable for therapeutic drug monitoring of amisulpride. Its application to breast milk and neonate plasma showed that amisulpride partitioned strongly into breast milk and that the neonate reached plasma levels that were more than desirable for a psychotropic drug.
NASA Technical Reports Server (NTRS)
Konradi, A.; Mccoy, J. E.; Garriott, O. K.
1979-01-01
To simulate the behavior of a high voltage solar cell array in the ionospheric plasma environment, the large (90 ft x 55 ft diameter) vacuum chamber was used to measure the high-voltage plasma interactions of a 3 ft x 30 ft conductive panel. The chamber was filled with Nitrogen and Argon plasma at electron densities of up to 1,000,000 per cu cm. Measurements of current flow to the plasma were made in three configurations: (a) with one end of the panel grounded, (b) with the whole panel floating while a high bias was applied between the ends of the panel, and (c) with the whole panel at high negative voltage with respect to the chamber walls. The results indicate that a simple model with a constant panel conductivity and plasma resistance can adequately describe the voltage distribution along the panel and the plasma current flow. As expected, when a high potential difference is applied to the panel ends more than 95% of the panel floats negative with respect to the plasma.
Stability study: Transparent conducting oxides in chemically reactive plasmas
NASA Astrophysics Data System (ADS)
Manjunatha, Krishna Nama; Paul, Shashi
2017-12-01
Effect of plasma treatment on transparent conductive oxides (TCOs) including indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO) and aluminium-doped zinc oxide (AZO) are discussed. Stability of electrical and optical properties of TCOs, when exposed to plasma species generated from gases such as hydrogen and silane, are studied extensively. ITO and FTO thin films are unstable and reduce to their counterparts such as Indium and Tin when subjected to plasma. On the other hand, AZO is not only stable but also shows superior electrical and optical properties. The stability of AZO makes it suitable for electronic applications, such as solar cells and transistors that are fabricated under plasma environment. TCOs exposed to plasma with different fabrication parameters are used in the fabrication of silicon nanowire solar cells. The performance of solar cells, which is mired by the plasma, fabricated on ITO and FTO is discussed with respect to plasma exposure parameters while showing the advantages of using chemically stable AZO as an ideal TCO for solar cells. Additionally, in-situ diagnostic tool (optical emission spectroscopy) is used to monitor the deposition process and damage caused to TCOs.
Leisure Activities, Caregiving Demands, and Catecholamine Levels in Dementia Caregivers
Chattillion, Elizabeth A.; Mausbach, Brent T.; Roepke, Susan K.; von Känel, Roland; Mills, Paul J.; Dimsdale, Joel E.; Allison, Matthew; Ziegler, Michael G.; Patterson, Thomas L.; Ancoli-Israel, Sonia; Grant, Igor
2012-01-01
This study examined whether satisfaction from leisure activities moderates the relationship between caregiving demands (i.e., hours per day spent caring for a spouse with dementia) and resting levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). Spousal caregivers (N=107; mean age 73.95±8.12 years) were assessed in home for plasma levels of NE and EPI, amount of care provided, and leisure satisfaction. Regression was used to determine whether leisure satisfaction moderated the relationship between hours providing care per day and catecholamine levels. A significant interaction was found between hours caregiving and leisure satisfaction for NE, but not for EPI. Post hoc regressions were conducted for both NE and EPI. At low leisure satisfaction, time spent caring for a spouse was positively associated with plasma NE (β = .41; p = .005) and EPI (β = .44; p = .003). In contrast, at high levels of satisfaction, time caregiving was not significantly associated with plasma NE (β = −.08; p = .57) or EPI (β = .23; p = .12). These findings suggest that leisure satisfaction may protect caregivers from increases in catecholamines, which have been implicated in cardiovascular risk. Further support for these findings may impact psychological treatments for distressed caregivers. PMID:22149759
Investigation of dust transport on the lunar surface in laboratory plasmas
NASA Astrophysics Data System (ADS)
Wang, X.; Horanyi, M.; Robertson, S. H.
2009-12-01
There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.
Story, David A; Lees, Lucy; Weinberg, Laurence; Teoh, Soon-Yee; Lee, Katherine J; Velissaris, Sarah; Bellomo, Rinaldo; Wilson, Sarah J
2013-09-01
In an incidental finding, during a study of plasma chemistry after crystalloid infusion, participants reported subjective cognitive changes, particularly slower thinking, after saline but not Hartmann's (Ringer's lactate) solution. The authors tested the hypothesis that saline infusion would produce greater adverse cognitive changes than Plasmalyte infusion. The authors conducted a randomized, cross-over, multiple blinded study of healthy adult volunteers. On separate days, participants received 30 ml/kg over 1 h of either 0.9% saline or Plasmalyte with the order randomly allocated. Plasma chemistry was tested on venous samples. As part of a battery of cognitive tests our primary endpoint was the reaction time index after infusion. The authors studied 25 participants. Plasma chloride was greater after saline than after Plasmalyte: mean difference 5.4 mM (95% CI, 4.1-6.6 mM; P < 0.001). Saline was also associated with greater metabolic acidosis: base-excess 2.5 mM more negative (95% CI, 1.9-3.0 mM more negative; P < 0.001). There was no evidence of a difference in the reaction time index between the two interventions: mean reaction time index 394 ms (SD, 72) after saline versus 385 ms (SD, 55) after Plasmalyte. Difference: saline 9 ms slower (95% CI, 30 ms slower to 12 ms faster; P = 0.39). There were minimal differences in the other cognitive and mood tests. Despite expected differences in plasma chemistry, the authors found that measures of cognition did not differ after infusions of Plasmalyte or saline.
Pinch dynamics in a low-β plasma
NASA Astrophysics Data System (ADS)
Moffatt, H. K.; Mizerski, K.
2018-02-01
The relaxation of a helical magnetic field {B}({x},t) in a high-conductivity plasma contained in the annulus between two perfectly conducting coaxial cylinders is considered. The plasma is of low density and its pressure is negligible compared with the magnetic pressure; the flow of the plasma is driven by the Lorentz force and energy is dissipated primarily by the viscosity of the medium. The axial and toroidal fluxes of magnetic field are conserved in the perfect-conductivity limit, as is the mass per unit axial length. The magnetic field relaxes during a rapid initial stage to a force-free state, and then decays slowly, due to the effect of weak resistivity η, while constrained to remain approximately force-free. Interest centres on whether the relaxed field may attain a Taylor state; but under the assumed conditions with axial and toroidal flux conserved inside every cylindrical Lagrangian surface, this is not possible. The effect of an additional α-effect associated with instabilities and turbulence in the plasma is therefore investigated in exploratory manner. An assumed pseudo-scalar form of α proportional to q η ({j}\\cdot {B}) is adopted, where {j}={{\
Parallel Energy Transport in Detached DIII-D Divertor Plasmas
NASA Astrophysics Data System (ADS)
Leonard, A. W.; Lore, J. D.; Canik, J. M.; McLean, A. G.; Makowski, M. A.
2017-10-01
A comparison of experiment and modeling of detached divertor plasmas is examined in the context of parallel energy transport. Experimental estimates of power carried by electron thermal conduction versus plasma convection are experimentally inferred from power balance measurements of radiated power and target plate heat flux combined with Thomson scattering measurements of the Te profile along the divertor leg. Experimental profiles of Te exhibit relatively low gradients with Te < 15 eV from the X-point to the target implying transport dominated by convection. In contrast, fluid modeling with SOLPS produces sharp Te gradients for Te > 3 eV, characteristic of transport dominated by electron conduction through the bulk of the divertor. This discrepancy with experimental transport dominated by convection and modeling by conduction has significant implications for the radiative capacity of divertor plasmas and may explain at least part of the difficulty for fluid modeling to obtain the experimentally observed radiative losses. Comparisons are also made for helium plasmas where the match between experiment and modeling is much better. Work supported by the US DOE under DE-FC02-04ER54698.
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.; Bateman, T. T.
1996-01-01
We have conducted a laboratory investigation into the physics of plasma expansions and their associated energization processes. We studied single- and multi-ion plasma processes in self-expansions, and included light and heavy ions and heavy/light mixtures to encompass the phenomenological regimes of the solar and polar winds and the AMPTE and CRRES chemical release programs. The laboratory experiments provided spatially-distributed time-dependent measurements of total plasma density, temperature, and density fluctuation power spectra with the data confirming the long-theorized electron energization process in an expanding cloud - a result that was impossible to determine in spaceborne experiments (as e.g., in the CRRES program). These results provided the missing link in previous laboratory and spaceborne programs. confirming important elements in our understanding of such solar-terrestrial processes as manifested in expanding plasmas in the solar wind (e.g., CMES) and in ionospheric outflow in plasmaspheric fluctuate refilling after a storm. The energization signatures were seen in an entire series of runs that varied the ion species (Ar', Xe', Kr' and Ne'), and correlative studies included spectral analyses of electrostatic waves collocated with the energized electron distributions. In all cases wave energies were most intense during the times in which the suprathermal populations were present, with wave intensity increasing with the intensity of the suprathermal electron population. This is consistent with theoretical expectations wherein the energization process is directly attributable to wave particle interactions. No resonance conditions were observed, in an overall framework in which the general wave characteristics were broadband with power decreasing with increasing frequency.
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.
METHOD FOR EXCHANGING ENERGY WITH A PLASMA BY MAGNETIC PUMPING
Hall, L.S.
1963-12-31
A method of heating a plasma confined by a static magnetic field is presented. A time-varying magnetic field having a rise time to a predetermined value substantially less than its fall time is applied to a portion of the plasma. Because of the much shorter rise time, the plasma is reversibly heated. This cycle is repeated until the desired plasma temperature is reached. (AEC)
NASA Astrophysics Data System (ADS)
Chen, Wei; Guo, Li-xin; Li, Jiang-ting
2017-04-01
This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.
Effective thermal and mechanical properties of polycrystalline diamond films
NASA Astrophysics Data System (ADS)
Cheng, Hao-Yu; Yang, Chi-Yuan; Yang, Li-Chueh; Peng, Kun-Cheng; Chia, Chih-Ta; Liu, Shiu-Jen; Lin, I.-Nan; Lin, Kung-Hsuan
2018-04-01
Polycrystalline diamond films were demonstrated as good candidates for electron field emitters, and their mechanical/thermal properties should thus be considered for real devices. We utilized ultrafast optical techniques to investigate the phonon dynamics of several polycrystalline diamond films, prepared by microwave plasma enhanced chemical vapor deposition. The mechanical properties (longitudinal acoustic velocity) and thermal conductivities of diamond films were evaluated from the coherent and incoherent phonon dynamics, respectively. Ultrananocrystalline diamond films were grown using a CH4 (2%)/Ar plasma, while microcrystalline diamond films were grown using a CH4 (2%)/H2 plasma. The ultrananocrystalline diamond film (with a grain size of several nanometers) possesses low acoustic velocity (14.5 nm/ps) and low thermal conductivity (3.17 W/m K) compared with other kinds of diamond films. The acoustic velocity of diamond films increased abruptly to nearly the same as that of natural diamond and remained there when the rod-shaped diamond grains were induced due to the incorporation of H2 in the growth plasma (CH4/Ar). The thermal conductivities of the materials increased monotonously with increasing incorporation of H2 in the growth plasma (CH4/Ar). The thermal conductivity of 25.6 W/m K was attained for nanocrystalline diamond films containing spherical diamond grains (with a size of several tens of nanometers). Compared with single crystalline diamond, the low thermal conductivity of polycrystalline films results from phonon scattering at the interfaces of grains and amorphous carbon in the boundary phases.
NASA Astrophysics Data System (ADS)
Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua
2018-05-01
The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.
NASA Technical Reports Server (NTRS)
Ichimaru, S.; Tanaka, S.
1985-01-01
Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.
Tsang, V C; Wyatt, C R; Damian, R T
1979-06-01
The functional capabilities of a thermometric clot-timer have been demonstrated in a comparative study of human and mouse plasma coagulation. The influence of some variables on coagulation times of mouse and human plasmas were examined in activated partial thromboplastin time, one-stage prothrombin time, and Russell's viper venom time assays. Mouse plasma coagulation times were generally shorter and more reproducible than those of human plasma. Optimal assay conditions are also described.
Plasma digital density determining device
Sprott, Julien C.; Lovell, Thomas W.; Holly, Donald J.
1976-01-01
The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.
Keaveney, Edel M; Price, Ruth K; Hamill, Lesley L; Wallace, Julie M W; McNulty, Helene; Ward, Mary; Strain, J J; Ueland, Per M; Molloy, Anne M; Piironen, Vieno; von Reding, Walter; Shewry, Peter R; Ward, Jane L; Welch, Robert W
2015-02-14
The bran and particularly the aleurone fraction of wheat are high in betaine and other physiological methyl donors, which may exert beneficial physiological effects. We conducted two randomised, controlled, cross-over postprandial studies to assess and compare plasma betaine and other methyl donor-related responses following the consumption of minimally processed bran and aleurone fractions (study A) and aleurone bread (study B). For both studies, standard pharmacokinetic parameters were derived for betaine, choline, folate, dimethylglycine (DMG), total homocysteine and methionine from plasma samples taken at 0, 0·5, 1, 2 and 3 h. In study A (n 14), plasma betaine concentrations were significantly and substantially elevated from 0·5 to 3 h following the consumption of both bran and aleurone compared with the control; however, aleurone gave significantly higher responses than bran. Small, but significant, increases were also observed in DMG measures; however, no significant responses were observed in other analytes. In study B (n 13), plasma betaine concentrations were significantly and substantially higher following consumption of the aleurone bread compared with the control bread; small, but significant, increases were also observed in DMG and folate measures in response to consumption of the aleurone bread; however, no significant responses were observed in other analytes. Peak plasma betaine concentrations, which were 1·7-1·8 times the baseline levels, were attained earlier following the consumption of minimally processed aleurone compared with the aleurone bread (time taken to reach peak concentration 1·2 v. 2·1 h). These results showed that the consumption of minimally processed wheat bran, and particularly the aleurone fraction, yielded substantial postprandial increases in plasma betaine concentrations. Furthermore, these effects appear to be maintained when aleurone was incorporated into bread.
Roy, Monique S; Janal, Malvin N; Crosby, Juan; Donnelly, Robert
2016-04-01
To determine whether plasma levels of markers of inflammation are predictive of the incidence of cardiovascular disease (CVD), hypertension, or mortality in African Americans with type 1 diabetes mellitus. A total of 484 African Americans with type 1 diabetes were included. At baseline and 6-year follow-up, a clinical interview and examination were conducted to document CVD and systemic hypertension. Venous blood for glycated hemoglobin and cholesterol was obtained and albumin excretion rate measured. Mortality was assessed annually between baseline and 6-year follow-up by review of the social security death index. Baseline plasma levels of 28 inflammatory biomarkers were measured using multiplex bead analysis system. After adjusting for baseline age and other confounders, African Americans with type 1 diabetes in the highest quartile of plasma interferon-inducible protein 10 (IP-10) were three times more likely to develop CVD than those in the lowest quartile. African Americans with type 1 diabetes in the lowest quartiles of plasma stromal derived factor-1 (SDF-1) had a 75% higher risk of death than patients in the highest quartile, independently of age, low density lipoprotein cholesterol, body mass index, hypertension, and albuminuria. In African Americans with type 1 diabetes, high plasma IP-10 is an independent predictor for incident CVD and low SDF-1 an independent predictor for mortality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Closed loop adaptive control of spectrum-producing step using neural networks
Fu, Chi Yung
1998-01-01
Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.
Closed loop adaptive control of spectrum-producing step using neural networks
Fu, C.Y.
1998-11-24
Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.
Quinete, Natalia; Esser, André; Kraus, Thomas; Schettgen, Thomas
2017-07-05
Polychlorinated biphenyls (PCBs) are suspected of carcinogenic, neurotoxic and immunotoxic effects in animals and humans. Although background levels of PCBs have been slowly decreased after their ban, they are still among the most persistent and ubiquitous pollutants in the environment, remaining the subject of great concern. PCB 28 is a trichlorinated PCB found in high concentrations not only in human plasma but also in indoor air in Europe, yet little is known about its metabolic pathway and potential metabolites in humans. The present study aims to elucidate the kinetics of metabolite formation and elimination by analyzing four hydroxylated PCBs (OH-PCBs) in human plasma as potential metabolites of the PCB 28 congener. For this purpose, the study was conducted in plasma samples of highly PCB-exposed individuals (N=268), collected from 2010 to 2014 as a representation of a real case scenario with longitudinal data. OH-PCBs have been predicted, synthesized in the course of this study and further identified and quantitated in human plasma. This is the first time that previously unknown PCB 28 metabolites have been measured in human plasma and half-lives have been estimated for PCB metabolites, which could then provide further understanding in the toxicological consequences of exposure to PCBs in humans. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhamale, G. D.; Tiwari, N.; Mathe, V. L.; Bhoraskar, S. V.; Ghorui, S.
2017-07-01
Particle feeding is used in the most important applications of radio frequency (r.f.) thermal plasmas like synthesis of nanoparticles and particle spheroidization. The study reports an in-situ investigation of radial distribution of temperature in such devices using yttrium ion emission lines under different rates of particle loading during synthesis of yttria nanoparticles. A number of interesting facts about the response of r.f. plasma to the rate of particle loading, hitherto unknown, are revealed. Observed phenomena are supported with experimental data from fast photographic experiments and actual synthesis results. The use of the Abel inversion technique together with simultaneous multi-track acquisition of emission spectra from different spatial locations using a CCD based spectrometer allowed us to extract accurate distribution of temperature inside the plasma in the presence of inherent instabilities. The temperature profiles of this type of plasma have been measured possibly for the first time while particles are being fed into the plasma. Observed changes in the temperature profiles as the particle feed rate increases are very significant. Reaction forces resulting from particle evaporation, and increased skin depth owing to the decrease in electrical conductivity in the edge region are proposed as the two different mechanisms to account for the observed changes in the temperature profile as the powder feed rate is increased. Quantitative analyses supporting the proposed mechanisms are presented.
Rechtin, Jack; Torresani, Elisa; Ivanov, Eugene; Olevsky, Eugene
2018-01-01
Spark Plasma Sintering (SPS) is used to fabricate Titanium-Niobium-Zirconium-Tantalum alloy (TNZT) powder—based bioimplant components with controllable porosity. The developed densification maps show the effects of final SPS temperature, pressure, holding time, and initial particle size on final sample relative density. Correlations between the final sample density and mechanical properties of the fabricated TNZT components are also investigated and microstructural analysis of the processed material is conducted. A densification model is proposed and used to calculate the TNZT alloy creep activation energy. The obtained experimental data can be utilized for the optimized fabrication of TNZT components with specific microstructural and mechanical properties suitable for biomedical applications. PMID:29364165
Measurements of ion stopping around the Bragg peak in high-energy-density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenje, J. A.; Grabowski, P. E.; Li, C. K.
2015-11-09
For the first time, quantitative measurements of ion stopping at energies about the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T e) and electron number density (n e) in the range of 0.5 – 4.0 keV and 3 × 10 22 – 3 × 10 23 cm -3 have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T e with n e. As a result, the importance of including quantum diffractionmore » is also demonstrated in the stopping-power modeling of High-Energy-Density Plasmas.« less
Effects of sol aging on resistive switching behaviors of HfOx resistive memories
NASA Astrophysics Data System (ADS)
Hsu, Chih-Chieh; Sun, Jhen-Kai; Tsao, Che-Chang; Chen, Yu-Ting
2017-03-01
This work investigates effects of long-term sol-aging time on sol-gel HfOx resistive random access memories (RRAMs). A nontoxic solvent of ethanol is used to replace toxic 2-methoxyethanol, which is usually used in sol-gel processes. The top electrodes are fabricated by pressing indium balls onto the HfOx surface rather than by using conventional sputtering or evaporation processes. The maximum process temperature is limited to be 100 ℃. Therefore, influences of plasma and high temperature on HfOx film can be avoided. Under this circumstance, effects of sol aging time on the HfOx films can be more clearly studied. The current conduction mechanisms in low and high electric regions of the HfOx RRAM are found to be dominated by Ohmic conduction and trap-filled space charge limited conduction (TF-SCLC), respectively. When the sol aging time increases, the resistive switching characteristic of the HfOx layer becomes unstable and the transition voltage from Ohmic conduction to TF-SCLC is also increased. This suggests that an exceedingly long aging time will give a HfOx film with more defect states. The XPS results are consistent with FTIR analysis and they can further explain the unstable HfOx resistive switching characteristic induced by sol aging.
Effect of solvent/detergent-treated pooled plasma on fibrinolysis in reconstituted whole blood.
Saadah, Nicholas H; van der Meer, Pieter F; Brinkman, Herm Jan M; de Korte, Dirk; Bontekoe, Ido J; Korsten, Herbert H; Middelburg, Rutger A; van der Bom, Johanna G; Schipperus, Martin R
2017-10-01
Hyperfibrinolysis has been observed in patients heavily transfused with solvent/detergent-treated pooled plasma (S/D plasma). We compared coagulation and fibrinolytic variables in blood containing S/D plasma with blood containing fresh-frozen plasma (FFP), with and without α2-antiplasmin or tranexamic acid (TXA) supplementation. Whole blood samples were reconstituted from red blood cells, platelet (PLT) concentrates, and varying mixtures of FFP and S/D plasma. Hematocrit and PLT count of reconstituted whole blood samples were varied. For a subset of runs, α2-antiplasmin or TXA was added to S/D plasma whole blood samples. Thromboelastography (TEG) analysis was performed to assess 50% clot lysis time (CLT 50% ), maximum amplitude (MA), and initial clotting time (R-time). The change in CLT 50% of whole blood as the plasma compartment transitions from FFP to S/D plasma was -52% (95% confidence interval [CI], -60% to -45%; p < 0.001). PLT count strengthened the effect, leading to an additional change in CLT 50% of -8% (95% CI, -14% to -2%; p = 0.012) as PLT count increased from 10 × 10 9 to 150 × 10 9 /L. MA and R-time were not associated with fraction of S/D plasma in whole blood. α2-Antiplasmin and TXA restored clot lysis time in S/D plasma whole blood. Whole blood with S/D plasma has shorter clot lysis times in vitro compared to whole blood with FFP. α2-Antiplasmin and TXA restore clot lysis time of S/D plasma whole blood to that of FFP whole blood. Clinicians should be aware of the decreased clot lysis time associated with S/D plasma transfusion. © 2017 AABB.
CHROMOSPHERIC NANOFLARES AS A SOURCE OF CORONAL PLASMA. II. REPEATING NANOFLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, S. J.; Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: James.A.Klimchuk@nasa.gov
The million degree plasma of the solar corona must be supplied by the underlying layers of the atmosphere. The mechanism and location of energy release, and the precise source of coronal plasma, remain unresolved. In earlier work, we pursued the idea that warm plasma is supplied to the corona via direct heating of the chromosphere by nanoflares, contrary to the prevailing belief that the corona is heated in situ and the chromosphere is subsequently energized and ablated by thermal conduction. We found that single (low-frequency) chromospheric nanoflares could not explain the observed intensities, Doppler-shifts, and red/blue asymmetries in Fe xiimore » and xiv emission lines. In the present work, we follow up on another suggestion that the corona could be powered by chromospheric nanoflares that repeat on a timescale substantially shorter than the cooling/draining timescale. That is, a single magnetic strand is re-supplied with coronal plasma before the existing plasma has time to cool and drain. We perform a series of hydrodynamic experiments and predict the Fe xii and xiv line intensities, Doppler-shifts, and red/blue asymmetries. We find that our predicted quantities disagree dramatically with observations and fully developed loop structures cannot be created by intermediate- or high-frequency chromospheric nanoflares. We conclude that the mechanism ultimately responsible for producing coronal plasma operates above the chromosphere, but this does not preclude the possibility of a similar mechanism powering the chromosphere, extreme examples of which may be responsible for heating chromospheric plasma to transition region temperatures (e.g., type II spicules)« less
Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept.
Pandya, Killol V; Kosta, ShivPrasad
2016-09-01
Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood -synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.
Laohavisit, Anuphon; Shang, Zhonglin; Rubio, Lourdes; Cuin, Tracey A; Véry, Anne-Aliénor; Wang, Aihua; Mortimer, Jennifer C; Macpherson, Neil; Coxon, Katy M; Battey, Nicholas H; Brownlee, Colin; Park, Ohkmae K; Sentenac, Hervé; Shabala, Sergey; Webb, Alex A R; Davies, Julia M
2012-04-01
Plant cell growth and stress signaling require Ca²⁺ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH•. In root cells, extracellular OH• activates a plasma membrane Ca²⁺-permeable conductance that permits Ca²⁺ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca²⁺-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH•-activated Ca²⁺- and K⁺-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca²⁺ in response to OH•. An OH•-activated Ca²⁺ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca²⁺-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca²⁺ in plants.
Systematic Review of the Performance of HIV Viral Load Technologies on Plasma Samples
Sollis, Kimberly A.; Smit, Pieter W.; Fiscus, Susan; Ford, Nathan; Vitoria, Marco; Essajee, Shaffiq; Barnett, David; Cheng, Ben; Crowe, Suzanne M.; Denny, Thomas; Landay, Alan; Stevens, Wendy; Habiyambere, Vincent; Perrins, Jos; Peeling, Rosanna W.
2014-01-01
Background Viral load (VL) monitoring is the standard of care in developing country settings for detecting HIV treatment failure. Since 2010 the World Health Organization has recommended a phase-in approach to VL monitoring in resource-limited settings. We conducted a systematic review of the accuracy and precision of HIV VL technologies for treatment monitoring. Methods and Findings A search of Medline and Embase was conducted for studies evaluating the accuracy or reproducibility of commercially available HIV VL assays. 37 studies were included for review including evaluations of the Amplicor Monitor HIV-1 v1.5 (n = 25), Cobas TaqMan v2.0 (n = 11), Abbott RealTime HIV-1 (n = 23), Versant HIV-1 RNA bDNA 3.0 (n = 15), Versant HIV-1 RNA kPCR 1.0 (n = 2), ExaVir Load v3 (n = 2), and NucliSens EasyQ v2.0 (n = 1). All currently available HIV VL assays are of sufficient sensitivity to detect plasma virus levels at a lower detection limit of 1,000 copies/mL. Bias data comparing the Abbott RealTime HIV-1, TaqMan v2.0 to the Amplicor Monitor v1.5 showed a tendency of the Abbott RealTime HIV-1 to under-estimate results while the TaqMan v2.0 overestimated VL counts. Compared to the Amplicor Monitor v1.5, 2–26% and 9–70% of results from the Versant bDNA 3.0 and Abbott RealTime HIV-1 differed by greater than 0.5log10. The average intra and inter-assay variation of the Abbott RealTime HIV-1 were 2.95% (range 2.0–5.1%) and 5.44% (range 1.17–30.00%) across the range of VL counts (2log10–7log10). Conclusions This review found that all currently available HIV VL assays are of sufficient sensitivity to detect plasma VL of 1,000 copies/mL as a threshold to initiate investigations of treatment adherence or possible treatment failure. Sources of variability between VL assays include differences in technology platform, plasma input volume, and ability to detect HIV-1 subtypes. Monitoring of individual patients should be performed on the same technology platform to ensure appropriate interpretation of changes in VL. Prospero registration # CD42013003603. PMID:24558359
Characterisation of plasma in a rail gun
NASA Technical Reports Server (NTRS)
Ray, P. K.
1986-01-01
The mechanism of plasma and projectile acceleration in a DC rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor, indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated in the experiment of Bauer et. al., as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipatated in the plasma with the radiation heat loss, the properties of the plasma are determined.
Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2002-01-01
Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
MHD simulations of coronal dark downflows considering thermal conduction
NASA Astrophysics Data System (ADS)
Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.
2017-10-01
While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Ekdahl, Jr., Carl A.; Frost, Charles A.
1986-01-01
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
Ekdahl, C.A. Jr.; Frost, C.A.
1984-11-13
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
Plasma confinement system and methods for use
Jarboe, Thomas R.; Sutherland, Derek
2017-09-05
A plasma confinement system is provided that includes a confinement chamber that includes one or more enclosures of respective helicity injectors. The one or more enclosures are coupled to ports at an outer radius of the confinement chamber. The system further includes one or more conductive coils aligned substantially parallel to the one or more enclosures and a further set of one or more conductive coils respectively surrounding portions of the one or more enclosures. Currents may be provided to the sets of conductive coils to energize a gas within the confinement chamber into a plasma. Further, a heat-exchange system is provided that includes an inner wall, an intermediate wall, an outer wall, and pipe sections configured to carry coolant through cavities formed by the walls.
NASA Astrophysics Data System (ADS)
Sherman, Justin; Azzari, Phillip; Crilly, P. B.; Duke-Tinson, Omar; James, Royce W.; Karama, Jackson; Page, E. J.; Schlank, Carter; Zuniga, Jonathan
2014-10-01
CGAPL is conducting small investigations in plasma physics and magneto-hydrodynamics buoy positioning. For data management, we are developing capability to analyze/digitize data with a National Instruments Data Acquisition board, 2 MS/s sampling rate (long time scale), and an Express Octopus card, 125 MS/s sampling rate (short scale). Sampling at 12 bits precision, we use LabVIEW as a programing language; GUIs will control variables in 1 or more concurrent runs and monitor of diagnostics. HPX utilizes high density (1013 cm3 up), low pressure (.01 T) Ar gas (fill pressure: on 104 mTorr order). Helicon/W Mode plasmas become a diagnostics test-bed for other investigations and a tool for future spacecraft propulsion devices. Plasmas created by directing energy into gas-filled Pyrex tube; power supply and matching box, up to 250 W power in 20-100 MHz frequencies, provide energy to ignite. Uniform magnetic field needed to reach the W-Mode. We employ an electromagnet to B-field while an acceleration coil positions plasma in vacuum chamber, facilitating analysis. Initial field requirements and accuracy calibration have been completed. Progress on development and implementation of probes and DAQ/GUI system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.
NASA Astrophysics Data System (ADS)
Maxworth, A. S.; Golkowski, M.; Malaspina, D.; Jaynes, A. N.
2017-12-01
Whistler mode waves play a dominant role in the energy dynamics of the Earth's magnetosphere. Trajectory of whistler mode waves can be predicted by raytracing. Raytracing is a numerical method which solves the Haselgrove's equations at each time step taking the background plasma parameters in to account. The majority of previous raytracing work was conducted assuming a cold (0 K) background magnetospheric plasma. Here we perform raytracing in a finite temperature plasma with background electron and ion temperatures of a few eV. When encountered with a high energy (>10 keV) electron distribution, whistler mode waves can undergo a power attenuation and/or growth, depending on resonance conditions which are a function of wave frequency, wave normal angle and particle energy. In this work we present the wave power attenuation and growth analysis of whistler mode waves, during the interaction with a high energy electron distribution. We have numerically modelled the high energy electron distribution as an isotropic velocity distribution, as well as an anisotropic bi-Maxwellian distribution. Both cases were analyzed with and without the temperature effects for the background magnetospheric plasma. Finally we compare our results with the whistler mode energy distribution obtained by the EMFISIS instrument hosted at the Van Allen Probe spacecraft.
NASA Astrophysics Data System (ADS)
Fang, Zhi; Qiu, Yuchang; Wang, Hui; E, Kuffel
2007-10-01
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.
An experimental study of phase transitions in a complex plasma
NASA Astrophysics Data System (ADS)
Smith, Bernard Albert Thomas, II
In semiconductor manufacturing, contamination due to particulates significantly decreases the yield and quality of device fabrication, therefore increasing the cost of production. Dust particle clouds can be found in almost all plasma processing environments including both plasma etching devices and in plasma deposition processes. Dust particles suspended within such plasmas will acquire an electric charge from collisions with free electrons in the plasma. If the ratio of inter-particle potential energy to the average kinetic energy is sufficient, the particles will form either a "liquid" structure with short range ordering or a crystalline structure with long range ordering. Otherwise, the dust particle system will remain in a gaseous state. Many experiments have been conducted over the past decade on such complex plasmas to discover the character of the systems formed, but more work is needed to fully understand these structures. This paper describes the processes involved in setting up the CASPER GEC RF Reference Cell and the modifications necessary to examine complex plasmas. Research conducted to characterize the system is outlined to demonstrate that the CASPER Cell behaves as other GEC Cells. In addition, further research performed shows the behavior of the complex plasma system in the CASPER Cell is similar to complex plasmas studied by other groups in this field. Along the way analysis routines developed specifically for this system are described. New research involving polydisperse dust distributions is carried out in the system once the initial characterization is finished. Next, a system to externally vary the DC bias in the CASPER Cell is developed and characterized. Finally, new research conducted to specifically examine how the complex plasma system reacts to a variable DC bias is reported. Specifically, the response of the interparticle spacing to various system parameters (including the external DC bias) is examined. Also, a previously unreported phenomenon, namely layer splitting, is examined.
Plasma Interactions With a Negative Biased Electrodynamic Tether
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Curtis, Leslie; Welzyn, Ken J.
2004-01-01
The ProSEDS conductive tether design incorporates two distinct types of tethers from a plasma interaction viewpoint. The 200 m closest to the Delta II spacecraft is insulated from the plasma, and the remaining 4800 m is semi-bare. This latter portion is considered semi-bare because a conductive coating, which is designed to collect electrons from the plasma, was applied to the wires to regulate the overall tether temperature. Because the tether has both insulating and conductive tether sections, a transition point exists between the two that forms a triple point with the space plasma. Also, insulated tethers can arc to the space plasma if the insulation is weakened or breached by pinholes caused by either improper handling or small meteoroid and orbital debris strikes. Because electrodynamic tethers are typically long, they have a high probability of these impacts. The particles, which strike the tether, may not have sufficient size to severe the tether, but they can easily penetrate the tether insulation producing a plasma discharge to the ambient plasma. Samples of both the ProSEDS tether transition region and the insulated tether section with various size of pinholes were placed into the MSFC plasma chamber and biased to typical ProSEDS open circuit tether potentials (-500 V to -1600 V). The results of the testing showed that the transition region of the tether (i.e. the triple point) arced to the ambient plasma at -900 V, and the tethers damaged by a pinhole or simulated debris strike arced to the plasma between -700 V and -900 V. Specific design steps were taken to eliminate the triple point issue in the ProSEDS tether design and make it ready for flight. To reduce the pinhole arcing risk, ProSEDS mission operations were changed to eliminate the high negative potential on the insulated tether. The results of the testing campaign and the design changes implemented to ensure a successful flight are described.
Yan, J; Winter, L B; Burns-Whitmore, B; Vermeylen, F; Caudill, M A
2012-01-01
OBJECTIVES: We aimed to test the hypotheses that (i) plasma choline metabolites differ between normal (body mass index (BMI)<25 kg m−2) and overweight (BMI ⩾25 kg m−2) men, and (ii) an elevated BMI alters associations between plasma choline metabolites and indicators of metabolic stress. DESIGN: This was a cross-sectional study. A one-time fasting blood sample was obtained for measurements of the choline metabolites and metabolic stress indicators (that is, serum alanine aminotransferase (ALT), glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides and homocysteine), and for genotype determination. SUBJECTS: The analysis was conducted with 237 Mexican American men with a median age of 22 years. RESULTS: Compared with men with a normal BMI (n=98), those with an elevated BMI (n=139) had 6% lower (P=0.049) plasma betaine and an 11% lower (P=0.002) plasma betaine to choline ratio. Among men with an elevated BMI, plasma betaine and the plasma betaine to choline ratio positively associated (P⩽0.044) with a favorable serum cholesterol profile, and inversely associated (P=0.001) with serum ALT, a marker of liver dysfunction. The phosphatidylethanolamine N-methyltransferase (PEMT) 5465G→A (rs7946) genotype interacted (P⩽0.007) with the plasma betaine to choline ratio to modulate indicators of metabolic stress with stronger inverse associations observed among overweight men with the PEMT 5465GG genotype. CONCLUSIONS: Plasma choline metabolites predict metabolic stress among overweight men often in a genotype-specific manner. The diminished betaine among overweight men coupled with the inverse association between betaine and metabolic stress suggest that betaine supplementation may be effective in mitigating some of the metabolic insults arising from lipid overload. PMID:23169489
NASA Astrophysics Data System (ADS)
Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.
2018-01-01
In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.
Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yun-Sik; Department of Physics, University of Science, Pyongyang, North Korea; Hao, Zuoqiang
A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg,more » and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Orpana, J.; Kronholm, R.
2016-09-15
The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system andmore » the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.« less
Zhang, Chao; Li, Haiyan; Xiong, Xin; Zhai, Suodi; Wei, Yudong; Zhang, Shuang; Zhang, Yuanyuan; Xu, Lin; Liu, Li
2017-01-01
We investigated the pharmacokinetics and safety profiles of a newly developed combined ethinylestradiol (EE)/gestodene (GSD) transdermal contraceptive patch after a single-dose administration and compared with the market available tablet formulation in healthy adult subjects. An open-label, two-period comparative study was conducted in 12 healthy women volunteers. A single dose of the study combined EE/GE transdermal contraceptive patch and oral tablet (Milunet ® ) were administered. Blood samples at different time points after dose were collected, and concentrations were analyzed. A reliable, highly sensitive and accurate high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC/MS/MS) assay method was developed in this study to determine the plasma concentrations of EE and GSD. Compared to the tablet, the study patch had a significantly decreased maximum plasma concentration ( C max ), extended time to reach the C max and half-life, as well as increased clearance and apparent volume of distribution. The half-lives of EE and GSD of the patch were 3.3 and 2.2 times, respectively, than the half-life of the tablet. The areas under the plasma concentration-time curve (AUCs) of EE and GSD of the patch were 8.0 and 16.2 times, respectively, than the AUC of the tablet. No severe adverse event was observed during the whole study, and the general safety was acceptable. In conclusion, compared to the oral tablet Milunet, the study contraceptive patch was well tolerated and showed potent drug exposure, significant extended half-life and stable drug concentrations.
A revised analysis of Lawson criteria and its implications for ICF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panarella, E.
1995-12-31
Recently, a re-examination of the breakeven conditions for D-T plasmas has been presented. The results show that breakeven might not follow the Lawson nt rule, and in particular the plasma containment time seems to have lost the importance that it previously had. Moreover, a minimum particle density of the order of {approximately}10{sup 15} cm{sup {minus}3} has been found to be required for breakeven, which indicates that the inertial confinement fusion effort is in the right position to reach the fusion goal. In light of these results, a reassessment of Lawson`s analysis has been undertaken. Lawson considered the case of amore » pulsed system that followed this idealized cycle: the gas is heated instantaneously to a temperature T, which is maintained for a time t, after which the gas is allowed to cool. Conduction loss is neglected entirely, and the energy used to heat the gas and supply the radiation loss is regained as useful heat. In order to illustrate how the analysis by Lawson can be improved, the cycle to which the gas is subjected should be divided in three phases: 1st phase: rapid heating of the gas for a time t{sub 1} to bring it from the original ambient temperature to the fusion temperature T; 2nd phase: continuous injection of energy in the plasma for a time t{sub 2} to maintain the temperature T; 3rd phase: no more injection of energy and cooling of the gas to the ambient temperature in a time t{sub 3}.« less
Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.
2016-05-01
Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.
Calvo-Polanco, Monica; Sánchez-Romera, Beatriz; Aroca, Ricardo
2014-01-01
Plants respond to salinity by altering their physiological parameters in order to maintain their water balance. The reduction in root hydraulic conductivity is one of the first responses of plants to the presence of salt in order to minimize water stress. Although its regulation has been commonly attributed to aquaporins activity, osmotic adjustment and the toxic effect of Na+ and Cl− have also a main role in the whole process. We studied the effects of 30 mM NaCl on Phaseolus vulgaris plants after 9 days and found different responses in root hydraulic conductivity over-time. An initial and final reduction of root hydraulic conductivity, stomatal conductance, and leaf water potential in response to NaCl was attributed to an initial osmotic shock after 1 day of treatment, and to the initial symptoms of salt accumulation within the plant tissues after 9 days of treatment. After 6 days of NaCl treatment, the increase in root hydraulic conductivity to the levels of control plants was accompanied by an increase in root fructose content, and with the intracellular localization of root plasma membrane aquaporins (PIP) to cortex cells close to the epidermis and to cells surrounding xylem vessels. Thus, the different responses of bean plants to mild salt stress over time may be connected with root fructose accumulation, and intracellular localization of PIP aquaporins. PMID:24595059
NASA Technical Reports Server (NTRS)
Stone, N. H.; Samir, Uri
1986-01-01
Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.
Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2015-11-01
FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.
Hollow laser plasma self-confined microjet generation
NASA Astrophysics Data System (ADS)
Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team
2017-10-01
Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.
CHMWTR: A Plasma Chemistry Code for Water Vapor
2012-02-01
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6790--12-9383 CHMWTR: A Plasma Chemistry Code for Water Vapor Daniel F. GorDon Michael...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT CHMWTR: A Plasma Chemistry Code for Water Vapor Daniel F. Gordon, Michael H. Helle, Theodore G. Jones, and K...October 2011 NRL *Directed Energy Scholar, Directed Energy Professional Society Plasma chemistry Breakdown field Conductivity 67-4270-02 CHMWTR: a Plasma
NASA Astrophysics Data System (ADS)
Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca
2017-12-01
An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.
NASA Astrophysics Data System (ADS)
Zhao, Pei; Wang, Song; Guo, Shibin; Chen, Yixiang; Ling, Yunhan; Li, Jiangtao
2013-07-01
W and W-Cu composites were bonded with an amorphous W-Fe coated copper foil as the interlayer at different temperature and holding time by hot pressing method. Effects of the bonding temperature and holding time on the microstructure and thermal conductivity of the bonded specimens were investigated. The thermal conductivity of the bonded sample increased with the bonding temperature and reached the maximum at 1000 °C, but essentially unchanged with the holding time. Because at 1000 °C more W-Fe compounds would be formed at the interlayer, which were helpful for tight bonding of W and W-Cu composites, and the grain size was larger which could reduce thermal resistance. The W-Cu FGM bonded by this method showed good resistance to thermal load, and performed well when facing to short pulse plasma in experimental advanced superconducting tokamak (the first full superconductive fusion device in the world).
Performance of a Liner-on-Target Injector for Staged Z-Pinch Experiments
NASA Astrophysics Data System (ADS)
Conti, F.; Valenzuela, J. C.; Narkis, J.; Krasheninnikov, I.; Beg, F.; Wessel, F. J.; Ruskov, E.; Rahman, H. U.; McGee, E.
2016-10-01
We present the design and characterization of a compact liner-on-target injector, used in the Staged Z-pinch experiments conducted on the UNR-NTF Zebra Facility. Previous experiments and analysis indicate that high-Z gas liners produce a uniform and efficient implosion on a low-Z target plasma. The liner gas shell is produced by an annular solenoid valve and a converging-diverging nozzle designed to achieve a collimated, supersonic, Mach-5 flow. The on-axis target is produced by a coaxial plasma gun, where a high voltage pulse is applied to ionize neutral gas and accelerate the plasma by the J-> × B-> force. Measurements of the liner and target dynamics, resolved by interferometry in space and time, fast imaging, and collection of the emitted light, are presented. The results are compared to the predictions from Computational Fluid Dynamics and MHD simulations that model the injector. Optimization of the design parameters, for upcoming Staged Z-pinch experiments, will be discussed. Advanced Research Projects Agency - Energy, DE-AR0000569.
Generation of Currents in Weakly Ionized Plasmas through a Collisional Dynamo
NASA Astrophysics Data System (ADS)
Dimant, Yakov; Oppenheim, Meers; Fletcher, Alex
2016-10-01
Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. We argue that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for the current formation, ∇ × (U-> × B->) ≠ ∂ B-> / ∂ t , where U-> is the neutral flow velocity, B-> is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ̂ . For many systems, the displacement current, ∂ B-> / ∂ t , is negligible, making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates electrojets plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law. Work supported by NSF/DOE Grant PHY-1500439.
NASA Astrophysics Data System (ADS)
Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.
2016-08-01
In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.
NASA Astrophysics Data System (ADS)
Audebert, P.
2007-11-01
In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications. These sources have exceptional properties, i.e. high brightness and high spectral cut-off, high directionality and laminarity, short burst duration. We have shown that for proton energies >10 MeV, the transverse and longitudinal emittance are respectively <0.004 mm-mrad and <10-4 eV-s, i.e. at least 100-fold and may be as much as 10^4-fold better than conventional accelerators beams. Thanks to these properties, these sources allow for example point-projection radiography with unprecedented resolution. We will show example of such time and space-resolved radiography of fast evolving fields, either of associated with the expansion of a plasma in vacuum [*] or with the propagation of a ICF-relevant laser beam in an underdense plasma. These proton sources also open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications.
A feasibility study and mission analysis for the Hybrid Plume Plasma Rocket
NASA Technical Reports Server (NTRS)
Sullivan, Daniel J.; Micci, Michael M.
1990-01-01
The Hybrid Plume Plasma Rocket (HPPR) is a high power electric propulsion concept which is being developed at the MIT Plasma Fusion Center. This paper presents a theoretical overview of the concept as well as the results and conclusions of an independent study which has been conducted to identify and categorize those technologies which require significant development before the HPPR can be considered a viable electric propulsion device. It has been determined that the technologies which require the most development are high power radio-frequency and microwave generation for space applications and the associated power processing units, low mass superconducting magnets, a reliable, long duration, multi-megawatt space nuclear power source, and long term storage of liquid hydrogen propellant. In addition to this, a mission analysis of a one-way transfer from low earth orbit (LEO) to Mars indicates that a constant acceleration thrust profile, which can be obtained using the HPPR, results in faster trip times and greater payload capacities than those afforded by more conventional constant thrust profiles.
NASA Astrophysics Data System (ADS)
Kudryavtseva, Valeriya; Stankevich, Ksenia; Kibler, Elina; Golovkin, Alexey; Mishanin, Alexander; Bolbasov, Evgeny; Choynzonov, Evgeny; Tverdokhlebov, Sergei
2018-04-01
Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts.
The hidden ion population - Revisited. [in outer plasmasphere
NASA Technical Reports Server (NTRS)
Olsen, R. C.; Chappell, C. R.; Gallagher, D. L.; Green, J. L.; Gurnett, D. A.
1985-01-01
In an investigation conducted by Olsen (1982) on the basis of particle data taken with an electrostatic analyzer, it was found that a cold plasma population with a density between 10 and 100 per cu cm appeared suddenly when the satellite was eclipsed, but was hidden in sunlight. The present paper has the objective to show further measurements of ordinarily 'hidden' ion populations, in order to resolve some of the questions raised in connection with the Scatha satellite data reported by Olsen. It is found that the retarding ion mass spectrometer (RIMS) detector is capable of measuring the core of the plasma distribution in sunlight and eclipse, though the task is more easily done in eclipse. There are, however, limitations concerning the ability of the detector to measure all the plasma, all the time. It is, therefore, pointed out that continuous effective measurements of the 'hidden' ion population of the magnetosphere still awaits satellites with effective means of potential control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Demers, D. R.; Chen, X.
2014-11-15
The performance of many diagnostic and control systems within fusion and other fields of research are often detrimentally affected by spurious noise signals. This is particularly true for those (such as radiation or particle detectors) working with very small signals. Common sources of radiated and conducted noise in experimental fusion environments include the plasma itself and instrumentation. The noise complicates data analysis, as illustrated by noise on signals measured with the heavy ion beam probe (HIBP) installed on the Madison Symmetric Torus. The noise is time-varying and often exceeds the secondary ion beam current (in contrast with previous applications). Analysismore » of the noise identifies the dominant source as photoelectric emission from the detectors induced by ultraviolet light from the plasma. This has led to the development of a calibrated subtraction technique, which largely removes the undesired temporal noise signals from data. The advantages of the technique for small signal measurement applications are demonstrated through improvements realized on HIBP fluctuation measurements.« less
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Banks, P. M.
1986-01-01
The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.
NASA Astrophysics Data System (ADS)
Koç, Sevgul Ozturk; Galioglu, Sezin; Ozturk, Seckin; Kurç, Burcu Akata; Koç, Emrah; Salamov, Bahtiyar G.
2018-02-01
We have analyzed the interaction between microdischarge and microporous zeolite electronic materials modified by silver (Ag0) nanoparticles (resistivity 1011 to 106 Ω cm) on the atmospheric pressure cold plasma generation in air. The generation and maintenance of stable cold plasma is studied according to the effect of the Ag0 nanoparticles. The role of charge carriers in mixed conductivity processes and electrical features of zeolite from low pressure to atmospheric pressure is analyzed in air microplasmas for both before and after breakdown regimes. The results obtained from the experiments indicate that Ag0 nanoparticles play a significant role in considerably reducing the breakdown voltage in plasma electronic devices with microporous zeolite electronic materials.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.
2010-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.
Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V.; Seok Kim, Jin; Jo, Younghyun
2014-05-15
The temporal evolution of the linear diocotron instability of a cylindrical annular plasma column surrounded by a conducting boundary has been investigated by using the methodology of the cylindrical shearing modes. The linear solution of the initial and boundary-value problems is obtained which is valid for any time at which linear effects dominate. The solution reveals that the initial perturbations of the electron density pass through the stage of the non-modal evolution when the perturbation experiences spatio-temporal distortion pertinent to the considered geometry of the electron column. The result is confirmed by a two-dimensional cylindrical particle-in-cell simulation.
NASA Astrophysics Data System (ADS)
Kotelnikova, Alexandra A.; Karengin, Alexander G.; Mendoza, Orlando
2018-03-01
The article represents possibility to apply oxidative and reducing plasma for plasma-chemical synthesis of metal-oxide compounds «Mo‒UO2» from water-salt mixtures «molybdic acid‒uranyl nitrate» and «molybdic acid‒ uranyl acetate». The composition of water-salt mixture was calculated and the conditions ensuring plasma-chemical synthesis of «Mo‒UO2» compounds were determined. Calculations were carried out at atmospheric pressure over a wide range of temperatures (300-4000 K), with the use of various plasma coolants (air, hydrogen). The heat conductivity coefficients of metal-oxide compounds «Mo‒UO2» consisting of continuous component (molybdenum matrix) are calculated. Inclusions from ceramics in the form of uranium dioxide were ordered in the matrix. Particular attention is paid to methods for calculating the coefficients of thermal conductivity of these compounds with the use of different models. Calculated results were compared with the experimental data.
A DSMC Study of Low Pressure Argon Discharge
NASA Astrophysics Data System (ADS)
Hash, David; Meyyappan, M.
1997-10-01
Work toward a self-consistent plasma simulation using the DSMC method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due the availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar^+, Ar^*, Ar_2, and e where Ar^* is a metastable.
A Comparative Pharmacokinetics Study of the Anti-Parkinsonian Drug Pramipexole.
Putri, Ratih S I; Setiawati, Effi; Aziswan, Syifa A; Ong, Fenny; Tjandrawinata, Raymond R; Susanto, Liana W
2016-11-18
The present study aimed to compare pharmacokinetic parameters of two pramipexole 0.25 mg formulations in order to show bioequivalence. The study was conducted in a randomized, open-label, two-period, two-sequence, and crossover design, involving 23 healthy volunteers. One of the 0.25 mg formulations of pramipexole evaluated in the study was manufactured by PT Dexa Medica, Palembang, Indonesia, the other, used as the reference, by Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany. All eligible subjects were required to fast before each drug administration period, which was separated by a one-week washout period. Pramipexole concentrations in plasma were assayed using a validated ultra performance liquid chromatography with mass spectrometry (UPLC-MS/MS) detector. The evaluated pharmacokinetic parameters included the area under the plasma concentration curve from time zero to the last observed measurable concentration (AUC 0-t ), the area under the plasma concentration curve extrapolated to infinite time (AUC 0-∞ ), the maximum plasma concentration (C max ), the time to reach C max (t max ), and the plasma concentration half-life (t 1/2 ). To evaluate the bioequivalence of those two pramipexole formulations, 90% confidence intervals (CIs) for geometric mean ratios of both formulations were calculated for AUC and C max parameters, while t max and t 1/2 differences were analyzed on the non-transformed data using Wilcoxon matched-pairs and a Student's paired t -test, respectively. The 90% CIs for the geometric mean ratios of the two pramipexole formulations were 95.89% (90.73%-101.34%), 95.53% (89.75%-101.68%), and 92.11% (84.35%-100.58%) for AUC 0-t , AUC 0-∞ , and C max , respectively. There were no statistically significant differences for t max and t 1/2 between the two pramipexole formulations. It is concluded that two pramipexole formulations in this study were bioequivalent.
A Comparative Pharmacokinetics Study of the Anti-Parkinsonian Drug Pramipexole
Putri, Ratih S. I.; Setiawati, Effi; Aziswan, Syifa A.; Ong, Fenny; Tjandrawinata, Raymond R.; Susanto, Liana W.
2016-01-01
The present study aimed to compare pharmacokinetic parameters of two pramipexole 0.25 mg formulations in order to show bioequivalence. The study was conducted in a randomized, open-label, two-period, two-sequence, and crossover design, involving 23 healthy volunteers. One of the 0.25 mg formulations of pramipexole evaluated in the study was manufactured by PT Dexa Medica, Palembang, Indonesia, the other, used as the reference, by Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany. All eligible subjects were required to fast before each drug administration period, which was separated by a one-week washout period. Pramipexole concentrations in plasma were assayed using a validated ultra performance liquid chromatography with mass spectrometry (UPLC-MS/MS) detector. The evaluated pharmacokinetic parameters included the area under the plasma concentration curve from time zero to the last observed measurable concentration (AUC0-t), the area under the plasma concentration curve extrapolated to infinite time (AUC0-∞), the maximum plasma concentration (Cmax), the time to reach Cmax (tmax), and the plasma concentration half-life (t1/2). To evaluate the bioequivalence of those two pramipexole formulations, 90% confidence intervals (CIs) for geometric mean ratios of both formulations were calculated for AUC and Cmax parameters, while tmax and t1/2 differences were analyzed on the non-transformed data using Wilcoxon matched-pairs and a Student’s paired t-test, respectively. The 90% CIs for the geometric mean ratios of the two pramipexole formulations were 95.89% (90.73%–101.34%), 95.53% (89.75%–101.68%), and 92.11% (84.35%–100.58%) for AUC0-t, AUC0-∞, and Cmax, respectively. There were no statistically significant differences for tmax and t1/2 between the two pramipexole formulations. It is concluded that two pramipexole formulations in this study were bioequivalent. PMID:27869754
Mocellin, Michel Carlos; Pastore e Silva, Juliana de Aguiar; Camargo, Carolina de Quadros; Fabre, Maria Emília de Souza; Gevaerd, Scheila; Naliwaiko, Katya; Moreno, Yara Maria Franco; Nunes, Everson Araújo; Trindade, Erasmo Benicio Santos de Moraes
2013-09-01
Previous studies have shown that n-3 polyunsaturated fatty acids n-3 (n-3 PUFA) have several anticancer effects, especially attributed to their ability to modulate a variety of genomic and immune responses. In this context, this randomized, prospective, controlled clinical trial was conducted in order to check whether supplementation of 2 g/day of fish oil for 9 weeks alters the production of inflammatory markers, the plasma fatty acid profile and the nutritional status in patients with colorectal cancer (CRC). Eleven adults with CRC in chemotherapy were randomized into two groups: (a) supplemented (SG) daily with 2 g/day of encapsulated fish oil [providing 600 mg/day of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)] for 9 weeks (n = 6), and (b) control (CG) (n = 5). All outcomes were evaluated on the day before the first chemotherapy session and 9 weeks later. Plasma TNF-α, IL-1β, IL-10 and IL-17A, the pro/anti-inflammatory balance (ratio TNF-α/IL-10 and IL-1β/IL10) and serum albumin, showed no significant changes between times and study groups (p > 0.05). C-reactive protein (CRP) and the CRP/albumin ratio showed opposite behavior in groups, significantly reducing their values in SG (p < 0.05). Plasma proportions of EPA and DHA increased 1.8 and 1.4 times, respectively, while the ARA reduced approximately 0.6 times with the supplementation (9 weeks vs baseline, p < 0.05). Patients from SG gained 1.2 kg (median) while the CG lost -0.5 kg (median) during the 9 weeks of chemotherapy (p = 0.72). These results demonstrate that 2 g/day of fish oil for 9 weeks of chemotherapy improves CRP values, CRP/albumin status, plasma fatty acid profile and potentially prevents weight loss during treatment.
Experimental results on current-driven turbulence in plasmas - a survey
NASA Astrophysics Data System (ADS)
de Kluiver, H.; Perepelkin, N. F.; Hirose, A.
1991-01-01
The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.
Thermal conductivity measurements of proton-heated warm dense aluminum
NASA Astrophysics Data System (ADS)
McKelvey, A.; Kemp, G.; Sterne, P.; Fernandez, A.; Shepherd, R.; Marinak, M.; Link, A.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.; Ping, Y.
2017-10-01
We present the first thermal conductivity measurements of warm dense aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Predictions by other models, such Lee-More, Sesame 27311 and 29373, are outside of experimental error bars. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions. (Y. Ping et al. Phys. Plasmas, 2015, A. Mckelvey, et al. Sci. Reports 2017). This work was performed under the auspices of the DOE by LLNL under contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.
IMP series report/bibliography
NASA Technical Reports Server (NTRS)
King, J. H.
1971-01-01
The main characteristics of the IMP spacecraft and experiments are considered and the scientific knowledge gained is presented in the form of abstracts of scientific papers using IMP data. Spacecraft characteristics, including temporal and spatial coverages, are presented followed by an annotated bibliography. Experiments conducted on all IMP's (including prelaunch IMP's H and J) are described. Figures are presented showing the time histories, through the end of 1970, of magnetic field, plasma, and energetic particle experiments.
NASA Astrophysics Data System (ADS)
Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.
2014-01-01
Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.
2018-01-01
In previous work [Kawamura et al., Plasma Sources Sci. Technol. 25, 054009 (2016)] and [Kawamura et al., J. Phys. D: Appl. Phys. 50, 145204 (2017)], 1D kinetic particle-in-cell (PIC) simulations of narrow gap (1 to 4 mm), high frequency (27 MHz) or dc-driven, He/2%H2O atmospheric pressure plasmas (APPs) showed an ionization instability resulting in standing striations (spatial oscillations) in the bulk plasma. We developed a steady-state striation theory which showed that the striations are due to non-local electron kinetics. In both the high frequency and dc-driven cases, the equilibrium electron density n0 in the plasma bulk was stationary. In this work, we first conduct 1D PIC simulations of a 1 mm gap He/2%H2O APP, driven by a sinusoidal current at a low frequency of f = 50 kHz such that ω = 2πf is well below the ionization frequency νiz. In this case, n0 varies with time, and we observe a time-varying instability which quasistatically depends on n0(t). At each phase of the rf cycle, the discharge resembles a dc discharge at the same n0. At higher frequencies (200 kHz-1 MHz), ω approaches νiz, and quasistatic equilibrium at each phase breaks down. The discharge is also driven with a 200 kHz, 50% duty cycle square wave pulse with a short rise and fall time of 0.1 μs in an attempt to directly measure the striation growth rate s during the on-cycle before it saturated. However, the spike in current during the rise time leads to a spike in electron temperature Te and hence νiz and s at the beginning of the rise which saturated during the beginning of the on-cycle. To predict the instability growth rate and saturation during and after the current spike, we extend our striation theory to include time-varying n0, Te, νiz, as well as terms for the nonlinear saturation and noise floor of the striation amplitude. The time-varying global model predictions are compared to the PIC simulations, showing reasonable agreement.
NASA Astrophysics Data System (ADS)
Naik, Deepak kumar; Maity, K. P.
2018-03-01
Plasma arc cutting (PAC) is a high temperature thermal cutting process employed for the cutting of extensively high strength material which are difficult to cut through any other manufacturing process. This process involves high energized plasma arc to cut any conducting material with better dimensional accuracy in lesser time. This research work presents the effect of process parameter on to the dimensional accuracy of PAC process. The input process parameters were selected as arc voltage, standoff distance and cutting speed. A rectangular plate of 304L stainless steel of 10 mm thickness was taken for the experiment as a workpiece. Stainless steel is very extensively used material in manufacturing industries. Linear dimension were measured following Taguchi’s L16 orthogonal array design approach. Three levels were selected to conduct the experiment for each of the process parameter. In all experiments, clockwise cut direction was followed. The result obtained thorough measurement is further analyzed. Analysis of variance (ANOVA) and Analysis of means (ANOM) were performed to evaluate the effect of each process parameter. ANOVA analysis reveals the effect of input process parameter upon leaner dimension in X axis. The results of the work shows that the optimal setting of process parameter values for the leaner dimension on the X axis. The result of the investigations clearly show that the specific range of input process parameter achieved the improved machinability.
do Nascimento, Ticiano Gomes; de Jesus Oliveira, Eduardo; Basílio Júnior, Irinaldo Diniz; de Araújo-Júnior, João Xavier; Macêdo, Rui Oliveira
2013-01-25
A limited number of studies with application of the Arrhenius equation have been reported to drugs and biopharmaceuticals in biological fluids at frozen temperatures. This paper describes stability studies of ampicillin and cephalexin in aqueous solution and human plasma applying the Arrhenius law for determination of adequate temperature and time of storage of these drugs using appropriate statistical analysis. Stability studies of the beta-lactams in human plasma were conducted at temperatures of 20°C, 2°C, -20°C and also during four cycles of freeze-thawing. Chromatographic separation was achieved using a Shimpak C(18) column, acetonitrile as organic modifier and detection at 215nm. LC-UV-MS/MS was used to demonstrate the conversion of ampicillin into two diastereomeric forms of ampicilloic acid. Stability studies demonstrated degradation greater than 10% for ampicillin in human plasma at 20°C, 2°C and -20°C after 15h, 2.7days, 11days and for cephalexin at the same temperatures after 14h, 3.4days and 19days, respectively, and after the fourth cycle of freezing-thawing. The Arrhenius plot showed good prediction for the ideal temperature and time of storage for ampicillin (52days) and cephalexin (151days) at a temperature of -40°C, but statistical analysis (least squares method) must be applied to avoid incorrect extrapolations and estimated values out uncertainty limits. Copyright © 2012 Elsevier B.V. All rights reserved.
Imposed magnetic field and hot electron propagation in inertial fusion hohlraums
Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; ...
2015-12-02
The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less
The effect of dietary betaine in Eimeria acervulina-infected chicks.
Matthews, J O; Southern, L L
2000-01-01
Two experiments were conducted to evaluate the effect of dietary betaine in broiler chicks with either chronic (CHR; 2.5 x 10(5) sporulated oocysts on Day 1, 4, 7, and 10) or acute (ACT; 1.0 x 10(6) sporulated oocysts on Day 1) Eimeria acervulina infections. Three hundred (Experiment 1) or 600 (Experiment 2), 4-d-old male chicks were used in the 14-d experiments. In both experiments, a 2 x 3 factorial arrangement of treatments was used: two levels of betaine (0 or 0.075%) and three levels of coccidiosis infection (uninfected, CHR, or ACT). Each treatment was replicated five (Experiment 1) or 10 (Experiment 2) times with 10 chicks per replicate. In Experiment 1, the ACT infection decreased (P < 0.01) average daily gain and gain:feed, and the CHR infection decreased (P < 0.02) average daily gain. The ACT and CHR infections decreased (P < 0.06) Day 7 plasma carotenoids and Day 14 plasma total protein, and the ACT infection also decreased (P < 0.06) Day 7 plasma total protein. Average daily gain and Day 7 plasma total protein were increased in CHR chicks fed betaine but were decreased in uninfected chicks fed betaine (CHR x betaine; P < 0.09). Chicks fed betaine had decreased (P < 0.06) Day 7 plasma carotenoids. In Experiment 2 the CHR and ACT infections decreased (P < 0.01) average daily gain, average daily feed intake, grain:feed ratio, Days 7 and 14 plasma carotenoids, and Day 7 plasma total protein. Chicks fed betaine had increased (P < 0.07) average daily gains, gain:feed ratios, and lesion scores. Day 14 plasma carotenoids and plasma total protein were decreased in uninfected chicks fed betaine but were increased in CHR chicks fed betaine (CHR x betaine; P < 0.04); plasma carotenoids also were increased in ACT chicks fed betaine (ACT x betaine; P < 0.05). Betaine did not consistently affect growth performance, plasma constituents, or lesion score in CHR or ACT coccidiosis-infected chicks.
Concentration gradient of oxalate from cortex to papilla in rat kidney.
Nakatani, Tatsuya; Ishii, Keiichi; Sugimoto, Toshikado; Kamikawa, Sadanori; Yamamoto, Keisuke; Yoneda, Yukio; Kanazawa, Toshinao; Kishimoto, Taketoshi
2003-02-01
The kidney eliminates the major fraction of plasma oxalate. It is well known that oxalate is freely filtered by glomeruli and secreted by the proximal tubules. However, the renal handling of oxalate in distal nephrons, which is considered as playing an important role in stone formation, remains obscure. At 15-180 min after intravenous injection of 14C-oxalate to rats, the intrarenal localization of radioactivity was quantitatively measured by the radioluminographic method using a bioimaging analyzer. Tissue radioactivity was compared with plasma, and urinary radioactivities were measured by a liquid scintillation counter. The control study was conducted with 14C-inulin. The radioactivity of 14C-oxalate in the papilla was 10 times greater than in the cortex and eight times greater than in the medulla 180 min after injection when almost no radioactivity was present in the urine. In contrast, the radioactivity of 14C-inulin was nine times less in the papilla than in the cortex at the same time. Oxalate remains in the renal papilla for an extended period. This accumulation of oxalate may be attributed to calcium oxalate crystal fixation along the deep nephron which is considered to be the first step of stone formation.
Edge plasma boundary layer generated by kink modes in tokamaks
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2011-06-01
This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
Measurement of Debye length in laser-produced plasma.
NASA Technical Reports Server (NTRS)
Ehler, W.
1973-01-01
The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.
Plasma contactor design for electrodynamic tether applications
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Laupa, Thomas G.
1988-01-01
The plasma contacting process is described and experiments are discussed that suggest the key role that cold ions play in establishing a low impedance plasma bridge that can conduct current in either direction between a contactor electrode and a dilute plasma. A ring cusp contactor is shown to provide from 1000-mA of electron emission to 500-mA of electron collection as its bias relative to a simulated space plasma is varied through an 80-v range.
Measuring Fluxes Of Heat To A Plasma-Arc Anode
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Menart, James A.; Pfender, Emil; Heberlein, Joachim
1995-01-01
Three probes constructed to provide measurements indicative of conductive, convective, and radiative transfer of heat from free-burning plasma arc to water-cooled copper anode used in generating arc. Each probe consists mainly of copper body with two thermocouples embedded at locations 4 mm apart along length. Thermocouples provide measure of rate of conduction of heat along probe and transfers of heat from plasma to sensing surface at tip of probe. Probes identical except sensing surface of one uncoated and other two coated with different materials to make them sensitive to different components of overall flux of heat.
Whitley, Heather D.; Scullard, Christian R.; Benedict, Lorin X.; ...
2014-12-04
Here, we present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from out particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations.
Fish consumption and contaminant exposure among Montreal-area sportfishers: Pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosatsky, T.; Przybysz, R.; Shatenstein, B.
1999-02-01
A 1995 pilot study assessed sport fish consumption and contaminant exposure among Montreal-area residents fishing the frozen St. Lawrence river. Interviews conducted among 223 ice fishers met on-site were used to create an index of estimated exposure to fish-borne contaminants. A second-stage assessment of sport fish consumption and tissue contaminant burdens included 25 interviewees at the highest level of estimated contaminant exposure and 15 low-exposure fishers. High-level fisher-consumers reported eating 0.92 {+-} 0.99 sport fish meals/week during the previous 3 weeks compared to 0.38 {+-} 0.21 for the low-level group. Based on the product of consumption frequency times mass ofmore » sport fish meals consumed, high-level consumers ate a mean of 18.3 kg of sport fish annually versus 3.3 kg for the low-level consumers. Tissue contaminant assessments showed significant groupwise differences: 0--1 cm hair mercury, lipid-adjusted plasma PCB congeners, and lipid-adjusted plasma DDE. No participant had a hair mercury or plasma DDE concentration above Health Canada recommendations but 2/25 high-level participants had plasma Aroclor 1260 concentrations above recommended limits.« less
Plasma devices to guide and collimate a high density of MeV electrons.
Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T
2004-12-23
The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.
High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia
2016-10-01
Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.
A review on microbiological decontamination of fresh produce with nonthermal plasma.
Pignata, C; D'Angelo, D; Fea, E; Gilli, G
2017-06-01
Food safety is a critical public health issue for consumers and the food industry because microbiological contamination of food causes considerable social and economic burdens on health care. Most foodborne illness comes from animal production, but as of the mid-1990s in the United States and more recently in the European Union, the contribution of fresh produce to foodborne outbreaks has rapidly increased. Recent studies have suggested that sterilization with nonthermal plasma could be a viable alternative to the traditional methods for the decontamination of heat-sensitive materials or food because this technique proves capable of eliminating micro-organisms on surfaces without altering the substrate. In the last 10 years, researchers have used nonthermal plasma in a variety of food inoculated with many bacterial species. All of these experiments were conducted exclusively in a laboratory and, to our knowledge, this technique has not been used in an industrial setting. Thus, the purpose of this review is to understand whether this technology could be used at the industrial level. The latest researches using nonthermal plasma on fresh produce were analysed. These evaluations have focused on the log reduction of micro-organisms and the treatment time. © 2017 The Society for Applied Microbiology.
Intrapulmonary concentration of enrofloxacin in healthy calves
OTOMARU, Konosuke; HIRATA, Masaya; IKEDO, Tomonobu; HORINOUCHI, Chie; NOGUCHI, Michiko; ISHIKAWA, Shingo; NAGATA, Shun-ichi; HOBO, Seiji
2015-01-01
To determine the intrapulmonary concentration of enrofloxacin (ERFX) in calves, plasma, bronchoalveolar lavage fluid (BALF) and alveolar cells samples were obtained from clinically healthy calves. Four clinically healthy calves were administered a single dose of ERFX (5 mg/kg) by subcutaneous injection. Samples of plasma were obtained for each subjects at 0 (before administration), 1 and 2 hr after administration of ERFX. Samples of BALF were obtained from each subject at 0, 1 and 2 hr after administration of ERFX. This examination was conducted two times, one week apart. The mean EFRX concentrations in plasma at 1 and 2 hr after administration were l.23 and 1.29 µg/ml, respectively. The mean EFRX concentrations in pulmonary epithelial lining fluid (ELF) at 1 and 2 hr after administration 8.53 µg/ml and 9.42 µg/ml, respectively. The mean ERFX concentrations of alveolar cells in BALF at 1 and 2 hr after administration were 4.04 µg/ml and 5.19 µg/ml, respectively. These results suggest that the ERFX concentrations in ELF and alveolar cells concentrations in BALF at 1 and 2 hr after administration were higher than the plasma concentrations. PMID:26668174
NASA Astrophysics Data System (ADS)
Reedy, Todd Mitchell
An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was influenced considerably, the area-integrated pressure was only slightly affected. Normalized RMS levels indicate that base pressure fluctuations were significantly reduced with the addition of the splitter plates. Power-spectral-density estimates revealed a spectral broadening of fluctuating energy for the 1/2 cylinder configuration and a bimodal distribution for the 1/3 and 1/4 cylinder configurations. It was concluded that the recirculation region is not the most sensitive location to apply flow control; rather, the shear layer may be a more influential site for implementing flow control methodologies. For active flow control, pulsed plasma-driven fluidic actuators were investigated. Initially, the performance of two plasma actuator designs was characterized to determine their potential as supersonic flow control devices. For the first actuator considered, the pulsed plasma jet, electro-thermal heating from an electric discharge heats and pressurizes gas in a small cavity which is exhausted through a circular orifice forming a synthetic jet. Depending on the electrical energy addition, peak jet velocities ranged between 130 to nearly 500 m/s when exhausted to quiescent, ambient conditions. The second plasma actuator investigated is the localized arc filament plasma actuator (LAFPA), which created fluidic perturbations through the rapid, local thermal heating, generated from an electric arc discharge between two electrodes within a shallow open cavity. Electrical and emission properties of the LAFPA were first documented as a function of pressure in a quiescent, no-flow environment. Rotational and vibrational temperatures from N2 spectra were obtained for select plasma conditions and ambient pressures. Results further validate that the assumption of optically thin conditions for these electric arc plasmas is not necessary valid, even at low ambient pressure. Breakdown voltage, sustained plasma voltage, power, and energy per pulse were demonstrated to decrease with decreasing pressure. Implementing an array of eight electric arcs circumferentially around the base near the corner expansion, the LAFPA actuators were shown to produce significant disturbances to the separating shear layer of the base flow and cause modest influences on the base pressure when actuated over a range of high frequencies (O(kHz)), forcing modes, duty cycles, and electrical currents. To tailor the plasma actuator toward the specific flow control application of the separated base flow, several actuator geometries and energy additions were evaluated. Displaying the ability to produce disturbances in the shear layer, an open cavity actuator design outperformed the other geometries consisting of a confined cavity with an exhaust orifice. Increases in duty cycle (between 2% and 6%) and in plasma current (1/4 to 4 amps) were shown to produce large velocity disturbances causing a decrease in average base pressure. At 4 amps and a maximum duty cycle of 6%, the largest measured change in area-weighted base pressure, near -1.5%, was observed for the axisymmetric forcing mode. Positive changes in base pressure were experienced (as much as 1% increase from the no-control) for the vertical and horizontal flapping modes.
ION-STABILIZED ELECTRON INDUCTION ACCELERATOR
Finkelstein, D.
1960-03-22
A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Mani; Gammie, Charles F.; Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov
Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variablemore » inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.« less
Effects of chestnut tannins on performance and antioxidative status of transition dairy cows.
Liu, H W; Zhou, D W; Li, K
2013-09-01
This study was conducted to evaluate the effects of chestnut tannins (CT) on performance and antioxidative status of transition dairy cows. Twenty multiparous Chinese Holstein cows in late gestation were paired according to expected calving date and randomly assigned either to a diet supplemented with CT (CNT, 10 g of CT/kg of diet, dry matter basis) or to an unsupplemented control (CON) diet from 3 wk prepartum to 3 wk postpartum. Blood samples were taken on d -21, 1, 7, and 21 relative to calving for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and malondialdehyde (MDA). Liver samples were taken by puncture biopsy on d 1 and 21 relative to calving for analysis of SOD, GSH-Px, and MDA. Data were analyzed for a completely randomized block design with repeated measures. The addition of CT had no significant effects on dry matter intake, body weight, body condition score, milk yield, 3.5% fat-corrected milk yield, and milk composition but did decrease milk MDA and somatic cell score in transition dairy cows. Dry matter intake decreased from d -21 to 0 and increased from d 1 to 21 relative to calving across treatments. During the experimental period, body weight and body condition score decreased, whereas milk MDA and somatic cell score increased across treatments. A time effect was also observed for plasma MDA, which peaked on d 1 relative to calving and remained higher than that on d -21 relative to calving across treatments. Addition of CT decreased MDA concentrations in plasma and liver. Neither time nor CT × time effects were observed for SOD and T-AOC in plasma and SOD and GSH-Px in liver; a time effect was observed for plasma GSH-Px, which peaked on d 1 relative to calving and remained higher than those on d -21 relative to calving across treatments. Addition of CT increased SOD, GSH-Px, and T-AOC activities in plasma and SOD and GSH-Px activities in liver. In conclusion, addition of CT might inhibit lipid peroxidation and increase antioxidant enzymes activities in plasma and liver of transition dairy cows. Supplementation of CT may be a feasible means to improve the antioxidative status of transition dairy cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Prado, Oscar J; Popat, Sudeep C; Chen, Gexin; Walker, Sharon L; Lafuente, Javier; Gabriel, David; Deshusses, Marc A
2009-08-15
Many bioprocesses depend on the effective formation of a biofilm on a solid support. In the present study, three different surface treatments (sandblasting, pure-O(2) plasma, and He-O(2) plasma treatments) were conducted on polypropylene (PP) Pall rings used as a support in biotrickling filters for air pollution control. The intent was to modify the ring surface and/or electrochemical properties in order to possibly improve cell adhesion, wetting properties, and possibly reduce the start-up time and increase the performance of the biotrickling filters. The surface treatments were found to generally increase the hydrophilicity and the zeta potential of the surfaces. However, the startup and performance of lab-scale biotrickling filters packed with treated Pall rings were not significantly different than the control with untreated rings. Cell and colloid deposition experiments conducted in flow cells showed that the treated surfaces and the hydrodynamic conditions were not favorable for cell deposition indicating that there could be significant opportunities for improving packings used in environmental bioprocess applications. Copyright 2009 Wiley Periodicals, Inc.
Caiafa, Antonio; Jiang, Yan; Klopman, Steve; Morton, Christine; Torres, Andrew S.; Loveless, Amanda M.; Neculaes, V. Bogdan
2017-01-01
Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds) to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation. PMID:28746392
Modelling of NSTX hot vertical displacement events using M 3 D -C 1
NASA Astrophysics Data System (ADS)
Pfefferlé, D.; Ferraro, N.; Jardin, S. C.; Krebs, I.; Bhattacharjee, A.
2018-05-01
The main results of an intense vertical displacement event (VDE) modelling activity using the implicit 3D extended MHD code M3D-C1 are presented. A pair of nonlinear 3D simulations are performed using realistic transport coefficients based on the reconstruction of a so-called NSTX frozen VDE where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase is solved assuming axisymmetry until the plasma contacts the first wall, at which point the intricate evolution of the plasma, decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D nonlinear simulations. The faster 2D nonlinear runs allow to assess the sensitivity of the simulations to parameter changes. In the limit of perfectly conducting wall, the expected linear relation between vertical growth rate and wall resistivity is recovered. For intermediate wall resistivities, the halo region contributes to slowing the plasma down, and the characteristic VDE time depends on the choice of halo temperature. The evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed in detail. The 3D simulations highlight a rich structure of toroidal modes, penetrating inwards from edge to core and cascading from high-n to low-n mode numbers. The break-up of flux-surfaces results in a progressive stochastisation of field-lines precipitating the thermalisation of the plasma with the wall. The plasma current then decays rapidly, inducing large currents in the halo region and the wall. Analysis of normal currents flowing in and out of the divertor plate reveals rich time-varying patterns.
Numerical Simulation of Rotation-Driven Plasma Transport In the Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Wolf, Richard A.
1997-01-01
A Jupiter version of the Rice Convection Model (RCM-J) was developed with support of an earlier NASA SR&T grant. The conversion from Earth to Jupiter included adding currents driven by centrifugal force, reversing the planetary magnetic field, and rescaling various parameters. A series of informative runs was carried out, all of them solving initial value problems. The simulations followed an initial plasma torus configuration as it fell apart by interchange instability. Some conclusions from the simulations were the following: 1. We confirmed that, for conventional values of the torus density and ionospheric conductance, the torus disintegrates by interchange instability on a time scale of approx. one day, which is 1-2 orders of magnitude shorter than the best estimates of the average residence time of plasma in the torus. 2. In the model, the instability could be slowed to an arbitrary degree by the addition of sufficient impounding energetic particles, as suggested earlier by Siscoe et al (1981). However, the observed energetic particles do not seem sufficient to guarantee impoundment (e.g., Mauk et al., 1996). 3. Whether inhibited by impoundment or not, the interchange was found to proceed by the formation of long fingers, which get thinner as they get longer. This picture differed dramatically from the conventional radial-diffusion picture (e.g., Siscoe and Summers (1981)), more superficially with the outward-moving-blob picture (Pontius and Hill, 1989). The obvious limitation of the original RCM-J was that it could not represent a plasma source. We could represent the decay of a pre-existing torus, but we could not represent the way ionization of material from Io continually replenishes the plasma. We consequently were precluded from studying a whole set of fundamental issues of torus theory, including whether the system can come to a steady state.
Giebułtowicz, Joanna; Piotrowski, Roman; Baran, Jakub; Kułakowski, Piotr; Wroczyński, Piotr
2016-05-10
Antazoline is a first-generation antihistaminic agent with antiarrhythmic quinidine-like properties. In some countries, it is widely used for termination of cardiac arrhythmias, especially atrial fibrillation (AF). However, no human pharmacokinetic studies have been conducted with intravenous antazoline. The aim of our study was to develop and validate a novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of antazoline in human plasma: the ELEPHANT-I [ELEctrophysiological, pharmacokinetic and hemodynamic effects of PHenazolinum (ANTazoline mesylate)] human pharmacokinetic study. Antazoline was extracted from plasma using liquid-liquid extraction. The concentration of the analyte was measured by LC-MS/MS with xylometazoline as an internal standard. The method was validated for linearity, precision, accuracy, stability (freeze/thaw stability, stability in autosampler, short and long term stability), dilution integrity and matrix effect. The analyzed validation criteria were fulfilled. The method was applied to a pharmacokinetic study involving 10 healthy volunteers. Following a single intravenous dose of antazoline mesylate (100 mg), the plasma concentration profile showed a relative fast elimination with a terminal elimination half-life of 2.29 h. A relatively high volume of distribution was observed (Vss=315 L). The values of mean residence time (MRT∞), area under the curve (AUC∞) and clearance were 3.45 h, 0.91 mg h L(-1) and 80.5 L h(-1), respectively. One volunteer showed significant differences in pharmacokinetic parameters. In conclusion, the proposed new LC-MS/MS method was successfully used for the first time for the determination of antazoline in human plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.; ...
2016-09-01
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Comparison between electric dipole and magnetic loop antennas for emitting whistler modes
NASA Astrophysics Data System (ADS)
Stenzel, R.; Urrutia, J. M.
2016-12-01
In a large uniform and unbounded laboratory plasma low frequency whistler modes are excited from an electric dipole and a magnetic loop. The excited waves are measured with a magnetic probe which resolves the three field components in 3D space and time. This yields the group velocity and energy density, from which one obtains the emitted power. The same rf generator is used for both antennas and the radiated power is measured under identical plasma conditions. The magnetic loop radiates 8000 times more power than the electric dipole. The reason is that the loop antenna carries a large conduction current while the electric dipole current is a much smaller displacement current through the sheath. The current, hence magnetic field excites whistlers, not the dipole electric field. Incidentally, a dipole antenna does not launch plane waves but m = 1 helicon modes. The findings suggest that active wave injections into the magnetosphere should be done with magnetic antennas. Two parallel dipoles connected at the free end could serve as an elongated loop.
Real-time interferometric diagnostics of rubidium plasma
NASA Astrophysics Data System (ADS)
Djotyan, G. P.; Bakos, J. S.; Kedves, M. Á.; Ráczkevi, B.; Dzsotjan, D.; Varga-Umbrich, K.; Sörlei, Zs.; Szigeti, J.; Ignácz, P.; Lévai, P.; Czitrovszky, A.; Nagy, A.; Dombi, P.; Rácz, P.
2018-03-01
A method of interferometric real-time diagnostics is developed and applied to rubidium plasma created by strong laser pulses in the femtosecond duration range at different initial rubidium vapor densities using a Michelson-type interferometer. A cosine fit with an exponentially decaying relative phase is applied to the obtained time-dependent interferometry signals to measure the density-length product of the created plasma and its recombination time constant. The presented technique may be applicable for real-time measurements of rubidium plasma dynamics in the AWAKE experiment at CERN, as well as for real-time diagnostics of plasmas created in different gaseous media and on surfaces of solid targets.
Microdischarge Sources of O2(singlet Delta)
2006-07-15
A two-dimensional model of the MCSD has been developed which includes the details of the Ar/O2 plasma chemistry and yields a self-consistent...the details of the plasma chemistry in oxygen mixtures must be taken into account to predict correctly the plasma conductivity. This must be done
Experimental measurement of ablation effects in plasma armature railguns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.V.; Parsons, W.M.
1986-01-01
Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.
Experimental measurement of ablation effects in plasma armature railguns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.V.; Parsons, W.M.
1986-11-01
Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse.
Bang, W
2015-07-01
Energetic deuterium ions from large deuterium clusters (>10nm diameter) irradiated by an intense laser pulse (>10(16)W/cm(2)) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We present an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10-keV deuterium fusion plasma for 10ns.
Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Kim, Do Yeob; Lee, Hyung-Kun; Tae, Heung-Sik
2016-09-30
This study proposes a new nanostructured conductive polymer synthesis method that can grow the single-crystalline high-density plasma-polymerized nanoparticle structures by enhancing the sufficient nucleation and fragmentation of the pyrrole monomer using a novel atmospheric pressure plasma jet (APPJ) technique. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM) results show that the plasma-polymerized pyrrole (pPPy) nanoparticles have a fast deposition rate of 0.93 µm·min -1 under a room-temperature process and have single-crystalline characteristics with porous properties. In addition, the single-crystalline high-density pPPy nanoparticle structures were successfully synthesized on the glass, plastic, and interdigitated gas sensor electrode substrates using a novel plasma polymerization technique at room temperature. To check the suitability of the active layer for the fabrication of electrochemical toxic gas sensors, the resistance variations of the pPPy nanoparticles grown on the interdigitated gas sensor electrodes were examined by doping with iodine. As a result, the proposed APPJ device could obtain the high-density and ultra-fast single-crystalline pPPy thin films for various gas sensor applications. This work will contribute to the design of highly sensitive gas sensors adopting the novel plasma-polymerized conductive polymer as new active layer.
Kinetic Modeling of the Lunar Dust-Plasma Environment
NASA Astrophysics Data System (ADS)
Kallio, Esa; Alho, Markku; Alvarez, Francisco; Barabash, Stas; Dyadechkin, Sergey; Fernandes, Vera; Futaana, Yoshifumi; Harri, Ari-Matti; Haunia, Touko; Heilimo, Jyri; Holmström, Mats; Jarvinen, Riku; Lue, Charles; Makela, Jakke; Porjo, Niko; Schmidt, Walter; Shahab, Fatemi; Siili, Tero; Wurz, Peter
2014-05-01
Modeling of the lunar dust and plasma environment is a challenging task because a self-consistent model should include ions, electrons and dust particles and numerous other factors. However, most of the parameters are not well established or constrained by measurements in the lunar environment. More precisely, a comprehensive model should contain electrons originating from 1) the solar wind, 2) the lunar material (photoelectrons, secondary electrons) and 3) the lunar dust. Ions originate from the solar wind, the lunar material, the lunar exosphere and the dust. To model the role of the dust in the lunar plasma environment is a highly complex task since the properties of the dust particles in the exosphere are poorly known (e.g. mass, size, shape, conductivity) or not known (e.g. charge and photoelectron emission) and probably are time dependent. Models should also include the effects of interactions between the surface and solar wind and energetic particles, and micrometeorites. Largely different temporal and spatial scales are also a challenge for the numerical models. In addition, the modeling of a region on the Moon - for example on the South Pole - at a given time requires also knowledge of the solar illumination conditions at that time, mineralogical and electric properties of the local lunar surface, lunar magnetic anomalies, solar UV flux and the properties of the solar wind. Harmful effects of lunar dust to technical devices and to human health as well as modeling of the properties of the lunar plasma and dust environment have been topics of two ESA funded projects L-DEPP and DPEM. In the presentation we will summarize some basic results and characteristics of plasma and fields near and around the Moon as studied and discovered in these projects. Especially, we analyse three different space and time scales by kinetic models: [1] the "microscale" region near surface with an electrostatic PIC (ions and electrons are particles) model, [2] the "mesoscale" region including lunar magnetic anomalies and [3] the global scale Moon-solar wind interaction with hybrid (ions as particles in massless electron fluid) models.
Martin, B A; Branch, D W; Rodgers, G M
1996-01-01
Increasing dilutions of lupus anticoagulant (LA) plasmas from twelve patients were used to directly compare the sensitivity of four tests for LA. The tests evaluated were the modified Bell and Alton activated partial thromboplastin time (APTT), an APTT using a commercially prepared partial thromboplastin (Platelin LS APTT), a modified dilute Russell's viper venom time (DRVVT), and a modified kaolin clotting time (KCT). LAs were detected in all twelve plasmas by each of three tests and eleven of twelve plasmas in a fourth test when undiluted patient plasma was used. Repeating the tests after diluting the LA plasmas with normal platelet-free plasma (PFP) showed that the KCT was the most sensitive test for LA, detecting eleven of twelve LAs at a dilution of 10% patient plasma and ten of twelve LAs at a dilution of 5% patient plasma. The modified Bell and Alton APTT and the modified DRVVT had similar sensitivities at a patient plasma concentration of 10%, detecting seven of twelve and eight of twelve LAs, respectively. The Platelin LS APTT detected only four of twelve LAs at a patient plasma concentration of 10%. Our results indicate that the modified KCT is a sensitive method for the detection of LAs. The modified Bell and Alton APTT and the DRVVT were less sensitive.
The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts
NASA Astrophysics Data System (ADS)
Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei
2017-11-01
In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24 h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.
Simino, Jeannette; Wang, Zhiying; Bressler, Jan; Chouraki, Vincent; Yang, Qiong; Younkin, Steven G; Seshadri, Sudha; Fornage, Myriam; Boerwinkle, Eric; Mosley, Thomas H
2017-01-01
We performed single-variant and gene-based association analyses of plasma amyloid-β (aβ) concentrations using whole exome sequence from 1,414 African and European Americans. Our goal was to identify genes that influence plasma aβ42 concentrations and aβ42:aβ40 ratios in late middle age (mean = 59 years), old age (mean = 77 years), or change over time (mean = 18 years). Plasma aβ measures were linearly regressed onto age, gender, APOE ε4 carrier status, and time elapsed between visits (fold-changes only) separately by race. Following inverse normal transformation of the residuals, seqMeta was used to conduct race-specific single-variant and gene-based association tests while adjusting for population structure. Linear regression models were fit on autosomal variants with minor allele frequencies (MAF)≥1%. T5 burden and Sequence Kernel Association (SKAT) gene-based tests assessed functional variants with MAF≤5%. Cross-race fixed effects meta-analyses were Bonferroni-corrected for the number of variants or genes tested. Seven genes were associated with aβ in late middle age or change over time; no associations were identified in old age. Single variants in KLKB1 (rs3733402; p = 4.33x10-10) and F12 (rs1801020; p = 3.89x10-8) were significantly associated with midlife aβ42 levels through cross-race meta-analysis; the KLKB1 variant replicated internally using 1,014 additional participants with exome chip. ITPRIP, PLIN2, and TSPAN18 were associated with the midlife aβ42:aβ40 ratio via the T5 test; TSPAN18 was significant via the cross-race meta-analysis, whereas ITPRIP and PLIN2 were European American-specific. NCOA1 and NT5C3B were associated with the midlife aβ42:aβ40 ratio and the fold-change in aβ42, respectively, via SKAT in African Americans. No associations replicated externally (N = 725). We discovered age-dependent genetic effects, established associations between vascular-related genes (KLKB1, F12, PLIN2) and midlife plasma aβ levels, and identified a plausible Alzheimer's Disease candidate gene (ITPRIP) influencing cell death. Plasma aβ concentrations may have dynamic biological determinants across the lifespan; plasma aβ study designs or analyses must consider age.
Hoyos, Camilla; Almqvist, Catarina; Garden, Frances; Xuan, Wei; Oddy, Wendy H; Marks, Guy B; Webb, Karen L
2008-01-01
The optimal method for conducting omega (n-)3 polyunsaturated fatty acid (PUFA) supplementation trials in children is unknown. To assess the impact of n-3 and n-6 PUFA intake from the background diet on plasma levels of n-3 and n-6 PUFA in children aged 0-3 years, with and without n-3 supplementation. Subjects were randomised antenatally to receive either n-3 PUFA supplements and low n-6 PUFA cooking oils and spreads or a control intervention, designed to maintain usual fatty acid intake. Dietary intake was assessed at 18 months by 3-day weighed food record and at 3 years by food frequency questionnaire. Plasma phospholipids were measured at both time points. Associations were tested by regression. N-3 PUFA intake from background diet did not significantly affect plasma n-3 levels. In contrast, n-6 PUFA intake in background diet was positively related to plasma n-6 levels in both study groups. In addition, n-6 PUFA intake from diet was negatively associated with plasma n-3 levels at 18 months and 3 years (-0.16%/g n-6 intake, 95%CI -0.29 to -0.03 and -0.05%/g n-6 intake, 95%CI -0.09 to -0.01, respectively) in the active group, but not in the control group. Interventions intending to increase plasma n-3 PUFA in children by n-3 supplementation should also minimise n-6 PUFA intake in the background diet.
Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster
NASA Technical Reports Server (NTRS)
Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane
2014-01-01
In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.
Skuhala, Tomislava; Trkulja, Vladimir; Runje, Mislav; Vukelić, Dalibor; Desnica, Boško
2014-01-01
Aim To investigate the relationship between plasma and cyst concentrations of albendazolesulphoxide (ASO) and their effects on parasitological findings and disease recurrence in patients with liver hydatidosis. Methods The study was conducted at the University Hospital for Infectious Diseases “Dr. Fran Mihaljević,” Zagreb, Croatia, between August 2006 and January 2011. Consecutive patients (N = 48, age 6-77 years) were treated with albendazole (3 × 5 mg/kg/d) over 28 days before surgical cyst removal (n = 34) or percutaneous evacuation (PAIR) (n = 14). Plasma ASO was determined on days 10 and 28 of treatment and cyst concentrations at surgery/PAIR. Results Disease recurred in 3 surgically treated patients. Variability of ASO concentrations was substantial. Plasma concentrations on day 10 were higher than on day 28 (geometric means ratio [GMR] 2.00; 95%CI 1.38-2.91, P < 0.001) and higher than cyst concentrations at the time of treatment (GMR = 1.58, 1.01-2.34, P = 0.045). Higher cyst (but not plasma) concentrations were independently associated with lower odds of protoscolex motility (OR = 0.23, 0.01-0.70, P < 0.001) and higher odds of protoscolex destruction (OR = 1.17, 1.04-1.46, P < 0.001). With adjustment for age and protoscolex motility, higher day 10 plasma concentrations (but not cyst concentrations) were associated with lower odds of disease recurrence (OR = 0.49, 0.09-0.97, P = 0.035). Plasma concentrations did not predict cyst concentrations. Conclusion Viability of protoscolices progressively decreased with increasing ASO concentrations in the cyst. Data strongly suggested that higher plasma concentrations reduced the risk of disease recurrence. PMID:24778101
Skuhala, Tomislava; Trkulja, Vladimir; Runje, Mislav; Vukelic, Dalibor; Desnica, Bosko
2014-04-01
To investigate the relationship between plasma and cyst concentrations of albendazolesulphoxide (ASO) and their effects on parasitological findings and disease recurrence in patients with liver hydatidosis. The study was conducted at the University Hospital for Infectious Diseases Dr. Fran Mihaljević, Zagreb, Croatia, between August 2006 and January 2011. Consecutive patients (N=48, age 6-77 years) were treated with albendazole (3×5 mg/kg/d) over 28 days before surgical cyst removal (n=34) or percutaneous evacuation (PAIR) (n=14). Plasma ASO was determined on days 10 and 28 of treatment and cyst concentrations at surgery/PAIR. Disease recurred in 3 surgically treated patients. Variability of ASO concentrations was substantial. Plasma concentrations on day 10 were higher than on day 28 (geometric means ratio [GMR] 2.00; 95%CI 1.38-2.91, P<0.001) and higher than cyst concentrations at the time of treatment (GMR=1.58, 1.01-2.34, P=0.045). Higher cyst (but not plasma) concentrations were independently associated with lower odds of protoscolex motility (OR=0.23, 0.01-0.70, P<0.001) and higher odds of protoscolex destruction (OR=1.17, 1.04-1.46, P<0.001). With adjustment for age and protoscolex motility, higher day 10 plasma concentrations (but not cyst concentrations) were associated with lower odds of disease recurrence (OR=0.49, 0.09-0.97, P=0.035). Plasma concentrations did not predict cyst concentrations. Viability of protoscolices progressively decreased with increasing ASO concentrations in the cyst. Data strongly suggested that higher plasma concentrations reduced the risk of disease recurrence.
Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry
Taylor, Howard E.; Garbarino, John R.
1988-01-01
A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.
Elemental analysis of urinary calculi by laser induced plasma spectroscopy.
Fang, Xiao; Ahmad, S Rafi; Mayo, Mike; Iqbal, Syed
2005-12-01
Laser induced plasma spectroscopy (LIPS) has been applied to analyse and identify elemental constituents of urinary calculi. Measurements on seven different urinary stone samples were conducted and the concentrations of some key elemental species were estimated. The elements detected with the present system were: Calcium, Magnesium, Sodium, Samarium, Potassium and Lead. Absolute concentrations of the species were derived from pre-calibration of the system for each element. Their concentrations were found to be widely different in different samples. It was observed that the samples containing a significant amount of lead have large proportion of calcium. It has been established that LIPS would allow real time clinic measurements of elemental contents and the concentrations in the biomaterials without sample preparation. The technique has the potential for routine clinic applications in urological disorder diagnosis.
Effect of axial magnetic field on a 2.45 GHz permanent magnet ECR ion source.
Nakamura, T; Wada, H; Asaji, T; Furuse, M
2016-02-01
Herein, we conduct a fundamental study to improve the generation efficiency of a multi-charged ion source using argon. A magnetic field of our electron cyclotron resonance ion source is composed of a permanent magnet and a solenoid coil. Thereby, the axial magnetic field in the chamber can be tuned. Using the solenoid coil, we varied the magnetic field strength in the plasma chamber and measured the ion beam current extracted at the electrode. We observed an approximately three times increase in the Ar(4+) ion beam current when the magnetic field on the extractor-electrode side of the chamber was weakened. From our results, we can confirm that the multi-charged ion beam current changes depending on magnetic field intensity in the plasma chamber.
Plasma-material interaction in electrothermal and electromagnetic launchers
NASA Astrophysics Data System (ADS)
Bourham, M. A.; Gilligan, J. G.; Hankins, O. E.
1993-07-01
Various material surfaces have been exposed to high heat fluxes from 2 to 80 GW/sq m over 100 microsec duration using the electrothermal launcher, SIRENS. The vapor shield is effective in reducing the heat to the ablating surface, and the energy transmission factor through the vapor shield decreases as the incident heat flux increases. Results show good agreement with code predictions. Visible light emission spectra have been observed both in-bore and from the muzzle flash of the barrel, and from the flash of the source. Measurements of visible emission from the source indicate time averaged temperatures of 1 to 3 eV, and about 1 to 2 eV along the axis of the device, which agree with the theory and experimental measurements of the average heat flux and plasma conductivity.
Tokamak plasma current disruption infrared control system
Kugel, Henry W.; Ulrickson, Michael
1987-01-01
In a magnetic plasma confinment device having an inner toroidal limiter mounted on an inner wall of a plasma containment vessel, an arrangement is provided for monitoring vertical temperature profiles of the limiter. The temperature profiles are taken at brief time intervals, in a time scan fashion. The time scans of the vertical temperature profile are continuously monitored to detect the presence of a peaked temperature excursion, which, according to the present invention, is a precursor of a subsequent major plasma disruption. A fast scan of the temperature profile is made so as to provide a time interval in real time prior to the major plasma disruption, such that corrective action can be taken to reduce the harmful effects of the plasma disruption.
The plasma physics of thermal conduction in the intracluster medium of galaxy clusters
NASA Astrophysics Data System (ADS)
Reynolds, Christopher
Most of the baryons in a galaxy cluster reside in a hot (10-100 million K) and tenuous gaseous atmosphere confined by the gravitational potential of the cluster's dark matter halo. Understanding the microphysics of this intracluster medium (ICM), particularly the transport processes such as thermal conduction and viscosity, is important to any understanding of the thermodynamic state of ICM atmospheres. For example, the current paradigm is that radiative losses in the ICM core are offset by energy from a central jetted active galactic nucleus (AGN), preventing a cooling catastrophe in the cluster core. However, the mechanism by which the jet-injected energy is thermalized in the ICM is highly uncertain - the dissipation of waves or turbulence by thermal conduction or plasma viscosity is a leading contender. A knowledge of thermal conduction in the ICM is also important for any attempts to understand the global temperature profiles of clusters, with consequences for e.g. cosmological studies based on observations of the SunyaevZeldovich (SZ) effect. The basic physics of thermal conduction in the ICM is very poorly understood, however, leading to a huge uncertainty in the relevant coefficients. The ICM resides in a poorly studied regime of plasma physics - it is a highly magnetized (gyroradii << particle mean free path), high-beta (thermal pressure >> magnetic pressure), and weakly collisional (mean-free path only moderately less than global scale lengths) plasma. Thermal conduction will be strongly suppressed perpendicular to magnetic fields lines. But even along field lines, the growth of small scale and fast kinetic instabilities may strongly suppress thermal conduction. Hence the usual assumption, that conduction along the field has its classical Spitzer value, has a shaky theoretical basis and may well be wildly inaccurate. In this proposal, we use analytical theory and computer models to explore thermal conduction in ICM-like plasmas. Recently, we have found that a strong heat-flux will drive a powerful whistler-wave instability and, provided we treat the problem in more than 1D so that oblique modes are captured, these waves efficiently scatter electrons thereby shutting down the heat-flux. Our proposed work builds on these findings with the goal of characterizing the macroscopic effective thermal conduction in a form that can be included in fluid (magnetohydrodynamic; MHD) models of the ICM. We will, 1) Conduct an extended linear analysis of the heat-flux whistler instability, exploring the interaction of the heat flux and the pressure anisotropies that would result from bulk motions of the ICM. We will map the stable/unstable regions as a function of heat-flux, pressure anisotropy, and plasma-beta. 2) Perform particle-in-cell (PIC) simulations to explore the non-linear saturation of the heat-flux whistler instability as a function of the plasma-beta and heat-flux, extending the current work (i.e. very strong fluxes) down to the modest heat-fluxes found in the real ICM. Key is whether overlapping wave-particle resonances that are so efficient at killing the conduction with strong heat-fluxes still operate when the driving heat-flux is weak. 3) Develop a new computational/PIC model that, in contrast to current work, sustains a temperature gradient across the domain thereby allowing us to directly measure the relationship between temperature gradient and heat flux. 4) Build a new thermal conduction model, allowing the heat flux to have a non-linear dependence on temperature gradient, and plasma-beta. We will develop thermal conduction algorithms that can be used in public MHD e.g., PLUTO or FLASH. This work will provide the crucial bridge between the global/MHD models of ICM atmospheres and the microphysics that dictates the transport processes. It will inform the next generation of cluster models used to interpret data from NASA's fleet of X-ray observatories.
Investigations of microwave plasmas - Applications in electrothermal thruster systems
NASA Technical Reports Server (NTRS)
Haraburda, Scott S.; Hawley, Martin C.
1989-01-01
Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered.
Investigations of microwave plasmas - Applications in electrothermal thruster systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.; Hawley, M.C.
1989-01-01
Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered. 10 refs.
Characteristics of switching plasma in an inverse-pinch switch
NASA Technical Reports Server (NTRS)
Lee, Ja H.; Choi, Sang H.; Venable, Demetrius D.; Han, Kwang S.; Nam, Sang H.
1993-01-01
Characteristics of the plasma that switches on tens of giga volt-ampere in an inverse-pinch plasma switch (INPIStron) have been made. Through optical and spectroscopic diagnostics of the current carrying plasma, the current density, the motion of current paths, dominant ionic species have been determined in order to access their effects on circuit parameters and material erosion. Also the optimum operational condition of the plasma-puff triggering method required for azimuthally uniform conduction in the INPIStron has been determined.
NASA Technical Reports Server (NTRS)
Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.; Paschmann, G.; Sckopke, N.; Russell, C. T.
1981-01-01
From an ISEE survey of substorm dropouts and recoveries during the period February 5 to May 25, 1978, 66 timing events observed by the Los Alamos Scientific Laboratory/Max-Planck-Institut Fast Plasma Experiments were studied in detail. Near substorm onset, both the average timing velocity and the bulk flow velocity at the edge of the plasma sheet are inward, toward the center. Measured normal to the surface of the plasma sheet, the timing velocity is 23 + or - 18 km/s and the proton flow velocity is 20 + or - 8 km/s. During substorm recovery, the plasma sheet reappears moving outward with an average timing velocity of 133 + or - 31 km/s; however, the corresponding proton flow velocity is only 3 + or - 7 km/s in the same direction. It is suggested that the difference between the average timing velocity for the expansion of the plasma sheet and the plasma bulk flow perpendicular to the surface of the sheet during substorm recovery is most likely the result of surface waves moving past the position of the satellites.