Conduction heat transfer solutions
VanSant, J.H.
1983-08-01
This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.
Conduction heat transfer solutions
VanSant, J.H.
1980-03-01
This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.
Determination of the heat transfer coefficients in transient heat conduction
NASA Astrophysics Data System (ADS)
Nho Hào, Dinh; Thanh, Phan Xuan; Lesnic, D.
2013-09-01
The determination of the space- or time-dependent heat transfer coefficient which links the boundary temperature to the heat flux through a third-kind Robin boundary condition in transient heat conduction is investigated. The reconstruction uses average surface temperature measurements. In both cases of the space- or time-dependent unknown heat transfer coefficient the inverse problems are nonlinear and ill posed. Least-squares penalized variational formulations are proposed and new formulae for the gradients are derived. Numerical results obtained using the nonlinear conjugate gradient method combined with a boundary element direct solver are presented and discussed.
Variable-Conductance Heat-Transfer Module
NASA Technical Reports Server (NTRS)
Hewitt, D. R.
1984-01-01
Working lengths of heat pipes electronically controlled. Rate of heat transfer controlled by electrical heaters shorten effective working lengths of heat pipes. Concept not limited to right circular cylindrical shape. Concept adaptable to terrestrial instruments or processes in which atmospheres or fluids must be cooled and returned to instruments or processes at fixed lower temperatures.
Fourier analysis of conductive heat transfer for glazed roofing materials
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini
2014-07-10
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Fourier analysis of conductive heat transfer for glazed roofing materials
NASA Astrophysics Data System (ADS)
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini
2014-07-01
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Revealing the complex conduction heat transfer mechanism of nanofluids.
Sergis, A; Hardalupas, Y
2015-12-01
Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects. PMID:26058515
Revealing the complex conduction heat transfer mechanism of nanofluids
NASA Astrophysics Data System (ADS)
Sergis, A.; Hardalupas, Y.
2015-06-01
Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects
Gopinath, A.; Sadhal, S.S.; Jones, P.D.; Seyed-Yagoobi, J.; Woodbury, K.A.
1996-12-31
In the first section on heat transfer in microgravity, the papers cover phase-change phenomena and thermocapillary flows and surface effects. In the second section, several papers cover solution methods for radiative heat transfer while the rest cover heat transfer in low-temperature environments. The last section covers papers containing valuable information for thermal contact conductance of various materials plus papers on inverse problems in heat transfer. Separate abstracts were prepared for most papers in this volume.
Combined conduction and radiation heat transfer in concentric cylindrical media
NASA Technical Reports Server (NTRS)
Pandey, D. K.
1987-01-01
The exact radiative transfer expressions for gray and nongray gases which are absorbing, emitting and nonscattering, contained between infinitely long concentric cylinders with black surfaces, are given in local thermodynamic equilibrium. Resulting energy equations due to the combination of conduction and radiation modes of heat transfer, under steady state conditions for gray and nongray media, are solved numerically using the undetermined parameters method. A single 4.3-micron band of CO2 is considered for the nongray problems. The present solutions for gray and nongray gases obtained in the plane-parallel limit (radius ratio approaches to one) are compared with the plane-parallel results reported in the literature.
A multilevel method for conductive-radiative heat transfer
Banoczi, J.M.; Kelley, C.T.
1996-12-31
We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.
Conjugate conductive, convective, and radiative heat transfer in rocket engines
Naraghi, M.H.N.; DeLise, J.C.
1995-12-31
A comprehensive conductive, convective and radiative model for thermal analysis of rocket thrust chambers and nozzles is presented. In this model, the rocket thrust chamber and nozzle are subdivided into a number of stations along the longitudinal direction. At each station a finite element scheme is used to evaluate wall temperature distribution. The hot-gas-side convective heat transport is evaluated by numerically solving the compressible boundary layer equations and the radiative fluxes are evaluated by implementing an exchange factor scheme. The convective heat flux in the cooling channel is modeled based on the existing closed form correlations for rocket cooling channels. The conductive, convective and radiative processes are conjugated through an iterative procedure. The hot-gas-side heat transfer coefficients evaluated based on this model are compared to the experimental results reported in the literature. The computed convective heat transfer coefficients agree very well with experimental data for most of the engine except the throat where a discrepancy of approximately 20% exists. The model is applied to a typical regeneratively cooled rocket engine and the resulting wall temperature and heat flux distribution are presented.
Increasing Boiling Heat Transfer using Low Conductivity Materials
Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew
2015-01-01
We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890
Coupled three-dimensional conduction and natural convection heat transfer
NASA Astrophysics Data System (ADS)
Tolpadi, Anil Kumar
1987-09-01
A numerical and experimental investigation of three-dimensional natural convection heat transfer coupled with conduction was performed. This general problem is of great importance because of its widespread applicability in areas such as compact natural convection heat exchangers, cooling of electronic equipment, and porous media flows. The determination of flow patterns and heat transfer coefficients in such situations is necessary because of its practical use in various industries. A vectorized finite difference code was developed for the Cray-2 supercomputer which has the capability of simulating a wide class of three-dimensional coupled conduction-convection problems. This program numerically solves the transient form of the complete laminar Navier-Stokes equations of motion using the vorticity-vector potential methods. Using this program, numerical solutions were obtained for 3-D natural convection from a horizontal isothermal heat exchanger tube with an attached circular cooling fin array. Experiments were performed to measure three-dimensional temperature fields using Mach-Zehnder interferometry. Software was developed to digitize and process fringe patterns and inversion algorithms used to compute the 3-D temperature field.
Analytical Solutions of Heat-Conduction Problems with Time-Varying Heat-Transfer Coefficients
NASA Astrophysics Data System (ADS)
Kudinov, V. A.; Eremin, A. V.; Stefanyuk, E. V.
2015-05-01
The problem on heat conduction of an infinite plate with a heat-transfer coefficient changing linearly with time for third-kind boundary conditions was solved analytically based on determination of the front of a temperature disturbance in this plate and introduction of additional boundary conditions. On the basis of the solution obtained, graphs of the distribution of isotherms in the indicated plate and the velocities of their movement along a spatial variable in it were constructed. As a result of the solution of the inverse problem on the heat conduction of the infinite plate with the use of the results of numerical calculation of the change in its temperature at any point on the indicated spatial coordinate, the Predvoditelev number was identified with an accuracy of 2%, which made it possible to determine the time dependence of the heat-transfer coefficient of the plate.
Heating of foods in space-vehicle environments. [by conductive heat transfer
NASA Technical Reports Server (NTRS)
Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.
1973-01-01
In extended space missions, foods will be heated to enhance the psychological as well as the physiological well-being of the crew. In the low-gravity space environment natural convection is essentially absent so that the heat transfer within the food is by conduction alone. To prevent boiling in reduced pressure environments the maximum temperature of the heating system is severely limited. The Skylab food-heating system utilizes a tray with receptables for the food containers. The walls of the receptacles are lined with thermally controlled, electrical-resistance, blanket-type heating elements. A finite difference model is employed to perform parametric studies on the food-heating system. The effects on heating time of the (1) thermophysical properties of the food, (2) heater power level, (3) initial food temperatures, (4) container geometry, and (5) heater control temperature are presented graphically. The optimal heater power level and container geometry are determined.
Numerical model for combined conductive and radiative heat transfer in annular packed beds
Kamiuto, K.; Saito, S.; Ito, K. . Dept. of Production Systems Engineering)
1993-06-01
A numerical model is developed for quantitatively analyzing combined conductive and radiative heat transfer in concentric annular packed beds. A packed bed is considered to be a continuous medium for heat transfer, but the porosity distribution within a packed bed is taken into account. To examine the validity of the proposed model, combined conductive and radiative heat transfer through annular packed beds of cordierite or porcelain beads is analyzed numerically using finite differences under conditions corresponding to heat transfer experiments of these packed beds. The resultant temperature profiles and heat transfer characteristics are compared with the experimental results.
NASA Astrophysics Data System (ADS)
Ndlovu, Partner; Moitsheki, Rasselo
2013-08-01
Some new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.
NASA Astrophysics Data System (ADS)
Alam, Muntasir; Kamruzzaman, Ahsan, Faraz; Hasan, Mohammad Nasim
2016-07-01
A numerical study of mixed convection heat transfer phenomena in a square cavity containing a heat conducting rotating cylinder has been investigated. A discrete isoflux heater is placed at the bottom wall of the enclosure while the top wall is kept adiabatic. Left and right sidewalls of the enclosure are assumed to be maintained at constant low temperature. A two-dimensional solution for steady laminar mixed convection flow is obtained by using the finite element scheme based on the Galerkin method of weighted residuals for different rotating speeds of the cylinder varying over the range of 0-1000 keeping the Rayleigh number fixed at 5×104 and the Prandtl number at 0.7. The effects of rotating speeds of the cylinder, its radius and conductivity ratio of the rotating cylinder and working fluid on the streamlines, isotherms, local Nusselt number, average Nusselt number and other heat transfer and fluid flow phenomena are investigated. The results indicate that the flow field, temperature distribution and heat transfer rate are dependent on rotating speeds and cylinder size. However, it has been observed that the effect of conductivity ratio is not so prominent.
Two-phase numerical model for thermal conductivity and convective heat transfer in nanofluids
2011-01-01
Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the study of either thermal conductivity or convective heat transfer of nanofluids. We have developed a numerical model which can estimate the enhancement in both the thermal conductivity and convective heat transfer in nanofluids. It also aids in understanding the mechanism of heat transfer enhancement. The study reveals that the nanoparticle dispersion in fluid medium and nanoparticle heat transport phenomenon are equally important in enhancement of thermal conductivity. However, the enhancement in convective heat transfer was caused mainly due to the nanoparticle heat transport mechanism. Ability of this model to be able to understand the mechanism of convective heat transfer enhancement distinguishes the model from rest of the available numerical models. PMID:21711746
Empirical evaluation of diving wet suit material heat transfer and thermal conductivity
West, P.B.
1993-10-01
This wet suit material testing program provides a quantitative thermal conductivity and heat transfer analysis, and comparison of various materials used in skin diving and SCUBA diving. Thermal resistance represents the primary subject examined, but due to compressibility of the baseline materials and its effect on heat transfer, this program also examines compression at simulated depth. This article reports the empirical heat transfer coefficients for both thermal conductivity and convection. Due to the limitations of the test apparatus, this analysis must restrict the convection evaluation to an approximately 20-cm-height, free-convection model. As a consequence, this model best simulates the overall heat transfer coefficient of a diver hovering in a horizontal position. This program also includes evaluations of some nonstandard materials in an effort to identify alternative wet suit materials.
On Thermo-viscoelasticity with Variable Thermal Conductivity and Fractional-Order Heat Transfer
NASA Astrophysics Data System (ADS)
Ezzat, M. A.; El-Karamany, A. S.; El-Bary, A. A.
2015-07-01
The equations of generalized thermo-viscoelasticity for an isotropic medium with variable thermal conductivity and fractional-order heat transfer are given. The resulting formulation is applied to a half-space subjected to arbitrary heating which is taken as a function of time and is traction free. The Laplace transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. Numerical results for temperature, displacement, and stress distributions are given and illustrated graphically for the problem. The effects of the fractional order and the variable thermal conductivity for heat transfer on a viscoelastic material such as poly(methyl methacrylate) (Perspex) are discussed.
NASA Technical Reports Server (NTRS)
Brandon, S.; Derby, J. J.
1992-01-01
In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.
NASA Astrophysics Data System (ADS)
Mutabazi, Innocent; Yoshikawa, Harunori; Peixinho, Jorge; Kahouadji, Lyes
2013-11-01
Görtler vortices appear in a flow over a concave wall as a result of centrifugal instability [Saric, Annu. Rev. Fluid Mech. 26, 379 (1994)]. They may have a strong influence on heat transfer [Momayez et al., Int. J. heat Mass transfer 47, 3783 (2004)]. The purpose of this work is to model heat transfer by Görtler vortices using a weakly nonlinear analysis of Smith &-Haj- Hariri [Phys. Fluids A 5, 2815 (1993)]. We have investigated the coupling of the convective heat transfer by the stationary vortices with the heat conduction inside the solid wall. The finite thickness and thermal conductivity of the wall enter into the boundary conditions of the problem through the ratio δ of the wall thickness to the boundary layer thickness and through the ratio K of the thermal conductivities of the fluid and the wall. The parametric dependence Nu (δ , K) of the Nusselt number is performed and it is shown that found the heat transfer is quite well modified by these two parameters. The local thermal stress can be estimated in order to analyze the effects on ageing of the wall material. The authors acknowledge the financial support of the french Agence Nationale de la Recherche (ANR), through the program ``Investissements d'Avenir'' (ANR-10-LABX-09-01), LabEx EMC3.
NASA Astrophysics Data System (ADS)
Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.
2016-02-01
Is solved the problem of heat transfer in the closed volume, limited by heat-conducting walls, with the local source of heat emission and the heterogeneous conditions of heat sink on the outer boundaries of solution area. The problem of convective heat transfer is solved with using a system of differential Navier-Stokes equations in the Boussinesq approximation. The simulation of turbulent flow conditions of heated air is carried out within the framework to k-ɛ model. On the basis the analysis of the obtained temperature field and the contour lines of stream functions is made conclusion about the essential transiency of the process in question. The obtained values of temperatures and speeds in different sections of region illustrate turbulence of the process. Are investigated laws governing the formation of temperature fields in closed areas with a local heat emission source under the conditions of intensive local heat sink into environment and accumulation of heat in the enclosing constructions.
Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian
2008-09-11
While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.
Evaluation of heat transfer in acupuncture needles: convection and conduction approaches.
Tzou, Chieh-Han John; Yang, Tzyy-Yih; Chung, Ya-Chien
2015-04-01
Originating in ancient China, acupuncture using needles has been developed for thousands of years and has received attention for its reported medical remedies, such as pain relief and chronic disease treatment. Heat transfer through the needles, which might have effects on the biomechanism of acupuncture, providing a stimulus and regulating homeostasis, has never been studied. This article analyzes the significance of heat transfer through needles via convection and conduction, approached by means of computational analysis. The needle is a cylindrical body, and an axis symmetrical steady-state heat-transfer model that viscosity and static pressure was not applied. This article evaluates heat transfer via acupuncture needles by using five metal materials: silver, copper, brass, iron, and stainless steel. A silver needle of the type extensively applied in acupuncture can dissipate more than seven times as much heat as a stainless steel needle of the same type. Heat transfer through such a needle is significant, compared to natural body-energy consumption over a range of ambient temperatures. The mechanism by which heat flows in or out of the body through the needles may be crucial in the remedial efficacy of acupuncture. PMID:25952124
Review and comparison of nanofluid thermal conductivity and heat transfer enhancements.
Yu, W.; France, D. M.; Routbort, J. L.; Choi, S. U.S.; Energy Systems; Univ. of Illinois at Chicago; Korea Inst. of Energy Research
2008-05-01
This study provides a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications. Nanofluid technology is a relatively new field, and as such, the supporting studies are not extensive. Specifically, experimental results were reviewed in this study regarding the enhancement of the thermal conductivity and convective heat transfer of nanofluids relative to conventional heat transfer fluids, and assessments were made as to the state-of-the-art of verified parametric trends and magnitudes. Pertinent parameters of particle volume concentration, particle material, particle size, particle shape, base fluid material, temperature, additive, and acidity were considered individually, and experimental results from multiple research groups were used together when assessing results. To this end, published research results from many studies were recast using a common parameter to facilitate comparisons of data among research groups and to identify thermal property and heat transfer trends. The current state of knowledge is presented as well as areas where the data are presently inconclusive or conflicting. Heat transfer enhancement for available nanofluids is shown to be in the 15-40% range, with a few situations resulting in orders of magnitude enhancement.
Conjugate conduction-convection heat transfer with a high-speed boundary layer
NASA Astrophysics Data System (ADS)
Shope, Frederick L.
1994-04-01
A space-marching boundary-layer program has been extensively modified to model conjugate conduction-convection heat transfer for the case of co-flowing high-speed gas and liquid coolant. Solid body conduction is modeled as one-dimensional, constant property heat transfer. The coolant is modeled empirically as a bulk fluid with combined forced convection and subcooled nucleate boiling. The flow solver was modified to solve the group of conjugate boundary equations simultaneously and implicitly with the existing momentum and energy equations for the gas. The resulting conjugate conduction-convection program has been applied to analysis of failure of a backside water-cooled nozzle for a high enthalpy, supersonic wind tunnel. The computational results have been used to establish that the primary failure mode is nucleate-boiling burnout and to propose a numerical burnout limit applicable to the specific nozzle configuration.
Lilley, D.G.
1987-01-01
Analytical and numerical methods, including both finite difference and finite element techniques, are presented with applications to heat conduction problems. Numerical and analytical methods are integrated throughout the text and a variety of complexities are thoroughly treated with many problems, solutions and computer programs. This book is presented as a fundamental course suitable for senior undergraduate and first year graduate students, with end-of-chapter problems and answers included. Sample case studies and suggested projects are included.
Combined parameter and function estimation in heat transfer with application to contact conductance
NASA Astrophysics Data System (ADS)
Beck, J. V.
1988-11-01
This paper discusses parameter estimation, function estimation, and a combination of the two. An example of parameter estimation is the determination of thermal conductivity of solids from transient temperature measurements. An example of function estimation is the inverse heat conduction problem, which uses transient temperature measurements to determine the surface heat flux history. The examples used herein involve the determination of the thermal contact conductance. Two sets of very good data are analyzed. One set of steady-state data was obtained by Antonetti and Eid (1987). The other set was obtained by Moses and Johnson (1986) under transient conditions for periodic contact. Both sets of data are used to illustrate parameter, function, and combined estimation. It is demonstrated that the proposed methods are more powerful then commonly accepted methods. Many other heat transfer problems can be treated using the proposed techniques.
Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco
2013-01-01
Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Reilly, Carl; Li, Luoxing; Cockcroft, Steve; Yao, Lu
2014-07-01
The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed.
Kumar, R.K.; Kroeger, V.D.
1996-08-01
An understanding of the thermal contact conductance behavior when a fuel pin contacts the pressure tube is important in the safety analyses of CANDU reactors. Experiments were therefore performed in a small-scale apparatus with fuel element and pressure tube specimens coming into contact in an argon/oxygen atmosphere, which kinetically simulated steam. The contact was initiated when the fuel-element and pressure-tube specimens were at {approximately} 1,000 C and {approximately} 400 C respectively. The experiments were analyzed using a finite-element code. Heat transfer rates through the contact and thermal contact conductances were determined for contact loads ranging from 20 to 80 N. For most contact loads, the contact conductance increased with time during the transient heat-up of the fuel element specimen. It was found that the calculated thermal contact conductances were in the range of 1 to 30 kW/(m{sup 2} K) based on a reference contact width of 2.5 mm. The variation of contact conductance with contact load was nearly linear.
Radiative, conductive and convective heat-transfers in a single Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Fournier, Richard; Blanco, Stéphane; Eymet, Vincent; El Hafi, Mouna; Spiesser, Christophe
2016-01-01
It was recently shown that null-collision algorithms could lead to grid-free radiative- transfer Monte Carlo algorithms that immediately benefit of computer-graphics tools for an efficient handling of complex geometries [1, 2]. We here explore the idea of extending the approach to heat transfer problems combining radiation, conduction and convection. This is possible as soon as the model can be given the form of a second-kind Fredholm equation. In the following pages, we show that this is quite straightforward at the stationnary limit in the linear case. The oral presentation will provide corresponding simulation examples. Perspectives will then be drawn concerning the extension to non-stationnary cases and non-linear coupling.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
Zhijie Xu
2012-07-01
We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.
Xu, Zhijie
2012-07-01
We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.
Radiative thermal conductivity in obsidian and estimates of heat transfer in magma bodies
Stein, J.; Shankland, T.J.; Nitsan, U.
1981-05-10
The optical transmission spectra of four ryholitic obsidian samples were measured in order to determine the importance of radiative heat transfer in granite magmas. The spectra, obtained in the temperature range 20-800/sup 0/C, show that the radiative spectral window in these samples is limited by a charge transfer band in the UV (400 nm) and Si-O stretching overtone in the IR (4500 nm). Within this window the main obstacles to radiative transfer, in order of decreasing importance, are background scattering, a water band centered at 2800 nm, and an Fe/sup 2 +/ crystal field band at 1100 nm. Unlike crystalline silicates the absorption bands in obsidian do not broaden significantly as temperature increases. As a result, the temperature dependence of the calculated radiative thermal conductivity K/sub R/ is dominated by the T/sup ..beta../ term. Actual values of K/sub R/ increase from 9 x 10/sup -5/ to 1 x 1/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ between 300/sup 0/ and 800/sup 0/C, the high-temperature value being comparable to the lattice thermal conductivity in obsidian and a lower limit for K/sub R/ in granitic melts. As the scattering coefficient in melts is probably significantly lower than in obsidian, the radiative conductivity in active plutons is likely to be much higher. As an example, if scattering and the water band are removed from the observed spectra of the obsidian samples, calculated values of K/sub R/ could increase by a factor of 5, to about 5 x 10/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ at 1000/sup 0/C.
NASA Astrophysics Data System (ADS)
Wensel, Jesse; Wright, Brian; Thomas, Dustin; Douglas, Wayne; Mannhalter, Bert; Cross, William; Hong, Haiping; Kellar, Jon; Smith, Pauline; Roy, Walter
2008-01-01
An approximately 10% increase in the thermal conductivity (TC) of heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes has been determined with very low percentage loading (around 0.02wt%) of these two nanomaterials. These fluids are very stable and the viscosity remains approximately the same as water. A possible explanation for these interesting results is the aggregation of metal oxide particles on the surface of nanotubes by electrostatic attraction and form the aggregation chain along the nanotube. Time dependant magnetic results demonstrate that, under the influence of a strong outside magnetic field, the TC value decreases. Also, the TC value decreases when the pH is shifted from 7 to 11.45.
Some aspects of the computer simulation of conduction heat transfer and phase change processes
Solomon, A. D.
1982-04-01
Various aspects of phase change processes in materials are discussd including computer modeling, validation of results and sensitivity. In addition, the possible incorporation of cognitive activities in computational heat transfer is examined.
NASA Technical Reports Server (NTRS)
Kim, J.; Bae, S. W.; Whitten, M. W.; Mullen, J. D.; Quine, R. W.; Kalkur, T. S.
1999-01-01
Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.
Kelkar, K.M. )
1990-01-01
Heat exchange that occurs between materials with largely differing thermal conductivities is commonly encountered in engineering practice.Conventional iterative solution methods perform poorly for the numerical solution for such problems. Results for computations for test problems indicate that the proposed solution procedure enables efficient solution of heat transfer problems with large conductivity differences for which the conventional line-by-line method proves ineffective.
NASA Astrophysics Data System (ADS)
Makinde, O. D.; Onyejekwe, O. O.
2011-11-01
The steady flow and heat transfer of an electrically conducting fluid with variable viscosity and electrical conductivity between two parallel plates in the presence of a transverse magnetic field is investigated. It is assumed that the flow is driven by combined action of axial pressure gradient and uniform motion of the upper plate. The governing nonlinear equations of momentum and energy transport are solved numerically using a shooting iteration technique together with a sixth-order Runge-Kutta integration algorithm. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that the combined effect of magnetic field, viscosity, exponents of variable properties, various fluid and heat transfer dimensionless quantities and the electrical conductivity variation, have significant impact on the hydromagnetic and electrical properties of the fluid.
NASA Technical Reports Server (NTRS)
2003-01-01
Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.
Nathenson, Menuel; Tilling, Robert I.
1993-01-01
A steady-state solution for heat transfer from an isothermal, spherical magma chamber, with an imposed regional geothermal gradient far from the chamber, is developed. The extensive published heat-flow data set for Mount Hood, Oregon, is dominated by conductive heat transfer in the deeper parts of most drill holes and provides an ideal application of such a model. Magma-chamber volumes or depths needed to match the distribution of heat-flow data are larger or shallower than those inferred from geologic evidence.
T. Hadgu; S. Webb; M. Itamura
2004-02-12
Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation
Mishra, Subhash C. . E-mail: scm_iitg@yahoo.com; Roy, Hillol K.
2007-04-10
The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable.
Lateral conduction effects on heat-transfer data obtained with the phase-change paint technique
NASA Technical Reports Server (NTRS)
Maise, G.; Rossi, M. J.
1974-01-01
A computerized tool, CAPE, (Conduction Analysis Program using Eigenvalues) has been developed to account for lateral heat conduction in wind tunnel models in the data reduction of the phase-change paint technique. The tool also accounts for the effects of finite thickness (thin wings) and surface curvature. A special reduction procedure using just one time of melt is also possible on leading edges. A novel iterative numerical scheme was used, with discretized spatial coordinates but analytic integration in time, to solve the inverse conduction problem involved in the data reduction. A yes-no chart is provided which tells the test engineer when various corrections are large enough so that CAPE should be used. The accuracy of the phase-change paint technique in the presence of finite thickness and lateral conduction is also investigated.
NASA Astrophysics Data System (ADS)
Assoufid, L.; Khounsary, A. M.
1996-09-01
The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 μm of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7±8 W/cm2-K for nonplated copper and 23.0±8 W/cm2-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm 2 contact area, will be about 10°C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes.
Assoufid, L.; Khounsary, A.
1996-09-01
The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 {mu}m of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7{plus_minus}8 W/cm{sup 2}-K for nonplated copper and 23.0{plus_minus}8 W/cm{sup 2}-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm {sup 2}contact area, will be about 10{degree}C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes. {copyright} {ital 1996 American Institute of Physics.}
The effect of scattering on nonstationary radiation-conduction heat transfer in a two-layer system
NASA Astrophysics Data System (ADS)
Rubtsov, N. A.; Golova, E. P.
1986-06-01
The boundary value problem of nonstationary radiation-conduction heat transfer in a system of two plane layers with different thermophysical properties has been formulated with allowance for scattering in one of the layers. An algorithm for solving the problem has been developed and implemented in software written in FORTRAN. An analysis is made of the effect of the radiation-conduction parameter, single scattering albedo, and scattering anisotropy on the nonstationary temperature field of the system. It is shown that the temperature field depends to a large degree on the optical inhomogeneity of the system.
Manipulator having thermally conductive rotary joint for transferring heat from a test specimen
Haney, S.J.; Stulen, R.H.; Toly, N.F.
1983-05-03
A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.
Manipulator having thermally conductive rotary joint for transferring heat from a test specimen
Haney, Steven J.; Stulen, Richard H.; Toly, Norman F.
1985-01-01
A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.
NASA Astrophysics Data System (ADS)
Shojaeefard, M. H.; Goudarzi, K.; Mazidi, M. Sh.
2009-06-01
The problems involving periodic contacting surfaces have different practical applications. An inverse heat conduction problem for estimating the periodic Thermal Contact Conductance (TCC) between one-dimensional, constant property contacting solids has been investigated with conjugate gradient method (CGM) of function estimation. This method converges very rapidly and is not so sensitive to the measurement errors. The advantage of the present method is that no a priori information is needed on the variation of the unknown quantities, since the solution automatically determines the functional form over the specified domain. A simple, straight forward technique is utilized to solve the direct, sensitivity and adjoint problems, in order to overcome the difficulties associated with numerical methods. Two general classes of results, the results obtained by applying inexact simulated measured data and the results obtained by using data taken from an actual experiment are presented. In addition, extrapolation method is applied to obtain actual results. Generally, the present method effectively improves the exact TCC when exact and inexact simulated measurements input to the analysis. Furthermore, the results obtained with CGM and the extrapolation results are in agreement and the little deviations can be negligible.
Johnson, Alexander; Brace, Christopher
2015-01-01
Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study. PMID:25960147
Basmajian, V.V.
1986-01-28
This patent describes a heat transfer apparatus which consists of: heat exchanging means for orientation in the earth below ground substantially vertically, having a hollow conduit of length from top to bottom much greater than the span across the hollow conduit orthogonal to its length with a top, bottom and an intermediate portion contiguous and communicating with the top and bottom portions for allowing thermally conductive fluid to flow freely between the top, intermediate and bottom portions for immersion in thermally conductive fluid in the region around the heat exchanging means for increasing the heat flow between the latter and earth when inserted into a substantially vertical borehole in the earth with the top portion above the bottom portion. The heat exchanger consists of heat exchanging conduit means in the intermediate portion for carrying refrigerant. The heat exchanging conduit consisting of tubes of thermally conductive material for carrying the refrigerant and extending along the length of the hollow conduit for a tube length that is less than the length of the hollow conduit. The hollow conduit is formed with port means between the top and the plurality of tubes for allowing the thermally conductive fluid to pass in a flow path embracing the tubes, the bottom portion, an outer channel around the hollow conduit and the port means.
NASA Astrophysics Data System (ADS)
Malik, M. Y.; Bibi, M.; Khan, Farzana; Salahuddin, T.
2016-03-01
In this article, Williamson fluid flow and heat transfer over a stretching cylinder is discussed. The thermal conductivity is assumed to be vary linearly with temperature. Heat generation/absorption effects are also taken into account. Modeled partial differential equations are converted into ordinary differential form by using appropriate transformations. Shooting method in conjunction with Runge-Kutta-Fehlberg method is used to find the solution of the problem. Moreover, the effects of different flow parameters γ, λ, ɛ, β and Pr on velocity and temperature profiles are shown graphically. Local Nusselt number and skin friction coefficient are shown in tabular and graphical form.
Variable conductance heat pipe technology
NASA Technical Reports Server (NTRS)
Marcus, B. D.; Edwards, D. K.; Anderson, W. T.
1973-01-01
Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.
McGuire, Joseph C.
1982-01-01
A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
Not Available
1980-03-07
A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
Methane heat transfer investigation
NASA Technical Reports Server (NTRS)
1984-01-01
Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.
Methane heat transfer investigation
NASA Technical Reports Server (NTRS)
Cook, R. T.
1984-01-01
Future high chamber pressure LOX/hydrocarbon booster engines require copper-base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and resuable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper-base alloy material adjacent to the fuel coolant. High-pressure methane cooling and coking characteristics were recently evaluated using stainless-steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper-base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.
NASA Astrophysics Data System (ADS)
Sakami, M.; Charette, A.; Le Dez, V.
1996-10-01
This paper describes a new approach for determining the radiative intensity and temperature fields in a semi-transparent medium for coupled radiative - conductive heat transfer in two-dimensional enclosures. The boundary surfaces are uniformly gray with prescribed emissivities and temperatures. The medium is radiatively absorbing - emitting - scattering and gray. The method is a modification of the discrete ordinates method based on the incorporation of directional ray propagation relations within the cells. The algorithm is applicable to enclosures of arbitrary geometry and does not generate numerical oscillations and negative intensities which can appear in the traditional technique. This is made possible by solving the radiative transfer equation exactly along a set of discretized directions. The method can handle triangular grids of any type, structured or unstructured, and is thus compatible with the finite element technique - which is used for the conduction part of the present coupled problem. A summary of the basic equations is given, followed by a brief assessment of the method for pure radiation. Cases of combined conduction - radiation are then presented and the results are compared with those obtained by other researchers. It is shown that the method has no limitation with respect to geometry and is accurate over a wide range of optical thicknesses.
Quenching fundamentals: Heat transfer
MacKenzie, D.S.; Totten, G.E.; Webster, G.M.
1996-12-31
Quenching is essentially a heat transfer problem. It is necessary to quench parts fast enough that adequate mechanical and corrosion properties are achieved, but not so fast that detrimental distortion and residual stresses are formed. In addition, non-uniform heat transfer across the surface of a part will produce thermal gradients which will also create distortion or residual stresses. In this paper, the role of agitation will be discussed in terms of the heat transfer coefficient. A brief review of the published heat transfer literature will be discussed in terms of the fluid flow on heat transfer coefficient, with implications on quenching.
Heat flux through sea ice in the western Weddell Sea: Convective and conductive transfer processes
NASA Astrophysics Data System (ADS)
Lytle, V. I.; Ackley, S. F.
1996-04-01
The heat flux through the snow and sea ice cover and at the ice/ocean interface were calculated at five sites in the western Weddell Sea during autumn and early winter 1992. The ocean heat flux averaged 7 ± 2 W/m2 from late February to early June, and average ice/air heat flux in the second-year floes depended on the depth of the snow cover and ranged from 9 to 17 (±0.8) W/m2. In late February, three of the five sites had an ice surface which was depressed below sea level, resulting, at two of the sites, in a partially flooded snow cover and a slush layer at the snow/ice interface. As this slush layer froze to form snow ice, the dense brine which was rejected flowed out through brine drainage channels and was replaced by lower-salinity, nutrient-rich seawater from the ocean upper layer. We estimate that about half of the second-year ice in the region was covered with this slush layer early in the winter. As the slush layer froze, over a 2- to 3-week period, the convection within the ice transported salt from the ice to the upper ocean and increased total heat flux through the overlying ice and snow cover. On an area-wide basis, approximately 10 cm of snow ice growth occurred within second-year pack ice, primarily during a 2- to 3-week period in February and March. This ice growth, near the surface of the ice, provides a salt flux to the upper ocean equivalent to 5 cm of ice growth, despite the thick (about 1 m) ice cover, in addition to the ice growth in the small (area less than 5%), open water regions.
Heat conduction in conducting polyaniline nanofibers
NASA Astrophysics Data System (ADS)
Nath, Chandrani; Kumar, A.; Syu, K.-Z.; Kuo, Y.-K.
2013-09-01
Thermal conductivity and specific heat of conducting polyaniline nanofibers are measured to identify the nature of heat carrying modes combined with their inhomogeneous structure. The low temperature thermal conductivity results reveal crystalline nature while the high temperature data confirm the amorphous nature of the material suggesting heterogeneous model for conducting polyaniline. Extended acoustic phonons dominate the low temperature (<100 K) heat conduction, while localized optical phonons hopping, assisted by the extended acoustic modes, account for the high temperature (>100 K) heat conduction.
NASA Astrophysics Data System (ADS)
Megahed, Ahmed M.
2015-03-01
An analysis was carried out to describe the problem of flow and heat transfer of Powell-Eyring fluid in boundary layers on an exponentially stretching continuous permeable surface with an exponential temperature distribution in the presence of heat flux and variable thermal conductivity. The governing partial differential equations describing the problem were transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the shooting method over the entire range of physical parameters. The effects of various parameters like the thermal conductivity parameter, suction parameter, dimensionless Powell-Eyring parameters and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. In this work, special attention was given to investigate the effect of the thermal conductivity parameter on the velocity and temperature fields above the sheet in the presence of heat flux. The numerical results were also validated with results from a previously published work on various special cases of the problem, and good agreements were seen.
Tzanos, C. P.; Dionne, B.
2011-05-23
To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D
Experimental research on heat transfer of pulsating heat pipe
NASA Astrophysics Data System (ADS)
Li, Jia; Yan, Li
2008-06-01
Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.
One-Dimensional Heat Conduction
Sutton, Steven B.
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition, ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.
One-Dimensional Heat Conduction
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition,more » ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.« less
Heat transfer in energy problems
NASA Astrophysics Data System (ADS)
Mizushina, T.; Yang, W. J.
Results of recent research are presented concerning heat transfer in energy problems, including high-temperature heat transfer, high-flux heat transfer, high-performance heat transfer, heat transfer in nonconventional energy (power and propulsion) systems, and novel heat transfer techniques. Topics discussed include studies of full-coverage film cooling, radiative properties of metals and alloys at high temperature, critical heat flux conditions in high-quality boiling systems, heat transfer characteristics of the evaporation of a liquid droplet on heated surfaces, high-performance surfaces for non-boiling heat transfer, and high performance heat transfer surfaces for boiling and condensation. Also examined are high flux heat transfer in gaseous solid suspension flow, nuclear process heat applications of high temperature heat exchange, heat transfer considerations in the use of new energy resources, and high performance mist-cooled condensers for geothermal binary cycle plants. No individual items are abstracted in this volume
NASA Technical Reports Server (NTRS)
Burbach, T.
1985-01-01
The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P.
2012-07-24
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2015-03-24
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P.
2015-12-08
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Gustavsen, Arlid; Kohler, Christian; Dalehaug, Arvid; Arasteh, Dariush
2008-12-01
compared, at selected locations on the frames. Small differences was found in the results from model to model. Finally, the effectiveness of the ISO cavity radiation algorithms was examined by comparing results from these algorithms to detailed radiation calculations (from both programs). Our results suggest that improvements in cavity heat transfer calculations can be obtained by using detailed radiation modeling (i.e. view-factor or ray-tracing models), and that incorporation of these strategies may be more important for improving the accuracy of results than the use of CFD modeling for horizontal cavities.
NASA Astrophysics Data System (ADS)
Niezgoda, M.; Rochais, D.; Enguehard, F.; Echegut, P.; Rousseau, B.
2011-11-01
This paper presents an original modeling approach that enables the calculation of the temperature field within multilayer materials submitted to the flash method. The model takes into account the time-resolved coupled conducto-radiative heat transfer and the temperature of experiments. The compound can be subdivided into as many layers as desired, and their thicknesses and relevant physical properties can be chosen arbitrarily. Unconventional experimental thermograms can be reproduced faithfully by the calculations. This model, thus, makes it possible to correctly estimate the effective thermal diffusivity of semitransparent materials, thereby providing a deeper insight into the analysis of the physical phenomena involved.
Heat transfer fluids containing nanoparticles
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
NASA Technical Reports Server (NTRS)
Widener, Edward L.
1992-01-01
The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
Koplow, Jeffrey P.
2016-02-16
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.
Thermal radiation heat transfer.
NASA Technical Reports Server (NTRS)
Siegel, R.; Howell, J. R.
1972-01-01
A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…
Gambill, W.R.; Greene, N.D.
1960-08-30
A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.
Transferring heat during a bounce
NASA Astrophysics Data System (ADS)
Shiri, Samira; Bird, James
2015-11-01
When a hot liquid drop impacts a cold non-wetting surface, the temperature difference drives heat transfer. If the drop leaves the surface before reaching thermal equilibrium, the amount of heat transfer may depend on the contact time. Past studies exploring finite-time heat exchange with droplets focus on the Leidenfrost condition where heat transfer is regulated by a thin layer of vapor. Here, we present systematic experiments to measure the heat transferred by a bouncing droplet in non-Leidenfrost conditions. We propose a physical model of this heat transfer and compare our model to the experiments.
Delmas, A.A.; Wilkes, K.E.
1992-04-01
A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.
2010-08-01
This paper considers the modern approach to the thermodynamic modeling of developed turbulent flows of a compressible fluid based on the systematic application of the formalism of extended irreversible thermodynamics (EIT) that goes beyond the local equilibrium hypothesis, which is an inseparable attribute of classical nonequilibrium thermodynamics (CNT). In addition to the classical thermodynamic variables, EIT introduces new state parameters—dissipative flows and the means to obtain the respective evolutionary equations consistent with the second law of thermodynamics. The paper presents a detailed discussion of a number of physical and mathematical postulates and assumptions used to build a thermodynamic model of turbulence. A turbulized liquid is treated as an indiscrete continuum consisting of two thermodynamic sub-systems: an averaged motion subsystem and a turbulent chaos subsystem, where turbulent chaos is understood as a conglomerate of small-scale vortex bodies. Under the above formalism, this representation enables the construction of new models of continual mechanics to derive cause-and-effect differential equations for turbulent heat and impulse transfer, which describe, together with the averaged conservations laws, turbulent flows with transverse shear. Unlike gradient (noncausal) relationships for turbulent flows, these differential equations can be used to investigate both hereditary phenomena, i.e., phenomena with history or memory, and nonlocal and nonlinear effects. Thus, within EIT, the second-order turbulence models underlying the so-called invariant modeling of developed turbulence get a thermodynamic explanation. Since shear turbulent flows are widespread in nature, one can expect the given modification of the earlier developed thermodynamic approach to developed turbulence modeling (see Kolesnichenko, 1980; 1998; 2002-2004; Kolesnichenko and Marov, 1985; Kolesnichenko and Marov, 2009) to be used in research on a broad class of dissipative
Heat-Transfer Coupling For Heat Pipes
NASA Technical Reports Server (NTRS)
Nesmith, Bill J.
1991-01-01
Proposed welded heat-transfer coupling joins set of heat pipes to thermoelectric converter. Design avoids difficult brazing operation. Includes pair of mating flanged cups. Upper cup integral part of housing of thermoelectric converter, while lower cup integral part of plate supporting filled heat pipes. Heat pipes prefilled. Heat of welding applied around periphery of coupling, far enough from heat pipes so it would not degrade working fluid or create excessive vapor pressure in the pipes.
NASA Astrophysics Data System (ADS)
Malik, M. Y.; Hussain, Arif; Salahuddin, T.; Awais, M.; Bilal, S.; Khan, Farzana
2016-04-01
In present analysis boundary layer flow of Sisko fluid over stretching cylinder is analyzed. Combined effects of variable thermal conductivity and viscous dissipation are assumed in heat transfer. The modeled boundary layer partial differential equations are transfigured into ordinary differential equations by using suitable transformations. These nonlinear ordinary differential equations are solved numerically by Runge-Kutta-Fehlberg method. The accuracy of computed results is certified by comparing with existing literature. To interpret the effects of flow parameters on velocity and temperature profiles graphs are developed. The influence of all physical parameters on skin friction coefficient and local Nusselt number are discussed via tabular and graphical form.
Radiative heat transfer in porous uranium dioxide
Hayes, S.L.
1992-12-01
Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.
Heat transfer in aeropropulsion systems
NASA Astrophysics Data System (ADS)
Simoneau, R. J.
1985-07-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Heat transfer in aeropropulsion systems
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1985-01-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff
2006-10-10
Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.
Nonlinear heat conduction with combustion
Galaktionov, V.A.; Kurclyumov, S.P.; Samarskiv, A.A. )
1991-01-01
This paper deals with a study of the properties of high-intensity combustion of a solid nonlinear heat conducting medium which is described by the quasilinear parabolic-type equation for nonlinear heat conduction with a source. The paper summarizes a significant range of investigations dealing with the study of high-intensity thermal processes in solid nonlinear media carried out by the authors in the past decade.
"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"
Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann
2008-06-12
ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers
Tubing for augmented heat transfer
Yampolsky, J.S.; Pavlics, P.
1983-08-01
The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)
NASA Astrophysics Data System (ADS)
Han, Haoxue; Feng, Lei; Xiong, Shiyun; Shiga, Takuma; Shiomi, Junichiro; Volz, Sebastian; Kosevich, Yuriy A.
2016-08-01
We investigate the role of interatomic forces beyond the nearest neighbors on the thermal transport through an atomic junction with a heavy isotope impurity and in a silicon-germanium-like alloy with atomistic calculations. The thermal conductance of the junction incorporating second-nearest-neighbors forces reaches its minimum when the longitudinal optical phonon resonances in the phonon transmission are minimized. We relate the weakening of the optical phonon resonance with the flattening of the longitudinal optical phonon band of the infinite diatomic lattice with second-nearest-neighbors forces, which is the limit of an extended junction. We emphasize that the bypass of the heavy-atom components in the diatomic lattice by long-range interatomic bonds is crucial for the realization of the minimum in bulk thermal conductivity. We highlight the connection between the minimal thermal conductivity of a SiGe-like alloy with the flattening of the longitudinal optical phonon band of the diatomic lattice due to the second-nearest-neighbors forces, in combination with enhanced anharmonic phonon processes and phonon localizations.
Flow and heat transfer enhancement in tube heat exchangers
NASA Astrophysics Data System (ADS)
Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.
2015-11-01
The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.
NASA Astrophysics Data System (ADS)
Raju, T. Linga; Nagavalli, M.
2013-08-01
The unsteady magnetohydrodynamic flow of two immiscible fluids in a horizontal channel bounded by two parallel porous isothermal plates in the presence of an applied magnetic and electric field is investigated. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, one being stationary and the other oscillating, when both fluids are considered as electrically conducting. Also, both fluids are assumed to be incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing equations are partial in nature, which are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for velocity and temperature distributions are obtained in both fluid regions of the channel. Profiles of these solutions are plotted to discuss the effect on the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, porous parameter, ratios of the viscosities, heights, electrical and thermal conductivities
Heat transfer coefficient of nanofluids in minichannel heat sink
NASA Astrophysics Data System (ADS)
Utomo, Adi T.; Zavareh, Ashkan I. T.; Poth, Heiko; Wahab, Mohd; Boonie, Mohammad; Robbins, Phillip T.; Pacek, Andrzej W.
2012-09-01
Convective heat transfer in a heat sink consisting of rectangular minichannels and cooled with alumina and titania nanofluids has been investigated experimentally and numerically. Numerical simulations were carried out in a three dimensional domain employing homogeneous mixture model with effective thermo-physical properties of nanofluids. The predictions of base temperature profiles of the heat sink cooled with both water and nanofluids agree well with the experimental data. Experimental and numerical results show that the investigated nanofluids neither exhibits unusual enhancement of heat transfer coefficient nor decreases the heat sink base temperature. Although both nanofluids showed marginal thermal conductivity enhancements, the presence of solid nanoparticles lowers the specific heat capacity of nanofluids offseting the advantage of thermal conductivity enhancement. For all investigated flow rates, the Nusselt number of both nanofluids overlaps with that of water indicating that both nanofluids behave like single-phase fluids.
Fraas, A.P.; Wislicenus, G.F.
1961-07-11
A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.
Characteristics of Transient Boiling Heat Transfer
Liu, Wei; Monde, Masanori; Mitsutake, Y.
2002-07-01
In this paper, one dimensional inverse heat conduction solution is used for a measurement of pool boiling curve. The experiments are performed under atmospheric pressure for copper, brass, carbon steel and gold. Boiling curves, including unsteady transition boiling region, are found can be traced fairly well from a simple experiment system by solving inverse heat conduction solution. Boiling curves for steady heating and transient heating, for heating process and cooling process are compared. Surface behavior around CHF point, transition boiling and film-boiling regions are observed by using a high-speed camera. The results show the practicability of the inverse heat conduction solution in tracing boiling curve and thereby supply us a new way in boiling heat transfer research. (authors)
NASA Astrophysics Data System (ADS)
Chapman, K. S.; Ramadhyani, S.; Ramamurthy, H.; Viskanta, R.
1990-04-01
One and two-dimensional mathematical models have been developed to predict the steady state thermal performance and combustion characteristics of a natural gas-fired straight-through radiant tube. The effects of burner geometry, equivalence ratio, and preheat temperature and fuel firing rate on fuel burn-up have been investigated. The one-dimensional models for straight-through and single-ended recuperative radiant tubes have been validated using available experimental data. Thermal system models have been developed for the continuous and batch indirectly fired (radiant tube) furnaces to identify opportunities for fuel savings and enhanced productivity. Extensive parametric investigations were performed to examine the effects of load and refractory emissivities, load throughput rate and thickness on the thermal performance of the furnaces. Batch and continuous direct-fired furnace thermal system models were developed to analyze the effect of various design and operation parameters on the furnace thermal performance. An attempt was made to validate the batch furnace model by using experimental data from a small experimental furnace. Due to the size of the furnace, the two-dimensional heat conduction effects near the corners and edges of the furnace walls were significant. Since the effects were neglected in the system model, which is intended to simulate a large industrial furnace, the validation was unsuccessful. The parametric study consisted of examining the effect of the load and refractory emissivities and other operating and load parameters on the thermal performance of the batch and continuous furnaces.
NASA Astrophysics Data System (ADS)
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-01-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698
Variable-Conductance Heat Pipes
NASA Technical Reports Server (NTRS)
Antoniuk, D.
1986-01-01
In response to need to accurately and efficiently predict performance of variable-conductance heat pipes (VCHP's) incorporated in spacecraft thermalcontrol systems, computer code VCHPDA developed to interact with thermal analyzer programs such as SINDA (Systems Improved Numerical Differencing Analyzer). Calculates length of gas-blocked region and vapor temperature in active portion. Advantages of VCHPDA over prior programs improved accuracy, unconditional stability, and increased efficiency of solution resulting from novel approach and use of state-of-the-art numerical techniques for solving VCHP mathematical model. Code valuable tool in design and evaluation of advanced thermal-control systems using variable-conductance heat pipes. Written in FORTRAN IV for use on CDC 600 computers.
NASA Technical Reports Server (NTRS)
Friedell, M. V.; Anderson, A. J.
1974-01-01
Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.
Heat transfer, diffusion, and evaporation
NASA Technical Reports Server (NTRS)
Nusselt, Wilhelm
1954-01-01
Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.
Heat exchanger with heat transfer control
Wiard, M.R.
1986-11-18
This patent describes a multi-sided plate and fin type heat exchanger core in which plate elements, intermediately positioning spacer elements and fin strips are stacked in a layered assembly providing fluid passages for different fluids to flow in a segregated heat transfer relation to one another. The core is characterized in that at certain locations in a stacked assembly layers include spacer elements substantially closing all sides of the heat exchangers to define between adjacent fluid passages layers of increased heat transfer resistance. The fin strips are sheet-like elements corrugated to forms specifically identifiable in terms of fins per inch, there being fin strips in at least certain resistance layers differing in terms of fins per inch from other strips in certain resistance layers.
Quantum mechanics and heat conduction
Bajpai, S.D. ); Mishra, S. )
1991-08-01
One of the fundamental problems in quantum mechanics is to find a solution of Schroedinger equation for different forms of potentials. The object of this paper is to obtain a series solution of a particular one-dimensional, time-dependent Schroedinger equation involving Hermite polynomials. The authors also show a relationship of their particular one-dimensional, time-dependent Schroedinger equation with an equation of heat conduction.
Heat Transfer in Complex Fluids
Mehrdad Massoudi
2012-01-01
(linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an
Effects of anisotropic heat conduction on solidification
NASA Technical Reports Server (NTRS)
Weaver, J. A.; Viskanta, R.
1989-01-01
Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).
Modeling microscale heat transfer using Calore.
Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley
2005-09-01
Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.
Heat conduction of symmetric lattices
NASA Astrophysics Data System (ADS)
Nie, Linru; Yu, Lilong; Zheng, Zhigang; Shu, Changzheng
2013-06-01
Heat conduction of symmetric Frenkel-Kontorova (FK) lattices with a coupling displacement was investigated. Through simplifying the model, we derived analytical expression of thermal current of the system in the overdamped case. By means of numerical calculations, the results indicate that: (i) As the coupling displacement d equals to zero, temperature oscillations of the heat baths linked with the lattices can control magnitude and direction of the thermal current; (ii) Whether there is a temperature bias or not, the thermal current oscillates periodically with d, whose amplitudes become greater and greater; (iii) As d is not equal to zero, the thermal current monotonically both increases and decreases with temperature oscillation amplitude of the heat baths, dependent on values of d; (iv) The coupling displacement also induces nonmonotonic behaviors of the thermal current vs spring constant of the lattice and coupling strength of the lattices; (v) These dynamical behaviors come from interaction of the coupling displacement with periodic potential of the FK lattices. Our results have the implication that the coupling displacement plays a crucial role in the control of heat current.
Heat transfer behavior of molten nitrate salt
NASA Astrophysics Data System (ADS)
Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.
2016-05-01
The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new
Heat transfer from oriented heat exchange areas
NASA Astrophysics Data System (ADS)
Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej
2014-03-01
This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.
Nanofluid impingement jet heat transfer.
Zeitoun, Obida; Ali, Mohamed
2012-01-01
Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters. PMID:22340669
Nanofluid impingement jet heat transfer
2012-01-01
Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters. PMID:22340669
Conduction heating of hydrocarbonaceous formations
Bridges, J. E.
1985-10-08
A waveguide structure is emplanted in the earth to bound a particular volume of an earth formation with a waveguide structure formed of respective rows of discrete elongated electrodes wherein the spacing between rows is greater than the distance between electrodes in a respective row and in the case of vertical electrodes substantially less than the thickness of the hydrocarbonaceous earth formation. Electrical power at no more than a relatively low frequency is applied between respective rows of the electrodes to deliver power to the formation while producing relatively uniform heating thereof and limiting the relative loss of heat to adjacent barren regions to less than a tolerable amount. At the same time the temperature of the electrodes is controlled near the vaporization point of water thereat to maintain an electrically conductive path between the electrodes and the formation.
NASA Astrophysics Data System (ADS)
Aktinol, Eduardo
Due to the complex nature of the subprocesses involved in nucleate boiling, it has not been possible to develop comprehensive models or correlations despite decades of accumulated data and analysis. Complications such as the presence of dissolved gas in the liquid further confound attempts at modeling nucleate boiling. Moreover, existing empirical correlations may not be suitable for new applications, especially with regards to varying gravity level. More recently, numerical simulations of the boiling process have proven to be capable of reliably predicting bubble dynamics and associated heat transfer by showing excellent agreement with experimental data. However, most simulations decouple the solid substrate by assuming constant wall temperature. In the present study complete numerical simulations of the boiling process are performed---including conjugate transient conduction in the solid substrate and the effects of dissolved gas in the liquid at different levels of gravity. Finite difference schemes are used to discretize the governing equations in the liquid, vapor, and solid phases. The interface between liquid and vapor phases is tracked by a level set method. An iterative procedure is used at the interface between the solid and fluid phases. Near the three-phase contact line, temperatures in the solid are observed to fluctuate significantly over short periods. The results show good agreement with the data available in the literature. The results also show that waiting and growth periods can be related directly to wall superheat. The functional relationship between waiting period and wall superheat is found to agree well with empirical correlations reported in the literature. For the case of a single bubble in subcooled nucleate boiling, the presence of dissolved gas in the liquid is found to cause noncondensables to accumulate at the top of the bubble where most condensation occurs. This results in reduced local saturation temperature and condensation rates
Enhanced boiling heat transfer using radial fins
NASA Astrophysics Data System (ADS)
Razelos, P.; Das, S.; Krikkis, R. N.
2008-04-01
A numerical bifurcation analysis is carried out in order to determine the solution structure of radial fins subjected to multi-boiling heat transfer mode. One-dimensional conduction is employed throughout the thermal analysis. The fluid heat transfer coefficient is temperature dependent on the three regimes of phase-change of the fluid. Six fin profiles, defined in the text, are considered. Multiplicity structure is obtained to determine different types of bifurcation diagrams, which describe the dependence of a state variable of the system like the temperature or the heat dissipation on the fin design parameters, conduction convection parameter (CCP) or base temperature difference (Δ T). Specifically, the effects of Δ T, CCP and Biot number are analyzed. The results are presented graphically, showing the significant behavioral features of the heat rejection mechanism.
Heat conduction errors and time lag in cryogenic thermometer installations
NASA Technical Reports Server (NTRS)
Warshawsky, I.
1973-01-01
Installation practices are recommended that will increase rate of heat exchange between the thermometric sensing element and the cryogenic fluid and that will reduce the rate of undesired heat transfer to higher-temperature objects. Formulas and numerical data are given that help to estimate the magnitude of heat-conduction errors and of time lag in response.
Simplified models for heat transfer in rooms
NASA Astrophysics Data System (ADS)
Graca, Guilherme C. C. Carrilho Da
Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex
Heat transfer in bioengineering and medicine
Chato, J.C.; Diller, T.E.; Diller, K.R.; Roemer, R.B.
1987-01-01
This book contains the following papers: New ideas in heat transfer for agricultural animals; Issues in heat transfer and tumor blood flow in localized hyperthermia treatments of cancer; Ultrasound enhances adriamycin toxicity in vitro; Scanned, focused ultrasound hyperthermia treatment of brain tumors; Mathematical prediction and phantom studies of the clinical target ''hot spot'' using a three applicator phased array system (TRIPAS); Development of an endoscopic RF hyperthermia system for deep tumor therapy; Simultaneous measurement of intrinsic and effective thermal conductivity; Determination of the transport of thermal energy by conduction in perfused tissue; A whole body thermal model of man with a realistic circulatory system; and Canine muscle blood flow changes in response to initial heating rates.
NASA Astrophysics Data System (ADS)
Reiter, M. A.
2004-12-01
Temperature measurements ( T logs ) in the deep vadose zone ( about 60m to 120m depth ) of the Albuquerque Basin have been repeated over the past year at four piezometer nests. The measurements were made with a very fast time response thermistor, which allowed data to be taken every meter going down hole. This depth resolution of temperature data permits a rather detailed observation of the thermal regime in the vadose zone. At one site ( Lincoln Middle School ) the temperature profile below 20m clearly shows a conductive profile resulting from surface temperature change due to urbanization and nearby ( about 10m ) asphalt pavement. At the other three sites the cause of non-linearity in the T log is less certain. Temperature records suggest about 1 deg C increase in near surface air temperature over the past thirty years at the Albuquerque airport; although this data may also be affected by urbanization. The Tome and 98th Street sites are being approached by paved roads and urbanization. At the Tome site expressions representing horizontal advection are the statistically preferred fit to the T log from about 25m to 58m ( F statistic ). At the 98th Street site an expression representing a surface temperature step best fits the T log from 20m to about 75m; however, the temperature step (about 1 deg C to 2 deg C, 3 to 15 yr ago ) is variable between logs, and the profile of the T log with abrupt discontinuities may suggest other than just conductive heat transfer. The fourth piezometer nest at the Mesa del Sol site is the most remote of the sites considered, with as little nearby surface disturbance as might be expected for a drilling location. At depths between 30m and 70m the expressions representing surface temperature change, horizontal advection, and vertical advection, all fit the T log reasonably well. The temperature step expression suggests about 1 deg C to 1.8 deg C surface temperature increase about 13 yr to 28 yr ago. Deeper in the vadose zone, from about
Metallized Gelled Propellant Heat Transfer Tests Analyzed
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1997-01-01
A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted at the NASA Lewis Research Center. These experiments used a small 20- to 40-lbf thrust engine composed of a modular injector, an igniter, a chamber, and a nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt % loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each channel used water flow to carry heat away from the chamber and the attached thermocouples; flow meters allowed heat flux estimates at each of the 31 stations.
Sodium heat transfer system modeling
NASA Astrophysics Data System (ADS)
Baker, A. F.; Fewell, M. E.
1983-11-01
The sodium heat transfer system of the international energy agency (IEA) small solar power systems (SSPS) central receiver system (CRS), which includes the heliostat field, receiver, hot and cold storage vessels, and sodium/water steam generator was modeled. The computer code SOLTES (simulator of large thermal energy systems), was used to model this system. The results from SOLTES are compared to measured data.
Host turbine heat transfer overview
NASA Technical Reports Server (NTRS)
Rohde, J. E.
1984-01-01
Improved methods of predicting airfoil local metal temperatures require advances in the understanding of the physics and methods of analytically predicting the following four aerothermal loads: hot gas flow over airfoils, heat transfer rates on the gas-side of airfoils, cooling air flow inside airfoils, and heat transfer rates on the coolant-side of airfoils. A systematic building block research approach is being pursued to investigate these four areas of concern from both the experimental and analytical sides. Experimental approaches being pursued start with fundamental experiments using simple shapes and flat plates in wind tunnels, progress to more realistic cold and hot cascade tests using airfoils, continue to progress in large low-speed rigs and turbines and warm turbines, and finally, combine all the interactive effects in tests using real engines or real engine type turbine rigs. Analytical approaches being pursued also build from relatively simple steady two dimensional inviscid flow and boundary layer heat transfer codes to more advanced steady two and three dimensional viscous flow and heat transfer codes. These advanced codes provide more physics to model better the interactive effects and the true real-engine environment.
Enhancement of heat transfer in waste-heat heat exchangers
NASA Astrophysics Data System (ADS)
Stoeffler, R. C.
1980-07-01
The Fluidfire shallow fluidized bed heat transfer facility was modified to give increased air flow capacity and to allow testing with different distributor plates and with two stage heat exchangers. The effect of reduced distributor plate pressure loss and amount and type of bed material on the heat transfer performance of a single stage fluidized bed heat exchanger is explored. Elutriation from the bed was measured for different bed materials and distributor plates; alternate heat exchanger surfaces having different fin spacings were also tested. Two types of two stage fluidized bed heat exchangers were tested: one having a baffle (having almost no pressure loss) located between the stages and which allowed bed material to recirculate between upper and lower beds; the second having two distributor plates in series with no recirculation of the bed material.
Theory and design of variable conductance heat pipes
NASA Technical Reports Server (NTRS)
Marcus, B. D.
1972-01-01
A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.
Proceedings of the 33rd national heat transfer conference NHTC'99
Jensen, M.K.; Di Marzo, M.
1999-07-01
The papers in this conference were divided into the following sections: Radiation Heat Transfer in Fires; Computational Fluid Dynamics Methods in Two-Phase Flow; Heat Transfer in Microchannels; Thin Film Heat Transfer; Thermal Design of Electronics; Enhanced Heat Transfer I; Porous Media Convection; Contact Resistance Heat Transfer; Materials Processing in Solidification and Crystal Growth; Fundamentals of Combustion; Challenging Modeling Aspects of Radiative Transfer; Fundamentals of Microscale Transport; Laser Processing and Diagnostics for Manufacturing and Materials Processing; Experimental Studies of Multiphase Flow; Enhanced Heat Transfer II; Heat and Mass Transfer in Porous Media; Heat Transfer in Turbomachinery and Gas Turbine Systems; Conduction Heat Transfer; General Papers; Open Forum on Combustion; Combustion and Instrumentation and Diagnostics I; Radiative Heat Transfer and Interactions in Participating and Nonparticipating Media; Applications of Computational Heat Transfer; Heat Transfer and Fluid Aspects of Heat Exchangers; Two-Phase Flow and Heat Transfer Phenomena; Fundamentals of Natural and Mixed Convection Heat Transfer I; Fundamental of Natural and Mixed Convection Heat Transfer II; Combustion and Instrumentation and Diagnostics II; Computational Methods for Multidimensional Radiative Transfer; Process Heat Transfer; Advances in Computational Heat and Mass Transfer; Numerical Methods for Porous Media; Transport Phenomena in Manufacturing and Materials Processing; Practical Combustion; Melting and Solidification Heat Transfer; Transients in Dynamics of Two-Phase Flow; Basic Aspects of Two-Phase Flow; Turbulent Heat Transfer; Convective Heat Transfer in Electronics; Thermal Problems in Radioactive and Mixed Waste Management; and Transport Phenomena in Oscillatory Flows. Separate abstracts were prepared for most papers in this conference.
Heat transfer in aerospace propulsion
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.
1988-01-01
Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.
Microscale Heat Conduction Models and Doppler Feedback
Hawari, Ayman I.; Ougouag, Abderrafi
2015-01-22
The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.
1992-01-01
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.
1992-12-29
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.
Evaporative heat transfer in beds of sensible heat pellets
Arimilli, R.V.; Moy, C.A.
1989-03-01
An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.
Heat transfer mechanisms in pulsating heat-pipes with nanofluid
NASA Astrophysics Data System (ADS)
Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo
2015-01-01
In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.
Nonlinear Heat Transfer 2d Structure
1987-09-01
DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less
Double tube heat exchanger with novel enhancement: part II—single phase convective heat transfer
NASA Astrophysics Data System (ADS)
Tiruselvam, R.; Chin, W. M.; Raghavan, Vijay R.
2012-08-01
The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction.
BWR Core Heat Transfer Code System.
1999-04-27
Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less
Boiling local heat transfer enhancement in minichannels using nanofluids
2013-01-01
This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445
Cooling apparatus with a resilient heat conducting member
Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.
2016-06-14
A cooling structure including a thermally conducting central element having a channel formed therein, the channel being configured for flow of cooling fluid there through, a first pressure plate, and a first thermally conductive resilient member disposed between the thermally conducting central element and the first pressure plate, wherein the first pressure plate, the first thermally conductive resilient member, and the thermally conducting central element form a first heat transfer path.
Heat transfer reviews 1976-1986
NASA Astrophysics Data System (ADS)
Eckert, Ernst Rudolf Georg; Goldstein, R. J.; Irvine, T. F., Jr.; Hartnett, J. P.
Theoretical and experimental investigations of heat-transfer phenomena are surveyed in a collection of annual review essays. The reviews were originally published in the International Journal of Heat and Mass Transfer. Cumulative author and subject indices are provided.
Modeling heat transfer within porous multiconstituent materials
NASA Astrophysics Data System (ADS)
Niezgoda, Mathieu; Rochais, Denis; Enguehard, Franck; Rousseau, Benoit; Echegut, Patrick
2012-06-01
The purpose of our work has been to determine the effective thermal properties of materials considered heterogeneous at the microscale but which are regarded as homogenous in the macroscale environment in which they are used. We have developed a calculation code that renders it possible to simulate thermal experiments over complex multiconstituent materials from their numerical microstructural morphology obtained by volume segmentation through tomography. This modeling relies on the transient solving of the coupled conductive and radiative heat transfer in these voxelized structures.
Unsteady heat transfer during subcooled film boiling
NASA Astrophysics Data System (ADS)
Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.
2015-11-01
Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.
Understanding fast heat transfer in the shallow subsurface
NASA Astrophysics Data System (ADS)
Rutten, Martine; Steele-Dunne, Susan; Judge, Jasmeet; van de Giesen, Nick
2010-05-01
Understanding the temperature profile of the shallow subsurface is of great importance for interpreting remote sensing observations and modeling land-atmosphere interaction. Remote sensing observations are translated to surface characteristics, such as vegetation and soil moisture, using radiative transfer schemes that are sensitive to skin temperature estimation. The surface temperature is also a key variable in the heat partitioning of net radiation into sensible, latent and soil heat flux at the interface between land and atmosphere. The temperature profile of the soil is determined by the processes of radiative, convective and conductive heat transfer. Whereas radiative and convective heat transfer are dominant at the soil-air interface, heat transfer within the soil is typically assumed to be governed by conduction and as such is described with a diffusion model. The thermal diffusivity of the soil depends mainly on mineral composition and moisture content and is described in many empirical models. Using temperature data from experiments conducted in Florida (MicroWex 2) and the Netherlands (Monster), we show that diffusion cannot describe heat transfer within approximately the upper ten centimeters of the soil. The heat transfer is significantly faster than would be predicted with a diffusion equation. Diffusivity values, estimated using an inversion approach to the diffusion equation, fall outside the physically reasonable range, which is defined by available soil diffusivity models. The extent of this strongly thermally active layer depends on vegetation conditions, and possibly moisture conditions. We investigate mechanisms that may explain the fast heat transfer in the shallow subsurface. Possible mechanisms include heat transfer by convective heat transfer processes such as latent heat formation and heat transfer due to water percolation. We estimated the size of the heat sink-source at depth and compared these to observations of latent heat and
Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants
NASA Astrophysics Data System (ADS)
Yoshida, Suguru; Fujita, Yasunobu
The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.
Radiation and gas conduction heat transport across a helium dewer multilayer insulation system
Green, M.A.
1995-02-01
This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.
Flow and heat transfer characteristics of orthogonally rotating channel
NASA Astrophysics Data System (ADS)
Tamura, Hiroshi; Ishigaki, Hiroshi
1991-12-01
Numerical analysis was conducted to predict the centripetal buoyant effect on flow and heat transfer characteristics in a channel rotating about a perpendicular axis. The conditions were assumed to be laminar, fully developed, and uniform heat flux. Calculation were conducted both for radially outward flow from the rotating axis and radially inward flow. The calculated results indicated that for radially outward flow buoyancy decreases the suction side friction and heat transfer while increasing pressure side friction and heat transfer. This trends were reversed for radially inward flow.
Heat transfer coefficient in serpentine coolant passage for CCDTL
Leslie, P.; Wood, R.; Sigler, F.; Shapiro, A.; Rendon, A.
1998-12-31
A series of heat transfer experiments were conducted to refine the cooling passage design in the drift tubes of a coupled cavity drift tube linac (CCDTL). The experimental data were then compared to numerical models to derive relationships between heat transfer rates, Reynold`s number, and Prandtl number, over a range of flow rates. Data reduction consisted of axisymmetric finite element modeling where the heat transfer coefficients were modified to match the experimental data. Unfortunately, the derived relationship is valid only for this specific geometry of the test drift tube. Fortunately, the heat transfer rates were much better (approximately 2.5 times) than expected.
Heat Transfer in a Thermoacoustic Process
ERIC Educational Resources Information Center
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…
Convective heat transfer for fluids passing through aluminum foams
NASA Astrophysics Data System (ADS)
Dyga, Roman; Troniewski, Leon
2015-03-01
This paper analyses the experimental findings within heat transfer when heating up air, water and oil streams which are passed through a duct with internal structural packing elements in the form of metal foams. Three types of aluminum foams with different cell sizes, porosity specifications and thermal conductivities were used in the study. The test data were collected and they made it possible to establish the effect of the foam geometry, properties of fluids and flow hydrodynamic conditions on the convective heat transfer process from the heating surface to the fluid flowing by (wetting) that surface. The foam was found to be involved in heat transfer to a limited extent only. Heat is predominantly transferred directly from the duct wall to a fluid, and intensity of convective heat transfer is controlled by the wall effects. The influence of foam structural parameters, like cell size and/or porosity, becomes more clearly apparent under laminar flow conditions.
Heat transfer and planetary evolution
NASA Astrophysics Data System (ADS)
Tozer, D. C.
1985-06-01
The object of this account is to show how much one can interprete and predict about the present state of material forming planet size objects, despite the fact we do not and could never have the kind of exact or prior knowledge of initial conditions and in situ material behaviour that would make a formal mathematical analysis of the dynamical problems of planetary evolution an efficient or meaningful exercise The interest and usefulness of results obtained within these limitations stem from the highly non linear nature of planetary scale heat transfer problems when posed in any physically plausible form. The non linearity arising from a strongly temperature dependent rheology assumed for in situ planetary material is particularly valuable in deriving results insensitive to such uncertainties. Qualitatively, the thermal evolution of a planet is quite unlike that given by heat conduction calculation below a very superficial layer, and much unnecessary argument and confusion results from a persistent failure to recognise that fact. At depths that are no greater on average than a few tens of kilometres in the case of Earth, the temperature distribution is determined by a convective flow regime inaccessble to the laboratory experimenter and to the numerical methods regularly employed to study convective movement. A central and guiding quantitative result is the creation in homogeneous planet size objects having surface temperatures less than about half the absolute melting temperature of their material, of internal states with horizontally a veraged viscosity values ˜1021 poise. This happens in times short compared with the present Solar System age. The significance of this result for an understanding of such processes and features as isostasy, continental drift, a minimum in seismic S wave velocity in Earth's upper mantle, a uniformity of mantle viscosity values, the survival of liquid planetary cores and the differentiation of terrestrial planet material is examined
On nonlocal electron heat conduction
Krasheninnikov, S.I. )
1993-01-01
An improvement of the Albritton nonlocal electron heat transport model is proposed for high-[ital Z] plasmas. The thermal decay of the temperature perturbation in a uniform plasma as calculated by this model is compared with that obtained by Fokker--Planck simulations. Complete agreement is found up to values [ital k][lambda][sub [ital e
Liquid metal heat transfer issues
Hoffman, H.W.; Yoder, G.L.
1984-01-01
An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept.
Combustion and heat transfer in porous media
Sathe, S.B.; Peck, R.E.; Tong, T.W.
1990-06-01
The objective of the present study is to generate fundamental knowledge about heat transfer and combustion in porous radiant burners (PRBs) in order to improve their performance. A theoretical heat transfer and combustion model is developed to study the characteristics of PRBs. The model accounts for non-local thermal equilibrium between the solid and gas phases. The solid is assumed to absorb, emit and scatter radiant energy. Combustion is modeled as a one-step global reaction. It is revealed that the flame speed inside the porous medium is enhanced compared to the adiabatic flame speeds due to the higher conductivity of the solid compared to the gas as well as due to radiative preheating of the reactants. The effects of the properties of the porous material on the flame speeds, radiative outputs and efficiencies were investigated. To improve the radiative output from the burner, it is desirable that the porous layer has an optical thickness of about ten. The radiative output and the efficiency is higher for lower scattering albedo. The heat transfer coupling between the solid and gas phases should be high enough to ensure local thermal equilibrium, by choosing a fine porous matrix. Higher solid phase conduction enhances the flame speed and the radiative output. Experiments are performed on a ceramic foam to verify the theoretical findings. The existence of the two stability regions was verified experimentally.
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heterogeneous nanofluids: natural convection heat transfer enhancement.
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heterogeneous nanofluids: natural convection heat transfer enhancement
NASA Astrophysics Data System (ADS)
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-12-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
Heat conduction fronts in planetary nebulae
NASA Technical Reports Server (NTRS)
Soker, Noam
1994-01-01
We present arguments which suggest that many of the x-ray, some optical, and some UV observations of planetary nebulae, can be explained by the presence of heat conduction fronts. The heat flows from the hot bubble formed by the shocked fast wind to the cool shell and halo. Heat conduction fronts are likely to account for emission of x rays from plasma at lower temperature than the expected temperature of the hot bubble. In the presence of magnetic fields, only a small fraction of the fast wind luminosity emerges as radiation. Heat conduction fronts can naturally produce some unusual line flux ratios, which are observed in some planetary nebulae. Heat conduction fronts may heat the halo and cause some material at the inner surface of the shell to expand slower than the rest of the shell. In the presence of an asymmetrical magnetic field, this flow, the x-ray intensity, and the emission lines, may acquire asymmetrical structure as well.
The heat transfer coefficients of the heating surface of 300 MWe CFB boiler
NASA Astrophysics Data System (ADS)
Wu, Haibo; Zhang, Man; Lu, Qinggang; Sun, Yunkai
2012-08-01
A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The heat transfer coefficients of the platen heating surface, the external heat exchanger (EHE) and cyclone separator were calculated according to the relative operation data at different boiler loads. Moreover, the heat transfer coefficient of the waterwall was calculated by heat balance of the hot circuit of the CFB boiler. With the boiler capacity increasing, the heat transfer coefficients of these heating surface increases, and the heat transfer coefficient of the water wall is higher than that of the platen heating surface. The heat transfer coefficient of the EHE is the highest in high boiler load, the heat transfer coefficient of the cyclone separator is the lowest. Because the fired coal is different from the design coal in No.1 boiler, the ash content of the fired coal is much lower than that of the design coal. The heat transfer coefficients which calculated with the operation data are lower than the previous design value and that is the reason why the bed temperature is rather high during the boiler operation in No.1 boiler.
NASA Astrophysics Data System (ADS)
Wang, Qiang; He, Zhu; Li, Baokuan; Tsukihashi, Fumitaka
2014-12-01
A transient three-dimensional finite-volume mathematical model has been developed to investigate the coupled physical fields in the electroslag remelting (ESR) process. Through equations solved by the electrical potential method, the electric current, electromagnetic force (EMF), and Joule heating fields are demonstrated. The mold is assumed to be conductive rather than insulated. The volume of fluid approach is implemented for the two-phase flow. Moreover, the EMF and Joule heating, which are the source terms of the momentum and energy sources, are recalculated at each iteration as a function of the phase distribution. The solidification is modeled by an enthalpy-porosity formulation, in which the mushy zone is treated as a porous medium with porosity equal to the liquid fraction. An innovative marking method of the metal pool profile is proposed in the experiment. The effect of the applied current on the ESR process is understood by the model. Good agreement is obtained between the experiment and calculation. The electric current flows to the mold lateral wall especially in the slag layer. A large amount of Joule heating around the metal droplet varies as it falls. The hottest region appears under the outer radius of the electrode tip, close to the slag/metal interface instead of the electrode tip. The metal pool becomes deeper with more power. The maximal temperature increases from 1951 K to 2015 K (1678 °C to 1742 °C), and the maximum metal pool depth increases from 34.0 to 59.5 mm with the applied current ranging from 1000 to 2000 A.
Benjamin, A.S.; Beraun, R.; Brown, N.N.; Sherman, M.P.
1995-05-01
Accurate finite-element simulation of 3-D nonlinear heat transfer in complex systems may require meshes composed of tens of thousands of finite elements and hours of CPU time on today`s fastest computers. To treat applications in which thousands of calculations may be necessary such as for risk assessment or design of high-temperature manufacturing processes, methods are needed which can solve these problems far more efficiently and maintain an acceptably high degree of accuracy. For this purpose, we developed the Thermal Evaluation and Matching Program for Risk Applications (TEMPRA). The primary differentiator between TEMPRA and comparable codes is its numerical formulation, which is designed to be unconditionally stable even with very large time steps, to afford good accuracy even with relatively coarse meshing, and to facilitate benchmarking/calibration through the use of adjustable parameters. Analysis for a sample problem shows that TEMPRA can obtain temperature response solutions with errors of less than 10% using approximately 1/1000 of the computer time required by a typical finite element code.
Design code verification of external heat transfer coefficients
NASA Astrophysics Data System (ADS)
Soechting, F. O.; Sharma, O. P.
1988-07-01
A comparative study is conducted for measured and predicted heat-transfer coefficients of air-cooled turbine blade airfoils. A modified version of the STAN-5 boundary layer code was used to obtain analytical predictions of the heat transfer levels for the cascade test conditions. A two-dimensional cascade test was conducted at engine-level Mach number and Reynolds number distributions in order to obtain baseline data that can be used with engine data in order to quantify the effects of environmental conditions on heat transfer levels and distributions.
Heat transfer through an extended surface containing He II
Van Sciver, S.W.
1999-02-01
A semi-analytic solution for the heat transfer process between a He II pressurized bath and a saturated tube-type heat exchanger is presented. The problem is modeled with an extended surface heat transfer formulation analogous to that in conventional conduction. The process is governed by Kapitza conductance and counterflow within the bulk fluid in the tube. The resulting nonlinear differential equation may be integrated for the special case of constant properties, yielding a simple solution applicable to design and analysis of practical heat exchangers.
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
2001-01-01
The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.
Twin reservoir heat transfer circuit
Urch, J.F.
1986-09-23
This patent describes a heat transfer means comprising circuitry defining a closed flow path for working fluid; a primary circuit forming part of the path and having two ends at one of which the working fluid is at a high pressure and at the other of which the working fluid is at a low pressure. The circuitry defines a fluid supply reservoir and a fluid collection reservoir disposed respectively at the two ends; ejector means in the primary circuit; a drive fluid inlet, and exhaust outlet and a suction inlet provided on the ejector means. Also included are a branch circuit bridging a section of the primary circuit and an outlet end of the branch circuit connected to the suction inlet of the ejector means.
Heat Transfer in a Superelliptic Transition Duct
NASA Technical Reports Server (NTRS)
Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven
2008-01-01
Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.
Heat transfer augmentation in nanofluids via nanofins.
Vadasz, Peter
2011-01-01
Theoretical results derived in this article are combined with experimental data to conclude that, while there is no improvement in the effective thermal conductivity of nanofluids beyond the Maxwell's effective medium theory (J.C. Maxwell, Treatise on Electricity and Magnetism, 1891), there is substantial heat transfer augmentation via nanofins. The latter are formed as attachments on the hot wire surface by yet an unknown mechanism, which could be related to electrophoresis, but there is no conclusive evidence yet to prove this proposed mechanism. PMID:21711695
Heat transfer augmentation in nanofluids via nanofins
2011-01-01
Theoretical results derived in this article are combined with experimental data to conclude that, while there is no improvement in the effective thermal conductivity of nanofluids beyond the Maxwell's effective medium theory (J.C. Maxwell, Treatise on Electricity and Magnetism, 1891), there is substantial heat transfer augmentation via nanofins. The latter are formed as attachments on the hot wire surface by yet an unknown mechanism, which could be related to electrophoresis, but there is no conclusive evidence yet to prove this proposed mechanism. PMID:21711695
Solar Pond Fluid Dynamics and Heat Transfer
NASA Technical Reports Server (NTRS)
Jones, G. F.
1984-01-01
The primary objective of the solar pond research was to obtain an indepth understanding of solar pond fluid dynamics and heat transfer. The key product was the development of a validated one-dimensional computer model with the capability to accurately predict time-dependent solar pond temperature, salinities, and interface motions. Laboratory scale flow visualization experiments were conducted to better understand layer motion. Two laboratory small-scale ponds and a large-scale outdoor solar pond were designed and built to provide quantitative data. This data provided a basis for validating the model and enhancing the understanding of pond dynamic behavior.
Percolation induced heat transfer in deep unsaturated zones
Lu, N.; LeCain, G.D.
2003-01-01
Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.
Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel
NASA Technical Reports Server (NTRS)
Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; Woodiga, Sudesh
2012-01-01
This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.
Experimental analysis of heat transfer mechanism in MCFC
Sugiura, K.; Naruse, I.; Ohtake, K.
1998-07-01
Characteristics of heat transfer in Molten Carbonate Fuel Cells(MCFC) installed with offset-type fins are studied by using a fuel cell model consisting of electrodes, a perforated plate and a corrugated current collector. In this study the effect of several kinds of reacting gas on heat transfer characteristics is elucidated by measuring gas and surface temperatures, gas species composition, cell components and vertical heat flux. As a result, Wieting's equation to evaluate heat transfer characteristics in heat exchangers is not appropriate to the MCFC since Reynolds number in operating the MCFC is far less than the applicable range of the equation. Most of the vertical heat flux is controlled by heat conduction in the cell components. The convective heat transfer coefficient depends on kinds of gas species rather than the gas flow rate. Thermal properties affect the convective heat transfer coefficient. Especially, the vertical heat flux increases with an increase of H{sub 2} concentration. The obtained fundamental results can elucidate phenomena of heat transfer in practical MCFC appropriately.
Conjugate heat transfer with the entropic lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Pareschi, G.; Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V.
2016-07-01
A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.
Conjugate heat transfer with the entropic lattice Boltzmann method.
Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V
2016-07-01
A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube. PMID:27575234
Cryogenic regenerator including sarancarbon heat conduction matrix
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)
1989-01-01
A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.
Information filtering via biased heat conduction.
Liu, Jian-Guo; Zhou, Tao; Guo, Qiang
2011-09-01
The process of heat conduction has recently found application in personalized recommendation [Zhou et al., Proc. Natl. Acad. Sci. USA 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering. PMID:22060533
Information filtering via biased heat conduction
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Zhou, Tao; Guo, Qiang
2011-09-01
The process of heat conduction has recently found application in personalized recommendation [Zhou , Proc. Natl. Acad. Sci. USA PNASA60027-842410.1073/pnas.1000488107107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.
Heat transfer in a turbulent separation region with superimposed stream pulsations
NASA Astrophysics Data System (ADS)
Davletshin, I. A.; Mikheev, N. I.; Molochnikov, V. M.
2008-06-01
Experimental data on heat transfer in turbulent separation region behind obstacle in a broad frequency range of superimposed free-stream pulsations are reported. The heat-transfer coefficient was determined by solving an inverse non-stationary heat conduction problem based on experimentally measured wall transient temperature. Substantial heat-transfer intensification in the separation region of the pulsating flow was identified.
Inelastic Heat Transfer in Molecular Quantum Dots
NASA Astrophysics Data System (ADS)
Dyrkacz, Joanna; Walczak, Kamil
We examine electronic heat conduction via molecular complexes in the presence of local electron-phonon coupling effects. In off-resonance transport regime, even weak electron-phonon interactions lead to phonon-mediated changes of transport characteristics. In the nearly resonance conditions, the strong electron-phonon coupling reduces the height of the main conductance peak, generating additional satellites (phonon sidebands) in transport characteristics and shifting molecular energy spectrum via reorganization (polaron) energy. In the past, it was shown that inclusion of electron-phonon coupling effects into computational scheme reduces discrepancy between theoretical results and experimental data. The aim of this project is to study electron-phonon coupling effects on electronic heat transfer at molecular level. For that purpose, we use non-perturbative computational scheme based on inelastic version of Landauer formula, where the Green's functions technique combined with polaron transformation was used to calculate multi-channel transmission probability function, while accessibility of individual conduction channels is governed by Boltzmann statistics. Our analysis is based on the hypothesis that the dynamics created by electron-phonon interaction onto the molecular quantum dot asymmetrically connected to two thermal reservoirs will lead to thermal rectification effect. Our results will be discussed in a few aspects: electron-phonon coupling strength, phonon dispersion relationship, and heat fluxes generated by temperature difference as well as bias voltage.
USINT. Heat and Mass Transfer In Concrete
Eyberger, L.R.
1989-12-01
USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.
USINT. Heat and Mass Transfer in Concrete
Beck, J.V.; Knight, R.L.
1989-12-01
USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.
3-D Finite Element Heat Transfer
1992-02-01
TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
Nonlinear aspects of high heat flux nucleate boiling heat transfer. Part 1, Formulation
Sadasivan, P.; Unal, C.; Nelson, R.
1994-04-01
This paper outlines the essential details of the formulation and numerical implementation of a model used to study nonlinear aspects of the macrolayer-controlled heat transfer process associated with high heat flux nucleate boiling and the critical heat flux. The model addresses the three-dimensional transient conduction heat transfer process within the problem domain comprised of the macrolayer and heater. Heat dissipation from the heater is modeled as the sum of transient transport into the macrolayer, and the heat loss resulting from evaporation of menisci associated with vapor stems.
Characterization of heat transfer in nutrient materials, part 2
NASA Technical Reports Server (NTRS)
Cox, J. E.; Bannerot, R. B.; Chen, C. K.; Witte, L. C.
1973-01-01
A thermal model is analyzed that takes into account phase changes in the nutrient material. The behavior of fluids in low gravity environments is discussed along with low gravity heat transfer. Thermal contact resistance in the Skylab food heater is analyzed. The original model is modified to include: equivalent conductance due to radiation, radial equivalent conductance, wall equivalent conductance, and equivalent heat capacity. A constant wall-temperature model is presented.
Design of experiments for measuring heat-transfer coefficients with a lumped-parameter calorimeter
NASA Technical Reports Server (NTRS)
Vanfossen, G. J., Jr.
1975-01-01
A theoretical investigation was conducted to determine optimum experimental conditions for using a lumped-parameter calorimeter to measure heat-transfer coefficients and heating rates. A mathematical model of the transient temperature response of the calorimeter was used with the measured temperature response to predict the heat-transfer coefficient and the rate of heating. A sensitivity analysis was used to determine the optimum transient experiment for simultaneously measuring the heat addition during heating and the convective heat-transfer coefficient during heating and cooling of a lumped-parameter calorimeter. Optimum experiments were also designed for measuring the convective heat-transfer coefficient during both heating and cooling and cooling only.
Self supporting heat transfer element
Story, Grosvenor Cook; Baldonado, Ray Orico
2002-01-01
The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.
Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.
2012-01-01
Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.
Radiation Heat Transfer Procedures for Space-Related Applications
NASA Technical Reports Server (NTRS)
Chai, John C.
2000-01-01
Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.
Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls
NASA Technical Reports Server (NTRS)
Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.
1991-01-01
An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.
Heat Transfer in High Temperature Multilayer Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Miller, Steve D.; Cunnington, George R.
2007-01-01
High temperature multilayer insulations have been investigated as an effective component of thermal-protection systems for atmospheric re-entry of reusable launch vehicles. Heat transfer in multilayer insulations consisting of thin, gold-coated, ceramic reflective foils and Saffil(TradeMark) fibrous insulation spacers was studied both numerically and experimentally. A finite volume numerical thermal model using combined conduction (gaseous and solid) and radiation in porous media was developed. A two-flux model with anisotropic scattering was used for radiation heat transfer in the fibrous insulation spacers between the reflective foils. The thermal model was validated by comparison with effective thermal conductivity measurements in an apparatus based on ASTM standard C201. Measurements were performed at environmental pressures in the range from 1x10(exp -4) to 760 torr over the temperature range from 300 to 1300 K. Four multilayer samples with nominal densities of 48 kg/cu m were tested. The first sample was 13.3 mm thick and had four evenly spaced reflective foils. The other three samples were 26.6 mm thick and utilized either one, two, or four reflective foils, located near the hot boundary with nominal foil spacing of 1.7 mm. The validated thermal model was then used to study relevant design parameters, such as reflective foil spacing and location in the stack-up and coating of one or both sides of foils.
Cho, D.H.; Page, R.J.; Hurtault, D.; Abdulla, S.; Liu, X.; Anderson, M.H.; Bonazza, R.; Corradini, M.
2002-02-26
Experiments on direct-contact heat exchange between molten metal and water for steam production were conducted. These experiments involved the injection of water into molten lead-bismuth eutectic for heat transfer measurements in a 1-D geometry. Based on the initial results of the experiments, the effects of the water flow rate and the molten metal superheat (temperature difference between molten metal and saturated water) on the volumetric heat transfer coefficient were discussed.
Students' Misconceptions about Heat Transfer Mechanisms and Elementary Kinetic Theory
ERIC Educational Resources Information Center
Pathare, S. R.; Pradhan, H. C.
2010-01-01
Heat and thermodynamics is a conceptually rich area of undergraduate physics. In the Indian context in particular there has been little work done in this area from the point of view of misconceptions. This prompted us to undertake a study in this area. We present a study of students' misconceptions about heat transfer mechanisms, i.e. conduction,…
Effect of radiation heat transfer on thermal diffusivity measurements
NASA Astrophysics Data System (ADS)
Araki, N.
1990-03-01
Experimental data on thermal conductivity and thermal diffusivity of a semitransparent material generally include an error due to the radiation heat transfer. This error varies in accordance with the experimental conditions such as the temperature level of the sample and the measuring method. In this paper, research on the influence of radiation heat transfer on thermal diffusivity are reviewed, and as an example, the method to correct the radiation component in the apparent thermal diffusivity measured by the stepwise heating technique is presented. The transient heat transfer by simultaneous thermal conduction and radiation in a semitransparent material is analyzed when the front surface is subjected to stepwise heating. The apparent thermal diffusivity, which includes the radiation component, is calculated for various parameters.
The impact of separated flow on heat and mass transfer. Final report
Goldstein, R.J.
1998-08-01
An investigation of the effect of flow separation on heat and mass transfer has been completed. This research provided enhanced understanding of fundamental mechanisms governing important heat and mass transfer flow processes. This report summarizes the work conducted under the project. This research has provided considerable new knowledge on flow and heat transfer situations of great interest in a number of energy conversion devices, including heat exchangers, gas turbines, solar energy systems and general heat transfer systems.
NASA Astrophysics Data System (ADS)
O-Uchi, Masaki; Hirose, Koichi; Saito, Futami
The inside heat transfer coefficient, overall heat transfer coefficient, and heat flow rate at the heating section of the thermosiphon were determined for each heating method. In order to observe the heat transfer mechanism in the evaporator, a thermosiphon unit made of glass was assembled and conducted separately. The results of these experiments with these two units are summarized as follows. (1) Nucleate boiling due to the internal heat transfer mechanism improves the heat transfer characteristics of the thermosiphon unit. Under the specific heating conditions with dropwise condensation, there are two types of heat transfer mechanism occur in the evaporator accompanying nucleate boiling, i. e. latent heat transfer and sensible heat transfer. (2) In the case of latent heat transfer, the inside heat transfer coefficient has an upper limit which can be used as a criterion to determine the type of internal heat transfer mechanism.
Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network
NASA Astrophysics Data System (ADS)
Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.
2015-12-01
Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.
Periodic Heat Transfer at Small Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Pfriem, H.
1943-01-01
The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.
Phase Change Heat Transfer Device for Process Heat Applications
Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson
2010-10-01
The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.
Wall-to-suspension heat transfer in circulating fluidized beds
Wirth, K.E.
1995-12-31
The wall-to-suspension heat transfer in circulating fluidized beds depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. Experimental investigations of circulating fluidized beds of low dimensionless pressure gradients with different solid particles like bronze, glass and polystyrene at ambient temperatures showed no influence of the conductivity and the heat capacity of the solids on the heat transfer coefficient. Consequently the heat transfer coefficient in the form of the dimensionless Nusselt number can be described by the dimensionless numbers which characterize the gas-solid-flow near the wall. These numbers are the Archimedes number and the pressure drop-number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. With the aid of a model of segregated vertical gas-solid flow, the flow pattern in the wall region can be calculated and thus the wall heat transfer which depends only on heat conduction in the gas and on the convective heat transfer by the gas. With elevated suspension temperatures, radiation contributes additionally to the heat transfer. When the solids concentration is low, the effect of the radiation on the heat transfer is high. Increasing solids concentration results in a decrease of the radiation effect due to the wall being shielded from the radiation of the hot particles in the core region by the cold solids clusters moving down the wall. A simple correlation is presented for calculating the wall-to-suspension heat transfer in circulating fluidized beds.
Heat and mass transfer considerations in advanced heat pump systems
Panchal, C.B.; Bell, K.J.
1992-01-01
Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.
Heat and mass transfer considerations in advanced heat pump systems
Panchal, C.B.; Bell, K.J.
1992-08-01
Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.
Thermodynamics of Flow Boiling Heat Transfer
NASA Astrophysics Data System (ADS)
Collado, F. J.
2003-05-01
Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.
Droplet heat transfer and chemical reactions during direct containment heating
Baker, L. Jr.
1986-01-01
A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences.
Wake-induced unsteady stagnation-region heat transfer measurements
Magari, P.J.; LaGraff, L.E. . Dept. of Mechanical and Aerospace Engineering)
1994-01-01
An experimental investigation of wake-induced unsteady heat transfer in the stagnation region of a cylinder was conducted. The objective of the study was to create a quasi-steady representation of the stator/rotor interaction in a gas turbine using two stationary cylinders in crossflow. In this simulation, a larger cylinder, representing the leading-edge region of a rotor blade, was immersed in the wake of a smaller cylinder, representing the trailing-edge region of a stator vane. Time-averaged and time-resolved heat transfer results were obtained over a wide range of Reynolds number at two Mach number: one incompressible and one transonic. The tests were conducted at Reynolds numbers, Mach numbers, and gas-to-wall temperature ratios characteristic of turbine engine conditions in an isentropic compression-heated transient wind tunnel (LICH tube). The augmentation of the heat transfer in the stagnation region due to wake unsteadiness was documented by comparison with isolated cylinder tests. It was found that the time-averaged heat transfer rate at the stagnation line, expressed in terms of the Frossling number (Nu/[radical]RE), reached a maximum independent of the Reynolds number. The power spectra and cross-correlation of the heat transfer signals in the stagnation region revealed the importance of large vortical structures shed from upstream wake generator. These structures caused large positive and negative excursions about the mean heat transfer rate in the stagnation region.
NASA Technical Reports Server (NTRS)
Fink, Richard
2015-01-01
The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.
Compact pulsed laser having improved heat conductance
NASA Technical Reports Server (NTRS)
Yang, L. C. (Inventor)
1977-01-01
A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.
Measurement of heat conduction through stacked screens
NASA Technical Reports Server (NTRS)
Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.
1998-01-01
This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.
Near field heat transfer in superlattices
NASA Astrophysics Data System (ADS)
Esquivel-Sirvent, Raul
2015-03-01
I present a theoretical calculation of the near field heat transfer between super lattices made of alternative layers of both metallic and semiconducting materials. The calculation of the near field transfer requires the knowledge of the reflectivities, that are obtained by calculating the surface impedance of the super lattice. Depending on the periodicity of the lattice and the dielectric function of the materials the near field heat transfer can be modulated or engineered. Additional control on the heat transfer is achieved by introducing defects in the superlattice. The results are extended to include photonic hypercrystals that effectively behave like a hyperbolic metamaterial even in the near field (1), where the tuning of the heat transfer is modified by Partial Support from DGAPA-UNAM project IN 111214.
Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger
Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari
2014-01-01
This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%–0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%–24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles. PMID:27433521
Heat Conduction in Novel Electronic Films
NASA Astrophysics Data System (ADS)
Goodson, Kenneth E.; Ju, Y. Sungtaek
1999-08-01
Heat conduction in novel electronic films influences the performance and reliability of micromachined transistors, lasers, sensors, and actuators. This article reviews experimental and theoretical research on heat conduction in single-crystal semiconducting and superconducting films and superlattices, polycrystalline diamond films, and highly disordered organic and oxide films. The thermal properties of these films can differ dramatically from those of bulk samples owing to the dependence of the material structure and purity on film processing conditions and to the scattering of heat carriers at material boundaries. Predictions and data show that phonon scattering and transmission at boundaries strongly influence the thermal conductivities of single-crystal films and superlattices, although more work is needed to resolve the importance of strain-induced lattice defects. For polycrystalline films, phonon scattering on grain boundaries and associated defects causes the thermal conductivity to be strongly anisotropic and nonhomogeneous. For highly disordered films, preliminary studies have illustrated the influences of impurities on the volumetric heat capacity and, for the case of organic films, molecular orientation on the conductivity anisotropy. More work on disordered films needs to resolve the interplay among atomic-scale disorder, porosity, partial crystallinity, and molecular orientation.
Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube
NASA Technical Reports Server (NTRS)
Bernardo, Everett; Eian, Carroll S
1945-01-01
As part of an investigation of the cooling characteristics of liquid-cooled engines, tests were conducted with an electrically heated single-tube heat exchanger to determine the heat-transfer characteristics of an-e-2 ethylene glycol and other ethylene glycol-water mixtures. Similar tests were conducted with water and commercial butanol (n-butyl alcohol) for check purposes. The results of tests conducted at an approximately constant liquid-flow rate of 0.67 pound per second (Reynolds number, 14,500 to 112,500) indicate that at an average liquid temperature 200 degrees f, the heat-transfer coefficients obtained using water, nominal (by volume) 30 percent-70 percent and 70 percent-30 percent glycol-water mixtures are approximately 3.8, 2.8, and 1.4 times higher, respectively, than the heat-transfer coefficients obtained using an-e-2 ethylene glycol.
Particle-water heat transfer during explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Woodcock, D. C.; Gilbert, J. S.; Lane, S. J.
2012-10-01
Thermal interaction between volcanic particles and water during explosive eruptions has been quantified using a numerical heat transfer model for spherical particles. The model couples intraparticle conduction with heat transfer from the particle surface by boiling water in order to explore heat loss with time for a range of particle diameters. The results are combined with estimates of particle settling times to provide insight into heat removal during eruption from samples of volcanic particles produced by explosive eruption. Heat removal is restricted by resistance to heat transfer from the volcanic particles with intraparticle thermal conduction important for large particles and surface cooling by boiling dominating for small particles. In most cases, volcanic particles approach thermal equilibrium with the surrounding fluid during an explosive eruption. Application of the results to a sample from the Gjálp 1996, Iceland eruption indicates that, relative to 0○C, 70-80% of the heat is transferred from the particles to boiling water during the settling time before burial in the stratigraphic succession. The implication is that, for subglacial explosive eruptions, much of the heat content of the magma is coupled into melting ice extremely rapidly. If all particles of the Gjálp 1996 deposit were cooled to the local boiling point by the end of the eruption then approximately 78% of the initial heat content was removed from the erupting magma during the eruption. This is consistent with calorimetric calculations based on volumes of ice melted during and after the eruption.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred (Inventor)
1987-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Heat transfer peculiarities in supersonic flows
NASA Astrophysics Data System (ADS)
Borovoi, V. Ia.; Brazhko, V. N.; Maikapar, G. I.; Skuratov, A. S.; Struminskaia, I. V.
1992-12-01
A method of heat transfer and gas flow investigation based on the application of thermal sensitive coatings or thermocouple sensors and various visualization techniques is described. The thermal sensitive coatings and visualization reveal heat transfer peculiarities, and the complex nature of the method contributes to understanding the processes and generalization of quantitative results. Data concerning heat transfer on the leeward side of a blunt cone in the regions of the shock-wave boundary layer and bow wave interaction, in gaps and cavities of the orbiter's thermal insulation, and in the vicinity of them, are presented.
Passive heat transfer means for nuclear reactors
Burelbach, James P.
1984-01-01
An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.
Thermally conductive cementitious grout for geothermal heat pump systems
Allan, Marita
2001-01-01
A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.
Volume-energy parameters for heat transfer to supercritical fluids
NASA Technical Reports Server (NTRS)
Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.
1986-01-01
Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.
Wind heat transfer coefficient in solar collectors in outdoor conditions
Kumar, Suresh; Mullick, S.C.
2010-06-15
Knowledge of wind heat transfer coefficient, h{sub w}, is required for estimation of upward losses from the outer surface of flat plate solar collectors/solar cookers. In present study, an attempt has been made to estimate the wind induced convective heat transfer coefficient by employing unglazed test plate (of size about 0.9 m square) in outdoor conditions. Experiments, for measurement of h{sub w}, have been conducted on rooftop of a building in the Institute campus in summer season for 2 years. The estimated wind heat transfer coefficient has been correlated against wind speed by linear regression and power regression. Experimental values of wind heat transfer coefficient estimated in present work have been compared with studies of other researchers after normalizing for plate length. (author)
Enhancement of laminar convective heat transfer using microparticle suspensions
NASA Astrophysics Data System (ADS)
Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran
2016-04-01
This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.
Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.
2012-01-01
A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.
Large variable conductance heat pipe. Transverse header
NASA Technical Reports Server (NTRS)
Edelstein, F.
1975-01-01
The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.
Turbine disk cavity aerodynamics and heat transfer
NASA Astrophysics Data System (ADS)
Johnson, B. V.; Daniels, W. A.
1992-07-01
Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.
Nanofluids for heat transfer : an engineering approach.
Timofeeva, E. V.; Yu, W.; France, D. M.; Singh, D.; Routbort, J. L.
2011-02-28
An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles), the liquid phase (fluid media), and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.
Heat Transfer in High-Temperature Fibrous Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2002-01-01
The combined radiation/conduction heat transfer in high-porosity, high-temperature fibrous insulations was investigated experimentally and numerically. The effective thermal conductivity of fibrous insulation samples was measured over the temperature range of 300-1300 K and environmental pressure range of 1.33 x 10(exp -5)-101.32 kPa. The fibrous insulation samples tested had nominal densities of 24, 48, and 72 kilograms per cubic meter and thicknesses of 13.3, 26.6 and 39.9 millimeters. Seven samples were tested such that the applied heat flux vector was aligned with local gravity vector to eliminate natural convection as a mode of heat transfer. Two samples were tested with reverse orientation to investigate natural convection effects. It was determined that for the fibrous insulation densities and thicknesses investigated no heat transfer takes place through natural convection. A finite volume numerical model was developed to solve the governing combined radiation and conduction heat transfer equations. Various methods of modeling the gas/solid conduction interaction in fibrous insulations were investigated. The radiation heat transfer was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. A genetic-algorithm based parameter estimation technique was utilized with this model to determine the relevant radiative properties of the fibrous insulation over the temperature range of 300-1300 K. The parameter estimation was performed by least square minimization of the difference between measured and predicted values of effective thermal conductivity at a density of 24 kilograms per cubic meters and at nominal pressures of 1.33 x 10(exp -4) and 99.98 kPa. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements at other densities and pressures. The numerical model was also validated by comparison with a transient thermal test simulating reentry aerodynamic heating
Heat transfer near turbine nozzle endwall.
Chyu, M K
2001-05-01
This paper gives an overview and reviews recent findings concerning turbine endwall cooling in the literature. The text below begins with a brief discussion of the secondary flows and heat transfer around cascade endwall. This will be followed by a review of recent developments in cooling concepts and related heat transfer results. Key topics include: film cooling, upstream bleeding, endwall contouring, and leakage through component interfaces. PMID:11460636
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
Aqueous Al2O3 nanofluids: the important factors impacting convective heat transfer
NASA Astrophysics Data System (ADS)
Cao, Jianguo; Ding, Yulong; Ma, Caiyun
2014-12-01
A high accuracy, counter flow double pipe heat exchanger system is designed for the measurement of convective heat transfer coefficients with different nanofluids. Both positive and negative enhancement of convective heat transfer of alumina nanofluids are found in the experiments. A modified equation was proposed to explain above phenomena through the physic properties of nanofluids such as thermal conductivity, special heat capacity and viscosity.
Heat and mass transfer in materials processing
NASA Astrophysics Data System (ADS)
Tanasawa, Ichiro; Lior, Noam
Various papers on heat and mass transfer in materials processing are presented. The topics addressed include: heat transfer in plasma spraying, structure of ultrashort pulse plasma for CVD processing, heat flow and thermal contraction during plasma spray deposition, metal melting process by laser heating, improved electron beam weld design and control with beam current profile measurements, transport phenomena in laser materials processing, perspectives on integrated modeling of transport processes in semiconductor crystal growth, numerical simulation of natural convection in crystal growth in space and on the earth, conjugate heat transfer in crystal growth, effects of convection on the solidification of binary mixtures. Also discussed are: heat transfer in in-rotating-liquid-spinning process, thermal oscillations in materials processing, modeling and simulation of manufacturing processes of advanced composite materials, reaction engineering principles of combustion synthesis of advanced materials, numerical evaluation of the physical properties of magnetic fluids suitable for heat transfer control, and measurement techniques of thermophysical properties of high temperature melts. (For individual items see A93-10827 to A93-10843)
Heat Transfer of Tube-fin Heat Exchanger Having Parallel Louver Continuous Fins
NASA Astrophysics Data System (ADS)
Take-Uchi, Masaaki; Yamada, Jun; Tanaka, Jun-Ichirou
Heat transfer from tubes has been numerically simulated in a fan coil unit for an airconditioning equipment. The array of tubes has parallel louver continuous fins, perpendicular to staggered round tubes. Quite a few of slits divide plates into many strips, which are offsetted, so that the heat transfer will be augmented from the plate to the air flow. On the other hand, the conduction of heat in the platemight be prevented with these slits. The conduction retardation due to slit is estimated, and the simulation shows that the retardation is not serious for present fins.
Evaluation of Heat Transfer Augmentation in a Nanofluid-Cooled Microchannel Heat Sink
NASA Astrophysics Data System (ADS)
Abbassi, Hessamoddin; Aghanajafi, Cyrus
2006-12-01
Present investigation deals with appraising heat transfer enhancement of single phase microchannel heat sink (MCHS) by ultra fine Cu particle incorporation in base coolant fluid. The particle diameter is of nanometer size and base fluid in combination of nanoparticles is called nanofluid. Governing equations for fluid flow and heat transfer are based on well established "porous medium model" and accordingly, modified Darcy equation and two-equation model are employed. Appropriate equations for both fluid flow and heat transfer are derived and cast into dimensionless form. Velocity profile is obtained analytically and in order to solve conjugate heat transfer problem a combined analytical-numerical approach is employed. For heat transfer analysis, thermal dispersion model is adopted and latest proposed model for effective thermal conductivity - which considers the salient effect of interfacial shells between particles and base fluid - is integrated into model. The effects of dispersed particles concentration, thermal dispersion coefficient and Reynolds number are investigated on thermal fields and on thermal performance of MCHS. Additionally, the impact of turbulent heat transfer on heat transfer enhancement is considered.
Examination of Liquid Fluoride Salt Heat Transfer
Yoder Jr, Graydon L
2014-01-01
The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer
He II heat transfer through superconducting cables electrical insulation
NASA Astrophysics Data System (ADS)
Baudouy, B.; François, M. X.; Juster, F.-P.; Meuris, C.
2000-02-01
For NbTi magnets cooled by superfluid helium (He II), the most severe heat barrier comes from the electrical insulation of the cables. Tests on electrical multi-layer insulations, made of Kapton ®, dry fiber and epoxy resin impregnated fiberglass tapes, indicate that heat transfer is influenced by He II contained in the insulation. Electrical insulation can be considered as a composite material made of a solid matrix with a complicated helium channels network. For several insulations, this network is characterized by steady-state heat transfer experiment through an elementary insulation pattern. Measurements in Landau regime for low temperature difference (10 -5-10 -3 K) and in Gorter-Mellink (GM) regime for higher temperature differences permit to determine an equivalent He II channel cross-section (10 -6 m 2) with an equivalent channel thickness (25 μm). We use the assumptions that He II heat transfer through the channels network and conduction in the insulation are decoupled and that the channels length is determined from the insulation overlap. It is observed that He II heat transfer is competing with conduction in the insulation. Furthermore, the measurements reveal an anomaly of heat transfer in the vicinity of the λ temperature which is associated to the phenomenon of λ-point depression.
Heat transfer measurements for Stirling machine cylinders
NASA Technical Reports Server (NTRS)
Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.
1994-01-01
The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially
Interactive Heat Transfer Simulations for Everyone
ERIC Educational Resources Information Center
Xie, Charles
2012-01-01
Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…
NASA Technical Reports Server (NTRS)
Morris, J. F. (Inventor)
1985-01-01
This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.
Heat and mass transfer performances on plate fin and tube heat exchangers with dehumidification
Seshimo, Y.; Ogawa, K.; Marumoto, K.; Fujii, M. )
1990-09-01
The authors discuss how they conducted an experimental study on the air side performance of a single-row plate fin and tube heat exchanger in moist air where mass transfer exist under a relatively low driving potential. The results are as follows: The heat transfer with dehumidification is about 20% greater than that with only sensible heat transfer. Also the air side pressure drop is about 30-40% greater. The reason, as clarified by visual observations, comes from the condensate effect. To study how the condensate film affects performance, the presence of the stagnant condensate in the heat exchanger was modeled as an apparent change of the heat exchanger geometry, and the equivalent thickness of the condensate film was calculated from the increase in the air side pressure drop. As a result, if the presence of condensate in the heat exchanger is considered, then the heat transfer with dehumidification can be treated in the same way as with only sensible heat transfer. The analogy between heat and mass transfer does not strictly hold, the experimental results being closed to the Lewis Law.
On heat transfer at microscale with implications for microactuator design
NASA Astrophysics Data System (ADS)
Ozsun, Ozgur; Alaca, B. Erdem; Yalcinkaya, Arda D.; Yilmaz, Mehmet; Zervas, Michalis; Leblebici, Yusuf
2009-04-01
The dominance of conduction and the negligible effect of gravity, and hence free convection, are verified in the case of microscale heat sources surrounded by air at atmospheric pressure. A list of temperature-dependent heat transfer coefficients is provided. In contrast to previous approaches based on free convection, supplied coefficients converge with increasing temperature. Instead of creating a new external function for the definition of boundary conditions via conductive heat transfer, convective thin film coefficients already embedded in commercial finite element software are utilized under a constant heat flux condition. This facilitates direct implementation of coefficients, i.e. the list supplied in this work can directly be plugged into commercial software. Finally, the following four-step methodology is proposed for modeling: (i) determination of the thermal time constant of a specific microactuator, (ii) determination of the boundary layer size corresponding to this time constant, (iii) extraction of the appropriate heat transfer coefficients from a list provided and (iv) application of these coefficients as boundary conditions in thermomechanical finite element simulations. An experimental procedure is established for the determination of the thermal time constant, the first step of the proposed methodology. Based on conduction, the proposed method provides a physically sound solution to heat transfer issues encountered in the modeling of thermal microactuators.
Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies
NASA Astrophysics Data System (ADS)
Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne
2016-07-01
Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.
Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies
NASA Astrophysics Data System (ADS)
Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne
2015-08-01
Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.
Transient Heat Conduction in Strongly Correlated Systems
NASA Astrophysics Data System (ADS)
Aghjayan, Rita; Luniewski, Arthur; Walczak, Kamil; Nanoscale Physics Division Team
2015-03-01
We analyze heat transport carried by electrons via quantum dots, modeled as strongly-correlated systems with discrete spectrum of available energy levels, which couple to two heat reservoirs of different temperatures. Our computational method for the electronic heat flux is based on the density matrix formalism, while the transition rates between particular quantum states are determined within the Fermi's golden rule. By taking into consideration the non-steady-state solutions for probabilities, we examine the influence of initial conductions and contact-induced time delays onto the rapid thermal switching response of the quantum system under investigation. Specifically, we use several different models for quantum dot, where the Zeeman splitting, Coulomb blockade, and the concept of dark-state are explicitly included. A special attention is devoted to thermal memory effects and the relationship between all the quantum transport expressions and the hyperbolic Cattaneo-Vernotte equation. This research is supported by Pace University Start-up Grant.
Enhanced boiling heat transfer in horizontal test bundles
Trewin, R.R.; Jensen, M.K.; Bergles, A.E.
1994-08-01
Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.
Heat Transfer to Fuel Sprays Injected into Heated Gases
NASA Technical Reports Server (NTRS)
Selden, Robert F; Spencer, Robert C
1938-01-01
This report presents the results of a study made of the influence of several variables on the pressure decrease accompanying injection of a relatively cool liquid into a heated compressed gas. Indirectly, this pressure decrease and the time rate of change of it are indicative of the total heat transferred as well as the rate of heat transfer between the gas and the injected liquid. Air, nitrogen, and carbon dioxide were used as ambient gases; diesel fuel and benzene were the injected liquids. The gas densities and gas-fuel ratios covered approximately the range used in compression-ignition engines. The gas temperatures ranged from 150 degrees c. to 350 degrees c.
Heat transfer studies. Quarterly report
Boehm, R.; Chen, Y.T.; Ma, L.
1995-04-20
Nitrogen gas has been replaced by room air in the extension of multi-phase models to sub-residual saturation experiments on drying. The TOUGH2 code has been used to simulate the same problem with the identical boundary conditions. A constant heat flux boundary condition on the heater has been performed in the repository drift experiment. The desired constant heat flux can produce a steady-state heater temperature ({approx}238{degrees}C) close to the constant heater surface temperature used before. What occurs in the air annulus and in the porous medium with the different thermal boundary conditions and water quantities is reported.
Interactive Heat Transfer Simulations for Everyone
NASA Astrophysics Data System (ADS)
Xie, Charles
2012-04-01
Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy, temperature distribution, and heat transfer may provide a straightforward method for teaching and learning these concepts. Through interacting with visual representations of the concepts and observing how they respond to manipulations, the misconceptions may be dispelled more effectively. This paper presents a new educational simulation tool called Energy2D developed to explore this idea.
2-D Finite Element Heat Conduction
1989-10-30
AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less
Variable conductance heat pipes from the laboratory to space
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. P.
1973-01-01
Heat pipes were developed which can be used as (1) a variable conductance link between a heat source and sink which provides temperature stability; (2) a feedback control mechanism that acts to directly maintain the source at a constant temperature; (3) or as a thermal diode that allows heat to be transferred in one direction only. To establish flight level confidence in these basic control techniques, the Ames Heat Pipe Experiment (AHPE) was launched in August 1972 and the Advanced Thermal Control Flight Experiment (ATFE) is scheduled for launch in May 1973. The major efforts of the technology development, initial flight results of the AHPE, and ground test data of the ATFE are discussed.
Code for Multiblock CFD and Heat-Transfer Computations
NASA Technical Reports Server (NTRS)
Fabian, John C.; Heidmann, James D.; Lucci, Barbara L.; Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur
2006-01-01
The NASA Glenn Research Center General Multi-Block Navier-Stokes Convective Heat Transfer Code, Glenn-HT, has been used extensively to predict heat transfer and fluid flow for a variety of steady gas turbine engine problems. Recently, the Glenn-HT code has been completely rewritten in Fortran 90/95, a more object-oriented language that allows programmers to create code that is more modular and makes more efficient use of data structures. The new implementation takes full advantage of the capabilities of the Fortran 90/95 programming language. As a result, the Glenn-HT code now provides dynamic memory allocation, modular design, and unsteady flow capability. This allows for the heat-transfer analysis of a full turbine stage. The code has been demonstrated for an unsteady inflow condition, and gridding efforts have been initiated for a full turbine stage unsteady calculation. This analysis will be the first to simultaneously include the effects of rotation, blade interaction, film cooling, and tip clearance with recessed tip on turbine heat transfer and cooling performance. Future plans call for the application of the new Glenn-HT code to a range of gas turbine engine problems of current interest to the heat-transfer community. The new unsteady flow capability will allow researchers to predict the effect of unsteady flow phenomena upon the convective heat transfer of turbine blades and vanes. Work will also continue on the development of conjugate heat-transfer capability in the code, where simultaneous solution of convective and conductive heat-transfer domains is accomplished. Finally, advanced turbulence and fluid flow models and automatic gridding techniques are being developed that will be applied to the Glenn-HT code and solution process.
Heat transfer characteristics for disk fans
NASA Astrophysics Data System (ADS)
Prikhodko, Yu. M.; Chekhov, V. P.; Fomichev, V. P.
2014-08-01
Multiple-disk fans belong to the class of friction machines; they can be designed in two variants: centrifugal disk fans and diametrical disk fans. Flow patterns in these two types of machines are different, and they possess different heat transfer characteristics. The paper presents results of experimental study for a centrifugal disk fan under atmospheric pressure with air taken as working gas. The radial temperature distribution for a disk was obtained at different rotation speed of the rotor and different heating of the disks. Heat transfer characteristics of a centrifugal disk fan and a diametrical disk fan were compared. The research results demonstrate a higher heat transfer efficiency for centrifugal design versus diametrical disk design.
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Capillary-Condenser-Pumped Heat-Transfer Loop
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1989-01-01
Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.
A heat transfer model of a horizontal ground heat exchanger
NASA Astrophysics Data System (ADS)
Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.
2016-04-01
Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.
Heat transfer in rotating serpentine passages with smooth walls
NASA Technical Reports Server (NTRS)
Wagner, J. H.; Johnson, B. V.; Kopper, F. C.
1990-01-01
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, smooth-wall heat transfer model with both radially inward and outward flow. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages (coolant-to-wall temperature ratio, Rossby number, Reynolds number and radius-to-passage hydraulic diameter ratio). These four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. It was found that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs and that the effect of rotation on the heat transfer coefficients was markedly different depending on the flow direction. Local heat transfer coefficients were found to decrease by as much as 60 percent and increase by 250 percent from no rotation levels. Comparisons with a pioneering stationary vertical tube buoyancy experiment showed reasonably good agreement. Correlation of the data is achieved employing dimensionless parameters derived from the governing flow equations.
Heat transfer in rotating serpentine passages with smooth walls
NASA Astrophysics Data System (ADS)
Wagner, J. H.; Johnson, B. V.; Kopper, F. C.
1990-06-01
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, smooth-wall heat transfer model with both radially inward and outward flow. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages (coolant-to-wall temperature ratio, Rossby number, Reynolds number and radius-to-passage hydraulic diameter ratio). These four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. It was found that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs and that the effect of rotation on the heat transfer coefficients was markedly different depending on the flow direction. Local heat transfer coefficients were found to decrease by as much as 60 percent and increase by 250 percent from no rotation levels. Comparisons with a pioneering stationary vertical tube buoyancy experiment showed reasonably good agreement. Correlation of the data is achieved employing dimensionless parameters derived from the governing flow equations.
Heat transfer in pressurized circulating fluidized beds
Wirth, K.E.
1997-12-31
The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was
Spherical harmonic analysis of earth's conductive heat flow
NASA Astrophysics Data System (ADS)
Hamza, V. M.; Cardoso, R. R.; Ponte Neto, C. F.
2008-04-01
A reappraisal of the international heat flow database has been carried out and the corrected data set was employed in spherical harmonic analysis of the conductive component of global heat flow. Procedures used prior to harmonic analysis include analysis of the heat flow data and determination of representative mean values for a set of discretized area elements of the surface of the earth. Estimated heat flow values were assigned to area elements for which experimental data are not available. However, no corrections were made to account for the hypothetical effects of regional-scale convection heat transfer in areas of oceanic crust. New sets of coefficients for 12° spherical harmonic expansion were calculated on the basis of the revised and homogenized data set. Maps derived on the basis of these coefficients reveal several new features in the global heat flow distribution. The magnitudes of heat flow anomalies of the ocean ridge segments are found to have mean values of less than 150 mW/m2. Also, the mean global heat flow values for the raw and binned data are found to fall in the range of 56-67 mW/m2, down by nearly 25% compared to the previous estimate of 1993, but similar to earlier assessments based on raw data alone. To improve the spatial resolution of the heat flow anomalies, the spherical harmonic expansions have been extended to higher degrees. Maps derived using coefficients for 36° harmonic expansion have allowed identification of new features in regional heat flow fields of several oceanic and continental segments. For example, lateral extensions of heat flow anomalies of active spreading centers have been outlined with better resolution than was possible in earlier studies. Also, the characteristics of heat flow variations in oceanic crust away from ridge systems are found to be typical of conductive cooling of the lithosphere, there being little need to invoke the hypothesis of unconfined hydrothermal circulation on regional scales. Calculations
NASA Technical Reports Server (NTRS)
Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.
1974-01-01
A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.
Base fluid in improving heat transfer for EV car battery
NASA Astrophysics Data System (ADS)
Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.
2015-05-01
This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.
Heat Transfer In High-Temperature Multilayer Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Miller, Stephen D.; Cunnington, George R.
2006-01-01
The combined radiation/conduction heat transfer in high-temperature multilayer insulations for typical reentry of reusable launch vehicles from low Earth orbit was investigated experimentally and numerically. The high-temperature multilayer insulation investigated consisted of gold-coated reflective foils separated by alumina fibrous insulation spacers. The steady-state heat transfer through four multilayer insulation configurations was investigated experimentally over the temperature range of 300-1300 K and environmental pressure range of 1.33 10(exp -5)-101.32 kPa. It was shown that including the reflective foils reduced the effective thermal conductivity compared to fibrous insulation sample at 1.5 times the density of the multilayer sample. A finite volume numerical model was developed to solve the governing combined radiation/conduction heat transfer equations. The radiation heat transfer in the fibrous insulation spacers was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. The numerical model was validated by comparison with steady-state experimental data. The root mean square deviation between the predicted and measured effective thermal conductivity of the samples was 9.5%.
Versatile Desktop Experiment Module (DEMo) on Heat Transfer
ERIC Educational Resources Information Center
Minerick, Adrienne R.
2010-01-01
This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…
Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace
Ito, H.; Umeda, Y.; Nakamura, Y.; Wantanabe, T.; Mitutani, T. ); Arai, N.; Hasatani, M. )
1991-01-01
This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generally in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.
HOST turbine heat transfer program summary
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.; Simoneau, Robert J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding with the remainder going to analytical efforts. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
Heat transfer on accreting ice surfaces
NASA Technical Reports Server (NTRS)
Yamaguchi, Keiko; Hansman, R. John, Jr.
1990-01-01
Based on previous observations of glaze ice accretion, a 'Multi-Zone' model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: to determine the laminar to turbulent transition location and to calculate the turbulent heat transfer coefficient. A two zone version of the Multi-Zone model is implemented in the LEWICE code, and compared with experimental heat transfer coefficient and ice accretin results. The analysis of the boundary layer transition, surface roughness, and viscous flow field effects significantly increased the accuracy in predicting heat transfer coefficients. The Multi-Zone model was found to greatly improve the ice accretion prediction for the cases compared.
Heat transfer on accreting ice surfaces
NASA Technical Reports Server (NTRS)
Yamaguchi, Keiko; Hansman, R. John, Jr.
1993-01-01
Based on previous observations of glaze ice accretion on aircraft surfaces, a multizone model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: (1) to determine the laminar to turbulent boundary-layer transition location; and (2) to calculate the convective turbulent heat-transfer coefficient. A two-zone version of the multizone model is implemented in the LEWICE code, and compared with experimental convective heat-transfer coefficient and ice accretion results. The analysis of the boundary-layer transition, surface roughness, and viscous flowfield effects significantly increased the accuracy in predicting heat-transfer coefficients. The multizone model was found to significantly improve the ice accretion prediction for the cases compared.
Parallelized solvers for heat conduction formulations
NASA Technical Reports Server (NTRS)
Padovan, Joe; Kwang, Abel
1991-01-01
Based on multilevel partitioning, this paper develops a structural parallelizable solution methodology that enables a significant reduction in computational effort and memory requirements for very large scale linear and nonlinear steady and transient thermal (heat conduction) models. Due to the generality of the formulation of the scheme, both finite element and finite difference simulations can be treated. Diverse model topologies can thus be handled, including both simply and multiply connected (branched/perforated) geometries. To verify the methodology, analytical and numerical benchmark trends are verified in both sequential and parallel computer environments.
Determination of heat transfer coefficients during solidification of a casting in a jet crystallizer
NASA Astrophysics Data System (ADS)
Borukhov, V. T.; Zayats, G. M.; Stetsenko, V. Yu.; Konovalov, R. V.
2012-01-01
The problem of determining heat transfer coefficients in thermal processes described by nonlinear initial boundary-value problems for heat conduction equations in a cylindrical coordinate system is considered subject to axial symmetry. An algorithm is suggested and program means are created for identifying heat transfer coefficients. A computational experiment on determining heat transfer coefficients for the AK12 alloy is carried out, and recommendations for selecting numerical calculation parameters have been developed.
Coolant passage heat transfer with rotation
NASA Astrophysics Data System (ADS)
Hajek, T. J.; Wagner, J.; Johnson, B. V.
1986-10-01
In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.
Heat transfer during evaporation on a small surface (Review)
NASA Astrophysics Data System (ADS)
Tolubinskii, V. I.; Antonenko, V. A.; Kudritskii, G. R.; Ostrovskii, Iu. N.
Experimental data in the literature on the intensity of heat transfer and critical heat loads associated with the boiling of a liquid on a small surface are examined. Various methods for intensifying heat transfer are discussed. Expressions are presented for calculating heat transfer coefficients and critical heat flux densities.
Heat transfer characteristics of an emergent strand
NASA Technical Reports Server (NTRS)
Simon, W. E.; Witte, L. C.; Hedgcoxe, P. G.
1974-01-01
A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed.
Comparison of vibrational conductivity and radiative energy transfer methods
NASA Astrophysics Data System (ADS)
Le Bot, A.
2005-05-01
This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.
Experimental determination of stator endwall heat transfer
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Russell, Louis M.
1989-01-01
Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.
Experimental determination of stator endwall heat transfer
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Russell, Louis M.
1989-01-01
Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane possage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Resutls were obtained for Reynolds numbers based on inlet velocity and axial chord between 75,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-01
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process. PMID:24003985
Kelly, J. E.; Hitchcock, J. T.; Schwarz, M. L.
1982-08-01
A combined experimental and analytical program has been undertaken to study the thermal characteristics of dry debris beds especially at high temperatures where radiative heat transfer contributes. Experiments have been conducted in-pile using intrinsic fission heating of UO/sub 2/ to simulate decay heat power levels. Both pure UO/sub 2/ and mixed UO/sub 2//steel beds in a helium atmosphere have been studied. Temperatures as high as 3100 K have been attained. Theremocouples and ultrasonic thermometers have been used to measure the bed temperatures. Also recent post-test metallographic examinations have revealed useful information on the materials interactions which can be correlated to changes in the thermal behavior of the bed. In addition to the experiments, a number of porous medium thermal conductivity models have been evaluated. From these, two models representing upper and lower bounds for the conductivity, in conjunction with a two-dimensional heat transfer analysis have been compared to the data.
Thermocapillary effects on the heat transfer effectiveness of a heated, curved meniscus
Pratt, D.M.; Hallinan, K.P.; Chang, W.S.
1997-07-01
An investigation of thermocapillary effects on a heated meniscus formed by a volatile liquid in a vertical capillary tube has been conducted. This investigation is primarily experimental although analysis is presented to gain insights into the experimental results. The work was motivated by the importance of the evaporation process from porous or grooved media that are integral to the operation of capillary-driven heat transport devices such as heat pipes and capillary-driven loops. The research addressed the heat transfer characteristics of a capillary pore system. It was shown that the heat transfer effectiveness of the evaporating meniscus was reduced due to interfacial thermocapillary stresses. The effect of thermocapillary stresses on the heat transfer characteristics on single capillary pore heat transfer devices is shown to be a function of the non-dimensional thermocapillary stress (Marangoni number). This was demonstrated for different capillary pore sizes and working fluid conditions. Results include data for inside diameters of 0.5, 1, and 2 mm and liquid subcoolings of 18, 10, and 0 C. For large pores, it was shown that the heat transfer is controlled by convection.
Phonon heat conduction in layered anisotropic crystals
NASA Astrophysics Data System (ADS)
Minnich, A. J.
2015-02-01
The thermal properties of anisotropic crystals are of both fundamental and practical interest, but transport phenomena in anisotropic materials such as graphite remain poorly understood because solutions of the Boltzmann equation often assume isotropy. Here, we extend an analytic solution of the transient, frequency-dependent Boltzmann equation to highly anisotropic solids and examine its predictions for graphite. We show that this simple model predicts key results, such as long c -axis phonon mean free paths and a negative correlation of cross-plane thermal conductivity with in-plane group velocity, that were previously observed with computationally expensive molecular-dynamics simulations. Further, using our analytic solution, we demonstrate a method to reconstruct the anisotropic mean free path spectrum of crystals with arbitrary dispersion relations without any prior knowledge of their harmonic or anharmonic properties using observations of quasiballistic heat conduction. These results provide a useful analytic framework to understand thermal transport in anisotropic crystals.
Natural convective heat transfer from square cylinder
NASA Astrophysics Data System (ADS)
Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej
2016-06-01
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable
Numerical solution of the imprecisely defined inverse heat conduction problem
NASA Astrophysics Data System (ADS)
Smita, Tapaswini; Chakraverty, S.; Diptiranjan, Behera
2015-05-01
This paper investigates the numerical solution of the uncertain inverse heat conduction problem. Uncertainties present in the system parameters are modelled through triangular convex normalized fuzzy sets. In the solution process, double parametric forms of fuzzy numbers are used with the variational iteration method (VIM). This problem first computes the uncertain temperature distribution in the domain. Next, when the uncertain temperature measurements in the domain are known, the functions describing the uncertain temperature and heat flux on the boundary are reconstructed. Related example problems are solved using the present procedure. We have also compared the present results with those in [Inf. Sci. (2008) 178 1917] along with homotopy perturbation method (HPM) and [Int. Commun. Heat Mass Transfer (2012) 39 30] in the special cases to demonstrate the validity and applicability.
Experimental Investigations of Heat and Mass Transfer in Microchannel Heat-Transfer Elements
NASA Astrophysics Data System (ADS)
Konovalov, D. A.
2016-06-01
The present work seeks to develop and investigate experimentally microchannel heat-exchange apparatuses of two designs: with porous elements manufactured from titanium and copper, and also based on the matrix of filamentary silicon single crystals under operating conditions with high heat loads, unsteadiness, and nonlinear flow of the coolant. For experimental investigations, the authors have developed and manufactured a unique test bench allowing tests of the developed heat-transfer elements in unsteady operating regimes. The performed experimental investigations have made it possible to obtain criterial dependences of the heat-transfer coefficient on the Reynolds and Prandtl numbers and to refine the values of viscous and inertial coefficients. It has been established that microchannel heat-transfer elements based on silicon single crystals, which make it possible to remove a heat flux above 100 W/cm2, are the most efficient. For porous heat-transfer elements, the best result was attained for wedge-shaped copper samples. According to investigation results, the authors have considered the issues of optimization of thermal and hydraulic characteristics of the heat-transfer elements under study. In the work, the authors have given examples of practical use of the developed heat-transfer elements for cooling systems of radioelectronic equipment.
Experimental Investigations of Heat and Mass Transfer in Microchannel Heat-Transfer Elements
NASA Astrophysics Data System (ADS)
Konovalov, D. A.
2016-05-01
The present work seeks to develop and investigate experimentally microchannel heat-exchange apparatuses of two designs: with porous elements manufactured from titanium and copper, and also based on the matrix of filamentary silicon single crystals under operating conditions with high heat loads, unsteadiness, and nonlinear flow of the coolant. For experimental investigations, the authors have developed and manufactured a unique test bench allowing tests of the developed heat-transfer elements in unsteady operating regimes. The performed experimental investigations have made it possible to obtain criterial dependences of the heat-transfer coefficient on the Reynolds and Prandtl numbers and to refine the values of viscous and inertial coefficients. It has been established that microchannel heat-transfer elements based on silicon single crystals, which make it possible to remove a heat flux above 100 W/cm2, are the most efficient. For porous heat-transfer elements, the best result was attained for wedge-shaped copper samples. According to investigation results, the authors have considered the issues of optimization of thermal and hydraulic characteristics of the heat-transfer elements under study. In the work, the authors have given examples of practical use of the developed heat-transfer elements for cooling systems of radioelectronic equipment.
Lapp, J; Davidson, JH; Lipinski, W
2013-03-22
Heat transfer is predicted for a solid-solid heat recuperation system employed in a novel directly-irradiated solar thermochemical reactor realizing a metal oxide based nonstoichiometric redox cycle for production of synthesis gas from water and carbon dioxide. The system is designed for continuous operation with heat recuperation from a rotating hollow cylinder of a porous reactive material to a counter-rotating inert solid cylinder via radiative transfer. A transient heat transfer model coupling conduction, convection, and radiation heat transfer predicts temperatures, rates of heat transfer, and the effectiveness of heat recovery. Heat recovery effectiveness of over 50% is attained within a parametric study of geometric and material parameters corresponding to the design of a two-step solar thermochemical reactor.
NASA Astrophysics Data System (ADS)
Polyakov, A. F.; Strat'ev, V. K.; Tret'yakov, A. F.; Shekhter, Yu. L.
2010-06-01
Heat transfer from six samples of porous reticular material to cooling gas (air) at small Reynolds numbers is experimentally studied. The specific features pertinent to heat transfer essentially affected by longitudinal heat conductivity along gas flow are analyzed. The experimental results are generalized in the form of dimensionless empirical relations.
Heat transfer device and method of making the same
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Gaier, James R. (Inventor)
1990-01-01
Gas derived graphite fibers are generated by the decomposition of an organic gas. These fibers when joined with a suitable binder are used to make a high thermal conductivity composite material. The fibers may be intercalated. The intercalate can be halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers.
Information filtering via weighted heat conduction algorithm
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Guo, Qiang; Zhang, Yi-Cheng
2011-06-01
In this paper, by taking into account effects of the user and object correlations on a heat conduction (HC) algorithm, a weighted heat conduction (WHC) algorithm is presented. We argue that the edge weight of the user-object bipartite network should be embedded into the HC algorithm to measure the object similarity. The numerical results indicate that both the accuracy and diversity could be improved greatly compared with the standard HC algorithm and the optimal values reached simultaneously. On the Movielens and Netflix datasets, the algorithmic accuracy, measured by the average ranking score, can be improved by 39.7% and 56.1% in the optimal case, respectively, and the diversity could reach 0.9587 and 0.9317 when the recommendation list equals to 5. Further statistical analysis indicates that, in the optimal case, the distributions of the edge weight are changed to the Poisson form, which may be the reason why HC algorithm performance could be improved. This work highlights the effect of edge weight on a personalized recommendation study, which maybe an important factor affecting personalized recommendation performance.
Reflective Coating on Fibrous Insulation for Reduced Heat Transfer
NASA Technical Reports Server (NTRS)
Hass, Derek D.; Prasad, B. Durga; Glass, David E.; Wiedemann, Karl E.
1997-01-01
Radiative heat transfer through fibrous insulation used in thermal protection systems (TPS) is significant at high temperatures (1200 C). Decreasing the radiative heat transfer through the fibrous insulation can thus have a major impact on the insulating ability of the TPS. Reflective coatings applied directly to the individual fibers in fibrous insulation should decrease the radiative heat transfer leading to an insulation with decreased effective thermal conductivity. Coatings with high infrared reflectance have been developed using sol-gel techniques. Using this technique, uniform coatings can be applied to fibrous insulation without an appreciable increase in insulation weight or density. Scanning electron microscopy, Fourier Transform infrared spectroscopy, and ellipsometry have been performed to evaluate coating performance.
Measurement of airfoil heat transfer coefficients on a turbine stage
NASA Astrophysics Data System (ADS)
Dring, Robert P.; Blair, Michael F.; Joslyn, H. David
1987-10-01
A combined experimental and analytical program was conducted to examine the impact of a number of variables on the midspan heat transfer coefficients of the three airfoil rows in a one and one-half stage large scale turbine model. Variables included stator/rotor axial spacing, Reynolds number, turbine inlet turbulence, flow coefficient, relevant stator 1/stator 2 circumferential position, and rotation. Heat transfer data were acquired on the suction and pressure surfaces of the three airfoils. High density data were also acquired in the leading edge stagnation regions. Extensive documentation of the steady and unsteady aerodynamics was acquired. Finally, heat transfer data were compared with both a steady and an unsteady boundary layer analysis.
Forced convection heat transfer to air/water vapor mixtures
NASA Technical Reports Server (NTRS)
Richards, D. R.; Florschuetz, L. W.
1986-01-01
Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.
Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets
O'Brien, James Edward; Sohal, Manohar Singh
2000-11-01
This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.
NASA Astrophysics Data System (ADS)
Zhu, Weiping; Xie, Xiujuan; Yang, Huihui; Li, Laifeng; Gong, Linghui
High performance heat exchangers are critical component in many cryogenic systems and its performance is typically very sensitive to longitudinal heat conduction, parasitic heat loads and property variations. This paper gives an analytical study on 1-D model for multi-stream parallel-plate fin heat exchanger by using the method of decoupling transformations. The results obtained in the present paper are valuable for the reference on optimization for heat exchanger design.
Heat flux sensors for infrared thermography in convective heat transfer.
Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758
Capillary Pumped Heat Transfer (CHT) Experiment
NASA Technical Reports Server (NTRS)
Hallinan, Kevin P.; Allen, J. S.
1998-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
Nanofluid Flow and Heat Transfer in Channel Entrance Region
NASA Astrophysics Data System (ADS)
Liu, Joseph T. C.; Puliti, Gianluca
2014-11-01
The present work uses the continuum description of nanofluid flow to study the flow, heat and mass transfer in the entrance and developing region of channels or tubes, where the viscous and heat conduction layers are thin and the heat transfer is much more intense than fully developed flow. Instead of supplementing the formulation with thermodynamic properties based on mixture calculations, use is made of recent molecular dynamical computations of such properties, specifically, the density and heat capacity of gold-water nanofluids. The more general formulation results, within the Rayleigh-Stokes (plug flow) approximation and perturbation for small volume fraction, show that the nanofluid density-heat capacity has an enormous effect in the inertia mechanism in causing the nanofluid temperature profile to steepen. The nanofluid thermal conductivity though has an explicit enhancement of the surface heat transfer rate has the almost hidden effect of stretching the nanofluid temperature profile thus giving the opposite effect of enhancement. Quantitative results for Gold-Water nanofluid is presented.
Heat transfer studies. Final report
Boehm, R.; Chen, Y.T.
1996-04-12
Many simple (without thermal effects) ground-water flow models have been used for analysis of water resource problems since the 1960`s. The emphasis on more complicated ground-water flow models began to shift with the focus on waste management problems during the 1970`s. The ground-water flow model development has shifted to unsaturated flow models because the unsaturated zone at Yucca Mountain was selected as a potential high-level radioactive waste disposal site. Many unsaturated flow models have been developed and used since the mid-1980`s. A few unsaturated flow models have also been developed in the 1990`s. Under the U.S. Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document the existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. Two major regulatory requirements are the main criteria for selection of ground-water flow models in the unsaturated zone. One is of calculating the pre-emplacement ground-water travel time. Our work has focused on visualization techniques, and experiments that could have more application quantitatively. Many studies are summarized in this report.
Enhancement and Suppression of Heat Transfer by MHD Turbulence
NASA Astrophysics Data System (ADS)
Lazarian, A.
2006-07-01
We study the effect of turbulence on heat transfer within magnetized plasmas for energy injection velocities both larger and smaller than the Alfvén speed. We find that in the latter regime the heat transfer is partially suppressed, while in the former regime the effects of turbulence depend on the intensity of driving. In fact, the scale lA at which the turbulent velocity is equal to the Alfvén velocity is an important new parameter. When the electron mean free path λ is larger than lA, the stronger the turbulence, the lower the thermal conductivity by electrons. The turbulent motions, however, induce their own advective heat transport, which, for the parameters of intracluster medium, provides effective heat diffusivity that exceeds the classical Spitzer value.
Enhanced heat transfer computations for internally cooled cable superconductor
NASA Astrophysics Data System (ADS)
Rogers, J. D.
1985-03-01
Superconducting magnets are built with conductors that are pool bath cooled, internally cooled with the superconductor cable and contained within a conduit, or conduction cooled. The first two embody superconductors are in direct contact with liquid helium. Practical designs of internally cooled cable superconductor (ICCS) are not cryostable. Such superconductors have shown multiple regions of stability and instability. A computational method of adjusting the heat transfer coefficient of a one dimensional system of equations to enhance joule heat removal, primarily in the central region of a pulse heated model of ICCS, has been used to attempt simulation of the multiple stability/instability experiment.
Activated-Carbon Sorbent With Integral Heat-Transfer Device
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Yavrouian, Andre
1996-01-01
Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.
Computational Aspects of Heat Transfer in Structures
NASA Technical Reports Server (NTRS)
Adelman, H. M. (Compiler)
1982-01-01
Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.
Turbulent Heat Transfer in Ribbed Pipe Flow
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2012-11-01
From the view point of heat transfer control, surface roughness is one of the popular ways adopted for enhancing heat transfer in turbulent pipe flow. Such a surface roughness is often modeled with a rib. In the current investigation, Large Eddy Simulation has been performed for turbulent flow in a pipe with periodically-mounted ribs at Reτ=700, Pr=0.71, and p / k =2, 4, and 8. Here, p and k represent the pitch and rib height, respectively. The rib height is fixed as one tenth of the pipe radius. The profiles of mean velocity components, mean temperature, root-mean-squares (rms) of temperature fluctuation are presented at the selected streamwise locations. In comparison with the smooth-pipe case at the same Re and Pr, the effects of the ribs are clearly identified, leading to overall enhancement of turbulent heat transfer in terms of Nu. The budget of temperature variance is presented in the form of contours. The results of an Octant analysis are also given to elucidate the dominant events. Our LES results shed light on a complete understanding of the heat-transfer mechanisms in turbulent ribbed-pipe flow which has numerous applications in engineering. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012013019).
Heat transfer in magma in situ
Dunn, J.C.; Carrigan, C.R.; Wemple, R.P.
1983-12-16
Heat transfer rates in a basaltic magma were measured under typical magma chamber conditions and a numerical model of the experiment was used to estimate magma viscosity. The results are of value for assessing methods of thermal energy extraction from magma bodies in the upper crust as well as for modeling the evolutionary track of these systems. 13 references, 3 figures.
FED. Zoning for TRUMP Heat Transfer Code
Elrod, D.
1987-10-23
FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP. TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, two, or three dimensions.
Heat transfer in rotating coolant channels
NASA Astrophysics Data System (ADS)
Wang, Baoguan; Zheng, Jirui; Ding, Xiaojiang
The effect of cooling channels' rotation on the local and mean heat transfer is investigated using an experimental simulation of three types of flow in rotating circular tubes: (1) flow parallel to the rotating axis, (2) radially outward flow perpendicular to the rotating axis, and (3) radially inward flow perpendicular to the rotating axis. Theoretical analysis uses the boundary layer model method, in which the flow in a tube is divided into the core and boundary layer zones with different assumptions for each zone, and the equations are solved using the momentum integration method. Experimental results were obtained using a specially designed facility incorporating all three modes of flow. The results confirm that rotation of the flow in a tube can enhance the heat transfer processes whether the flow is parallel or perpendicular to the rotating axis. The incremental increase in heat transfer rate due to rotation was found to be more pronounced at low rotational speeds than at high speeds. The variation of local heat transfer coefficients along axial direction is affected by the inlet and outlet sections and by the ratio of length to diameter.
Heat Transfer and Thermodynamics: a Compilation
NASA Technical Reports Server (NTRS)
1974-01-01
A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Studies include theories and mechanical considerations in the transfer of heat and the thermodynamic properties of matter and the causes and effects of certain interactions.
Forced Convection Heat Transfer in Circular Pipes
ERIC Educational Resources Information Center
Tosun, Ismail
2007-01-01
One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…
Information highway and numerical heat transfer
Shih, T.M.; Minkowycz, W.J.
1996-11-22
It is proposed that researchers in the numerical heat transfer community need to realize the trend of the information highway and agree to use a protocol or a module that constitutes the core of a computer program solving heat transfer problems. This will avoid duplicate programming and accelerate the technology advancement of numerical heat transfer. The module for two-dimensional incompressible Navier-Stokes flows is presented and explained. It is further demonstrated that, using this module as the foundation, the user can straightforwardly build up an entire personal computer code by inputting the data, specifying boundary conditions, and outputting the result. Other modules for slightly more complicated problems, such as transient flows with variable viscosity in irregular geometries, are also presented. Other than zoning matches for problems with multizones, the programming task for a user becomes minimal and simple: input, prescribe the boundary conditions, and output. The availability of Navier-Stokes modules is particularly helpful for less experienced numerical researchers, newcomers, and graduate students who have just entered the area of heat transfer and fluid flows.
Heat transfer in a nuclear rocket engine
Konyukhov, G.V.; Petrov, A.I.
1995-02-01
Special features of heat transfer in the reactor of a nuclear rocket engine (NRE) are dealt with. It is shown that the design of the cooling system of the NRE reactor is governed by its stability to small deviations of the parameters from the corresponding calculated values and the possibility of compensating for effects due to nonuniformities and distrubances of various types and scales.
Heat Transfer in Adhesively Bonded Honeycomb Core Panels
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2001-01-01
The Swann and Pittman semi-empirical relationship has been used as a standard in aerospace industry to predict the effective thermal conductivity of honeycomb core panels. Recent measurements of the effective thermal conductivity of an adhesively bonded titanium honeycomb core panel using three different techniques, two steady-state and one transient radiant step heating method, at four laboratories varied significantly from each other and from the Swann and Pittman predictions. Average differences between the measurements and the predictions varied between 17 and 61% in the temperature range of 300 to 500 K. In order to determine the correct values of the effective thermal conductivity and determine which set of the measurements or predictions were most accurate, the combined radiation and conduction heat transfer in the honeycomb core panel was modeled using a finite volume numerical formulation. The transient radiant step heating measurements provided the best agreement with the numerical results. It was found that a modification of the Swann and Pittman semi-empirical relationship which incorporated the facesheets and adhesive layers in the thermal model provided satisfactory results. Finally, a parametric study was conducted to investigate the influence of adhesive thickness and thermal conductivity on the overall heat transfer through the panel.
Cooperative heat transfer and ground coupled storage system
Metz, P.D.
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Cooperative heat transfer and ground coupled storage system
Metz, Philip D.
1982-01-01
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.
2013-01-01
This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.
Advanced Heat Transfer and Thermal Storage Fluids
Moens, L.; Blake, D.
2005-01-01
The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Numerical Analysis of Heat Transfer Characteristics in Microwave Heating of Magnetic Dielectrics
NASA Astrophysics Data System (ADS)
Peng, Zhiwei; Hwang, Jiann-Yang; Park, Chong-Lyuck; Kim, Byoung-Gon; Onyedika, Gerald
2012-03-01
A numerical simulation of heat transfer during the microwave heating process of magnetite, which is a two-dimensional (2-D) magnetic dielectric, subjected to heat conduction, convection, and radiation was performed. The heat transfer process was modeled using an explicit finite-difference approach, and the temperature profiles for different heating parameters were generated through developing a code in Mathematica 7.0 (Wolfram Research, Inc., Champaign, IL). The temperature in the sample increases rapidly in 1 minute and nonuniform temperature distribution inside the object is observed. An obvious temperature hot spot is formed in the corner of the predicted temperature profile initially, which shifts to the center of the object as heating power increases. Microwave heating at 915 MHz exhibits better heating uniformity than 2450 MHz mainly because of the larger microwave penetration depth. It is also observed that the heating homogeneity in the object can be improved by reducing the dimension of object. The effects of heating time, microwave power, microwave frequency, and object dimension need to be considered to obtain high heating performance and avoid/minimize thermal runaway resulting from temperature nonuniformity in large-scale microwave heating.
Preliminary investigation of heat transfer to water flowing in an electrically heated Inconel tube
NASA Technical Reports Server (NTRS)
Kaufman, Samuel J; Isely, Francis D
1950-01-01
A heat-transfer investigation was conducted with water flowing in an electrically heated Inconel tube with an inside diameter of 0.204 inch and a length-diameter ratio of 50 for ranges of Reynolds number up to 100,000 and of entrance pressure up to 200 inches of mercury gage. Correlation of average heat-transfer coefficients was obtained by use of the familiar Nusselt relation, wherein the physical properties of water were evaluated at an average bulk temperature. For conditions in which no boiling occurred, the data gave a good correlation. Runs made in the nucleate-boiling region, however, gave higher values of heat-transfer coefficient than would be predicted by the Nusselt relation.
Van der Waals interaction-tuned heat transfer in nanostructures
NASA Astrophysics Data System (ADS)
Sun, Tao; Wang, Jianxiang; Kang, Wei
2012-12-01
Interfaces usually impede heat transfer in heterogeneous structures. Recent experiments show that van der Waals (vdW) interactions can significantly enhance thermal conductivity parallel to the interface of a bundle of nanoribbons compared to a single layer of freestanding nanoribbon. In this paper, by simulating heat transfer in nanostructures based on a model of nonlinear one-dimensional lattices interacting via van der Waals interactions, we show that the vdW interface interaction can adjust the thermal conductivity parallel to the interface. The efficiency of the adjustment depends on the intensity of interactions and temperature. The nonlinear dependence of the conductivity on the intensity of interactions agrees well with experimental results for carbon nanotube bundles, multi-walled carbon nanotubes, multi-layer graphene, and nanoribbons.
Nonintegrability and the Fourier heat conduction law
NASA Astrophysics Data System (ADS)
Chen, Shunda; Wang, Jiao; Casati, Giulio; Benenti, Giuliano
2014-09-01
We study in momentum-conserving systems, how nonintegrable dynamics may affect thermal transport properties. As illustrating examples, two one-dimensional (1D) diatomic chains, representing 1D fluids and lattices, respectively, are numerically investigated. In both models, the two species of atoms are assigned two different masses and are arranged alternatively. The systems are nonintegrable unless the mass ratio is one. We find that when the mass ratio is slightly different from one, the heat conductivity may keep significantly unchanged over a certain range of the system size and as the mass ratio tends to one, this range may expand rapidly. These results establish a new connection between the macroscopic thermal transport properties and the underlying dynamics.
Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink
NASA Astrophysics Data System (ADS)
Chiba, Hiroshi; Ogushi, Tetsuro; Nakajima, Hideo; Ikeda, Teruyuki
Lotus-type porous copper is a form of copper that includes many straight pores, which are produced by the precipitation of supersaturated gas dissolved in the molten metal during solidification. The lotus-type porous copper is attractive as a heat sink because a higher heat transfer capacity is obtained as the pore diameter decreases. We investigate a fin model for predicting the heat transfer capacity of the lotus-type porous copper. Its heat transfer capacity is verified to be predictable via the straight fin model, in which heat conduction in the porous metal and the heat transfer to the fluid in the pores are taken into consideration by comparison with a numerical analysis. We both experimentally and analytically determine the heat transfer capacities of three types of heat sink: with conventional groove fins, with groove fins that have a smaller fin gap (micro-channels) and with lotus-type porous copper fins. The conventional groove fins have a fin gap of 3mm and a fin thickness of 1mm, the micro-channels have a fin gap of 0.5mm and a fin thickness of 0.5mm, and the lotus-type porous copper fins have pores with a diameter of 0.3mm and a porosity of 0.39. The lotus-type porous copper fins were found to have a heat transfer capacity 4 times greater than the conventional groove fins and 1.3 times greater than the micro-channel heat sink under the same pumping power.
Heat transfer in GTA welding arcs
NASA Astrophysics Data System (ADS)
Huft, Nathan J.
Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry
Analysis of a heat transfer device for measuring film coefficients
NASA Technical Reports Server (NTRS)
Medrow, R. A.; Johnson, R. L.; Loomis, W. R.; Wedeven, L. D.
1975-01-01
A heat transfer device consisting of a heated rotating cylinder in a bath was analyzed for its effectiveness to determine heat transfer coefficient of fluids. A time dependent analysis shows that the performance is insensitive to the value of heat transfer coefficient with the given rig configuration.
NASA Astrophysics Data System (ADS)
Haddag, B.; Atlati, S.; Nouari, M.; Zenasni, M.
2015-10-01
This paper deals with the modelling and identification of the heat exchange at the tool-workpiece interface in machining. A thermomechanical modelling has been established including heat balance equations of the tool-workpiece interface which take into account the heat generated by friction and the heat transfer by conduction due to the thermal contact resistance. The interface heat balance equations involve two coefficients: heat generation coefficient (HGC) of the frictional heat and heat transfer coefficient (HTC) of the heat conduction (inverse of the thermal contact resistance coefficient). Using experimental average heat flux in the tool, estimated for several cutting speeds, an identification procedure of the HGC-HTC couple, involved in the established thermomechanical FE-based modelling of the cutting process, has been proposed, which gives the numerical heat flux equal the measured one for each cutting speed. Using identified values of the HGC-HTC couple, evolution laws are proposed for the HGC as function of cutting speed, and then as function of sliding velocity at the tool-workpiece interface. Such laws can be implemented for instance in a Finite Element code for machining simulations.
Electrical control and enhancement of boiling heat transfer during quenching
NASA Astrophysics Data System (ADS)
Shahriari, Arjang; Hermes, Mark; Bahadur, Vaibhav
2016-02-01
Heat transfer associated with boiling degrades at elevated temperatures due to the formation of an insulating vapor layer at the solid-liquid interface (Leidenfrost effect). Interfacial electrowetting (EW) fields can disrupt this vapor layer to promote liquid-surface wetting. We experimentally analyze EW-induced disruption of the vapor layer and measure the resulting enhanced cooling during the process of quenching. Imaging is employed to visualize the fluid-surface interactions and understand boiling patterns in the presence of an electrical voltage. It is seen that EW fields fundamentally change the boiling pattern, wherein a stable vapor layer is replaced by intermittent wetting of the surface. Heat conduction across the vapor gap is thus replaced with transient convection. This fundamental switch in the heat transfer mode significantly accelerates cooling during quenching. An order of magnitude increase in the cooling rate is observed, with the heat transfer seen approaching saturation at higher voltages. An analytical model is developed to extract voltage dependent heat transfer rates from the measured cooling curve. The results show that electric fields can alter and tune the traditional cooling curve. Overall, this study presents an ultralow power consumption concept to control the mechanical properties and metallurgy, by electrically tuning the cooling rate during quenching.
Combined heat and mass transfer device for improving separation process
Tran, Thanh Nhon
1999-01-01
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.
Combined heat and mass transfer device for improving separation process
Tran, T.N.
1999-08-24
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.
The heat transfer characteristics of lightning return stroke channel
NASA Astrophysics Data System (ADS)
Dong, Caixia; Yuan, Ping; Cen, Jianyong; Wang, Xuejuan; Mu, Yali
2016-09-01
Based on the time-resolved spectra of lightning return stroke processes, the evolutional characteristics of thermal conductivity and thermal diffusivity of the discharge channels are discussed. The distribution of temperature along the radial direction of channels at the peak current stage of return stroke is also investigated, and then the heat transferring characteristics along radial direction of the channels are analyzed. The results show that a temperature gradient along radial direction of lightning channel is formed due to the outward heat transfer. The closer the distance is to the current core channel, the greater the temperature gradient is and the more heat is transferred along the radial direction of the channel. The heat transferring in per unit length of the channel and per unit time is in the order of 104 J/m ṡ s at the initial moment of lightning return stroke. After the peak current, the channel temperature decreases slowly and the heat transport coefficients vary as a monotonically decreasing function.
NASA Astrophysics Data System (ADS)
Yankovskii, A. P.
2015-07-01
The author has obtained equations describing thermal conductivity of composite bodies spatially reinforced with a system of smooth tubes in which an incompressible liquid heat-transfer agent is pumped in a developed turbulent regime. The corresponding boundary-value heat-conduction problem was formulated and its qualitative analysis was made. Specific calculations were performed for steady-state temperature fields in cylindrical concrete shells spirally reinforced with steel tubes through which a heat-transfer agent (air) is pumped. A study has been made of the influence of the reinforcement parameters and of the velocity and direction of the heat-transfer agent in the tubes and the dimensions of their cross sections on the temperature field. It has been established that variation of these characteristics enables one to substantially change the intensity of heat removal from the shells, opening up wide opportunities for efficient control of the heat transfer in them.
Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants
Mathur, Anoop
2013-08-14
A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during
NASA Astrophysics Data System (ADS)
Zou, Ling
Subcooled flow boiling is generally characterized by high heat transfer capacity and low wall superheat, which is essential for cooling applications requiring high heat transfer rate, such as nuclear reactors and fossil boilers. In this study, subcooled flow boiling on copper and stainless steel heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. Flow boiling heat flux and heat transfer coefficient were experimentally measured on both surfaces under different conditions, such as pressure, flow rate and inlet subcooling. Significant boiling heat transfer coefficient differences were found between the copper and the stainless steel heating surfaces. To explain the different flow boiling behaviors on these two heating surfaces, nucleation site density and bubble dynamics were visually observed and measured at different experimental conditions utilizing a high-speed digital video camera. These two parameters are believed to be keys in determining flow boiling heat flux. Wall superheat, critical cavity size and wall heat flux were used to correlate with nucleation site density data. Among them, wall heat flux shows the best correlation for eliminating both pressure and surface property effects. The observed nucleation site distribution shows a random distribution. When compared to the spatial Poisson distribution, similarity between them was found, while the measured nucleation site distribution is more uniform. From experimental observations, for the two surface materials investigated, which have similar surface wettability but sharply different thermal properties, bubble dynamics displayed fairly similar behavior. The obtained experimental results indicate that thermal conductivity of heating surface material plays an important role in boiling heat transfer. This is due to thermal conductivity having a significant impact on the lateral heat conduction at the heating surface and consequently temperature uniformity of
Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux
NASA Astrophysics Data System (ADS)
Khan, W. A.; Khan, Z. H.; Haq, R. U.
2015-04-01
The present work is dedicated to analyze the flow and heat transport of ferrofluids along a flat plate subjected to uniform heat flux and slip velocity. A magnetic field is applied in the transverse direction to the plate. Moreover, three different kinds of magnetic nanoparticles (Fe3O4, CoFe2O4, Mn-ZnFe2O4 are incorporated within the base fluid. We have considered two different kinds of base fluids (kerosene and water) having poor thermal conductivity as compared to solid magnetic nanoparticles. Self-similar solutions are obtained and are compared with the available data for special cases. A simulation is performed for each ferrofluid mixture by considering the dominant effects of slip and uniform heat flux. It is found that the present results are in an excellent agreement with the existing literature. The variation of skin friction and heat transfer is also performed at the surface of the plate and then the better heat transfer and of each mixture is analyzed. Kerosene-based magnetite Fe3O4 provides the higher heat transfer rate at the wall as compared to the kerosene-based cobalt ferrite and Mn-Zn ferrite. It is also concluded that the primary effect of the magnetic field is to accelerate the dimensionless velocity and to reduce the dimensionless surface temperature as compared to the hydrodynamic case, thereby increasing the skin friction and the heat transfer rate of ferrofluids.
DEVELOPMENT OF THE INSTRUMENTATION AND MODELING FOR HEAT TRANSFER CHARACTERISTICS IN CFBC
Dr. Seong W. Lee
1999-04-01
This technical report summarizes the research conducted and progress achieved during the period from October 1, 1998 to March 31, 1999. Numerical simulation was conducted to predict the flow pattern, velocity and pressure, temperature, and heat transfer characteristics in the CFB system. The 2-D air velocity profiles showed the axial and tangential velocity profiles in the CFB riser. The small flow boundary layers were found near the CFB riser. The tangential velocity profile is characterized by injection of aeration air. The highest air pressure at the bottom of the heat transfer probe caused a strong gas mixing process in the CFB riser. The heat absorbing water-cooled heat transfer probe enclosing the CFB riser of the cold model was assumed. The gas temperature decreased along the flow direction of the heat transfer probe. The heat transfer characteristics was described by the heat flux changes in the CFB chamber. The higher heat flux was found at the bottom of the heat transfer probe. A large amount of heat is generated and removed via the neighboring the heat transfer probe. Numerical simulation will be continued to predict the flow patterns, velocity, pressure, temperature, and heat transfer characteristics in the CFB system.
Multiscale Modeling of Heat Conduction in Carbon Nanotube Aerogels
NASA Astrophysics Data System (ADS)
Gong, Feng; Papavassiliou, Dimitrios; Duong, Hai
Carbon nanotube (CNT) aerogels have attracted a lot of interest due to their ultrahigh strength/weight and surface area/weight ratios. They are promising advanced materials used in energy storage systems, hydrogen storage media and weight-conscious devices such as satellites, because of their ultralight and highly porous quality. CNT aerogels can have excellent electrical conductivity and mechanical strength. However, the thermal conductivity of CNT aerogels are as low as 0.01-0.1 W/mK, which is five orders of magnitude lower than that of CNT (2000-5000 W/mK). To investigate the mechanisms for the low thermal conductivity of CNT aerogels, multiscale models are built in this study. Molecular dynamic (MD) simulations are first carried out to investigate the heat transfer between CNT and different gases (e.g. nitrogen and hydrogen), and the thermal conductance at CNT-CNT interface. The interfacial thermal resistances of CNT-gas and CNT-CNT are estimated from the MD simulations. Mesoscopic modeling of CNT aerogels are then built using an off-lattice Monte Carlo (MC) simulations to replicate the realistic CNT aerogels. The interfacial thermal resistances estimated from MD simulations are used as inputs in the MC models to predict the thermal conductivity of CNT aerogels. The volume fractions and the complex morphologies of CNTs are also quantified to study their effects on the thermal conductivity of CNT aerogels. The quantitative findings may help researchers to obtain the CNT aerogels with expected thermal conductivity.
Acquisition systems for heat transfer measurement
De Witt, R.J.
1983-01-01
Practical heat transfer data acquisition systems are normally characterized by the need for high-resolution, low-drift, low-speed recording devices. Analog devices such as strip chart or circular recorders and FM analog magnetic tape have excellent resolution and work well when data will be presented in temperature versus time format only and need not be processed further. Digital systems are more complex and require an understanding of the following components: digitizing devices, interface bus types, processor requirements, and software design. This paper discusses all the above components of analog and digital data acquisition, as they are used in current practice. Additional information on thermocouple system analysis will aid the user in developing accurate heat transfer measuring systems.
Full Eulerian lattice Boltzmann model for conjugate heat transfer
NASA Astrophysics Data System (ADS)
Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong
2015-12-01
In this paper a full Eulerian lattice Boltzmann model is proposed for conjugate heat transfer. A unified governing equation with a source term for the temperature field is derived. By introducing the source term, we prove that the continuity of temperature and its normal flux at the interface is satisfied automatically. The curved interface is assumed to be zigzag lines. All physical quantities are recorded and updated on a Cartesian grid. As a result, any complicated treatment near the interface is avoided, which makes the proposed model suitable to simulate the conjugate heat transfer with complex interfaces efficiently. The present conjugate interface treatment is validated by several steady and unsteady numerical tests, including pure heat conduction, forced convection, and natural convection problems. Both flat and curved interfaces are also involved. The obtained results show good agreement with the analytical and/or finite volume results.
Full Eulerian lattice Boltzmann model for conjugate heat transfer.
Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong
2015-12-01
In this paper a full Eulerian lattice Boltzmann model is proposed for conjugate heat transfer. A unified governing equation with a source term for the temperature field is derived. By introducing the source term, we prove that the continuity of temperature and its normal flux at the interface is satisfied automatically. The curved interface is assumed to be zigzag lines. All physical quantities are recorded and updated on a Cartesian grid. As a result, any complicated treatment near the interface is avoided, which makes the proposed model suitable to simulate the conjugate heat transfer with complex interfaces efficiently. The present conjugate interface treatment is validated by several steady and unsteady numerical tests, including pure heat conduction, forced convection, and natural convection problems. Both flat and curved interfaces are also involved. The obtained results show good agreement with the analytical and/or finite volume results. PMID:26764851
Fluid physics, thermodynamics, and heat transfer experiments in space
NASA Technical Reports Server (NTRS)
Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.
1975-01-01
An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.
Analysis of heat transfer in portable power supply
NASA Astrophysics Data System (ADS)
Abdullah, Mohd Azman; Ali, Ahmad Nazrin
2016-03-01
Portable power supply (PPS) is developed based on the necessity in supplying instant power to support domestic appliances during power shortage or in remote area. In this paper, the heat transfer inside the PPS is analyzed and demonstrated by temperature change during battery charging and discharging. The computational fluid dynamic (CFD) model of the PPS battery and housing are developed. The heat flow inside the PPS is studied at different conditions of battery and air flows. The increment of the temperature inside the PPS could cause the PPS system to damage and unsafe. Few elements are manipulated for the study, such as battery positions, holedimensions and fan models in order toimprove the design of PPS. Experimental approach is also conducted to validate the temperature and heat transfer in the PPS.
Heat and mass transfer in materials processing
Tanasawa, I. . Inst. of Industrial Science); Lior, N. . Dept. of Mechanical Engineering and Applied Mechanics)
1992-01-01
This book contains forty papers presented at the seminar. The papers are representative of the seminar's scope, and include plasma spraying, laser and electron beam processing, crystal growth, solidification, steel processing, casting and molding, and papermaking, as well as fundamental heat transfer issues and physical properties underlying all of the above. The seminar emphasized thorough discussion of the presentations and of the subfields. Brief summaries of the discussions are presented in the rapporteurs' reports.
Radiation heat transfer shapefactors for combustion systems
NASA Technical Reports Server (NTRS)
Emery, A. F.; Johansson, O.; Abrous, A.
1987-01-01
The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.
Coolant passage heat transfer with rotation
NASA Astrophysics Data System (ADS)
Hajek, T. J.; Higgins, A. W.
1985-10-01
The objective is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques, and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.
Low-melting point heat transfer fluid
Cordaro, Joseph Gabriel; Bradshaw, Robert W.
2010-11-09
A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.
Compact laser through improved heat conductance
NASA Technical Reports Server (NTRS)
Yang, L. C.
1975-01-01
A 16-joule-pulse laser has been developed in which a boron nitride heat-conductor enclosure is used to remove heat from the elements. Enclosure is smaller and lighter than systems in which cooling fluids are used.
Evaluation of evaporative heat transfer characteristics of helmets.
Liu, X; Holmér, I
1997-05-01
The prime purpose of a safety helmet is to protect against occupational hazards. However, thermal comfort is one important ergonomics requirement for a helmet to be accepted by its wearer. To design and manufacture a thermally comfortable helmet, a method for testing and evaluating the thermal properties is essential. Research has long focused on the evaluation of dry heat transfer (conduction, convection and radiation). Evaporative heat transfer was not much addressed. In order to analyze the wet heat transfer (evaporation) component, a sweating thermal head manikin has been used. In this study the method has been further improved by constructing a new sweating head manikin. The surface of the head manikin is divided into five zones which can provide more detailed information about the environmental effects on the heat transfer from the head when a helmet is worn. Water supply (simulated sweating) is also improved by use of an electronic pumping system which provides a steady and adjustable flow rate of water to the head manikin. Experiments were conducted within a climatic chamber with this improved method under different test conditions: the ambient temperature and the head manikin surface temperature are set at the same level: 34 +/- 0.5 degrees C; two levels of head surface wettedness: 0.44 and 1.0; two levels of ambient humidity: 30% and 60%; and two levels of wind speed: 0.4 m/s and 1.0 m/s. Seven different helmets were used in the experiments. The results showed that the improved method revealed more detailed information about the evaporative heat transfer; it is easier to use and control; less error is involved with the measurement. PMID:9230523
D0 Silicon Upgrade: 3 Chip Ladder Heat Transfer
Ratzmann, Paul; /Fermilab
1994-09-19
The Silicon Mechanical group has submitted a 3 chip ladder drawing to the Fermilab Analysis Group (Zhijing Tang) to determine the temperature distribution in the ladder during detector operation. Heat transfer by convection and radiation is assumed negligible and two dimensional PEA conduction solutions were performed. The heat flux at the SVX IT chip region is assumed to be 8.359 mW/mm{sup 2} which corresponds to roughly 0.48 W per SVX II chip. The heat flux in the region of the transceiver is assumed 8.801 mW/mm{sup 2}, corresponding to 1.6 W in this region. Total heat load of the 3 chip ladder is assumed to be 3.04 W. The 3 chip ladder submitted for analysis is shown in the figure below. The multichip module (MCM) is mounted on beryllium plate which serves to carry the heat load of the chips and the transceiver to the cooling channel. Adhesive thermal conductivity is 1.6 W/m-K, based on the published value of the selected adhesive. Actual measurements of thermally conductive adhesives indicate that the assumed 1.6 W/m-K is high. Experience gained in measuring adhesive thermal conductivity indicates 0.9-1.2 W/m-K as a more reasonable number to use. The effect of the uncertainty of the adhesive thermal conductivity on silicon temperature is discussed.
Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.; Camperchioli, W. P.
2000-01-01
Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.
Parallel and vector computation in heat transfer
Georgiadis, J.G. ); Murthy, J.Y. )
1990-01-01
This collection of manuscripts complements a number of other volumes related to engineering numerical analysis in general; it also gives a preview of the potential contribution of vector and parallel computing to heat transfer. Contributions have been made from the fields of heat transfer, computational fluid mechanics or physics, and from researchers in industry or in academia. This work serves to indicate that new or modified numerical algorithms have to be developed depending on the hardware used (as the long titles of most of the papers in this volume imply). This volume contains six examples of numerical simulation on parallel and vector computers that demonstrate the competitiveness of the novel methodologies. A common thread through all the manuscripts is that they address problems involving irregular geometries or complex physics, or both. Comparative studies of the performance of certain algorithms on various computers are also presented. Most machines used in this work belong to the coarse- to medium-grain group (consisting of a few to a hundred processors) with architectures of the multiple-instruction-stream-multiple- data-stream (MIMD) type. Some of the machines used have both parallel and vector processors, while parallel computations are certainly emphasized. We hope that this work will contribute to the increasing involvement of heat transfer specialists with parallel computation.
Enhanced condensation heat transfer with wettability patterning
NASA Astrophysics Data System (ADS)
Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine
2015-11-01
Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.
Heat transfer performance of a novel double-layer mini-channel heat sink
NASA Astrophysics Data System (ADS)
Tang, Biao; Zhou, Rui; Bai, Pengfei; Fu, Ting; Lu, Longsheng; Zhou, Guofu
2016-07-01
High pressure drop and significant non-uniformity in temperature distribution along the streamwise direction are still challenges to the design of mini-channel heat sink. High density mini-channel arrays with high liquid-wall contact area are usually pursued in a conventional single-layer design of heat sink, which also inevitably brings high pressure drop. A novel double-layer structured heat sink is proposed in this paper. Four heat sinks with various designs in mini-channel density and flow direction were fabricated and studied experimentally on the heat transfer performance. The single factor of heat load does not show obvious effect on the overall thermal resistance of the heat sinks. On the other hand, slight decrease in thermal resistance was found with the increase in heat load at high flow rates. Moreover, a computational fluid dynamics modeling work was conducted. The results indicate that the parallel cross-flow field regulated by the double-layer structure enhances the heat exchange in both horizontal and vertical directions and consequently gives an uniform temperature distribution and high heat transfer efficiency.
Pressure loss and heat transfer in a toothed finned heat transfer medium
NASA Astrophysics Data System (ADS)
Ebeling, W. D.; Leidinger, B. J. G.
Thermohydraulic investigation was carried out in a special toothed-finned geometry, which was provided for increasing heat transfer in an evaporator cooler. The evaporator cooler has applications in space navigation. The toothed-finned heat carrier was used in a counter current, with a view to simplifying the heat transfer coefficient evaluation, from the temperature and volume flows measured. Test results obtained confirmed the suitability of this test arrangement. Relationships were derived from test results, for the pressure loss coefficient and the Nusselt number, with regard to the Reynolds number for this determined finned geometry.
Solid water phantom heat conduction: Heating and cooling rates.
Butson, Martin J; Cheung, Tsang; Yu, Peter K N
2008-01-01
Solid water is often the phantom material of choice for dosimetry procedures in radiotherapy high-energy X-ray and electron beam radiation calibration and quality assurance. This note investigates variation in heat conduction that can occur for a common commercially available solid water stack phantom when a temperature differential occurs between the phantom and ambient temperature. These variations in temperature can then affect radiation measurements and thus the accuracy of radiation dosimetry. In this manuscript, we aim to investigate the variations in temperature which can occur in radiation measurement incorporated (RMI) solid water phantoms, their thermal properties and the effects on radiation dosimetry which can occur because of temperature differentials. Results have shown that the rate of temperature change at a phantom center is a complex function but appears relatively proportional to the surface area of the phantom in normal clinical usage. It is also dependent on the thermal conductivity of any material in contact with the phantom; and the nature of the phantom construction, i.e., the number and thickness of slices within the phantom. A thermal time constant of approximately 20 min was measured for a 2-cm solid water phantom slice when located on a steel workbench in comparison to 60 min when located on a wooden workbench (linac couch insert). It is found that for larger solid water stack phantoms, a transient (within 1 degrees C) thermal equilibrium exists at the center for up to 2 h, before the temperature begins to change. This is assumed to be due to the insulating properties of multiple slices within the stack, whereby very small air spaces are introduced inhibiting the heat conduction through the phantom material. It is therefore recommended that the solid water/phantom material is kept within the treatment room for closest thermal accuracy conditions or at least placed within the room approximately 10 h before dosimetry measurements. If these
Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.
Chiloyan, Vazrik; Garg, Jivtesh; Esfarjani, Keivan; Chen, Gang
2015-01-01
When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers. PMID:25849305
Thermographic validation of a novel, laminate body, analytical heat conduction model
NASA Astrophysics Data System (ADS)
Desgrosseilliers, Louis; Groulx, Dominic; White, Mary Anne
2014-07-01
The two-region fin model captures the heat spreading behaviour in multilayered composite bodies (i.e., laminates), heated only over a small part of their domains (finite heat source), where there is an inner layer that has a substantial capacity for heat conduction parallel to the heat exchange surface (convection cooling). This resulting heat conduction behaviour improves the overall heat transfer process when compared to heat conduction in homogeneous bodies. Long-term heat storage using supercooling salt hydrate phase change materials, stovetop cookware, and electronics cooling applications could all benefit from this kind of heat-spreading in laminates. Experiments using laminate films reclaimed from post-consumer Tetra Brik cartons were conducted with thin rectangular and circular heaters to confirm the laminate body, steady-state, heat conduction behaviour predicted by the two-region fin model. Medium to high accuracy experimental validation of the two-region fin model was achieved in Cartesian and cylindrical coordinates for forced external convection and natural convection, the latter for Cartesian only. These were conducted using constant heat flux finite heat source temperature profiles that were measured by infrared thermography. This validation is also deemed valid for constant temperature heat sources.
Visualization study on pool boiling heat transfer
NASA Astrophysics Data System (ADS)
Kamei, Shuya; Hirata, Masaru
1991-04-01
The visualized boiling phenomena were observed by means of high speed photographic shadowgraphy using a rotating prism camera (nac HIGH SPEED CAMERA model-16HD) with the speed of about 3500 frames per second. The photographs show that pool boiling heat transfer phenomena are varied for the boiling curve based on the experiments. Experiments have been carried out to investigate pool boiling heat transfer phenomena on a horizontal thin filament in subcooled and saturated distilled water. The experiments were performed for atmospheric pressure,for filament diameters of about 0.3 mm, for region of natural convection to film boiling. The color-film made by high speed movie camera are converted to high speed color video-tape. It is convenient to edit and show the tape for visualization with teaching the students. The high speed color video showed that the successive motion and shape of bubbles during their process of detachment varied with increasing heat flux on the heated surface of a filament. From these results, it was confirmed that the high speed phenomena of boiling by the slow motion video pictures could be estimated clearly.
An experimental study of the flow and heat transfer between enhanced heat transfer plates for PHEs
Li, Xiao-wei; Meng, Ji-an; Li, Zhi-xin
2010-11-15
The flow and heat transfer between inclined discrete rib plates for plate heat exchangers have been experimentally studied. Dye injection method is used to visualize the flow structures. The visualization results show that front vortex, rear vortex and main vortex are formed between the plates. The rib parameter influence is also studied using visualization method. The pressure drop and heat transfer between the inclined discrete rib plates as well as that between inclined continuous rib plates and smooth plates are also measured. The measured results show that the inclined discrete rib plate can enhanced heat transfer 20-25% at the same pumping power compared with the commonly used inclined continuous rib plates. (author)
Heat transfer characteristics of tube bundles during boiling in vacuum
NASA Astrophysics Data System (ADS)
Slesarenko, V. N.; Zakharov, G. A.
1992-06-01
Heat transfer during boiling in vacuum was compared experimentally for single tubes, rows of tube, and tube bundles to analyze characteristic properties of vaporization under such conditions. Relations for calculating heat transfer coefficients are proposed.
Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)
Not Available
2010-08-01
Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.
Heat transfer in a fluidized-bed solar thermal receiver
Bachovchin, D.M.; Archer, D.H.; Neale, D.H.
1983-01-01
The authors investigated the use of a fluidized bed as a solar thermal receiver. A 0.3 m diameter, quartz-walled bed was designed, built, and tested at a 325 kW, solar thermal test facility. Various large-particle bed materials were tested, and we found that strong temperature gradients existed in the fluidized bed exposed to concentrated solar radiation. A heat transfer analysis is presented and effective bed thermal conductivities are estimated.
Combined conjugated heat transfer from a scattering medium
NASA Technical Reports Server (NTRS)
Kassemi, M.; Chung, B. T. F.
1992-01-01
Combined heat transfer from a radiating and convecting flow of an absorbing, emitting, and scattering medium in a reflecting channel with conducting wall was numerically investigated. The results clearly indicate that in any high-temperature applications, if the effects of scattering and wall reflection are ignored, the position and magnitude of the maximum wall temperature and the behavior of the convective Nusselt number can be grossly misrepresented.
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.
2010-01-01
Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.
Heat transfer in a three-dimensional channel with baffles
Lopez, J.R.; Anand, N.K.; Fletcher, L.S.
1996-08-09
A numerical investigation of laminar forced convective heat transfer was performed in a three-dimensional channel with baffles in which a uniform heat flux was applied to the top and bottom walls, and the sidewalls were considered diabatic. The trade-off between heat transfer enhancement and pressure drop produced by the baffles was studied for periodically fully developed flow (PDF). The numerical analysis was performed using a finite volume approach. The computer code was validated against the experimental results of Goldstein and Kreid and Beavers et al. for a three-dimensional channel without baffles. Parametric runs were made for Reynolds numbers of 150, 250, 350, and 450 for baffle height to channel width ratios (H/D{sub y}) of 0.5, 0.6, 0.7, and 0.8. Heat transfer behavior was studied for Prandtl numbers of 0.7 and 7.0, and for wall thermal conductivity to fluid thermal conductivity ratios (K) of 1, 10, 100, and 1000.
Time fractional dual-phase-lag heat conduction equation
NASA Astrophysics Data System (ADS)
Xu, Huan-Ying; Jiang, Xiao-Yun
2015-03-01
We build a fractional dual-phase-lag model and the corresponding bioheat transfer equation, which we use to interpret the experiment results for processed meat that have been explained by applying the hyperbolic conduction. Analytical solutions expressed by H-functions are obtained by using the Laplace and Fourier transforms method. The inverse fractional dual-phase-lag heat conduction problem for the simultaneous estimation of two relaxation times and orders of fractionality is solved by applying the nonlinear least-square method. The estimated model parameters are given. Finally, the measured and the calculated temperatures versus time are compared and discussed. Some numerical examples are also given and discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11102102, 11472161, and 91130017), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AQ015), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2013ZRYQ002).
Hypervelocity Heat-Transfer Measurements in an Expansion Tube
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Perkins, John N.
1996-01-01
A series of experiments has been conducted in the NASA HYPULSE Expansion Tube, in both CO2 and air test gases, in order to obtain data for comparison with computational results and to assess the capability for performing hypervelocity heat-transfer studies in this facility. Heat-transfer measurements were made in both test gases on 70 deg sphere-cone models and on hemisphere models of various radii. HYPULSE freestream flow conditions in these test gases were found to be repeatable to within 3-10%, and aerothermodynamic test times of 150 microsec in CO2 and 125 microsec in air were identified. Heat-transfer measurement uncertainty was estimated to be 10-15%. Comparisons were made with computational results from the non-equilibrium Navier-Stokes solver NEQ2D. Measured and computed heat-transfer rates agreed to within 10% on the hemispheres and on the sphere-cone forebodies, and to within 10% in CO2 and 25% in air on the afterbodies and stings of the sphere-cone models.
NASA Astrophysics Data System (ADS)
Dag, Yusuf
Forced convection over traditional surfaces such as flat plate, cylinder and sphere have been well researched and documented. Data on forced convection over airfoil surfaces, however, remain very scanty in literature. High altitude vehicles that employ airfoils as lifting surfaces often suffer leading edge ice accretions which have tremendous negative consequences on the lifting capabilities and stability of the vehicle. One of the ways of mitigating the effect of ice accretion involves judicious leading edge convective cooling technique which in turn depends on the accuracy of convective heat transfer coefficient used in the analysis. In this study empirical investigation of convective heat transfer measurements on asymmetric airfoil is presented at different angle of attacks ranging from 0° to 20° under subsonic flow regime. The top and bottom surface temperatures are measured at given points using Senflex hot film sensors (Tao System Inc.) and used to determine heat transfer characteristics of the airfoils. The model surfaces are subjected to constant heat fluxes using KP Kapton flexible heating pads. The monitored temperature data are then utilized to determine the heat convection coefficients modelled empirically as the Nusselt Number on the surface of the airfoil. The experimental work is conducted in an open circuit-Eiffel type wind tunnel, powered by a 37 kW electrical motor that is able to generate subsonic air velocities up to around 41 m/s in the 24 square-inch test section. The heat transfer experiments have been carried out under constant heat flux supply to the asymmetric airfoil. The convective heat transfer coefficients are determined from measured surface temperature and free stream temperature and investigated in the form of Nusselt number. The variation of Nusselt number is shown with Reynolds number at various angles of attacks. It is concluded that Nusselt number increases with increasing Reynolds number and increase in angle of attack from 0
Cleaning and Heat Transfer in Heat Exchanger with Circulating Fluidized Beds
NASA Astrophysics Data System (ADS)
Kang, Ho Keun; Ahn, Soo Whan; Choi, Jong Woong; Lee, Byung Chang
2010-06-01
Fluidized bed type heat exchangers are known to increase the heat transfer and prevent the fouling. For proper design of circulating fluidized bed heat exchanger it is important to know the effect of design and operating parameters on the bed to the wall heat transfer coefficient. The present experimental and numerical study was conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass (3 mmF), aluminum (2˜3 mmF), steel (2˜2.5 mmF), copper (2.5 mmF) and sand (2˜4 mmF) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behaviour might be attributed to the parameters such as surface roughness or particle heat capacity. Fouling examination using 25,500 ppm of ferric oxide (Fe2O3) revealed that the tube inside wall is cleaned by a mild and continuous scouring action of fluidized solid particles. The fluidized solid particles not only keep the surface clean, but they also break up the boundary layer improving the heat transfer coefficient even at low fluid velocities.
NASA Astrophysics Data System (ADS)
Kanzaka, Mitsuo; Iwabuchi, Makio
1992-11-01
Heat transfer characteristics in heated tubes under periodically reversing flow conditions have been experimentally investigated, using a test apparatus that simulates heat exchangers for an actual Stirling engine. It is shown that the heat transfer characteristics under these conditions are greatly affected by the piston phase difference that generates the reversing flow of working fluid, and this phenomenon is peculiar to heat transfer under periodically reversing flow. The experimental correlation for the heat transfer coefficient under these conditions is obtained through the use of the working gas velocity evaluated from the Schmidt cycle model, which is one of the ideal Stirling cycles concerning the influence of the piston phase difference.
Measuring Furnace/Sample Heat-Transfer Coefficients
NASA Technical Reports Server (NTRS)
Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.
1993-01-01
Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.
Thin film instabilities on heated substrates: conjugate heat transfer
NASA Astrophysics Data System (ADS)
Dallaston, Michael; Tseluiko, Dmitri; Kalliadasis, Serafim
2015-11-01
Heat transported from a surface by a thin coating film of liquid is greatly affected by instabilities on the free surface of the film. If the solid substrate is heated above the ambient temperature, the hydrodynamic instability of the flow at sufficiently large Reynolds number is exacerbated by Marangoni stresses that result due to the temperature gradient in the fluid. Most studies of this phenomenon assume constant temperature or heat flux at the wall. Here we discuss the less-studied but more realistic situation in which the heat flow within the liquid film is coupled to conduction within the solid substrate, which has a complicated effect on the stability of the free surface. Analytical progress is made possible by linear stability analysis and low-dimensional nonlinear evolution equations derived using a weighted residual method.
Influence of heating load on heat transfer characteristics in micro-pin-fin arrays
NASA Astrophysics Data System (ADS)
Guan, Ning; Luan, Tao; Jiang, Guilin; Liu, Zhi-Gang; Zhang, Cheng-Wu
2016-02-01
Experimental investigations were carried out to explore the convective heat transfer in micro pin-fins with different aspect ratios, and the influence of heating load on Nusselt numbers in micro pin-fins with liquid water as working fluid were investigated. The mechanism of convective heat transfer in micro pin-fins at different heating load were studied by 3-D numerical investigations, and the relationships of thermal physical properties change, the end wall effect and axial thermal conduction with Nu numbers in micro pin-fins were analysed. It was found that the thickness of boundary layer was decreased as much as 33.3 % attributed to the destructive effect of thermal physical properties change, and convective heat transfer in the micro pin-fin channel was more than 20 % enhanced by the flow disturbance caused by the increase of temperature difference. The discrepancy of Nu in micro pin-fin channel with different aspect ratios reached 34.59 %, and this discrepancy was reduced by the increase of heating load. The maximum value of impact factors of dynamic viscosity and thermal conductivity on the Nu in micro-pin-fins reached 25.02 and 7.68 %, respectively.
Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.
Heat and mass transfer over slippery, superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Haase, A. Sander; Lammertink, Rob G. H.
2016-04-01
The classical Graetz-Nusselt problem is extended to describe heat and mass transfer over heterogeneously slippery, superhydrophobic surfaces. The cylindrical wall consists of segments with a constant temperature/concentration and areas that are insulating/impermeable. Only in the case of mass transport do the locations of hydrodynamic slip and mass exchange coincide. This makes advection near the mass exchanging wall segments larger than near the heat exchanging regions. Also the direction of radial fluid flow is reversed for heat and mass transport, which has an influence on the location where the concentration or temperature boundary layer is compressed or extended. As a result, mass transport is more efficient than heat transfer. Also the influence of axial diffusion on the Nusselt and Sherwood numbers is investigated for various Péclet numbers Pe. When Pe < 102, which is characteristic for heat transfer over superhydrophobic surfaces, axial conduction should be taken into account. For Pe ≥ 102, which are typical numbers for mass transport in microfluidic systems, axial diffusion can be neglected.
Extended Development of Variable Conductance Heat Pipes
NASA Technical Reports Server (NTRS)
Antoniuk, D.; Edwards, D. K.; Luedke, E. E.
1978-01-01
A high-capacity vapor-modulated heat pipe was designed and tested. In 1977, a program was undertaken to use the aforementioned heat pipe to study protection from freezing-point failure, increase control sensitivity, and transient behavior under a wide range of operating conditions in order to determine the full performance potential of the heat pipe. A new concept, based on the vapor-induced-dry-out principle, was developed for passive feedback temperature control as a heat pipe diode. This report documents this work and describes: (1) the experimental and theoretical investigation of the performance of the vapor-modulated heat pipe; and (2) the design, fabrication and test of the heat pipe diode.
Heat Transfer Through Turbulent Friction Layers
NASA Technical Reports Server (NTRS)
Reichardt, H.
1943-01-01
The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.
Boiling heat transfer on fins - experimental and numerical procedure
NASA Astrophysics Data System (ADS)
Orzechowski, T.; Tyburczyk, A.
2014-03-01
The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.
Enhancement of heat and mass transfer by cavitation
NASA Astrophysics Data System (ADS)
Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.
2015-01-01
In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.
Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles
ERIC Educational Resources Information Center
Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.
2010-01-01
This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…
Film-Cooling Heat-Transfer Measurements Using Liquid Crystals
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.
1997-01-01
The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.
NASA Astrophysics Data System (ADS)
Hou, Xiuhui; Deng, Zichen; Yin, Guansheng
2014-12-01
The thermal properties for the multi-re-entrant honeycomb are investigated, where the hexagon and re-entrant topologies are applied for comparison. A compact model was adopted for the local heat transfer rate and pressure drop estimations while the total heat transfer rate was analyzed using the transfer matrix method. A thermal performance index was specified to characterize a good heat exchange medium that can transfer more heat at the expense of lower pressure loss. Numerical results reveal better thermal performances of multi-re-entrant honeycombs over hexagon and re-entrant topologies, attributed to the presence of added base walls. Auxetic effect introduced in multi-re-entrant honeycomb generally provides enhanced out-of-plane thermal conductivity and increased total heat transfer efficiency due to higher surface area density.
One-dimensional particle models for heat transfer analysis
NASA Astrophysics Data System (ADS)
Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Tamain, P.; Bagnoli, F.; Lepri, S.; Livi, R.
2010-11-01
For a better understanding of Spitzer-Härm closure restrictions and for estimating the relevancy of this expression when collisionnality decreases, an effort is done in developing simple models that aim at catching the physics of the transition from conductive to free-streaming heat flux. In that perspective, one-dimensional particle models are developed to study heat transfer properties in the direction parallel to the magnetic field in tokamaks. These models are based on particles that carry energy at a specific velocity and that can interact with each other or with heat sources. By adjusting the particle dynamics and particle interaction properties, it is possible to generate a broad range of models of growing complexity. The simplest models can be solved analytically and are used to link particle behavior to general macroscopic heat transfer properties. In particular, some configurations recover Fourier's law and make possible to investigate the dependance of thermal conductivity on temperature. Besides, some configurations where local balance is lost require defining non local expression for heat flux. These different classes of models could then be linked to different plasma configurations and used to study transition from collisional to non-collisional plasma.
NASA Astrophysics Data System (ADS)
Morris, Aaron; Hrenya, Christine; Ma, Zhiwen; Pannala, Sreekanth; O'Brien, Tom
2013-11-01
DEM simulations are performed for solid particles flowing around a heated surface. For moderately dense granular flows with enduring particle-wall contacts, particles in contact with the surface are warmed by conduction across the mutual contact area. Heat transfer may also occur via conduction through the interstitial fluid within the small gaps between particles and the wall. The conductive heat transfer depends on the specific contact model, i.e. Hertzian or linear spring dashpot (LSD), because such models determine the contact area and duration. In this work, we use MFIX DEM (an open source simulation tool developed at NETL) to simulate particles falling in crossflow around a heated cylinder. Heat transfer models for both contact conduction as well as conduction across the interstitial fluid are included in these simulations. We discuss how different collision models impact the heat transfer to the particles as well as the sensitivity to various model parameters. We also compare the heat transfer predicted by different contact conduction thermal models.
Low heat transfer oxidizer heat exchanger design and analysis
NASA Technical Reports Server (NTRS)
Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.
1987-01-01
The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.
Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles
Roper, D. Keith; Ahn, W.; Hoepfner, M.
2008-01-01
Visible radiation at resonant frequencies is transduced to thermal energy by surface plasmons on gold nanoparticles. Temperature in ≤10-microliter aqueous suspensions of 20-nanometer gold particles irradiated by a continuous wave Ar+ ion laser at 514 nm increased to a maximum equilibrium value. This value increased in proportion to incident laser power and in proportion to nanoparticle content at low concentration. Heat input to the system by nanoparticle transduction of resonant irradiation equaled heat flux outward by conduction and radiation at thermal equilibrium. The efficiency of transducing incident resonant light to heat by microvolume suspensions of gold nanoparticles was determined by applying an energy balance to obtain a microscale heat-transfer time constant from the transient temperature profile. Measured values of transduction efficiency were increased from 3.4% to 9.9% by modulating the incident continuous wave irradiation. PMID:19011696
NASA Technical Reports Server (NTRS)
Dinovi, R. A.
1967-01-01
Measuring and correlating the thermal conductivity and ultrasonic transmission of seven hot-brazed-bonded copper plates established a relationship between heat transfer and ultrasonic transmission properties of the bonds. This relationship permits the prediction of heat transfer characteristics from ultrasonic transmission tests.
NASA Astrophysics Data System (ADS)
Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz
2014-12-01
During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.
International contributions to IAEA-NEA heat transfer databases for supercritical fluids
Leung, L. K. H.; Yamada, K.
2012-07-01
An IAEA Coordinated Research Project on 'Heat Transfer Behaviour and Thermohydraulics Code Testing for SCWRs' is being conducted to facilitate collaboration and interaction among participants from 15 organizations. While the project covers several key technology areas relevant to the development of SCWR concepts, it focuses mainly on the heat transfer aspect, which has been identified as the most challenging. Through the collaborating effort, large heat-transfer databases have been compiled for supercritical water and surrogate fluids in tubes, annuli, and bundle subassemblies of various orientations over a wide range of flow conditions. Assessments of several supercritical heat-transfer correlations were performed using the complied databases. The assessment results are presented. (authors)
Chen, Lin; Li, Zhen; Guo, Zeng-Yuan
2009-07-15
In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)
Numerical Model for Conduction-Cooled Current Lead Heat Loads
White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY
2011-06-10
Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).
Heat Transfer Experiments in the Internal Cooling Passages of a Cooled Radial Turbine Rotor
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.
1996-01-01
An experimental study was conducted (1) to experimentally measure, assess and analyze the heat transfer within the internal cooling configuration of a radial turbine rotor blade and (2) to obtain heat transfer data to evaluate and improve computational fluid dynamics (CFD) procedures and turbulent transport models of internal coolant flows. A 1.15 times scale model of the coolant passages within the NASA LERC High Temperature Radial Turbine was designed, fabricated of Lucite and instrumented for transient beat transfer tests using thin film surface thermocouples and liquid crystals to indicate temperatures. Transient heat transfer tests were conducted for Reynolds numbers of one-fourth, one-half, and equal to the operating Reynolds number for the NASA Turbine. Tests were conducted for stationary and rotating conditions with rotation numbers in the range occurring in the NASA Turbine. Results from the experiments showed the heat transfer characteristics within the coolant passage were affected by rotation. In general, the heat transfer increased and decreased on the sides of the straight radial passages with rotation as previously reported from NASA-HOST-sponsored experiments. The heat transfer in the tri-passage axial flow region adjacent to the blade exit was relatively unaffected by rotation. However, the heat transfer on one surface, in the transitional region between the radial inflow passage and axial, constant radius passages, decreased to approximately 20 percent of the values without rotation. Comparisons with previous 3-D numerical studies indicated regions where the heat transfer characteristics agreed and disagreed with the present experiment.
NASA Astrophysics Data System (ADS)
Stasiek, Jan; Ciofalo, Michele; Wierzbowski, Maciej
2004-05-01
Experimental and numerical investigation of heat transfer and fluid flow were conducted for classic heat exchanger elements (flat plate with fin-tubes in-line, staggered and with vortex generators) and corrugated-undulated ducts under transitional and weakly turbulent conditions. The dependence of average heat transfer and pressure drop on Reynolds number and geometrical parameters was investigated. Distributions of local heat transfer coefficient were obtained by using liquid crystal thermography and surface-averaged values were computed. Three-dimensional numerical simulations were conducted by a finite-volume method using a low-Reynolds number k-ɛ model under the assumption of fully developed flow. Computed flow fields provided otherwise inaccessible information on the flow patterns and the mechanisms of heat transfer enhancement.
NASA Technical Reports Server (NTRS)
Kim, Jungho
2004-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across
Heat transfer model for quenching by submerging
NASA Astrophysics Data System (ADS)
Passarella, D. N.; Varas, F.; Martín, E. B.
2011-05-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
Thermochromic liquid crystals in heat transfer research
NASA Astrophysics Data System (ADS)
Stasiek, Jan A.; Kowalewski, Tomasz A.
2002-06-01
In recent years Thermochromic Liquid Crystals (TLC) have been successfully used in non-intrusive heat transfer and fluid mechanics studies. Thin coatings of TLC's at surfaces is utilized to obtain detailed heat transfer data of steady or transient process. Application of TLC tracers allows instantaneous measurement of the temperature and velocity fields for two-dimensional cross-section of flow. Computerized flow visualization techniques allow automatic quantification of temperature of the analyzed surface or the visualized flow cross-section. Here we describe our experience in applying the method to selected problems studied in our laboratory. They include modeling flow configurations in the differentially heated inclined cavity with vertical temperature gradient simulating up-slope flow as well as thermal convection under freezing surface. The main aim of these experimental models is to generate reliable experimental database on velocity and temperature fields for specific flow. The methods are based on computerized true-color analysis of digital images for temperature measurements and modified Particle Image Velocimetry and Thermometry (PIVT) used to obtain the flow field velocity.
Laminar heat transfer in annular sector ducts
Soliman, H.M. )
1987-02-01
The continuing interest in compact heat exchangeers has created the need for friction factor and Nusselt number data for different passage shapes. It has long been recognized that circular tube results are generally not applicable to noncircular passages even when the hydraulic diameter is used as the characteristic dimension. Hence, design data should be generated for each passage individually, and a good source of such information is Shah and London. One duct geometry for which complete design information does not appear to be available in the open literature is that of annular sector ducts. Such configuration is encountered in multipassage internally finned tubes and many other compact het exchanger applications. The fluid flow problem for this configuration has been solved by Sparrow et al., and more recently by Niida. However, to the beest of the author's knowledge, the heat transfer results are not available yet. The purpose of this note is to summarize the analysis and results of fluid flow and heat transfer in annular sector ducts.
Heat transfer in circulating fluidized bed combustor
Bucak, O.; Dogan, O.M.; Uysal, B.Z.
1999-07-01
The importance of fluidized bed combustion in utilizing the energy of especially low quality coals is widely accepted. Among various fluidized bed combustion technologies, circulating fluidized beds are preferred as a result of the efforts to get higher combustion efficiencies. The aim of the present research was to investigate the applicability of this technology to Turkish lignites. To achieve this object a 6.5 m tall pilot circulating fluidized bed combustor with 155 mm diameter and all the auxiliary equipment were designed, constructed and tested using Seyitomer lignite of 0.9--2.38 mm in size. Heat transfer from the bed to the water cooling jackets was examined to recover the combustion energy. The inside heat transfer coefficient was determined to be around 121 W/m{sup 2} K for the suspension density of 20--55 kg/m{sup 3}. The agreement of the experimental findings with theoretical estimations was also checked. Furthermore, the thermal efficiency of the system for the heat recovered was found to be 63%.
Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes
O'Brien, James Edward; Sohal, Manohar Singh
2000-08-01
This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.
Heat Transfer Characteristics in Crank-Shape Thermosyphons
NASA Astrophysics Data System (ADS)
Imura, Hedeaki; Koito, Yasushi
A two-phase closed thermosyphon is applied to gas-to-gas heat exchangers, the cooling of heat generation devices, the melting of snow, the prevention from icing of water on roads and so on. Generally, straight tubes are used as the thermosyphon. However, because of the limited space for the straight thermosyphon to be installed, it is considered that a bent thermosyphon is enforced to employ. In response to this, fundamental experiments are conducted on the heat transfer characteristics in a two-phase crank shape closed thermosyphon, in which an evaporator and a condenser are vertically positioned, and a connecting adiabatic section is horizontal. Ethylene glycol aqueous solutions which have lower freezing points and hydrofluoroether 7100 and 7200 which do not contain chloride are used as the working fluids Heat transfer coefficients and critical heat fluxes in the thermosyphon are measured by changing the amount of charged working fluid (0.30,0.40,0.50 and 0.60 of the evaporator volume),the temperature of the adiabatic section (40,50,60,70 and 80°C) and heat flux (from 4.0 kW /m2 to critical). The experimental results are shown and compared with those taken using water as the working fluid.
Heat transfer to a supercritical hydrocarbon fuel with endothermic reaction.
Yu, W.; France, D. M.; Wambsganss, M. W.; Energy Technology; Univ. of Illinois at Chicago
2000-01-01
Supercritical fuel reforming is being studied as a technology for reducing emissions of industrial gas turbine engines. In this study, experiments were performed in a 2.67-mm-inside-diameter stainless steel tube with a heated length of 0.610 m for the purpose of investigating the characteristics of supercritical heat transfer with endothermic fuel reforming. Thermocouples were positioned along the tube both in the fluid stream and on the heated wall for local heat transfer measurements. Both heat transfer coefficients and endotherms were calculated from the measured results. State-of-the-art correlations for heat transfer were evaluated, and a correlation for supercritical heat transfer to hydrocarbon fuel has been developed. The results provide a basis for supercritical fuel heat-exchanger/reactor design and its practical applications, in an area that has received relatively little attention in the engineering literature, viz., supercritical forced convection heat transfer with endothermic chemical reaction.
Godunov Method for Calculating Flows of a one-Velocity Viscous Heat-Conducting Medium
NASA Astrophysics Data System (ADS)
Surov, V. S.
2015-05-01
For a hyperbolic model of a one-velocity viscous heat-conducting mixture, a modifi ed Godunov method with approximate Riemann solvers is developed. Using this method, we studied wave processes in frothing and bubble media. It is shown that the fl ow picture is signifi cantly infl uenced by heat transfer processes, which are manifested to a greater extent for bubble liquids.
Radiative Heat Transfer in a Hydrous Transition Zone
NASA Astrophysics Data System (ADS)
Thomas, S.; Bina, C. R.; Jacobsen, S. D.; Goncharov, A. F.
2012-12-01
The structure and dynamics of Earth's interior depend crucially upon heat flow and thus upon the thermal conductivity of its constituents. The bulk thermal conductivity has two components: lattice conductivity (klat) and radiative conductivity (krad) [1,2]. Whereas lattice conductivity is governed by phonon propagation, radiative conductivity arises from heat transport by emission and absorption of photons. The latter, therefore, can be indirectly measured by analyzing the visible and infrared (VIS-IR) regions of a material's optical absorption spectrum. Thermal conductivity in the mantle is controlled by temperature, pressure, the electronic structure and concentration of transition metal ions (such as iron), and the water content of the material [1,3]. The radiative component has generally been assumed to be negligible, as most ferromagnesian minerals become opaque in the VIS-IR range at high pressures due to intensification and red-shift of electronic charge-transfer bands [4, 5]. However, more recent studies have suggested that mantle minerals may, in fact, remain relatively transparent at high pressures, thereby allowing for a potentially significant contribution to thermal conductivity from the radiative component [6]. We measured optical absorbance spectra of hydrous wadsleyite and hydrous ringwoodite at simultaneous high-pressure and high-temperature conditions up to 26 GPa and 823 K in order to determine their radiative conductivities and to study the potential influence of hydration in the transition zone on thermal conductivity of the mantle. We report radiative thermal conductivities of 1.5 ± 0.2 Wm-1K-1 for hydrous wadsleyite and 1.2 ± 0.1 Wm-1K-1 for hydrous ringwoodite at transition zone conditions. The analytically derived radiative thermal conductivities of anhydrous wadsleyite and ringwoodite are 2.1 ± 0.2 Wm-1K-1 and 1.6 ± 0.2 Wm-1K-1, respectively. Our results imply that a water content of ~1 wt% H2O lowers the thermal radiative conductivity
Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids
Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert
2013-07-22
Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.
Advances in refrigeration and heat transfer engineering
Bansal, Pradeep; Cremaschi, Prof. Lorenzo
2015-05-13
This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less
Advances in refrigeration and heat transfer engineering
Bansal, Pradeep; Cremaschi, Prof. Lorenzo
2015-05-13
This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO_{2} may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).
Sorption Characteristics of Sorption Material Coated on Heat Transfer surface of a Heat Exchanger
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Komatsu, Fujio; Horibe, Akihiko; Haruki, Naoto; Machida, Akito
This paper describes sorption characteristics of organic sorbent coated on heat transfer surface of a plate-fin-tube heat exchanger. The organic sorbent is a bridged complex of soldium polyacrylate. This bridged complex containing the carboxyl group as water vapor adsorption site has a larger adsorption abilities as compared with silica gel. The experiments in which the moist air was passed into the heat exchanger coated with sorption material were conducted under various conditions of air flow rate and the temperature of brine that was the heat transfer fluid to cool the air flow in the dehumidifying process. It is found that the sorption rate of vapor is affected by the air flow rate and the brine temperature. Meanwhile, the attempt of clarifying the sorption mechanism is also conducted. Finally the average mass transfer coefficient of the organic sorbent was non-dimensionalized as a function of Reynolds number and non-dimensional temperature. In addition, it was observed that the factor which affects the sorption rate in the water vapor sorption process of the organic sorbent coated on the heat exchanger shifts from the “adsorption step” to the “sorption step”.
Porous media heat transfer for injection molding
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
Flow and heat transfer in a curved channel
NASA Technical Reports Server (NTRS)
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
NASA Technical Reports Server (NTRS)
Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho
2003-01-01
Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.
Heat transfer analysis in rotating sphericall shells
NASA Astrophysics Data System (ADS)
Cabello, Ares; Avila, Ruben
2015-11-01
The study of flow patterns within rotating spherical annular geometries with natural convection, is essential to understand the internal dynamics of the planets. We investigate the convective flows and the heat transfer rate in an spherical gap in which a temperature difference between the inner sphere and the outer sphere is present. A self gravity field which varies as a function of 1 /rn (where r is the radial position and the integer exponent n has the values 2,3,4,5) is assumed. The Boussinesq fluid equations are solved by using a spectral element method (SEM). To avoid the singularity at the poles, the cubed-sphere algorithm is used to generate the spherical mesh. Heat fluxes at the surface of both spheres are analyzed. We find, for several Ekman and Rayleigh numbers, that there exists a high correlation between the azimuthal motion of both the Busse cells and the zones where the maximum surface heat fluxes occur. The azimuthal position, as a function of time, of the maximum heat flux zones (which are located symmetrically with respect to the equator), allows to speculate on the nature of the phenomena occurring (in geological times) on the surface of the terrestrial planets. Thanks to DGAPA-PAPIIT project: IN117314-3.
Thermodynamics of flame impingement heat transfer
NASA Astrophysics Data System (ADS)
Som, S. K.; Agrawal, G. K.; Chakraborty, Suman
2007-08-01
A theoretical model for entropy generation and utilization of work potential (exergy) in flame impingement (both premixed and diffusion) heat transfer has been developed in this article, to offer physical insights on the optimal operational regimes, depicting high values of the surface heat flux with minimal exergy destruction, within the practical constraints. The irreversibility components due to different physical processes have been evaluated from a general entropy transport equation. The velocity, temperature, and species concentration fields required for the solution of entropy transport equation have been determined from the numerical computation of flow-field in the flame. Global two-step chemical kinetics has been considered with methane (CH4) and air as fuel and oxidizer, respectively. The results have been predicted in terms of average nondimensional heat flux, expressed as Nusselt number at the target plate, the irreversibility components, and second law efficiency, as functions of the pertinent input parameters such as the jet Reynolds number and the ratio of plate separation distance to nozzle diameter (H /d). The average Nusselt number has been found to increase with an increase in jet Reynolds number and a decrease in H /d ratio, up to a value of 8. The dominant source of thermodynamic irreversibility in a premixed flame has been attributed to the thermal energy exchange whereas, in a diffusion flame, the same has been attributed to an uncontrolled exchange of electrons accompanying the reactive kinetics. The second law efficiency has been found to increase with an increase in jet Reynolds number and an increase in the H /d ratio, up to a value of 20. Values of the jet Reynolds number greater than 10 000 and H /d ratio in the tune of 15 have been observed to pertain to the regime of optimum flame impingement heat transfer, consistent with the energy and exergy balance constraints.
Pool boiling heat transfer from vertical heater array in liquid nitrogen
Chui, C.J.; Sehmbey, M.S.; Chow, L.C.; Hahn, O.J.
1995-04-01
The heat transfer from an array of discrete sources is expected to differ from the behavior of a single heat source due to the interaction between the flow induced by individual heat sources. This study details the results from experiments conducted to study the pool boiling heat transfer characteristics from a vertical heater array with flush-mounted heat sources. The lower heaters were found to enhance the heat transfer from upper heaters. The bubble pumped convection due to the lower heaters enhanced the preboiling heat transfer coefficient at the upper heater by as much as 700%. The critical heat flux from the upper heaters was also enhanced up to 15%. Correlations are presented for both these effects. 21 refs.
Finite volume simulation for convective heat transfer in wavy channels
NASA Astrophysics Data System (ADS)
Aslan, Erman; Taymaz, Imdat; Islamoglu, Yasar
2016-03-01
The convective heat transfer characteristics for a periodic wavy channel have been investigated experimentally and numerically. Finite volume method was used in numerical study. Experiment results are used for validation the numerical results. Studies were conducted for air flow conditions where contact angle is 30°, and uniform heat flux 616 W/m2 is applied as the thermal boundary conditions. Reynolds number ( Re) is varied from 2000 to 11,000 and Prandtl number ( Pr) is taken 0.7. Nusselt number ( Nu), Colburn factor ( j), friction factor ( f) and goodness factor ( j/ f) against Reynolds number have been studied. The effects of the wave geometry and minimum channel height have been discussed. Thus, the best performance of flow and heat transfer characterization was determined through wavy channels. Additionally, it was determined that the computed values of convective heat transfer coefficients are in good correlation with experimental results for the converging diverging channel. Therefore, numerical results can be used for these channel geometries instead of experimental results.
Heat transfer enhancement in channels with turbulence promoters
NASA Technical Reports Server (NTRS)
Han, J. C.; Park, J. S.; Lei, C. K.
1984-01-01
Repeated rib-roughness elements have been used in advanced turbine cooling designs to enhance the internal heat transfer. Often the ribs are perpendicular to the main flow direction so that they have an angle-of-attack of 90 degrees. The objective of this investigation was to determine the effect of rib angle-of-attack on the pressure drop and the average heat-transfer coefficients in the fully developed turbulent air flow in a square duct with two opposite rib-roughened walls for Reynolds numbers varied from 7,000 to 90,000. The rib height-to-equivalent diameter ratio was kept at a constant value of 0.063, the rib pitch-to-height ratio was varied from 10 to 20, and the rib angle-of-attack (alpha) was varied from 90 to 60 deg to 45 to 30 deg, respectively. The thermal-performance comparison indicated that the increased heat conductance for the rib with an oblique angle to the flow (alpha = 45 deg - 30 deg) was about 10-20 percent higher than the rib with a 90 deg angle to the flow, and the pumping power requirement for the angled rib was about 20-50 percent lower than the transverse rib. Semi-empirical correlations for friction factor and heat-transfer coefficients were developed to account for rib spacing and rib angle. The correlations can be used in the design of turbine-blade cooling passages.
Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities
Lee, S.Y.
1999-01-13
The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.
Heat and Mass Transfer in a Freezing Unsaturated Porous Medium
NASA Astrophysics Data System (ADS)
Jame, Yih-Wu; Norum, Donald I.
1980-08-01
A numerical simulation of a laboratory experiment involving coupled heat and mass transfer in a horizontal porous medium column with one end subjected to a temperature below 0°C has been carried out. The model is essentially that of Harlan (1973) and is solved numerically by the finite difference method using the Crank-Nicholson scheme. The solution yields temperature, liquid water content, and ice content profiles along the column as a function of time. Comparison of the experimental results and the simulation analysis results shows that Harlan's model, with some modification in the hydraulic conductivity of the frozen medium, can be used successfully to simulate numerically the coupled heat and mass transfer processes when ice lensing does not occur.
Heat transfer and boundary layer in conical nozzles
NASA Technical Reports Server (NTRS)
Boldman, D. R.; Graham, R. W.
1972-01-01
A review of a comprehensive experimental investigation of the heat transfer and boundary layer in 30 deg to 15 deg and 60 deg to 15 deg conical nozzles is presented. The experiments were conducted with air at a stagnation temperature of 539 K (970 R) and throat Reynolds numbers based on a diameter ranging from 6 x 10 to the 5th power to 5 x 10 to the 6th power. Nozzle wall surface finish was varied from a smooth machine finish to a 826 x 10 to the minus 6th power cm (325 x 10 to the minus 6th in.) rms sandblasted finish. Measured heat transfer and wall temperatures are tabulated.
Investigation of Conjugate Heat Transfer in Turbine Blades and Vanes
NASA Technical Reports Server (NTRS)
Kassab, A. J.; Kapat, J. S.
2001-01-01
We report on work carried out to develop a 3-D coupled Finite Volume/BEM-based temperature forward/flux back (TFFB) coupling algorithm to solve the conjugate heat transfer (CHT) which arises naturally in analysis of systems exposed to a convective environment. Here, heat conduction within a structure is coupled to heat transfer to the external fluid which is convecting heat into or out of the solid structure. There are two basic approaches to solving coupled fluid structural systems. The first is a direct coupling where the solution of the different fields is solved simultaneously in one large set of equations. The second approach is a loose coupling strategy where each set of field equations is solved to provide boundary conditions for the other. The equations are solved in turn until an iterated convergence criterion is met at the fluid-solid interface. The loose coupling strategy is particularly attractive when coupling auxiliary field equations to computational fluid dynamics codes. We adopt the latter method in which the BEM is used to solve heat conduction inside a structure which is exposed to a convective field which in turn is resolved by solving the NASA Glenn compressible Navier-Stokes finite volume code Glenn-HT. The BEM code features constant and bi-linear discontinuous elements and an ILU-preconditioned GMRES iterative solver for the resulting non-symmetric algebraic set arising in the conduction solution. Interface of flux and temperature is enforced at the solid/fluid interface, and a radial-basis function scheme is used to interpolated information between the CFD and BEM surface grids. Additionally, relaxation is implemented in passing the fluxes from the conduction solution to the fluid solution. Results from a simple test example are reported.
Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy
NASA Astrophysics Data System (ADS)
Freeburg, Eric Thomas
Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed
Heat Transfer in Porous Crystals Containing Adsorbed Gases
NASA Astrophysics Data System (ADS)
Babaei, Hasan; Wilmer, Christopher
Using molecular modeling, we investigated heat transfer phenomena in a porous crystal containing gases. This study was motivated by the challenge of quickly dissipating heat generated in metal-organic frameworks (MOFs) during gas adsorption. Our study reveals that thermal conductance is dominated by lattice thermal conductivity in the crystal, and that conductance decreases as the density of gas in the pores increases. We show that the observed decreased conductivity is due to phonon scattering in the crystal due to interactions with gas molecules. We have also investigated the effect of pore size and shape on thermal transport in these structures. We show that thermal conductivity of pure nanoporous crystals decreases with pore size. For nanoporous crystals with small pores, gas adsorption reduces thermal conductivity due to more phonon scatterings, whereas for larger pores, the increase in gas loading does not affect lattice thermal conductivity. We show that the probability of gas-crystal collisions is smaller for larger pores, which explains why loaded gases do not significantly affect thermal conductivity of large pore structures.
NASA Astrophysics Data System (ADS)
Tao, W. Q.; Cheng, Y. P.; Lee, T. S.
2007-11-01
In this paper, a numerical investigation is performed for three-stage heat exchangers with plain plate fins and slit fins respectively, with a three-dimensional laminar conjugated model. The tubes are arranged in a staggered way, and heat conduction in fins is considered. In order to save the computer resource and speed up the numerical simulation, the numerical modeling is carried out stage by stage. In order to avoid the large pressure drop penalty in enhancing heat transfer, a slit fin is presented with the strip arrangement of “front coarse and rear dense” along the flow direction. The numerical simulation shows that, compared to the plain plate fin heat exchanger, the increase in the heat transfer in the slit fin heat exchanger is higher than that of the pressure drop, which proves the excellent performance of this slit fin. The fluid flow and heat transfer performance along the stages is also provided.
Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles
NASA Astrophysics Data System (ADS)
Sasikumar, Kiran
Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the
Communications technology satellite - A variable conductance heat pipe application
NASA Technical Reports Server (NTRS)
Mock, P. R.; Marcus, B. D.; Edelman, E. A.
1974-01-01
A variable-conductance heat pipe system (VCHPS) has been designed to provide thermal control for a transmitter experiment package (TEP) to be flown on the Communications Technology Satellite. The VCHPS provides for heat rejection during TEP operation and minimizes the heat leak during power down operations. The VCHPS described features a unique method of aiding priming of arterial heat pipes and a novel approach to balancing heat pipe loads by staggering their control ranges.
Heat Transfer Phenomena in Supercritical Water Nuclear Reactors
Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht
2007-10-03
A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.
Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars
Aguilera, Deborah N.; Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Pons, Jose A.
2009-03-06
We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons, can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to the magnetic field when the magnetic field B > or approx. 10{sup 13} G. At a density of {rho}{approx_equal}10{sup 12}-10{sup 14} g/cm{sup 3}, the conductivity due to superfluid phonons is significantly larger than that due to lattice phonons and is comparable to electron conductivity when the temperature {approx_equal}10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.
Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer
NASA Astrophysics Data System (ADS)
Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.
2013-12-01
We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known
Causes of enhanced boiling heat transfer on surfaces covered with perforated polymer film
Antonenko, V.A.
1988-10-01
Experiments were conducted to determine the causes of enhanced heat transfer on surfaces covered with perforated polymer film and to test a hypothesis for earlier boiling onset on surfaces thus covered. Two experiments were conducted. In the first the heat transfer rates were compared for a paraffin-impregnated Lavsan mesh and the same mesh thinly coated with silver. In the second experiment the comparison was made for a perforated Teflon film and for the same film chemically treated with a sodium-naphthalene complex to improve its wettability. The results show that the main factor leading to enhanced heat transfer on polymer-covered surfaces is the concentration of the heat flux in the perforations. This factor leads to the onset of stable vacuum nucleate boiling at lower heat loads and, hence, lower temperature heads than on bare surfaces. The earlier boiling leads to enhanced heat transfer. Wettability was found to play only a minor part.
Nucleation and Heat Transfer in Liquid Nitrogen
NASA Astrophysics Data System (ADS)
Roth, Eric Warner
1993-01-01
With the advent of the new high Tc superconductors as well as the increasing use of cryo-cooled conventional electronics, liquid nitrogen will be one of the preferred cryogens used to cool these materials. Consequently, a more thorough understanding of the heat transfer characteristics of liquid nitrogen is required. In these investigations the transient heating characteristics of liquid nitrogen to states of nucleate and film boiling under different liquid flow conditions are examined. Using a metal hot wire/plate technique, it is verified that there is a premature transition to film boiling in the transient case at power levels as much as 30 percent lower than under steady state nucleate boiling conditions. It is also shown that the premature transition can be reduced or eliminated depending on the flow velocity. The second part of this research analyses the nucleation (boiling) process from a dynamical systems point of view. By observing how the boiling system variables evolve and fluctuate over time, it is hoped that physical insight and predictive information can be gained. One goal is to discover some indicator or signature in the data that anticipates the transition from nucleate boiling to film boiling. Some of the important variables that make up the boiling system are the temperature of the heater and the heat flux through the heater surface into the liquid nitrogen. The result, gained by plotting the system's trajectory in the heat flux-temperature plane, is that on average the system follows a counterclockwise trajectory. A physical model is constructed that explains this behavior. Also, as the applied heater power approaches levels at which the transition to film is known to occur, the area per unit time swept out in the heat flux-temperature plane is seen to reach a maximum. This could be of practical interest as the threshold to film boiling can be anticipated and possibly prevented.
Model for heat conduction in nanofluids.
Kumar, D Hemanth; Patel, Hrishikesh E; Kumar, V R Rajeev; Sundararajan, T; Pradeep, T; Das, Sarit K
2004-10-01
A comprehensive model has been proposed to account for the large enhancement of thermal conductivity in nanofluids and its strong temperature dependence, which the classical Maxwellian theory has been unable to explain. The dependence of thermal conductivity on particle size, concentration, and temperature has been taken care of simultaneously in our treatment. While the geometrical effect of an increase in surface area with a decrease in particle size, rationalized using a stationary particle model, accounts for the conductivity enhancement, a moving particle model developed from the Stokes-Einstein formula explains the temperature effect. Predictions from the combined model agree with the experimentally observed values of conductivity enhancement of nanofluids. PMID:15524799
Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media
NASA Astrophysics Data System (ADS)
Karani, Hamid; Huber, Christian
2015-02-01
In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics
Rotating machinery heat and mass transfer research in the People's Republic of China
NASA Astrophysics Data System (ADS)
Wu, C.-H.; Ko, S.-Y.; Liu, D.; Shen, J.; Xu, J.-Z.
A survey of research on rotating machinery heat and mass transfer in the People's Republic of China has been made. Since the later part of 1950's, considerable research and development work has been conducted in this field in China in order to improve the performance and prolong the life of rotating machinery. The emphasis of gas turbine heat transfer has been made in this survey. The water cooling of generator and the heat transfer of rotary piston engine are also included. Researches on the measuring technique of rotating machinery such as the temperature measurement, heat flux gauge, turbulence measurement, optical measurement and flow field visualization are discussed. The following topics of gas turbine heat and mass transfer are included: numerical analysis of air cooling of turbine blades, internal cooling passage heat transfer, impingment cooling, film cooling, transpiration cooling of turbine blades, cooling of blade root tenon, cooling of rotor disc, film cooling of flame tube and cooling of afterburner.
Transient critical heat flux and blowdown heat-transfer studies
Leung, J.C.
1980-05-01
Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.
A Thermokinetic Approach to Radiative Heat Transfer at the Nanoscale
Pérez-Madrid, Agustín; Lapas, Luciano C.; Rubí, J. Miguel
2013-01-01
Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances. PMID:23527019
Efficient Reformulation of HOTFGM: Heat Conduction with Variable Thermal Conductivity
NASA Technical Reports Server (NTRS)
Zhong, Yi; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)
2002-01-01
Functionally graded materials (FGMs) have become one of the major research topics in the mechanics of materials community during the past fifteen years. FGMs are heterogeneous materials, characterized by spatially variable microstructure, and thus spatially variable macroscopic properties, introduced to enhance material or structural performance. The spatially variable material properties make FGMs challenging to analyze. The review of the various techniques employed to analyze the thermodynamical response of FGMs reveals two distinct and fundamentally different computational strategies, called uncoupled macromechanical and coupled micromechanical approaches by some investigators. The uncoupled macromechanical approaches ignore the effect of microstructural gradation by employing specific spatial variations of material properties, which are either assumed or obtained by local homogenization, thereby resulting in erroneous results under certain circumstances. In contrast, the coupled approaches explicitly account for the micro-macrostructural interaction, albeit at a significantly higher computational cost. The higher-order theory for functionally graded materials (HOTFGM) developed by Aboudi et al. is representative of the coupled approach. However, despite its demonstrated utility in applications where micro-macrostructural coupling effects are important, the theory's full potential is yet to be realized because the original formulation of HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be solved due to the large number of equations required to mimic realistic material microstructures. Therefore, a basis for an efficient reformulation of HOTFGM, referred to as user-friendly formulation, is developed herein, and subsequently employed in the construction of the efficient reformulation using the local/global conductivity matrix approach. In order to extend HOTFGM's range of applicability, spatially variable thermal
Constant of heat conduction and stabilization of bus bar conductor
NASA Astrophysics Data System (ADS)
López, G.
Using the one-dimensional, time-independent conduction state, a constant of heat conduction is given bringing about the known stabilization theorem and a closed expression for the bus bar to be cryogenically stable in superconducting accelerators.
Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages
NASA Technical Reports Server (NTRS)
Olson, D. A.
1992-01-01
Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.
Heat Transfer in Cane Fiberboard Exposed to Hypothetical Accident Conditions
Gromada, R.J.
1995-05-25
Radioactive material packages containing fiberboard insulation have been subjected to Hypothetical Accident Condition (HAC) thermal tests for many years. Historically, the packages` thermal performance has always been difficult to grasp. A package designer needs to understand the effects of temperature and pyrolysis on the rate of heat transfer and performance. This paper describes in detail the one-dimensional HAC thermal tests performed on fiberboard to understand the effects of pyrolysis, its char and its gas products. The tests were conducted by the Packaging and Transportation Group at the Savannah River Site (SRS). Test fixtures were assembled at SRS and thermal testing conducted in the Radiant Heat Facility at the Sandia National Laboratories. Descriptions of the test fixtures are provided, as well as the time dependent temperature profiles. In addition, lessons learned are discussed.
Experimental study on heat transfer of the magnetorheological fluids
NASA Astrophysics Data System (ADS)
Yildirim, Gokhan; Genc, Seval
2013-08-01
Thermal conductivity of magnetorheological suspensions synthesized with iron powder and silicone oil is experimentally investigated for varying particle volume fractions (5, 20, and 40 vol%) of two different grades of iron (Fe) and magnetic field strengths. In order to determine the temperature range at which the thermal conductivity of MR fluids is more effective for different heat transfer applications, the experiments are done for three different temperature intervals in three different temperature ranges: from -20 to 0 ° C, from 0 to 50 ° C, and from 50 to 100 ° C. In this study, ISO 8301 ‘Thermal insulation—determination of steady state thermal resistance and related properties—heat flow meter apparatus’ is used. The thermal conductivity of the MR fluids shows an increase with increasing magnetic field and volume fraction in the temperature intervals from 0 to 50 ° C and from 50 to 100 ° C. In particular, there is a substantial enhancement in the thermal conductivity for the 50-100 ° C temperature interval (enhancement ratio by almost 134% for 40SM at H = 150 G). However, the thermal conductivity shows a decrease in the lower temperature interval from -20 to 0 ° C (a decrease by 42% for 40SM at 150 G), which could be due the effect of the thermal conductivity of silicone oil at lower temperatures. Although the heat transfer coefficient is higher for higher particle concentrations, the percentage increase is more pronounced for lower particle concentrations, especially in the 0 to 50 ° C temperature interval (for the 40SM sample at 150 G 18% an enhancement for a 20 K temperature difference is observed, whereas for the 20% MR fluid sample, the enhancement is 34%).
Study and Analysis of Heat Transfer Limitation of Separated Heat Pipe
NASA Astrophysics Data System (ADS)
Mou, Qizheng; Mou, Kai
2002-01-01
satellite and spacecraft. evaporator, heat isolation and condenser along the axial direction. The working fluid absorbs heat and evaporates in evaporator, and then the vapor flows to condenser and gives out heat. The condensed liquid is pumped to evaporator by wick. By the circulation, the heat can by transferred continuously. heat pipe as follow: - Vapor-liquid two phase flow inside pipe; - The manner of latent heat to transfer heat; - Automatic circulation by working fluid flowing - A certain extent of vacuum. and the traditional heat pipe, that is, the vapor fluid and liquid fluid flow along the same direction. So it is obviously that the separated heat pipe has special internal heat transfer characteristic and crisis. This paper has regard for the heat transfer crisis of the separated heat pipe, and meanwhile relevant calculation and analysis have been done. 1. FLOW TYPE OF THE WORKING FLUID IN SEPARATED HEAT PIPE 2. HEAT TRANSFER CRISIS IN THE EVAPORATOR 3. CARRYING PHENOMENON INSIDE SEPARATED HEAT PIPE 4. THE STAGNANT FLOW PHENOMENON AND THE BACKWARD FLOW PHENOMENON IN EVAPORATOR CONCLUSION transfer limitation of location burn-out, and the heat transfer limitation of flow unconventionality in erective pipe. The carrying phenomenon can occurs not only in evaporator but also in condenser of separated heat pipe. It is in the evaporator that should take place the heat transfer limitation of liquid film dry-out at first. Then with the increasing of heat flux, the heat transfer limitation of location burn-out would happen. In order to avoid the heat transfer limitation of flow unconventionality in erective pipe, the length and diameter of the outflow tube and inflow tube must be reasonably calculated to control the flow velocity of the working fluid inside pipe. Key words:Separated Heat PipeHeat Transfer LimitationDry-OutCarryingStagnancy
Anisotropy of heat conduction in Mo/Si multilayers
Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.
2015-08-28
This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.
NASA Astrophysics Data System (ADS)
Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu
2016-09-01
The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.
NASA Astrophysics Data System (ADS)
Ren, Jie; Zhu, Jian-Xin
2013-06-01
Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.
NASA Astrophysics Data System (ADS)
Gu, Yihua; Satoh, Isao; Saito, Takushi; Kawaguchi, Tatsuya
In our previous paper, particle and temperature segregations in a fluidized bed of binary particle mixtures were experimentally examined, and heat transfer in the segregated fluidized bed was investigated. As the results, it was shown that the temperature segregation results mainly from low heat transfer coefficient through the interface layer, which exists between the flotsam-rich and jetsam-rich layers, and that the heat transfer coefficient increases rapidly with increasing the excess gas velocity. Following our previous paper, particle motion in the segregated fluidized bed was experimentally investigated in this paper, in order to make quantitative discussion on the relation between the heat transfer coefficient and particle motion in the interface layer. In the experiment, the Particle Imaging Velocimetry (PIV) method was applied to study the concentration and motion of particles in the segregated fluidized bed. A modified solid circulation model was built up to model the particle motion in the segregated fluidized bed. The experiment results showed that the vertical particle exchange rate of the interface layer increases with the excess gas velocity, and that the vertical heat transfer coefficient through the interface layer is mainly determined by the average particle exchange rate in the interface layer. Variations of the apparent thermal conductivity at different height in the particle layers were also determined by the vertical variation of the particle exchange rate. It was shown that the heat transfer coefficient or the thermal conductivity in the interface layer is influenced by the densities and specific heat capacities of the particles.
Heat transfer coefficients in two-dimensional Yukawa systems (numerical simulations)
NASA Astrophysics Data System (ADS)
Khrustalyov, Yu. V.; Vaulina, O. S.
2013-05-01
New data on heat transfer in two-dimensional Yukawa systems have been obtained. The results of a numerical study of the thermal conductivity for equilibrium systems with parameters close to the conditions of laboratory experiments in dusty plasma are presented. The Green-Kubo relations are used to calculate the heat transfer coefficients. The influence of dissipation (internal friction) on the heat transfer processes in nonideal systems is studied. New approximations are proposed for the thermal conductivity and diffusivity for nonideal dissipative systems. The results obtained are compared with the existing experimental and numerical data.
Methods for heat transfer and temperature field analysis of the insulated diesel
NASA Technical Reports Server (NTRS)
Morel, T.; Blumberg, P. N.; Fort, E. F.; Keribar, R.
1984-01-01
Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed.
Stability of coaxial jets confined in a tube with heat and mass transfer
NASA Astrophysics Data System (ADS)
Mohanta, Lokanath; Cheung, Fan-Bill; Bajorek, Stephen M.
2016-02-01
A linear temporal stability of coaxial confined jets in a vertical tube involving heat and mass transfer at the interface is presented in this paper. A potential flow analysis that includes the effect of viscosity at the interface is performed in analyzing the stability of the system. Film boiling in a vertical tube gives rise to the flow configuration explored in this work. The effects of various non-dimensional parameters on the growth rate and the neutral curve are discussed. The heat transfer at the interface has been characterized by introducing a heat flux ratio between the conduction heat flux and the evaporation heat flux. Viscous forces and the heat and mass transfer at the interface are found to stabilize the flow both in the capillary instability region and Kelvin-Helmholtz instability region. Increasing heat and mass transfer at the interface stabilizes the flow to small as well as very large wave numbers.
NASA Astrophysics Data System (ADS)
Cherief, Wahid; Avenas, Yvan; Ferrouillat, Sébastien; Kedous-Lebouc, Afef; Jossic, Laurent; Berard, Jean; Petit, Mickael
2015-07-01
Applying a magnetic field on a ferrofluid flow induces a large increase of the convective heat transfer coefficient. In this paper, the thermal-hydraulic behaviors of two commercial ferrofluids are compared. The variations of both the pressure drop and the heat transfer coefficient due to the magnetic field are measured in the following conditions: square duct, laminar flow and uniform wall heat flux. The square section with two insulated walls allows for the characterization of the effect of the magnetic field direction. The experimental results show that the heat transfer is better enhanced when the magnetic field is perpendicular to the heat flux. In the best case, the local heat transfer coefficient increase is about 75%. On the contrary, another experimental setup shows no enhancement of thermal conductivity when the magnetic field is perpendicular to the heat flux. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014) - Elected submissions", edited by Adel Razek
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... transfer rate....
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... transfer rate....
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... transfer rate....
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... transfer rate....
7 CFR 3201.54 - Heat transfer fluids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Heat transfer fluids. 3201.54 Section 3201.54... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used... transfer fluids. By that date, Federal agencies that have the responsibility for drafting or...
A Review on the Finite Element Methods for Heat Conduction in Functionally Graded Materials
NASA Astrophysics Data System (ADS)
Sharma, R.; Jadon, V. K.; Singh, B.
2015-01-01
The review presented in this paper focuses mainly on the application of finite element methods for investigating the effect of heat transfer, variation of temperature and other parameters in the functionally graded materials. Different methods have been investigated for thermal conduction in functionally graded materials. The use of FEM for steady state heat transfer has been addressed in this work. The authors have also discussed the utilization of FEM based shear deformation theories and FEM in combination with other methods for the problems involving complexity of the shape and geometry of functionally graded materials. Finite element methods proved to be effective for the solution of heat transfer problem in functionally graded materials. These methods can be used for steady state heat transfer and as well as for transient state.
The heat transfer of cooling fins on moving air
NASA Technical Reports Server (NTRS)
Doetsch, Hans
1935-01-01
The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.
Heat transfer and fluid friction in bundles of twisted tubes
NASA Astrophysics Data System (ADS)
Dzyubenko, B. V.; Dreitser, G. A.
1986-06-01
The results of heat-transfer and friction studies in bundles of twisted tubes and rods with spiral wire-wrap spacers are analyzed, and recommendations are given for calculating the heat-transfer coefficient in heat exchangers using twisted tubes.
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's...
An investigation of heat pipe meniscus heat transfer
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Franklin, J. L.; Mccreight, C. R.
1978-01-01
The use of grooved evaporator surfaces in heat pipes has increased in popularity in the past few years primarily due to the reproducibility achievable with grooved walls and the relatively low costs of the threading or extrusion processes involved in their production. The present study combines both analyses and experiments on square groove geometries, with special emphasis on overcoming the limitations of earlier analyses with finite-difference methods and groove-fillet hydrodynamic simplifications. The groove fillet, which has in previous analyses been assumed constant in radius of curvature, is permitted to change in thickness and curvature consistent with hydrodynamics and heat loss from the groove. A model is developed for accurate determination of the effect of constriction resistance on groove performance. The grooved-surface tests to be conducted are briefly described which will provide data under closely controlled operation to allow comparison and verification of the analyses.
Convective heat transfer from a sphere embedded in unheated porous media
Tung, V.X. ); Dhir, V.K. )
1993-05-01
The purpose of this work was to establish the effect of the surrounding particles' size on forced convective heat transfer from a sphere. It is shown that convective heat transfer coefficient from a large heated sphere embedded in unheated porous media is independent of the size of the particles forming the porous media as long as D[sub p]/D[sub s]<1. The contributions from other modes of heat transfer such as conduction, radiation, and natural convection are significant at lower Reynolds numbers. 16 refs., 3 figs.
Experiments on thermoacoustic convection heat transfer in gravity and zero-gravity environments
NASA Technical Reports Server (NTRS)
Parang, Masood; Salah-Eddine, Adel
1987-01-01
The results of an experimental study of thermoacoustic convection (TAC) heat transfer in gravity and zero-gravity environments are presented. The experimental apparatus consisted of a cylinder containing air as the compressible fluid. The enclosed air was heated electrically at the top surface which consisted of a thin high-resistance steel foil connected to a power source. Thermocouples were used to measure the transient temperature of the air on the axis of the cylinder and the heated surface in the both zero-gravity and gravity environments. The zero-gravity tests were performed in the Zero-Gravity Drop Tower Facility of NASA-Lewis Research Center. The experimental results were corrected for the error due to radiation absorption by the thermocouples. A conduction-only numerical heat transfer model was developed to compute the transient air temperature in the cylindrical geometry. The results were compared to the experimental data to determine the significance of the thermoacoustic convection heat transfer mechanism. It is observed that the rate of heat transfer to the air measured during the experiments is consistently higher than that obtained by the conduction-only solution indicating a significant presence of the TAC heat transfer. Further experiments are planned to measure directly (1) the radiative heat transfer contribution to the rise in the air temperature, and (2) the air pressure oscillations within the cylinder that are responsible for the convective heat transfer mode.
Local Mass and Heat Transfer on a Turbine Blade Tip
Jin, P.; Goldstein, R. J.
2003-01-01
Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less
Heat Transfer Study of Heat-Integrated Distillation Column (HIDiC) Using Simulation Techniques
NASA Astrophysics Data System (ADS)
Pulido, Jeffrey León; Martínez, Edgar Leonardo; Wolf, Maria Regina; Filho, Rubens Maciel
2011-08-01
Separation processes is largely used in petroleum refining and alcohol industries. Distillation columns consume a huge amount of energy in industrial process. Therefore, the concept of Heat-Integrated Distillation Column (HIDiC) was studied using simulation techniques in order to overcome this drawback. In this configuration the column is composed for two concentric sections called rectifying and stripping. The heat transfer is conducted from the rectifying section (which works at higher pressure and temperature) to the stripping section (which works at lower pressure and temperature) using the heat present in the process and decreasing the energy charge required by the reboiler. The HIDiC column offers great potential to reduce energy consumption compared to conventional columns. However, the complexity of the internal configuration requires the development of rigorous works that enable a better understanding of the column operation. For this reason, techniques of simulation were used through of computational software. The current work presents a heat transfer study in a concentric stage of a HIDiC column. The results obtained by Aspen Plus and CFD simulation showed the internal heat transfer in a concentric tray as a promissory configuration in order to decrease energy consumption in distillation processes.
Heat conductivity of DNA double helix
Savin, Alexander V.; Mazo, Mikhail A.; Kikot, Irina P.; Manevitch, Leonid I.; Onufriev, Alexey V.
2015-01-01
Thermal conductivity of isolated single molecule DNA fragments is of importance for nanotechnology, but has not yet been measured experimentally. Theoretical estimates based on simplified (1D) models predict anomalously high thermal conductivity. To investigate thermal properties of single molecule DNA we have developed a 3D coarse-grained (CG) model that retains the realism of the full all-atom description, but is significantly more efficient. Within the proposed model each nucleotide is represented by 6 particles or grains; the grains interact via effective potentials inferred from classical molecular dynamics (MD) trajectories based on a well-established all-atom potential function. Comparisons of 10 ns long MD trajectories between the CG and the corresponding all-atom model show similar root-mean-square deviations from the canonical B-form DNA, and similar structural fluctuations. At the same time, the CG model is 10 to 100 times faster depending on the length of the DNA fragment in the simulation. Analysis of dispersion curves derived from the CG model yields longitudinal sound velocity and torsional stiffness in close agreement with existing experiments. The computational efficiency of the CG model makes it possible to calculate thermal conductivity of a single DNA molecule not yet available experimentally. For a uniform (polyG-polyC) DNA, the estimated conductivity coefficient is 0.3 W/mK which is half the value of thermal conductivity for water. This result is in stark contrast with estimates of thermal conductivity for simplified, effectively 1D chains (”beads on a spring”) that predict anomalous (infinite) thermal conductivity. Thus, full 3D character of DNA double-helix retained in the proposed model appears to be essential for describing its thermal properties at a single molecule level. PMID:26207085
Situ soil sampling probe system with heated transfer line
Robbat, Jr., Albert
2002-01-01
The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.
Heat-transfer simulation in a furnace for steam reformer
Kudo, K.; Taniguchi, H.; Guo, K. . Faculty of Engineering); Katayama, T.; Nagata, T. )
1991-01-01
This paper discusses three-dimensional combined radiative and convective heat-transfer process in a furnace for LPG reforming which is simulated by introducing the radiosity concept into the radiative heat ray method for accurate radiative heat-transfer analysis. Together with an analysis of the chemical reaction in the reactor tubes of the furnace, the heat-transfer simulation gives the three-dimensional profile of the combustion gas temperature in the furnace, the tube-surface heat-flux distribution and the composition of the product gas obtained from the forming. The results obtained are as follows: increasing the jet angle of the heating burner raises the gas temperature and the tube surface heat flux near the burner entrance; the flame shape is the most important factor for deciding the heat flux distribution of the tube surface because the heat transferred by flame radiation is much more than they by convection of the combustion gas.
A Model of Respiratory Heat Transfer in a Small Mammal
Collins, J. C.; Pilkington, T. C.; Schmidt-Nielsen, K.
1971-01-01
A steady-state model of the heat and water transfer occurring in the upper respiratory tract of the kangaroo rat, Dipodomys spectabilis, is developed and tested. The model is described by a steady-state energy balance equation in which the rate of energy transfer from a liquid stream (representing the flow of heat and blood from the body core to the nasal region) is equated with the rate of energy transfer by thermal conduction from the nose tip to the environment. All of the variables in the equation except the flow rate of the liquid stream can be either measured directly or estimated from physiological measurements, permitting the solution of the equation for the liquid stream flow rate. After solving for the liquid stream flow rate by using data from three animals, the energy balance equation is used to compute values of energy transfer, expired air temperature, rates of water loss, and efficiency of vapor recovery for a variety of ambient conditions. These computed values are compared with values measured or estimated from physiological measurements on the same three animals, and the equation is thus shown to be internally consistent. To evaluate the model's predictive value, calculated expired air temperatures are compared with measured expired air temperatures of eight additional animals. Finally, the model is used to examine the general dependence of expired air temperature, of rates of water loss, and of efficiency of vapor recovery on ambient conditions. PMID:5113001
Heat and mass transfer in flames
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1986-01-01
Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.
Submersible pumping system with heat transfer mechanism
Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew
2014-04-15
A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.
HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM
Johnson, E.F.
1962-06-01
This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)
Low-melting point heat transfer fluid
Cordaro, Joseph G.; Bradshaw, Robert W.
2011-04-12
A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.
Investigation of heat transfer in porous duct
NASA Astrophysics Data System (ADS)
Athani, Abdulgaphur; Khan, T. M. Yunus
2016-05-01
Investigation of heat transfer in a square porous duct is carried out. The porous medium is sandwiched between inner and outer surface of a square duct. The flow is assumed to follow the Darcy law. The governing momentum and energy equations are non-dimensionalised and then converted to algebraic form of equations using finite element method. Galerkin method is used to transform the partial differential equations into simpler algebraic equations then solved in a iterative manner to arrive at the solution. The results are presented with respect to various geometric and physical parameters such as depth of porous medium, Rayleigh number etc. It is found that the isotherms and the streamlines take symmetrical position along the vertical central line of square duct. The isotherms are penetrated into deeper area at upper half of duct as compared to lower half.
Interface elements for heat transfer analysis
NASA Astrophysics Data System (ADS)
Mason, W. E.
1984-08-01
Interface elements are desirable in finite element heat transfer analyses in situations where dissimilar meshes are to be joined or where contact resistances occur between various parts of a body. In stress codes, such elements are often termed master/slave. A general algorithm for interface elements will be described. The algorithm allows development of interface elements for both two- and three-dimensional applications. Surfaces in contact are automatically determined so that a minimum of input data is required. In addition, the algorithm allows for compatibility in thermal stress calculations with mechanical codes which have sliding interface capabilities. Implementation of the algorithm into the TACO codes will be discussed and examples will be given.
Quasi-stationary phase change heat transfer on a fin
NASA Astrophysics Data System (ADS)
Orzechowski, Tadeusz; Stokowiec, Katarzyna
2016-03-01
The paper presents heat transfer research basing on a long fin with a circular cross-section. Its basis is welded to the pipe where the hot liquid paraffin, having a temperature of 70°C at the inflow, is pumped. The analyzed element is a recurrent part of a refrigeration's condenser, which is immersed in a paraffin. The temperature of the inflowing liquid is higher than the temperature of the melting process for paraffin, which allows the paraffin to liquify. The temperature at the basis of the rib changes and it is assumed that the heat transfer is quasi-stationary. On this basis the estimation of the mean value of heat transfer coefficient was conducted. The unsteady thermal field of the investigated system was registered with an infrared camera V50 produced by a Polish company Vigo System. This device is equipped with a microbolometric detector with 384 × 288 elements and the single pixel size 25 × 25 μm. Their thermal resolution is lower than 70 mK at a temperature of 30 °C. The camera operates at 7,5 ÷ 14 μm long-wave infrared radiation range. For a typical lens 35 mm the special resolution is 0.7 mrad. The result of the calculations is mean heat transfer coefficient for the considered time series. It is equal to 50 W m -2 K-1 and 47 W m -2 K-1 on the left and right side of the fin, respectively. The distance between the experimental data and the curve approximating the temperature distribution was assessed with the standard deviation, Sd = 0.04 K.
Parametric study of boiling heat transfer in porous media
Shi, B.; Jones, B.G.; Pan, C.
1996-04-01
Detailed numerical modeling and parametric variation studies were conducted on boiling heat transfer processes in porous deposits with emphasis on applications associated with light water nuclear power reactor systems. The processes of boiling heat transfer in the porous corrosion deposits typically involve phase changes in finite volumetric regions in the porous media. The study examined such processes in two porous media configurations, without chimneys (homogeneous porous structures) and with chimneys (heterogeneous porous structures). A 1-D model and a 2-D model were developed to simulate two-phase flows with phase changes, without dry-out, inside the porous media for both structural configurations. For closure of the governing equations, an empirical correlation of the evaporation rate for phase changes inside the porous media was introduced. In addition, numerical algorithms were developed to solve the coupled nonlinear equations of mass, momentum, energy, capillary pressure, and evaporation rate. The distributions of temperature, thermodynamic saturation, liquid pressure, vapor pressure, liquid velocity, and vapor velocity were predicted. Furthermore, the effects of heat flux, system pressure, porosity, particle diameter, chimney population density, chimney radius, and crud thickness on the all superheat, critical heat flux, and minimum saturation were examined. The predictions were found to be in good agreement with the available experimental results.
Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials
Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei
2015-01-01
The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond. PMID:25974383
Begell, W.
1983-01-01
The glossary defines terms used in the field of heat transfer. The English, French, and German terms in this glossary have been reworked and updated. A section of Japanese terms has also been provided. Terms covered are grouped into the following categories: (1) General Concepts; (2) Dimensional and Similarity Methods; (3) Heat Conduction; (4) Convective Heat Transfer in a Single-Phase Medium; (5) Convective Heat Transfer in Evaporation, Boiling, and Condensation; (6) Mass Transfer; and (7) Radiativae Heat Transfer. Alphabetical indexes of English,Russian, German, French, and Japanese terms are included.
Personalized recommendation based on heat bidirectional transfer
NASA Astrophysics Data System (ADS)
Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo
2016-02-01
Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.
A FIDAP and an empirical estimate of conjugate heat transfer of a graphite crucible
Bateman, K.J.; Clarksean, R.L.
1995-05-01
A set of thermal analyses has been conducted to conservatively predict the heat transfer of a graphite crucible. The study used conjugate heat transfer to determine the cooling characteristics of a graphite crucible. Natural convection and conduction through the casting charge and the graphite crucible are examined. All of the analyses were conducted in non-dimensional form up to a Rayleigh number of 1 x 10{sup 8}. The parametric study examined the effect of increasing the internal heat generation of the casting charge. Data derived from an empirical estimate are compared to the FIDAP simulations. The two models are found to have good correlation.
NASA Astrophysics Data System (ADS)
Kılıç, Bayram; İpek, Osman
2016-06-01
In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.
Turbine stage aerodynamics and heat transfer prediction
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Mcconnaughey, H. V.
1989-01-01
A numerical study of the aerodynamic and thermal environment associated with axial turbine stages is presented. Computations were performed using a modification of the unsteady NASA Ames viscous code, ROTOR1, and an improved version of the NASA Lewis steady inviscid cascade system MERIDL-TSONIC coupled with boundary layer codes BLAYER and STAN5. Two different turbine stages were analyzed: the first stage of the United Technologies Research Center Large Scale Rotating Rig (LSRR) and the first stage of the Space Shuttle Main Engine (SSME) high pressure fuel turbopump turbine. The time-averaged airfoil midspan pressure and heat transfer profiles were predicted for numerous thermal boundary conditions including adiabatic wall, prescribed surface temperature, and prescribed heat flux. Computed solutions are compared with each other and with experimental data in the case of the LSRR calculations. Modified ROTOR1 predictions of unsteady pressure envelopes and instantaneous contour plots are also presented for the SSME geometry. Relative merits of the two computational approaches are discussed.
TACO: a finite element heat transfer code
Mason, W.E. Jr.
1980-02-01
TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.
Conjugate heat transfer analysis with subcooled boiling for an arc-heater wind tunnel nozzle
Weaver, M.A.; Gramoll, K.C.
1996-10-01
A method for unsteady, axisymmetric, conjugate heat transfer analysis has been developed. The conjugate heat transfer domain comprises co-flowing high-temperature air and subcooled water coolant on opposite sides of a copper-zirconium, converging nozzle. Heat transfer through the nozzle wall is characterized by solid-body conduction with convection boundary conditions along the air side and water side of the nozzle wall. The air-side heat transfer is characterized by forced convection with a turbulent boundary layer. The water-side heat transfer is characterized by forced-convection, subcooled, nucleate boiling. Convective heat transfer coefficients on each side of the nozzle wall are functions of the wall temperature and the respective flow properties, thus coupling the three regions of the domain. The solution method marches in time, solving, at each time step for the nozzle wall temperature distribution, the flow properties on each side of the nozzle wall, and for the convective heat transfer coefficients. The algorithm terminates when either the steady state is achieved or nozzle wall failure conditions are reached. Solutions are obtained for four test cases called from the run history of the Arnold Engineering Development Center HEAT-H1 Test Unit. Results show that the recorded test case failures were not caused by precritical boiling effects. Conclusive failure analysis for the HEAT-H1 test cases awaits application of an appropriate convective boiling critical heat flux model, along with creep and stress-rupture models for the nozzle wall.
Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina
2013-05-01
The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. PMID:23580359
Sensitivity Analysis of the Gap Heat Transfer Model in BISON.
Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle
2014-10-01
This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.
Theory of Heat Transfer in Smooth and Rough Pipes
NASA Technical Reports Server (NTRS)
Mattioli, G. D.
1942-01-01
The heat transfer accompanying turbulent flow in tubes has been treated by a new theory of wall turbulence, and a formula for smooth tubes has been derived which is asymptotic at Re approaches infinity. It agrees very well with the data available to date. The formula also holds for the flow along a flat plate if lambda is based on the velocity far away. For rough tubes, the unit conductance is shown to be a function of kv*/upsilon; the two empirical constants (delta(r), n) which appear in equation (52) cannot yet be determined because of lack of experimental data.
Heat transfer in thermal insulations - recent progress in analysis
Fricke, J.; Caps, R.
1988-09-01
Thermal insulations made of fibers, powders, or porous gels are characterized best with respect to their infrared optical thickness. (i) In optically thick insulations, where diffusion of infrared radiation occurs, the contributions from solid conduction and radiative transport are superimposed additively. (ii) For optically thin insulations a complex coupling mechanism causes the total heat transfer to be larger than the sum of the components; this holds especially for low emissivity boundaries. In this paper recent progress in the investigation of evacuated thermal insulations is reviewed.
Nanoparticles for heat transfer and thermal energy storage
Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael
2015-07-14
An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.
Mechanics/heat-transfer relation for particulate materials. Final report
Campbell, C.S.; Wang, D.G.; Rahman, K.
1991-11-01
The original goal of this study was to try and understand the relationship between the thermal and mechanical properties of particulate flows. Two situations were examined. The first is a study of the effects of simple shear flows, as a embryonic flow type on the apparent thermal conductivity and apparent viscosity of a dry granular flow. The second study involved fluidized beds. The original idea was to try and relate the heat transfer behavior of a fluidized bed to the ``particle pressure,`` the forces by only the particle phase of the two-phase mixture. (VC)
Mechanics/heat-transfer relation for particulate materials
Campbell, C.S.; Wang, D.G.; Rahman, K.
1991-11-01
The original goal of this study was to try and understand the relationship between the thermal and mechanical properties of particulate flows. Two situations were examined. The first is a study of the effects of simple shear flows, as a embryonic flow type on the apparent thermal conductivity and apparent viscosity of a dry granular flow. The second study involved fluidized beds. The original idea was to try and relate the heat transfer behavior of a fluidized bed to the particle pressure,'' the forces by only the particle phase of the two-phase mixture. (VC)
Heat transfer in rotating serpentine passages with trips normal to the flow
NASA Technical Reports Server (NTRS)
Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.
1991-01-01
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.
Heat transfer in rotating serpentine passages with trips normal to the flow
NASA Astrophysics Data System (ADS)
Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.
1991-06-01
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.
Heat Transfer in Regions of Separated and Reattached Flows
NASA Technical Reports Server (NTRS)
Crawford, Davis H; Rumsey, Charles B
1957-01-01
Past experimental work has indicated that separated flow can greatly increase the heat transfer to a surface; whereas, some theoretical studies have indicated a possible decrease. Recent investigations have helped to clarify the effects of separation on heat transfer and have indicated a method of reducing separation. This paper considers the results of some of these investigations and shows the heat transfer in regions of separation and reattachment for a few specific shapes. These results show that the heat transfer in a separated region is strongly affected by the extent of separation, the location of the reattachment point, and the location of transition along the separated boundary.
Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code
NASA Technical Reports Server (NTRS)
Hou, Gene
2000-01-01
The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.
Ethyl alcohol boiling heat transfer on multilayer meshed surfaces
NASA Astrophysics Data System (ADS)
Dåbek, Lidia; Kapjor, Andrej; Orman, Łukasz J.
2016-06-01
The paper presents the problem of heat transfer enhancement with the application of multilayer metal mesh structures during boiling of ethyl alcohol at ambient pressure. The preparation of samples involved sintering fine copper meshes with the copper base in the reduction atmosphere in order to prevent oxidation of the samples. The experiments included testing up to 4 layers of copper meshes. Significant augmentation of boiling heat transfer is possible, however, considerable number of meshes actually hinders heat transfer conditions and leads to the reduction in the heat flux transferred from the heater surface.
Heat Transfer Variation on Protuberances and Surface Roughness Elements
NASA Technical Reports Server (NTRS)
Henry, Robert C.; Hansman, R. John, Jr.; Breuer, Kenneth S.
1995-01-01
In order to determine the effect of surface irregularities on local convective heat transfer, the variation in heat transfer coefficients on small (2-6 mm diam) hemispherical roughness elements on a flat plate has been studied in a wind funnel using IR techniques. Heat transfer enhancement was observed to vary over the roughness elements with the maximum heat transfer on the upstream face. This heat transfer enhancement increased strongly with roughness size and velocity when there was a laminar boundary layer on the plate. For a turbulent boundary layer, the heat transfer enhancement was relatively constant with velocity, but did increase with element size. When multiple roughness elements were studied, no influence of adjacent roughness elements on heat transfer was observed if the roughness separation was greater than approximately one roughness element radius. As roughness separation was reduced, less variation in heat transfer was observed on the downstream elements. Implications of the observed roughness enhanced heat transfer on ice accretion modeling are discussed.
Heat transfer coefficients for drying in pulsating flows
Fraenkel, S.L.
1998-05-01
Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.
Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger
NASA Astrophysics Data System (ADS)
Kuznetsov, V. V.; Shamirzaev, A. S.
2015-11-01
The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.
Analysis for radiative heat transfer in a circulating fluidized bed
Steward, F.R.; Couturier, M.F.; Poolpol, S.
1995-12-31
The radiative heat transfer from the particles within a circulating fluidized bed has been determined for a number of different assumptions. Based on temperature profiles measured in an operating circulating fluidized bed burning coal, a procedure for predicting the radiative transfer from the solid particles to a cold wall is recommended. The radiative transfer from the solid particles to a cold wall makes up approximately 50% of the total heat transfer to the wall in a circulating fluidized bed combustor.
Smith, A.W.; Starr, T.L.
1995-05-01
Most finite-volume thermal models account for the diffusion and convection of heat and may include volume heating. However, for certain simulation geometries, a large percentage of heat flux is due to thermal radiation. In this paper a finite-volume computational procedure for the simulation of heat transfer by conduction, convection and radiation in three dimensional complex enclosures is developed. The radiant heat transfer is included as a source term in each volume element which is derived by Monte Carlo ray tracing from all possible radiating and absorbing faces. The importance of radiative heat transfer is illustrated in the modeling of chemical vapor infiltration (CVI) of tubes. The temperature profile through the tube preform matches experimental measurements only when radiation is included. An alternative, empirical approach using an {open_quotes}effective{close_quotes} thermal conductivity for the gas space can match the initial temperature profile but does not match temperature changes that occur during preform densification.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Chen, Ming-Ming
1989-01-01
The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.
Numerical studies of convective heat transfer in an inclined semiannular enclosure
NASA Technical Reports Server (NTRS)
Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser
1989-01-01
Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.