Force modulation and electrochemical gating of conductance in a cytochrome
NASA Astrophysics Data System (ADS)
Davis, Jason J.; Peters, Ben; Xi, Wang
2008-09-01
Scanning probe methods have been used to measure the effect of electrochemical potential and applied force on the tunnelling conductance of the redox metalloprotein yeast iso-1-cytochrome c (YCC) at a molecular level. The interaction of a proximal probe with any sample under test will, at this scale, be inherently perturbative. This is demonstrated with conductive probe atomic force microscopy (CP-AFM) current-voltage spectroscopy in which YCC, chemically adsorbed onto pristine Au(111) via its surface cysteine residue, is observed to become increasingly compressed as applied load is increased, with concomitant decrease in junction resistance. Electrical contact at minimal perturbation, where probe-molecule coupling is comparable to that in scanning tunnelling microscopy, brings with it the observation of negative differential resistance, assigned to redox-assisted probe-substrate tunnelling. The role of the redox centre in conductance is also resolved in electrochemical scanning tunnelling microscopy assays where molecular conductance is electrochemically gateable through more than an order of magnitude.
Accuracy testing of electric groundwater-level measurement tapes
Jelinski, Jim; Clayton, Christopher S.; Fulford, Janice M.
2015-01-01
The accuracy tests demonstrated that none of the electric-tape models tested consistently met the suggested USGS accuracy of ±0.01 ft. The test data show that the tape models in the study should give a water-level measurement that is accurate to roughly ±0.05 ft per 100 ft without additional calibration. To meet USGS accuracy guidelines, the electric-tape models tested will need to be individually calibrated. Specific conductance also plays a part in tape accuracy. The probes will not work in water with specific conductance values near zero, and the accuracy of one probe was unreliable in very high conductivity water (10,000 microsiemens per centimeter).
Impedance probe to measure local void fraction profiles
NASA Astrophysics Data System (ADS)
Teyssedou, A.; Tapucu, A.; Lortie, M.
1988-04-01
A conductivity-type local void measurement system has been developed. The effects of the sensor tip geometry, the unbalance of the front-end bridge, the comparator threshold level, and the mass fluxes on the response of the instrument have been studied. The system has been calibrated under air-water two-phase flow conditions using the quick-closing-valve technique. Comparison of the void profiles obtained with the conductivity probe with those obtained using an optical probe confirms the applicability of this system for two-phase (air-water) flows.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min; Simpson, John
1993-01-01
Electromagnetic NDE techniques have in the past steered away from the use of ferromagnetic materials. Although their high permeabilities lead to increased field levels, the properties of ferrous elements in the presence of alternating magnetic fields are difficult to determine. In addition, their use leads to losses which can be minimized through the use of low conductivity ferrites. In fact, the eddy current probes which do incorporate ferromagnetic materials have focused on these losses and the shielding which can be obtained by surrounding a probe with a high permeability, conducting material. Eddy current probes enclosed in conducting and magnetic shields have been used to prevent the generated fields from interacting with materials in the vicinity of the probe, such as when testing near material boundaries. A recent invention has used ferromagnetic shielding to magnetically separate individual concentric eddy current probes in order to eliminate cross-talk between the probes so that simultaneous detection of different types of flaws at different depths can be achieved. In contrast to the previous uses of ferromagnetic materials purely as magnetic shields, an electromagnetic flaw detector recently developed at NASA Langley Research Center takes advantage of the flux focusing properties of a ferromagnetic mild steel in order to produce a simple, effective device for the non-destructive evaluation of conducting materials. The Flux Focusing Eddy Current Probe has been shown to accurately measure material thickness and fatigue damage. The straight forward flaw response of the probe makes the device ideal for rapid inspection of large structures, and has lead to its incorporation in a computer controlled search routine to locate fatigue crack tips and monitor experimental fatigue crack growth experiments.
Lee, Joseph C; Stiles, David; Lu, Jun; Cam, Margaret C
2007-01-01
Background Microarrays are a popular tool used in experiments to measure gene expression levels. Improving the reproducibility of microarray results produced by different chips from various manufacturers is important to create comparable and combinable experimental results. Alternative splicing has been cited as a possible cause of differences in expression measurements across platforms, though no study to this point has been conducted to show its influence in cross-platform differences. Results Using probe sequence data, a new microarray probe/transcript annotation was created based on the AceView Aug05 release that allowed for the categorization of genes based on their expression measurements' susceptibility to alternative splicing differences across microarray platforms. Examining gene expression data from multiple platforms in light of the new categorization, genes unsusceptible to alternative splicing differences showed higher signal agreement than those genes most susceptible to alternative splicing differences. The analysis gave rise to a different probe-level visualization method that can highlight probe differences according to transcript specificity. Conclusion The results highlight the need for detailed probe annotation at the transcriptome level. The presence of alternative splicing within a given sample can affect gene expression measurements and is a contributing factor to overall technical differences across platforms. PMID:17708771
Micro/nano electro mechanical systems for practical applications
NASA Astrophysics Data System (ADS)
Esashi, Masayoshi
2009-09-01
Silicon MEMS as electrostatically levitated rotational gyroscope, 2D optical scanner and wafer level packaged devices as integrated capacitive pressure sensor and MEMS switch are described. MEMS which use non-silicon materials as diamond, PZT, conductive polymer, CNT (carbon nano tube), LTCC with electrical feedthrough, SiC (silicon carbide) and LiNbO3 for multi-probe data storage, multi-column electron beam lithography system, probe card for wafer-level burn-in test, mould for glass press moulding and SAW wireless passive sensor respectively are also described.
System and method for determining coolant level and flow velocity in a nuclear reactor
Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd
2013-09-10
A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.
Veazey, Joshua P; Reguera, Gemma; Tessmer, Stuart H
2011-12-01
The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as "pilus nanowires" to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.
Pump and probe spectroscopy with continuous wave quantum cascade lasers.
Kirkbride, James M R; Causier, Sarah K; Dalton, Andrew R; Weidmann, Damien; Ritchie, Grant A D
2014-02-07
This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1987-01-01
At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1975-01-01
Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimoto, Shinya, E-mail: yosshi@issp.u-tokyo.ac.jp; Shiozawa, Yuichiro; Koitaya, Takanori
Electronic states and electrical conductivity of the native oxide Si(111) surface adsorbed with an electron donor tetrakis(dimethylamino)ethylene (TDAE) were investigated using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy (XPS), and independently driven four-probe conductivity measurements. The formation of positively charged TDAE species is confirmed by the downward shift of the vacuum level by 1.45 eV, the absence of HOMO level in the valence band, and observation of the positively charged state in the N 1s XPS spectra. Si 2p XPS spectra and four-probe conductivity measurements revealed that TDAE adsorption induces an increase in downward band bending and a reduction in electrical resistancemore » of the surface, respectively. The sheet conductivity and the electron density of the surface are 1.1 μS/◻ and 4.6 × 10{sup 9} cm{sup −2}, respectively, after TDAE adsorption, and they are as high as 350% of the original surface. These results demonstrate that the electron density of the semiconductor surface is successfully controlled by the electron donor molecule TDAE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkbride, James M. R.; Causier, Sarah K.; Dalton, Andrew R.
This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorptionmore » profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.« less
Gate-controlled conductance switching in DNA
Xiang, Limin; Palma, Julio L.; Li, Yueqi; Mujica, Vladimiro; Ratner, Mark A.; Tao, Nongjian
2017-01-01
Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated. Here we demonstrate conductance switching in DNA by replacing a DNA base with a redox group. By applying an electrochemical (EC) gate voltage to the molecule, we switch the redox group between the oxidized and reduced states, leading to reversible switching of the DNA conductance between two discrete levels. We further show that monitoring the individual conductance switching allows the study of redox reaction kinetics and thermodynamics at single molecular level using DNA as a probe. Our theoretical calculations suggest that the switch is due to the change in the energy level alignment of the redox states relative to the Fermi level of the electrodes. PMID:28218275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, T.; Kubo, O.; Shingaya, Y.
the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequentlymore » modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dremov, Vyacheslav, E-mail: dremov@issp.ac.ru; Fedorov, Pavel; Grebenko, Artem
2015-05-15
We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulationmore » regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.« less
Differential and directional effects of perfusion on electrical and thermal conductivities in liver.
Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L
2009-01-01
Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.
NASA Astrophysics Data System (ADS)
Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo
2017-11-01
In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.
NASA Technical Reports Server (NTRS)
Borg, Stephen E.; Harper, Samuel E.
2001-01-01
This paper documents the design and development of the fiber-optic probes utilized in the flame detection systems used in NASA Langley Research Center's 8-Foot High Temperature Tunnel (8-ft HTT). Two independent flame detection systems are utilized to monitor the presence and stability of the main-burner and pilot-level flames during facility operation. Due to the harsh environment within the combustor, the successful development of a rugged and efficient fiber-optic probe was a critical milestone in the development of these flame detection systems. The final optical probe design for the two flame detection systems resulted from research that was conducted in Langley's 7-in High Temperature Pilot Tunnel (7-in HTT). A detailed description of the manufacturing process behind the optical probes used in the 8-ft HTT is provided in Appendix A of this report.
The role of probe oxide in local surface conductivity measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.
2015-05-07
Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantummore » dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.« less
LOCATION AND CHARACTERIZATION OF SUBSURFACE ANOMALIES USING A SOIL CONDUCTIVITY PROBE
An electrical conductivity probe, designed for use with "direct push" technology, has been successfully used to locate buried drums, contaminant plumes, and to precisely locate and characterize a previously installed permeable reactive iron wall. The conductivity probe was desig...
NASA Astrophysics Data System (ADS)
Wilson, Adam A.
The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It is determined that, when operating the scanning hot probe technique in air at standard temperature and pressure using Wollaston probes, the technique is capable of measuring, within 20% uncertainty, samples with values of thermal conductivity up to 10 Wm-1K-1 in contact mode and up to 2 Wm-1K-1 in non-contact mode. By increasing the thermal conductivity of the probe's surroundings (i.e. changing air to a more conductive gas), sensitivity in non-contact mode to sample thermal conductivity is improved, which suggests potential for future investigations using non-contact scanning hot probe to measure thermal conductivity of higher thermal conductivity samples. The ability of the technique to differentiate thin films from the substrate is investigated, and the sensitivity of the technique to thin films and samples with anisotropic properties is explored. The models (both analytical and finite element) developed and reported in this dissertation lead to the ability to measure samples which, by the standard procedure before this work, were unable to be accurately measured. While other techniques failed to be able to successfully interrogate the film thermal conductivity of a full set of double-wall carbon nanotubes infused into polymers, the methods developed in this work allowed non-contact scanning hot probe measurements to be successfully performed to obtain the film thermal conductivity for each sample. Finite element simulations accounting for the anisotropy of these thin film on sample materials show similar trends with independently measured in-plane thermal conductivity for the only two (of five) samples in the set which were successfully able to be measured by the independent technique. Investigations in contact mode with high resolution Pd probes, whose probe-to-sample clearance is difficult to control in a repeatable fashion, show that surface roughness affects the thermal contact resistance. This can lead to values of reported sample thermal conductivity which are misleading, when using the standard calibrated thermal exchange parameters on samples with significantly different surface roughness than the calibration samples. This affect was taken into account to report sample thermal conductivity of Bi2Te3 nanoflakes.
The Role of Education, Parents and Peers in Adolescent Heavy Episodic Drinking
ERIC Educational Resources Information Center
Vermeulen-Smit, Evelien; Ter Bogt, Tom F. M.; Verdurmen, Jacqueline E. E.; Van Dorsselaer, Saskia A. F. M.; Vollebergh, Wilma A. M.
2012-01-01
Heavy episodic drinking is more common among adolescents with a lower educational level. Aim: This study probed into the mechanism through which a lower educational level is linked to heavier adolescent drinking. Methods: Structural equation modelling was conducted using data from the 2005 Health Behaviour in School-aged Children Survey (n =…
Inspecting Friction Stir Welding using Electromagnetic Probes
NASA Technical Reports Server (NTRS)
Kinchen, David G.
2004-01-01
A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.
Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...
2015-08-31
The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.
NASA Astrophysics Data System (ADS)
Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.
2018-05-01
The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.
Rigid spine reinforced polymer microelectrode array probe and method of fabrication
Tabada, Phillipe; Pannu, Satinderpall S
2014-05-27
A rigid spine-reinforced microelectrode array probe and fabrication method. The probe includes a flexible elongated probe body with conductive lines enclosed within a polymeric material. The conductive lines connect microelectrodes found near an insertion end of the probe to respective leads at a connector end of the probe. The probe also includes a rigid spine, such as made from titanium, fixedly attached to the probe body to structurally reinforce the probe body and enable the typically flexible probe body to penetrate and be inserted into tissue, such as neural tissue. By attaching or otherwise fabricating the rigid spine to connect to only an insertion section of the probe body, an integrally connected cable section of the probe body may remain flexible.
Phoenix Conductivity Probe with Shadow and Toothmark
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left. The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Determining confounding sensitivities in eddy current thin film measurements
NASA Astrophysics Data System (ADS)
Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn
2017-02-01
Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.
Monitoring probe for groundwater flow
Looney, Brian B.; Ballard, Sanford
1994-01-01
A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.
Monitoring probe for groundwater flow
Looney, B.B.; Ballard, S.
1994-08-23
A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.
Evaluation of Amount of Blood in Dry Blood Spots: Ring-Disk Electrode Conductometry.
Kadjo, Akinde F; Stamos, Brian N; Shelor, C Phillip; Berg, Jordan M; Blount, Benjamin C; Dasgupta, Purnendu K
2016-06-21
A fixed area punch in dried blood spot (DBS) analysis is assumed to contain a fixed amount of blood, but the amount actually depends on a number of factors. The presently preferred approach is to normalize the measurement with respect to the sodium level, measured by atomic spectrometry. Instead of sodium levels, we propose electrical conductivity of the extract as an equivalent nondestructive measure. A dip-type small diameter ring-disk electrode (RDE) is ideal for very small volumes. However, the conductance (G) measured by an RDE depends on the depth (D) of the liquid below the probe. There is no established way of computing the specific conductance (σ) of the solution from G. Using a COMSOL Multiphysics model, we were able to obtain excellent agreement between the measured and the model predicted conductance as a function of D. Using simulations over a large range of dimensions, we provide a spreadsheet-based calculator where the RDE dimensions are the input parameters and the procedure determines the 99% of the infinite depth conductance (G99) and the depth D99 at which this is reached. For typical small diameter probes (outer electrode diameter ∼ <2 mm), D99 is small enough for dip-type measurements in extract volumes of ∼100 μL. We demonstrate the use of such probes with DBS extracts. In a small group of 12 volunteers (age 20-66), the specific conductance of 100 μL aqueous extracts of 2 μL of spotted blood showed a variance of 17.9%. For a given subject, methanol extracts of DBS spots nominally containing 8 and 4 μL of blood differed by a factor of 1.8-1.9 in the chromatographically determined values of sulfate and chloride (a minor and major constituent, respectively). The values normalized with respect to the conductance of the extracts differed by ∼1%. For serum associated analytes, normalization of the analyte value by the extract conductance can thus greatly reduce errors from variations in the spotted blood volume/unit area.
Optoelectronically probing the density of nanowire surface trap states to the single state limit
NASA Astrophysics Data System (ADS)
Dan, Yaping
2015-02-01
Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.
Evaluation of acoustic Doppler velocimetry (ADV) performance under various probe configurations
NASA Astrophysics Data System (ADS)
Liu, Da; Valyrakis, Manousos
2017-04-01
Acoustic Doppler velocimetry (ADV) is widely used as one of the most versatile and robust flow diagnostics tools for both laboratory and field studies across a range of research and applied themes spanning engineering eco-hydraulics and geomorphology. A range of specific ADV probes with varying specifications, are readily available for use by professionals and researchers. However, in practice using certain ADV equipment under certain default configurations can easily result in obtaining flow diagnostics that are non-representative of the real flow conditions. This appears to be true for most probes but even more those with which higher temporal resolution can be achieved - which many times is desired for assessing turbulence levels, amongst others. A preliminary examination revealed that there is a varying level of dependency on a number of the probes' configuration parameters, which even though detailed in the user manual, a definite guide for the user is lacking. Subsequently users of this equipment may end up underutilizing or using it in a manner that returns inaccurate results. There are little, if any, resources in obtaining a better understanding on how to use the probe effectively. To this goal a series of laboratory experiments are conducted, under the same open channel flow conditions, using a profiler (ADCP VectrinoII from Nortek®) aiming to cover the full range of probe configuration combinations that can be used in practice. For each experiment, single or multiple point measurements are taken to reconstruct velocity and turbulence intensity profiles. These are conducted at the same location (mid-channel) under the same flow conditions (referring to steady uniform flow and fully developed turbulence) for all probe configurations. In particular, the effect of tested parameters (including Range length, Range to fist cell, Sampling rate, Ping algorithm, Transmit pulse size and Cell size) on the sensitivity and accuracy of the obtained results is assessed. The signal to noise ratio (SNR) and the correlation of the measurement are used in evaluating the data quality, while a qualitative comparison of the resulting profiles for flow diagnostics is enabled using reference profiles obtained via a VectrinoI ADV (from Nortek®) and MicroADV (from Sontek®) respectively under the exactly same flow condition at the same location. These observations are important to identify its best configuration for a given probe towards improving the data quality and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierre, John W.; Wies, Richard; Trudnowski, Daniel
Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacificmore » Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a half of a second. For the mid and low-level probing, the Celilo terminal of the PDCI is modulated with a known probing signal. Similar but less extensive tests were conducted in June of 2000. The low-level probing signals were designed at the University of Wyoming. A number of important design factors are considered. The designed low-level probing signal used in the tests is a multi-sine signal. Its frequency content is focused in the range of the inter-area electromechanical modes. The most frequently used of these low-level multi-sine signals had a period of over two minutes, a root-mean-square (rms) value of 14 MW, and a peak magnitude of 20 MW. Up to 15 cycles of this probing signal were injected into the system resulting in a processing gain of 15. The resulting measured response at points throughout the system was not much larger than the ambient noise present in the measurements.« less
Liddell, Mark R; Li, S Kevin; Higuchi, William I
2011-07-01
The purpose of this study was to characterize changes that occur in the iontophoretic transport of nonionic probe permeants in hairless mouse skin epidermal membrane from the anode to cathode when polystyrene sulfonate (PSS) oligomers are cotransported from the cathode to anode. The experiments were conducted with trace levels of the nonionic probe permeants: urea, mannitol, and raffinose. In order to systematically assess changes that occur as a result of having PSS in the cathodal chamber, the steady-state transport parameters of the membrane and the experimental permeability coefficients of the probe permeants were determined and compared with results obtained from earlier baseline experiments where both the cathodal and anodal chamber media were phosphate buffered saline. In addition, the physicochemical properties of the PSS solutions were determined including the solution viscosity and conductance as well as the mobilities of individual PSS oligomers. The effective pore radii of the transport pathways were calculated using a theoretical expression based on simultaneous diffusion and electroosmosis. Compared with the baseline results, the calculated radii were found to have increased up to around twofold and the iontophoretic fluxes of the probe permeants increased by as much sixfold. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Phoenix Conductivity Probe after Extraction from Martian Soil on Sol 99
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Surface Stereo Imager on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. This imaging served as a check of whether soil had stuck to the needles. The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Phoenix Conductivity Probe Inserted into Martian Soil
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.' The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Scardigli, M.; Ferrantini, C.; Gabbrielli, T.; Silvestri, L.; Coppini, R.; Tesi, C.; Rog-Zielinska, E. A.; Kohl, P.; Cerbai, E.; Poggesi, C.; Pavone, F. S.; Sacconi, L.
2017-01-01
Well-coordinated activation of all cardiomyocytes must occur on every heartbeat. At the cell level, a complex network of sarcolemmal invaginations, called the transverse-axial tubular system (TATS), propagates membrane potential changes to the cell core, ensuring synchronous and uniform excitation–contraction coupling. Although myocardial conduction of excitation has been widely described, the electrical properties of the TATS remain mostly unknown. Here, we exploit the formal analogy between diffusion and electrical conductivity to link the latter with the diffusional properties of TATS. Fluorescence recovery after photobleaching (FRAP) microscopy is used to probe the diffusion properties of TATS in isolated rat cardiomyocytes: A fluorescent dextran inside TATS lumen is photobleached, and signal recovery by diffusion of unbleached dextran from the extracellular space is monitored. We designed a mathematical model to correlate the time constant of fluorescence recovery with the apparent diffusion coefficient of the fluorescent molecules. Then, apparent diffusion is linked to electrical conductivity and used to evaluate the efficiency of the passive spread of membrane depolarization along TATS. The method is first validated in cells where most TATS elements are acutely detached by osmotic shock and then applied to probe TATS electrical conductivity in failing heart cells. We find that acute and pathological tubular remodeling significantly affect TATS electrical conductivity. This may explain the occurrence of defects in action potential propagation at the level of single T-tubules, recently observed in diseased cardiomyocytes. PMID:28507142
Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene.
Settnes, Mikkel; Power, Stephen R; Petersen, Dirch H; Jauho, Antti-Pekka
2014-03-07
Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.
Tshishiku, Eugene M [Augusta, GA
2011-08-09
A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.
Sparse sampling and reconstruction for electron and scanning probe microscope imaging
Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.
2015-07-28
Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.
Sengupta, Partha Pratim; Gloria, Jared N; Amato, Dahlia N; Amato, Douglas V; Patton, Derek L; Murali, Beddhu; Flynt, Alex S
2015-10-12
Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10(-11) M (10 pM) of target oligonucleotides could be detected within 15 min of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to form a target-probe duplex that would dissociate from PANI. Furthermore, this approach is robust and is capable of detecting specific RNAs in extracts from animals. This sensor system improves on previously reported strategies by transducing highly specific probe dissociation events through intrinsic properties of a conducting polymer without the need for additional labels.
Clinical tests of an ultrasonic periodontal probe
NASA Astrophysics Data System (ADS)
Hinders, Mark K.; Lynch, John E.; McCombs, Gayle B.
2002-05-01
A new ultrasonic periodontal probe has been developed that offers the potential for earlier detection of periodontal disease activity, non-invasive diagnosis, and greater reliability of measurement. A comparison study of the ultrasonic probe to both a manual probe, and a controlled-force probe was conducted to evaluate its clinical effectiveness. Twelve patients enrolled into this study. Two half-month examinations were conducted on each patient, scheduled one hour apart. A one-way analysis of variance was performed to compare the results for the three sets of probing depth measurements, followed by a repeated measures analysis to assess the reproducibility of the different probing techniques. These preliminary findings indicate that manual and ultrasonic probing measure different features of the pocket. Therefore, it is not obvious how the two depth measurements correspond to each other. However, both methods exhibited a similar tendency toward increasing pocket depths as Gingival Index scores increased. Based on the small sample size, further studies need to be conducted using a larger population of patients exhibiting a wider range of disease activity. In addition, studies that allow histological examination of the pocket after probing will help further evaluate the clinical effectiveness the ultrasonic probe. Future studies will also aid in the development of more effective automated feature recognition algorithms that convert the ultrasonic echoes into pocket depth readings.
Flexible probe for measuring local conductivity variations in Li-ion electrode films
NASA Astrophysics Data System (ADS)
Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian
2018-04-01
Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.
Martinez, N. E.; Sharp, J. L.; Kuhne, W. W.; ...
2015-11-23
Here, reflectance spectroscopy is a rapid and non-destructive analytical technique that may be used for assessing plant stress, and has potential applications for use in remediation. Changes in reflectance such as that due to metal stress may occur before damage is visible, and existing studies have shown that metal stress does cause changes in plant reflectance. To further investigate the potential use of reflectance spectroscopy as a method for assessing metal stress in plants, an exploratory study was conducted in which Arabidopsis thaliana plants were treated twice weekly in a laboratory setting with varying levels (0, 0.5, or 5 mMmore » (millimolar)) of caesium chloride (CsCl) solution, and reflectance spectra were collected every week for three weeks using an Analytical Spectral Devices FieldSpec Pro spectroradiometer with both a contact probe (CP) and a field of view (FOV) probe at 36.8 and 66.7 cm, respectively, above the plant. Plants were harvested each week after spectra collection for determination of relative water content and chlorophyll content. A visual assessment of the plants was also conducted using point observations on a uniform grid of 81 points. A mixed-effects model analysis was conducted for each vegetation index (VI) considered to determine the effects of length of treatment, treatment level, view with which spectra were acquired, and the interactions of these terms. Two-way analyses of variance (ANOVAs) were performed on the aforementioned endpoints (e.g. chlorophyll content) to determine the significance of the effects of treatment level and length of treatment. Multiple linear regression (MLR) was used to develop a predictive model for each endpoint, considering VI acquired at each view (CP, high FOV, and low FOV). Of the 14 VI considered, 8 were included in the MLR models. Contact probe readings and FOV readings differed significantly, but FOV measurements were generally consistent at each height.« less
Method And Apparatus For Two Dimensional Surface Property Analysis Based On Boundary Measurement
Richardson, John G.
2005-11-15
An apparatus and method for determining properties of a conductive film is disclosed. A plurality of probe locations selected around a periphery of the conductive film define a plurality of measurement lines between each probe location and all other probe locations. Electrical resistance may be measured along each of the measurement lines. A lumped parameter model may be developed based on the measured values of electrical resistance. The lumped parameter model may be used to estimate resistivity at one or more selected locations encompassed by the plurality of probe locations. The resistivity may be extrapolated to other physical properties if the conductive film includes a correlation between resistivity and the other physical properties. A profile of the conductive film may be developed by determining resistivity at a plurality of locations. The conductive film may be applied to a structure such that resistivity may be estimated and profiled for the structure's surface.
Wang, Yao; Gong, Qin; Zhang, Tao
2016-05-10
Frequency selectivity (FS) of the auditory system is established at the level of the cochlea and it is important for the perception of complex sounds. Although direct measurements of cochlear FS require surgical preparation, it can also be estimated with the measurements of otoacoustic emissions or behavioral tests, including stimulus frequency otoacoustic emission suppression tuning curves (SFOAE STCs) or psychophysical tuning curves (PTCs). These two methods result in similar estimates of FS at low probe levels. As the compressive nonlinearity of cochlea is strongly dependent on the stimulus intensity, the sharpness of tuning curves which is relevant to the cochlear nonlinearity will change as a function of probe level. The present study aims to investigate the influence of different probe levels on the relationship between SFOAE STCs and PTCs. The study included 15 young subjects with normal hearing. SFOAE STCs and PTCs were recorded at low and moderate probe levels for frequencies centred at 1, 2, and 4 kHz. The ratio or the difference of the characteristic parameters between the two methods was calculated at each probe level. The effect of probe level on the ratio or the difference between the parameters of SFOAE STCs and PTCs was then statistically analysed. The tuning of SFOAE STCs was significantly positively correlated with the tuning of the PTCs at both low and moderate probe levels; yet, at the moderate probe level, the SFOAE STCs were consistently broader than the PTCs. The mean ratio of sharpness of tuning at low probe levels was constantly around 1 while around 1.5 at moderate probe levels. Probe level had a significant effect on the sharpness of tuning between the two methods of estimating FS. SFOAE STC seems a good alternative measurement of PTC for FS assessment at low probe levels. At moderate probe levels, SFOAE STC and PTC were not equivalent measures of the FS in terms of their bandwidths. Because SFOAE STCs are not biased by higher levels auditory processing, they may represent cochlear FS better than PTCs.
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
Measuring Fluxes Of Heat To A Plasma-Arc Anode
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Menart, James A.; Pfender, Emil; Heberlein, Joachim
1995-01-01
Three probes constructed to provide measurements indicative of conductive, convective, and radiative transfer of heat from free-burning plasma arc to water-cooled copper anode used in generating arc. Each probe consists mainly of copper body with two thermocouples embedded at locations 4 mm apart along length. Thermocouples provide measure of rate of conduction of heat along probe and transfers of heat from plasma to sensing surface at tip of probe. Probes identical except sensing surface of one uncoated and other two coated with different materials to make them sensitive to different components of overall flux of heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing
Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less
Rotating concave eddy current probe
Roach, Dennis P [Albuquerque, NM; Walkington, Phil [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Hohman, Ed [Albuquerque, NM
2008-04-01
A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Negative differential resistance observation in complex convoluted fullerene junctions
NASA Astrophysics Data System (ADS)
Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick
2018-04-01
In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
NASA Astrophysics Data System (ADS)
Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.
2010-01-01
The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.
Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres
NASA Technical Reports Server (NTRS)
Roffe, G.; Venkataramani, K. S.
1978-01-01
The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.
Use of fathometers and electrical-conductivity probes to monitor riverbed scour at bridge piers
Hayes, Donald C.; Drummond, F.E.
1995-01-01
Two methods, a fathometer system and an electrical- conductivity probe system, were developed to monitor scour at bridge piers. The scour-monitoring systems consisted of a sensor (fathometer or electrical- conductivity probe), power supply, data logger, relay, and system program. The fathometer system was installed and tested at a bridge over the Leipsic River at Leipsic, Delaware, and at a bridge over Sinepuxent Bay near Ocean City. Maryland. Field data collected indicate that fathometers can be used to identify and monitor the riverbed elevation if post processing of the data and trends in the data are used to determine the riverbed location in relation to the transducer. The accuracy of the system is approximately the same as the resolution of the fathometer. Signal scatter can be a major source of error in the data. The electrical- conductivity probe system was installed and tested at a bridge over the Pamunkey River near Hanover, Virginia. The approximate elevation of the riverbed is determined by comparing conductivities of the surface-water flow with conductivities of submerged bed material from sensors located in each. Field data collected indicate that an electrical- conductivity probe, as tested, has limited usefulness in identifying and monitoring the riverbed elevation during high flows. As the discharge increases, the concentration of sediment in the surface-water flow increases, especially near the riverbed. Conductivities, measured at the sensors in the surface-water flow could not be distinguished from conductivities measured at the shallowest sensor in the submerged bed material.
Exploring Long-Term Productive Vocabulary Development in an EFL Context: The Role of Motivation
ERIC Educational Resources Information Center
Zheng, Yongyan
2012-01-01
The paper reports on a longitudinal multiple-case study that probed into four advanced university-level Chinese EFL learners' situated vocabulary learning experiences and explored the role of L2 motivation in their productive vocabulary development. In the study, Lexical Frequency Profile analysis and semi-structured interviews were conducted with…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1986-12-01
At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations.« less
NASA Technical Reports Server (NTRS)
Hale, L. C.
1977-01-01
A low cost conductivity probe system for use with the Super Loki Dart meteorological sounding rocket is described. Miniaturization of the Super Arcas blunt probe, operation of the blunt probe experiment, flight tests, and development of a Lyman-alpha probe are among the topics discussed.
Zhang, Xiaoguang; McGuire, Michael A.; Chen, Yong P.; ...
2016-03-08
Topological insulators, with characteristic topological surface states, have emerged as a new state of matter with rich potentials for both fundamental physics and device applications. However, the experimental detection of the surface transport has been hampered by the unavoidable extrinsic conductivity associated with the bulk crystals. Here we show that a four-probe transport spectroscopy in a multi-probe scanning tunneling microscopy system can be used to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators. We derive a scaling relation of measured resistance with respect to varying inter-probe spacing for two interconnected conduction channels, which allowsmore » quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi 2Se 3, Bi 2Te 2Se, and Sb-doped Bi 2Se 3 with that of a pure 2D conductance of graphene on SiC substrate. We also report the 2D conductance enhancement due to the surface doping effect in topological insulators. This technique can be applied to reveal 2D to 3D crossover of conductance in other complex systems.« less
Isentropic compression of argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeser, L.R.; Ekdahl, C.A.; Oona, H.
1997-06-01
The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is beingmore » sought.« less
Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers
NASA Astrophysics Data System (ADS)
Dlott, Dana
2008-03-01
Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.
Effect of photoelectric emission on blunt probe conductivity measurements in the stratosphere
NASA Astrophysics Data System (ADS)
John, Thomas; Chopra, P.; Garg, S. C.
2009-06-01
Two identical planar blunt probes of stainless steel material, biased with a bipolar ramp voltage, are used to measure the stratospheric polar conductivities to altitudes of 34 km. One probe (DP) is mounted closer to the gondola, looking downwards and shielded from sunlight, while the other (SP) is mounted looking sideways, away from the gondola. The daytime observations of positive ions in the 29-34 km altitude range with SP, and of negative ions at 34 km with DP, show photoelectric contaminations induced by solar UV radiations in the 190-230 nm band. These contaminations are found to be due to photoemissions from the SP probe steel surface and from the carbon paint that coats the surface of the gondola, respectively. It is found that, a segment of the photocurrent contaminated I-V curve, recorded with SP at higher negative probe potentials, is linear, and it can give the ambient positive polar conductivity.
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gros, Ethan; Udpa, Lalita; Smith, James A.
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs inmore » the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring loaded eddy probe is at measuring film thickness under varying experimental conditions. This research will study the effects of a number of factors such as i) calibration, ii) conductivity, iii) edge effect, iv) surface finish of base material and v) cable condition and compare with the long term reproducibility of a standard measurement. This work was performed with support from the Department of Energy under the United States National Nuclear Security Administration (NNSA) at the Idaho National Laboratory.« less
Quantitation of 24-Hour Moisturization by Electrical Measurements of Skin Hydration.
Wickett, R Randall; Damjanovic, Bronson
The purpose of this study was to quantify the effects of several moisturizers on hydration of the stratum corneum by measuring their effect on electrical conductance over a 24-hour period. Double-blind, randomized controlled trial. Twenty-five healthy female volunteers aged 18 to 65 years with dry skin on the lower legs and no other known dermatologic pathology participated in the study. Additional exclusion criteria were pregnant or taking anti-inflammatory steroids. The study was carried out in a clinical research facility in Winnipeg, Manitoba, Canada. Subjects underwent a 3-day conditioning period using a natural soap bar on the lower legs and no application of moisturizer to the skin. Participants then came to the test site and equilibrated for at least 30 minutes under controlled conditions of temperature and humidity. After baseline hydration measurements on test sites on the lower legs of each subject, a single application of each of 5 test products at a dose of 2 mg/cm was made. Skin hydration was assessed by electrical conductance measurements with a specialized probe. The probe was briefly placed on the skin surface with light pressure, and the measurement recorded in units of microsiemens (μS). Conductance was measured at 2, 4, 6, 8, and 24 hours after product applications. Although all but 1 of the test products increased conductance at 2 hours, only 2 moisturizers containing high levels of glycerin (products C and E) maintained increased conductance relative to baseline at 24 hours, +37.8 (P < .001) and +103.5 (P < .001), respectively. Moisturizers containing high levels of glycerin can provide a measurable moisturization benefit as determined by skin conductance for at least 24 hours after a single application.
NASA Astrophysics Data System (ADS)
Xiao, Zhiyong
In this dissertation, I present the scanning microscopy and electrical transport studies of ferroelectric thin films and ferroic/2D van der Waals heterostructures. Based on the conducting probe atomic force microscopy and piezo-response force microscopy (PFM) studies of the static and dynamic behavior of ferroelectric domain walls (DW), we found that the ferroelectric polymer poly(vinylidene-fluoride-trifluorethylene) P(VDF-TrFE) is composed of two-dimensional (2D) ferroelectric monolayers (MLs) that are weakly coupled to each other. We also observed polarization asymmetry in epitaxial thin films of ferroelectric Pb(Zr,Ti)O3, which is attributed to the screening properties of the underlying conducting oxide. PFM studies also reveal ferroelectric relaxor-type behavior in ultrathin Sr(Zr,Ti)O3 films epitaxially deposited on Ge. We exploited scanning-probe-controlled domain patterning in a P(VDF-TrFE) top layer to induce nonvolatile modulation of the conduction characteristic of ML molybdenum disulfide (MoS2) between a transistor and a junction state. In the presence of a DW, MoS2 exhibits rectified Ids-Vds (IV) characteristics that are well described by the thermionic emission model. This approach can be applied to a wide range of van der Waals materials to design various functional homojunctions and nanostructures. We also studied the interfacial charge transfer effect between graphene and magnetoelectric Cr2O3 via electrostatic force microscopy and Kelvin probe force microscopy, which reveal p-type doping with up to 150 meV shift of the Fermi level. The graphene/Cr2O3 heterostructure is promising for developing magnetoelectric graphene transistors for spintronic applications.
Landmeyer, J.E.; Belval, D.L.
1996-01-01
Withdrawal of water from the Upper Floridan aquifer south of Port Royal Sound in Beaufort and Jasper Counties, South Carolina, has lowered water levels and reversed the hydraulic gradient beneath Hilton Head Island, South Carolina. Ground water that had previously discharged at the Sound is now being deflected southwest, toward withdrawals located near the city of Savannah, Georgia, and the island of Hilton Head. The reversal of this hydraulic gradient and the decline of water levels have caused saltwater in the Upper Floridan aquifer north of Port Royal Sound to begin moving southwest, toward water-supply wells for the town of Hilton Head and toward industries pumping ground water near Savannah. Analytical results from ground-water samples collected from wells in the Upper Floridan aquifer beneath and adjacent to Port Royal Sound show two plumes in the aquifer with chloride concentrations above the drinking- water standard. One plume of high chloride concentration extends slightly south of the theoretical predevelopment location of the steady- state freshwater-saltwater interface as indicated by numerical modeling. The other plume is present beneath the town of Port Royal, where the upper confining unit above the Upper Floridan aquifer is thin or absent. In these areas, the decline in water levels caused by ground-water withdrawals may have made it possible for water from tidal creeks to enter the Upper Floridan aquifer. Many wells completed in the upper permeable zone of the Upper Floridan aquifer show a distinct specific- conductance profile. One non-producing, monitoring well on Hilton Head Island (BFT-1810) was selected to depict a worst-case scenario to examine the short- and long-term water-chemistry and chloride fluctuations in the aquifer. Specific conductance was monitored at depths of 170, 190, and 200 feet below the top of the well casing. The specific conductance measured in 1987 ranged from approximately 450 microsiemens per centimeter near the top of the Upper Floridan aquifer to 1,500 microsiemens per centimeter near the lower, less permeable zone. Short-term fluctuations in conductance were measured at each probe and were found to be related to water-level fluctuations in the well caused by tidal cycles. The conductance varied regularly up to 100 microsiemens per centimeter, with an increasing time lag between high and low tides and low and high specific conductance for progressively shallower depths. Well BFT-1810 was monitored for specific conductance and water levels from October 1987 through September 1993. Specific conductance at the 170-foot probe showed little long-term change, while the 190- and the 200-foot probes showed long-term increases to approximately 4,000 and 10,000 microsiemens per centimeter, respectively. This well is located closest to one of the two plumes of saltwater delineated in the Upper Floridan aquifer, and the long-term chloride increases are a result of the movement of saltwater in the Upper Floridan aquifer toward Hilton Head Island under the influence of regional ground-water withdrawals.
Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D; Rothman, Richard E
2012-09-01
This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in "127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. Copyright © 2012 Elsevier Inc. All rights reserved.
Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E.; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D.; Rothman, Richard E.
2012-01-01
This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in “”127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. PMID:22809694
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
Merchan-Merchan, Wilson; Saveliev, Alexei V; Taylor, Aaron M
2009-12-01
The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe-flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material "evaporation and transportation", "transformation", "nucleation", "initial growth", "intermediate growth", and "final growth". XRD analysis shows that the chemical compositions of all structures correspond to MoO(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing
2016-11-07
Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less
The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis
Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.
2006-01-01
Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.
Magnetic induction spectroscopy (MIS)-probe design for cervical tissue measurements.
Wang, Jau-Yi; Healey, Timothy; Barker, Anthony; Brown, Brian; Monk, Chris; Anumba, Dilly
2017-05-01
Gradiometers have the advantage of increasing measuring sensitivity, which is particularly useful in magnetic induction spectroscopy (MIS) for bio-impedance measurements. Traditional gradiometers use a pair of field sensing coils equally distant and on opposite sides of a drive coil, which provides high immunity to interference. In this paper, a ferrite-cored coaxial gradiometer probe of 29 mm diameter has been developed for measuring the impedance spectra of cervical tissues in vivo. It consists of a ferrite rod with outer ferrite confinement screening in order to eliminate the signals from surrounding tissue. The magnetic screening efficiency was compared with an air-cored gradiometer probe. For both gradiometer probes, a drive coil and two sensing coils were wound on a borosilicate glass former aligned coaxially with two sensing coils equidistant from the drive coil. The signal sensitivity of those two MIS gradiometers has been measured using saline samples with a conductivity range between 0.1 and 1.1 S m -1 . Finite element methods using COMSOL Multiphysics have been used to simulate the distribution of sensitivity to conductivity over the face of each probe and with depth. The ferrite-cored probe has a sensitivity confined to the volume defined by the gap between the ferrite core and outer tube of ferrite while the air-cored probe without any magnetic shielding had a wide sensitivity over the face and the side of the probe. Four saline samples and one of distilled water with conductivities from 0.1 to 1.1 S m -1 have been used to make conductivity measurements at frequencies of 50 kHz, 100 kHz, and 300 kHz. The measurement accuracy of the air-cored MIS probe was 0.09 S m -1 at 50 kHz, improving to 0.05 S m -1 at 300 kHz. For the ferrite-cored MIS probe, the measurement accuracy was 0.28 S m -1 at 50 kHz, improving to 0.04 S m -1 at 300 kHz. In vivo measurements on human hand have been performed using both types of gradiometers and the conductivity is consistent with reported data.
NASA Astrophysics Data System (ADS)
Kazemiroodsari, Hadi
Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.
DESIGN NOTE: The measurement of thermal conductivities of solid fruits and vegetables
NASA Astrophysics Data System (ADS)
Liang, Xin-Gang; Zhang, Yinping; Ge, Xinshi
1999-07-01
A thermal conductivity probe consisting of a heating cell, a thermocouple and a guard tube over the heating cell was developed and is described here. Analyses demonstrate that the guard tube acts as a thermal contact resistance. This resistance does not influence measurements of thermal conductivity significantly, but it must be considered in an accurate measurement of thermal diffusivity, especially when there is a gap between the heater and the guard tube. Calibration of the probe with glycerine in this work exhibits an accuracy of 1.4% for thermal conductivity measurements. The probe was used to measure the thermal conductivities of some solid fruits and vegetables. The sizes of both specimen and probe were analysed and their influences controlled to be under 1.0%. Each measurement was completed within two minutes and the temperature rise was less than under 6 °C. The water content of fruits and vegetables was found to be the dominant factor in determining their thermal conductivities. An empirical relationship between thermal conductivity and mass density is proposed based on the measurements. It is shown that this relation gives a deviation from experimental data of only 11%.
Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.
2013-01-01
A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.
Cryogenic vacuumm RF feedthrough device
Wu, Genfa [Yorktown, VA; Phillips, Harry Lawrence [Hayes, VA
2008-12-30
A cryogenic vacuum rf feedthrough device comprising: 1) a probe for insertion into a particle beam; 2) a coaxial cable comprising an inner conductor and an outer conductor, a dielectric/insulating layer surrounding the inner conductor, the latter being connected to the probe for the transmission of higher mode rf energy from the probe; and 3) a high thermal conductivity stub attached to the coaxial dielectric about and in thermal contact with the inner conductor which high thermal conductivity stub transmits heat generated in the vicinity of the probe efficiently and radially from the area of the probe and inner conductor all while maintaining useful rf transmission line characteristics between the inner and outer coaxial conductors.
Ryder, Mark I.; Yao, Tzy-Jyun; Russell, Jonathan S.; Moscicki, Anna-Barbara; Shiboski, Caroline H.
2016-01-01
Aims To compare the prevalence and severity of periodontal diseases between 180 perinatally HIV-infected (PHIV) and 118 perinatally HIV-exposed and uninfected (PHEU) youth in a cross-sectional study conducted at 11 clinical sites in the United States and Puerto Rico from the Adolescent Master Protocol (AMP) study of the Pediatric HIV/AIDS cohort study (PHACS) network. Methods Several analyses were conducted, employing the current CDC/AAP classification for periodontitis and incorporating a definition of gingivitis based on a bleeding on probing threshold, and analyses based on more detailed whole mouth, intraoral regionally, site-based, and tooth-based criteria of bleeding on probing, plaque levels, pockets depths and clinical attachment levels. Results After adjusting for plaque control habits, and behavioral and sociodemographic factors, there were no significant differences in periodontal diseases between the PHIV and PHEU youth using any of these criteria. For PHIV youth, there was no significant association between parameters of periodontal disease and current HIV status. Conclusions While no significant differences in periodontal parameters were noted between the PHIV and PHEU youth, the influence of antiretroviral therapy on merits further exploration in this cohort in a longitudinal study. PMID:27801947
NASA Astrophysics Data System (ADS)
Njeng'ere, James Gicheha
This research study investigated how undergraduate college biology students' level of understanding of the role of the seed plant root system relates to their level of understanding of photosynthesis. This research was conducted with 65 undergraduate non-majors biology who had completed 1 year of biology at Louisiana State University in Baton Rouge and Southeastern Louisiana University in Hammond. A root probe instrument was developed from some scientifically acceptable propositional statements about the root system, the process of photosynthesis, as well as the holistic nature of the tree. These were derived from research reviews of the science education and the arboriculture literature. This was administered to 65 students selected randomly from class lists of the two institutions. Most of the root probe's items were based on the Live Oak tree. An in-depth, clinical interview-based analysis was conducted with 12 of those tested students. A team of root experts participated by designing, validating and answering the same questions that the students were asked. A "systems" lens as defined by a team of college instructors, root experts (Shigo, 1991), and this researcher was used to interpret the results. A correlational coefficient determining students' level of understanding of the root system and their level of understanding of the process of photosynthesis was established by means of Pearson's r correlation (r = 0.328) using the SAS statistical analysis (SAS, 1987). From this a coefficient of determination (r2 = 0.104) was determined. Students' level of understanding of the Live Oak root system (mean score 5.94) was not statistically different from their level of understanding of the process of photosynthesis (mean score 5.54) as assessed by the root probe, t (129) = 0.137, p > 0.05 one tailed-test. This suggests that, to some degree, level of the root system limits level of understanding of photosynthesis and vice versa. Analysis of quantitative and qualitative data revealed that students who applied principles of systems thinking performed better than those who did not. Students' understanding of the root system of the Live Oak tree was hindered by understanding of, plant food, the nonwoody roots, and the tree as a system.
NASA Astrophysics Data System (ADS)
Wang, Lei; Wright, C. David; Aziz, Mustafa. M.; Yang, Ci Hui; Yang, Guo Wei
2014-11-01
The capping layer and the probe tip that serve as the protective layer and the recording tool, respectively, for phase-change probe memory play an important role on the writing performance of phase-change probe memory, thus receiving considerable attention. On the other hand, their influence on the readout performance of phasechange probe memory has rarely been reported before. A three-dimensional parametric study based on the Laplace equation was therefore conducted to investigate the effect of the capping layer and the probe tip on the resulting reading contrast for the two cases of reading a crystalline bit from an amorphous matrix and reading an amorphous bit from a crystalline matrix. The results indicated that a capping layer with a thickness of 2 nm and an electrical conductivity of 50 Ω-1m-1 is able to provide an appropriate reading contrast for both the cases, while satisfying the previous writing requirement, particularly with the assistance of a platinum silicide probe tip.
Overnight Changes Recorded by Phoenix Conductivity Probe
2008-12-15
This graph presents simplified data from overnight measurements by the Thermal and Electrical Conductivity Probe on NASA Phoenix Mars Lander from noon of the mission 70th Martian day, or sol, to noon the following sol Aug. 5 to Aug. 6, 2008.
Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnage, K.G.; Davis, C.E.
1979-01-01
A series of two-phase, air-water and steam-water tests performed with instrumented spool pieces and with conductivity probes obtained from Atomic Energy of Canada, Ltd. is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Application of some two-phase mass flow models to the recorded spool piece data is made and preliminary results are shown. Velocity and void fraction information derived from the conductivity probes is presented and compared to velocities and void fractions obtained using the spool piece instrumentation.
Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion
NASA Astrophysics Data System (ADS)
Bhandari, S.; Westervelt, R. M.
2014-12-01
Novel techniques to probe electronic properties at the nanoscale can shed light on the physics of nanoscale devices. In particular, studying the scattering of electrons from edges and apertures at the nanoscale and imaging the electron profile in a quantum dot, have been of interest [1]. In this paper, we present the design and implementation of a cooled scanning capacitance probe that operates at liquid He temperatures to image electron waves in nanodevices. The conducting tip of a scanned probe microscope is held above the nanoscale structure, and an applied sample-to-tip voltage creates an image charge that is measured by a cooled charge amplifier [2] adjacent to the tip. The circuit is based on a low-capacitance, high- electron-mobility transistor (Fujitsu FHX35X). The input is a capacitance bridge formed by a low capacitance pinched-off HEMT transistor and tip-sample capacitance. We have achieved low noise level (0.13 e/VHz) and high spatial resolution (100 nm) for this technique, which promises to be a useful tool to study electronic behavior in nanoscale devices.
NASA Technical Reports Server (NTRS)
Hunter, W. W., Jr.; Ocheltree, S. L.; Russ, C. E., Jr.
1991-01-01
Laser transit anemometer (LTA) measurements of a 7 degree sharp cone boundary layer were conducted in the Air Force/AEDC Supersonic Tunnel A Mach 4 flow field. These measurements are compared with Pitot probe measurements and tricone theory provided by AEDC staff. Measurements were made both in laminar and turbulent boundary layers of the model. Comparison of LTA measurements with theory showed agreement to better than 1 percent for the laminar boundary layer cases. This level of agreement was obtained after small position corrections, 0.01 to 0.6 mm, were applied to the experimental data sets. Pitot probe data when compared with theory also showed small positioning errors. The Pitot data value was also limited due to probe interference with the flow near the model. The LTA turbulent boundary layer data indicated a power law dependence of 6.3 to 6.9. The LTA data was analyzed in the time (Tau) domain in which it was obtained and in the velocity domain. No significant differences were noted between Tau and velocity domain results except in one turbulent boundary layer case.
TEAM - Titan Exploration Atmospheric Microprobes
NASA Astrophysics Data System (ADS)
Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald
2016-10-01
The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.
Influence of probe geometry on pitot-probe displacement in supersonic turbulent flow
NASA Technical Reports Server (NTRS)
Allen, J. M.
1975-01-01
An experiment was conducted to determine the varying effects of six different probe-tip and support-shaft configurations on pitot tube displacement. The study was stimulated by discrepancies between supersonic wind-tunnel tests conducted by Wilson and Young (1949) and Allen (1972). Wilson (1973) had concluded that these discrepancies were caused by differences in probe geometry. It is shown that in fact, no major differences in profiles of streamwise velocity over streamwise velocity at boundary-layer edge vs normal coordinate over boundary-layer total thickness result from geometry. The true cause of the discrepancies, however, remains to be discovered.
Fiberoptic probe and system for spectral measurements
Dai, Sheng; Young, Jack P.
1998-01-01
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Quantitative characterization of semiconductor structures with a scanning microwave microscope.
Korolyov, S A; Reznik, A N
2018-02-01
In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < R sh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.
Quantitative characterization of semiconductor structures with a scanning microwave microscope
NASA Astrophysics Data System (ADS)
Korolyov, S. A.; Reznik, A. N.
2018-02-01
In this work, our earlier method for measuring resistance Rsh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < Rsh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al2O3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of Rsh. With a coaxial probe, such accordance was observed only in high-ohmic samples with Rsh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of Rsh to a level of ˜10%.
Hamed, Saja H; Altrabsheh, Bilal; Assa'd, Tareq; Jaradat, Said; Alshra'ah, Mohammad; Aljamal, Abdulfattah; Alkhatib, Hatim S; Almalty, Abdul-Majeed
2012-12-01
Different probes are used in dermato-cosmetic research to measure the electrical properties of the skin. The principle governing the choice of the geometry and material of the measuring probe is not well defined in the literature and some device's measuring principles are not accessible for the scientific community. The purpose of this work was to develop a simple inexpensive conductance meter for the objective in vivo evaluation of skin hydration. The conductance meter probe was designed using the basic equation governing wave propagation along Transverse Electromagnetic transmission lines. It consisted of two concentric copper circular electrodes printed on FR4 dielectric material. The performance of the probe was validated by evaluating its measurement depth, its ability to monitor in vitro water sorption-desorption and in vivo skin hydration effect in comparison to that of the Corneometer CM 825. The measurement depth of the probe, 15 μm, was comparable to that of CM 825. The in vitro readings of the probe correlated strongly with the amount of water adsorbed on filter paper. Skin hydration after application of a moisturizer was monitored effectively by the new probe with good correlation to the results of CM 825. In conclusion, a simple probe for evaluating skin hydration was made from off-the-shelf materials and its performance was validated in comparison to a commercially available probe. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi
2017-03-19
Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directlymore » involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.« less
An affordable and accurate conductivity probe for density measurements in stratified flows
NASA Astrophysics Data System (ADS)
Carminati, Marco; Luzzatto-Fegiz, Paolo
2015-11-01
In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.
Fiberoptic probe and system for spectral measurements
Dai, S.; Young, J.P.
1998-10-13
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.
A novel approach to making microstructure measurements in the ice-covered Arctic Ocean.
NASA Astrophysics Data System (ADS)
Guthrie, J.; Morison, J.; Fer, I.
2014-12-01
As part of the 2014 Field Season of the North Pole Environmental Observatory, a 7-day microstructure experiment was performed. A Rockland Scientific Microrider with 2 FP07 fast response thermistors and 2 SBE-7 micro-conductivity probes was attached to a Seabird 911+ Conductivity-Temperature-Depth unit to allow for calibration of the microstructure probes against the highly accurate Seabird temperature and conductivity sensors. From a heated hut, the instrument package was lowered through a 0.75-m hole in the sea ice down to 350 m depth using a lightweight winch powered with a 3-phase, frequency-controlled motor that produced a smooth, controlled lowering speed of 25 cm s-1. Focusing on temperature and conductivity microstructure and using the special winch removed many of the complications involved with the use of free-fall microstructure profilers under the ice. The slow profiling speed permits calculation of Χ, the dissipation of thermal variance, without relying on fits to theoretical spectra to account for the unresolved variance. The dissipation rate of turbulent kinetic energy, ɛ, can then be estimated using the temperature gradient spectrum and the Ruddick et al. [2001] maximum likelihood method. Outside of a few turbulent patches, thermal diffusivity ranged between O(10-7) and O(10-6) m2s-1, resulting in negligible turbulent heat fluxes. Estimated ɛ was often at or below the noise level of most shear-based microstructure profilers. The noise level of Χ is estimated at O(10-11) °C2s-1, revealing the utility and applicability of this technique in future Arctic field work.
A High-Resolution Cluster of Oceanographic Instruments for Boundary Layer Measurements under Ice.
1985-11-01
arrangement for use with laser velocimetry. The EO components are mounted on an aluminum chassis, which is in turn placed in an underwater housing made...temperature/conductivity probe pair used * on the HRC cluster. It consists of a thermistor probe (FASTIP, Model FP07, Thermometrics , Inc.) and a dual...component. The orientation of all three DLT)V pairs is shown in Figure 1. 3.2 Temperature and Conductivity Probes The FASTIP thermistor by Thermometrics
Multi-function diamond film fiberoptic probe and measuring system employing same
Young, Jack P.
1998-01-01
A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Carrier dynamics in silicon nanowires studied using optical-pump terahertz-probe spectroscopy
NASA Astrophysics Data System (ADS)
Beaudoin, Alexandre; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Morris, Denis
2014-03-01
The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, N-doped and undoped silicon nanowires (SiNWs) grown by chemical vapour deposition (CVD) on quartz substrate were characterized using optical-pump terahertz probe (OPTP) transmission experiments. Our results show that defects and ionized impurities introduced by N-doping the CVD-grown SiNWs tend to reduce the photoexcited carrier lifetime and degrade their conductivity properties. Capture mechanisms by the surface trap states play a key role on the photocarrier dynamics in theses small diameters' (~100 nm) SiNWs and the doping level is found to alter this dynamics. We propose convincing capture and recombination scenarios that explain our OPTP measurements. Fits of our photoconductivity data curves, from 0.5 to 2 THz, using a Drude-plasmon conductivity model allow determining photocarrier mobility values of 190 and 70 cm2/V .s, for the undoped and N-doped NWs samples, respectively.
Magnetic brightening and control of dark excitons in monolayer WSe2.
Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang; Lin, Yu-Chuan; Zhang, Fan; Wang, Ying; Li, Zhiqiang; Hone, James C; Robinson, Joshua A; Smirnov, Dmitry; Louie, Steven G; Heinz, Tony F
2017-09-01
Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe 2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.
Magnetic brightening and control of dark excitons in monolayer WSe 2
Zhang, Xiao -Xiao; Cao, Ting; Lu, Zhengguang; ...
2017-06-26
Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light–matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitonsmore » are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. Furthermore, these studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.« less
Kikta, Thomas J.; Mitchell, Ronald D.
1992-01-01
A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet.
Kikta, T.J.; Mitchell, R.D.
1992-11-24
A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.
Study of polarization properties of fiber-optics probes with use of a binary phase plate.
Alferov, S V; Khonina, S N; Karpeev, S V
2014-04-01
We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.
NASA Astrophysics Data System (ADS)
Nagihara, Seiichi; Hedlund, Magnus; Zacny, Kris; Taylor, Patrick T.
2014-03-01
The needle probe method (also known as the ‘hot wire’ or ‘line heat source’ method) is widely used for in-situ thermal conductivity measurements on terrestrial soils and marine sediments. Variants of this method have also been used (or planned) for measuring regolith on the surfaces of extra-terrestrial bodies (e.g., the Moon, Mars, and comets). In the near-vacuum condition on the lunar and planetary surfaces, the measurement method used on the earth cannot be simply duplicated, because thermal conductivity of the regolith can be ~2 orders of magnitude lower. In addition, the planetary probes have much greater diameters, due to engineering requirements associated with the robotic deployment on extra-terrestrial bodies. All of these factors contribute to the planetary probes requiring a much longer time of measurement, several tens of (if not over a hundred) hours, while a conventional terrestrial needle probe needs only 1 to 2 min. The long measurement time complicates the surface operation logistics of the lander. It also negatively affects accuracy of the thermal conductivity measurement, because the cumulative heat loss along the probe is no longer negligible. The present study improves the data reduction algorithm of the needle probe method by shortening the measurement time on planetary surfaces by an order of magnitude. The main difference between the new scheme and the conventional one is that the former uses the exact mathematical solution to the thermal model on which the needle probe measurement theory is based, while the latter uses an approximate solution that is valid only for large times. The present study demonstrates the benefit of the new data reduction technique by applying it to data from a series of needle probe experiments carried out in a vacuum chamber on a lunar regolith simulant, JSC-1A. The use of the exact solution has some disadvantage, however, in requiring three additional parameters, but two of them (the diameter and the volumetric heat capacity of the probe) can be measured and the other (the volumetric heat capacity of the regolith/stimulant) may be estimated from the surface geologic observation and temperature measurements. Therefore, overall, the new data reduction scheme would make in-situ thermal conductivity measurement more practical on planetary missions.
NASA Technical Reports Server (NTRS)
Nagihara, S.; Hedlund, M.; Zacny, K.; Taylor, P. T.
2013-01-01
The needle probe method (also known as the' hot wire' or 'line heat source' method) is widely used for in-situ thermal conductivity measurements on soils and marine sediments on the earth. Variants of this method have also been used (or planned) for measuring regolith on the surfaces of extra-terrestrial bodies (e.g., the Moon, Mars, and comets). In the near-vacuum condition on the lunar and planetary surfaces, the measurement method used on the earth cannot be simply duplicated, because thermal conductivity of the regolith can be approximately 2 orders of magnitude lower. In addition, the planetary probes have much greater diameters, due to engineering requirements associated with the robotic deployment on extra-terrestrial bodies. All of these factors contribute to the planetary probes requiring much longer time of measurement, several tens of (if not over a hundred) hours, while a conventional terrestrial needle probe needs only 1 to 2 minutes. The long measurement time complicates the surface operation logistics of the lander. It also negatively affects accuracy of the thermal conductivity measurement, because the cumulative heat loss along the probe is no longer negligible. The present study improves the data reduction algorithm of the needle probe method by shortening the measurement time on planetary surfaces by an order of magnitude. The main difference between the new scheme and the conventional one is that the former uses the exact mathematical solution to the thermal model on which the needle probe measurement theory is based, while the latter uses an approximate solution that is valid only for large times. The present study demonstrates the benefit of the new data reduction technique by applying it to data from a series of needle probe experiments carried out in a vacuum chamber on JSC-1A lunar regolith stimulant. The use of the exact solution has some disadvantage, however, in requiring three additional parameters, but two of them (the diameter and the volumetric heat capacity of the probe) can be measured and the other (the volumetric heat capacity of the regolith/stimulant) may be estimated from the surface geologic observation and temperature measurements. Therefore, overall, the new data reduction scheme would make in-situ thermal conductivity measurement more practical on planetary missions.
Accuracy of probing attachment levels using a new computerized cemento-enamel junction probe.
Deepa, R; Prakash, Shobha
2012-01-01
The assessment of clinical attachment level (CAL) represents the gold standard for diagnosing and monitoring periodontal disease. The aim of the present study was to evaluate the performance of the newly introduced cemento-enamel junction (CEJ) probe in detecting CAL, using CEJ as a fixed reference point, and to compare the CEJ probe with the Florida stent probe (FSP) as well as with a standard manual probe, University of North Carolina-15 (UNC-15). Three examiners recorded the probing attachment level in 384 sites in case group (chronic periodontitis), and in 176 sites, in control group (healthy periodontal status), using the three probes. Subjects included both the sexes and ranged from 35 to 45 years. The experimental design was structured to balance the intra- and inter-examiner consistency at the same site during the two visits. CEJ probe showed higher intra-and inter-examiner consistency over both FSP and UNC-15 in both the case and control groups. Frequency distribution of differences of various magnitudes of repeated measurements ≤1 mm was in the higher range of 86.8% to 87.5% for CEJ probe. The FSP was more reproducible than UNC-15 in detecting relative attachment level (RAL). CEJ automated probe was found to have greatest potential for accuracy and consistency in detecting CAL than FSP and UNC-15. The automated probes appeared to be more reproducible than manual probes.
Bulthuis, H M; Barendregt, D S; Timmerman, M F; Loos, B G; van der Velden, U
1998-05-01
Previous research has shown that probing force and probe tine shape influence the clinically assessed probing depth. The purpose of the present study was to investigate the effect of tine shape and probing force on probe penetration, in relation to the microscopically assessed attachment level in untreated periodontal disease. In 22 patients, scheduled for partial or full mouth tooth extraction and no history of periodontal treatment, 135 teeth were selected. At mesial and distal sites of the teeth reference marks were cut. Three probe tines, mounted in a modified Florida Probe handpiece, were tested: a tapered, a parallel and a ball-ended; tip-diameter 0.5 mm. The three tines were distributed at random over the sites. At each site increasing probing forces of 0.10 N, 0.15 N, 0.20 N, 0.25 N were used. After extraction, the teeth were cleaned and stained for connective tissue fiber attachment. The distance between the reference mark and the attachment level was determined using a stereomicroscope. The results showed that the parallel and ball-ended tine measured significantly beyond the microscopically assessed attachment level at all force levels; with increasing forces, the parallel tine measured 0.96 to 1.38 mm and the ball-ended tine 0.73 to 1.06 mm deeper. The tapered tine did not deviate significantly from the microscopic values at the forces of 0.15, 0.20 and 0.25 N. It can be concluded that for the optimal assessment of the attachment level in inflamed periodontal conditions, a tapered probe with a tip diameter of 0.5 mm and exerting a probing force of 0.25 N may be most suitable.
Teaching social play skills to adults and children with autism as an approach to building rapport.
Shireman, Molly L; Lerman, Dorothea C; Hillman, Conrad B
2016-09-01
Adults with autism spectrum disorder (ASD) and no intellectual disabilities were taught to increase the social play skills of children with ASD as part of a vocational training program. Participants included 3 adults, aged 21 to 27 years, and 6 children with ASD. Probes conducted throughout the study evaluated whether play skills training affected a measure of rapport between the adult and child. Results demonstrated the effectiveness of behavioral skills training for teaching the adult participants the appropriate play skills. In addition, the children's social engagement increased. Finally, rapport probes showed that play skills training increased levels of proximity, our measure of rapport, between the adults and children. © 2016 Society for the Experimental Analysis of Behavior.
Inductive Measurement of Plasma Jet Electrical Conductivity
NASA Technical Reports Server (NTRS)
Turner, Matthew W.; Hawk, Clark W.; Litchford, Ron J.
2005-01-01
An inductive probing scheme, originally developed for shock tube studies, has been adapted to measure explosive plasma jet conductivities. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-inch diameter probe was designed and constructed, and calibration was accomplished by firing an aluminum slug through the probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-gram high explosive shaped charges. Measured conductivities were in the range of 3 kS/m for unseeded octol charges and 20 kS/m for seeded octol charges containing 2% potassium carbonate by mass.
Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide.
Zhao, Yuzhen; Li, Kexuan; He, Zemin; Zhang, Yongming; Zhao, Yang; Zhang, Haiquan; Miao, Zongcheng
2016-11-30
Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.
A computer-based program to teach braille reading to sighted individuals.
Scheithauer, Mindy C; Tiger, Jeffrey H
2012-01-01
Instructors of the visually impaired need efficient braille-training methods. This study conducted a preliminary evaluation of a computer-based program intended to teach the relation between braille characters and English letters using a matching-to-sample format with 4 sighted college students. Each participant mastered matching visual depictions of the braille alphabet to their printed-word counterparts. Further, each participant increased the number of words they read in a braille passage following this training. These gains were maintained at variable levels on a maintenance probe conducted 2 to 4 weeks after training.
A COMPUTER-BASED PROGRAM TO TEACH BRAILLE READING TO SIGHTED INDIVIDUALS
Scheithauer, Mindy C; Tiger, Jeffrey H
2012-01-01
Instructors of the visually impaired need efficient braille-training methods. This study conducted a preliminary evaluation of a computer-based program intended to teach the relation between braille characters and English letters using a matching-to-sample format with 4 sighted college students. Each participant mastered matching visual depictions of the braille alphabet to their printed-word counterparts. Further, each participant increased the number of words they read in a braille passage following this training. These gains were maintained at variable levels on a maintenance probe conducted 2 to 4 weeks after training. PMID:22844139
Multi-function diamond film fiber optic probe and measuring system employing same
Young, J.P.
1998-11-24
A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.
Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ
Poppendiek, Heinz F.
1982-01-01
A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.
1998-06-01
4] By 2010, we should be able to change how we conduct the most intense joint operations. Instead of relying on massed forces and sequential ...not independent, sequential steps. Data probes to support the analysis phase were required to complete the logical models. This generated a need...Networks) Identify Granularity (System Level) - Establish Physical Bounds or Limits to Systems • Determine System Test Configuration and Lineup
An oscillator based on a single Au nanocluster
NASA Astrophysics Data System (ADS)
Gorshkov, O. N.; Filatov, D. O.; Antonov, D. A.; Antonov, I. N.; Shenina, M. E.; Pavlov, D. A.
2017-01-01
Metal nanoclusters embedded into the ultrathin dielectric films attracted much attention in recent years due to their unusual electronic, optical, etc., properties differing from those of the bulk metals essentially and, hence, to the prospects of their applications in novel nanoelectronic, single electronic, non-volatile memory, etc., devices. Here, we report on the experimental observation of the electrical oscillations in an oscillating loop connected to a contact of a conductive probe of an Atomic Force Microscope to a tunnel-transparent ( ˜6.5 nm thick) yttria stabilized zirconia film with embedded Au nanoclusters on the Si substrate. The oscillations were attributed to the negative differential resistance of the probe-to-sample contact originating from the resonant electron tunnelling between the probe and the Si substrate via the quantum confined electron energy levels in small ( ≈2.5 nm in diameter) Au nanoclusters. This observation demonstrates the prospects of building an oscillator nanoelectronic device based on an individual nanometer-sized metal nanocluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.
2015-02-15
An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision,more » sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.« less
NASA Technical Reports Server (NTRS)
1976-01-01
An orbiter and a multiprobe spacecraft will be sent to Venus in 1978 to conduct a detailed examination of the planet's atmosphere and weather. The spin-stabilized multiprobe spacecraft consists of a bus, a large probe and three identical small probes, each carrying a complement of scientific instruments. The large probe will conduct a detailed sounding of the lower atmosphere, obtaining measurements of the clouds, atmospheric structure, wind speed, and atmospheric composition. Primary emphasis will be placed on the planet's energy balance and clouds. The three small probes will provide information on the circulation pattern of the lower atmosphere. The probe bus will provide data on the upper atmosphere and ionosphere down to an altitude of about 120 km. The orbiter is designed to globally map the atmosphere, ionosphere, and the solar wind/ionosphere interaction. In addition, it will utilize radar mapping techniques to study the surface.
Teaching Special Education Teachers How to Conduct Functional Analysis in Natural Settings
ERIC Educational Resources Information Center
Erbas, Dilek; Tekin-Iftar, Elif; Yucesoy, Serife
2006-01-01
Effects of a training program utilized to teach how to conduct functional analysis process to teachers of children with developmental disabilities was examined. Furthermore, teachers' opinions regarding this process were investigated. A multiple probe design across subjects with probe conditions was used. Teacher training was in two phases. In the…
Near real-time monitoring and mapping of specific conductivity levels across Lake Texoma, USA
Atkinson, S.F.; Mabe, J.A.
2006-01-01
A submersible sonde equipped with a specific conductivity probe, linked with a global positioning satellite receiver was developed, deployed on a small boat, and used to map spatial and temporal variations in specific conductivity in a large reservoir. 7,695 sample points were recorded during 8 sampling trips. Specific conductivity ranged from 442 uS/cm to 3,378 uS/cm over the nine-month study. The data showed five statistically different zones in the reservoir: 2 different riverine zones, 2 different riverine transition zones, and a lacustrine zone (the main lake zone). These data were imported to a geographic information system where they were spatially interpolated to generate 8 maps showing specific conductivity levels across the entire surface of the lake. The highly dynamic nature of water quality, due to the widely differing nature of the rivers that flow into the reservoir and the effect of large inflows of fresh water during winter storms is easily captured and visualized using this approach. ?? Springer Science+Business Media, Inc. 2006.
EXTASE - An Experimental Thermal Probe For Applications In Snow Research And Earth Sciences
NASA Astrophysics Data System (ADS)
Schröer, K.; Seiferlin, K.; Marczewski, W.; Spohn, T.
EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, both funded by DLR. The application of this probe is to be tested in different fields e.g. in snow research, agriculture, permafrost etc. The probe penetrates the surface ca. 32 cm and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: -no need to excavate material -minimized influence of the probe on the temperature field -minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Fur- ther applications could be: monitoring waste deposits and the heat set free by decom- position, volcanology and ground truth for remote sensing. We present the general concept of the probe, some temperature profiles measured during a field measurement campaign to demonstrate the capability of this new technique and first experiments made in the laboratory. First attempts to calculate thermal diffusivity and conductivity from the data are also given.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... conducting a market probe in the normal course of business'' (``market probe'').\\8\\ Thus, for Floor brokers... are permitted to provide such information in response to a Floor broker's ``market probe.'' \\8\\ See... brokers would no longer need to request such information from DMMs as part of a Rule 115 ``market probe...
Metallic scattering lifetime measurements with terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Lea, Graham Bryce
The momentum scattering lifetime is a fundamental parameter of metallic conduction that can be measured with terahertz time-domain spectroscopy. This technique has an important strength over optical reflectance spectroscopy: it is capable of measuring both the phase and the amplitude of the probing radiation. This allows simultaneous, independent measurements of the scattering lifetime and resistivity. Broadly, it is the precision of the phase measurement that determines the precision of scattering lifetime measurements. This thesis describes milliradian-level phase measurement refinements in the experimental technique and measures the conductivity anisotropy in the correlated electron system CaRuO3. These phase measurement refinements translate to femtosecond-level refinements in scattering lifetime measurements of thin metallic films. Keywords: terahertz time-domain spectroscopy, calcium ruthenate, ruthenium oxides, correlated electrons, experimental technique.
X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.
1997-04-01
X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.
Patro, J N; Ramachandran, P; Lewis, J L; Mammel, M K; Barnaba, T; Pfeiler, E A; Elkins, C A
2015-06-01
Lactic acid bacteria are beneficial microbes added to many food products and dietary supplements for their purported health benefits. Proper identification of bacteria is important to assess safety as well as proper product labelling. A custom microarray (FDA GutProbe) was developed to verify accurate labelling in commercial dietary supplements. Strain-specific attribution was achieved with GutProbe array which contains genes from the most commonly found species in probiotic supplements and food ingredients. Applied utility of the array was assessed with direct from product DNA hybridization to determine (i) if identification of multiple strains in one sample can be conducted and (ii) if any lot-to-lot variations exist with eight probiotics found on the US market. GutProbe is a useful tool in identifying a mixture of microbials in probiotics and did reveal some product variations. In addition, the array is able to identify lot-to-lot differences in these products. These strain level attribution may be useful for routine monitoring of batch variation as part of a 'Good Manufacturing Practices' process. The FDA GutProbe is an efficient and reliable platform to identify the presence of microbial ingredients and determining microbe differences in dietary supplements. The GutProbe is a fast, rapid method for direct community profiling or food matrix sampling. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Wang, Le; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Chen, Chen; Zhang, Ruohu; Cui, Yiping
2018-07-13
Single molecule localization microscopy (SMLM) is a powerful tool for imaging biological targets at the nanoscale. In this report, we present SMLM imaging of telomeres and centromeres using fluorescence in situ hybridization (FISH). The FISH probes were fabricated by decorating CdSSe/ZnS quantum dots (QDs) with telomere or centromere complementary DNA strands. SMLM imaging experiments using commercially available peptide nucleic acid (PNA) probes labeled with organic fluorophores were also conducted to demonstrate the advantages of using QDs FISH probes. Compared with the PNA probes, the QDs probes have the following merits. First, the fluorescence blinking of QDs can be realized in aqueous solution or PBS buffer without thiol, which is a key buffer component for organic fluorophores' blinking. Second, fluorescence blinking of the QDs probe needs only one excitation light (i.e. 405 nm). While fluorescence blinking of the organic fluorophores usually requires two illumination lights, that is, the activation light (i.e. 405 nm) and the imaging light. Third, the high quantum yield, multiple switching times and a good optical stability make the QDs more suitable for long-term imaging. The localization precision achieved in telomeres and centromeres imaging experiments is about 30 nm, which is far beyond the diffraction limit. SMLM has enabled new insights into telomeres or centromeres on the molecular level, and it is even possible to determine the length of telomere and become a potential technique for telomere-related investigation.
NASA Astrophysics Data System (ADS)
Wang, Le; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Chen, Chen; Zhang, Ruohu; Cui, Yiping
2018-07-01
Single molecule localization microscopy (SMLM) is a powerful tool for imaging biological targets at the nanoscale. In this report, we present SMLM imaging of telomeres and centromeres using fluorescence in situ hybridization (FISH). The FISH probes were fabricated by decorating CdSSe/ZnS quantum dots (QDs) with telomere or centromere complementary DNA strands. SMLM imaging experiments using commercially available peptide nucleic acid (PNA) probes labeled with organic fluorophores were also conducted to demonstrate the advantages of using QDs FISH probes. Compared with the PNA probes, the QDs probes have the following merits. First, the fluorescence blinking of QDs can be realized in aqueous solution or PBS buffer without thiol, which is a key buffer component for organic fluorophores’ blinking. Second, fluorescence blinking of the QDs probe needs only one excitation light (i.e. 405 nm). While fluorescence blinking of the organic fluorophores usually requires two illumination lights, that is, the activation light (i.e. 405 nm) and the imaging light. Third, the high quantum yield, multiple switching times and a good optical stability make the QDs more suitable for long-term imaging. The localization precision achieved in telomeres and centromeres imaging experiments is about 30 nm, which is far beyond the diffraction limit. SMLM has enabled new insights into telomeres or centromeres on the molecular level, and it is even possible to determine the length of telomere and become a potential technique for telomere-related investigation.
Noncontact Measurement Of Sizes And Eccentricities Of Holes
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
Semiautomatic eddy-current-probe apparatus makes noncontact measurements of nominally round holes in electrically conductive specimens and processes measurement data into diameters and eccentricities of holes. Includes x-y translation platform, which holds specimen and moves it horizontally. Probe mounted on probe scanner, positioning probe along vertical (z) direction and rotates probe about vertical axis at preset low speed. Eddy-current sensing coil mounted in side of probe near tip. As probe rotates, impedance analyzer measures electrical impedance (Z) of coil as function of instantaneous rotation angle. Translation and rotation mechanisms and impedance analyzer controlled by computer, which also processes impedance-measurement data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoguang; McGuire, Michael A.; Chen, Yong P.
Topological insulators, with characteristic topological surface states, have emerged as a new state of matter with rich potentials for both fundamental physics and device applications. However, the experimental detection of the surface transport has been hampered by the unavoidable extrinsic conductivity associated with the bulk crystals. Here we show that a four-probe transport spectroscopy in a multi-probe scanning tunneling microscopy system can be used to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators. We derive a scaling relation of measured resistance with respect to varying inter-probe spacing for two interconnected conduction channels, which allowsmore » quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi 2Se 3, Bi 2Te 2Se, and Sb-doped Bi 2Se 3 with that of a pure 2D conductance of graphene on SiC substrate. We also report the 2D conductance enhancement due to the surface doping effect in topological insulators. This technique can be applied to reveal 2D to 3D crossover of conductance in other complex systems.« less
Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures
Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl
2015-01-01
Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662
Boyle, Cynthia L; Sanders, Matthew R; Lutzker, John R; Prinz, Ronald J; Shapiro, Cheri; Whitaker, Daniel J
2010-02-01
A brief primary care intervention for parents of preschool-aged children with disruptive behavior was assessed using a multiple probe design. Primary Care Triple P, a four session behavioral intervention was sequentially introduced within a multiple probe format to each of 9 families to a total of 10 children aged between 3 and 7 years (males = 4, females = 6). Independent observations of parent-child interaction in the home revealed that the intervention was associated with lower levels of child disruptive behavior both in a target training setting and in various generalization settings. Parent report data also confirmed there were significant reductions in intensity and frequency of disruptive behavior, an increase in task specific parental self-efficacy, improved scores on the Parent Experience Survey, and high levels of consumer satisfaction. All short-term intervention effects were maintained at four-month follow-up. Implications for the delivery of brief interventions to prevent conduct problems are discussed.
Method for making a hot wire anemometer and product thereof
NASA Technical Reports Server (NTRS)
Milkulla, V. (Inventor)
1977-01-01
A hot wire anemometer probe is described that includes a ceramic body supporting two conductive rods parallel to each other. The body has a narrow edge surface from which the rods protrude. A probe wire is welded to the rods and extends along the edge surface. A ceramic adhesive is used to secure the probe wire to the surface so that the probe wire is rigid. A method for fabricating the probe is also described in which the body is molded and precisely shaped by machining techniques before the probe wires are installed.
Chang, Win-Jin; Fang, Te-Hua; Lee, Haw-Long; Yang, Yu-Ching
2005-01-01
In this paper the Rayleigh-Ritz method was used to study the scanning near-field optical microscope (SNOM) with a tapered optical fiber probe's flexural and axial sensitivity to vibration. Not only the contact stiffness but also the geometric parameters of the probe can influence the flexural and axial sensitivity to vibration. According to the analysis, the lateral and axial contact stiffness had a significant effect on the sensitivity of vibration of the SNOM's probe, each mode had a different level of sensitivity and in the first mode the tapered optical fiber probe was the most acceptive to higher levels of flexural and axial vibration. Generally, when the contact stiffness was lower, the tapered probe was more sensitive to higher levels of both axial and flexural vibration than the uniform probe. However, the situation was reversed when the contact stiffness was larger. Furthermore, the effect that the probe's length and its tapered angle had on the SNOM's probe axial and flexural vibration were significant and these two conditions should be incorporated into the design of new SNOM probes.
Apparatus and method for high temperature viscosity and temperature measurements
Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.
2001-01-01
A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.
Near-Infrared Laser Pumped Intersubband THz Laser Gain in InGaAs-AlAsSb-InP Quantum Wells
NASA Technical Reports Server (NTRS)
Liu, An-Sheng; Ning, Cun-Zheng
1999-01-01
We investigate the possibility of using InGaAs-AlAsSb-InP coupled quantum wells to generate THz radiation by means of intersubband optical pumping. We show that large conduction band offsets of these quantum wells make it possible to use conventional near-infrared diode lasers around 1.55 micron as pump sources. Taking into account the pump-probe coherent interaction and the optical nonlinearity for the pump field, we calculate the THz gain of the quantum well structure. We show that resonant Raman scattering enhances the THz gain at low and moderate optical pumping levels. When the pump intensity is strong, the THz gain is reduced by pump-induced population redistribution and pump-probe coherent interactions.
Teaching adolescents with severe disabilities to use the public telephone.
Test, D W; Spooner, F; Keul, P K; Grossi, T
1990-04-01
Two adolescents with severe disabilities served as participants in a study conducted to train in the use of the public telephone to call home. Participants were trained to complete a 17-step task analysis using a training package which consisted of total task presentation in conjunction with a four-level prompting procedure (i.e., independent, verbal, verbal + gesture, verbal + guidance). All instruction took place in a public setting (e.g., a shopping mall) with generalization probes taken in two alternative settings (e.g., a movie theater and a convenience store). A multiple probe across individuals design demonstrated the training package was successful in teaching participants to use the telephone to call home. In addition, newly acquired skills generalized to the two untrained settings. Implications for community-based training are discussed.
Probing bulk physics in the 5/2 fractional quantum Hall effect using the Corbino geometry
NASA Astrophysics Data System (ADS)
Schmidt, Benjamin; Bennaceur, Keyan; Bilodeau, Simon; Gaucher, Samuel; Lilly, Michael; Reno, John; Pfeiffer, Loren; West, Ken; Reulet, Bertrand; Gervais, Guillaume
We present two- and four-point Corbino geometry transport measurements in the second Landau level in GaAs/AlGaAs heterostructures. By avoiding edge transport, we are able to directly probe the physics of the bulk quasiparticles in fractional quantum Hall (FQH) states including 5/2. Our highest-quality sample shows stripe and bubble phases in high Landau levels, and most importantly well-resolved FQH minima in the second Landau level. We report Arrhenius-type fits to the activated conductance, and find that σ0 agrees well with theory and existing Hall geometry data in the first Landau level, but not in the second Landau level. We will discuss the advantages the Corbino geometry could bring to various experiments designed to detect the non-Abelian entropy at 5/2, and our progress towards realizing those schemes. The results of these experiments could complement interferometry and other edge-based measurements by providing direct evidence for non-Abelian behaviour of the bulk quasiparticles. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.
NASA Technical Reports Server (NTRS)
Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.
2017-01-01
A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.
Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun
2015-12-18
In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.
NASA Astrophysics Data System (ADS)
Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.
2017-10-01
Both L-shaped ("L") and straight ("Straight") sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.
Electromechanical response of amorphous LaAlO{sub 3} thin film probed by scanning probe microscopies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David
The electromechanical response of a 3 nm thick amorphous LaAlO{sub 3} layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion ofmore » oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.« less
Electromechanical response of amorphous LaAlO3 thin film probed by scanning probe microscopies
NASA Astrophysics Data System (ADS)
Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David; Vilquin, Bertrand; Saint Girons, Guillaume; Pelloquin, Sylvain; Gautier, Brice
2014-07-01
The electromechanical response of a 3 nm thick amorphous LaAlO3 layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion of oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.
Salinity index determination of porous materials using open-ended probes
NASA Astrophysics Data System (ADS)
Szypłowska, Agnieszka; Kafarski, Marcin; Wilczek, Andrzej; Lewandowski, Arkadiusz; Skierucha, Wojciech
2017-01-01
The relations among soil water content, bulk electrical conductivity and electrical conductivity of soil solution can be described by a number of theoretical and empirical models. The aim of the paper is to examine the performance of open-ended coaxial probes with and without a short antenna in determination of complex dielectric permittivity spectra, moisture and salinity of porous materials using the salinity index approach. Glass beads of 0.26 and 1.24 mm average diameters moistened to various water contents with distilled water and KCl solutions were used to model the soil material. Due to the larger sensitivity zone, only the probe with the antenna enabled determination of bulk electrical conductivity and salinity index of the samples. The relations between bulk electrical conductivity and dielectric permittivity of the samples were highly linear, which was consistent with the salinity index model. The slope of the relation between salinity index and electrical conductivity of moistening solutions closely matched the value for 100 % sand presented in literature.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2013-01-22
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2009-06-23
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
A vision-based tool for the control of hydraulic structures in sewer systems
NASA Astrophysics Data System (ADS)
Nguyen, L.; Sage, D.; Kayal, S.; Jeanbourquin, D.; Rossi, L.
2009-04-01
During rain events, the total amount of the wastewater/storm-water mixture cannot be treated in the wastewater treatment plant; the overflowed water goes directly into the environment (lakes, rivers, streams) via devices called combined sewers overflows (CSOs). This water is untreated and is recognized as an important source of pollution. In most cases, the quantity of overflowed water is unknown due to high hydraulic turbulences during rain events; this quantity is often significant. For this reason, the monitoring of the water flow and the water level is of crucial environmental importance. Robust monitoring of sewer systems is a challenging task to achieve. Indeed, the environment inside sewers systems is inherently harsh and hostile: constant humidity of 100%, fast and large water level changes, corrosive atmosphere, presence of gas, difficult access, solid debris inside the flow. A flow monitoring based on traditional probes placed inside the water (such as Doppler flow meter) is difficult to conduct because of the solid material transported by the flow. Probes placed outside the flow such as ultrasonic water level probes are often used; however the measurement is generally done on only one particular point. Experience has shown that the water level in CSOs during rain events is far from being constant due to hydraulic turbulences. Thus, such probes output uncertain information. Moreover, a check of the data reliability is impossible to achieve. The HydroPix system proposes a novel approach to the monitoring of sewers based on video images, without contact with the water flow. The goal of this system is to provide a monitoring tool for wastewater system managers (end-users). The hardware was chosen in order to suit the harsh conditions of sewers system: Cameras are 100% waterproof and corrosion-resistant; Infra-red LED illumination systems are used (waterproof, low power consumption); A waterproof case contains the registration and communication system. The monitoring software has the following requirements: visual analysis of particular hydraulic behavior, automatic vision-based flow measurements, automatic alarm system for particular events (overflows, risk of flooding, etc), database for data management (images, events, measurements, etc.), ability to be controlled remotely. The software is implemented in modular server/client architecture under LabVIEW development system. We have conducted conclusive in situ tests in various sewers configurations (CSOs, storm-water sewerage, WWTP); they have shown the ability of the HydroPix to perform accurate monitoring of hydraulic structures. Visual information demonstrated a better understanding of the flow behavior in complex and difficult environment.
Particle emissions from laboratory activities involving carbon nanotubes
NASA Astrophysics Data System (ADS)
Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael
2017-08-01
This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.
The art of interviewing your next CEO.
Thompson, David W; Thompson, Nancie Noie
2003-02-01
If conducted properly, an interview is a highly effective tool for evaluating managers at any level of an organization. Broad, general questions, gently put, elicit sincere behavior from others, allowing them the freedom to respond as they wish. Their responses tell us what they typically focus on. Moreover, the interviewee is inclined to find us "safe" to talk to. This reduces their fear or discomfort, which should be any interviewer's goal. Probing often elicits the most spontaneous, hence truest, behavior revealing who this person is and how he or she will respond in a particular position or situation. Good probes, which should be used frequently in any conversation, also convey the message that we care about the interviewee and his or her views. Interviewing means focusing on others. It should be an integral part of the board's repertoire of skills. It is also an integral part of being a good manager. Few people are emotionally capable of implementing the principles described here. It is incumbent on the board, therefore, to select those members who can conduct in-depth interviews for a new CEO.
Video modeling to train staff to implement discrete-trial instruction.
Catania, Cynthia N; Almeida, Daniel; Liu-Constant, Brian; DiGennaro Reed, Florence D
2009-01-01
Three new direct-service staff participated in a program that used a video model to train target skills needed to conduct a discrete-trial session. Percentage accuracy in completing a discrete-trial teaching session was evaluated using a multiple baseline design across participants. During baseline, performances ranged from a mean of 12% to 63% accuracy. During video modeling, there was an immediate increase in accuracy to a mean of 98%, 85%, and 94% for each participant. Performance during maintenance and generalization probes remained at high levels. Results suggest that video modeling can be an effective technique to train staff to conduct discrete-trial sessions.
NASA Technical Reports Server (NTRS)
Davis, R. E.; Champine, R. A.; Ehernberger, L. J.
1979-01-01
The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.
A comparison of manual and controlled-force attachment-level measurements.
Reddy, M S; Palcanis, K G; Geurs, N C
1997-12-01
This study compared the intra-examiner and inter-examiner error of 2 constant force probes to the reading of a conventional manual probe. 3 examiners made repeated examinations of attachment level using a modified Florida probe and a manual North Carolina probe (read to 1 mm or 0.5 mm); relative attachment level measurements were made using a Florida disk probe. One probe was used in each quadrant in 8 subjects with moderate to advanced periodontitis. Error was calculated as the mean of the absolute value of the difference between each examination, and the correlation between values at each examination calculated. Statistically-significant differences between probe type, examiners, and sites were detected using a repeated measures ANOVA accounting for the nesting within subjects. There was a significant difference in error by probe type (modified Florida probe 0.62 +/- 0.03 mm, r = 0.86; Florida stent probe 0.55 +/- 0.05 mm, r = 0.82; manual probe to 1 mm 0.39 +/- 0.02 mm, r = 0.88; manual probe to 0.5 mm 0.40 +/- 0.02 mm, r = 0.89; (p < 0.001). Significant differences were observed by examiners (p < 0.01). These data indicate that both manual and controlled-force probes can provide measurement within less than 1 mm of error; however, individual calibration of examiners remains important in the reduction of error.
Probing Charge Transport through Peptide Bonds.
Brisendine, Joseph M; Refaely-Abramson, Sivan; Liu, Zhen-Fei; Cui, Jing; Ng, Fay; Neaton, Jeffrey B; Koder, Ronald L; Venkataraman, Latha
2018-02-15
We measure the conductance of unmodified peptides at the single-molecule level using the scanning tunneling microscope-based break-junction method, utilizing the N-terminal amine group and the C-terminal carboxyl group as gold metal-binding linkers. Our conductance measurements of oligoglycine and oligoalanine backbones do not rely on peptide side-chain linkers. We compare our results with alkanes terminated asymmetrically with an amine group on one end and a carboxyl group on the other to show that peptide bonds decrease the conductance of an otherwise saturated carbon chain. Using a newly developed first-principles approach, we attribute the decrease in conductance to charge localization at the peptide bond, which reduces the energy of the frontier orbitals relative to the Fermi energy and the electronic coupling to the leads, lowering the tunneling probability. Crucially, this manifests as an increase in conductance decay of peptide backbones with increasing length when compared with alkanes.
Dimensionality of Data Matrices with Applications to Gene Expression Profiles
ERIC Educational Resources Information Center
Feng, Xingdong
2009-01-01
Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…
High heat flux Langmuir probe array for the DIII-D divertor platesa)
NASA Astrophysics Data System (ADS)
Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.
2008-10-01
Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.
Thin-film fiber optic hydrogen and temperature sensor system
Nave, Stanley E.
1998-01-01
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.
Thin-film fiber optic hydrogen and temperature sensor system
Nave, S.E.
1998-07-21
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.
Test module development to detect the flase call probe pins on microeprocessor test equipment
NASA Astrophysics Data System (ADS)
Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.
2017-09-01
Probe pins are useful for electrical testing of microelectronic components, printed circuit board assembly (PCBA), microprocessors and other electronic devices due to it provides the conductivity test based on specific device circuit design. During the repeatable test runs, the load of test modules, contact failures and the current conductivity induces layer wear off all the tip of probe pins contact. Contamination will be build-up on probe pins and increased contact resistivity which results of cost loss and time loss for rectifying programs, rectifying testers and exchanging new probe pins. In this study, a resistivity approach will be developed to provide "Testing of Test Probes". The test module based on "Four-wire Ohm measurement" method with two alternative ways of applying power supply, that are 9V from a single power supply and 5V from Arduino UNO power supply were demonstrated to measure the small resistance value of microprocessor probe pin. A microcontroller with VEE Pro software was used to record the measurement data. The accuracy of both test modules were calibrated under different temperature conditions and result shows that 9V from a single power supply test module has higher measurement accuracy.
Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk
NASA Astrophysics Data System (ADS)
Mencarelli, D.; Bellucci, S.; Sindona, A.; Pierantoni, L.
2015-11-01
Excitation of surface plasmon waves in extrinsic graphene is studied using a full-wave electromagnetic field solver as analysis engine. Particular emphasis is placed on the role played by spatial dispersion due to the finite size of the two-dimensional material at the micro-scale. A simple instructive set up is considered where the near field of a wire antenna is held at sub-micrometric distance from a disk-shaped graphene patch. The key-input of the simulation is the graphene conductivity tensor at terahertz frequencies, being modeled by the Boltzmann transport equation for the valence and conduction electrons at the Dirac points (where a linear wave-vector dependence of the band energies is assumed). The conductivity equation is worked out in different levels of approximations, based on the relaxation time ansatz with an additional constraint for particle number conservation. Both drift and diffusion currents are shown to significantly contribute to the spatially dispersive anisotropic features of micro-scale graphene. More generally, spatial dispersion effects are predicted to influence not only plasmon propagation free of external sources, but also typical scanning probe microscopy configurations. The paper sets the focus on plasmon excitation phenomena induced by near field probes, being a central issue for the design of optical devices and photonic circuits.
Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors
Staudinger, Christoph; Borisov, Sergey M
2016-01-01
Long-wavelength luminescent probes and sensors become increasingly popular. They offer the advantage of lower levels of autofluorescence in most biological probes. Due to high penetration depth and low scattering of red and NIR light such probes potentially enable in vivo measurements in tissues and some of them have already reached a high level of reliability required for such applications. This review focuses on the recent progress in development and application of long-wavelength analyte-sensitive probes which can operate both reversibly and irreversibly. Photophysical properties, sensing mechanisms, advantages and limitations of individual probes are discussed. PMID:27134748
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens
2015-03-01
The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good correlation between MRI and micro probe measurements. However, direct conversion of tissue pO2 to blood oxygen saturation by using the Hill equation is very limited. Furthermore, adverse effects of anesthesia and trauma due to micro probe insertion are strong confounding factors and need close attention for study planning and conduction of experiments. Investigation of the correlation of perfusion and oxygenation sensitive MRI methods with micro probe measurements in pathologic tissue such as tumors is now of compelling interest. Copyright © 2014. Published by Elsevier GmbH.
An experimental investigation of mesospheric ionization
NASA Technical Reports Server (NTRS)
Mitchell, J. D.
1973-01-01
Mesospheric ionization and its variability are examined. Data were obtained primarily by the parachute-borne blunt probe technique conducted in coordinated rocket experiments at White Sands Missile Range, New Mexico and Wallops Island, Virginia. Electrical conductivity measurements and deduced charge density values from ten rocket launches are presented and discussed. Positive ion conductivity and electron density were found to be relatively invariant with height between 45 and 60 km. Variations in positive conductivity of a factor of two and enhancements in negative conductivity by as much as a factor of four were measured by the blunt probe. A simple lumped parameter ion chemistry model is shown to satisfactorily explain the charge density values for the undisturbed lower D-region. Implications of the data in terms of this model are considered. The principal loss mechanism for positive ions in the 45 to 60 km. region is concluded to be dissociative recombination. Electron densities deduced from the conductivity data are explained by detachment involving a minor neutral constituent which is mixed between 65 and 45 km. and then cuts off sharply below 45 km. A correlation study involving blunt probe measurements shows relatively good agreement between variations in positive conductivity and temperature.
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh (Inventor); Takano, Nobuyuki (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Ostlund, Patrick N. (Inventor)
2017-01-01
A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.
Quantum Degeneracy in Atomic Point Contacts Revealed by Chemical Force and Conductance
NASA Astrophysics Data System (ADS)
Sugimoto, Yoshiaki; Ondráček, Martin; Abe, Masayuki; Pou, Pablo; Morita, Seizo; Perez, Ruben; Flores, Fernando; Jelínek, Pavel
2013-09-01
Quantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature. The tunneling conductance G and chemical binding force F between two bodies both tend to decay exponentially with distance in a certain distance range, usually maintaining direct proportionality G∝F. However, we show that a square relation G∝F2 arises as a consequence of quantum degeneracy between the interacting frontier states of the scanning tip and a surface atom. We demonstrate this phenomenon on the Si(111)-(7×7) surface reconstruction where the Si adatom possesses a strongly localized dangling-bond state at the Fermi level.
Tunnel current across linear homocatenated germanium chains
NASA Astrophysics Data System (ADS)
Matsuura, Yukihito
2014-01-01
The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e-βL, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge-Ge bond length is longer than the Si-Si bond length.
Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Furukawa, Takako; Ukai, Yoshinori; Kurosawa, Yoshikazu; Saga, Tsuneo
2016-01-01
To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4 integrin is a good target and employed single-photon emission computed tomography (SPECT) or near-infrared (NIR) imaging for immunotargeting. Expression levels of α6β4 were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4 with Indium-111 (111In) or indocyanine green (ICG). After injection of 111In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG), and immunohistochemical (IHC) studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of 111In-labeled probe, ARG, and IHC confirmed the α6β4 specific binding of the probe. Here, we propose that α6β4 is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4 antibody. PMID:27030400
Cervantes, Felix A; Backus, Elaine A
2018-05-31
Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9 Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9 Ohms) was performed. Intermediate Ri levels 10 7 and 10 8 Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa inoculation via EPG will require carefully determined instrument settings. An intermediate Ri level such as 10 8 Ohms with low voltage, AC applied signal, and gold wire loop plus silver glue is recommended as the best electropenetrograph methods to conduct future EPG studies of sharpshooter inoculation behaviors on Xf-resistant and -susceptible grapevine. Copyright © 2018. Published by Elsevier Ltd.
Oral health status of dialysis patients based on their renal dialysis history in Kerman, Iran.
Chamani, Goli; Zarei, Mohammad Reza; Radvar, Mehrdad; Rashidfarrokhi, Farin; Razazpour, Fateme
2009-01-01
Maintaining a high level of periodontal and oral health in patients undergoing renal dialysis is of paramount importance because of the inherent compromised host defence mechanisms. The aim of the present study was to determine the periodontal status and the level of dental caries in renal dialysis patients in Kerman, Iran. A cross-sectional study was conducted on two groups of patients: one including 68 renal dialysis patients (test) and the other including 30 healthy subjects (control). Half-mouth measurements of Gingival Index (GI), Plaque Index (PI), probing pocket depth (PPD), gingival recession (GR), clinical attachment level (CAL) and bleeding on probing (BOP) as well as decayed, missing or filled teeth (DMFT) index were recorded. The GI, BOP, PPD, CAL and GR were significantly greater among the test group as compared with the control group; however, the DMFT did not differ significantly among the groups. There was no relationship between the duration of the dialysis and the periodontal indices. It seems that patients with chronic renal failure have less favourable periodontal health than normal patients. The present study showed that oral home care practices were inadequate. Thus, preventive programmes to promote the oral health status of haemodialysis patients are needed.
Probing dimensionality using a simplified 4-probe method.
Kjeldby, Snorre B; Evenstad, Otto M; Cooil, Simon P; Wells, Justin W
2017-10-04
4-probe electrical measurements have been in existence for many decades. One of the most useful aspects of the 4-probe method is that it is not only possible to find the resistivity of a sample (independently of the contact resistances), but that it is also possible to probe the dimensionality of the sample. In theory, this is straightforward to achieve by measuring the 4-probe resistance as a function of probe separation. In practice, it is challenging to move all four probes with sufficient precision over the necessary range. Here, we present an alternative approach. We demonstrate that the dimensionality of the conductive path within a sample can be directly probed using a modified 4-probe method in which an unconventional geometry is exploited; three of the probes are rigidly fixed, and the position of only one probe is changed. This allows 2D and 3D (and other) contributions the to resistivity to be readily disentangled. The required experimental instrumentation can be vastly simplified relative to traditional variable spacing 4-probe instruments.
NASA Technical Reports Server (NTRS)
Schiller, Q.; Kanekal, S. G.; Jian, L. K,; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.
2016-01-01
We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E greater than 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.
Charge transport in molecular junctions: From tunneling to hopping with the probe technique
NASA Astrophysics Data System (ADS)
Kilgour, Michael; Segal, Dvira
2015-07-01
We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ɛB > 1/25, with ɛB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.
Association of Serum Triglyceride Level and Gemfibrozil Consumption With Periodontal Status.
Sayar, Ferena; Akhondi, Nasrin; Fallah, Soltanali; Moalemnia, Amir Abbas; Cheraghi, Azra
2017-05-01
Hyperlipidemia is a major risk factor for cardiovascular diseases. Considering the suggested association between periodontal and cardiovascular diseases, this study sought to assess the association, if any, between serum triglyceride (TG) levels and gemfibrozil consumption with periodontal parameters. This cross-sectional study was conducted on 90 participants, including 30 individuals with a normal lipid profile (group H), 30 patients with hypertriglyceridemia and not on medication (group N), and 30 patients with hypertriglyceridemia and taking gemfibrozil over a 3-month period (group M). Periodontal parameters including probing depth (PD), clinical attachment level (CAL), bleeding on probing (BOP), and plaque index were measured at four sites of each tooth. Serum levels of total cholesterol (TC), TG, low-density lipoprotein, and high-density lipoprotein were measured. Mean values for PD and CAL in the two hypertriglyceridemic groups were significantly higher than those of the H group (P <0.001). After controlling for confounding variables, significant linear correlations were noted between PD and BOP, PD and TC, PD and TG, and CAL and TG in each group (P <0.01). Patients with hypertriglyceridemia had worse periodontal status than healthy controls. Patients with hypertriglyceridemia who were taking gemfibrozil did not show significant differences in CAL and PD compared with untreated patients with hypertriglyceridemia.
Development of a direct push based in-situ thermal conductivity measurement system
NASA Astrophysics Data System (ADS)
Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan
2016-04-01
Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct push based approaches, called Thermal Conductivity Profiler (TCP), that operates based on the principles of a hollow cylindrical geometry heat source. To determinate thermal conductivity in situ, the transient temperature at the middle of the probe and electrical power dissipation is measured. At the same time, this work presents laboratory results obtained when this novel hollow cylindrical probe system was tested on different materials for calibration. By using the hollow cylindrical probe, the thermal conductivity results have an error of less than 2.5% error for solid samples (Teflon, Agar jelly, and Nylatron). These findings are useful to achieve a proper thermal energy balance in the shallow subsurface by using direct push technology and TCP. By providing information of layers with high thermal conductivity, suitable for thermal storage capability, can be used determine borehole heat exchanger design and, therefore, determine geothermal heat pump architecture.
Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes.
Senga, Ryosuke; Pichler, Thomas; Yomogida, Yohei; Tanaka, Takeshi; Kataura, Hiromichi; Suenaga, Kazu
2018-06-13
Measurements of optical properties at a nanometer level are of central importance for the characterization of optoelectronic devices. It is, however, difficult to use conventional light-probe measurements to determine the local optical properties from a single quantum object with nanometrical inhomogeneity. Here, we successfully measured the optical gap transitions of an individual semiconducting carbon nanotube with defects by using a monochromated electron source as a probe. The optical conductivity extracted from an electron energy-loss spectrum for a certain type of defect presents a characteristic modification near the lowest excitation peak ( E 11 ), where excitons and nonradiative transitions, as well as phonon-coupled excitations, are strongly involved. Detailed line-shape analysis of the E 11 peak clearly shows different degrees of exciton lifetime shortening and electronic state modification according to the defect type.
Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.
Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan
2005-10-01
To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.
Estimation of hydraulic conductivity in an alluvial system using temperatures.
Su, Grace W; Jasperse, James; Seymour, Donald; Constantz, Jim
2004-01-01
Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.
Estimation of hydraulic conductivity in an alluvial system using temperatures
Su, G.W.; Jasperse, James; Seymour, D.; Constantz, J.
2004-01-01
Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from < 0.2??C in two wells to ???8??C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.
Controlled mechnical modification of manganite surface with nanoscale resolution
Kelly, Simon J.; Kim, Yunseok; Eliseev, Eugene; ...
2014-11-07
We investigated the surfaces of magnetoresistive manganites, La1-xCaxMnO3 and La2-2xSr1+2xMn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ~0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitantmore » changes of the electronic properties.« less
0.4 Microns Spatial Resolution with 1 GHz (lambda = 30 cm) Evanescent Microwave Probe
NASA Technical Reports Server (NTRS)
Tabib-Azar, M.; Su, D.-P.; Pohar, A.; LeClair, S. R.; Ponchak, George E.
1999-01-01
In this article we describe evanescent field imaging of material nonuniformities with a record resolution of 0.4 microns at 1 GHz (lambda(sub g)/750000), using a resonant stripline scanning microwave probe. A chemically etched tip is used as a point-like evanescent field emitter and a probe-sample distance modulation is employed to improve the signal-to-noise ratio. Images obtained by evanescent microwave probe, by optical microscope, and by scanning tunneling microscope are presented for comparison. Probe was calibrated to perform quantitative conductivity measurements. The principal factors affecting the ultimate resolution of evanescent microwave probe are also discussed.
NASA Astrophysics Data System (ADS)
Abraham, Odile; Legland, Jean-Baptiste; Durand, Olivier; Hénault, Jean-Marie; Garnier, Vincent
2018-04-01
The maintenance and evaluation of concrete nuclear containment walls is a major concern as they must, in case of an accident, ensure the confinement of the nuclear radiations and resist to the loads. A homemade multi-receiver multi-source dry contact linear probe to record ultrasonic surface waves on concrete in the frequency range [60 kHz - 200 kHz] has been used in this context. The measurement protocol includes the summation of up to 50 spatially distributed seismograms and the determination of the surface waves phase velocity dispersion curve. The probe has been tested against several concrete states under no loading (water saturation level, temperature damage). Then, the same measurements have been performed on sound and fire damaged slabs submitted to uniaxial loading (stress up to 30 % of the concrete compression resistance). It is shown that the robustness and precision of the surface waves measurement protocol make it possible to follow the stress level. In March 2017 a first experiment with this surface wave probe has been conducted on a reduced 1:3 scale nuclear containment plant (EDF VeRCoRs mock-up) under loading conditions that replicates that of decennial inspection. The surface wave phase velocity dispersion curves of each state are compared and cross-validated with other NDT results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haemmerli, Alexandre J.; Pruitt, Beth L., E-mail: pruitt@stanford.edu; Harjee, Nahid
The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design,more » fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.« less
Four-probe measurements with a three-probe scanning tunneling microscope.
Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A
2014-04-01
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.
Sowinski, Joseph A; Kakar, Ashish; Kakar, Kanupriya
2013-05-01
To compare the Jay Sensitivity Sensor Probe (Jay Probe), a new microprocessor-based, pre-calibrated instrument, with well accepted methods used to evaluate sensitivity, i.e. tactile response to the Yeaple Probe, air blast (Schiff scale), and patient responses by Visual Analog Score (VAS). Jay Probe assessments were accomplished using several approaches. With a cohort of 12 subjects, two clinical examiners compared the repeatability of the Jay and Yeaple Probes. A second evaluation of both probes was conducted during two independent parallel design clinical studies each enrolling 100 adults with dentin hypersensitivity (DH). In each study, subjects were evaluated for DH responses after twice daily oral hygiene with a negative control fluoride dentifrice or a positive control dentifrice formulated with ingredients proven to reduce sensitivity, i.e. potassium nitrate or 8.0% arginine with calcium carbonate. Tactile evaluations by the Jay and Yeaple Probes were conducted at baseline and recall visits over the 8-week duration of each study. Also evaluated at each visit were responses to air blast and to patient reported DH assessment by VAS. Low inter-examiner variability with no significant differences between replicate measurements (P > 0.05) was observed with the Jay Probe. Consistent with results from previous studies, subjects assigned dentifrices formulated with potassium nitrate or 8% arginine/calcium carbonate demonstrated improvements in Yeaple, air blast and VAS responses in comparison to those assigned the fluoride dentifrice (P < 0.05). Jay Probe responses correlated significantly with all other sensitivity measures (P < 0.05). Differences between these treatments were observed at all post-treatment evaluations using these methods.
Corrosion Detection in Airframes Using a New Flux-Focusing Eddy Current Probe
NASA Technical Reports Server (NTRS)
Fulton, James P.; Wincheski, Buzz; Nath, Shridhar; Namkung, Min
1994-01-01
A new flux-focusing eddy current probe was recently developed at NASA Langley Research Center. The new probe is similar in design to a reflection type eddy current probe, but is unique in that it does not require the use of an impedance bridge for balancing. The device monitors the RMS output voltage of a pickup coil and, as a result, is easier to operate and interpret than traditional eddy current instruments. The unique design feature of the probe is a ferromagnetic cylinder, typically 1020 steel, which separates a concentrically positioned drive and pickup coil. The increased permeability of the steel causes the magnetic flux produced by the drive coil to be focused in a ring around the pickup coil. At high frequencies the eddy currents induced in both the sample and the cylinder allow little or no flux to link with the pickup coil. This results in a self-nulling condition which has been shown to be useful for the unambiguous detection of cracks in conducting materials. As the frequency is lowered the flux produced by the drive coil begins to link with the pickup coil causing an output which, among other things, is proportional to the thickness of the test specimen. This enables highly accurate measurements of the thickness of conducting materials and helps to facilitate the monitoring of thickness variations in a conducting structure such as an aircraft fuselage. Under ideal laboratory conditions the probe can sense thickness changes on the order of 1% as illustrated. However, this is highly dependent upon the thickness, and the geometric complexity of the sample being tested and for practical problems the sensitivity is usually much less. In this presentation we highlight some of the advantages and limitations in using the probe to inspect aircraft panels for corrosion and other types of material nonuniformities. In particular, we present preliminary results which illustrate the probes capabilities for detecting first and second layer corrosion in aircraft panels which may contain air gaps between the layers. Since the probe utilized eddy currents its corrosion detection capabilities are similar to convectional eddy current techniques, but the new probe is much easier to use.
Seifi, Sohila; Khatony, Alireza; Moradi, Gholamreza; Abdi, Alireza; Najafi, Farid
2018-01-01
Heart surgery patients are more at risk of poor peripheral perfusion, and peripheral capillary oxygen saturation (SpO2) measurement is regular care for continuous analysis of blood oxygen saturation in these patients. With regard to controversial studies on accuracy of the current pulse oximetry probes and lack of data related to patients undergoing heart surgery, the present study was conducted to determine accuracy of pulse oximetry probes of finger, toe, forehead and earlobe in detection of oxygen saturation in patients admitted to intensive care units for coronary artery bypass surgery. In this clinical trial, 67 patients were recruited based on convenience sampling method among those admitted to intensive care units for coronary artery bypass surgery. The SpO2 value was measured using finger, toe, forehead and earlobe probes and then compared with the standard value of arterial oxygen saturation (SaO2). Data were entered into STATA-11 software and analyzed using descriptive, inferential and Bland-Altman statistical analyses. Highest and lowest correlational mean values of SpO2 and SaO2 were related to finger and earlobe probes, respectively. The highest and lowest agreement of SpO2 and SaO2 were related to forehead and earlobe probes. The SpO2 of earlobe probes due to lesser mean difference, more limited confidence level and higher agreement ration with SaO2 resulted by arterial blood gas (ABG) analysis had higher accuracy. Thus, it is suggested to use earlobe probes in patients admitted to the intensive care unit for coronary artery bypass surgery. Registration of this trial protocol has been approved in Iranian Registry of Clinical Trials at 2018-03-19 with reference IRCT20100913004736N22. "Retrospectively registered."
NASA Astrophysics Data System (ADS)
Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.
2017-11-01
A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.
NASA Astrophysics Data System (ADS)
Gao, Lijuan; Yang, Zhao-Di; Zhang, Guiling
2017-06-01
The geometries, electronic and electron transport properties of a series of functionalized MoS2 monolayers were investigated using density-functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods. n-Propyl, n-trisilicyl, phenyl, p-nitrophenyl and p-methoxyphenyl are chosen as electron-donating groups. The results show covalent functionalization with electron-donating groups could make a transformation from typical semiconducting to metallic properties for appearance of midgap level across the Fermi level (Ef). The calculations of transport properties for two-probe devices indicate that conductivities of functionalized systems are obviously enhanced relative to pristine MoS2 monolayer. Grafted groups contribute to the major transport path and play an important role in enhancing conductivity. The NDR effect is found. The influence of grafted density is also studied. Larger grafted density leads to wider bandwidth of midgap level, larger current response of I-V curves and larger current difference between peak and valley.
Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju
2012-11-29
The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.
NMR Studies of Mass Transport in New Conducting Media for Fuel Cells
2009-01-01
PEM films, for example those containing phosphoric acid and ionic liquids . Dynamical processes are probed at the short range by spin-lattice...structural environments of muticomponent PEM films, for example those containing phosphoric acid and ionic liquids . Dynamical processes are probed at the...correlation between water diffusivity and proton conductivity in the nanocomposites Transport properties of several ionic liquids (IL’s) and membranes
Sensor for detection of liquid spills on surfaces
Davis, Brent C.; Gayle, Tom M.
1989-07-04
A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.
Sensor for detection of liquid spills on surfaces
Davis, Brent C.; Gayle, Tom M.
1989-01-01
A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.
Kakar, Ashish; Kakar, Kanupriya
2013-05-01
To compare relief from dentin hypersensitivity (DH) after use of dentifrices formulated with potassium nitrate or fluoride. For the study, DH evaluations were conducted with the Jay Sensitivity Sensor Probe (Jay Probe), a novel tactile hypersensitivity instrument, in conjunction with three other DH methods, i.e. Yeaple probe (tactile), air blast, and the Visual Analog Scale (VAS). Adults (n = 100) who presented two teeth with DH and met study criteria were enrolled for this double-blind, randomized, parallel, controlled clinical trial conducted in an outpatient setting. DH evaluations at baseline were conducted by the tactile, air blast, and VAS methods. Subjects were randomly assigned a dentifrice formulated with 5% potassium nitrate and 1,000 ppm fluoride (as sodium monofluorophosphate) (Colgate Sensitive toothpaste; Test) or a commercially available fluoride dentifrice with 1,000 ppm fluoride as sodium monofluorophosphate (Colgate Cibaca toothpaste; Negative control). Subjects were recalled for DH evaluations after 4 and 8 weeks of product use. 85 subjects completed the entire study with evaluable results. Both treatments resulted in significant reductions in DH from baseline to all recall visits. In comparison to the Negative control, subjects in the Test group demonstrated significantly greater reductions for all DH evaluations at both 4 and 8 weeks (P < 0.05). Average tactile DH scores at week 8 for the Test and Negative control groups were 36.25 and 15.24 with the Yeaple probe and 35 and 12.43 with the Jay probe. Correspondingly, subjects in the Test group demonstrated significantly greater reductions in air blast and VAS responses for DH than those in the Negative control group (P < 0.05).
Chemistry Lab for Phoenix Mars Lander
NASA Technical Reports Server (NTRS)
2007-01-01
The science payload of NASA's Phoenix Mars Lander includes a multi-tool instrument named the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument's wet chemistry laboratory, prominent in this photograph, will measure a range of chemical properties of Martian soil samples, such as the presence of dissolved salts and the level of acidity or alkalinity. Other tools that are parts of the instrument are microscopes that will examine samples' mineral grains and a probe that will check the soil's thermal and electrical properties.Bozyigit, Deniz; Volk, Sebastian; Yarema, Olesya; Wood, Vanessa
2013-11-13
We implement three complementary techniques to quantify the number, energy, and electronic properties of trap states in nanocrystal (NC)-based devices. We demonstrate that, for a given technique, the ability to observe traps depends on the Fermi level position, highlighting the importance of a multitechnique approach that probes trap coupling to both the conduction and the valence bands. We then apply our protocol for characterizing traps to quantitatively explain the measured performances of PbS NC-based solar cells.
Comparison of Everyday and Every-Fourth-Day Probe Sessions with the Simultaneous Prompting Procedure
ERIC Educational Resources Information Center
Reichow, Brian; Wolery, Mark
2009-01-01
Simultaneous prompting is a response-prompting procedure requiring two daily sessions: an instructional session in which a controlling prompt is provided on all trials, and a probe session in which no prompt is provided on any trials. In this study, two schedules of conducting the probe sessions (daily vs. every fourth day) were compared using the…
ERIC Educational Resources Information Center
Nosofsky, Robert M.; Cox, Gregory E.; Cao, Rui; Shiffrin, Richard M.
2014-01-01
Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across…
Wind-Tunnel Tests of Seven Static-Pressure Probes at Transonic Speeds
NASA Technical Reports Server (NTRS)
Capone, Francis J.
1961-01-01
Wind-tunnel tests have been conducted to determine the errors of 3 seven static-pressure probes mounted very close to the nose of a body of revolution simulating a missile forebody. The tests were conducted at Mach numbers from 0.80 to 1.08 and at angles of attack from -1.7 deg to 8.4 deg. The test Reynolds number per foot varied from 3.35 x 10(exp 6) to 4.05 x 10(exp 6). For three 4-vane, gimbaled probes, the static-pressure errors remained constant throughout the test angle-of-attack range for all Mach numbers except 1.02. For two single-vane, self-rotating probes having two orifices at +/-37.5 deg. from the plane of symmetry on the lower surface of the probe body, the static-pressure error varied as much as 1.5 percent of free-stream static pressure through the test angle-of- attack range for all Mach numbers. For two fixed, cone-cylinder probes of short length and large diameter, the static-pressure error varied over the test angle-of-attack range at constant Mach numbers as much as 8 to 10 percent of free-stream static pressure.
A Study of Dielectric Properties of Proteinuria between 0.2 GHz and 50 GHz
Mun, Peck Shen; Ting, Hua Nong; Ong, Teng Aik; Wong, Chew Ming; Ng, Kwan Hong; Chong, Yip Boon
2015-01-01
This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature. PMID:26066351
Four-probe measurements with a three-probe scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik
2014-04-15
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less
A sub-nanomolar real-time nitric oxide probe: in vivo nitric oxide release in heart.
Mantione, Kirk J; Stefano, George B
2004-04-01
Amperometric nitric oxide probes are critical in evaluating real-time nitric oxide levels. This valuable tool enables one to measure spontaneous baseline levels of nitric oxide as well as 'puffs' of the gaseous signal molecule that may last for only seconds to minutes. However, in the past, many probes suffered from a lack of sensitivity, durability and reliability, causing investigators to design numerous controls to support their data. Our laboratory evaluated the new ISO-NOPF100 NO probe manufactured by World Precision Instruments of Sarasota, Florida. An invertebrate in vivo heart preparation was used, which presents a high degree of difficuly in obtaining nitric oxide measurements due to space limitations, resulting in physical contact of the probe with tissues. Additionally, we used in vitro invertebrate ganglionic preparations as a comparison since this tissue releases spontaneous and low levels of NO. Calibration of the new probe demonstrated high linearity and sensitivity. The detection limit for this new probe was determined to be approximately two times lower than probes previously used in our laboratory. Basal nitric oxide fluctuations in Mytilus edulis heart and excised ganglia were able to be resolved in the sub-nanomolar range. The ISO-NOPF100 NO probe represents a significant advancement for measuring nitric oxide in real-time.
Outer planet entry probe system study. Volume 4: Common Saturn/Uranus probe studies
NASA Technical Reports Server (NTRS)
1973-01-01
Results are summarized of a common scientific probe study to explore the atmospheres of Saturn and Uranus. This was a three-month follow-on effort to the Outer Planet Entry Probe System study. The report presents: (1) a summary, conclusions and recommendations of this study, (2) parametric analysis conducted to support the two system definitions, (3) common Saturn/Uranus probe system definition using the Science Advisory Group's exploratory payload and, (4) common Saturn/Uranus probe system definition using an expanded science complement. Each of the probe system definitions consists of detailed discussions of the mission, science, system and subsystems including telecommunications, data handling, power, pyrotechnics, attitude control, structures, propulsion, thermal control and probe-to-spacecraft integration. References are made to the contents of the first three volumes where it is feasible to do so.
NASA Technical Reports Server (NTRS)
Bettanini, C.; Angrilli, F.
2005-01-01
As part of the collaboration with Italian Space Agency on HASI instrument for Huygens mission, University of Padova has been conducting since 2001 scientific activity on Stratospheric Balloon Launches from the Trapani base in Sicily. The most recent boomerang flight in July 2003 has successfully flown a mock up of the Huygens probe hosting spares of flight scientific units and extra housekeeping and scientific sensors on a parachuted descent from 33 kilometre altitude. This work presents the studies conducted on attitude reconstruction of the probe, as well as the utilisation of iterative extended Kalman filtering in investigating vanes induced spin rate and in providing a baseline for the performance evaluation of Huygens accelerometers operations. Finally some possible contributions on the reconstruction of the lower part of Titan descent for Huygens probe are suggested based on the confrontation of sensor data for 2003 flight.
Sub-picowatt/kelvin resistive thermometry for probing nanoscale thermal transport.
Zheng, Jianlin; Wingert, Matthew C; Dechaumphai, Edward; Chen, Renkun
2013-11-01
Advanced instrumentation in thermometry holds the key for experimentally probing fundamental heat transfer physics. However, instrumentation with simultaneously high thermometry resolution and low parasitic heat conduction is still not available today. Here we report a resistive thermometry scheme with ~50 μK temperature resolution and ~0.25 pW/K thermal conductance resolution, which is achieved through schemes using both modulated heating and common mode noise rejection. The suspended devices used herein have been specifically designed to possess short thermal time constants and minimal attenuation effects associated with the modulated heating current. Furthermore, we have systematically characterized the parasitic background heat conductance, which is shown to be significantly reduced using the new device design and can be effectively eliminated using a "canceling" scheme. Our results pave the way for probing fundamental nanoscale thermal transport processes using a general scheme based on resistive thermometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Grace W.; Jasperse, James; Seymour, Donald
Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.28C in two wells to {approx}88C in the other four wells from June tomore » October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, J.; Reboul, S.
2015-06-01
SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may bemore » calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the simplified model to pure component literature data suggests that the simplified model will tend to under estimate the electrical conductivity. Comparison of the computed Tank 40 conductivity with the measured conductivity shows good agreement within the range of deviation identified based on pure component literature data.« less
NASA Astrophysics Data System (ADS)
Styrnoll, T.; Bienholz, S.; Lapke, M.; Awakowicz, P.
2014-04-01
This paper discusses plasma probe diagnostics, namely the multipole resonance probe (MRP) and Langmuir probe (LP), operated in depositing plasmas. The aim of this work is to show that the combination of both probes provides stable and robust measurements and clear determination of plasma parameters for metallic and ceramic coating processes. The probes use different approaches to determine plasma parameters, e.g. electron density ne and electron temperature Te. The LP is a well-established plasma diagnostic, and its applicability in technological plasmas is well documented. The LP is a dc probe that performs a voltage sweep and analyses the measured current, which makes it insensitive against conductive metallic coating. However, once the LP is dielectrically coated with a ceramic film, its functionality is constricted. In contrast, the MRP was recently presented as a monitoring tool, which is insensitive to coating with dielectric ceramics. It is a new plasma diagnostic based on the concept of active plasma resonance spectroscopy, which uses the universal characteristic of all plasmas to resonate on or near the electron plasma frequency. The MRP emits a frequency sweep and the absorption of the signal, the |S11| parameter, is analysed. Since the MRP concept is based on electromagnetic waves, which are able to transmit dielectrics, it is insensitive to dielectric coatings. But once the MRP is metallized with a thin conductive film, no undisturbed RF-signal can be emitted into the plasma, which leads to falsified plasma parameter. In order to compare both systems, during metallic or dielectric coating, the probes are operated in a magnetron CCP, which is equipped with a titanium target. We present measurements in metallic and dielectric coating processes with both probes and elaborate advantages and problems of each probe operated in each coating environment.
Single point aerosol sampling: evaluation of mixing and probe performance in a nuclear stack.
Rodgers, J C; Fairchild, C I; Wood, G O; Ortiz, C A; Muyshondt, A; McFarland, A R
1996-01-01
Alternative reference methodologies have been developed for sampling of radionuclides from stacks and ducts, which differ from the methods previously required by the United States Environmental Protection Agency. These alternative reference methodologies have recently been approved by the U.S. EPA for use in lieu of the current standard techniques. The standard EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative reference methodologies are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of some aspects of the alternative reference methodologies. Coefficients of variation of velocity, tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed that numerical criteria placed upon the coefficients of variation by the alternative reference methodologies were met at sampling stations located 9 and 14 stack diameters from the flow entrance, but not at a location that was 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 microns aerodynamic diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L min-1 (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the existing EPA standard requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the alternative reference methodologies criteria; however, the isokinetic probes would not.
Liao, Lun-De; Wang, I-Jan; Chen, Sheng-Fu; Chang, Jyh-Yeong; Lin, Chin-Teng
2011-01-01
In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes.
Liao, Lun-De; Wang, I-Jan; Chen, Sheng-Fu; Chang, Jyh-Yeong; Lin, Chin-Teng
2011-01-01
In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes. PMID:22163929
Characterization of Membrane Patch-Ion Channel Probes for Scanning Ion Conductance Microscopy.
Shi, Wenqing; Zeng, Yuhan; Zhu, Cheng; Xiao, Yucheng; Cummins, Theodore R; Hou, Jianghui; Baker, Lane A
2018-05-01
Integration of dual-barrel membrane patch-ion channel probes (MP-ICPs) to scanning ion conductance microscopy (SICM) holds promise of providing a revolutionized approach of spatially resolved chemical sensing. A series of experiments are performed to further the understanding of the system and to answer some fundamental questions, in preparation for future developments of this approach. First, MP-ICPs are constructed that contain different types of ion channels including transient receptor potential vanilloid 1 and large conductance Ca2 + -activated K + channels to establish the generalizability of the methods. Next, the capability of the MP-ICP platforms in single ion channel activity measurements is proved. In addition, the interplay between the SICM barrel and the ICP barrel is studied. For ion channels gated by uncharged ligands, channel activity at the ICP barrel is unaffected by the SICM barrel potential; whereas for ion channels that are gated by charged ligands, enhanced channel activity can be obtained by biasing the SICM barrel at potentials with opposite polarity to the charge of the ligand molecules. Finally, a proof-of-principle experiment is performed and site-specific molecular/ionic flux sensing is demonstrated at single-ion-channel level, which show that the MP-ICP platform can be used to quantify local molecular/ionic concentrations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of Coatings for Langmuir Probes in an Oxygen-Rich Space Environment
NASA Astrophysics Data System (ADS)
Samaniego, J. I.; Wang, X.; Andersson, L.; Malaspina, D.; Ergun, R.; Horanyi, M.
2017-12-01
The surface properties of the Langmuir probes, such as the one on the MAVEN mission, will change after exposure to upper planetary atmospheres where high concentrations of atomic oxygen and other oxidizing compounds are present. TiN (Titanium Nitride) or DAG (a resin based graphite dispersion) are the most common coatings for current Langmuir probes, yet both of these coatings pose issues when exposed to oxygen-rich space environment. TiN showed reduced surface conductivity while the DAG layers erode with exposure to oxygen. It is known that Iridium (Ir) and Rhenium (Rh) are difficult to oxidize and maintain high conductivity even in their oxidized forms, suggesting them to be good candidates for probe coatings. Oxidation of most metals creates a resistive layer on the surface of the probe that will affect the amount of current being collected at a given voltage during the probe sweep and therefore affect the accuracy of plasma parameters determined by the Langmuir probe (e.g. density, temperature). We present the results of the oxidation effect on the current-voltage curves (I-V curves) and therefore the resulting measured plasma parameters of Ir and Rh wire probes compared with other control metals and coatings (Cu, Ni, TiN) in controlled plasma environments. The oxidation process is performed in an oxygen plasma chamber in which both O+ and O2+ are created and accelerated toward the probes with energies < 10 eV. An argon plasma chamber is used to compare the probe's I-V curves before and after the oxidation process. Our preliminary results indicate that iridium shows the least effect of oxidation on the probe measurements. The second objective of this study is to identify methods that can be used in orbit to clean the surface of Langmuir probes to minimize the effect of exposure to oxidizing compounds.
Control for monitoring thickness of high temperature refractory
Caines, M.J.
1982-11-23
This invention teaches an improved monitoring device for detecting the changes in thickness of high-temperature refractory, the device consists of a probe having at least two electrically conductive generally parallel elements separated by a dielectric material. The probe is implanted or embedded directly in the refractory and is elongated to extend in line with the refractory thickness to be measured. Electrical inputs to the conductive elements provide that either or both the electrical conductance or capacitance can be found, so that charges over lapsed time periods can be compared in order to detect changes in the thickness of the refractory.
Nonequilibrium optical conductivity: General theory and application to transient phases
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.
2017-08-01
A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wullschleger, Stan D; Childs, Kenneth W; King, Anthony Wayne
2011-01-01
A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proven valuable tools for interpreting the behavior of heat pulse, heat balance, and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probesmore » were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood, and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k defined as ( Tm T)/ T where Tm is the temperature differential ( T) between the heated and unheated probe under zero flow conditions was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for abrupt patterns of radial variation typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% over-estimation of sap flux density at modest flux rates. Future studies should verify these simulations and assess their utility in estimating sap flux density for this widely used technique.« less
Comparing Cognitive Interviewing and Online Probing: Do They Find Similar Results?
ERIC Educational Resources Information Center
Meitinger, Katharina; Behr, Dorothée
2016-01-01
This study compares the application of probing techniques in cognitive interviewing (CI) and online probing (OP). Even though the probing is similar, the methods differ regarding typical mode setting, sample size, level of interactivity, and goals. We analyzed probing answers to the International Social Survey Programme item battery on specific…
NASA Astrophysics Data System (ADS)
Claycomb, James Ronald
1998-10-01
Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-04-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
[Caries and periodontal state of pregnant women. Part I. Caries status].
Radnai, Márta; Gorzó, István; Nagy, Erzsébet; Urbán, Edit; Eller, József; Novák, Tibor; Pál, Attila
2005-04-01
A misconception exists in the society regarding the caries frequency during pregnancy. The condition of the teeth of the child can be influenced by the state of the teeth and the oral hygiene habits of the mother. An examination was conducted among young women soon after delivery in Szeged/Hungary. The number of the examined patients was 161, with the average age of 27.6 years. The DMFT (Decayed, Missing, Filled Teeth) index was 12.45, while the DMFS (Decayed, Missing, Filled Surfaces) index was 26.07 in the examined population. The DMFT index significantly correlated with age, number of pregnancies, plaque index, probing pocket depth and bleeding on probing, while the DMFT index was not dependent on education level, profession and place of residency. There was no significant correlation between the number of previous pregnancy and the incidence of caries.
Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856
Watching proteins function with 150-ps time-resolved X-ray crystallography
NASA Astrophysics Data System (ADS)
Anfinrud, Philip
2007-03-01
We have used time-resolved Laue crystallography to characterize ligand migration pathways and dynamics in wild-type and several mutant forms of myoglobin (Mb), a ligand-binding heme protein found in muscle tissue. In these pump-probe experiments, which were conducted on the ID09B time-resolved beamline at the European Synchrotron and Radiation Facility, a laser pulse photodissociates CO from an MbCO crystal and a suitably delayed X-ray pulse probes its structure via Laue diffraction. Single-site mutations in the vicinity of the heme pocket docking site were found to have a dramatic effect on ligand migration. To visualize this process, time-resolved electron density maps were stitched together into movies that unveil with <2-å spatial resolution and 150-ps time-resolution the correlated protein motions that accompany and/or mediate ligand migration. These studies help to illustrate at an atomic level relationships between protein structure, dynamics, and function.
Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films
Farrow, Tim; Yang, Nan; Doria, Sandra; ...
2015-03-17
Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunnelingmore » barriers« less
Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale
NASA Astrophysics Data System (ADS)
Kalinin, Sergei
2014-03-01
Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal preferential structures and symmetries. The relevant statistical techniques including k-means clustering, principal component analysis, and Baesian unmixing are briefly intriduced. This approach is illustrated for several systems, including chemical phase identification, mapping ferroic variants, and probing topological and structural defects, and provides real space view on surface atomic processes. Research supported (SVK) by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division and partially performed at the Center for Nanophase Materials Sciences (AK, SJ), a DOE-BES user facility.
Heat transport through atomic contacts.
Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd
2017-05-01
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
Kour, Amandeep; Kumar, Ashish; Puri, Komal; Khatri, Manish; Bansal, Mansi; Gupta, Geeti
2016-01-01
To compare and evaluate the intra- and inter-examiner efficacy and reproducibility of the first-generation manual (Williams) probe and the third-generation Florida probe in terms of measuring pocket probing depth (PD) and clinical attachment level (CAL). Forty subjects/4000 sites were included in this comparative, cross-sectional study. Group- and site-wise categorizations were done. Based on gingival index, PD, and CAL, patients were divided into four groups, i.e., periodontally healthy, gingivitis, mild to moderate periodontitis, and severe periodontitis. Further, based on these parameters, a total of 4000 sites, with 1000 sites in each category randomly selected from these 40 patients, were taken. Full mouth PD and CAL measurements were recorded with two probes, by Examiner 1 and on Ramfjord teeth by Examiner 2. Full mouth and Ramfjord teeth group- and site-wise PD obtained with the manual probe by both the examiners were statistically significantly deeper than that obtained with the Florida probe. The full mouth and Ramfjord teeth mean CAL measurement by Florida probe was higher as compared to manual probe in mild to moderate periodontitis group and sites, whereas in severe periodontitis group and sites, manual probe recorded higher CAL as compared to Florida probe. Mean PD and CAL measurements were deeper with the manual probe as compared to the Florida probe in all the groups and sites, except for the mild-moderate periodontitis group and sites where the CAL measurements with the manual probe were less than the Florida probe. Manual probe was more reproducible and showed less interexaminer variability as compared to the Florida probe.
Efficient atom localization via probe absorption in an inverted-Y atomic system
NASA Astrophysics Data System (ADS)
Wu, Jianchun; Wu, Bo; Mao, Jiejian
2018-06-01
The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.
Study of the adaptability of existing hardware designs to a Pioneer Saturn/Uranus probe
NASA Technical Reports Server (NTRS)
1973-01-01
The basic concept of designing a scientific entry probe for the expected range of environments at Saturn or Uranus and making the probe compatible with the interface constraints of the Pioneer spacecraft was investigated for launches in the early 1980's. It was found that the amount of hardware commonality between that used in the Pioneer Venus program and that for the Saturn/Uranus probe was approximately 85%. It is recommended that additional development studies be conducted to improve the hardware definitions of the probe design for the following: heat shield, battery, nose cap jettisoning, and thermal control insulation.
NASA Astrophysics Data System (ADS)
Catarino, I.; Soni, V.; Barreto, J.; Martins, D.; Kar, S.
2017-02-01
The conduction cooling of both a 6 T superconducting magnet along with a sample probe in a parallel configuration is addressed in this work. A Gifford-McMahon (GM) cryocooler is directly cooling the NbTi magnet, which aims to be kept at 4 K, while a gas-gap heat switch (GGHS) manages the cooling power to be diverted to the sample probe, which may be swept from 4 K up to 300 K. A first prototype of a GGHS was customized and validated for this purpose. A sample probe assembly has been designed and assembled with the existing cryogen-free magnet system. The whole test setup and components are described and the preliminary experimental results on the integration are presented and discussed. The magnet was charged up to 3 T with a 4 K sample space and up to 1 T with a sweeping sample space temperature up to 300 K while acting on the GGHS. Despite some identified thermal insulation problems that occurred during this first test, the overall results demonstrated the feasibility of the cryogen-free parallel conduction cooling on study.
Thermal and Electrical Conductivity Probe for Phoenix Mars Lander
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Phoenix Mars Lander will assess how heat and electricity move through Martian soil from one spike or needle to another of a four-spike electronic fork that will be pushed into the soil at different stages of digging by the lander's Robotic Arm. The four-spike tool, called the thermal and electrical conductivity probe, is in the middle-right of this photo, mounted near the end of the arm near the lander's scoop (upper left). In one type of experiment with this tool, a pulse of heat will be put into one spike, and the rate at which the temperature rises on the nearby spike will be recorded, along with the rate at which the heated spike cools. A little bit of ice can make a big difference in how well soil conducts heat. Similarly, soil's electrical conductivity -- also tested with this tool -- is a sensitive indicator of moisture in the soil. This device adapts technology used in soil-moisture gauges for irrigation-control systems. The conductivity probe has an additional role besides soil analysis. It will serve as a hunidity sensor when held in the air.Electrostatic Evaluation: SCAPE Suit Materials
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos
2005-01-01
The surface resistivity tests are performed per the requirements of the ESD Association Standard Test Method ESD STM11.11*. These measurements are taken using a PRS-801 resistance system with an Electro Tech System (ETS) PRF-911 concentric ring resistance probe. The tests require a five pound weight on top of cylindrical electrodes and were conducted at both ambient and low humidity conditions. In order for materials to "pass" resistivity tests the surface of the materials must either be conductive or statically dissipative otherwise the materials "fail" ESD. Volume resistivity tests are also conducted to measure conductivity through the material as opposed to conductivity along the surface. These tests are conducted using the same PRS-801 resistance system with the Electro Tech System PRF-911 concentric ring resistance probe but are performed in accordance with ESD Association Standard Test Method ESD STM11.l2**.
Measurements With a Split-Fiber Probe in Complex Unsteady Flows
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
2004-01-01
A split-fiber probe was used to acquire unsteady data in a research compressor. A calibration method was devised for a split-fiber probe, and a new algorithm was developed to decompose split-fiber probe signals into velocity magnitude and direction. The algorithm is based on the minimum value of a merit function that is built over the entire range of flow velocities for which the probe was calibrated. The split-fiber probe performance and signal decomposition was first verified in a free-jet facility by comparing the data from three thermo-anemometric probes, namely a single-wire, a single-fiber, and the split-fiber probe. All three probes performed extremely well as far as the velocity magnitude was concerned. However, there are differences in the peak values of measured velocity unsteadiness in the jet shear layer. The single-wire probe indicates the highest unsteadiness level, followed closely by the split-fiber probe. The single-fiber probe indicates a noticeably lower level of velocity unsteadiness. Experiments in the NASA Low Speed Axial Compressor facility revealed similar results. The mean velocities agreed well, and differences in the velocity unsteadiness are similar to the case of a free jet. A reason for these discrepancies is in the different frequency response characteristics of probes used. It follows that the single-fiber probe has the slowest frequency response. In summary, the split-fiber probe worked reliably during the entire program. The acquired data averaged in time followed closely data acquired by conventional pneumatic probes.
Li, Yong; Jing, Haoqing; Zainal Abidin, Ilham Mukriz; Yan, Bei
2017-01-01
Coated conductive structures are widely adopted in such engineering fields as aerospace, nuclear energy, etc. The hostile and corrosive environment leaves in-service coated conductive structures vulnerable to Hidden Material Degradation (HMD) occurring under the protection coating. It is highly demanded that HMD can be non-intrusively assessed using non-destructive evaluation techniques. In light of the advantages of Gradient-field Pulsed Eddy Current technique (GPEC) over other non-destructive evaluation methods in corrosion evaluation, in this paper the GPEC probe for quantitative evaluation of HMD is intensively investigated. Closed-form expressions of GPEC responses to HMD are formulated via analytical modeling. The Lift-off Invariance (LOI) in GPEC signals, which makes the HMD evaluation immune to the variation in thickness of the protection coating, is introduced and analyzed through simulations involving HMD with variable depths and conductivities. A fast inverse method employing magnitude and time of the LOI point in GPEC signals for simultaneously evaluating the conductivity and thickness of HMD region is proposed, and subsequently verified by finite element modeling and experiments. It has been found from the results that along with the proposed inverse method the GPEC probe is applicable to evaluation of HMD in coated conductive structures without much loss in accuracy. PMID:28441328
Li, Yong; Jing, Haoqing; Zainal Abidin, Ilham Mukriz; Yan, Bei
2017-04-25
Coated conductive structures are widely adopted in such engineering fields as aerospace, nuclear energy, etc. The hostile and corrosive environment leaves in-service coated conductive structures vulnerable to Hidden Material Degradation (HMD) occurring under the protection coating. It is highly demanded that HMD can be non-intrusively assessed using non-destructive evaluation techniques. In light of the advantages of Gradient-field Pulsed Eddy Current technique (GPEC) over other non-destructive evaluation methods in corrosion evaluation, in this paper the GPEC probe for quantitative evaluation of HMD is intensively investigated. Closed-form expressions of GPEC responses to HMD are formulated via analytical modeling. The Lift-off Invariance (LOI) in GPEC signals, which makes the HMD evaluation immune to the variation in thickness of the protection coating, is introduced and analyzed through simulations involving HMD with variable depths and conductivities. A fast inverse method employing magnitude and time of the LOI point in GPEC signals for simultaneously evaluating the conductivity and thickness of HMD region is proposed, and subsequently verified by finite element modeling and experiments. It has been found from the results that along with the proposed inverse method the GPEC probe is applicable to evaluation of HMD in coated conductive structures without much loss in accuracy.
Failure analysis on false call probe pins of microprocessor test equipment
NASA Astrophysics Data System (ADS)
Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.
2017-09-01
A study has been conducted to investigate failure analysis on probe pins of test modules for microprocessor. The `health condition' of the probe pin is determined by the resistance value. A test module of 5V power supplied from Arduino UNO with "Four-wire Ohm measurement" method is implemented in this study to measure the resistance of the probe pins of a microprocessor. The probe pins from a scrapped computer motherboard is used as the test sample in this study. The functionality of the test module was validated with the pre-measurement experiment via VEE Pro software. Lastly, the experimental work have demonstrated that the implemented test module have the capability to identify the probe pin's `health condition' based on the measured resistance value.
Aerothermodynamic environment for a Titan probe with deployable decelerator
NASA Technical Reports Server (NTRS)
Green, M. J.; Swenson, B. L.; Balakrishnan, A.
1985-01-01
It is pointed out that further exploration of Titan, Saturn's largest moon, is of current interest to the scientific community, particularly from the standpoint of the organic chemical evolution of its atmosphere. For a suitable study of this Saturnian satellite, a mission involving a Titan atmospheric entry probe is to be conducted. The probe is to employ a deployable decelerator with the aim to allow scientific measurements in the haze layer. The present investigation is concerned with an assessment of the aerothermodynamic environment for the considered probe during its hypervelocity, low-Reynolds-number entry. Attention is given to the employed computational method, the Titan probe configuration, the Titan probe trajectory, the viscous-layer regime of the aerothermodynamic environment, and the incipient merged-layer regime.
Prediction of the Aerothermodynamic Environment of the Huygens Probe
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Striepe, Scott A.; Wright, Michael J.; Bose, Deepak; Sutton, Kenneth; Takashima, Naruhisa
2005-01-01
An investigation of the aerothermodynamic environment of the Huygens entry probe has been conducted. A Monte Carlo simulation of the trajectory of the probe during entry into Titan's atmosphere was performed to identify a worst-case heating rate trajectory. Flowfield and radiation transport computations were performed at points along this trajectory to obtain convective and radiative heat-transfer distributions on the probe's heat shield. This investigation identified important physical and numerical factors, including atmospheric CH4 concentration, transition to turbulence, numerical diffusion modeling, and radiation modeling, which strongly influenced the aerothermodynamic environment.
NASA Astrophysics Data System (ADS)
Merchel, Renée. A.; Barnes, Kelli S.; Taylor, Kenneth D.
2015-03-01
INTRODUCTION: The ABC® D-Flex Probe utilizes argon beam coagulation (ABC) technology to achieve hemostasis during minimally invasive surgery. A handle on the probe allows for integration with robotic surgical systems and introduces ABC to the robotic toolbox. To better understand the utility of D-Flex, this study compares the performance of the D-Flex probe to an existing ABC laparoscopic probe through ex vivo tissue analysis. METHODS: Comparisons were performed to determine the effect of four parameters: ABC device, tissue type, activation duration, and distance from tissue. Ten ABC D-Flex probes were used to create 30 burn samples for each comparison. Ex vivo bovine liver and porcine muscle were used as tissue models. The area and depth of each burn was measured using a light microscope. The resulting dimensional data was used to correlate tissue effect with each variable. RESULTS: D-Flex created burns which were smaller in surface area than the laparoscopic probe at all power levels. Additionally, D-Flex achieved thermal penetration levels equivalent to the laparoscopic probe. CONCLUSION: D-Flex implements a small 7F geometry which creates a more focused beam. When used with robotic precision, quick localized superficial hemostasis can be achieved with minimal collateral damage. Additionally, D-Flex achieved equivalent thermal penetration levels at lower power and argon flow-rate settings than the laparoscopic probe.
Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy
Khromova, I.; Navarro-Cia, M.; Brener, I.; ...
2015-07-13
In this study, we observe dipole resonances in thin conductive carbon micro-fibers by detecting an enhanced electric field in the near-field of a single fiber at terahertz (THz) frequencies. Time-domain analysis of the electric field shows that each fiber sustains resonant current oscillations at the frequency defined by the fiber's length. Strong dependence of the observed resonance frequency and degree of field enhancement on the fibers' conductive properties enable direct non-contact probing of the THz conductivity in single carbon micro-fibers. We find the conductivity of the fibers to be within the range of 1– 5∙10 4 S/m. This approach ismore » suitable for experimental characterization of individual doped semiconductor resonators for THz metamaterials and devices.« less
Rozner, Amit; Zlochiver, Sharon
2016-11-01
Atrial ablation has been recently utilized to treat atrial fibrillation (AF) by isolation or destruction of arrhythmia drivers. In chronic or persistent AF patients these drivers often consist of one or few rotors at unknown locations, and several ablations are commonly conducted before arrhythmia is terminated. However, the irreversible damage done to the tissue may lead to AF recurrence. We propose an alternative strategy to terminate rotor activity by its attraction into a non 1:1 conducting region. The feasibility of the method was numerically tested in 2D models of chronic AF human atrial tissue. Left-to-right gradients of either acetylcholine (ACh) or potassium conductance were employed to generate regions of 1:1 and non 1:1 conduction, characterized by their dominant frequency (DF) ratios. Spiral waves were established in the 1:1 conducting region and raster scanning was employed using a stimulating probe to attract the spiral wave tip. The probe was then linearly moved towards the boundary between the two regions. Successful attraction of spiral waves to the probe was demonstrated when the probe was <8mm from the spiral wave tip. Maximal traction velocity without loss of anchoring increased in a non-linear way with increasing values of ACh. Success rate of spiral wave termination was over 90% for regional DF ratios of as low as 1:1.2. Given that normally much higher ratios are measured in physiological atrial tissues, we envision this technique to provide a feasible, safer alternative to ablation procedures performed in persistent AF patients. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
HAIC/HIWC field project: characterizing the high ice water content environment
NASA Astrophysics Data System (ADS)
Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter; Korolev, Alexei; McFarquhar, Greg; Gourbeyre, Christophe; Dupuy, Regis; Dezitter, Fabien; Calmels, Alice
2016-04-01
High ice water content (IWC) cloud regions in mesoscale convective systems (MCSs) are suspected to cause in-service engine power loss events and air-data probe malfunctions on commercial aircraft. In order to better document this particular environment, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including two field campaigns. The first campaign was conducted in Darwin in 2014 while the second one took place in Cayenne in May 2015. The French Falcon 20 research aircraft has been deployed for the two campaigns, with an instrumental payload including an IKP-2 (isokinetic evaporator probe which provides a reference measurement of IWC), a CDP-2 (cloud droplet spectrometer probe measuring particles in the range 2-50 μm), and optical array probes 2D-S (2D-Stereo, 10-1280 μm) and PIP (precipitation imaging probe, 100-6400 μm). 23 flights were performed in Darwin, 18 in Cayenne, all sampling MCSs at different flight levels with temperatures from -10°C to -50°C. The study presented here focuses on ice crystal size properties related to IWC, thereby analyzing in detail the 2D image data from 2D-S and PIP optical array imaging probes. 2D images recorded with 2D-S and PIP probes were processed in order to produce particle size distributions (PSDs) and median mass diameters (MMDs). Darwin results shows that ice crystals properties are quite different in high IWC areas compared to the surrounding cloud regions. Most of the sampled MCS reveal that the higher the measured IWC, the smaller are the corresponding crystal MMD. This effect is interfering with a temperature trend, whereby colder temperatures are leading to smaller MMD. A preliminary analysis of the Cayenne data seems to be consistent with the above trends.
A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples.
Wang, Jialin; Wang, Hao; Hao, Yanfeng; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo
2018-10-01
A novel fluorescent probe 3'-hydroxy-3-oxo-3H-spiro [isobenzofuran-1,9'-xanthene]-6'-yl-2,4-dinitrobenzenesulfonate (probe 1) was designed and synthesized as a visual sensor for the detection of cysteine levels in milk and water samples. The addition of cysteine to the solution of probe 1 resulted in an increase in fluorescence intensity and color change, from light yellow to yellow-green. The distinct color response indicated that probe 1 could be used as a visual sensor for cysteine. Cysteine can be detected quantitatively at concentrations between 0 and 400 μM and the detection limit of the fluorescence response to the probe was 6.5 μM. This suggests that probe 1 could be used as a signaling tool to determine the cysteine levels in samples, such as milk and water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats
NASA Astrophysics Data System (ADS)
Ridd, Peter V.; Sam, Renagi
1996-11-01
The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.
Conductivity Probe Inserted in Martian Soil, Sol 46
NASA Technical Reports Server (NTRS)
2008-01-01
This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Thermal and Electrical Conductivity Probe (TECP), at the end of the Robotic Arm, on the 46th Martian day, or sol, of the mission (July 11, 2008). The TECP is inserted at a site called Vestri, which was monitored several times over the course of the mission. The probe's measurements at this site yielded evidence that water was exchanged, daily and seasonally, between the soil and atmosphere. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Indium nanowires at the silicon surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
2016-07-15
Conductive indium nanowires up to 50 nm in width and up to 10 μm in length are fabricated on the surface of silicon by local resputtering from the probe of an atomic-force microscope. The transfer of indium from the probe of the atomic-force microscope onto the silicon surface is initiated by applying a potential between the probe and the surface as they approach each other to spacings, at which the mutual repulsive force is ~10{sup –7} N. The conductivity of the nanowires ranges from 7 × 10{sup –3} to 4 × 10{sup –2} Ω cm, which is several orders ofmore » magnitude lower than that in the case of the alternative technique of heat transfer.« less
Carbon phenolic heat shields for Jupiter/Saturn/Uranus entry probes
NASA Technical Reports Server (NTRS)
Mezines, S.
1974-01-01
Carbon phenolic heat shield technology is reviewed. Heat shield results from the outer planetary probe mission studies are summarized along with results of plasma jet testing of carbon phenolic conducted in a ten megawatt facility. Missile flight data is applied to planetary entry conditions. A carbon phenolic heat shield material is utilized and tailored to accommodate each of the probe missions. An integral heat shield approach is selected over in order to eliminate a high temperature interface problem and permit direct bonding of the carbon phenolic to the structural honeycomb sandwich. The sandwich is filled with a very fine powder to minimize degradation of its insulation properties by the high conductive hydrogen/helium gases during the long atmospheric descent phase.
Chen, Y-W; Lee, C-T; Hum, L; Chuang, S-K
2017-03-01
The extraction of an impacted third molar violates the surrounding soft and bony tissues. The surgeon's access to the tooth, for which there are various surgical approaches, has an important impact on the periodontium of the adjacent second molar. The aim of this review was to analyze the relationships between the different flap techniques and postoperative periodontal outcomes for the mandibular second molars (LM2) adjacent to the impacted mandibular third molars (LM3). An electronic search of MEDLINE and other databases was conducted to identify randomized controlled trials fulfilling the eligibility criteria. To assess the impact of flap design on the periodontal condition, the weighted mean difference of the probing depth reduction (WDPDR) and the weighted mean difference of the clinical attachment level gain (WDCAG) at the distal surface of LM2 were used as the primary outcomes. The results showed that, overall, the different flap techniques had no significant impact on the probing depth reduction (WDPDR -0.14mm, 95% confidence interval -0.44 to 0.17), or on the clinical attachment level gain (WDCAG 0.05mm, 95% confidence interval -0.84 to 0.94). However, a subgroup analysis revealed that the Szmyd and paramarginal flap designs may be the most effective in reducing the probing depth in impacted LM3 extraction, and the envelope flap may be the least effective. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Molecularly resolved protein electromechanical properties.
Axford, Daniel; Davis, Jason J; Wang, Nan; Wang, Dongxu; Zhang, Tiantian; Zhao, Jianwei; Peters, Ben
2007-08-02
Previous work has shown that protein molecules can be trapped between the conductive surfaces presented by a metal-coated AFM probe and an underlying planar substrate where their molecule-specific conductance characteristics can be assayed. Herein, we demonstrate that transport across such a derived metal-protein-electrode junction falls within three, pressure-dependent, regimes and, further, that pressure-dependent conductance can be utilized in analyzing temporal variations of protein fold. Specifically, the electronic and mechanical properties of the metalloprotein azurin have been characterized under conditions of anisotropic vertical compression through the use of a conducting atomic force microscope (CP-AFM). By utilizing the ability of azurin to chemically self-assemble on the gold surface presented either by the apex of a suitably coated AFM probe or a planar metallic surface, molecular-level transport characteristics are assayable. Under conditions of low force, typically less than 2 nN, the weak physical and electronic coupling between the protein and the conducting contacts impedes tunneling and leads to charge buildup followed by dielectric breakdown. At slightly increased force, 3-5 nN, the copper protein exhibits temporal electron occupation with observable negative differential resistance, while the redox-inactive zinc mutant does not. At imposed loads greater than 5 nN, appreciable electron tunneling can be detected even at low bias for both the redox-active and -inactive species. Dynamic current-voltage characteristics have been recorded and are well-described by a modified Simmons tunneling model. Subsequent analyses enable the electron tunneling barrier height and barrier length to be determined under conditions of quantified vertical stress. The variance observed describes, in essence, the protein's mechanical properties within the confines of the tunnel junction.
Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo
2017-05-01
The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe 3 O 4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.
2016-07-11
NASA Glenn’s Propulsion Systems Lab (PSL) is conducting research to characterize ice crystal clouds that can create a hazard to aircraft engines under certain conditions. The isokinetic probe (in gold) samples particles and another series of probes can measure everything from humidity to air pressure.
photovoltaic and energy storage technologies. He has conducted pioneer nanometer-scale characterization for photovoltaic technology by developing and applying SPM-based nanoelectrical probes of Kelvin probe force ). These characterizations involve a wide range of photovoltaic materials and devices including organic
Wang, Hong; Zhang, Peisheng; Tian, Yong; Zhang, Yuan; Yang, Heping; Chen, Shu; Zeng, Rongjin; Long, Yunfei; Chen, Jian
2018-04-30
A simple and readily available fluorescent probe is needed for the real-time monitoring of endogenous cysteine (Cys) levels in living cells, as such a probe could be used to study the role of Cys in related diseases. Herein, we report the first fluorescent probe based on carbon dots (CDs-FITA) for the selective and ratiometric imaging of endogenous Cys in live cells. In this ratiometric fluorescent probe, a fluorescein derivative (FITA) that recognizes Cys is covalently linked to the surfaces of carbon dots (CDs); employing CDs greatly improves the water solubility of the probe. Acrylate on FITA is selectively cleaved by Cys in aqueous solution under mild conditions, leading to a dramatic increase in the fluorescence from fluorescein. The probe therefore allows the highly selective ratiometric fluorescent detection of Cys even in the presence of various interferents. The as-prepared CDs-FITA showed excellent performance when applied to detect Cys in blood serum. In addition, due to its negligible cytotoxicity, the CDs-FITA can also be utilized for the real-time monitoring of endogenous cysteine (Cys) levels in living cells. Graphical abstract Illustration of the CD-based probe for Cys imaging in living cells.
Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration
NASA Astrophysics Data System (ADS)
Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.
2008-12-01
Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water use of ring-porous tree species with thermal dissipation probes at multiple spatial scales.
NASA Technical Reports Server (NTRS)
Fulton, James P. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor); Wincheski, Russell A. (Inventor); Nath, Shridhar C. (Inventor)
1998-01-01
A thickness gauging instrument uses a flux focusing eddy current probe and two-point nonlinear calibration algorithm. The instrument is small and portable due to the simple interpretation and operational characteristics of the probe. A nonlinear interpolation scheme incorporated into the instrument enables a user to make highly accurate thickness measurements over a fairly wide calibration range from a single side of nonferromagnetic conductive metals. The instrument is very easy to use and can be calibrated quickly.
Shock wave as a probe of flux-dimited thermal transport in laser-heated solids
NASA Astrophysics Data System (ADS)
Smith, K.; Forsman, A.; Chiu, G.
1996-11-01
Laser-generated shock waves in solids result from the ablation of the target material. Where radiation transport is negligible, the ablation process is dominated by electron thermal conduction. This offers an opportunity to probe the degree of transport inhibition (compared with classical heat flow) for steep temperature gradients in a dense plasma. Using a 1-dimensional hydrodynamic code, we have examined the effect of flux-limited thermal conduction on the amplitude of the resulting shock wave.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
NASA Technical Reports Server (NTRS)
Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)
2002-01-01
The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.
Two-dimensional Dirac fermions in thin films of C d3A s2
NASA Astrophysics Data System (ADS)
Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne
2018-03-01
Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.
Rugged fiber optic probe for raman measurement
O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.
1998-01-01
An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.
SUMMARY REPORT ON CORROSIVITY STUDIES IN COINCINERATION OF SEWAGE SLUDGE AND SOLID WASTE
Corrosion probe exposures were conducted in the Harrisburg, Pennsylvania Incinerator to determine the effects of burning low-chloride sewage sludge with municipal refuse. Probes having controlled temperature gradients were used to measure corrosion rates for exposure times up to ...
Baldwin, Margaret
2006-07-01
Tympanometry using 226 Hz, 678 Hz, and 1000 Hz probe tones was undertaken on two groups of babies, age 2 to 21 weeks. A group of 104 babies with normal ABR thresholds or TEOAEs were compared with a second group of 107 babies who had evidence of temporary conductive hearing loss based on the findings of a test battery, which included air and bone conduction ABR. The tympanograms were classified by Method 1, a simple visual classification system, and Method 2, adapted from a system described by Marchant et al (1986). The majority of tympanograms recorded in both groups using the 226 Hz probe tone were 'normal' Type A, with no significant difference in middle ear pressure or static admittance. However, both classification methods demonstrated significant differences between the two groups using the higher frequency probe tones, with Method 2 being the preferred system of classification. Tympanometry using 226 Hz is invalid below 21 weeks and 1000 Hz is the frequency of choice.
Total Water Content Measurements with an Isokinetic Sampling Probe
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.
2010-01-01
The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.
Arpağ, Osman Fatih; Dağ, Ahmet; İzol, Bozan Serhat; Cimitay, Gülcan; Uysal, Ersin
2017-12-01
Tumor necrosis factor alpha (TNF-α) is an inflammatory mediator whose levels are increased in the gingival crevicular fluid and blood serum in the case of chronic periodontitis. The aim of this study was to determine the effect of vector ultrasonic system (VUS) on the levels of TNF-α in gingival crevicular fluid (GCF) and the clinical parameters in patients with chronic periodontitis. The study protocol was conducted using split-mouth design in 30 patients with chronic periodontitis. VUS and scaling and root planing (S/RP) were applied separately to 2 quadrants, including the upper and the lower jaws. At baseline and after 6 months, clinical parameters including plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL) were recorded, and concentrations of TNF-α in GCF were determined by enzyme-linked immunosorbent assay (ELISA). Intergroup comparisons were evaluated by the independent Students' t-test, and the Pearson correlation was used to determine the relationship between parameters. The level of significance was set at 5%. Both treatment modalities provided statistically significant improvements in clinical periodontal parameters and TNF-α levels after 6 months (p < 0.05). Also, there were no significant correlations between the TNF-α levels in GCF and the clinical parameters in both treatment group at baseline and at the end of 6 months period (p > 0.05). The use of the vector ultrasonic system in the non-surgical treatment of chronic periodontitis presents beneficial improvements for the clinical attachment level and the probing pocket depth as well as TNF-α levels in GCF.
Kumari, Namita; Jha, Satadru; Bhattacharya, Santanu
2014-03-01
A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the "naked-eye" detection of cyanide ions in water with a visual color change from red to yellow (Δλmax =80 nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for "in-field" experiments without requiring any sophisticated instruments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bramley, Helen; Turner, Neil C; Turner, David W; Tyerman, Stephen D
2007-07-01
Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.
Dudley, Nicholas J; Gibson, Nicholas M
2017-02-01
The aim of this study was to test the hypothesis that grey levels are a suitable alternative measure of sensitivity in ultrasound imaging quality assurance, as there are several caveats in the use of penetration depth. In a primary cohort of nine probes, where measurements had been made for 6 to 34 mo, both penetration depth and mean grey level fell below tolerance for six probes; both penetration depth and mean grey level remained within tolerance for three probes. In a secondary cohort where a measurement programme had been in place for a shorter period, grey level and/or penetration depth fell below tolerance in 15 of 66 probes; the sensitivity and specificity of at least 10% loss of grey level in predicting >5% loss in penetration depth were 91% and 93%, respectively. A loss of grey level accompanies a loss of penetration and provides a suitable alternative measure of sensitivity. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation
NASA Astrophysics Data System (ADS)
Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad
2018-03-01
This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.
Mach Probe Measurements in a Large-Scale Helicon Plasma
NASA Astrophysics Data System (ADS)
Hatch, M. W.; Kelly, R. F.; Fisher, D. M.; Gilmore, M.; Dwyer, R. H.
2017-10-01
A new six-tipped Mach probe, that utilizes a fused-quartz insulator, has been developed and initially tested in the HelCat dual-source plasma device at the University of New Mexico. The new design allows for relatively long duration measurements of parallel and perpendicular flows that suffer less from thermal changes in conductivity and surface build-up seen in previous alumina-insulated designs. Mach probe measurement will be presented in comparison with ongoing laser induced fluorescence (LIF) measurements, previous Mach probe measurements, ExB flow estimates derived from Langmuir probes, and fast-frame CCD camera images, in an effort to better understand previous anomalous ion flow in HelCat. Additionally, Mach probe-LIF comparisons will provide an experimentally obtained Mach probe calibration constant, K, to validate sheath-derived estimates for the weakly magnetized case. Supported by U.S. National Science Foundation Award 1500423.
NASA Astrophysics Data System (ADS)
Ramella-Roman, Jessica C.; Ho, Thuan; Le, Du; Ghassemi, Pejhman; Nguyen, Thu; Lichy, Alison; Groah, Suzanne
2013-03-01
Skin perfusion and oxygenation is easily disrupted by imposed pressure. Fiber optics probes, particularly those spectroscopy or Doppler based, may relay misleading information about tissue microcirculation dynamics depending on external forces on the sensor. Such forces could be caused by something as simple as tape used to secure the fiber probe to the test subject, or as in our studies by the full weight of a patient with spinal cord injury (SCI) sitting on the probe. We are conducting a study on patients with SCI conducting pressure relief maneuvers in their wheelchairs. This study aims to provide experimental evidence of the optimal timing between pressure relief maneuvers. We have devised a wireless pressure-controlling device; a pressure sensor positioned on a compression aluminum plate reads the imposed pressure in real time and sends the information to a feedback system controlling two position actuators. The actuators move accordingly to maintain a preset value of pressure onto the sample. This apparatus was used to monitor the effect of increasing values of pressure on spectroscopic fiber probes built to monitor tissue oxygenation and Doppler probes used to assess tissue perfusion.
NASA Astrophysics Data System (ADS)
Patra, Tarak; Yang, Junhong; Cheng, Yiz; Simmons, David
Polymeric ionic liquids (PILs) are very promising materials to enable more environmentally stable high density energy storage devices. Realization of PILs providing high environmental and mechanical stability while maximizing ion conductivity would be accelerated by an improved molecular level understanding of their structure and dynamics. Extensive evidence suggests that both mechanical properties and ion conductivity in anhydrous PILs are intimately related to the PIL's glass formation behavior. This represents a major challenge to the rational design of these materials, given that the basic nature of glass formation and its connection to molecular properties remains a substantial open question in polymer and condensed matter physics. Here we describe coarse-grained and atomistic molecular dynamics simulations probing the relationship between PIL architecture and interactions, glass formation behavior, and ion transport characteristics. These studies provide guidance towards the design of PILs with improved stability and ion conductivity for future energy applications.
EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline
NASA Astrophysics Data System (ADS)
Karray, Fekri; Kassiba, Abdelhadi
2012-06-01
Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.
Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinman, Donald K; Bramblett, Richard L; Hertzog, Russel C
2012-06-25
Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.
Measures of skin conductance and heart rate in alcoholic men and women during memory performance
Poey, Alan; Ruiz, Susan Mosher; Marinkovic, Ksenija; Oscar-Berman, Marlene
2015-01-01
We examined abnormalities in physiological responses to emotional stimuli associated with long-term chronic alcoholism. Skin conductance responses (SCR) and heart rate (HR) responses were measured in 32 abstinent alcoholic (ALC) and 30 healthy nonalcoholic (NC) men and women undergoing an emotional memory task in an MRI scanner. The task required participants to remember the identity of two emotionally-valenced faces presented at the onset of each trial during functional magnetic resonance imaging (fMRI) scanning. After viewing the faces, participants saw a distractor image (an alcoholic beverage, nonalcoholic beverage, or scrambled image) followed by a single probe face. The task was to decide whether the probe face matched one of the two encoded faces. Skin conductance measurements (before and after the encoded faces, distractor, and probe) were obtained from electrodes on the index and middle fingers on the left hand. HR measurements (beats per minute before and after the encoded faces, distractor, and probe) were obtained by a pulse oximeter placed on the little finger on the left hand. We expected that, relative to NC participants, the ALC participants would show reduced SCR and HR responses to the face stimuli, and that we would identify greater reactivity to the alcoholic beverage stimuli than to the distractor stimuli unrelated to alcohol. While the beverage type did not differentiate the groups, the ALC group did have reduced skin conductance and HR responses to elements of the task, as compared to the NC group. PMID:26020002
Bovesecchi, G; Coppa, P; Pistacchio, S
2018-05-01
A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO 3 , 52% KNO 3 , and 30% LiNO 3 ) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec ® salt (53% KNO 3 , 7% NaNO 3 , 40% NaNO 2 ). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.
A new thermal conductivity probe for high temperature tests for the characterization of molten salts
NASA Astrophysics Data System (ADS)
Bovesecchi, G.; Coppa, P.; Pistacchio, S.
2018-05-01
A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO3, 52% KNO3, and 30% LiNO3) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec® salt (53% KNO3, 7% NaNO3, 40% NaNO2). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.
Effect of air confinement on thermal contact resistance in nanoscale heat transfer
NASA Astrophysics Data System (ADS)
Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie
2018-03-01
Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.
Experimental evaluation of outer planets probe thermal insulation concepts
NASA Technical Reports Server (NTRS)
Grote, M. G.; Mezines, S. A.
1976-01-01
An experimental program was conducted to evaluate various thermal insulation concepts for use in the Outer Planets Probe (OPP) during entry and descent into the atmospheres of Jupiter, Saturn, and Uranus. Phenolic fiberglass honeycomb specimens representative of the OPP structure were packed and tested with various fillers: Thermal conductivity measurements were made over a temperature range of 300 K to 483 K and pressures from vacuum up to 10 atmospheres in helium and nitrogen gas environments. The conductivity results could not be fully explained so new test specimens were designed with improved venting characteristics, and tested to determine the validity of the original data. All of the conductivity data showed results that were substantially higher than expected. The original test data in helium were lower than the data from the redesigned specimens, probably due to inadequate venting of nitrogen gas from the original specimens. The thermal conductivity test results show only a marginal improvement in probe thermal protection performance for a filled honeycomb core compared to an unfilled core. In addition, flatwise tension tests showed a severe bond strength degradation due to the inclusion of either the powder or foam fillers. In view of these results, it is recommended that the baseline OPP design utilize an unfilled core.
Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, K. H.; Seo, B. H.; Kim, J. H.
2016-03-15
As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less
Soilwater Conductivity Analysis to Date and Locate Clandestine Graves of Homicide Victims.
Pringle, Jamie K; Cassella, John P; Jervis, John R; Williams, Anna; Cross, Peter; Cassidy, Nigel J
2015-07-01
In homicide investigations, it is critically important that postmortem interval and postburial interval (PBI) of buried victims are determined accurately. However, clandestine graves can be difficult to locate; and the detection rates for a variety of search methods (ranging from simple ground probing through to remote imaging and near-surface geophysics) can be very low. In this study, simulated graves of homicide victims were emplaced in three sites with contrasting soil types, bedrock, and depositional environments. The long-term monthly in situ monitoring of grave soil water revealed rapid increases in conductivity up to 2 years after burial, with the longest study evidencing declining values to background levels after 4.25 years. Results were corrected for site temperatures and rainfall to produce generic models of fluid conductivity as a function of time. The research suggests soilwater conductivity can give reliable PBI estimates for clandestine burials and therefore be used as a grave detection method. © 2015 American Academy of Forensic Sciences.
An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently
NASA Technical Reports Server (NTRS)
Lemieux, Patrick; Murray, William; Cooke, Terry; Gerhardt, James
2012-01-01
A gas containment vessel that is not in thermal equilibrium with the bulk gas can affect its temperature measurement. The physical nature of many gas dynamics experiments often makes the accurate measurement of temperature a challenge. The environment itself typically requires that the thermocouple be sheathed, both to protect the wires and hot junction of the instrument from their environment, and to provide a smooth, rigid surface for pressure sealing of the enclosure. However, that enclosure may also be much colder than the gas to be sensed, or vice-versa. Either way, the effect of such gradients is to potentially skew the temperature measurements themselves, since heat may then be conducted by the instrument. Thermocouple designers traditionally address this problem by insulating the sheath from the thermocouple leads and hot junction as much as possible. The thermocouple leads are typically packed in a ceramic powder inside the sheath, protecting them somewhat from temperature gradients along the sheath, but there is no effective mechanism to shield the sheath from the enclosure body itself. Standard practice dictates that thermocouples be used in installations that do not present large thermal gradients along the probe. If this conduction dominates heat transfer near the tip of the probe, then temperature measurements may be expected to be skewed. While the same problem may be experienced in the measurement of temperature at various points within a solid in a gradient, it tends to be aggravated in the measurements of gas temperature, since heat transfer dependent on convection is often less efficient than conduction along the thermocouple. The proposed solution is an inefficient fin thermocouple probe. Conventional wisdom suggests that in many experiments where gas flows through an enclosure (e.g., flow in pipe, manifold, nozzle, etc.), the thermocouple be introduced flush to the surface, so as not to interfere with the flow. In practice, however, many such experiments take place where the flow is already turbulent, so that a protruding thermocouple probe has a negligible effect on the flow characteristics. The key question then becomes just how far into the flow should a thermocouple protrude in order to properly sense the gas temperature at that point. Modeling the thermocouple as an "inefficient fin" directly addresses this question. The appropriate assumptions in this case are: one-dimensional conduction along the fin; steady-state, constant, and homogeneous thermal conductivity; negligible radiation; and a uniform, constant heat transfer coefficient over the probe surface. It is noted that the nature of the ceramic-filled probe makes the key assumption of homogeneous thermal conductivity that much more conservative.
Zhang, Jin; Zhang, Ai-Min; Zhang, Zong-Mei; Jia, Jin-Lin; Sui, Xin-Xin; Yu, Lu-Rui; Liu, Hai-Tao
2017-10-01
In this study, we aimed to investigate the efficacy of combined orthodontic-periodontic treatment in the treatment of patients with periodontitis and its effects on the levels of inflammatory cytokines. A total of 117 patients with periodontitis were randomly assigned to the basic group (receiving basic periodontic treatment, n = 58) and the combined group (receiving combined orthodontic-periodontic treatment, n = 59). In addition, 52 healthy people without periodontal disease were selected as the normal group. Probing depth, tooth mobility, plaque index, clinical attachment level, and sulcus bleeding index were recorded. ELISA was applied to detect gingival crevicular fluid (GCF) and serum levels of inflammatory cytokines. A 2-year clinical follow-up was conducted. Before treatment, the periodontal parameters (probing depth, tooth mobility, plaque index, clinical attachement level, and sulcus bleeding index) and GCF and serum levels of inflammatory cytokines (high-sensitivity C-reactive protein, interleukin-1β, interleukin-5, interleukin-6, interleukin-8, tumor necrosis factor-α, and prostaglandin E2) in the combined and basic groups were higher than those in the normal group. After 6 and 18 months of treatment, the periodontal parameters and GCF and serum levels of inflammatory cytokines decreased in the combined and basic groups. The periodontal parameters and the GCF and serum levels of inflammatory cytokines in the combined group were significantly lower than those in the basic group after 18 months of treatment. The combined group had a lower recurrence rate compared with the basic group. Combined orthodontic-periodontic treatment had good clinical efficacy in the treatment of periodontitis and could effectively decrease the levels of inflammatory cytokines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae
2016-05-01
We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.
M'Zali, Fatima; Bounizra, Carole; Leroy, Sandrine; Mekki, Yahia; Quentin-Noury, Claudine; Kann, Michael
2014-01-01
Aim of the Study In many countries, Low Level Disinfection (LLD) of covered transvaginal ultrasound probes is recommended between patients' examinations. The aim of this study was to evaluate the antimicrobial efficacy of LLD under routine conditions on a range of microorganisms. Materials and Methods Samples were taken over a six month period in a private French Radiology Center. 300 specimens derived from endovaginal ultrasound probes were analyzed after disinfection of the probe with wipes impregnated with a quaternary ammonium compound and chlorhexidine. Human papillomavirus (HPV) was sought in the first set of s100 samples, Chlamydia trachomatis and mycoplasmas were searched in the second set of 100 samples, bacteria and fungi in the third 100 set samples. HPV, C. trachomatis and mycoplasmas were detected by PCR amplification. PCR positive samples were subjected to a nuclease treatment before an additional PCR assay to assess the likely viable microorganisms. Bacteria and fungi were investigated by conventional methods. Results A substantial persistence of microorganisms was observed on the disinfected probes: HPV DNA was found on 13% of the samples and 7% in nuclease-resistant form. C. trachomatis DNA was detected on 20% of the probes by primary PCR but only 2% after nuclease treatment, while mycoplasma DNA was amplified in 8% and 4%, respectively. Commensal and/or environmental bacterial flora was present on 86% of the probes, occasionally in mixed culture, and at various levels (10->3000 CFU/probe); Staphylococcus aureus was cultured from 4% of the probes (10-560 CFU/probe). No fungi were isolated. Conclusion Our findings raise concerns about the efficacy of impregnated towels as a sole mean for disinfection of ultrasound probes. Although the ultrasound probes are used with disposable covers, our results highlight the potential risk of cross contamination between patients during ultrasound examination and emphasize the need for reviewing the disinfection procedure. PMID:24695371
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
NASA Technical Reports Server (NTRS)
Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.
2015-01-01
A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.
Microneedle arrays for biosensing and drug delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger
Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce amore » probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.« less
Microneedle arrays for biosensing and drug delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger
Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce amore » probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.« less
In-pile Thermal Conductivity Characterization with Time Resolved Raman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xinwei; Hurley, David H.
The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heatingmore » of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.« less
Flexible Cryogenic Temperature and Liquid-Level Probes
NASA Technical Reports Server (NTRS)
Haberbusch, Mark
2003-01-01
Lightweight, flexible probes have been developed for measuring temperatures at multiple locations in tanks that contain possibly pressurized cryogenic fluids. If the fluid in a given tank is subcritical (that is, if it consists of a liquid and its vapor), then in one of two modes of operation, the temperature measurements made by a probe of this type can be used to deduce the approximate level of the liquid. The temperature sensors are silicon diodes located at intervals along a probe. If the probe is to be used to measure a temperature gradient along a given axis in the tank, then the probe must be mounted along that axis. In the non-liquid-level-sensing temperature-measurement mode, a constant small electric current is applied to each diode and the voltage across the diode . a known function of the current and temperature . is measured as an indication of its temperature. For the purpose of this measurement, "small electric current" signifies a current that is not large enough to cause a significant increase in the measured temperature. More specifically, the probe design calls for a current of 10 A, which, in the cryogenic temperature range of interest, generates heat at a rate of only about 0.01 mW per diode. In the liquid-level-sensing mode, one applies a larger current (30 mA) to each diode so as to heat each diode appreciably (with a power of about 36 mW in the temperature range of interest). Because the liquid cools the diode faster than does the vapor, the temperature of the diode is less when diode is immersed in the liquid than when it is above the surface of the liquid. Thus, the temperature (voltage) reading from each diode can be used to determine whether the liquid level is above or below the diode, and one can deduce that the liquid level lies between two adjacent diodes, the lower one of which reads a significantly lower temperature. The aforementioned techniques for measuring temperature and deducing liquid level are not new. What is new here are the designs of the probes and of associated external electronic circuitry. In each probe, the diodes and the lead wires are embedded in a strong, lightweight, flexible polyimide strip. Each probe is constructed as an integral unit that includes a multipin input/output plug or socket for solderless connection of the lead wires to the external circuitry. The polyimide strip includes mounting tabs with holes that can accommodate rivets, screws, or other fasteners. Alternatively, a probe can be mounted by use of an epoxy. A probe can be manufactured to almost any length or width, and the diodes can be embedded at almost any desired locations along and across the polyimide strip. In designing a probe for a specific application, one seeks a compromise between (1) minimizing the number of diodes in order to minimize the complexity of input/output connections and external electronic circuitry while (2) using enough diodes to obtain the required precision. Optionally, to minimize spurious heating of the cryogenic fluid, the external circuitry can be designed to apply power to the probe only during brief measurement intervals. Assuming that the external circuitry is maintained at a steady temperature, a power-on interval of only a few seconds is sufficient to obtain accurate data on temperatures and/or the height of the liquid/vapor interface.
Kelbauskiene, Solveiga; Baseviciene, Nomeda; Goharkhay, Kawe; Moritz, Andreas; Machiulskiene, Vita
2011-07-01
In 30 patients with periodontitis, a total of 278 teeth exhibiting bleeding on probing, subgingival calculus, and a probing depth between 3-6 mm were examined. For each participant, two treatment types were alternatively applied on the contralateral quadrants: scaling and root planing (SRP) as control, and SRP followed by Er,Cr:YSGG laser application (SRP+laser), as a test method. Five clinical parameters: plaque level, bleeding on probing, probing depth, gingival recession and clinical attachment level were examined at baseline and at 2, 3, 6, 12 months after treatment. Of the total of 1,668 sites examined in all patients, 1,088 sites were found with a probing depth of 3-6 mm. In these sites, differences in clinical parameters between SRP and SRP+laser-treated quadrants were analyzed, assuming the level of p < 0.05 as significant. After 2 months from baseline, the mean probing depth reduction and the clinical attachment level gain were significantly greater in SRP+laser than in SRP quadrants, and remained so throughout the study (p < 0.001). A marked reduction of the bleeding scores occurred in all examined sites, irrespective of the treatment method. However, after 12 months, significantly less teeth exhibited bleeding on probing in SRP+laser quadrants than in SRP quadrants (p < 0.001). The mean plaque and gingival recession levels did not differ between the SRP and SRP+laser quadrants neither before nor after the treatment. The periodontal procedures either using Er,Cr:YSGG laser after SRP or SRP alone, lead to significant improvements in all clinical parameters investigated. However, laser application, as an adjunct to SRP, appeared to be more advantageous.
EXTASE - An Experimental Thermal Probe for Applications in Snow Research and Earth Sciences
NASA Astrophysics Data System (ADS)
Schroeer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.
2002-12-01
EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, funded by DLR. The application of this probe is to be tested in different fields, e.g. in snow research, agriculture, permafrost etc. The system consists of the probe itself with a portable field electronic and a computer for control of the system and storage of the data. The probe penetrates the surface ca. 32 cm deep and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: - no need to excavate material - minimized influence of the probe on the temperature field - minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Further applications could be e.g.: monitoring waste deposits and the heat released by decomposition, volcanology and ground truth for remote sensing. We present the general concept of the probe and also data obtained during different field measurement campaigns with prototypes of the probe.
NASA Astrophysics Data System (ADS)
Ravichandran, K.; Dineshbabu, N.; Arun, T.; Manivasaham, A.; Sindhuja, E.
2017-01-01
Transparent conducting oxide films of undoped, Mo doped, Mo + F co-doped ZnO were deposited using a facile homemade nebulizer spray pyrolysis technique. The effects of Mo and F doping on the structural, optical, electrical and surface morphological properties were investigated using XRD, UV-vis-NIR spectroscopy, I-V and Hall probe techniques, FESEM and AFM, and XPS, respectively. The XRD analysis confirms that all the films are well crystallized with hexagonal wurtzite structure. All the synthesized samples exhibit high transmittance (above 85%) in the visible region. The current-voltage (I-V) characteristics show the ohmic conduction nature of the films. The Hall probe measurements show that the synergistic effects of Mo and F doping cause desirable improvements in the quality factor of the ZnO films. A minimum resistivity of 5.12 × 10-3 Ω cm with remarkably higher values of mobility and carrier concentration is achieved for Mo (2 at.%) + F (15 at.%) co-doped ZnO films. A considerable variation in the intensity of deep level emission caused by Mo and F doping is observed in the photoluminescence (PL) studies. The presence of the constituent elements in the samples is confirmed by XPS analysis.
Lemieux, Sébastien
2006-08-25
The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
Miller, J J; Bremer, E; Curtis, T
2016-07-01
Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Holloway, Andrew J; Oshlack, Alicia; Diyagama, Dileepa S; Bowtell, David DL; Smyth, Gordon K
2006-01-01
Background Concerns are often raised about the accuracy of microarray technologies and the degree of cross-platform agreement, but there are yet no methods which can unambiguously evaluate precision and sensitivity for these technologies on a whole-array basis. Results A methodology is described for evaluating the precision and sensitivity of whole-genome gene expression technologies such as microarrays. The method consists of an easy-to-construct titration series of RNA samples and an associated statistical analysis using non-linear regression. The method evaluates the precision and responsiveness of each microarray platform on a whole-array basis, i.e., using all the probes, without the need to match probes across platforms. An experiment is conducted to assess and compare four widely used microarray platforms. All four platforms are shown to have satisfactory precision but the commercial platforms are superior for resolving differential expression for genes at lower expression levels. The effective precision of the two-color platforms is improved by allowing for probe-specific dye-effects in the statistical model. The methodology is used to compare three data extraction algorithms for the Affymetrix platforms, demonstrating poor performance for the commonly used proprietary algorithm relative to the other algorithms. For probes which can be matched across platforms, the cross-platform variability is decomposed into within-platform and between-platform components, showing that platform disagreement is almost entirely systematic rather than due to measurement variability. Conclusion The results demonstrate good precision and sensitivity for all the platforms, but highlight the need for improved probe annotation. They quantify the extent to which cross-platform measures can be expected to be less accurate than within-platform comparisons for predicting disease progression or outcome. PMID:17118209
Impact of post-traumatic stress disorder on oral health.
de Oliveira Solis, Ana Cristina; Araújo, Álvaro Cabral; Corchs, Felipe; Bernik, Marcio; Duran, Érica Panzani; Silva, Cláudio; Lotufo-Neto, Francisco
2017-09-01
The stress experienced as an intense and traumatic event can increase the odds of orofacial pain, affect the biomechanics of masticatory system and compromise the periodontal health. This study was conducted to investigate the impact of post-traumatic stress disorder (PTSD) on oral health. A case-control study with a convenience sample was designed. Probing pocket depth (PPD), clinical attachment level (CAL), bleeding on probing, and plaque were recorded at 6 sites per tooth. A visual analog scale (VAS) was used to evaluate the pain after probing. The Research Diagnostic Criteria for Temporomandibular Disorders Axis II (RDC/TMD Axis II) and Structured Clinical Interview (DSM-IV) were also applied. The final sample comprised 38 PTSD patients and 38 controls. Patients with PTSD had a higher degree of chronic pain, more depression and nonspecific physical symptoms (including and excluding pain) compared with the control group (Fisher exact test p < 0.001, and Chi-squared test, p < 0.001, < 0.001, < 0.001, respectively). Patients with PTSD also had more pain after periodontal probing compared with controls (Mann-Whitney, p = 0.037). The prevalence of sites with CAL or PPD ≥ 4, ≥ 5, ≥ 6 were not different between the groups. Age was associated with moderate periodontitis (multivariable logistic regression model, OR = 3.33, 95% CI = 1.03-10.75, p = 0.04). The severity of PTSD precluded an ample sample size. Patients with PTSD presented a worse RDC/TMD Axis II profile, more pain after periodontal probing, and no difference related to periodontal clinical parameters. More studies are needed to confirm these findings. Copyright © 2017 Elsevier B.V. All rights reserved.
Method for reducing measurement errors of a Langmuir probe with a protective RF shield
NASA Astrophysics Data System (ADS)
Riaby, V.; Masherov, P.; Savinov, V.; Yakunin, V.
2018-04-01
Probe measurements were conducted in the middle cross-section of an inductive, low-pressure xenon plasma using a straight cylindrical Langmuir probe with a bare metal shield that protected the probe from radio frequency interference. As a result, reliable radial distributions of the plasma parameters were obtained. Subsequent analyses of these measurements revealed that the electron energy distribution function (EEDF) deviated substantially from the Maxwellian functions and that this deviation depended on the length of the probe shield. To evaluate the shield's influence on the measurement results, in addition to the probe (which was moved radially as its shield length varied in the range of lsh1 = lmax-0), an additional L-shaped probe was inserted at a different location. This probe was moved differently from the first probe and provided confirmational measurements in the common special position where lsh1 = 0 and lsh2 ≠ 0. In this position, the second shield decreased all the plasma parameters. A comparison of the probe datasets identified the principles of the relationships between measurement errors and EEDF distortions caused by the bare probe shields. This dependence was used to correct the measurements performed using the first probe by eliminating the influence of its shield. Physical analyses based on earlier studies showed that these peculiarities are caused by a short-circuited double-probe effect that occurs in bare metal probe protective shields.
Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip
In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.
Transcardiac conducted electrical weapon (TASER) probe deployments: incidence and outcomes.
Bozeman, William P; Teacher, Eric; Winslow, James E
2012-12-01
TASER (TASER International, Scottsdale, AZ) conducted electrical weapons (CEWs) are commonly used by law enforcement officers. Although animal studies have suggested that transcardiac CEW discharges may produce direct cardiac effects, this has not been demonstrated in human studies. This study sought to determine the incidence and outcomes of transcardiac CEW probe impact locations in a large series of actual CEW deployments. A multi-center database of consecutive CEW uses by law enforcement officers was retrospectively reviewed. Case report forms were independently reviewed by three investigators to identify cases with paired probe configurations potentially producing a transcardiac discharge vector. Descriptive analysis was performed and inter-rater reliability was assessed. Among 1201 total CEW uses, 813 included probe deployments and 178 cases had paired anterior probe impacts potentially capable of producing a transcardiac discharge vector. This represents 14.8% of all CEW uses (95% confidence interval [CI] 12.9-16.9%) and 21.9% of CEW uses in probe mode (95% CI 19.1-24.9%). Inter-rater agreement was very good, with kappa = 0.82. There were no immediate deaths in any cases (97.5% CI 0.0-0.3%) to suggest a cardiac dysrhythmia, including those with transcardiac discharge vector. CEW deployments with probe impact configurations capable of producing a transcardiac discharge occur in a minority of cases in field use conditions. None of these cases, transcardiac or otherwise, produced immediately fatal dysrhythmias. These data support the overall safety of CEWs and provide a benchmark estimate of the likelihood of transcardiac discharge vectors occurring in field use of CEWs. Copyright © 2012 Elsevier Inc. All rights reserved.
Starter for inductively coupled plasma tube
Hull, Donald E.; Bieniewski, Thomas M.
1988-01-01
A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.
NASA Astrophysics Data System (ADS)
Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe
2015-03-01
Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.
NASA Astrophysics Data System (ADS)
Yoshimoto, Shinya; Takahashi, Kohtaro; Suzuki, Mitsuharu; Yamada, Hiroko; Miyahara, Ryosuke; Mukai, Kozo; Yoshinobu, Jun
2017-08-01
We have studied in-plane anisotropy in the field-effect mobility of solution-processed organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene by using independently driven four gallium indium (Ga-In) probes. Liquid-metal Ga-In probes are highly effective for reproducible conductivity measurements of organic thin films. We demonstrated that a high mobility anisotropy of 44 was obtained by using a square four-probe method and a feedback circuit to keep the channel potential constant. The present method minimized the influences of the contact resistance and the insensitivity of anisotropy in a linear arrangement in two-dimensional field-effect transistors.
Kumar, Ashok; Griwan, Mahavir Singh; Singh, Santosh Kumar; Sen, Jyotsna; Pawar, D. S.
2013-01-01
Introduction: Controversy exists over the pain during prostate biopsy. Periprostatic nerve block (PNB) is a gold standard anesthetic technique during transrectal ultrasound (TRUS)-guided prostate biopsy. Recent studies showed that PNB alone is insufficient as analgesic. We compared the efficacy of tramadol and intraprostatic nerve block (INB) in addition to PNB. Materials and Methods: We conducted a prospective double blinded placebo controlled study at our institute in 150 consecutive patients. Patients were randomized into three groups. Group A received PNB with INB with 1% lignocaine. Group B received oral tramadol with PNB. Group C patients were administered PNB only with 1% lignocaine. Patients were asked to grade the pain level using 11 point linear visual analog scale (VAS) at the time of ultrasound probe insertion, at time of anesthesia, during biopsy, and 30 min after biopsy. Results: The study groups were comparable in demographic profile, prostate-specific antigen (PSA) levels, and prostate size. Group A recorded the minimum mean pain score of 2.66 during prostate biopsy which was significantly lower than group 3 (P < 0.001). Group B recorded significantly lower pain score at time of probe insertion and at anesthetic needle insertion than other two groups. Conclusions: PNB provides better pain control in TRUS-guided prostate biopsy but still there is need of additional analgesic in the form of tramadol or INB. Tramadol has advantage of oral intake and analgesic effect at time of probe insertion and at nerve block. Both tramadol and INB may be used in combination along with PNB. PMID:24049376
Probing of the pseudogap via thermoelectric properties in the Au-Al-Gd quasicrystal approximant
NASA Astrophysics Data System (ADS)
Ishikawa, Asuka; Takagiwa, Yoshiki; Kimura, Kaoru; Tamura, Ryuji
2017-03-01
The pseudogap of the recently discovered Au-Al-Gd quasicrystal approximant crystal (AC) is investigated over a wide electron-per-atom (e /a ) ratio of ˜0.5 using thermoelectric properties as an experimental probe. This Au-Al-Gd AC provides an ideal platform for fine probing of the pseudogap among a number of known ACs because the Au-Al-Gd AC possesses an extraordinarily wide single-phase region with respect to the variation in the electron concentration [A. Ishikawa, T. Hiroto, K. Tokiwa, T. Fujii, and R. Tamura, Phys. Rev. B 93, 024416 (2016), 10.1103/PhysRevB.93.024416], in striking contrast to, for instance, binary stoichiometric C d6R ACs. As a result, a salient peak structure is observed in the Seebeck coefficient, S , with the composition as well as that of the power factor S2σ , in addition to a gradual variation in the conductivity, σ , and S . These two features are directly associated with rapid and slow variations, respectively, of spectral conductivity σ (E ) , and hence the fine structure inside the pseudogap, in the vicinity of the Fermi level EF. Based on the observed continuous variation of the Fermi wave vector reported in the previous experimental work, fine tuning of EF toward an optimal position was attempted, which led to the successful observation of a sharp peak in S2σ with a value of ˜270 μ W /m .K2 at 873 K. This is the highest value ever reported among both Tsai-type and Bergman-type compounds. The dimensionless figure of merit was determined as 0.026 at 873 K, which is also the highest reported among both Tsai-type and Bergman-type compounds.
Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca
2016-12-01
Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.
A measurement of perpendicular current density in an aurora
NASA Technical Reports Server (NTRS)
Bering, E. A.; Mozer, F. S.
1975-01-01
A Nike Tomahawk sounding rocket was launched into a 400-gamma auroral substorm from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir-probe plasma-velocity detector and a double-probe electric-field detector. Above 140-km altitude, the electric field deduced from the ion-flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral-wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth angle of 276 deg. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward.
Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W
2016-07-20
The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.
Gazelka, Halena M; Welch, Tasha L; Nassr, Ahmad; Lamer, Tim J
2015-05-01
To determine whether the thermal energy associated with lumbar spine radiofrequency neurotomy (RFN) performed near titanium and stainless steel pedicle screws is conducted to the pedicle screws or adjacent tissues, or both, thus introducing potential for thermal damage to those tissues. Cadaver study. Cadaver laboratory equipped with fluoroscopy, surgical spine implements, and radiofrequency generator. No live human subject; a fresh frozen (and thawed) cadaver torso was used for the study. Titanium and stainless steel pedicle screws were placed in the lumbar spine of a fresh frozen cadaver torso with real-time fluoroscopic guidance. Conventional RFN cannula placement was performed at the level of pedicle screws and a control (nonsurgically altered) lumbar level. Neurotomy was performed with conventional radiofrequency lesioning parameters. Temperatures were recorded at multiple sites through thermistor probes. Direct contact of the radiofrequency cannula with the pedicle screws during conventional RFN produced a substantial increase in temperature in the surrounding soft tissues. A small increase in temperature occurred at the same sites at the control level. Titanium and stainless steel pedicle screws are capable of sustaining large increases in temperature when the radiofrequency probe comes in contact with the screw. These results are suggestive that pedicle screws could serve as a possible source of tissue heating and thermal injury during RFN. Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yang, Junyan; Martin, David
2003-03-01
Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry (CV). The significant drop in impedance in magnitude and phase angle is consistent with an increase of the surface area due to the roughened surface morphology.
NASA Astrophysics Data System (ADS)
Swint, Amy Lynn
Changes in the in-plane conductance of conductive thin films are observed as a result of chemical adsorption at the surface. Reaction of the indium tin oxide (ITO) surface with Bronsted acids (bases) leads to increases (decreases) in its in-plane conductance as measured by a four-point probe configuration. The conductance varies monotonically with pH suggesting that the degree of surface protonation or hydroxylation controls the surface charge density, which in turn affects the width of the n-type depletion layer, and ultimately the in-plane conductance. Measurements at constant pH with a series of tetraalkylammonium hydroxide species of varying cation size indicate that surface dipoles also affect ITO conductance by modulating the magnitude of the surface polarization. Modulating the double layer with varying aqueous salt solutions also affects ITO conductance, though not to the same degree as strong Bronsted acids and bases. Solvents of varying dielectric constant and proton donating ability (ethanol, dimethylformamide) decrease ITO conductance relative to H2O. In addition, changing solvent gives rise to thermally-derived conductance transients, which result from exothermic solvent mixing. The self-assembly of alkanethiols at the surface increases the conductance of ITO films, most likely through carrier population effects. In all cases examined the combined effects of surface charge, adsorbed dipole layer magnitude and carrier injection are responsible for altering the ITO conductance. Besides being directly applicable to the control of electronic properties, these results also point to the use of four-point probe resistance measurements in condensed phase sensing applications. Ultrasensitive conductance-based gas phase sensing of organothiol adsorption to gold nanowires is accomplished with a limit of detection in the 105 molecule range. Further refinement of the inherently low noise resistance measurement may lead to observation of single adsorption events at the gold surface.
Comparison of Heat Flux Gages for High Enthalpy Flows - NASA Ames and IRS
NASA Technical Reports Server (NTRS)
Loehle, Stefan; Nawaz, Anuscheh; Herdrich, Georg; Fasoulas, Stefanos; Martinez, Edward; Raiche, George
2016-01-01
This article is a companion to a paper on heat flux measurements as initiated under a Space Act Agreement in 2011. The current focus of this collaboration between the Institute of Space Systems (IRS) of the University of Stuttgart and NASA Ames Research Center is the comparison and refinement of diagnostic measurements. A first experimental campaign to test different heat flux gages in the NASA Interaction Heating Facility (IHF) and the Plasmawindkanaele (PWK) at IRS was established. This paper focuses on the results of the measurements conducted at IRS. The tested gages included a at face and hemispherical probe head, a 4" hemispherical slug calorimeter, a null-point calorimeter from Ames and a null-point calorimeter developed for this purpose at IRS. The Ames null-point calorimeter was unfortunately defective upon arrival. The measured heat fluxes agree fairly well with each other. The reason for discrepancies can be attributed to signal-to-noise levels and the probe geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Iha, Kosaku; Suzuki, Nao; Yoneda, Masahiro; Takeshita, Toru; Hirofuji, Takao
2013-10-01
The aim of the study was to evaluate the effect of mouth cleaning with hinokitiol-containing gel on oral malodor. An open-label, randomized, controlled trial was conducted to assess oral malodor and clinical parameters related to oral malodor before and after mouth cleaning with hinokitiol-containing gel (n = 9) or with gel not including hinokitiol (n = 9). Mouth cleaning included the teeth, gingiva, and tongue and was carried out 3 times per day for 4 weeks. Organoleptic test (OLT) scores (P = .021), levels of hydrogen sulfide (P = .008) and methyl mercaptan (P = .020), frequency of bleeding on probing, average probing pocket depth, and plaque index significantly improved in the group using hinokitiol. In contrast, only the OLT score (P = .031) significantly improved in the control group after the treatment regimen. Mouth cleaning with hinokitiol-containing gel may be effective for reduction of oral malodor. Copyright © 2013 Elsevier Inc. All rights reserved.
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.; ...
2016-09-01
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Infection Risk From Conducted Electrical Weapon Probes: What Do We Know?
Kroll, Mark W; Ritter, Mollie B; Guilbault, Richard A; Panescu, Dorin
2016-11-01
Concern has been raised over the infection risk of the TASER electrical weapon since the probes penetrate the skin. The manufacturing process produces unsterilized probes with a 5% rate of Staphylococcus aureus contamination. Voluntary recipients (n = 208) of probe exposures were surveyed and there were no self-observations of infection. With over 3.3 million probe landings, there have been 10 case reports of penetrations of sensitive tissue with no reported infections. The electrical field was modeled and found that the electrical pulses generate a field of over 1200 V/mm on the dart portion. This is sufficient to sterilize the dart via electroporation. Electrical weapon probes appear to have a very low (possibly zero) rate of infection. The factors leading to this low infection rate appear to be a manufacturing process producing a low rate of bacterial contamination and the pulses sterilizing the dart via electroporation. © 2016 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Korol, Roman; Kilgour, Michael; Segal, Dvira
2018-03-01
We present our in-house quantum transport package, ProbeZT. This program provides linear response coefficients: electrical and electronic thermal conductances, as well as the thermopower of molecular junctions in which electrons interact with the surrounding thermal environment. Calculations are performed based on the Büttiker probe method, which introduces decoherence, energy exchange and dissipation effects phenomenologically using virtual electrode terminals called probes. The program can realize different types of probes, each introducing various environmental effects, including elastic and inelastic scattering of electrons. The molecular system is described by an arbitrary tight-binding Hamiltonian, allowing the study of different geometries beyond simple one-dimensional wires. Applications of the program to study the thermoelectric performance of molecular junctions are illustrated. The program also has a built-in functionality to simulate electron transport in double-stranded DNA molecules based on a tight-binding (ladder) description of the junction.
Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John
2010-01-01
The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.
Disinfection of a probe used in ultrasound-guided prostate biopsy.
Rutala, William A; Gergen, Maria F; Weber, David J
2007-08-01
Transrectal ultrasound (TRUS)-guided prostate biopsies are among the most common outpatient diagnostic procedures in urology clinics and carry the risk of introducing pathogens that may lead to infection. To investigate the effectiveness of procedures for disinfecting a probe used in ultrasound-guided prostate biopsy. The effectiveness of disinfection was determined by inoculating 10(7) colony forming units (cfu) of Pseudomonas aeruginosa at the following 3 sites on the probe: the interior lumen of the biopsy needle guide, the outside surface of the biopsy needle guide, and the interior lumen of the ultrasound probe where the needle guide passes through the transducer. Each site was investigated separately. After inoculation, the probe was immersed in 2% glutaraldehyde for 20 minutes and then assessed for the level of microbial contamination. The results demonstrated that disinfection (ie, a reduction in bacterial load of greater than 7 log(10) cfu) could be achieved if the needle guide was removed from the probe. However, if the needle guide was left in the probe channel during immersion in 2% glutaraldehyde, disinfection was not achieved (ie, the reduction was approximately 1 log(10) cfu). Recommendations for probe disinfection are provided and include disassembling the device and immersing the probe and the needle guide separately in a high-level disinfectant.
Direct Probing of Polarization Charge at Nanoscale Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Owoong; Seol, Daehee; Lee, Dongkyu
Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long-term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer-scale regime. In order to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer-scale radius of an atomic force microscopy (AFM) tip yields a very low signal-to-noise ratio. But, the detection ismore » unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive-up-negative-down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm -2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The results we obtained show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.« less
Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe
NASA Astrophysics Data System (ADS)
He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing
2011-11-01
The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.
New Eddy Current Probe for Thickness Gauging of Conductive Materials
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min
1993-01-01
The accurate measure of material thickness is important for many non-destructive evaluation applications. Factors such as corrosion damage can jeopardize structural integrity through material thinning and process control considerations often mandate strict limits on material dimensions. Access to the material under test can be limited to a single side and large areas may need to be examined in a small time period. In an effort to enhance the effectiveness of material thickness measurements a flux focusing eddy current probe has been developed at NASA Langley Research Center. The probe provides an accurate measure of the thickness of conducting materials from a single sided measurement. It is straight forward to use and can be easily automated for production line testing. The probe also requires only minimal instrumentation and power so that extremely portable units can be manufactured at a low cost. This new eddy current probe has been used to accurately measure the thickness of aluminum alloy plates with a resolution of greater than 0.001 in. (25 microns). Simulated corrosion damage has also been detected on both single layer and multi-layer samples. The present work will explain the output voltage dependence of the device as a function of material thickness and present experimental results for thickness gauging and corrosion detection.
Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station
ERIC Educational Resources Information Center
Lu, Yang; Santino, Luciano M.; Acharya, Shinjita; Anandarajah, Hari; D'Arcy, Julio M.
2017-01-01
The design and fabrication of functional scientific instrumentation allows students to forge a link between commonly reported numbers and physical material properties. Here, a two-point and four-point probe station for measuring electrical properties of solid materials is fabricated via 3D printing utilizing an inexpensive benchtop…
Technology. The Hot Cup Caper. Probing for Scientific Knowledge.
ERIC Educational Resources Information Center
Ramondetta, June
1994-01-01
Students can explore temperature and heat conductivity by examining materials that make good cups for hot cocoa. Using temperature probes from computer-based science packages, students can measure gradual change in the liquid's temperature, watch as data are plotted on the computer, and explain why they chose a specific material. (SM)
Field performance of three real-time moisture sensors in sandy loam and clay loam soils
USDA-ARS?s Scientific Manuscript database
The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...
Saravanan, A. V.; Ravishankar, P. L.; Kumar, Pradeep; Rajapandian, K.; Kalaivani, V.; Rajula, M. Prem Blaisie
2017-01-01
Aim: The present study was conducted to evaluate the serum triglycerides, serum cholesterol, total protein, and IgG levels in elderly patients who were affected by periodontal disease. Materials and Methods: This study was conducted at the Rajah Muthiah Dental College and Hospital in the periodontics division. The study was conducted for a period of 3 months. This study is a prospective analytical study. Sixty individuals who were systemically healthy in the age group of 50 and above were included in this study. Control and experimental groups of 30 participants each were included. Plaque index, gingival index, probing pocket depth, and clinical attachment loss were recorded. Biochemical parameters such as serum cholesterol, serum triglycerides, total protein, and IgG levels were also evaluated and correlated with the periodontal parameters. Data was analyzed using SPSS version 16.0 (IBM Corp., Armonk, NY). The relationship between periodontal status and the biochemical parameters such as serum cholesterol, serum triglycerides, total protein, and IgG levels were evaluated by Student's t-test. Results: There was no significant difference in the plaque and gingival scores between the experimental and control group. It was observed that serum cholesterol level and total protein level was lower in participants suffering from chronic periodontitis. Triglycerides level was significantly elevated in the experimental group. IgG, a level which is not significant, concluded that there is no difference in control and experimental group. Conclusion: It was concluded from the results obtained from the study that there is an association between serum triglycerides, serum cholesterol, total protein, and periodontal disease. However, further longitudinal and well-controlled studies are required to evaluate the relationship between these biochemical parameters and periodontal disease. PMID:28462181
Saravanan, A V; Ravishankar, P L; Kumar, Pradeep; Rajapandian, K; Kalaivani, V; Rajula, M Prem Blaisie
2017-01-01
The present study was conducted to evaluate the serum triglycerides, serum cholesterol, total protein, and IgG levels in elderly patients who were affected by periodontal disease. This study was conducted at the Rajah Muthiah Dental College and Hospital in the periodontics division. The study was conducted for a period of 3 months. This study is a prospective analytical study. Sixty individuals who were systemically healthy in the age group of 50 and above were included in this study. Control and experimental groups of 30 participants each were included. Plaque index, gingival index, probing pocket depth, and clinical attachment loss were recorded. Biochemical parameters such as serum cholesterol, serum triglycerides, total protein, and IgG levels were also evaluated and correlated with the periodontal parameters. Data was analyzed using SPSS version 16.0 (IBM Corp., Armonk, NY). The relationship between periodontal status and the biochemical parameters such as serum cholesterol, serum triglycerides, total protein, and IgG levels were evaluated by Student's t-test. There was no significant difference in the plaque and gingival scores between the experimental and control group. It was observed that serum cholesterol level and total protein level was lower in participants suffering from chronic periodontitis. Triglycerides level was significantly elevated in the experimental group. IgG, a level which is not significant, concluded that there is no difference in control and experimental group. It was concluded from the results obtained from the study that there is an association between serum triglycerides, serum cholesterol, total protein, and periodontal disease. However, further longitudinal and well-controlled studies are required to evaluate the relationship between these biochemical parameters and periodontal disease.
Aligning Plasma-Arc Welding Oscillations
NASA Technical Reports Server (NTRS)
Norris, Jeff; Fairley, Mike
1989-01-01
Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.
Dawes, Donald Murray; Ho, Jeffrey D; Moore, Johanna C; Miner, James R
2013-09-01
Despite human laboratory and field studies that have demonstrated a reasonable safety profile for TASER brand conducted electrical weapons (CEW), the results of some swine studies and arrest related deaths temporal to the use of the CEWs continue to raise questions regarding cardiac safety. TASER International, Inc., has released a new CEW, the TASER X2, touted to have a better safety profile than its long-standing predecessor, the TASER X26. We have developed a model to assess the relative cardiac safety of CEWs and used it to compare the TASER X2 and the TASER X26. This safety model was also used to assess the relative safety of an experimental probe design as compared to the standard steel probe. Our results suggest that the TASER X2 has an improved safety margin over the TASER X26. The new probe design also has promise for enhanced cardiac safety, although may have some disadvantages when compared to the existing design which would make field use impractical.
Andreev rectifier: A nonlocal conductance signature of topological phase transitions
NASA Astrophysics Data System (ADS)
Rosdahl, T. Ö.; Vuik, A.; Kjaergaard, M.; Akhmerov, A. R.
2018-01-01
The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition, defects can spoil the induced superconductivity locally in the proximitized system, which complicates measuring global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated leads to probe three global properties of a proximitized system: the bulk superconducting gap, the induced gap, and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements distinguish between nontopological zero-energy modes localized around potential inhomogeneities, and true Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show how to design a Cooper pair splitter in the open regime.
NASA Astrophysics Data System (ADS)
Fuchs, Matthias
2017-08-01
The nature of the glass transition is one of the frontier questions in Statistical Physics and Materials Science. Highly cooperative structural processes develop in glass-forming melts exhibiting relaxational dynamics which is spread out over many decades in time. While considerable progress has been made in recent decades towards understanding dynamical slowing-down in quiescent systems, the interplay of glassy dynamics with external fields reveals a wealth of novel phenomena yet to be explored. This special issue focuses on recent results obtained by the Research Unit FOR 1394 `Nonlinear response to probe vitrification' which was funded by the German Science Foundation (DFG). In the projects of the research unit, strong external fields were used in order to gain insights into the complex structural and transport phenomena at the glass transition under far-from-equilibrium conditions. This aimed inter alia to test theories of the glass transition developed for quiescent systems by pushing them beyond their original regime. Combining experimental, simulational, and theoretical efforts, the eight projects within the FOR 1394 measured and determined aspects of the nonlinear response of supercooled metallic, polymeric, and silica melts, of colloidal dispersions, and of ionic liquids. Applied fields included electric and mechanic fields, and forced active probing (`micro-rheology'), where a single probe is forced through the glass-forming host. Nonlinear stress-strain and force-velocity relations as well as nonlinear dielectric susceptibilities and conductivities were observed. While the physical manipulation of melts and glasses is interesting in its own right, especially technologically, the investigations performed by the FOR 1394 suggest to use the response to strong homogeneous and inhomogeneous fields as technique to explore on the microscopic level the cooperative mechanisms in dense melts of strongly interacting constituents. Questions considered concern the (de-)coupling of different dynamical degrees of freedom in an external field, and the ensuing state diagrams. What forces are required to detach a localized probe particle from its initial environment in a supercooled liquid, in a glassy or granular system? Do metallic and colloidal glasses yield homogeneously or by strain localization under differently applied stresses? Which mechanisms determine field-dependent susceptibilities in dielectric and ionically conducting glass formers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.
2015-12-15
Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using amore » 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on real-time implementation and application-specific analysis.« less
Deoxyribonucleic Acid Probes Analyses for the Detection of Periodontal Pathogens.
Al Yahfoufi, Zoubeida; Hadchiti, Wahib; Berberi, Antoine
2015-09-01
In clinical microbiology several techniques have been used to identify bacteria. Recently, Deoxyribonucleic acid (DNA)-based techniques have been introduced to detect human microbial pathogens in periodontal diseases. Deoxyribonucleic acid probes can detect bacteria at a very low level if we compared with the culture methods. These probes have shown rapid and cost-effective microbial diagnosis, good sensitivity and specificity for some periodontal pathogens in cases of severe periodontitis. Eighty-five patients were recruited for the study. Twenty-one subjects ranging between 22 and 48 years of age fulfilled the inclusion and exclusion criteria. Seventy-eight samples became available for DNA probe analysis from the deepest pockets in each quadrant. All 21 patients showed positive results for Prevotella intermedia; also, Prevotella gingivalis was identified in 19 subjects, Aggregatibacter actinomycetemcomitans in 6 subjects. P. intermedia was diagnosed positive in 82% of the subgingival samples taken, 79% for P. gingivalis, and 23% for A. actinomycetemcomitans. This study shows a high frequency of putative periodontal pathogens by using DNA probe technology, which is semi-quantitative in this study. Deoxyribonucleic acid probes can detect bacteria at very low level about 10(3) which is below the detection level of culture methods. The detection threshold of cultural methods. The three types of bacteria can be detected rapidly with high sensitivity by using the DNA probe by general practitioners, and thus can help in the diagnosis process and the treatment.
NASA Astrophysics Data System (ADS)
Iida, S.
1991-03-01
Using statistical scattering theory, we calculate the average and the variance of the conductance coefficients at zero temperature for a small disordered metallic wire composed of three arms. Each arm is coupled at the end to a perfectly conducting lead. The disorder is modeled by a microscopic random Hamiltonian belonging to the Gaussian orthogonal ensemble. As the coupling strength of the third arm (voltage probe) is increased, the variance of the conductance coefficient of the main track changes from the universal value of the two-lead geometry to that of the three-lead geometry. The variance of the resistance coefficient is strongly affected by the coupling strength of the arm whose resistance is being measured and has a relatively weak dependence on those of the other two arms.
NASA Astrophysics Data System (ADS)
Saito, H.; Hamamoto, S.; Moldrup, P.; Komatsu, T.
2013-12-01
Ground source heat pump (GSHP) systems use ground or groundwater as a heat/cooling source, typically by circulating anti-freezing solution inside a vertically installed closed-loop tube known as a U-tube to transfer heat to/from the ground. Since GSHP systems are based on renewable energy and can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems, use of GSHP systems has been rapidly increasing worldwide. However, environmental impacts by GSHP systems including thermal effects on subsurface physical-chemical and microbiological properties have not been fully investigated. To rigorously assess GSHP impact on the subsurface environment, ground thermal properties including thermal conductivity and heat capacity need to be accurately characterized. Ground thermal properties were investigated at two experimental sites at Tokyo University of Agriculture and Technology (TAT) and Saitama University (SA), both located in the Kanto area of Japan. Thermal properties were evaluated both by thermal probe measurements on boring core samples and by performing in-situ Thermal Response Tests (TRT) in 50-80 m deep U-tubes. At both TAT and SU sites, heat-pulse probe measurements gave unrealistic low thermal conductivities for coarse textured materials (dominated by particles > 75 micrometers). Such underestimation can be partly due to poor contact between probe and porous material and partly to markedly decreasing sample water content during drilling, carrying, and storing sandy/gravelly samples. A more reliable approach for estimating in-situ thermal conductivity of coarse textured materials is therefore needed, and may be based on the commonly used TRT test. However, analyses of TRT data is typically based on Kelvin's line source model and provides an average (effective) thermal property for the whole soil profile around the U-tube but not for each geological layer. The main objective of this study was therefore to develop a method for estimating thermal conductivity values of coarse textured layers by numerically analyzing TRT data. A numerical technique combining three-dimensional conductive heat transport and one-dimensional convective heat transport to simulate heat exchange processes between the U-tube and the ground was used. In the numerical simulations, the thermal conductivities for the fine textured layers were kept at the probe-measured values, while the thermal conductivity for the coarse textured layers (constituting around half of the profile depth at both sites) was calibrated. The numerically-based method yielded more reasonable thermal conductivity values for the coarse-textured materials at both TAT and SU sites as compared to the heat pulse probe measurements, while the temperature changes of the heat carry fluid inside the U-tubes were also well simulated.
SCANNING VOLTA POTENTIALS MEASUREMENTS OF METALS IN IRRADIATED AIR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ISAACS, H.S.; ADZIC, G.; AND ENERGY SCIENCES AND TECHNOLOGY DEPARTMENT
2000-10-22
A method for direct dc measurement of the Volta potential is presented. High intensity synchrotron x-ray beams were used to locally irradiate the atmosphere adjacent to the metal surface and produce a conducting path between a sample and a reference probe. The direct measurements of potential in the ionized air could be made at probe heights of around 1 mm compared to less than 0.1 mm for the Kelvin probe. The measurements were similar to traditional Kelvin probe measurements, but had a poorer spatial resolution. In contrast to the Kelvin probe methods, the approach described allows observation of the currentmore » as a function of impressed voltage. Methods to improve the special resolution of the technique and applications to corrosion under coating will be presented.« less
Sutej, Ivana; Peros, Kristina; Benutic, Anica; Capak, Krunoslav; Basic, Kresimir; Rosin-Grget, Kata
2012-01-01
To evaluate the effect of tobacco smoking and salivary calcium on the periodontal status of young adults. Plaque index, gingival bleeding on probing, supragingival calculus, DMFT index, salivary flow, pH and salivary calcium in unstimulated salivary samples were recorded in smokers and nonsmokers. There were no significant differences between smokers and nonsmokers with respect to salivary flow (P = 0.08) and calcium level (P = 0.09). Significant correlations (P < 0.05) were found between a higher calcium level and higher probing depth (r = 0.60), higher number of teeth with probing depth of more than 4 mm (r = 0.70), greater clinical attachment level (r = 0.49) and lower number of teeth bleeding on probing (r = -0.50). Moderate smoking of tobacco cigarettes in young healthy subjects may not have a significant impact on salivary flow or calcium concentrations in unstimulated saliva, but an association exists between an increased level of salivary calcium and development of periodontal disease.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor stall and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
Validation of double Langmuir probe in-orbit performance onboard a nano-satellite
NASA Astrophysics Data System (ADS)
Tejumola, Taiwo Raphael; Zarate Segura, Guillermo Wenceslao; Kim, Sangkyun; Khan, Arifur; Cho, Mengu
2018-03-01
Many plasma measurement systems have been proposed and used onboard different satellites to characterize space plasma. Most of these systems employed the technique of Langmuir probes either using the single or double probes methods. Recent growth of lean satellites has positioned it on advantage to be used for space science missions using Langmuir probes because of its simplicity and convenience. However, single Langmuir probes are not appropriate to be used on lean satellites because of their limited conducting area which leads to spacecraft charging and drift of the instrument's electrical ground during measurement. Double Langmuir probes technique can overcome this limitation, as a measurement reference in relation to the spacecraft is not required. A double Langmuir probe measurement system was designed and developed at Kyushu Institute of Technology for HORYU-IV satellite, which is a 10 kg, 30 cm cubic class lean satellite launched into Low Earth Orbit on 17th February 2016. This paper presents the on-orbit performance and validation of the double Langmuir probe measurement using actual on-orbit measured data and computer simulations.
Tuning the thermal conductivity of solar cell polymers through side chain engineering.
Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei
2014-05-07
Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.
Akhtar, Mahmood H; Hussain, Khalil K; Gurudatt, N G; Chandra, Pranjal; Shim, Yoon-Bo
2018-09-30
Brain-derived neurotrophic factor (BDNF) was detected in the extracellular matrix of neuronal cells using a dual probe immunosensor (DPI), where one of them was used as a working and another bioconjugate loading probe. The working probe was fabricated by covalently immobilizing capture anti-BDNF (Cap Ab) on the gold nanoparticles (AuNPs)/conducting polymer composite layer. The bioconjugate probe was modified by drop casting a bioconjugate particles composed of conducting polymer self-assembled AuNPs, immobilized with detection anti-BDNF (Det Ab) and toluidine blue O (TBO). Each sensor layer was characterized using the surface analysis and electrochemical methods. Two modified probes were precisely faced each other to form a microfluidic channel structure and the gap between inside modified surfaces was about 19 µm. At optimized conditions, the DPI showed a linear dynamic range from 4.0 to 600.0 pg/ml with a detection limit of 1.5 ± 0.012 pg/ml. Interference effect of IgG, arginine, glutamine, serine, albumin, and fibrinogene were examined and stability of the developed biosensor was also investigated. The reliability of the DPI sensor was evaluated by monitoring the extracellular release of BDNF using exogenic activators (ethanol, K + , and nicotine) in neuronal and non-neuronal cells. In addition, the effect of nicotine onto neuroblastoma cancer cells (SH-SY5Y) was studied in detail. Copyright © 2018 Elsevier B.V. All rights reserved.
Flexible Cryogenic Temperature and Liquid-Level Probes
NASA Technical Reports Server (NTRS)
Haberbusch, Mark
2005-01-01
Lightweight, flexible probes have been developed for measuring temperatures at multiple locations in tanks that contain possibly pressurized cryogenic fluids. If the fluid in a given tank is subcritical (that is, if it consists of a liquid and its vapor), then in one of two modes of operation, the temperature measurements made by a probe of this type can be used to deduce the approximate level of the liquid. The temperature sensors are silicon diodes located at intervals along a probe. If the probe is to be used to measure a temperature gradient along a given axis in the tank, then the probe must be mounted along that axis. In the temperature-measurement mode, a constant small electric current is applied to each diode and the voltage across the diode a known function of the current and temperature is measured as an indication of its temperature. For the purpose of this measurement, small electric current signifies a current that is not large enough to cause a significant increase in the measured temperature. More specifically, the probe design calls for a current of 10 A, which, in the cryogenic temperature range of interest, generates heat at a rate of only about 0.01 mW per diode. In the liquid-level-sensing mode, one applies a larger current (30 mA) to each diode so as to heat each diode appreciably (with a power of about 36 mW in the temperature range of interest). Because the liquid cools the diode faster than does the vapor, the temperature of the diode is less when the diode is immersed in the liquid than when it is above the surface of the liquid. Thus, the temperature (voltage) reading from each diode can be used to determine whether the liquid level is above or below the diode, and one can deduce that the liquid level lies between two adjacent diodes, the lower one of which reads a significantly lower temperature. The aforementioned techniques for measuring temperature and deducing liquid level are not new. What is new here are the designs of the probes and of associated external electronic circuitry. In each probe, the diodes and the lead wires are embedded in a strong, lightweight, flexible polyimide strip. Each probe is constructed as an integral unit that includes a multipin input/output plug or socket for solderless connection of the lead wires to the external circuitry. The polyimide strip includes mounting tabs with holes that can accommodate rivets, screws, or other fasteners. Alternatively, a probe can be mounted by use of an epoxy. A probe can be manufactured to almost any length or width, and the diodes can be embedded at almost any desired location along and across the polyimide strip. In designing a probe for a specific application, one seeks a compromise between (1) minimizing the number of diodes in order to minimize the complexity of input/output connections and external electronic circuitry while (2) using enough diodes to obtain the required precision. Optionally, to minimize spurious heating of the cryogenic fluid, the external circuitry can be designed to apply power to the probe only during brief measurement intervals. Assuming that the external circuitry is maintained at a steady temperature, a power-on interval of only a few seconds is sufficient to obtain accurate data on temperatures and/or the height of the liquid/vapor interface.
We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...
Development of a new mini-invasive tumour hyperthermia probe using high-temperature water vapour.
Yu, Tian-Hua; Zhou, Yi-Xin; Liu, Jing
2004-01-01
A new mini-invasive hyperthermia probe using high-temperature water vapour for deep regional tumour treatment was developed in this paper. The vacuum insulation mechanism was incorporated into the probe to avoid heating damage to the normal tissues around the edge of the insertion path. To better understand the heat transfer behaviour in living tissues due to operation of the probe, theoretical models based on the Pennes' equation were established and two closed form analytical solutions under constant flux or temperature heating at the tip of probe were obtained. Parametric studies were performed to investigate the influence of various parameters on the temperature response of tissues heated by the probe. Further, several simulating experiments on the actual heating performance of the probe fabricated in this paper were conducted on the in vitro biological materials (fresh pork) and phantom gel. It was demonstrated that the probe can cause a high enough temperature over the treatment area to thermally destroy the tumour tissue in due time, while the temperature over the surrounding healthy tissues can be kept below a safe threshold value. This mini-invasive heating probe may have significant applications in future clinical tumour hyperthermia.
Perceiving the vertical distances of surfaces by means of a hand-held probe.
Chan, T C; Turvey, M T
1991-05-01
Nine experiments were conducted on the haptic capacity of people to perceive the distances of horizontal surfaces solely on the basis of mechanical stimulation resulting from contacting the surfaces with a vertically held rod. Participants touched target surfaces with rods inside a wooden cabinet and reported the perceived surface location with an indicator outside the cabinet. The target surface, rod, and the participant's hand were occluded, and the sound produced in exploration was muffled. Properties of the probe (length, mass, moment of inertia, center of mass, and shape) were manipulated, along with surface distance and the method and angle of probing. Results suggest that for the most common method of probing, namely, tapping, perceived vertical distance is specific to a particular relation among the rotational inertia of the probe, the distance of the point of contact with the surface from the probe's center of percussion, and the inclination at contact of the probe to the surface. They also suggest that the probe length and the distance probed are independently perceivable. The results were discussed in terms of information specificity versus percept-percept coupling and parallels between selective attention in haptic and visual perception.
Numerical modeling of probe velocity effects for electromagnetic NDE methods
NASA Astrophysics Data System (ADS)
Shin, Y. K.; Lord, W.
The present discussion of magnetic flux (MLF) leakage inspection introduces the behavior of motion-induced currents. The results obtained indicate that velocity effects exist at even low probe speeds for magnetic materials, compelling the inclusion of velocity effects in MLF testing of oil pipelines, where the excitation level and pig speed are much higher than those used in the present work. Probe velocity effect studies should influence probe design, defining suitable probe speed limits and establishing training guidelines for defect-characterization schemes.
Carbon Nanotube Devices Engineered by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Prisbrey, Landon
This dissertation explores the engineering of carbon nanotube electronic devices using atomic force microscopy (AFM) based techniques. A possible application for such devices is an electronic interface with individual biological molecules. This single molecule biosensing application is explored both experimentally and with computational modeling. Scanning probe microscopy techniques, such as AFM, are ideal to study nanoscale electronics. These techniques employ a probe which is raster scanned above a sample while measuring probe-surface interactions as a function of position. In addition to topographical and electrostatic/magnetic surface characterization, the probe may also be used as a tool to manipulate and engineer at the nanoscale. Nanoelectronic devices built from carbon nanotubes exhibit many exciting properties including one-dimensional electron transport. A natural consequence of onedimensional transport is that a single perturbation along the conduction channel can have extremely large effects on the device's transport characteristics. This property may be exploited to produce electronic sensors with single-molecule resolution. Here we use AFM-based engineering to fabricate atomic-sized transistors from carbon nanotube network devices. This is done through the incorporation of point defects into the carbon nanotube sidewall using voltage pulses from an AFM probe. We find that the incorporation of an oxidative defect leads to a variety of possible electrical signatures including sudden switching events, resonant scattering, and breaking of the symmetry between electron and hole transport. We discuss the relationship between these different electronic signatures and the chemical structure/charge state of the defect. Tunneling through a defect-induced Coulomb barrier is modeled with numerical Verlet integration of Schrodinger's equation and compared with experimental results. Atomic-sized transistors are ideal for single-molecule applications due to their sensitivity to electric fields with very small detection volumes. In this work we demonstrate these devices as single-molecule sensors to detect individual N-(3-Dimethylaminopropyl)- N'-ethylcarbodiimide (EDC) molecules in an aqueous environment. An exciting application of these sensors is to study individual macromolecules participating in biological reactions, or undergoing conformational change. However, it is unknown whether the associated electrostatic signals exceed detection limits. We report calculations which reveal that enzymatic processes, such as substrate binding and internal protein dynamics, are detectable at the single-molecule level using existing atomic-sized transistors. Finally, we demonstrate the use of AFM-based engineering to control the function of nanoelectronic devices without creating a point defect in the sidewall of the nanotube. With a biased AFM probe we write charge patterns on a silicon dioxide surface in close proximity to a carbon nanotube device. The written charge induces image charges in the nearby electronics, and can modulate the Fermi level in a nanotube by +/-1 eV. We use this technique to induce a spatially controlled doping charge pattern in the conduction channel, and thereby reconfigure a field-effect transistor into a pn junction. Other simple charge patterns could be used to create other devices. The doping charge persists for days and can be erased and rewritten, offering a new tool for prototyping nanodevices and optimizing electrostatic doping profiles.
Beretta, Davide; Barker, Alex J; Maqueira-Albo, Isis; Calloni, Alberto; Bussetti, Gianlorenzo; Dell'Erba, Giorgio; Luzio, Alessandro; Duò, Lamberto; Petrozza, Annamaria; Lanzani, Guglielmo; Caironi, Mario
2017-05-31
Organic conductors are being evaluated for potential use in waste heat recovery through lightweight and flexible thermoelectric generators manufactured using cost-effective printing processes. Assessment of the potentiality of organic materials in real devices still requires a deeper understanding of the physics behind their thermoelectric properties, which can pave the way toward further development of the field. This article reports a detailed thermoelectric study of a set of highly conducting inkjet-printed films of commercially available poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulations characterized by in-plane electrical conductivity, spanning the interval 10-500 S/cm. The power factor is maximized for the formulation showing an intermediate electrical conductivity. The Seebeck coefficient is studied in the framework of Mott's relation, assuming a (semi-)classical definition of the transport function. Ultraviolet photoelectron spectroscopy at the Fermi level clearly indicates that the shape of the density of states alone is not sufficient to explain the observed Seebeck coefficient, suggesting that carrier mobility is important in determining both the electrical conductivity and thermopower. Finally, the cross-plane thermal conductivity is reliably extracted thanks to a scaling approach that can be easily performed using typical pump-probe spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
NASA Astrophysics Data System (ADS)
Morton, Kirstin Claire
Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.
Two-photon in vivo flow cytometry using a fiber probe
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R., Jr.; Norris, Theodore B.
2009-02-01
We have demonstrated the use of a double-clad fiber probe to conduct two-photon excited flow cytometry in vitro and in vivo. We conducted two-channel detection to measure fluorescence at two distinct wavelengths simultaneously. Because the scattering and absorption problems from whole blood were circumvented by the fiber probe, the detected signal strength from the cells were found to be similar in PBS and in whole blood. We achieved the same detection efficiency of the membrane-binding lipophilic dye DiD labeled cells in PBS and in whole blood. High detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was demonstrated. DiD-labeled untransfected and GFP-transfected cells were injected into live mice and the circulation dynamics of the externally injected cells were monitored. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed in whole blood.
Papandrew, A B; Li, Q; Okatan, M B; Jesse, S; Hartnett, C; Kalinin, S V; Vasudevan, R K
2015-12-21
Variable temperature band-excitation atomic force microscopy in conjunction with I-V spectroscopy was used to investigate the crystalline superionic proton conductor CsHSO4 during proton exchange induced by a Pt-coated conductive scanning probe. At a sample temperature of 150 °C and under an applied bias <1 V, reduction currents of up to 1 nA were observed. Simultaneously, we show that the electrochemical reactions are accompanied by a reversible decrease in the elastic modulus of CsHSO4, as seen by a contact resonance shift, and find evidence for superplasticity during scanning. These effects were not observed in the room-temperature phase of CsHSO4 or in the case of catalytically inactive conductive probes, proving the utility of this technique for monitoring electrochemical processes on the nanoscale, as well as the use of local contact stiffness as a sensitive indicator of electrochemical reactions.
NASA Astrophysics Data System (ADS)
Tao, Yinglei; Kumar Wickramasinghe, H.
2017-02-01
We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.
Eddy current probe with foil sensor mounted on flexible probe tip and method of use
Viertl, John R. M.; Lee, Martin K.
2001-01-01
A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.
Colposcopic imaging using visible-light optical coherence tomography.
Duan, Lian; McRaven, Michael D; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S; Hope, Thomas J; Zhang, Hao F
2017-05-01
High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6 × 4.6 - mm 2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.
Colposcopic imaging using visible-light optical coherence tomography
NASA Astrophysics Data System (ADS)
Duan, Lian; McRaven, Michael D.; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S.; Hope, Thomas J.; Zhang, Hao F.
2017-05-01
High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.
Where do pulse oximeter probes break?
Crede, S; Van der Merwe, G; Hutchinson, J; Woods, D; Karlen, W; Lawn, J
2014-06-01
Pulse oximetry, a non-invasive method for accurate assessment of blood oxygen saturation (SPO2), is an important monitoring tool in health care facilities. However, it is often not available in many low-resource settings, due to expense, overly sophisticated design, a lack of organised procurement systems and inadequate medical device management and maintenance structures. Furthermore medical devices are often fragile and not designed to withstand the conditions of low-resource settings. In order to design a probe, better suited to the needs of health care facilities in low-resource settings this study aimed to document the site and nature of pulse oximeter probe breakages in a range of different probe designs in a low to middle income country. A retrospective review of job cards relating to the assessment and repair of damaged or faulty pulse oximeter probes was conducted at a medical device repair company based in Cape Town, South Africa, specializing in pulse oximeter probe repairs. 1,840 job cards relating to the assessment and repair of pulse oximeter probes were reviewed. 60.2 % of probes sent for assessment were finger-clip probes. For all probes, excluding the neonatal wrap probes, the most common point of failure was the probe wiring (>50 %). The neonatal wrap most commonly failed at the strap (51.5 %). The total cost for quoting on the broken pulse oximeter probes and for the subsequent repair of devices, excluding replacement components, amounted to an estimated ZAR 738,810 (USD $98,508). Improving the probe wiring would increase the life span of pulse oximeter probes. Increasing the life span of probes will make pulse oximetry more affordable and accessible. This is of high priority in low-resource settings where frequent repair or replacement of probes is unaffordable or impossible.
Design and validation of the ball-pen probe for measurements in a low-temperature magnetized plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousselin, G.; Cavalier, J.; Pautex, J. F.
Ball-pen probes have been used in fusion devices for direct measurements of the plasma potential. Their application in low-temperature magnetized plasma devices is still subject to studies. In this context, a ball-pen probe has been recently implemented on the linear plasma device Mirabelle. Produced by a thermionic discharge, the plasma is characterized by a low electron temperature and a low density. Plasma confinement is provided by an axial magnetic field that goes up to 100 mT. The principle of the ball-pen probe is to adjust the saturation current ratio to 1 by reducing the electron current contribution. In that case,more » the floating potential of the probe is close to the plasma potential. A thorough study of the ball-pen probe operation is performed for different designs of the probe over a large set of plasma conditions. Comparisons between ball-pen, Langmuir, and emissive probes are conducted in the same plasma conditions. The ball-pen probe is successfully measuring the plasma potential in these specific plasma conditions only if an adapted electronics and an adapted probe size to the plasma characteristic lengths ({lambda}{sub D}, {rho}{sub ce}) are used.« less
A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.
Baur, Brittany; Bozdag, Serdar
2016-01-01
DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.
Automatic Flushing Unit With Cleanliness Monitor
NASA Technical Reports Server (NTRS)
Hildebrandt, N. E.
1982-01-01
Liquid-level probe kept clean, therefore at peak accuracy, by unit that flushes probe with solvent, monitors effluent for contamination, and determines probe is particle-free. Approach may be adaptable to industrial cleaning such as flushing filters and pipes, and ensuring that manufactured parts have been adequately cleaned.
ERIC Educational Resources Information Center
Dudu, Washington T.
2014-01-01
The paper explores conceptions of the nature of scientific inquiry (NOSI) held by five teachers who were purposively and conveniently sampled. Teachers' conceptions of the NOSI were determined using a Probes questionnaire. To confirm teachers' responses, a semi-structured interview was conducted with each teacher. The Probes questionnaire was…
Saturn Uranus atmospheric entry probe mission spacecraft system definition study
NASA Technical Reports Server (NTRS)
1973-01-01
The modifications required of the Pioneer F/G spacecraft design for it to deliver an atmospheric entry probe to the planets Saturn and Uranus are investigated. It is concluded that it is feasible to conduct such a mission within the constraints and interfaces defined. The spacecraft required to perform the mission is derived from the Pioneer F/G design, and the modifications required are generally routinely conceived and executed. The entry probe is necessarily a new design, although it draws on the technology of past, present, and imminent programs of planetary atmospheric investigations.
Microwave resonances in dielectric samples probed in Corbino geometry: simulation and experiment.
Felger, M Maximilian; Dressel, Martin; Scheffler, Marc
2013-11-01
The Corbino approach, where the sample of interest terminates a coaxial cable, is a well-established method for microwave spectroscopy. If the sample is dielectric and if the probe geometry basically forms a conductive cavity, this combination can sustain well-defined microwave resonances that are detrimental for broadband measurements. Here, we present detailed simulations and measurements to investigate the resonance frequencies as a function of sample and probe size and of sample permittivity. This allows a quantitative optimization to increase the frequency of the lowest-lying resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod
2015-05-15
A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360–800 nm) light, varying temperature (T = 1.8–300 K), and magnetic field (B = 0–7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO{sub 3}–SrTiO{sub 3} heterointerface system with a conducting two dimensional electron gas.
Starter for inductively coupled plasma tube
Hull, D.E.; Bieniewski, T.M.
1988-08-23
A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.
Goodman, Shawn S; Keefe, Douglas H
2006-06-01
Otoacoustic emissions serve as a noninvasive probe of the medial olivocochlear (MOC) reflex. Stimulus frequency otoacoustic emissions (SFOAEs) elicited by a low-level probe tone may be the optimal type of emission for studying MOC effects because at low levels, the probe itself does not elicit the MOC reflex [Guinan et al. (2003) J. Assoc. Res. Otolaryngol. 4:521]. Based on anatomical considerations, the MOC reflex activated by ipsilateral acoustic stimulation (mediated by the crossed olivocochlear bundle) is predicted to be stronger than the reflex to contralateral stimulation. Broadband noise is an effective activator of the MOC reflex; however, it is also an effective activator of the middle-ear muscle (MEM) reflex, which can make results difficult to interpret. The MEM reflex may be activated at lower levels than measured clinically, and most previous human studies have not explicitly included measurements to rule out MEM reflex contamination. The current study addressed these issues using a higher-frequency SFOAE probe tone to test for cochlear changes mediated by the MOC reflex, while simultaneously monitoring the MEM reflex using a low-frequency probe tone. Broadband notched noise was presented ipsilaterally at various levels to elicit probe-tone shifts. Measurements are reported for 15 normal-hearing subjects. With the higher-frequency probe near 1.5 kHz, only 20% of subjects showed shifts consistent with an MOC reflex in the absence of an MEM-induced shift. With the higher-frequency probe near 3.5 kHz, up to 40% of subjects showed shifts in the absence of an MEM-induced shift. However, these responses had longer time courses than expected for MOC-induced shifts, and may have been dominated by other cochlear processes, rather than MOC reflex. These results suggest caution in the interpretation of effects observed using ipsilaterally presented acoustic activators intended to excite the MOC reflex.
Validation of a new device to quantify groundwater-surface water exchange
NASA Astrophysics Data System (ADS)
Cremeans, Mackenzie M.; Devlin, J. F.
2017-11-01
Distributions of flow across the groundwater-surface water interface should be expected to be as complex as the geologic deposits associated with stream or lake beds and their underlying aquifers. In these environments, the conventional Darcy-based method of characterizing flow systems (near streams) has significant limitations, including reliance on parameters with high uncertainties (e.g., hydraulic conductivity), the common use of drilled wells in the case of streambank investigations, and potentially lengthy measurement times for aquifer characterization and water level measurements. Less logistically demanding tools for quantifying exchanges across streambeds have been developed and include drive-point mini-piezometers, seepage meters, and temperature profiling tools. This project adds to that toolbox by introducing the Streambed Point Velocity Probe (SBPVP), a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the interface with high density sampling, which can effectively, rapidly, and accurately complement conventional methods. The SBPVP is a direct push device that measures in situ water velocities at the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic conductivity or gradient information, nor do they require long equilibration times. Laboratory testing indicated that the SBPVP has an average accuracy of ± 3% and an average precision of ± 2%. Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising agreement between groundwater fluxes determined by conventional methods and those estimated from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool to quantify groundwater-surface water interactions in high definition in sandy streambeds.
NASA Astrophysics Data System (ADS)
Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.
2016-04-01
Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in
2016-04-18
Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra canmore » be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.« less
Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio
2015-01-14
The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.
Nanofabrication of insulated scanning probes for electromechanical imaging in liquid solutions
Noh, Joo Hyon; Nikiforov, Maxim; Kalinin, Sergei V.; Vertegel, Alexey A.; Rack, Philip D.
2011-01-01
In this paper, the fabrication and electrical and electromechanical characterization of insulated scanning probes have been demonstrated in liquid solutions. The silicon cantilevers were sequentially coated with chromium and silicon dioxide, and the silicon dioxide was selectively etched at tip apex using focused electron beam induced etching (FEBIE) with XeF2 The chromium layer acted not only as the conductive path from the tip, but also as an etch resistant layer. This insulated scanning probe fabrication process is compatible with any commercial AFM tip and can be used to easily tailor the scanning probe tip properties because FEBIE does not require lithography. The suitability of the fabricated probes is demonstrated by imaging of standard topographical calibration grid as well as piezoresponse force microscopy (PFM) and electrical measurements in ambient and liquid environments. PMID:20702930
Imaging of electrical response of NiO x under controlled environment with sub-25-nm resolution
Jacobs, Christopher B.; Ievlev, Anton V.; Collins, Liam F.; ...
2016-07-19
The spatially resolved electrical response of rf-sputtered polycrystalline NiO x films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy at 0%, 50%, and 80% relative humidity with sub 25nm resolution. The surface potential of NiO x decreased by about 180 mV and resistance decreased in a nonlinear fashion by about 2 G when relative humidity was increased from 0% to 80%. The dimensionality of surface features obtained through autocorrelation analysis of topological, surfacemore » potential and resistance maps increased linearly with increased relative humidity as water was adsorbed onto the film surface. Spatially resolved surface potential and resistance of the NiO x films were found to be heterogeneous, with distinct features that grew in size from about 60 nm to 175 nm between 0% and 80% RH levels, respectively. Here, we find that the changes in the heterogeneous character of the NiO films are consistent through the topological, surface potential, and resistance measurements, suggesting that the nanoscale surface potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO x film.« less
Plasma contactor research - 1991
NASA Technical Reports Server (NTRS)
Buchholtz, Brett; Williams, John D.; Wilbur, Paul J.
1992-01-01
A report describing the operating principles of hollow-cathode-based plasma contactors emitting or collecting electrons from an ambient plasma is summarized. Preliminary experiments conducted to determine the noise generated by these plasma contactors in the emission-current return line and in the plasma near it are described. These noise data are measured as current fluctuations in the return line and to the Langmuir probe and then analyzed using a fast Fourier transform technique. The spectral compositions of the data are characterized using power spectral density plots which are examined to identify possible noise source(s) and production mechanism(s). The precautions taken in the construction and calibration of the instrumentation to assure adequate frequency response are described. Experimental results show that line-current noise levels are typically 2 percent of the electron current being emitted or collected. However, noise levels increase to as much as 20 percent of the electron current at a few electron-collection operating conditions. The frequencies associated with most of the noise were harmonics of the 60 Hz input to system power supplies. Plasma noise had characteristics similar in magnitude and frequency to those for the return-line noise, but they contained additional features at frequencies considered to be related to ion-acoustic instabilities. Also discussed is a new probe positioning system built to facilitate future plasma-contractor research.
Conductive-probe atomic force microscopy characterization of silicon nanowire
2011-01-01
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated. PMID:21711623
Characterization of Nanopipettes.
Perry, David; Momotenko, Dmitry; Lazenby, Robert A; Kang, Minkyung; Unwin, Patrick R
2016-05-17
Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery, and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy and finite element method simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope setup.
NASA Technical Reports Server (NTRS)
Waco, D. E.
1979-01-01
The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized from a meteorological viewpoint in a two-volume technical memorandum. The missions were part of the NASA Langley Research Center's MAT (Measurement of Atmospheric Turbulence) program, which was conducted between March 1974, and September 1975, at altitudes ranging up to 15 km. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encountered on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program.
Strong negative terahertz photoconductivity in photoexcited graphene
NASA Astrophysics Data System (ADS)
Fu, Maixia; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Han, Peng; Zhang, Yan
2018-01-01
Terahertz (THz) response of a chemical vapor deposited graphene on a quartz substrate has been investigated by using an ultrafast optical-pump THz-probe spectroscopy. Without photoexcitation, the frequency-dependence optical conductivity shows a strong carrier response owing to the intrinsically doped graphene. Upon photoexcitation, an enhancement in THz transmission is observed and the transmission increases nonlinearly with the increase of pump power, which is rooted in a reduction of intrinsic conductivity arising from the strong enhancement of carrier scattering rather than THz emission occurrence. The modulation depth of 18.8% was experimentally achieved, which is more than four times greater than that of the previous reported. The photoinduced response here highlights the variety of response possible in graphene depending on the sample quality, carrier mobility and doping level. The graphene provides promising applications in high-performance THz modulators and THz photoelectric devices.
Two-probe STM experiments at the atomic level.
Kolmer, Marek; Olszowski, Piotr; Zuzak, Rafal; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2017-11-08
Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.
Development of nanowire arrays for neural probe
NASA Astrophysics Data System (ADS)
Abraham, Jose K.; Xie, Jining; Varadan, Vijay K.
2005-05-01
It is already established that functional electrical stimulation is an effective way to restore many functions of the brain in disabled individuals. The electrical stimulation can be done by using an array of electrodes. Neural probes stimulate or sense the biopotentials mainly through the exposed metal sites. These sites should be smaller relative to the spatial potential distribution so that any potential averaging in the sensing area can be avoided. At the same time, the decrease in size of these sensing sites is limited due to the increase in impedance levels and the thermal noise while decreasing its size. It is known that current density in a planar electrode is not uniform and a higher current density can be observer around the perimeter of the electrodes. Electrical measurements conducted on many nanotubes and nanowires have already proved that it could be possible to use for current density applications and the drawbacks of the present design in neural probes can be overcome by incorporating many nanotechnology solutions. In this paper we present the design and development of nanowire arrays for the neural probe for the multisite contact which has the ability to collect and analyze isolated single unit activity. An array of vertically grown nanowires is used as contact site and many of such arrays can be used for stimulating as well as recording sites. The nanolevel interaction and wireless communication solution can extend to applications involving the treatment of many neurological disorders including Parkinson"s disease, Alzheimer"s disease, spinal injuries and the treatment of blindness and paralyzed patients with minimal or no invasive surgical procedures.
Nagai, Moeto; Oohara, Kiyotaka; Kato, Keita; Kawashima, Takahiro; Shibata, Takayuki
2015-04-01
Parallel manipulation of single cells is important for reconstructing in vivo cellular microenvironments and studying cell functions. To manipulate single cells and reconstruct their environments, development of a versatile manipulation tool is necessary. In this study, we developed an array of hollow probes using microelectromechanical systems fabrication technology and demonstrated the manipulation of single cells. We conducted a cell aspiration experiment with a glass pipette and modeled a cell using a standard linear solid model, which provided information for designing hollow stepped probes for minimally invasive single-cell manipulation. We etched a silicon wafer on both sides and formed through holes with stepped structures. The inner diameters of the holes were reduced by SiO2 deposition of plasma-enhanced chemical vapor deposition to trap cells on the tips. This fabrication process makes it possible to control the wall thickness, inner diameter, and outer diameter of the probes. With the fabricated probes, single cells were manipulated and placed in microwells at a single-cell level in a parallel manner. We studied the capture, release, and survival rates of cells at different suction and release pressures and found that the cell trapping rate was directly proportional to the suction pressure, whereas the release rate and viability decreased with increasing the suction pressure. The proposed manipulation system makes it possible to place cells in a well array and observe the adherence, spreading, culture, and death of the cells. This system has potential as a tool for massively parallel manipulation and for three-dimensional hetero cellular assays.
NASA Astrophysics Data System (ADS)
Reveil, Mardochee; Sorg, Victoria C.; Cheng, Emily R.; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O.
2017-09-01
This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.
Reveil, Mardochee; Sorg, Victoria C; Cheng, Emily R; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O
2017-09-01
This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.
Acoustic reflex on newborns: the influence of the 226 and 1,000 Hz probes.
Jacob-Corteletti, Lilian Cássia Bórnia; Duarte, Josilene Luciene; Zucki, Fernanda; Mariotto, Luciane Domingues Figueiredo; Lauris, José Roberto Pereira; Alvarenga, Kátia de Freitas
2015-01-01
To analyze the occurrence of acoustic reflex and its threshold on newborns using the 226 and 1,000 Hz probes. Thirty-six newborns with "PASS" results in newborn hearing screening and tympanogram with one or two peaks for both probe tones were included. Group I comprised 20 full-term newborns without risk indicator for hearing loss, and Group II comprised 16 newborns with at least one risk indicator. The study about ipsilateral acoustic reflex thresholds was conducted in 500, 1,000, 2,000, and 4,000 Hz. The groups presented the acoustic reflex thresholds between 50 and 100 dB for both probe tones. In the comparison between the probes, there were differences in all frequencies evaluated in Group I, with the lowest threshold mean for the 1,000 Hz probe. In Group II, differences were detected at 2,000 Hz. The mean acoustic reflex thresholds were similar in both groups for the 226 Hz probe. There was a difference for the 1,000 Hz probe in all tested frequencies. The percentage of response was higher in both groups for the 1,000 Hz probe. The kappa test showed extremely poor agreement in the comparison of results between both probes. The occurrence of acoustic reflex was higher in newborns and its thresholds were lower with the 1,000 Hz probe both for healthy newborns and for newborns at risk.
NASA Astrophysics Data System (ADS)
Gur, David; Zheng, Bin; Dhurjaty, Sreeram; Wolfe, Gene; Fradin, Mary; Weil, Richard; Sumkin, Jules; Zuley, Margarita
2009-02-01
In our previous study, we reported on the development and preliminary testing of a prototype resonance electrical impedance spectroscopy (REIS) system with a pair of probes. Although our pilot study on 150 young women ranging from 30 to 50 years old indicated the feasibility of using REIS output sweep signals to classify between the women who had negative examinations and those who would ultimately be recommended for biopsy, the detection sensitivity was relatively low. To improve performance when using REIS technology, we recently developed a new multi-probe based REIS system. The system consists of a sensor module box that can be easily lifted along a vertical support device to fit women of different height. Two user selectable breast placement "cups" with different curvatures are included in the system. Seven probes are mounted on each of the cups on opposing sides of the sensor box. By rotating the sensor box, the technologist can select the detection sensor cup that better fits the breast size of the woman being examined. One probe is mounted in the cup center for direct contact with the nipple and the other six probes are uniformly distributed along an outside circle to enable contact with six points on the outer and inner breast skin surfaces. The outer probes are located at a distance of 60mm away from the center (nipple) probe. The system automatically monitors the quality of the contact between the breast surface and each of the seven probes and data acquisition can only be initiated when adequate contact is confirmed. The measurement time for each breast is approximately 15 seconds during which time the system records 121 REIS signal sweep outputs generated from 200 KHz to 800 KHz at 5 KHz increments for all preselected probe pairs. Currently we are measuring 6 pairs between the center probe and each of six probes located on the outer circle as well as two pairs between probe pairs on the outer circle. This new REIS system has been installed in our clinical breast imaging facility. We are conducting a prospective study to assess performance when using this REIS system under an approved IRB protocol. Over 200 examinations have been conducted to date. Our experience showed that this new REIS system was easy to operate and the REIS examination was fast and considered "comfortable" by examinees since the women presses her breast into the cup herself without any need for forced breast compression, and all but a few highly sensitive women have any sensation of an electrical current during the measurement.
Ikeda, Hideharu; Suda, Hideaki
2013-04-01
The objectives of the present study were to quantitatively evaluate chemical permeability through human enamel/dentine using conductometry and to clarify if alternating current (AC) iontophoresis facilitates such permeability. Electrical impedance of different concentrations of lidocaine hydrochloride was measured using a bipolar platinum impedance probe. A quadratic curve closely fitted to the response functions between conductance and lidocaine hydrochloride. For analysis of the passage of lidocaine hydrochloride through human enamel/dentine, eight premolars that were extracted for orthodontic treatment were sectioned at the cemento-enamel junction. The tooth crowns were held between two chambers with a double O-ring. The enamel-side chamber was filled with lidocaine hydrochloride, and the pulp-side chamber was filled with extrapure water. Two platinum plate electrodes were set at the end of each chamber to pass alternating current. A simulated interstitial pulp pressure was applied to the pulp-side chamber. The change in the concentration of lidocaine hydrochloride in the pulp-side chamber was measured every 2min using a platinum recording probe positioned at the centre of the pulp-side chamber. Passive entry without iontophoresis was used as a control. The level of lidocaine hydrochloride that passed through enamel/dentine against the dentinal fluid flow increased with time. Electrical conductance (G, mho) correlated closely to the concentration (x, mmol/L) of lidocaine hydrochloride (G=2.16x(2)+0.0289x+0.000376, r(2)=0.999). Lidocaine hydrochloride can pass through enamel/dentine. Conductometry showed that the level of lidocaine hydrochloride that passed through enamel/dentine was increased by AC iontophoresis. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei
2018-06-01
This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.
Chen, Chiao-Chen; Baker, Lane A
2011-01-07
Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.
Yang, Sangmo; Lee, Shinbuhm; Jian, Jie; ...
2015-10-08
Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO 2 embedded in supporting matrices of SrTiO 3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeOmore » 2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO 2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.« less
Wireless Fluid Level Measuring System
NASA Technical Reports Server (NTRS)
Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)
2007-01-01
A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.
Quantum Phase Transition in Few-Layer NbSe2 Probed through Quantized Conductance Fluctuations
NASA Astrophysics Data System (ADS)
Kundu, Hemanta Kumar; Ray, Sujay; Dolui, Kapildeb; Bagwe, Vivas; Choudhury, Palash Roy; Krupanidhi, S. B.; Das, Tanmoy; Raychaudhuri, Pratap; Bid, Aveek
2017-12-01
We present the first observation of dynamically modulated quantum phase transition between two distinct charge density wave (CDW) phases in two-dimensional 2 H -NbSe2 . There is recent spectroscopic evidence for the presence of these two quantum phases, but its evidence in bulk measurements remained elusive. We studied suspended, ultrathin 2 H -NbSe2 devices fabricated on piezoelectric substrates—with tunable flakes thickness, disorder level, and strain. We find a surprising evolution of the conductance fluctuation spectra across the CDW temperature: the conductance fluctuates between two precise values, separated by a quantum of conductance. These quantized fluctuations disappear for disordered and on-substrate devices. With the help of mean-field calculations, these observations can be explained as to arise from dynamical phase transition between the two CDW states. To affirm this idea, we vary the lateral strain across the device via piezoelectric medium and map out the phase diagram near the quantum critical point. The results resolve a long-standing mystery of the anomalously large spectroscopic gap in NbSe2 .
John, Priya; Lazarus, Flemingson; Selvam, Arul; Prabhuji, Munivenkatappa Lakshmaiah Venkatesh
2015-01-01
Introduction PerioChip a bovine origin gelatine based CHX chip has shown beneficial effects in the management of Chronic Periodontitis. A new fish collagen based CHX chip similar to PerioChip is currently available; however this product has not been thoroughly researched. Aim The aim of the present study was to evaluate the effectiveness of a new Piscean collagen-based controlled-release chlorhexidine chip (CHX chip) as an adjunctive therapy to scaling and root planing (SRP). Settings and Design The study was conducted as a randomised, split-mouth, controlled clinical trial at Krishnadevaraya College of Dental Sciences, Bangalore, India. Materials and Methods In a split–mouth study involving 20 sites in 10 patients with chronic periodontitis, control sites received scaling and root planing and test sites received scaling and root planing (SRP) and the intrapocket CHX chip placement as an adjunct. Subgingival plaque samples were collected from both control and test sites at baseline, 11 days and 11 weeks and the anaerobic colony count were assessed. Clinical parameters that were recorded at baseline and 11 weeks were gingival index, Plaque index, Probing pocket depth (PPD), and Clinical attachment level (CAL). Plaque index was recorded additionally at 11 days. Results In the test group there was a statistically significant reduction in the total anaerobic colony count, gingival index and plaque scores from baseline as compared to control sites at all time intervals. An additional 0.8mm reduction in mean probing pocket depth was noted in the test group. Gain in Clinical attachment level was comparable in both groups. Conclusion The adjunctive use of the new collagen-based CHX chip yielded significant antimicrobial benefit accompanied by a reduction in probing depth and a clinical attachment level gain as compared to SRP alone. This suggests that it may be a useful treatment option of nonsurgical periodontal treatment of chronic periodontitis. PMID:26155567
Clinical Characteristics of Abutment Teeth with Gingival Discoloration.
Ristic, Ljubisa; Dakovic, Dragana; Postic, Srdjan; Lazic, Zoran; Bacevic, Miljana; Vucevic, Dragana
2017-04-06
The grey-bluish discoloration of gingiva (known as "amalgam tattoo") does not appear only in the presence of amalgam restorations. It may also be seen in cases of teeth restored with cast dowels and porcelain-fused-to-metal (PFM) restorations. The aim of this article was to determine the clinical characteristics of abutment teeth with gingival discoloration. This research was conducted on 25 patients referred for cast dowel and PFM restorations. These restorations were manufactured from Ni-Cr alloys. Ninety days after cementing the fixed prosthodontic restorations, the abutment teeth (n = 61) were divided into a group with gingival discoloration (GD) (n = 25) and without gingival discoloration (NGD) (n = 36). The control group (CG) comprised the contralateral teeth (n = 61). Plaque index, gingival index, clinical attachment level, and probing depth were assessed before fabrication and also 90 days after cementation of the PFM restorations. The gingival index, clinical attachment level, and probing depths of the abutment teeth that had GD were statistically higher before restoration, in comparison with the abutment teeth in the NGD and control groups. Ninety days after cementation, the abutment teeth with GD had significantly lower gingival indexes and probing depths, compared to the abutment teeth in the NGD group. Both abutment teeth groups (GD and NGD) had significantly higher values of clinical attachment levels when compared to the control group. There were no statistically significant differences in plaque index values between the study groups. The results of this study indicated that impairment of periodontal status of abutment teeth seemed to be related to the presence of gingival discolorations. Therefore, fabrication of fixed prosthodontic restorations requires careful planning and abutment teeth preparation to minimize the occurrence of gingival discolorations. With careful preparation of abutment teeth for cast dowels and crown restorations it may be possible to decrease the frequency of gingival discolorations adjacent to abutment teeth. © 2017 by the American College of Prosthodontists.
Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Moseev, Dmitry; Laqua, Heinrich; Marsen, Stefan; Stange, Torsten; Braune, Harald; Erckmann, Volker; Gellert, Florian; Oosterbeek, Johann Wilhelm; Wenzel, Uwe
2017-07-01
Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes.
Detailed flow-field measurements over a 75 deg swept delta wing
NASA Technical Reports Server (NTRS)
Kjelgaard, Scott O.; Sellers, William L., III
1990-01-01
Results from an experimental investigation documenting the flowfield over a 75 deg swept delta wing at an angle-of-attack of 20.5 deg are presented. Results obtained include surface flow visualization, off-body flow visualization, and detailed flowfield surveys for various Reynolds numbers. Flowfield surveys at Reynolds numbers of 0.5, 1.0, and 1.5 million based on the root chord were conducted with both a Pitot pressure probe and a 5-hole pressure probe; and 3-component laser velocimeter surveys were conducted at a Reynolds number of 1.0 million. The Pitot pressure surveys were obtained at 5 chordwise stations, the 5-hole probe surveys were obtained at 3 chordwise stations and the laser velocimeter surveys were obtained at one station. The results confirm the classical roll up of the flow into a pair of primary vortices over the delta wing. The velocity measurements indicate that Reynolds number has little effect on the global structure of the flowfield for the Reynolds number range investigated. Measurements of the non-dimensional axial velocity in the core of the vortex indicate a jet like flow with values greater than twice freestream. Comparisons between velocity measurements from the 5-hole pressure probe and the laser velocimeter indicate that the pressure probe does a reasonable job of measuring the flowfield quantities where the velocity gradients in the flowfield are low.
First applications of the EXTASE thermal probe
NASA Astrophysics Data System (ADS)
Schröer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.
2003-04-01
EXTASE is a spin-off project from the MUPUS (Rosetta Lander) thermal probe, both funded by DLR. The thermal probe will be tested in various environments and fields, e.g. in snow research, agriculture, permafrost, monitoring waste deposits and the heat released by decomposition, ground truth for remote sensing etc. The probe is a glass-fibre tube of 1cm diameter, about 32 cm long and carries of 16 sensors for measuring temperature profiles. Each of the sensors can also be heated for in situ measurements of the thermal diffusivity of the penetrated layers, from which we can derive the thermal conductivity. All necessary connections and the sensors itself are printed on a foil which is rolled and glued to the inner wall of the tube. This design results in the significant advantage that the measurements can be done in-situ. No excavation of material is required to measure the thermal conductivity, for instance. Presently we are concentrating on soil science and snow research.We made several measurements in different conditions with prototypes of the probe so far. Among other things, we measured soil temperatures together with meteorological boundary conditions in cooperation with the local Institute of Agrophysics in Lublin (Poland). The first measurements in snow under natural conditions were made on Svalbard (Spitzbergen) together with the Alfred-Wegener-Institute in Bremerhaven (Germany). First results of the measuring campaigns are shown.
Huff, Jacquelyn K; Bresnahan, James F; Davies, Malonne I
2003-06-06
This study evaluated the suitability of some disinfection and sterilization methods for use with microdialysis probes. Disinfection or sterilization should minimize the tissue inflammatory reaction and improve the long-term health of rats on study and ensure the quality of data obtained by microdialysis sampling. Furthermore, the treatment should not negatively impact probe integrity or sampling performance. The techniques chosen for evaluation included two disinfection methods (70% ethanol and a commercial contact lens solution) and two sterilization methods (hydrogen peroxide plasma, and e-beam radiation). Linear microdialysis probes treated by these processes were compared to untreated probes removed from the manufacturer's packaging as if sterile (the control group). The probes were aseptically implanted in the livers of rats and monitored for 72 hours. The parameters chosen to evaluate probe performance were relative sample mass recovery and the relative in vivo extraction efficiency of the probe for caffeine. Post mortem bacterial counts and histopathology examination of liver tissue were also conducted. The probes remained intact and functional for the entire study period. The methods tested did not acutely alter the probes although hydrogen peroxide plasma and contact lens solution groups showed reduced extraction efficiencies. Minimal tissue damage was observed surrounding the probes and acute inflammatory reaction was mild to moderate. Low numbers of bacterial colonies from the implantation sites indicates that the health of animals in this study was not impaired. This was also true for the control group (untreated probe).
Jiang, Z D; Zhao, G; Lu, G R
BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.
Situ soil sampling probe system with heated transfer line
Robbat, Jr., Albert
2002-01-01
The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.
Ringkamp, Matthias; Wooten, Matthew; Carson, Benjamin S; Lim, Michael; Hartke, Timothy; Guarnieri, Michael
2016-02-01
Percutaneous treatments for trigeminal neuralgia are safe, simple, and effective for achieving good pain control. Procedural risks could be minimized by using noninvasive imaging techniques to improve the placement of the radiofrequency thermocoagulation probe into the trigeminal ganglion. Positioning of a probe is crucial to maximize pain relief and to minimize unwanted side effects, such as denervation in unaffected areas. This investigation examined the use of laser speckle imaging during probe placement in an animal model. This preclinical safety study used nonhuman primates, Macaca nemestrina (pigtail monkeys), to examine whether real-time imaging of blood flow in the face during the positioning of a coagulation probe could monitor the location and guide the positioning of the probe within the trigeminal ganglion. Data from 6 experiments in 3 pigtail monkeys support the hypothesis that laser imaging is safe and improves the accuracy of probe placement. Noninvasive laser speckle imaging can be performed safely in nonhuman primates. Because improved probe placement may reduce morbidity associated with percutaneous rhizotomies, efficacy trials of laser speckle imaging should be conducted in humans.
Prototype of a low cost multiparameter probe
NASA Astrophysics Data System (ADS)
Koski, K.; Schwingle, R.; Pullin, M.
2010-12-01
Commercial multi-parameter probes provide accurate, high-resolution temporal data collection of a variety of water quality parameters, but their cost (>5,000) prohibits more than a few sampling locations. We present a design and prototype for a low cost (<250) probe. The cost of the probe is ~5% of commercially available probes, allowing for data collection from ~20 times more sampling points in a field location. The probe is constructed from a single-board microcontroller, a commercially available temperature sensor, a conductivity sensor, and a fabricated optical rhodamine sensor. Using a secure digital (SD) memory card, the probe can record over a month of data at a user specified interval. Construction, calibration, field deployment and data retrieval can be accomplished by a skilled undergraduate. Initial deployment will take place as part of a tracer test in the Valles Caldera National Preserve in northern New Mexico. Future work includes: addition of commercial ion selective electrodes (pH, bromide, nitrate, and others); construction of optically based sensors (chlorophyll, dissolved oxygen, and others); wireless networking between the sensors; and reduction of biofouling.
Highly selective and rapidly responsive fluorescent probe for hydrogen sulfide detection in wine.
Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Liu, Yongguo; Sun, Baoguo
2018-08-15
A new fluorescent probe 6-(2, 4-dinitrophenoxy)-2-naphthonitrile (probe 1) was designed and synthesized for the selective detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence turn-on alongside a visual color change from colorless to light yellow. Importantly, this distinct color response indicated that probe 1 could be used as a visual sensor for H 2 S. Moreover, probe 1 was successfully used as a signal tool to determine the H 2 S levels in beer and red wine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Valkonen, Mari; Mojzita, Dominik; Penttilä, Merja
2013-01-01
The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified. PMID:24038689
Valkonen, Mari; Mojzita, Dominik; Penttilä, Merja; Bencina, Mojca
2013-12-01
The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified.
Renvert, Stefan; Lindahl, Christel; Roos-Jansåker, Ann-Marie; Lessem, Jan
2009-06-01
Periodontal disease is the most common multifactorial disease, afflicting a very large proportion of the adult population. Periodontal disease secondarily causes increases in the serum levels of C-reactive protein (CRP) and other markers of inflammation. An increased level of CRP reflects an increased risk for cardiovascular disease. The aim of the current randomized clinical trial was to evaluate the short-term effect of a combination of dipyridamole and prednisolone (CRx-102) on the levels of high-sensitivity (hs)-CRP, proinflammatory markers in blood, and clinical signs of periodontal disease. Fifty-seven patients with >/=10 pockets with probing depths >/=5 mm were randomized into two groups in this masked single-center placebo-controlled study: CRx-102 (n = 28) and placebo (n = 29). hs-CRP levels, inflammatory markers (interleukin [IL]-6, -1beta, -8, and -12, tumor necrosis factor-alpha, and interferon-gamma [IFN-gamma]), bleeding on probing (BOP), and changes in probing depths were evaluated. The subjects received mechanical non-surgical therapy after 42 days, and the study was completed after 49 days. At day 42, the differences in the hs-CRP, IFN-gamma, and IL-6 levels between the two groups were statistically significant (P <0.05), whereas no difference was found for the other inflammatory markers. There was no change in probing depth or BOP between the two groups. The administration of CRx-102 resulted in significant decreases in hs-CRP, IFN-gamma, and IL-6, but it did not significantly change BOP or probing depths.
Transitional millisecond pulsars in the low-level accretion state
NASA Astrophysics Data System (ADS)
Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand
2018-01-01
In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.
Refinement of a thermal threshold probe to prevent burns.
Dixon, M J; Taylor, P M; Slingsby, L C; Murrell, J C
2016-02-01
Thermal threshold testing is commonly used for pain research. The stimulus may cause burning and merits prevention. Thermal probe modifications hypothesized to reduce burning were evaluated for practicality and effect. Studies were conducted on two humans and eight cats. Unmodified probe 0 was tested on two humans and promising modifications were also evaluated on cats. Probe 1 incorporated rapid cooling after threshold was reached: probe 1a used a Peltier system and probe 1b used water cooling. Probe 2 released skin contact immediately after threshold. Probe 3 (developed in the light of evidence of 'hot spots' in probe 0) incorporated reduced thermal mass and even heating across the skin contact area. Human skin was heated to 48℃ (6℃ above threshold) and the resulting burn was evaluated using area of injury and a simple descriptive scale (SDS). Probe 1a cooled the skin but required further heat dissipation, excessive power, was not 'fail-safe' and was inappropriate for animal mounting. Probe 1b caused less damage than no cooling (27 ± 13 and 38 ± 11 mm(2) respectively, P = 0.0266; median SDS 1.5 and 4 respectively, P = 0.0317) but was cumbersome. Probe 2 was unwieldy and was not evaluated further. Probe 3 produced even heating without blistering in humans. With probe 3 in cats, after opioid treatment, thermal threshold reached cut-out (55℃) on 24 occasions, exceeded 50℃ in a further 32 tests and exceeded 48℃ in the remainder. No skin damage was evident immediately after testing and mild hyperaemia in three cats at 2-3 days resolved rapidly. Probe 3 appeared to be suitable for thermal threshold testing. © The Author(s) 2015.
Photoacoustics of disperse systems: Below cavitation threshold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerev, Sergey; Ovchinnikov, Oleg
2012-05-24
The paper considers photoacoustic (PA) conversion while irradiating suspensions in extra-small volume probes with laser pulses having small fluence values. Only linear and nonlinear thermooptical laser sound generation regimes were observed. Thus, good repeatability of acoustic signal parameters informative about probe content was achieved. The experiment conducted has shown how one can avoid the decrease of particles detection sensitivity for the thermooptical mode.
A study was conducted near the Raymark Superfund Site in Stratford, Connecticut to compare results of soil-gas sampling using dedicated vapor probes, a truck-mounted direct-push technique - the Geoprobe Post-Run-Tubing (PRT) system, and a hand-held rotary hammer technique - the A...
Measuring Thicknesses of Wastewater Films
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Davenport, R. J.
1987-01-01
Sensor determines when thickness of film of electrically conductive wastewater on rotating evaporator drum exceeds preset value. Sensor simple electrical probe that makes contact with liquid surface. Made of materials resistant to chemicals in liquid. Mounted on shaft in rotating cylinder, liquid-thickness sensor extends toward cylinder wall so tip almost touches. Sensor body accommodates probe measuring temperature of evaporated water in cylinder.
ERIC Educational Resources Information Center
Pennington, Robert C.; Rockhold, Jessica
2018-01-01
In the current study, we investigated the effects of an instructional package on the construction of sentences writing by four children ages 6-9, with autism spectrum disorder (ASD). We employed a multiple probe across behaviors design to evaluate the efficacy of the intervention package and also conducted probes to assess generalization and…
Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing
2017-10-01
We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanoscale thermal cross-talk effect on phase-change probe memory.
Wang, Lei; Wen, Jing; Xiong, Bangshu
2018-05-14
Phase-change probe memory is considered as one of the most promising means for next-generation mass storage devices. However, the achievable storage density of phase-change probe memory is drastically affected by the resulting thermal cross-talk effect while previously lacking of detailed study. Therefore, a three dimensional model that couples electrical, thermal, and phase-change processes of the Ge2Sb2Te5 media is developed, and subsequently deployed to assess the thermal cross-talk effect based on Si/TiN/ Ge2Sb2Te5/diamond-like carbon structure by appropriately tailoring the electro-thermal and geometrical properties of the storage media stack for a variety of external excitations. The modeling results show that the diamond-like carbon capping with a thin thickness, a high electrical conductivity, and a low thermal conductivity is desired to minimize the thermal cross-talk, while the TiN underlayer has a slight impact on the thermal cross-talk. Combining the modeling findings with the previous film deposition experience, an optimized phase-change probe memory architecture is presented, and its capability of providing ultra-high recording density simultaneously with a sufficiently low thermal cross-talk is demonstrated. . © 2018 IOP Publishing Ltd.
Molecular pathways associated with blood pressure and hexadecanedioate levels.
Menni, Cristina; Metrustry, Sarah J; Ehret, Georg; Dominiczak, Anna F; Chowienczyk, Phil; Spector, Tim D; Padmanabhan, Sandosh; Valdes, Ana M
2017-01-01
The dicarboxylic acid hexadecanedioate is associated with increased blood pressure (BP) and mortality in humans and feeding it to rats raises BP. Here we aim to characterise the molecular pathways that influence levels of hexadecanedioate linked to BP regulation, using genetic and transcriptomic studies. The top associations for hexadecanedioate in a genome-wide association scan (GWAS) conducted on 6447 individuals from the TwinsUK and KORA cohorts were tested for association with BP and hypertension in the International Consortium for BP and in a GWAS of BP extremes. Transcriptomic analyses correlating hexadecanedioate with gene expression levels in adipose tissue in 740 TwinsUK participants were further performed. GWAS showed 242 SNPs mapping to two independent loci achieving genome-wide significance. In rs414056 in the SCLO1B1 gene (Beta(SE) = -0.088(0.006)P = 1.65 x 10-51, P < 1 x 10-51), the allele previously associated with increased risk of statin associated myopathy is associated with higher hexadecanedioate levels. However this SNP did not show association with BP or hypertension. The top SNP in the second locus rs6663731 mapped to the intronic region of CYP4Z2P on chromosome 1 (0.045(0.007), P = 5.49x10-11). Hexadecanedioate levels also correlate with adipose tissue gene-expression of the 3 out of 4 CYP4 probes (P<0.05) and of alcohol dehydrogenase probes (Beta(SE) = 0.12(0.02); P = 6.04x10-11). High circulating levels of hexadecanedioate determine a significant effect of alcohol intake on BP (SBP: 1.12(0.34), P = 0.001; DBP: 0.70(0.22), P = 0.002), while no effect is seen in the lower hexadecanedioate level group. In conclusion, levels in fat of ADH1A, ADH1B and CYP4 encoding enzymes in the omega oxidation pathway, are correlated with hexadecanedioate levels. Hexadecanedioate appears to regulate the effect of alcohol on BP.
Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.
Singheiser, Martin; Ferger, Roland; von Campenhausen, Mark; Wagner, Hermann
2012-02-01
During hunting, the barn owl typically listens to several successive sounds as generated, for example, by rustling mice. As auditory cells exhibit adaptive coding, the earlier stimuli may influence the detection of the later stimuli. This situation was mimicked with two double-stimulus paradigms, and adaptation was investigated in neurons of the barn owl's central nucleus of the inferior colliculus. Each double-stimulus paradigm consisted of a first or reference stimulus and a second stimulus (probe). In one paradigm (second level tuning), the probe level was varied, whereas in the other paradigm (inter-stimulus interval tuning), the stimulus interval between the first and second stimulus was changed systematically. Neurons were stimulated with monaural pure tones at the best frequency, while the response was recorded extracellularly. The responses to the probe were significantly reduced when the reference stimulus and probe had the same level and the inter-stimulus interval was short. This indicated response adaptation, which could be compensated for by an increase of the probe level of 5-7 dB over the reference level, if the latter was in the lower half of the dynamic range of a neuron's rate-level function. Recovery from adaptation could be best fitted with a double exponential showing a fast (1.25 ms) and a slow (800 ms) component. These results suggest that neurons in the auditory system show dynamic coding properties to tonal double stimulation that might be relevant for faithful upstream signal propagation. Furthermore, the overall stimulus level of the masker also seems to affect the recovery capabilities of auditory neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Akizuki, Kazunori; Ohashi, Yukari
2014-12-01
The influence of attention on postural control and the relationship between attention and falling has been reported in previous studies. Although a dual-task procedure is commonly used to measure attentional demand, such procedures are affected by allocation policy, which is a mental strategy to divide attention between simultaneous tasks. Therefore, we examined the effectiveness of salivary α-amylase, which is a physiological method for measuring attentional demand during postural control. Sixteen healthy participants performed a postural-control task using the Balance System, which is a device that can be calibrated to a specific stability level ("Level 1 = least stable" to "Level 8 = most stable"). Levels 1, 2, and 3 were used for this study. Dependent variables measured were overall stability index, which represents the variance of platform displacement in degrees from a horizontal plane; probe reaction time, which was measured using a sound stimulator and recorder; and salivary α-amylase, which was measured using a portable salivary amylase analyzer. As stability level of the test task decreased, both stability index and probe reaction time significantly increased. In addition, we identified a positive moderate correlation between probe reaction time and salivary α-amylase. Our results suggest that salivary α-amylase and probe reaction time reflect the change in attentional demands during a postural-control task and that salivary α-amylase may be an effective tool for evaluating attentional demands during postural control because it is noninvasive and simple to perform.
Sealing scientific probes against deep space and the Venusian environment A tough job
NASA Technical Reports Server (NTRS)
Pokras, J.; Reinert, R. P.; Switz, R. J.
1978-01-01
The Pioneer Venus mission evolved from studies conducted during the late 1960s and early 1970s. It was found that a need existed for low cost orbiters and landers to explore the planet. The considered mission was to be accomplished with six separate vehicles arriving at Venus nearly simultaneously in mid-December 1978. The probes are designed to survive entry and descent into the atmosphere. A description is presented of the approaches used to maintain sealing integrity for the large and small probes under the constraints imposed by the harsh Venusian environment. Attention is given to probe vehicle configuration, pressure vessel sealing requirements, material and configuration considerations, permanent seals, separable seals, development problems, and aspects of seal testing.
Miles, Robin R [Danville, CA; Belgrader, Phillip [Severna Park, MD; Fuller, Christopher D [Oakland, CA
2007-01-02
Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.
Inversion layer on the Ge(001) surface from the four-probe conductance measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtaszek, Mateusz; Lis, Jakub, E-mail: j.lis@uj.edu.pl; Zuzak, Rafal
2014-07-28
We report four-probe conductance measurements with sub-micron resolution on atomically clean Ge(001) surfaces. A qualitative difference between n-type and p-type crystals is observed. The scaling behavior of the resistance on n-type samples indicates two-dimensional current flow, while for the p-type crystal a three-dimensional description is appropriate. We interpret this in terms of the formation of an inversion layer at the surface. This result points to the surface states, i.e., dangling bonds, as the driving force behind band bending in germanium. It also explains the intrinsic character of band bending in germanium.
High temperature conductivity of potassium-beta(double prime)-alumina
NASA Technical Reports Server (NTRS)
Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; Ryan, M. A.; O'Connor, D.; Kikkert, S.
1992-01-01
Potassium beta(double prime)-alumina (BDPA) single crystals have been reported by several groups to leave higher ionic conductivity than sodium BDPA crystals at room temperature, and similar conductivities are obtained at temperatures up to 600-700 K. Potassium BDPA ceramics have been reported to have significantly poorer conductivities than those of sodium BDPA ceramics, but conductivity measurements at temperatures above 625 K have not been reported. In this study, K(+)-BDPA ceramics were prepared from Na(+)-BDPA ceramic using a modified version of the exchange reaction with KCl vapor reported by Crosbie and Tennenhouse (1982), and the conductivity has been measured in K vapor at temperatures up to 1223 K, using the method of Cole et al. (1979). The results indicate reasonable agreement with earlier data on K(+)-BDPA ceramic measured in a liquid K cell, but show that the K(+)-BDPA ceramic's conductivity approaches that of Na(+)-BDPA ceramic at higher temperatures, being within a factor of four at 700 K and 60 percent of the conductivity of Na(+)-BDPA at T over 1000 K. Both four-probe dc conductivity and four probe ac impedance measurements were used to characterize the conductivity. A rather abrupt change in the grain boundary resistance suggesting a possible phase change in the intergranular material, potassium aluminate, is seen in the ac impedance behavior.
NASA Astrophysics Data System (ADS)
Martin, Joshua; Nolas, George S.
2016-01-01
We have developed a custom apparatus for the consecutive measurement of the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of materials between 300 K and 12 K. These three transport properties provide for a basic understanding of the thermal and electrical properties of materials. They are of fundamental importance in identifying and optimizing new materials for thermoelectric applications. Thermoelectric applications include waste heat recovery for automobile engines and industrial power generators, solid-state refrigeration, and remote power generation for sensors and space probes. The electrical resistivity is measured using a four-probe bipolar technique, the Seebeck coefficient is measured using the quasi-steady-state condition of the differential method in a 2-probe arrangement, and the thermal conductivity is measured using a longitudinal, multiple gradient steady-state technique. We describe the instrumentation and the measurement uncertainty associated with each transport property, each of which is presented with representative measurement comparisons using round robin samples and/or certified reference materials. Transport properties data from this apparatus have supported the identification, development, and phenomenological understanding of novel thermoelectric materials.
Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.; Haberbusch, Mark
1993-01-01
The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.
NASA Astrophysics Data System (ADS)
Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua
2018-04-01
Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.
Evaluation of periodontitis in hospital outpatients with major depressive disorder
Solis, A. C. O.; Marques, A. H.; Pannuti, C. M.; Lotufo, R. F. M.; Lotufo-Neto, F.
2013-01-01
Background and Objective Major depressive disorder (MDD) has been associated with alterations in the neuroendocrine system and immune function and may be associated with an increased susceptibility to cardiovascular disease, cancer and autoimmune/inflammatory disease. This study was conducted to investigate the relationship between periodontitis and MDD in a convenience sample of hospital outpatients. Material and Methods The sample consisted of 72 physically healthy subjects (36 outpatients with MDD and 36 age-matched controls [± 3 years]). Patients with bipolar disorder, eating disorders and psychotic disorders were excluded. Probing pocket depth and clinical attachment level were recorded at six sites per tooth. Depression was assessed by means of Structured Clinical Interview for DSM-IV. Results Extent of clinical attachment level and probing pocket depth were not different between controls and subjects with depression for the following thresholds: ≥ 3 mm (Mann-Whitney, p = 0.927 and 0.756); ≥ 4 mm (Mann-Whitney, p = 0.656 and 0.373); ≥ 5 mm (Mann-Whitney, p = 0.518 and 0.870);, and ≥ 6 mm (Mann-Whitney, p = 0.994 and 0.879). Depression parameters were not associated with clinical attachment level ≥ 5 mm in this sample. Smoking was associated with loss of attachment ≥ 5 mm in the multi-variable logistic regression model (odds ratio = 6.99, 95% confidence interval = 2.00–24.43). Conclusions In this sample, periodontal clinical parameters were not different between patients with MDD and control subjects. There was no association between depression and periodontitis. PMID:23586804
Flexible high-temperature pH probe
Bielawski, John C.; Outwater, John O.; Halbfinger, George P.
2003-04-22
A flexible pH probe device is provided for use in hot water and other high temperature environments up to about 590.degree. F. The pH probe includes a flexible, inert tubular probe member, an oxygen anion conducting, solid state electrolyte plug located at the distal end of the tubular member, oxide powder disposed at the distal end of the tubular member; a metal wire extending along the tubular member and having a distal end in contact with the oxide powder so as to form therewith an internal reference electrode; and a compression fitting forming a pressure boundary seal around a portion of the tubular member remote from the distal end thereof. Preferably, the tubular member is made of polytetrafluoroethylene, and the solid state electrolyte plug is made of stabilized zirconia. The flexibility of the probe member enables placement of the electrode into the area of interest, including around corners, into confined areas and the like.
Micromachined probes for laboratory plasmas
NASA Astrophysics Data System (ADS)
Chiang, Franklin Changta
As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.
Temporal transferability of soil moisture calibration equations
USDA-ARS?s Scientific Manuscript database
Several large-scale field campaigns have been conducted over the last 20 years that require accurate estimates of soil moisture conditions. These measurements are manually conducted using soil moisture probes which require calibration. The calibration process involves the collection of hundreds of...
Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation.
Maxwell, Anne K; Banakis Hartl, Renee M; Greene, Nathaniel T; Benichoux, Victor; Mattingly, Jameson K; Cass, Stephen P; Tollin, Daniel J
2017-08-01
Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.
Dixon, Daniel; Darden, Bruce; Casamitjana, Jose; Weissmann, Karen A; Cristobal, San; Powell, David; Baluch, Daniel
2017-04-01
A fresh frozen cadaver study was conducted. To report the cortical breach rate using the dynamic surgical guidance (DSG) probe versus traditional freehand technique for cervical lateral mass, cervical pedicle and cervical laminar screws. Nine male fresh frozen cadaveric torsos were utilized for this study. Each investigator was assigned three specimens that were randomized by fixation point, side and order of technique for establishing a screw pilot hole. The technique for screw hole preparation utilized was either a DSG probe in the "on" mode or in the "off" mode using a freehand technique popularized by Lenke et al. Levels instrumented included C1 lateral mass, C2 pedicle screws and lamina screws, and C6-T1 pedicle screws. Fluoroscopy and other navigational assistance were not used for screw hole preparation or screw insertion. All specimens were CT imaged following insertion of all screws. A senior radiologist evaluated all scans and determined that a misplaced screw was a breach of ≥2 mm. A total of 104 drillings were performed, 52 with DSG and 52 without DSG There were 68 total pedicle drillings, 34 in each group. There were 18 drillings in the lamina and lateral mass. There was no significant difference between surgeons or between the left and right side. All breaches were in the pedicle, and none in the lamina or lateral mass. The breach rate for PG "on" was 6/68 = 8.96% (95% CI 3.69, 19.12%). The breach rate for PG "off" was 20/68 = 29.41% (95% CI 19.30, 41.87%). Of the 20 pedicle breaches in the non-DSG group, 7 were lateral and superior, 8 were lateral, 4 medial and 1 inferior. Of the six pedicle breaches in the DSG group, two were lateral/superior, two were lateral and two were medial in the pedicle. The dynamic surgical guidance probe is a safe tool to assist the surgeon with screw placement in the cervical spine. Additionally, the DSG potentially avoids the cumulative risks associated with fluoroscopy and provides real-time feedback to the surgeon allowing correction at the time of breach. Level of evidence Level IV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saprykin, E. G.; Chernenko, A. A., E-mail: chernen@isp.nsc.ru; Shalagin, A. M.
Analytical and numerical investigations are carried out of the effect of spontaneous decay through operating transition on the shape of a resonance in the work of a probe field under a strong field applied to the transition. A narrow nonlinear resonance arising on transitions with long-living lower level in the work of a probe field can manifest itself in the form of a traditional minimum and a peak as a function of the first Einstein coefficient for the operating transition. The transformation of the resonance from a minimum to a peak is attributed to the specific character of relaxation ofmore » lower-level population beatings on a closed or almost closed transition (the decay of the upper level occurs completely or almost completely through the operating transition).« less
Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating
Tang, Xiaoduan; Xu, Shen; Wang, Xinwei
2013-01-01
Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566
Towner, Rheal A.; Smith, Nataliya; Saunders, Debra; Henderson, Michael; Downum, Kristen; Lupu, Florea; Silasi-Mansat, Robert; Ramirez, Dario C.; Gomez-Mejiba, Sandra E.; Bonini, Marcelo G.; Ehrenshaft, Marilyn; Mason, Ronald P.
2012-01-01
Oxidative stress plays a major role in diabetes. In vivo levels of membrane-bound radicals (MBRs) in a streptozotocin-induced diabetic mouse model were uniquely detected by combining molecular magnetic resonance imaging (mMRI) and immunotrapping techniques. An anti-DMPO (5,5-dimethyl-1-pyrroline N-oxide) antibody (Ab) covalently bound to an albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent (anti-DMPO probe), and mMRI, were used to detect in vivo levels of DMPO-MBR adducts in kidneys, livers, and lungs of diabetic mice, after DMPO administration. Magnetic resonance signal intensities, which increase in the presence of a Gd-based molecular probe, were significantly higher within the livers, kidneys, and lungs of diabetic animals administered the anti-DMPO probe compared with controls. Fluorescence images validated the location of the anti-DMPO probe in excised tissues via conjugation of streptavidin-Cy3, which targeted the probe biotin moiety, and immunohistochemistry was used to validate the presence of DMPO adducts in diabetic mouse livers. This is the first report of noninvasively imaging in vivo levels of MBRs within any disease model. This method can be specifically applied toward diabetes models for in vivo assessment of free radical levels, providing an avenue to more fully understand the role of free radicals in diabetes. PMID:22698922
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, J.E.; Knudson, D.L.; Villard, J.F.
2015-07-01
Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physicalmore » property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were fabricated for both room temperature proof-of-concept evaluations and high temperature testing. Evaluations have been performed jointly by the INL and the French Alternative Energies and Atomic Energy Commission (CEA), both in Idaho Falls (USA) and in Cadarache (France), in the framework of a collaborative program for instrumentation of Material Testing Reactors. Initial tests were conducted on samples with a large range of thermal conductivities and temperatures ranging from 20 deg. C to 600 deg. C. Particularly, tests were recently performed on a sample having thermal conductivity and dimensions similar to UO{sub 2} and MOX nuclear fuels, in order to validate the ability of this sensor to operate for in-pile characterization of Light Water Reactors fuels. The results of the tests already completed at INL and CEA indicate that the Transient Hot Wire Needle Probe offers an enhanced method for in-pile detection of thermal conductivity. (authors)« less
Wireless remote liquid level detector and indicator for well testing
Fasching, George E.; Evans, Donald M.; Ernest, John H.
1985-01-01
An acoustic system is provided for measuring the fluid level in oil, gas or water wells under pressure conditions that does not require an electrical link to the surface for level detection. A battery powered sound transmitter is integrated with a liquid sensor in the form of a conductivity probe, enclosed in a sealed housing which is lowered into a well by means of a wire line reel assembly. The sound transmitter generates an intense identifiable acoustic emission when the sensor contacts liquid in the well. The acoustic emissions propagate up the well which functions as a waveguide and are detected by an acoustic transducer. The output signal from the transducer is filtered to provide noise rejection outside of the acoustic signal spectrum. The filtered signal is used to indicate to an operator the liquid level in the well has been reached and the depth is read from a footage counter coupled with the wire line reel assembly at the instant the sound signal is received.
Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence.
Chen, Hung-Ling; Himwas, Chalermchai; Scaccabarozzi, Andrea; Rale, Pierre; Oehler, Fabrice; Lemaître, Aristide; Lombez, Laurent; Guillemoles, Jean-François; Tchernycheva, Maria; Harmand, Jean-Christophe; Cattoni, Andrea; Collin, Stéphane
2017-11-08
We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 10 17 to 1 × 10 18 cm -3 . These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.
Probe shapes that measure time-averaged streamwise momentum and cross-stream turbulence intensity
NASA Technical Reports Server (NTRS)
Rossow, Vernon J. (Inventor)
1993-01-01
A method and apparatus for directly measuring the time-averaged streamwise momentum in a turbulent stream use a probe which has total head response which varies as the cosine-squared of the angle of incidence. The probe has a nose with a slight indentation on its front face for providing the desired response. The method of making the probe incorporates unique design features. Another probe may be positioned in a side-by-side relationship to the first probe to provide a direct measurement of the total pressure. The difference between the two pressures yields the sum of the squares of the cross-stream components of the turbulence level.
Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations
NASA Astrophysics Data System (ADS)
Beloy, K.
2018-03-01
We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.
7 CFR 800.82 - Sampling provisions by level of service.
Code of Federal Regulations, 2014 CFR
2014-01-01
... criteria, and a sample obtained with a probe at the time of the reinspection or appeal, generally, shall be... instances where original inspection results are based on samples obtained by probe, the decision as to whether file samples or new samples obtained by probe are to be used shall be made by the official...
Boettcher, Gordon E.
1990-01-01
A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.
2006-10-30
synthesis of aminophenols (particularly ortho- and para - aminophenols ) that are used as precursors for synthesis of high- performance polymers...biocatalyst processing train to obtain aminophenols . Experiments were conducted using a Zn packed bed to probe the role of promoters under continuous-flow...methylimidazolium tetrafluoroborate ([bmim][BF4]). Luckarift et al. (2005) demonstrated the continuous synthesis of aminophenols from nitroaromatic
A radiation hard vacuum switch
Boettcher, G.E.
1988-07-19
A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.
Boettcher, Gordon E.
1990-03-06
A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.
Yeari, Menahem; Avramovich, Adi; Schiff, Rachel
2017-06-01
Previous studies have demonstrated that students with attention-deficit/hyperactivity disorder (ADHD) struggle particularly with grasping the implicit, inferential level of narratives that is crucial for story comprehension. However, these studies used offline tasks (i.e., after story presentation), used indirect measurements (e.g., identifying main ideas), and/or yielded inconclusive results using think-aloud techniques. Moreover, most studies were conducted with preschool or elementary school children with ADHD, using listening or televised story comprehension. In this study, we were interested in examining the spontaneous, immediate activation and/or suppression of forward-predictive inferences, backward-explanatory inferences, and inference-evoking textual information, as they occur online during reading comprehension by adolescents with ADHD. Participants with and without ADHD read short narrative texts, each of which included a predictive sentence, a bridging sentence that referred back to the predictive sentence via actualization of the predicted event, and two intervening sentences positioned between the predictive and bridging sentences that introduced a temporary transition from the main (predictive) episode. Activation and suppression of inferential and/or textual information were assessed using naming times of word probes that were implied by the preceding text, explicitly mentioned in it, or neither when following control texts. In some cases, a true-false inferential or textual question followed the probe. Naming facilitations were observed for the control but not for the ADHD group, in responding to inference probes that followed the predictive and bridging sentences, and to text probes that followed the predictive sentences. Participants with ADHD were accurate, albeit slower, than controls in answering the true-false questions. Adolescents with ADHD have difficulties in generating predictive and explanatory inferences and in retaining relevant textual information in working memory while reading, although they can answer questions after reading when texts are relatively short. These findings are discussed with regard to development of comprehension strategies for individuals with ADHD.
Effect of Probe Tube Insertion Depth on Spectral Measures of Speech
Caldwell, Marc; Souza, Pamela E.; Tremblay, Kelly L.
2006-01-01
This study investigated how depth variations in the tip of the probe tube affected spectral measures of speech recorded in the external ear canal. Consonant-vowel nonsense syllables were recorded with a probe tube microphone system in 10 adult participants with normal middle ear function. Recordings were made with the probe tube tip placed 1 mm, 5 mm, and 10 mm beyond the medial tip of a custom earmold. The effect of probe depth was evaluated on spectral levels (one-third octave and one-twelfth octave band). Extending the probe tube 10 mm past the medial tip of the earmold gave the most accurate results, with relatively lower sound levels for either the 1-mm or 5-mm insertion depth. In general, the effect of insertion depth was minimal at frequencies below 3 to 4 kHz, although this varied with the specific phoneme and the width of the analysis bands. The authors found no significant difference between 1- and 5-mm insertion depths, suggesting that as long as the tip of the probe tube is sufficiently close to the tympanic membrane to capture the highest frequency of interest, it makes little difference if it is less than 5 mm beyond the earmold tip. PMID:16959735
Capacitance-level/density monitor for fluidized-bed combustor
Fasching, George E.; Utt, Carroll E.
1982-01-01
A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).
Method for conducting electroless metal-plating processes
Petit, George S.; Wright, Ralph R.
1978-01-01
This invention is an improved method for conducting electroless metal-plating processes in a metal tank which is exposed to the plating bath. The invention solves a problem commonly encountered in such processes: how to determine when it is advisable to shutdown the process in order to clean and/or re-passivate the tank. The new method comprises contacting the bath with a current-conducting, non-catalytic probe and, during plating operations, monitoring the gradually changing difference in electropotential between the probe and tank. It has been found that the value of this voltage is indicative of the extent to which nickel-bearing decomposition products accumulate on the tank. By utilizing the voltage to determine when shutdown for cleaning is advisable, the operator can avoid premature shutdown and at the same time avoid prolonging operations to the point that spontaneous decomposition occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xingyuan; Miller, Gretchen R.; Rubin, Yoram
2012-09-13
The heat pulse method is widely used to measure water flux through plants; it works by inferring the velocity of water through a porous medium from the speed at which a heat pulse is propagated through the system. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale; and consequently, to up-scale tree-level water fluxes to canopy and landscape scales. The purpose of this study ismore » to present a statistical framework for estimating the wood thermal diffusivity and probe spacing simutaneously from in-situ heat response curves collected by the implanted probes of a heat ratio apparatus. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require known probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential to obtain reliable and accurate solutions. When applied to field conditions, these tests are conducted during different seasons and automated using the existing data logging system. The seasonality of wood thermal diffusivity is obtained as a by-product of the parameter estimation process, and it is shown to be affected by both moisture content and temperature. Empirical factors are often introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and they are estimated in this study as well. The proposed methodology can be applied for the calibration of existing heat ratio sap flow systems at other sites. It is especially useful when an alternative transpiration calibration device, such as a lysimeter, is not available.« less
Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun
2017-12-16
Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita
2014-01-01
The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…
AIE active multianalyte fluorescent probe for the detection of Cu2+, Ni2+ and Hg2+ ions.
Pannipara, Mehboobali; Al-Sehemi, Abdullah G; Irfan, Ahmad; Assiri, Mohammed; Kalam, Abul; Al-Ammari, Yahya S
2018-08-05
A novel pyrazolyl chromene derivative (Probe 1) displaying aggregation induced emission (AIE) properties that capable of sensing of multiple metal ions has been designed and synthesized. The multi analyte probe exhibits selective sensing for Cu 2+ and Ni 2+ ions via fluorescence turn-off mechanism and ratiometric selectivity for Hg 2+ ions in aqueous media. The extent of binding of the probe with sensitive metal ions has been demonstrated. The experimental results were further investigated by computational means by optimizing the ground state geometries of Probe 1 and its various metal complexes for Probe 1-Ni, Probe 1-Hg and Probe 1-Cu using density functional theory (DFT) at B3LYP/6-31+g(d,p) (LANL2DZ) level. On the basis of binding energies, the stability of metal complexes has been studied. In Probe 1-Ni and Probe 1-Cu complexes, charge transfer has been observed from Probe 1 to metal ions revealing ligand to metal charge transfer (LMCT) while in Probe1-Hg complex LMCT as well as intra-molecular charge tranfer (ICT) within Probe 1. Copyright © 2018 Elsevier B.V. All rights reserved.
Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy
NASA Astrophysics Data System (ADS)
Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo
2018-05-01
A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.
Flow quality experiment in a tandem nozzle wind tunnel at Mach 3
NASA Astrophysics Data System (ADS)
Wu, Jie; Zamre, Pradip; Radespiel, Rolf
2015-01-01
In this study, the disturbance characterization and flow quality improvement of a newly designed Tandem Nozzle Mach 3 Wind Tunnel are presented. Firstly, a combined modal analysis is conducted to characterize the freestream disturbances with initial set-up of the settling chamber by using a Pitot probe and a hot-wire anemometry. Then, disturbance reduction in the supersonic wind tunnel is investigated by inserting various damping materials into the settling chamber, while a Pitot probe instrumented with Kulite sensor is employed to monitor the variation of the Pitot pressure fluctuation in the test section. Eventually, an optimized configuration of the settling chamber is determined by a combination of certain damping materials. Afterward, the freestream disturbances are re-characterized with the optimized set-up of the settling chamber, and the disturbance level is found to be significantly reduced. Through this study, valuable experience has been acquired for the disturbance reduction in tandem nozzle type supersonic wind tunnel for the first time, which enhances the feasibility of extending the operation range of conventional hypersonic Ludwieg tubes.
Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy.
Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo
2018-05-18
A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.
Helioseismology: A probe of the solar interior, atmosphere, and activity cycle
NASA Technical Reports Server (NTRS)
Rhodes, E. J., Jr.
1995-01-01
Helioseismology began in earnest in the mid 1970's. In the two decades which have elapsed since that time this branch of solar physics has become a mature field of research. Helioseismology has demonstrated that the solar convection zone is about twice as deep as was generally thought to be the case before 1977. Helioseismology has also provided measurements of the solar internal angular velocity over much of the sun's interior. Helioseismology has also ruled out models which would solve the solar neutrino problem by a lowering of the temperature of the core. Recently, some of the seismic properties of the sun have been demonstrated to vary with changing levels of solar activity. Also, helioseismology has recently provided evidence for helical flow patterns in the shallow, sub-photosphere layers. The techniques of helioseismology are also expanding to include seismic probes of solar active regions. Some work is also being conducted into the possible contributions of the solar acoustic models to the heating of the solar atmosphere. In this talk I will highlight a few of the above results and concentrate on current areas of research in the field.
Debye screening in single-molecule carbon nanotube field-effect sensors.
Sorgenfrei, Sebastian; Chiu, Chien-Yang; Johnston, Matthew; Nuckolls, Colin; Shepard, Kenneth L
2011-09-14
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough gate potentials, the target DNA is completely repelled and RTN is suppressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, T. C.; Zhu, Q.; Buchholz, D. B.
2015-03-01
The work functions of various amorphous and crystalline transparent conducting oxides (TCO5) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCO5, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanismsmore » associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.« less
RKKY interaction in a chirally coupled double quantum dot system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heine, A. W.; Tutuc, D.; Haug, R. J.
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtainedmore » Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.« less
NASA Astrophysics Data System (ADS)
Yeh, T. C.; Zhu, Q.; Buchholz, D. B.; Martinson, A. B.; Chang, R. P. H.; Mason, T. O.
2015-03-01
The work functions of various amorphous and crystalline transparent conducting oxides (TCOs) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCOs, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanisms associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.
Debye screening in single-molecule carbon nanotube field-effect transistors
Sorgenfrei, Sebastian; Chiu, Chien-yang; Johnston, Matthew; Nuckolls, Colin; Shepard, Kenneth L.
2013-01-01
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough repulsive potentials, the target DNA is completely repelled and RTN is suppressed. PMID:21806018
Experimental Measurements of Sonic Boom Signatures Using a Continuous Data Acquisition Technique
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J.; Elmiligui, Alaa A.
2013-01-01
A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel to determine the effectiveness of a technique to measure aircraft sonic boom signatures using a single conical survey probe while continuously moving the model past the probe. Sonic boom signatures were obtained using both move-pause and continuous data acquisition methods for comparison. The test was conducted using a generic business jet model at a constant angle of attack and a single model-to-survey-probe separation distance. The sonic boom signatures were obtained at a Mach number of 2.0 and a unit Reynolds number of 2 million per foot. The test results showed that it is possible to obtain sonic boom signatures while continuously moving the model and that the time required to acquire the signature is at least 10 times faster than the move-pause method. Data plots are presented with a discussion of the results. No tabulated data or flow visualization photographs are included.
The Galileo Probe: How it Has Changed Our Understanding of Jupiter
NASA Technical Reports Server (NTRS)
Young, Richard E.
2003-01-01
The Galileo Mission to Jupiter, which arrived in December of 1995, provided the first study by an orbiter, and the first in-situ sampling via an entry probe, of an outer planet atmosphere. The rationale for an entry probe is that, even from an orbiter, remote sensing of the jovian atmosphere could not adequately retrieve the information desired. This paper provides a current summary of the most significant aspects of the data returned from the Galileo entry probe. As a result of the probe measurements, there has been a reassessment of our understanding of outer planet formation and evolution of the solar system. The primary scientific objective of the Galileo probe was to determine the composition of the jovian atmosphere, which from remote sensing remained either very uncertain, or completely unknown, with respect to several key elements. The probe found that the global He mass fraction is. significantly above the value reported from the Voyager Jupiter flybys but is slightly below the protosolar value, implying that there has been some settling of He to the deep jovian interior. The probe He measurements have also led to a reevaluation of the Voyager He mass fraction for Saturn, which is now determined to be much closer to that of Jupiter. The elements C, N, S, Ar, Kr, Xe were all found to have global abundances approximately 3 times their respective solar abundances. This result has raised a number of fundamental issues with regard to properties of planetesimals and the solar nebula at the time of giant planet formation. Ne, on the other hand, was found to be highly depleted, probably as the result of it being carried along with helium as helium settles towards the deep interior. The global abundance of O was not obtained by the probe because of the influence of local processes at the probe entry site (PES), processes which depleted condensible species, in this case H2O, well below condensation levels. Other condensible species, namely NH3 and H2S, were similarly affected but attained their deep equilibrium mixing ratios before the maximum depth sampled by the probe. Processes that might be capable of producing such effects on the condensibles are still under investigation. Measured isotopic ratios of noble gases and other heavy elements are solar, and (D + (Sup 3)He)/H is the same to within measurement uncertainties as in the local interstellar medium. No thick clouds were detected, and in particular no significant water cloud, but the PES location clearly affected the probe measurements of clouds. In fact, the probe data must be understood in the context of the location of the PES, which was within what is termed a 5 micron hot spot, a local clearing in the clouds that is bright near the 5 microns spectral region. The thermal structure at the PES was determined from approximately 1000 km above the 1 bar pressure level (10(exp -9 bars)) to 132 km 1 bar (22bars). The probe showed the atmosphere to have a generally sub-adiabatic temperature gradient (static stability) of = 0.1 K/km to as deep as the probe made measurements. In the upper atmosphere the probe derived a maximum positive vertical temperature gradient of approximately 5 K/km, and maximum temperature of = 900 K. The energy sources producing the warm upper atmosphere have yet to be completely identified. At first glance, Doppler tracking of the probe indicates that the long observed cloud level zonal winds extend to levels at least as deep as the probe made measurements. Zonal wind increases from = 80 m/s at pressures less than a bar to about 180 m/s near 5 bars, and remains approximately constant with depth thereafter. However, there is a question as to whether the winds measured from probe tracking are representative of the general wind field, or are considerably influenced by localized winds associated with the PES.
NASA Astrophysics Data System (ADS)
Klammler, Harald; Layton, Leif; Nemer, Bassel; Hatfield, Kirk; Mohseni, Ana
2017-06-01
Hydraulic conductivity and its anisotropy are fundamental aquifer properties for groundwater flow and transport modeling. Current in-well or direct-push field measurement techniques allow for relatively quick determination of general conductivity profiles with depth. However, capabilities for identifying local scale conductivities in the horizontal and vertical directions are very limited. Here, we develop the theoretical basis for estimating horizontal and vertical conductivities from different types of steady-state single-well/probe injection tests under saturated conditions and in the absence of a well skin. We explore existing solutions and a recent semi-analytical solution approach to the flow problem under the assumption that the aquifer is locally homogeneous. The methods are based on the collection of an additional piece of information in the form of a second injection (or recirculation) test at a same location, or in the form of an additional head or flow observation along the well/probe. Results are represented in dimensionless charts for partial validation against approximate solutions and for practical application to test interpretation. The charts further allow for optimization of a test configuration to maximize sensitivity to anisotropy ratio. The two methods most sensitive to anisotropy are found to be (1) subsequent injection from a lateral screen and from the bottom of an otherwise cased borehole, and (2) single injection from a lateral screen with an additional head observation along the casing. Results may also be relevant for attributing consistent divergences in conductivity measurements from different testing methods applied at a same site or location to the potential effects of anisotropy. Some practical aspects are discussed and references are made to existing methods, which appear easily compatible with the proposed procedures.
Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.
2009-01-01
Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416
Wang, Yong-Mei; Fan, Wei; Zhang, Kai; Zhang, Li; Tan, Zhen; Ma, Rong
2016-07-01
To explore the effectiveness of different transducers in breast contrast-enhanced ultrasound (CEUS) using SonoVue(®) (Bracco, Plan-Les-Ouates, Switzerland) as the contrast agent. Breast CEUS was performed in 51 patients with 51 breast lesions using a low-frequency transducer (probe C5-1) and a high-frequency transducer (probe L12-5) separately. All image processes were reviewed for the presence of local blood perfusion defects and surrounding vessels. McNemar's test was conducted to compare the detection effectiveness between these two transducers. Pathological results revealed 38 malignant and 13 benign lesions. The two transducers showed no difference in detecting benign lesions. Among malignant lesions, CEUS conducted by probe C5-1 (frequency range from 1 to 5 MHz) presented 23 (60.5%) lesions with local blood perfusion defects and 26 (68.4%) lesions with surrounding vessels. Meanwhile, probe L12-5 (frequency range from 5 to 12 MHz) showed only 12 (31.6%) lesions with local blood perfusion defects and 12 (31.6%) lesions with surrounding vessel. Probe C5-1 was more sensitive than probe L12-5 in detecting malignant CEUS characteristics (p-value < 0.05). The low-frequency transducer was more sensitive than the high-frequency transducer in breast CEUS using SonoVue as the contrast agent. A new contrast agent with a higher resonance frequency, specially designed for high-frequency transducers, may be helpful in improving the clinical value of breast CEUS. The first study comparing different frequency transducers in breast CEUS of the same patient lesions. We brought out the requirement for CEUS contrast agents which are more suitable for high-frequency examinations.
The eddy current probe array for Keda Torus eXperiment.
Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong
2016-11-01
In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
DC thermal microscopy: study of the thermal exchange between a probe and a sample
NASA Astrophysics Data System (ADS)
Gomès, Séverine; Trannoy, Nathalie; Grossel, Philippe
1999-09-01
The Scanning Thermal Microscopic (SThM) probe, a thin Pt resistance wire, is used in the constant force mode of an Atomic Force Microscope (AFM). Thermal signal-distance curves for differing degrees of relative humidity and different surrounding gases demonstrate how heat is transferred from the heated probe to the sample. It is known that water affects atomic force microscopy and thermal measurements; we report here on the variation of the water interaction on the thermal coupling versus the probe temperature. Measurements were taken for several solid materials and show that the predominant heat transfer mechanisms taking part in thermal coupling are dependent on the thermal conductivity of the sample. The results have important implications for any quantitative interpretation of thermal images made in air.
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator
NASA Astrophysics Data System (ADS)
Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.
2012-12-01
Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)
In vivo detection of inducible nitric oxide synthase in rodent gliomas.
Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea
2010-03-01
Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. (c) 2009 Elsevier Inc. All rights reserved.
Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.
D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech
2014-07-15
Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Kido, J; Nakamura, T; Kido, R; Ohishi, K; Yamauchi, N; Kataoka, M; Nagata, T
1999-10-01
Clinical and biochemical markers of periodontal disease have been used for precise objective diagnosis of periodontal inflammation. Interleukin 1beta (IL-1beta) and prostaglandin E2 (PGE2), inflammatory factors, levels in gingival crevicular fluid (GCF) of patients with periodontal disease are elevated and have been studied as biochemical markers. The levels of calprotectin, a leukocyte protein, in body fluids of patients with some inflammatory diseases are raised. Recently, we detected calprotectin in GCF and its concentrations in periodontal pockets were higher than those in healthy gingival crevices. In this study, we investigated the correlations between GCF calprotectin levels and clinical indicators (probing depth and bleeding on probing, BOP), and the IL-1beta or PGE2 levels in GCE Probing depth and BOP at 130 sites of 110 subjects with periodontal or other oral diseases were examined, then GCF samples were collected and their calprotectin, IL-1beta and PGE2 were determined by ELISA. The calprotectin level correlated positively with the probing depth and was significantly higher at BOP-positive than BOP-negative sites. There were significant, positive correlations between the calprotectin and IL-1beta or PGE2 concentrations. These results indicate that the calprotectin level in GCF correlates well with clinical and biochemical markers of periodontal disease and suggest that calprotectin may be useful for evaluating the extent of periodontal inflammation.
Volak, Laurie P; Hanley, Michael J; Masse, Gina; Hazarika, Suwagmani; Harmatz, Jerold S; Badmaev, Vladimir; Majeed, Muhammed; Greenblatt, David J; Court, Michael H
2013-01-01
Aims Turmeric extract derived curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) are currently being evaluated for the treatment of cancer and Alzheimer's dementia. Previous in vitro studies indicate that curcuminoids and piperine (a black pepper derivative that enhances curcuminoid bioavailability) could inhibit human CYP3A, CYP2C9, UGT and SULT dependent drug metabolism. The aim of this study was to determine whether a commercially available curcuminoid/piperine extract alters the pharmacokinetic disposition of probe drugs for these enzymes in human volunteers. Methods A randomized placebo-controlled six way crossover study was conducted in eight healthy volunteers. A standardized curcuminoid/piperine preparation (4 g curcuminoids plus 24 mg piperine) or matched placebo was given orally four times over 2 days before oral administration of midazolam (CYP3A probe), flurbiprofen (CYP2C9 probe) or paracetamol (acetaminophen) (dual UGT and SULT probe). Plasma and urine concentrations of drugs, metabolites and herbals were measured by HPLC. Subject sedation and electroencephalograph effects were also measured following midazolam dosing. Results Compared with placebo, the curcuminoid/piperine treatment produced no meaningful changes in plasma Cmax, AUC, clearance, elimination half-life or metabolite levels of midazolam, flurbiprofen or paracetamol (α = 0.05, paired t-tests). There was also no effect of curcuminoid/piperine treatment on the pharmacodynamics of midazolam. Although curcuminoid and piperine concentrations were readily measured in plasma following glucuronidase/sulfatase treatment, unconjugated concentrations were consistently below the assay thresholds (0.05–0.08 μm and 0.6 μm, respectively). Conclusion The results indicate that short term use of this piperine-enhanced curcuminoid preparation is unlikely to result in a clinically significant interaction involving CYP3A, CYP2C9 or the paracetamol conjugation enzymes. PMID:22725836
López, Lydia M; Guerra, María Elena
2015-03-01
The aim of this study was to determine the caries rate and periodontal status in a sample of pregnant women with HIV+ infections from Puerto Rico. A pilot study was conducted on a cross sectional convenience sample of 25 pregnant women with HIV+ infections from Puerto Rico who visit the CEMI clinic (Centro de Estudios Materno Infantil) at the University of Puerto Rico. The women subjects were evaluated for caries, DMFT (D: Decay tooth; M: Missing tooth due to caries; F: Filled tooth) index, oral lesions associated with HIV+/AIDS and periodontal disease parameters, with a Florida probe by a calibrated dentist on periodontal indexes such as as bleeding on probing, CEJ (cemento-enamel junction) and pocket depth. Periodontal disease was classified as having 4 sites with pocket depth greater than 4 mm and caries were identified following the Radike criteria. Data was statistically analyzed using the SSPS Program (Statistical Software Program for Social Sciences) and descriptive statistics were calculated. Mean DT (decayed teeth), MT (missing teeth due to caries), FT (filled teeth) and DMFT (decay, missing and filled teeth) were 4.8, 1.86, 5.3 and 12, respectively; mean sites of bleeding on probing=12.06; mean sites with pocket depth>4 mm=6.95 and mean sites with loss of attachment greater than 4 mm=7.66. [Almost 50% of the patients had generalized chronic periodontitis. A 72% prevalence of periodontal disease was found. No oral lesions related to HIV+/AIDS were reported. CD4 and viral load was statistically associated with bleeding on probing and severe signs of periodontal disease. High levels of dental disease were found in pregnant women with HIV+/AIDS infections from Puerto Rico, and these women were in need of substantial dental services.
NASA Technical Reports Server (NTRS)
Nguyen, Cattien V.; Chao, Kuo-Jen; Stevens, Ramsey M. D.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, James (Technical Monitor)
2001-01-01
In this paper we present results on the stability and lateral resolution capability of carbon nanotube (CNT) scanning probes as applied to atomic force microscopy (AFM). Surface topography images of ultra-thin films (2-5 nm thickness) obtained with AFM are used to illustrate the lateral resolution capability of single-walled carbon nanotube probes. Images of metal films prepared by ion beam sputtering exhibit grain sizes ranging from greater than 10 nm to as small as approximately 2 nm for gold and iridium respectively. In addition, imaging stability and lifetime of multi-walled carbon nanotube scanning probes are studied on a relatively hard surface of silicon nitride (Si3N4). AFM images Of Si3N4 surface collected after more than 15 hrs of continuous scanning show no detectable degradation in lateral resolution. These results indicate the general feasibility of CNT tips and scanning probe microscopy for examining nanometer-scale surface features of deposited metals as well as non-conductive thin films. AFM coupled with CNT tips offers a simple and nondestructive technique for probing a variety of surfaces, and has immense potential as a surface characterization tool in integrated circuit manufacturing.
Bianchini, G.M.; McRae, T.G.
1983-06-23
The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Aaron A.; Chamberlin, Clyde E.; Edwards, Matthew K.
This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL’s M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs—a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32×2, 64-element matrix phased-array ETU. The 1Dmore » probes are 32×1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.« less
Dey, Biswajit; Mukherjee, Priyanka; Mondal, Ranjan Kumar; Chattopadhyay, Asoke Prasun; Hauli, Ipsit; Mukhopadhyay, Subhra Kanti; Fleck, Michel
2014-12-14
A highly selective femtomolar level sensing of inorganic arsenic(III) as arsenious acid has been accomplished in water medium and in living-systems (on pollen grains of Tecoma stans; Candida albicans cells (IMTECH No. 3018) and Peperomia pellucida stem section) using a non-toxic fluorescent probe of a Cu(II)-complex.
Optical gain in an optically driven three-level ? system in atomic Rb vapor
NASA Astrophysics Data System (ADS)
Ballmann, C. W.; Yakovlev, V. V.
2018-06-01
In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.
1986-01-01
A technique has been developed for localizing hybrids formed in situ on semi-thin and ultrathin sections of Lowicryl K4M-embedded tissue. Biotinylated dUTP (Bio-11-dUTP and/or Bio-16-dUTP) was incorporated into mitochondrial rDNA and small nuclear U1 probes by nick- translation. The probes were hybridized to sections of Drosophila ovaries and subsequently detected with an anti-biotin antibody and protein A-gold complex. On semi-thin sections, probe detection was achieved by amplification steps with anti-protein A antibody and protein A-gold with subsequent silver enhancement. At the electron microscope level, specific labeling was obtained over structures known to be the site of expression of the appropriate genes (i.e., either over mitochondria or over nuclei). The labeling pattern at the light microscope level (semi-thin sections) was consistent with that obtained at the electron microscope level. The described nonradioactive procedures for hybrid detection on Lowicryl K4M-embedded tissue sections offer several advantages: rapid signal detection: superior morphological preservation and spatial resolution; and signal-to-noise ratios equivalent to radiolabeling. PMID:3084498
Stellar Occultation Probe of Triton's Atmosphere
NASA Technical Reports Server (NTRS)
Elliot, James L.
1998-01-01
The goals of this research were (i) to better characterize Triton's atmospheric structure by probing a region not well investigated by Voyager and (ii) to begin acquiring baseline data for an investigation of the time evolution of the atmosphere which will set limits on the thermal conductivity of the surface and the total mass of N2 in the atmosphere. Our approach was to use observations (with the Kuiper Airborne Observatory) of a stellar occultation by Triton that was predicted to occur on 1993 July 10. As described in the attached reprint, we achieved these objectives through observation of this occultation and a subsequent one with the KAO in 1995. We found new results about Triton's atmospheric structure from the analysis of the two occultations observed with the KAO and ground-based data. These stellar occultation observations made both in the visible and infrared, have good spatial coverage of Triton including the first Triton central-flash observations, and are the first data to probe the 20-100 km altitude level on Triton. The small-planet light curve model of Elliot and Young (AJ 103, 991-1015) was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements. However, asymmetry observed in the central flash indicates the atmosphere is not homogeneous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent-isothermal temperature of the atmosphere is 47 +/- 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 +/- 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989 (Strobel et al, Icarus 120, 266-289). The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukahara, D.; Baba, M.; Honda, S.
2014-09-28
Potential variations around the grain boundaries (GBs) in antimony (Sb)-doped n-type and boron (B)-doped p-type BaSi₂ epitaxial films on Si(111) were evaluated by Kelvin probe force microscopy. Sb-doped n-BaSi₂ films exhibited positively charged GBs with a downward band bending at the GBs. The average barrier height for holes was approximately 10 meV for an electron concentration n ≈ 10¹⁷ cm⁻³. This downward band bending changed to upward band bending when n was increased to n = 1.8 × 10¹⁸cm⁻³. In the B-doped p-BaSi₂ films, the upward band bending was observed for a hole concentration p ≈ 10¹⁸cm⁻³. The average barriermore » height for electrons decreased from approximately 25 to 15 meV when p was increased from p = 2.7 × 10¹⁸ to p = 4.0 × 10¹⁸ cm⁻³. These results are explained under the assumption that the position of the Fermi level E{sub f} at GBs depends on the degree of occupancy of defect states at the GBs, while E{sub f} approached the bottom of the conduction band or the top of the valence band in the BaSi₂ grain interiors with increasing impurity concentrations. In both cases, such small barrier heights may not deteriorate the carrier transport properties. The electronic structures of impurity-doped BaSi₂ are also discussed using first-principles pseudopotential method to discuss the insertion sites of impurity atoms and clarify the reason for the observed n-type conduction in the Sb-doped BaSi₂ and p-type conduction in the B-doped BaSi₂.« less
Avelino, Karen Y P S; Frias, Isaac A M; Lucena-Silva, Norma; Gomes, Renan G; de Melo, Celso P; Oliveira, Maria D L; Andrade, César A S
2016-12-01
In the last ten years, conjugated polymers started to be used in the immobilization of nucleic acids via non-covalent interactions. In the present study, we describe the construction and use of an electrochemical DNA biosensor based on a nanostructured polyaniline-gold composite, specifically developed for the detection of the BCR/ABL chimeric oncogene. This chromosome translocation is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The working principle of the biosensor rests on measuring the conductivity resulting from the non-covalent interactions between the hybrid nanocomposite and the DNA probe. The nanostructured platform exhibits a large surface area that enhances the conductivity. Positive cases, which result from the hybridization between DNA probe and targeted gene, induce changes in the amperometric current and in the charge transfer resistance (R CT ) responses. Atomic force microscopy (AFM) images showed changes in the genosensor surface after exposure to cDNA sample of patient with leukemia, evidencing the hybridization process. This new hybrid sensing-platform displayed high specificity and selectivity, and its detection limit is estimated to be as low as 69.4 aM. The biosensor showed excellent analytical performance for the detection of the BCR/ABL oncogene in clinical samples of patients with leukemia. Hence, this electrochemical sensor appears as a simple and attractive tool for the molecular diagnosis of the BCR/ABL oncogene even in early-stage cases of leukemia and for the monitoring of minimum levels of residual disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of a smear proof horizontal and vertical permeability probe.
DOT National Transportation Integrated Search
2013-01-01
Permeability is a measure of how well a porous medium conducts a fluid. For water, this property is called hydraulic conductivity, and it is important for projects that depend on properties of soil and strata, such as earthen dams, retention ponds, d...
Thermal conductivity measurement of fluids using the 3ω method
NASA Astrophysics Data System (ADS)
Lee, Seung-Min
2009-02-01
We have developed a procedure to measure the thermal conductivity of dielectric liquids and gases using a steady state ac hot wire method in which a thin metal wire is used as a heater and thermometer. The temperature response of the heater wire was measured in a four-probe geometry using an electronic circuit developed for the conventional 3ω method. The measurements have been performed in the frequency range from 1 mHz to 1 kHz. We devised a method to transform the raw data into well-known linear logarithmic frequency dependence plot. After the transformation, an optimal frequency region of the thermal conductivity data was clearly determined as has been done with the data from thin metal film heater. The method was tested with air, water, ethanol, mono-, and tetraethylene glycol. Volumetric heat capacity of the fluids was also calculated with uncertainty and the capability as a probe for metal-liquid thermal boundary conductance was discussed.
Imaging thermal conductivity with nanoscale resolution using a scanning spin probe
Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; ...
2015-11-20
The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less
Probing Nanoscale Thermal Transport in Surfactant Solutions
Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao
2015-01-01
Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840
ERIC Educational Resources Information Center
Bulunuz, Nermin; Bulunuz, Mizrap; Karagoz, Funda; Tavsanli, Omer Faruk
2016-01-01
The present study has two aims. Firstly, it aims to determine eighth grade students' conceptual understanding of floating and sinking through formative assessment probes. Secondly, it aims to determine whether or not there is a significant difference between students' performance in formative assessment probes and their achievement in the…
A Crowdsourcing Evaluation of the NIH Chemical Probes
Oprea, Tudor I.; Bologa, Cristian G.; Boyer, Scott; Curpan, Ramona F.; Glen, Robert C.; Hopkins, Andrew L.; Lipinski, Christopher A.; Marshall, Garland R.; Martin, Yvonne C.; Ostopovici-Halip, Liliana; Rishton, Gilbert; Ursu, Oleg; Vaz, Roy J.; Waller, Chris; Waldmann, Herbert; Sklar, Larry A.
2013-01-01
Between 2004 and 2008, the NIH molecular libraries and imaging initiative (MLI) pilot phase funded ten high-throughput Screening Centers, resulting in the deposition of 691 assays into PubChem and the nomination of 64 chemical probes. We crowdsourced the MLI output to 11 experts, who expressed medium or high levels of confidence in 48 of these 64 probes. PMID:19536101
Activatable Optical Probes for the Detection of Enzymes
Drake, Christopher R.; Miller, David C.; Jones, Ella F.
2013-01-01
The early detection of many human diseases is crucial if they are to be treated successfully. Therefore, the development of imaging techniques that can facilitate early detection of disease is of high importance. Changes in the levels of enzyme expression are known to occur in many diseases, making their accurate detection at low concentrations an area of considerable active research. Activatable fluorescent probes show immense promise in this area. If properly designed they should exhibit no signal until they interact with their target enzyme, reducing the level of background fluorescence and potentially endowing them with greater sensitivity. The mechanisms of fluorescence changes in activatable probes vary. This review aims to survey the field of activatable probes, focusing on their mechanisms of action as well as illustrating some of the in vitro and in vivo settings in which they have been employed. PMID:23519774
Using a biased qubit to probe complex systems
NASA Astrophysics Data System (ADS)
Pollock, Felix A.; Checińska, Agata; Pascazio, Saverio; Modi, Kavan
2016-09-01
Complex mesoscopic systems play increasingly important roles in modern science, from understanding biological functions at the molecular level to designing solid-state information processing devices. The operation of these systems typically depends on their energetic structure, yet probing their energy landscape can be extremely challenging; they have many degrees of freedom, which may be hard to isolate and measure independently. Here, we show that a qubit (a two-level quantum system) with a biased energy splitting can directly probe the spectral properties of a complex system, without knowledge of how they couple. Our work is based on the completely positive and trace-preserving map formalism, which treats any unknown dynamics as a "black-box" process. This black box contains information about the system with which the probe interacts, which we access by measuring the survival probability of the initial state of the probe as function of the energy splitting and the process time. Fourier transforming the results yields the energy spectrum of the complex system. Without making assumptions about the strength or form of its coupling, our probe could determine aspects of a complex molecule's energy landscape as well as, in many cases, test for coherent superposition of its energy eigenstates.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
NASA Astrophysics Data System (ADS)
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-03-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier (Fig. 1) uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends (Fig. 2). The elasticity of the beam leads to oscillations that persist after being excited by an impulsive force. How quickly the force probe freely returns to zero is thus related to the rigidity of the beam and the total mass attached to it. By varying the added mass and measuring the resulting frequency of the probe's internal free oscillations, the effective mass and spring constant of the probe's moveable parts can be found. Weighing of the probe parts and conducting a Hooke's law experiment provide static verification of these parameters. Study of the force sensor's behavior helps students to learn about damped harmonic motion, mathematical modeling, and the limitations of measuring devices.
Probe and Sensors Development for Level Measurement of Fats, Oils and Grease in Grease Boxes
Faria, José; Sousa, André; Reis, Arsénio; Filipe, Vitor; Barroso, João
2016-01-01
The wide spread of food outlets has become an environmental and sanitation infrastructure problem, due to Fats, Oils and Grease (FOG). A grease box is used at the industrials facilities to collect the FOG, in a specific time window, while its quality is good for recycling (e.g., biodiesel) and it is economically valuable. After this period, it will be disposed at a cost. For the proper management of the grease boxes, it is necessary to know the quantity of FOG inside the boxes, which is a major problem, as the boxes are sealed and permanently filled with water. The lack of homogeneity of the FOG renders it not detectable by current probes for level detection in liquids. In this article, the design, development and testing of a set of probes for FOG level measurement, based on the principles used in sensors for the detection of liquids inside containers, is described. The most suitable probe, based on the capacitance principle, together with the necessary hardware and software modules for data acquisition and transmission, was developed and tested. After the development phase, the probe was integrated on a metropolitan system for FOG collection and grease box management in partnership with a grease box management company. PMID:27649204
Probe and Sensors Development for Level Measurement of Fats, Oils and Grease in Grease Boxes.
Faria, José; Sousa, André; Reis, Arsénio; Filipe, Vitor; Barroso, João
2016-09-16
The wide spread of food outlets has become an environmental and sanitation infrastructure problem, due to Fats, Oils and Grease (FOG). A grease box is used at the industrials facilities to collect the FOG, in a specific time window, while its quality is good for recycling (e.g., biodiesel) and it is economically valuable. After this period, it will be disposed at a cost. For the proper management of the grease boxes, it is necessary to know the quantity of FOG inside the boxes, which is a major problem, as the boxes are sealed and permanently filled with water. The lack of homogeneity of the FOG renders it not detectable by current probes for level detection in liquids. In this article, the design, development and testing of a set of probes for FOG level measurement, based on the principles used in sensors for the detection of liquids inside containers, is described. The most suitable probe, based on the capacitance principle, together with the necessary hardware and software modules for data acquisition and transmission, was developed and tested. After the development phase, the probe was integrated on a metropolitan system for FOG collection and grease box management in partnership with a grease box management company.
NASA Astrophysics Data System (ADS)
Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar
2016-12-01
We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D2 transition of 87Rb, i.e., F =2 →F' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F =2 →F'=2 while the pump is scanned from F =2 →F' . EIA is observed for the open transition (F =2 →F'=2 ) whereas EIT is observed in the closed transition (F =2 →F'=3 ). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.
Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar
2016-12-14
We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D 2 transition of Rb87, i.e., F=2→F ' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F=2→F ' =2 while the pump is scanned from F=2→F ' . EIA is observed for the open transition (F=2→F ' =2) whereas EIT is observed in the closed transition (F=2→F ' =3). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.
Universal ligation-detection-reaction microarray applied for compost microbes
Hultman, Jenni; Ritari, Jarmo; Romantschuk, Martin; Paulin, Lars; Auvinen, Petri
2008-01-01
Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR) based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS) area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities. PMID:19116002
Alzarea, Bader K
2016-04-01
Peri-implant tissue health is a requisite for success of dental implant therapy. Plaque accumulation leads to initiation of gingivitis around natural teeth and peri-implantitis around dental implants. Peri-implantitis around dental implants may result in implant placement failure. For obtaining long-term success, timely assessment of dental implant site is mandatory. To assess and evaluate Quality of Life (OHRQoL) of individuals with dental implants using the Oral Health Impact Profile (OHIP-14). Total 92 patients were evaluated for assessment of the health of peri-implant tissues by recording, Plaque Index (PI), Probing Pocket Depth (PD), Bleeding On Probing (BOP) and Probing Attachment Level (PAL) as compared to contra-lateral natural teeth (control). In the same patients Quality of Life Assessment was done by utilizing Oral Health Impact Profile Index (OHIP-14). The mean plaque index around natural teeth was more compared to implants and it was statistically significant. Other three dimensions mean bleeding on probing; mean probing attachment level and mean pocket depth around both natural teeth and implant surfaces was found to be not statistically significant. OHIP-14 revealed that patients with dental implants were satisfied with their Oral Health-Related Quality of Life (OHRQoL). Similar inflammatory conditions are present around both natural teeth and implant prostheses as suggested by results of mean plaque index, mean bleeding on probing, mean pocket depth and mean probing attachment level, hence reinforcing the periodontal health maintenance both prior to and after incorporation of dental implants. Influence of implant prostheses on patient's oral health related quality of life (as depicted by OHIP-14) and patients' perceptions and expectations may guide the clinician in providing the best implant services.