NASA Astrophysics Data System (ADS)
Terry, N.; Day-Lewis, F. D.; Werkema, D. D.; Lane, J. W., Jr.
2017-12-01
Soil moisture is a critical parameter for agriculture, water supply, and management of landfills. Whereas direct data (as from TDR or soil moisture probes) provide localized point scale information, it is often more desirable to produce 2D and/or 3D estimates of soil moisture from noninvasive measurements. To this end, geophysical methods for indirectly assessing soil moisture have great potential, yet are limited in terms of quantitative interpretation due to uncertainty in petrophysical transformations and inherent limitations in resolution. Simple tools to produce soil moisture estimates from geophysical data are lacking. We present a new standalone program, MoisturEC, for estimating moisture content distributions from electrical conductivity data. The program uses an indicator kriging method within a geostatistical framework to incorporate hard data (as from moisture probes) and soft data (as from electrical resistivity imaging or electromagnetic induction) to produce estimates of moisture content and uncertainty. The program features data visualization and output options as well as a module for calibrating electrical conductivity with moisture content to improve estimates. The user-friendly program is written in R - a widely used, cross-platform, open source programming language that lends itself to further development and customization. We demonstrate use of the program with a numerical experiment as well as a controlled field irrigation experiment. Results produced from the combined geostatistical framework of MoisturEC show improved estimates of moisture content compared to those generated from individual datasets. This application provides a convenient and efficient means for integrating various data types and has broad utility to soil moisture monitoring in landfills, agriculture, and other problems.
Time domain reflectometry measured moisture content of sewage sludge compost across temperatures.
Cai, Lu; Chen, Tong-Bin; Gao, Ding; Liu, Hong-Tao; Chen, Jun; Zheng, Guo-Di
2013-01-01
Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm(3)cm(-3), temperature of 70°C and conductivity of 4.32 mS cm(-1). TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20°C to 70°C, composting material with 0.10-0.70 cm(3)cm(-3) moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors. Copyright © 2012. Published by Elsevier Ltd.
Electric moisture meters for wood
William L. James
1988-01-01
Electric moisture meters for wood measure electric conductance (resistance) or dielectric properties, which vary fairly consistently with moisture content when it is less than 30 percent. The two major classes of electric moisture meters are the conductance (resistance) type and the dielectric type. Conductance-t ype meters use penetrating electrodes that measure in a...
Effect of Moisture Content on Thermal Properties of Porous Building Materials
NASA Astrophysics Data System (ADS)
Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert
2017-02-01
The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.
Du, She-ni; Bai, Gang-shuan; Liang, Yin-li
2011-04-01
A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.
The role of moisture content in above-ground leaching
Stan Lebow; Patricia Lebow
2007-01-01
This paper reviews previous reports on the moisture content of wood exposed above ground and compares those values to moisture contents obtained using simulated rainfall and immersion methods. Laboratory leaching trials with CCA-treated specimens were also conducted and the results compared to published values for leaching of CCA-treated specimens exposed above ground...
Manjunatha, S S; Raju, P S; Bawa, A S
2014-11-01
Thermophysical properties of enzyme clarified lime (Citrus aurantifolia L.) juice were evaluated at different moisture contents ranging from 30.37 % to 89.30 % (wet basis) corresponding to a water activity range of 0.835 to 0.979. The thermophysical properties evaluated were density, Newtonian viscosity, thermal conductivity, specific heat and thermal diffusivity. The investigation showed that density and Newtonian viscosity of enzyme clarified lime juice decreased significantly (p < 0.05) with increase in moisture content and water activity, whereas thermal conductivity and specific heat increased significantly (p < 0.05) with increase in moisture content and water activity and the thermal diffusivity increased marginally. Empirical mathematical models were established relating to thermophysical properties of enzyme clarified lime juice with moisture content/water activity employing regression analysis by the method of least square approximation. Results indicated the existence of strong correlation between thermophysical properties and moisture content/water activity of enzyme clarified lime juice, a significant (p < 0.0001) negative correlation between physical and thermal properties was observed.
Wang, Qian; Yang, Mei; Pei, Jin; Wang, Li; Wu, Yi-Yun; Lv, Hui
2016-04-01
Effects of nine different moisture contents on vigor of Cyathula officinalis seeds and its anti-aging mechanism were studied by artificial accelerated aging through high temperature and wet. The research results showedthat seed vigor were generally decreased after artificial aging; in general, seed vigor and its anti-aging ability are relatively stronger within the scope of 6.55%-4.78% moisture content, the increase range of seed conductivity, peroxidase activity, malondialdehyde content,and reduce amplitude of activityof dehydrogenase , superoxide dismutaseare alllower as well. And when the moisture content reduced to 5.77%, all of the germination tests index of the non-aged seeds are the highest, and the activity of peroxidase the lowest,conductivity of leaching solution relatively low, activity of dehydrogenase and superoxide dismutase the highest,and catalase activityrelatively high.Therefore, in the low temperature germplasm preservation of C. officinalis seeds, the seed moisture content should be controlled close to the range of (5.70±1)% to keep higher vigor and anti-aging ability. Copyright© by the Chinese Pharmaceutical Association.
Liang, C; Das, K C; McClendon, R W
2003-01-01
To understand the relationships between temperature, moisture content, and microbial activity during the composting of biosolids (municipal wastewater treatment sludge), well-controlled incubation experiments were conducted using a 2-factor factorial design with six temperatures (22, 29, 36, 43, 50, and 57 degrees C) and five moisture contents (30, 40, 50, 60, and 70%). The microbial activity was measured as O2 uptake rate (mg g(-1) h(-1)) using a computer controlled respirometer. In this study, moisture content proved to be a dominant factor impacting aerobic microbial activity of the composting blend. Fifty percent moisture content appeared to be the minimal requirement for obtaining activities greater than 1.0 mg g(-1) h(-1). Temperature was also documented to be an important factor for biosolids composting. However, its effect was less influential than moisture content. Particularly, the enhancement of composting activities induced by temperature increment could be realized by increasing moisture content alone.
Jonathan A. O' Donnell; Vladimir E. Romanovsky; Jennifer W. Harden; A. David McGuire
2009-01-01
Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity...
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Oneill, P. E.
1986-01-01
Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.
NASA Astrophysics Data System (ADS)
Teomete, Egemen
2016-07-01
Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.
NASA Astrophysics Data System (ADS)
Roh, Y.; Li, G.; Han, S. H.; Abu Salim, K.; Son, Y.
2017-12-01
Since coarse woody debris (CWD) respiration (Rcwd) has an important role in carbon (C) cycling in forest ecosystems, it is a significant parameter in an investigation of CWD decomposition rate. Rcwd is known as to be influenced not only by environmental factors but also by CWD properties (e.g., moisture content). This study investigated the effects of CWD moisture content on Rcwd in a lowland mixed Dipterocarp tropical rainforest of Brunei Darussalam. CWDs in the forest were selected and categorized into two decay classes (sound and partially decomposed), and three diameter classes (10-20 cm, 20-30 cm, more than 30 cm). Samplings of CWDs were conducted in February and October, 2016. The fresh weight and Rcwd of the samples were measured within 24 h of sampling. Rcwd measurements were conducted using a closed chamber system with a diffusion-type, non-dispersive infrared (NDIR) sensor. In February, the fresh weight and Rcwd of the samples were remeasured, after submerging them in the fresh water for 24, 48, and 72 h. The Rcwd increased significantly with moisture content in February (r2=0.25, p<0.01). During the study period from February to October, 2016, the mean value of Rcwd (±SE) decreased from 18.26 (3.45) to 14.92 (2.67) mg C kg-1 h-1 (p<0.05), although the moisture content did not change significantly (p>0.05). Rcwd was lowest in the largest diameter class (p<0.01), and not significantly different between the decay classes (p>0.05). On the basis of these results, the Rcwd in this site was in the range of Rcwd in previous studies conducted in other tropical rainforests. Rcwd increased with moisture content, however, the contribution of moisture content to changes in Rcwd might not be influential during the eight months study period.*Supported by research grants from the Korea Forest Service (2017044B10-1719-BB01).
Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G
2012-06-01
This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The thermal conductivity and thermal diffusivity of four types of rice flours and one type of rice protein were determine at temperatures ranging from 4.8 to 36.8 C, bulk densities 535 to 875.8 kg/m3, and moisture contents 2.6 to 16.7 percent (w.b.), using a KD2 Thermal Properties Analyzer. It was ...
DOT National Transportation Integrated Search
1974-01-01
Studies were conducted to relate the deflection of flexible pavements to such environmental factors as temperature and moisture content of the pavements and their subgrade soils. Also considered were the thickness and the relative positions of the di...
Effects of size and moisture of rhizome on initial invasiveness ability of giant reed.
Santín-Montanyá, M I; Jimenéz, J; Vilán, X M; Ocaña, L
2014-01-01
Studies were conducted under controlled conditions to determine growth and reproductive capabilities of Arundo donax L. (giant reed), a riparian invasive perennial plant that has spread widely. Greenhouse experiments were conducted to determine the influence of rhizome size and moisture content in the early invasiveness ability of giant reed. We tested different sizes of rhizomes: rhizome size of 1 cm, 3 cm, 5 cm and shredded rhizome. (fragments < 1 cm). These rhizomes were observed at 7, 14, 21, 28 and 35 days after planting (DAP). To test the effect of moisture content we used fresh rhizome fragments; rhizomes with moderate dehydration (50%); rhizomes with high dehydration (over 70%) with 48 hours of rehydration and rhizomes with high dehydration (70-90%). The rhizomes monitored for moisture content and biomass increase were between 3 and 5 cm, and were observed 60 DAP. The initial size of rhizomes affected the level of sprouting. Rhizomes with low moisture content (due to dehydration) showed high increase in biomass compared with the rhizomes that had not been treated or had been dehydrated and then rehydrated. Our results indicated that size of rhizomes is related to regrowth and low moisture (dehydration) content can be overcome by this species. This could be linked to high rates of colonization and early establishment ability of this species even after mechanical treatment of rhizomes, in riparian environments.
Effect of moisture content on the coefficient of thermal expansion of concrete.
DOT National Transportation Integrated Search
2007-09-01
The purpose of this report is to discuss a study conducted on twenty separate mix designs of concrete and the effects of : the aggregate type, moisture content, and temperature on the coefficient of thermal expansion(CTE). These results are to be use...
A Compound Sensor for Simultaneous Measurement of Packing Density and Moisture Content of Silage.
Meng, Delun; Meng, Fanjia; Sun, Wei; Deng, Shuang
2017-12-28
Packing density and moisture content are important factors in investigating the ensiling quality. Low packing density is a major cause of loss of sugar content. The moisture content also plays a determinant role in biomass degradation. To comprehensively evaluate the ensiling quality, this study focused on developing a compound sensor. In it, moisture electrodes and strain gauges were embedded into an ASABE Standard small cone for the simultaneous measurements of the penetration resistance (PR) and moisture content (MC) of silage. In order to evaluate the performance of the designed sensor and the theoretical analysis being used, relevant calibration and validation tests were conducted. The determination coefficients are 0.996 and 0.992 for PR calibration and 0.934 for MC calibration. The validation indicated that this measurement technique could determine the packing density and moisture content of the silage simultaneously and eliminate the influence of the friction between the penetration shaft and silage. In this study, we not only design a compound sensor but also provide an alternative way to investigate the ensiling quality which would be useful for further silage research.
Effect of Root Moisture Content and Diameter on Root Tensile Properties.
Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen
2016-01-01
The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.
Effect of Root Moisture Content and Diameter on Root Tensile Properties
Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen
2016-01-01
The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872
NASA Astrophysics Data System (ADS)
Ciocca, Francesco; Abesser, Corinna; Hannah, David; Blaen, Philip; Chalari, Athena; Mondanos, Michael; Krause, Stefan
2017-04-01
Optical fibre distributed temperature sensing (DTS) is increasingly used in environmental monitoring and for subsurface characterisation, e.g. to obtain precise measurements of soil temperature at high spatio-temporal resolution, over several kilometres of optical fibre cable. When combined with active heating of metal elements embedded in the optical fibre cable (active-DTS), the temperature response of the soil to heating provides valuable information from which other important soil parameters, such as thermal conductivity and soil moisture content, can be inferred. In this presentation, we report the development of an Actively Heated Fibre Optics (AHFO) method for the characterisation of soil thermal conductivity and soil moisture dynamics at high temporal and spatial resolutions at a vegetated hillslope site in central England. The study site is located within a juvenile forest adjacent to the Birmingham Institute of Forest Research (BIFoR) experimental site. It is instrumented with three loops of a 500m hybrid-optical cable installed at 10cm, 25cm and 40cm depths. Active DTS surveys were undertaken in June and October 2016, collecting soil temperature data at 0.25m intervals along the cable, prior to, during and after the 900s heating phase. Soil thermal conductivity and soil moisture were determined according to Ciocca et al. 2012, applied to both the cooling and the heating phase. Independent measurements of soil thermal conductivity and soil moisture content were collected using thermal needle probes, calibrated capacitance-based probes and laboratory methods. Results from both the active DTS survey and independent in-situ and laboratory measurements will be presented, including the observed relationship between thermal conductivity and moisture content at the study site and how it compares against theoretical curves used by the AHFO methods. The spatial variability of soil thermal conductivity and soil moisture content, as observed using the different methods, will be shown and an outlook will be provided of how the AHFO method can benefit soil sciences, ground source heat pump applications and groundwater recharge estimations. This research is part of the Distributed intelligent Heat Pulse System (DiHPS) project which is funded by the UK Natural Environmental Research Council (NERC). The project is supported by BIFoR, the European Space Agency (ESA), CarbonZero Ltd, the UK Forestry Commission and the UK Soil Moisture Observation Network (COSMOS-UK). This work is distributed under the Creative Commons Attribution 3.0 Unported Licence together with an author copyright. This licence does not conflict with the regulations of the Crown Copyright. Ciocca F., Lunati I., van de Giesen N., and Parlange M.B. 2012. Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment. Vadose Zone J. 11. doi:10.2136/vzj2011.0177
DOT National Transportation Integrated Search
2002-06-01
The objective of this study was to investigate the effect of moisture content and dry unit weight on the resilient characteristics of subgrade soil predicted by the cone penetration test. An experimental program was conducted in which cone penetratio...
Barnwal, P; Singh, K K; Sharma, Alka; Choudhary, A K; Saxena, S N
2015-12-01
In present study, influence of grinding (hammer and pin mills) and moisture content (range: 6.4-13.6 % dry basis) on the quality traits of coriander powder were investigated. These include grinding parameters, colour parameters, specific heat, thermal conductivity, thermal diffusivity, glass transition temperature, essential oil, total phenolic content, total flavonoid content and DPPH scavenging (%) of coriander powder. For coriander seed, the geometric properties such as major, medium, minor dimensions, geometric mean diameter, arithmetic mean diameter, sphericity, surface area and volume of coriander seeds increased significantly with increasing moisture (6.4-13.6 % db). For coriander powder, the grinding parameters such as average particle size, volume surface mean diameter and volume mean diameter increased significantly with increasing moisture (6.4-13.6 % db). With the grinding method, the colour attributes of coriander powder such as L-value, a-value, b-value, hue angle and browning index varied significantly. It was observed that the specific heat followed second order polynomial relationship with temperature and moisture whereas thermal conductivity varied linearly with temperature and moisture content. The variation of glass transition temperature with moisture can be best represented in quadratic manner. Total flavonoid content (mg QE/g crude seed extract) and DPPH scavenging % activity of coriander powder is significantly affected by grinding methods. A lower value of specific heat was observed for hammer ground coriander powder as compared to pin mill ground coriander powder. The thermal conductivity of hammer mill ground coriander powder was higher as compared to pin mill ground coriander. It was observed that hammer mill yields more fine coriander powder in comparison to pin mill. The browning index was more in hammer mill ground coriander powder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru
2014-03-01
A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physicalmore » properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.« less
Wang, Huifang; Ma, Tao; Xiao, Qiang; Cao, Panrong; Chen, Xuan; Wen, Yuzhen; Xiong, Hongpeng; Qin, Wenquan; Liang, Shiping; Jian, Shengzhe; Li, Yanjun; Sun, Zhaohui; Wen, Xiujun; Wang, Cai
2017-12-08
Ectropis grisescens Warren (Lepidoptera: Geometridae) is one of the most severe pests of tea plants in China. This species commonly pupates in soil; however, little is known about its pupation ecology. In the present study, choice and no-choice tests were conducted to investigate the pupation behaviors and emergence success of E. grisescens in response to different substrates (sand, sandy loam 1, sandy loam 2, and silt loam) and moisture contents (5, 20, 35, 50, 65, and 80%). Moisture-choice bioassays showed that significantly more E. grisescens individuals pupated in or on soil (sandy loam 1 and 2 and silt loam) that was at the intermediate moisture levels, whereas 5%- and 35%-moisture sand was significantly more preferred over 80%-moisture sand for pupating. Substrate-choice bioassays showed that sand was most preferred by E. grisescens individuals at 20%- and 80%-moisture levels, but no preference was detected among the four substrates at 50%-moisture content. No-choice tests showed that the percentage of burrowed E. grisescens individuals and pupation depth were significantly lower when soil was dry (20% moisture) or wet (80% moisture). In addition, 20%-moisture sandy loam 2 and silt loam significantly decreased the body water content of pupae and emergence success of adults compared to 50%-moisture content. However, each measurement (percentage of burrowed individuals, pupation depth, body water content, or emergence success) was similar when compared among different moisture levels of sand. Interestingly, pupae buried with 80%-moisture soil exhibited significantly lower emergence success than that were unburied. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
On-irrigator pasture soil moisture sensor
NASA Astrophysics Data System (ADS)
Eng-Choon Tan, Adrian; Richards, Sean; Platt, Ian; Woodhead, Ian
2017-02-01
In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements.
Mass flow of a volatile organic liquid mixture in soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerstl, Z.; Galin, Ts.; Yaron, B.
1994-05-01
The flow of kerosene, a volatile organic liquid mixture (VOLM), was studied in loam and clay soils and in a medium sand. The kerosene residual capacity and conductivity were determined for all three media at different initial moisture contents and with kerosene of different compositions. The kerosene conductivity of the soil was found to be strongly influenced by the soil texture and initial moisture content as well as by the kerosene composition. The kerosene conductivity of the sand was two orders of magnitude greater than that of the soils and was unaffected by initial moisture contents as high as fieldmore » capacity. The kerosene conductivity of the loam soil was similar in oven dry and air dry soils, but increased significantly in soils at 70% and fun field capacity due to the Yuster effect. In the clay soil the kerosene conductivity of the air dry sod was four times that of the oven dry sod and increased somewhat in the soil at 70% field capacity. No kerosene flow was observed in the oven dry soil at full field capacity. The differences in kerosene conductivity in these soils and the effect of moisture content were attributed to the different pore-sin distributions of the soil& Changes in the composition of the kerosene due to volatilization of the light fractions resulted in increased viscosity of the residual kerosene. This increased viscosity affected the fluid properties of kerosene, which resulted in decreased kerosene conductivity in the sand and the soils. 29 refs., 4 figs., 4 tabs.« less
Effect of storage conditions on the calorific value of municipal solid waste.
Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju
2017-08-01
Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.
Variation in seasonal moisture content
John E. Phelps
1992-01-01
Several properties of wood are affected by moisture content-weight, fuel value, electrical conductivity, strength, and shrinkage. Differences in these properties are commonly observed in wood in service. For example, a green 2 X 4 weighs more than a kiln-dried 2 X 4, dried wood burns more easily and hotter than green wood, etc.
O'Donnell, J. A.; Romanovsky, V.E.; Harden, J.W.; McGuire, A.D.
2009-01-01
Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity and soil moisture for different moss and organic horizon types in black spruce ecosystems of interior Alaska. We sampled organic horizons from feather moss-dominated and Sphagnum-dominated stands and divided horizons into live moss and fibrous and amorphous organic matter. Thermal conductivity measurements were made across a range of moisture contents using the transient line heat source method. Our findings indicate a strong positive and linear relationship between thawed thermal conductivity (Kt) and volumetric water content. We observed similar regression parameters (?? or slope) across moss types and organic horizons types and small differences in ??0 (y intercept) across organic horizon types. Live Sphagnum spp. had a higher range of Kt than did live feather moss because of the field capacity (laboratory based) of live Sphagnum spp. In northern regions, the thermal properties of organic soil horizons play a critical role in mediating the effects of climate warming on permafrost conditions. Findings from this study could improve model parameterization of thermal properties in organic horizons and enhance our understanding of future permafrost and ecosystem dynamics. ?? 2009 by Lippincott Williams & Wilkins, Inc.
NASA Technical Reports Server (NTRS)
Arya, L. M. (Principal Investigator)
1980-01-01
Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.
USDA-ARS?s Scientific Manuscript database
Baling silage provides an alternative method for preserving forage quality in areas where hay production can be compromised because of the risk of rain exposure and humidity. This study was conducted to examine the effects of moisture content at baling and delayed wrapping intervals on the intake an...
Leachate recirculation: moisture content assessment by means of a geophysical technique.
Guérin, Roger; Munoz, Marie Laure; Aran, Christophe; Laperrelle, Claire; Hidra, Mustapha; Drouart, Eric; Grellier, Solenne
2004-01-01
Bioreactor technology is a waste treatment concept consisting in speeding up the biodegradation of landfilled waste by optimizing its moisture content through leachate recirculation. The measurement of variations in waste moisture content is critical in the design and control of bioreactors. Conventional methods such as direct physical sampling of waste reach their limits due to the interference with the waste matrix. This paper reviews geophysical measurements such as electrical direct current and electromagnetic slingram methods for measuring the electrical conductivity. Electrical conductivity is a property, which is linked to both moisture and temperature and can provide useful indications on the biodegradation environment in the waste mass. The study reviews three site experiments: a first experimentation shows the advantages (correlation between conductive anomaly and water seepage) but also the limits of geophysical interpretation; the two other sites allow the leachate recirculation to be tracked by studying the relative resistivity variation versus time from electrical 2D imaging. Even if some improvements are necessary to consider geophysical measurements as a real bioreactor monitoring tool, results are promising and could lead to the use of electrical 2D imaging in bioreactor designing.
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.
2017-12-01
A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.
Cell wall domain and moisture content influence southern pine electrical conductivity
Samuel L. Zelinka; Leandro Passarini; José L. Colon Quintana; Samuel V. Glass; Joseph E. Jakes; Alex C. Wiedenhoeft
2016-01-01
Recent work has highlighted the importance of movement of chemicals and ions through the wood cell wall. This movement depends strongly on moisture content and is necessary for structural damage mechanisms such as fastener corrosion and wood decay. Here, we present the first measurements of electrical resistance of southern pine at the subcellular level as a function...
Measurement of hydraulic conductivity of unsaturated soils with thermocouple psychometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, D.E.
1982-11-01
A method of measuring the hydraulic conductivity of unsaturated soil using the instantaneous profile method with psychometric probes to measure water potential is developed and described. Soil is compacted into cylindrical tubes, and the tubes are sealed and instrumented with thermocouple psychrometers. The soil is moistened or dried from one end of the tube. Psychrometers are read periodically. Hydraulic conductivity is computed from the psychrometer readings and the appropriate moisture characteristic curve for the soil and then plotted as a function of water potential, water content, or degree of saturation. Hydraulic conductivities of six soils were measured at water potentialsmore » as low as -80 bar. The measured hydraulic conductivities and moisture characteristic curves were used along with the known boundary flux in a computer program to calculate the final water content profiles. Computed and measured final water content profiles agreed tolerably well.« less
Reduction of heat insulation upon soaking of the insulation layer
NASA Astrophysics Data System (ADS)
Achtliger, J.
1983-09-01
Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.
Moisture meter calibration for untreated and ACQ-treated southern yellow pine plywood
Samuel V. Glass; Charles G. Carll
2009-01-01
Conductance moisture meter readings using stainless steel screws as electrodes were compared with gravimetric moisture content for 1) southern yellow pine (SYP) dimensioned lumber, 2) untreated (underlayment grade) SYP plywood, and 3) SYP plywood treated with alkaline copper quaternary. Meter readings were taken with the meter set to the manufacturer-provided species...
Measuring the Moisture Content of Green Wood Using Time Domain Reflectometry
Laurence Schimleck; Kim Love-Myers; Joe Sanders; Heath Raybon; Richard Daniels; Jerry Mahon; Edward Andrews; Erik Schilling
2011-01-01
The responsible usage of water by facilities that rely on wet log storage in the southern United States has become an issue of great importance as restrictions on water usage have grown in recent years. In order to learn about the dynamics of moisture content in wet-stored logs over time, it is necessary to conduct continuous monitoring of log piles. Time domain...
Moisture variation associated with water input and evaporation during sewage sludge bio-drying.
Cai, Lu; Gao, Ding; Chen, Tong-Bin; Liu, Hong-Tao; Zheng, Guo-Di; Yang, Qi-Wei
2012-08-01
The variation of moisture during sewage sludge bio-drying was investigated. In situ measurements were conducted to monitor the bulk moisture and water vapor, while the moisture content, water generation, water evaporation and aeration water input of the bio-drying bulk were calculated based on the water mass balance. The moisture in the sewage sludge bio-drying material decreased from 66% to 54% in response to control technology for bio-drying. During the temperature increasing and thermophilic phases of sewage sludge bio-drying, the moisture content, water generation and water evaporation of the bulk initially increased and then decreased. The peak water generation and evaporation occurred during the thermophilic phase. During the bio-drying, water evaporation was much greater than water generation, and aeration facilitated the water evaporation. Copyright © 2012. Published by Elsevier Ltd.
Nondestructive In Situ Measurement Method for Kernel Moisture Content in Corn Ear.
Zhang, Han-Lin; Ma, Qin; Fan, Li-Feng; Zhao, Peng-Fei; Wang, Jian-Xu; Zhang, Xiao-Dong; Zhu, De-Hai; Huang, Lan; Zhao, Dong-Jie; Wang, Zhong-Yi
2016-12-20
Moisture content is an important factor in corn breeding and cultivation. A corn breed with low moisture at harvest is beneficial for mechanical operations, reduces drying and storage costs after harvesting and, thus, reduces energy consumption. Nondestructive measurement of kernel moisture in an intact corn ear allows us to select corn varieties with seeds that have high dehydration speeds in the mature period. We designed a sensor using a ring electrode pair for nondestructive measurement of the kernel moisture in a corn ear based on a high-frequency detection circuit. Through experiments using the effective scope of the electrodes' electric field, we confirmed that the moisture in the corn cob has little effect on corn kernel moisture measurement. Before the sensor was applied in practice, we investigated temperature and conductivity effects on the output impedance. Results showed that the temperature was linearly related to the output impedance (both real and imaginary parts) of the measurement electrodes and the detection circuit's output voltage. However, the conductivity has a non-monotonic dependence on the output impedance (both real and imaginary parts) of the measurement electrodes and the output voltage of the high-frequency detection circuit. Therefore, we reduced the effect of conductivity on the measurement results through measurement frequency selection. Corn moisture measurement results showed a quadric regression between corn ear moisture and the imaginary part of the output impedance, and there is also a quadric regression between corn kernel moisture and the high-frequency detection circuit output voltage at 100 MHz. In this study, two corn breeds were measured using our sensor and gave R ² values for the quadric regression equation of 0.7853 and 0.8496.
Campomanesia adamantium (Cambess.) O. Berg seed desiccation: influence on vigor and nucleic acids.
Dresch, Daiane M; Masetto, Tathiana E; Scalon, Silvana P Q
2015-01-01
The aim of this study was to evaluate the sensitivity of Campomanesia adamantium seeds to desiccation by drying in activated silica gel (fast) and under laboratory conditions (slow). To assess the sensitivity of the seeds to desiccation, we used drying with silica gel and drying under laboratory conditions (25 °C), in order to obtain seeds with moisture content of 45, 35, 30, 25, 20, 15, 10 and 5%. The physiological potential of the seeds after desiccation was evaluated by measuring primary root protrusion, percentage of normal seedlings, germination seed index, seedling length, total seedling dry mass, electrical conductivity and DNA and RNA integrities. The C. adamantium seeds were sensitive to desiccation and to a reduction in moisture content to 21.1% or less by desiccation using silica gel, and to 17.2% or less by desiccation under laboratory conditions; impairment of the physiological potential of the seeds was observed at these low moisture content levels. The integrity of the seed genomic DNA was not affected after drying seeds in the two methods. However, drying in silica gel to 4.5% moisture content and drying under laboratory conditions to 5.4% moisture content resulted in the loss of seed RNA integrity.
NASA Astrophysics Data System (ADS)
Bilema, Munder A.; Aman, Mohamad Y.; Hassan, Norhidayah A.; Ahmad, Kabiru A.; Elghatas, Hamza M.; Radwan, Ashraf A.; Shyaa, Ahmed S.
2018-04-01
Crumb rubber obtained from scrap tires has been incorporated with asphalt binder to improve the performance of asphalt mixtures in the past decades. Pavements containing crumb-rubber modified (CRM) binders present one major drawback: larger amounts of greenhouse gas emissions are produced as there is rise in the energy consumption at the asphalt plant due to the higher viscosity of these type of binders compared with a conventional mixture. The objective of this paper is to calculate the optimum bitumen content for each percentage and evaluate the moisture sensitivity of crumb rubber modified asphalt at two different compacting temperatures. In this study, crumb rubber modified percentages was 0%, 5%, 10% and 15% from the binder weight, with adding 1.5% warm mix asphalt additive (Sasobit) and crush granite aggregate of 9.5mm Nominal maximum size was used after assessing its properties. Ordinary Portland Cement (OPC) used by 2% from fine aggregate. The wet method was using to mix the CRM with bitumen, the CRM conducted at 177°C for 30 min with 700rpm and Sasobit conducted at 120°C for 10 min with 1000rpm. As a result, from this study the optimum bitumen content (OBC) was increased with increased crumb rubber content. For performance test, it was conducted using the AASHTO T283 (2007): Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. The result was as expected and it was within the specification of the test, the result show that the moisture damage increased with increased the crumb rubber content but it is not exceeding the limit of specification 80% for indirect tension strength ratio (ITSR). For the temperature was with lowing the temperature the moisture damage increased.
Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan
2017-04-01
Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining a specific relationship for the most degraded slope (steep slope under agriculture) and a single relationship for all the other slopes, both non-linear relations, yielded the best results with an overall explained variance of 90%. We applied the latter model to measurements of the ECa along transects at the different slopes, which allowed us to highlight the strong control of topography on the soil moisture content. We also observed a significant impact of the land use with higher moisture content on the agricultural slopes, probably due to a reduced evapotranspiration.
Effect of Water on the Thermo-Mechanical Behavior of Carbon Cloth Phenolic
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Stokes, Eric; Baker, Eric H.
2011-01-01
The results of thermo-mechanical experiments, which were conducted previously by one of the authors, are reviewed. The strain in the direction normal to the fabric plane was measured as a function of temperature for a variety of initial moisture contents and heating rates. In this paper, the general features of the thermo-mechanical response are discussed and the effect of heating rate and initial moisture content are highlighted. The mechanical interaction between the phenolic polymer and water trapped within its free volumes as the polymer is heated to high temperatures is discussed. An equation for the internal stresses which are generated within the polymer due to trapped water is obtained from the total stress expression for a binary mixture of polymer and water. Numerical solutions for moisture diffusion in the thermo-mechanical experiments were performed and the results of these solutions are presented. The results of the moisture diffusion solutions help to explain the effects of heating rate and moisture content on the strain behavior normal to the fabric plane.
Examining diel patterns of soil and xylem moisture using electrical resistivity imaging
NASA Astrophysics Data System (ADS)
Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini
2016-05-01
The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.
Extraction of organic contaminants from marine sediments and tissues using microwave energy.
Jayaraman, S; Pruell, R J; McKinney, R
2001-07-01
In this study, we compared microwave solvent extraction (MSE) to conventional methods for extracting organic contaminants from marine sediments and tissues with high and varying moisture content. The organic contaminants measured were polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, and polycyclic aromatic hydrocarbons (PAHs). Initial experiments were conducted on dry standard reference materials (SRMs) and field collected marine sediments. Moisture content in samples greatly influenced the recovery of the analytes of interest. When wet sediments were included in a sample batch, low recoveries were often encountered in other samples in the batch, including the dry SRM. Experiments were conducted to test the effect of standardizing the moisture content in all samples in a batch prior to extraction. SRM1941a (marine sediment). SRM1974a (mussel tissue), as well as QA96SED6 (marine sediment), and QA96TIS7 (marine tissue), both from 1996 NIST Intercalibration Exercise were extracted using microwave and conventional methods. Moisture levels were adjusted in SRMs to match those of marine sediment and tissue samples before microwave extraction. The results demonstrated that it is crucial to standardize the moisture content in all samples, including dry reference material to ensure good recovery of organic contaminants. MSE yielded equivalent or superior recoveries compared to conventional methods for the majority of the compounds evaluated. The advantages of MSE over conventional methods are reduced solvent usage, higher sample throughput and the elimination of halogenated solvent usage.
Zhu, Nengwu
2006-10-01
Pilot composting experiments of swine manure with corncob were conducted to evaluate the performance of the aerated static bin composting system. Effects of temperature control (60 and 70 degrees C) and moisture content (70% and 80%) were monitored on the composting by measuring physical and chemical indexes. The results showed that (1) the composting system could destroy pathogens, converted nitrogen from unstable ammonia to stable organic forms, and reduced the volume of waste; (2) significant difference of NH(4)(+)-N (P(12) = 0.074), and (NO(3)(-) + NO(2)(-))-N (P(12) = 0.085) was found between the temperature control treatments; (3) anaerobic reaction in the treatment with 80% moisture content resulted in significant difference of pH (P(23) = 0.006), total organic matter (P(23) = 0.003), and germination index (P(23) = 0.040) between 70% and 80%. Therefore, the optimum initial moisture content was less than 80% with the composting of swine manure and corncob by using the composting system.
Temporal changes in soil water repellency linked to the soil respiration and CH4 and CO2 fluxes
NASA Astrophysics Data System (ADS)
Qassem, Khalid; Urbanek, Emilia; van Keulen, Geertje
2014-05-01
Soil water repellency (SWR) is known to be a spatially and temporally variable phenomenon. The seasonal changes in soil moisture lead to development of soil water repellency, which in consequence may affect the microbial activity and in consequence alter the CO2 and CH4 fluxes from soils. Soil microbial activity is strongly linked to the temperature and moisture status of the soil. In terms of CO2 flux intermediate moisture contents are most favourable for the optimal microbial activity and highest CO2 fluxes. Methanogenesis occurs primarily in anaerobic water-logged habitats while methanotrophy is a strictly aerobic process. In the study we hypothesise that the changes in CO2 and CH4 fluxes are closely linked to critical moisture thresholds for soil water repellency. This research project aims to adopt a multi-disciplinary approach to comprehensively determine the effect of SWR on CO2 and CH4 fluxes. Research is conducted in situ at four sites exhibiting SWR in the southern UK. Flux measurements are carried out concomitant with meteorological and SWR observations Field observations are supported by laboratory measurements carried out on intact soil samples collected at the above identified field sites. The laboratory analyses are conducted under constant temperatures with controlled changes of soil moisture content. Methanogenic and Methanotrophic microbial populations are being analysed at different SWR and moisture contents using the latest metagenomic and metatranscriptomic approaches. Currently available data show that greenhouse gas flux are closely linked with soil moisture thresholds for SWR development.
Further experimentation on bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1992-03-01
This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, I.; McDonnell, J.
2009-05-01
We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.
Thermal insulation materials for inside applications: Hygric and thermal properties
NASA Astrophysics Data System (ADS)
Jerman, Miloš; Černý, Robert
2017-11-01
Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.
MoisturEC: a new R program for moisture content estimation from electrical conductivity data
Terry, Neil; Day-Lewis, Frederick D.; Werkema, Dale D.; Lane, John W.
2018-01-01
Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; Shahab Sokhansanj; Sukumar Bandyopadhyay
Changes in proximate composition of fish and rice flour coextrudates like moisture, protein, and fat content were studied with respect to extrusion process v ariables like barrel temperature, x1 (100–200 degrees C); screw speed, x2 (70–110 rpm); fish content of the feed, x3 (5–45 percent); and feed moisture content, x4 (20–60 percent). Experiments were conducted at five levels of the process variables based on rotatable experimental design. Response surface models (RSM) were developed that adequately described the changes in moisture, protein, and fat content of the extrudates based on the coeff icient of determination (R2) values of 0.95, 0.99, andmore » 0.94. ANOVA analysis indicated that extrudate moisture content was influenced by x4, protein content by x1 and x3, and fat content by x3 and x4 at P < 0.001. Trends based on response surf ace plots indicated that the x1 of about 200 degrees C, x2 of about 90 rpm, x3 of about 25%, and x4 of about 20% minimized the moisture in the extrudates. Protein content was maximized at x1 of 100 degrees C, x2 > 80 rpm, x3 of about 45 percent, and x4 > 50 percent, and fat content was minimized at x1 of about 200 degrees C, x2 of about 85–95 rpm, x3 < 15 percent, and x4 of about >50 percent. Optimized process variables based on a genetic algorithm (GA) for minimum moisture and fat content and maximum protein content were x1 = 199.86, x2 = 109.86, x3 = 32.45, x4 = 20.03; x1 = 199.71, x2 = 90.09, x3 = 15.27, x4 = 58.47; and x1 = 102.97, x2 = 107.67, x3 = 44.56, x4 = 59.54. The predicted values were 17.52 percent, 0.57 percent, and 46.65 percent. Based on the RSM and GA analy sis, extrudate moisture and protein content was influenced by x1, x3, and x4 and fat content by x2, x3, and x4.« less
Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin
2016-06-01
Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.
Further experimentation on bubble generation during transformer overload. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1992-03-01
This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less
Observed effects of soil organic matter content on the microwave emissivity of soils
NASA Technical Reports Server (NTRS)
O'Neill, P. E.; Jackson, T. J.
1990-01-01
In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.
Observed effects of soil organic matter content on the microwave intensity of soils
NASA Technical Reports Server (NTRS)
Jackson, T. J.; Oneill, P. E.
1988-01-01
In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhi; Zhang, Mingli; Ma, Wei
Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layermore » is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru
2011-08-01
Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages atmore » it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial dimensions and the final dimensions after 2 weeks of storage in controlled environment of all the samples were measured. Durability, dimensional stability, and moisture content tests were conducted after two weeks of storage of the briquettes produced. Initial results indicated that moisture content played a significant role on briquettes durability, stability, and density. Low moisture content of the straws (7-12%) gave more durable briquettes. Briquette density increased with increasing pressure depending on the moisture content value. The axial expansion was more significant than the lateral expansion, which in some cases tended to be nil depending on the material and operating variables. Further data analysis is in progress in order to understand the significance of the process variables based on ANOVA. Regression models were developed to predict the changes in quality of briquettes with respect of the process variables under study. Keywords: Herbaceous biomass, densification, briquettes, density, durability, dimensional stability, ANOVA and regression equations« less
Microstrip transmission line for soil moisture measurement
NASA Astrophysics Data System (ADS)
Chen, Xuemin; Li, Jing; Liang, Renyue; Sun, Yijie; Liu, C. Richard; Rogers, Richard; Claros, German
2004-12-01
Pavement life span is often affected by the amount of voids in the base and subgrade soils, especially moisture content in pavement. Most available moisture sensors are based on the capacitive sensing using planar blades. Since the planar sensor blades are fabricated on the same surface to reduce the overall size of the sensor, such structure cannot provide very high accuracy for moisture content measurement. As a consequence, a typical capacitive moisture sensor has an error in the range of 30%. A more accurate measurement is based on the time domain refelctometer (TDR) measurement. However, typical TDR system is fairly expensive equipment, very large in size, and difficult to operate, the moisture content measurement is limited. In this paper, a novel microstrip transmission line based moisture sensor is presented. This sensor uses the phase shift measurement of RF signal going through a transmission line buried in the soil to be measured. Since the amplitude of the transmission measurement is a strong function of the conductivity (loss of the media) and the imaginary part of dielectric constant, and the phase is mainly a strong function of the real part of the dielectric constant, measuring phase shift in transmission mode can directly obtain the soil moisture information. This sensor was designed and implemented. Sensor networking was devised. Both lab and field data show that this sensor is sensitive and accurate.
Field performance of three real-time moisture sensors in sandy loam and clay loam soils
USDA-ARS?s Scientific Manuscript database
The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...
NASA Astrophysics Data System (ADS)
Drake, B.; Powell, T.; Li, J.; Hinkle, R.; Rasse, D.
2007-12-01
Stomatal opening in plant leaves control carbon and water exchange between vegetation and the atmosphere. Closure of these water-gates in response to increased atmospheric CO2 mixing ratio's, reduces transpiration under most laboratory and short term experimental conditions. Does this imply however, as atmospheric CO2 rises, and plant canopies expand, that evapo-transpiration (ETR), soil moisture content (SMC), and ecosystem water use efficiency (WUE) will increase? To test this question, field experiments have been and still are conducted using open top chambers. We have exposed native species in Florida Scrub to a carbon dioxide mixing ratio of nearly 700 ppmv CO2 for the past ten years and in Chesapeake Bay wetlands for 21 years. As a result of this treatment, in both ecosystems there was an increase in net ecosystem CO2 exchange and leaf area but a reduction of stomatal conductance, stem flow, transpiration, and ETR. For Florida scrub oak, these changes were also accompanied by an increase in soil moisture content as well.
NASA Astrophysics Data System (ADS)
Wang, H. G.; Zhang, J. L.; Ramli, M. F.; Mao, M. X.; Ye, J. M.; Yang, W. Q.; Wu, Z. P.
2016-11-01
The moisture content of granules in fluidised bed drying, granulation and coating processes can typically be between 1%~25%, resulting in the change of permittivity and conductivity during the processes. Electrical capacitance tomography (ECT) has been used for this purpose, but has a limit because too much water can cause a problem in capacitance measurement. Considering that microwave tomography (MWT) has a wide range of frequency (1~2.5 GHz) and can be used to measure materials with high permittivity and conductivity, the objective of this research is to combine ECT and MWT together to investigate the solids concentration with different moisture content and different flow patterns. The measurement results show that both ECT and MWT are functions of moisture content as well as flow patterns, and their measurements are complementary to each other. This is the first time that these two tomography modalities have been combined together and applied to image the complex solids distribution. The obtained information may be used for the process control of fluidised bed drying, granulation and coating to improve operation efficiency.
MoisturEC: A New R Program for Moisture Content Estimation from Electrical Conductivity Data.
Terry, Neil; Day-Lewis, Frederick D; Werkema, Dale; Lane, John W
2018-03-06
Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data-analysis tools are needed to "translate" geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user-friendly tools are required to fully capitalize on the potential of geophysical information for soil-moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two- and three-dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Zou, Yang; Dong, Shuangzhao; Du, Yun; Li, Shengli; Wang, Yajing; Cao, Zhijun
2016-09-01
A study using four Holstein cows with ruminal cannulas was conducted to evaluate the degradability of different moisture content or particle size of maize silage and alfalfa haylage. The maize silage (MS; 20-mm length) and alfalfa haylage (AH; 40-mm length) samples were wet (wet maize silage, MSW; wet alfalfa haylage, AHW), dried (dried maize silage, MSD; dried alfalfa haylage, AHD), or ground to pass through a 2.5-mm screen (dried ground maize silage, MSG; dried ground alfalfa haylage, AHG). Samples were incubated in the rumen for 2, 6, 12, 24, 36, 48, and 72 h. Cows were fed ad libitum and allowed free access to water. High moisture content treatment of MSW expressed a lower rinsing NDF and ADF degradability at 2 h ( P < 0.05) compared with dried samples (MSD and MSG). Different moisture content and particle size had a significant impact ( P < 0.05) on the NDF degradability at 72 h, ADF degradability at 36, 48, and 72 h, and ruminally degradable ADF. All of the highest values were observed in small particle size and low moisture content AHG treatment. Based on this study, sample processing, such as drying and grinding, should be considered when evaluating nutritive values of forages.
Yenjai, Pornthip; Chaiear, Naesinee; Charerntanyarak, Lertchai; Boonmee, Mallika
2012-01-01
During the rice harvesting season in Thailand, large amounts of fresh paddy are sent to rice mills immediately after harvesting due to a lack of proper farm storage space. At certain levels of moisture content, rice grains may generate hazardous gases, which can replace oxygen (O(2)) in the confined spaces of underground rice mill pits. This phenomenon has been observed in a fatal accident in Thailand. Our study aimed to investigate the type of gases and their air concentrations emitted from the paddy piles at different levels of moisture content and duration of piling time. Four levels of moisture content in the paddy piles were investigated, including dry paddy group (< 14% wet basis (wb)), wet paddy groups (22-24, 25-27 and 28-30%wb). Our measurements were conducted in 16 experimental concrete pits 80 × 80 cm wide by 60 cm high. Gases emitted were measured with an infrared spectrophotometer and a multi-gas detector every 12 h for 5 days throughout the experiment. The results revealed high levels of carbon dioxide (CO(2)) (range 5,864-8,419 ppm) in all wet paddy groups, which gradually increased over time. The concentration of carbon monoxide (CO), methane (CH(4)), nitromethane (CH(3)NO(2)) and nitrous oxide (N(2)O) in all wet paddy groups increased with piling time and with moisture content, with ranges of 11-289; 2-8; 36-374; and 4-26 ppm, respectively. The highest levels of moisture content in the paddy piles were in the range 28-30%wb. Nitrogen dioxide (NO(2)) concentrations were low in all paddy groups. The percentage of O(2) in the wet paddy groups decreased with piling time and moisture content (from 18.7% to 4.1%). This study suggested that hazardous gases could be emitted in moist paddy piles, and their concentrations could increase with increasing moisture content and piling time period.
Voller, L M; Dawson, P L; Han, I Y
1996-12-01
New aseptic processes are being used and refined to produce convenient, shelf stable liquid products containing meat particles. These processes utilize high temperature, short time thermal treatments to minimize food quality change; however, little research has been conducted on the effects of this process on the texture of meat from mature hens traditionally used for canning. The objective of this study was to examine textural and structural changes in meat structure due to different high temperature (HT) heat treatments and meat moisture contents were examined by use of electron microscopy and torsion analyses. Cooked gels of different moisture contents (71.2 to 74.8%) were formulated from spent fowl breast meat and exposed to processing temperatures of 120 or 124 C. The HT processing resulted in stronger (tougher) meat gels that were more deformable (more chewy) than gels that were not processed by HT. Water added prior to cooking was not retained in samples that were cooked and then processed at 124 C, but was retained in the samples processed at 120 C. Electron micrographs showed a more organized and open gel structure in the samples with higher moisture content and lower temperature (120 C) processing compared to the lower moisture and higher (124 C) temperature treatments.
Physicochemical properties of the Harenna forest honey, Bale, Ethiopia.
Belay, Abera; Solomon, W K; Bultossa, Geremew; Adgaba, Nuru; Melaku, Samuel
2013-12-15
In this study, the physicochemical properties of the Harenna forest honey were characterised. The Harenna forest honey moisture, reducing sugar, sucrose, water insoluble solids, ash, free acid, pH, HMF contents, electrical conductivity and specific rotation were found to be 17.89±1.02 g/100 g, 69.48±1.72 g/100 g, 2.43±1.02 g/100 g, 0.12±0.08 g/100 g, 0.19±0.09 g/100 g, 34.57±4.80 meq/kg, 3.87±0.16, 0.84±0.46 mg/1000 g, 0.70±0.04 mS/cm and -132±15.27 [α]D(20), respectively. All quality indicators of honey from traditional and frame hives were within the criteria set by Codex Alimentarus (CA), European Union (EU) and Ethiopian standard, except for water insoluble solids. The type of hives significantly affected the moisture (p<0.01), reducing sugar (p<0.05), ash (p<0.05) and HMF (p<0.05) contents of the Harenna forest honey. The sampling location also significantly affected the moisture (p<0.001), water insoluble solids (p<0.01), ash (p<0.01), electrical conductivity (p<0.001) and specific rotation (p<0.001) values of the Harenna forest honey. Significant correlations were observed between moisture content and electrical conductivity (r=0.76, p<0.01), and electrical conductivity and specific rotation (r=0.74, p<0.01). Traditional hive has no negative effect on quality factors of honey if honey harvesting, handling and processing is properly carried out. Copyright © 2013 Elsevier Ltd. All rights reserved.
Subcellular Electrical Measurements as a Function of Wood Moisture Content
Samuel L. Zelinka; José L. Colon Quintana; Samuel V. Glass; Joseph E. Jakes; Alex C. Wiedenhoeft
2015-01-01
The percolation model developed by Zelinka et al. was based upon macroscale measurements of the electrical conductivity and implicitly treats the wood material as homogenous. The transport mechanism proposed by Jakes et al. depends upon a moisture induced glass transition occurring in the hemicelluloses. This theory suggests that there are likely differences in the...
Measuring moisture dynamics to predict fire severity in longleaf pine forests.
Sue A. Ferguson; Julia E. Ruthford; Steven J. McKay; David Wright; Clint Wright; Roger Ottmar
2002-01-01
To understand the combustion limit of biomass fuels in a longleaf pine (Pinus palustris) forest, an experiment was conducted to monitor the moisture content of potentially flammable forest floor materials (litter and duff) at Eglin Air Force Base in the Florida Panhandle. While longleaf pine forests are fire dependent ecosystems, a long history of...
Variability and scaling of hydraulic properties for 200 Area soils, Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaleel, R.; Freeman, E.J.
Over the years, data have been obtained on soil hydraulic properties at the Hanford Site. Much of these data have been obtained as part of recent site characterization activities for the Environmental Restoration Program. The existing data on vadose zone soil properties are, however, fragmented and documented in reports that have not been formally reviewed and released. This study helps to identify, compile, and interpret all available data for the principal soil types in the 200 Areas plateau. Information on particle-size distribution, moisture retention, and saturated hydraulic conductivity (K{sub s}) is available for 183 samples from 12 sites in themore » 200 Areas. Data on moisture retention and K{sub s} are corrected for gravel content. After the data are corrected and cataloged, hydraulic parameters are determined by fitting the van Genuchten soil-moisture retention model to the data. A nonlinear parameter estimation code, RETC, is used. The unsaturated hydraulic conductivity relationship can subsequently be predicted using the van Genuchten parameters, Mualem`s model, and laboratory-measured saturated hydraulic conductivity estimates. Alternatively, provided unsaturated conductivity measurements are available, the moisture retention curve-fitting parameters, Mualem`s model, and a single unsaturated conductivity measurement can be used to predict unsaturated conductivities for the desired range of field moisture regime.« less
NASA Astrophysics Data System (ADS)
Wang, Lu; Yu, Qingchun
2016-11-01
This study investigated the effects of moisture on high-pressure methane adsorption in carboniferous shales from the Qaidam Basin, China. The shale characteristics, including the organic/inorganic compositions and pore structure (volume and surface) distribution, were obtained using various techniques. Gibbs adsorption measurements were performed over a pressure range up to 6 MPa and temperatures of 308.15 K on dry samples and moisture-equilibrated samples to analyze the correlations between organic/inorganic matter, pore structure, and moisture content on the methane sorption capacity. Compared to dry samples, the sorption capacity of wet samples (0.44-2.52% of water content) is reduced from 19.7 ± 5.3% to 36.1% ± 6.1%. Langmuir fitting is conducted to investigate moisture-dependent variations of adsorbed methane density, Langmuir pressure, and volume. By combining the pore volume and surface distribution analyses, our observations suggested that the main competition sites for CH4-H2O covered pores of approximately 2-7 nm, whereas the effective sites for methane and water were predominantly distributed within smaller (<4 nm) and larger pores (>10 nm), respectively. Regarding the compositional correlations, the impact of moisture on the amount of adsorbed methane shows a roughly linearly decreasing trend with increasing TOC content ranging from 0.62 to 2.88%, whereas the correlation between the moisture effect and various inorganic components is more complicated. Further fitting results indicate that illite/smectite mixed formations are closely related to the methane capacity, whereas the illite content show an evident connection to the pore structural (volume and surface) variations in the presence of moisture.
Nilsson, Martin; Frenning, Göran; Gråsjö, Johan; Alderborn, Göran; Strømme, Maria
2006-10-19
The present study aims at contributing to a complete understanding of the water-induced ionic charge transport in cellulose. The behavior of this transport in loosely compacted microcrystalline cellulose (MCC) powder was investigated as a function of density utilizing a new type of measurement setup, allowing for dielectric spectroscopy measurement in situ during compaction. The ionic conductivity in MCC was found to increase with increasing density until a leveling-out was observed for densities above approximately 0.7 g/cm3. Further, it was shown that the ionic conductivity vs density followed a percolation type behavior signifying the percolation of conductive paths in a 3D conducting network. The density percolation threshold was found to be between approximately 0.2 and 0.4 g/cm3, depending strongly on the cellulose moisture content. The observed percolation behavior was attributed to the forming of interparticulate bonds in the MCC and the percolation threshold dependence on moisture was linked to the moisture dependence of particle rearrangement and plastic deformation in MCC during compaction. The obtained results add to the understanding of the density-dependent water-induced ionic transport in cellulose showing that, at given moisture content, the two major parameters determining the magnitude of the conductivity are the connectedness of the interparticluate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. At densities between approximately 0.7 and 1.2 g/cm3 both the bond and the pore networks have percolated, facilitating charge transport through the MCC compact.
Drying and control of moisture content and dimensional changes
Richard Bergman
2010-01-01
The discussion in this chapter is concerned with moisture content determination, recommended moisture content values, drying methods, methods of calculating dimensional changes, design factors affecting such changes in structures, and moisture content control during transit, storage, and construction. Data on green moisture content, fiber saturation point, shrinkage,...
Makowska, Agnieszka; Cais-Sokolińska, Dorota; Lasik, Agata
2014-01-01
The value of water activity in extruded products constitutes a significant indicator of their quality and stability. The state, in which water is found in extruded products, is an indicator of the conducted extrusion process and the used raw material. The aim of the study was to assess water activity in extruded products made from a mixture of com grits with 12.5 and 15.0% moisture contents and different level of addition of whey proteins. It was shown that the degree of mixture moisture content did not have an effect on the value of aw in produced puffs. The greatest difference was recorded when introducing 3% proteins in comparison to aw of puffs produced solely from corn grits. Δaw = 0.023. The greater the content of whey proteins, the lower the aw value. A 3-month storage at a temperature of 18 ±0.5°C influenced aw of snacks produced from a mixture with a higher moisture content.
Implications of variable waste placement conditions for MSW landfills.
Cox, Jason T; Yesiller, Nazli; Hanson, James L
2015-12-01
This investigation was conducted to evaluate the influence of waste placement practices on the engineering response of municipal solid waste (MSW) landfills. Waste placement conditions were varied by moisture addition to the wastes at the time of disposal. Tests were conducted at a California landfill in test plots (residential component of incoming wastes) and full-scale active face (all incoming wastes including residential, commercial, and self-delivered components). The short-term effects of moisture addition were assessed by investigating compaction characteristics and moisture distribution and the long-term effects by estimating settlement characteristics of the variably placed wastes. In addition, effects on engineering properties including hydraulic conductivity and shear strength, as well as economic aspects were investigated. The unit weight of the wastes increased with moisture addition to a maximum value and then decreased with further moisture addition. At the optimum moisture conditions, 68% more waste could be placed in the same landfill volume compared to the baseline conditions. Moisture addition raised the volumetric moisture content of the wastes to the range 33-42%, consistent with values at and above field capacity. Moisture transfer occurred between consecutive layers of compacted wastes and a moisture addition schedule of 2 days of as-received conditions and 1 day of moisture addition was recommended. Settlement of wastes was estimated to increase with moisture addition, with a 34% increase at optimum moisture compared to as-received conditions. Overall, moisture addition during compaction increased unit weight, the amount of incoming wastes disposed in a given landfill volume, biological activity potential, and predicted settlement. The combined effects have significant environmental and economic implications for landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions.
Pintiaux, Thibaud; Viet, David; Vandenbossche, Virginie; Rigal, Luc; Rouilly, Antoine
2013-05-30
Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young's Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations.
Accelerated production of dry cured hams.
Marriott, N G; Graham, P P; Shaffer, C K; Phelps, S K
1987-01-01
Ten uncured legs from the right side of the sampled pork carcasses (Study A) were vacuum tumbled with the cure adjuncts for 30 min (T) and 10 counterparts from the left side were tumbled 30 min, rested 30 min and tumbled an additional 30 min (TRT). Evaluations were conducted at 40 and 70 days after cure application for color, taste attributes, percentage moisture, percentage salt and NO(3)(-) and NO(2)(-) content. Study B was the same except that 18 legs were boned, tumbled and cured for 40, 56 and 70 days. The TRT samples (Study A) at 40 days sustained less color fading (P < 0.05) during cookery, but no differences (P > 0.05) existed among the uncooked hams. Increased cure time enhanced moisture loss and salt content (Study A) and color retention during cookery (Study B). The TRT samples had increased moisture loss and salt content (Study A). Copyright © 1987. Published by Elsevier Ltd.
High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions
Pintiaux, Thibaud; Viet, David; Vandenbossche, Virginie; Rigal, Luc; Rouilly, Antoine
2013-01-01
Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young’s Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations. PMID:28809271
Wei, Ze-Xiu; Liang, Yin-Li; Inoue, Mitsuhiro; Zhou, Mao-Juan; Huang, Mao-Lin; Gu, Jian-Feng; Wu, Yan
2009-07-01
With cucumber (Cucumis sativus L.) variety Jinyou 1 as test material, a greenhouse experiment was conducted to study the effects of different water and fertilizer supply on the cucumber soil nutrient content, enzyme activity, and microbial diversity. Three water regimes (50%-60%, 70%-80%, and 90%-100% soil relative moisture content) and two fertilization practices (600 kg N x hm(-2) + 420 kg P2O5 x hm(-2) and 420 kg N x hm(-2) + 294 kg P2O5 x hm(-2)) were designed. The increase of water and fertilizer supply benefited the increase of soil available P content and sucrase activity. Increasing fertilization rate increased soil NH(4+)-N content but decreased soil protease activity, and increasing soil relative moisture content decreased the soil NH(4+)-N content and urease activity. Soil microbial diversity had no significant correlations with soil nutrient contents, but significantly positively correlated with soil urease activity and negatively correlated with soil sucrase activity. Among the treatments, the treatment 70%-80% soil relative moisture content + 600 kg N x hm(-2) and 420 kg P2O5 x hm(-2) had the highest soil nutrient contents, soil urease, sucrase, and phosphatase activities, and soil microbial diversity and evenness, being the best in soil potential productivity.
Moisture Content Influences Ignitability of Slash Pine Litter
Winfred H. Blackmarr
1972-01-01
The influence of moisture content on the ignitability of slash pine litter was measured by dropping lighted matches onto fuel beds conditioned to different levels of moisture content.The percentage of matches igniting the fuel bed was used to indicate ignition probability at each moisture content. The "critical range" of fuel moisture contents within which...
Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen
2012-11-01
Taking fuel moisture content, fuel loading, and fuel bed depth as controlling factors, the fuel beds of Mongolian oak leaves in Maoershan region of Northeast China in field were simulated, and a total of one hundred experimental burnings under no-wind and zero-slope conditions were conducted in laboratory, with the effects of the fuel moisture content, fuel loading, and fuel bed depth on the flame length and its residence time analyzed and the multivariate linear prediction models constructed. The results indicated that fuel moisture content had a significant negative liner correlation with flame length, but less correlation with flame residence time. Both the fuel loading and the fuel bed depth were significantly positively correlated with flame length and its residence time. The interactions of fuel bed depth with fuel moisture content and fuel loading had significant effects on the flame length, while the interactions of fuel moisture content with fuel loading and fuel bed depth affected the flame residence time significantly. The prediction model of flame length had better prediction effect, which could explain 83.3% of variance, with a mean absolute error of 7.8 cm and a mean relative error of 16.2%, while the prediction model of flame residence time was not good enough, which could only explain 54% of variance, with a mean absolute error of 9.2 s and a mean relative error of 18.6%.
NASA Astrophysics Data System (ADS)
Moghadas, Davood; Jadoon, Khan Zaib; McCabe, Matthew F.
2017-12-01
Monitoring spatiotemporal variations of soil water content (θ) is important across a range of research fields, including agricultural engineering, hydrology, meteorology and climatology. Low frequency electromagnetic induction (EMI) systems have proven to be useful tools in mapping soil apparent electrical conductivity (σa) and soil moisture. However, obtaining depth profile water content is an area that has not been fully explored using EMI. To examine this, we performed time-lapse EMI measurements using a CMD mini-Explorer sensor along a 10 m transect of a maize field over a 6 day period. Reference data were measured at the end of the profile via an excavated pit using 5TE capacitance sensors. In order to derive a time-lapse, depth-specific subsurface image of electrical conductivity (σ), we applied a probabilistic sampling approach, DREAM(ZS) , on the measured EMI data. The inversely estimated σ values were subsequently converted to θ using the Rhoades et al. (1976) petrophysical relationship. The uncertainties in measured σa, as well as inaccuracies in the inverted data, introduced some discrepancies between estimated σ and reference values in time and space. Moreover, the disparity between the measurement footprints of the 5TE and CMD Mini-Explorer sensors also led to differences. The obtained θ permitted an accurate monitoring of the spatiotemporal distribution and variation of soil water content due to root water uptake and evaporation. The proposed EMI measurement and modeling technique also allowed for detecting temporal root zone soil moisture variations. The time-lapse θ monitoring approach developed using DREAM(ZS) thus appears to be a useful technique to understand spatiotemporal patterns of soil water content and provide insights into linked soil moisture vegetation processes and the dynamics of soil moisture/infiltration processes.
Effect of Packaging Materials on Orthosiphon Stamineus Dried-Leaf Quality During Storage
NASA Astrophysics Data System (ADS)
Norawanis, A. R.; Shaari, A. R.; Leng, L. Y.
2018-03-01
The experiment was conducted to determine the effects on the total phenolic content, antioxidant capacity, moisture content and total different color (ΔE) when the O. stamineus dried whole-leaf were packed in different packaging materials (plastic bag, paper bag and glass container) and stored under room temperature (±25 °C) and relative humidity (±65 %RH) for 8 weeks. The total phenolic compounds and antioxidant activity were measured using the Folin-Ciocalteu method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity assay respectively, and analyzed using UV/VIS Spectrophotometer. The moisture content changes were examined using a moisture analyzer and the color changes were analyzed using colorimeter. The results showed that packing O. stamineus dried whole-leaf in different packaging materials significantly affected the herbal leaves quality. After 8 weeks of storage period, the total phenolic content and antioxidant capacity exhibited the increase values during storage. Meanwhile, the moisture content of the samples decreased by storage period for the samples packed in plastic bag and glass container. The moisture content of the samples packed in the paper bag fluctuated along the 8 weeks of storage period. The total different color (ΔE) of the O. stamineus dried whole-leaf increased by storage period. The highest changes of ΔE belonged to the samples packed in the glass container, followed by paper and plastic bags. The selection of the packaging materials can be considered as an important element to control the quality of raw herbal materials for further processing and the herbal finished products.
Use of Temperature and Humidity Sensors to Determine Moisture Content of Oolong Tea
Chen, Andrew; Chen, Hsuan-Yu; Chen, Chiachung
2014-01-01
The measurement of tea moisture content is important for processing and storing tea. The moisture content of tea affects the quality and durability of the product. Some electrical devices have been proposed to measure the moisture content of tea leaves but are not practical. Their performance is influenced by material density and packing. The official oven method is time-consuming. In this study, the moisture content of Oolong tea was measured by the equilibrium relative humidity technique. The equilibrium relative humidity, and temperature, of tea materials were measured by using temperature and relative humidity sensors. Sensors were calibrated, and calibration equations were established to improve accuracy. The moisture content was calculated by using an equilibrium moisture content model. The error of the moisture content determined with this method was within 0.5% w.b. at moisture <15% w.b. Uncertainty analysis revealed that the performance of the humidity sensor had a significant effect on the accuracy of moisture determination. PMID:25153142
Inventory of File ndas.t12z.awip3d00.tm03.grib2
parameter in canopy conductance [Fraction] 529 surface RCSOL analysis Soil moisture parameter in canopy -0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 532 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 533 0.1-0.4 m below ground TSOIL
Evaluation of moisture reduction in small diameter trees after crushing
Donald L. Sirois; Cynthia L. Rawlins; Bryce J. Stokes
1991-01-01
Past studies have suggested that processing small diameter whole trees like those foumd on rights-of-way (ROWs) would help reduce transportion costs and increase energy value by lowering stem moisture content. Small stems were crushed by a roller crusher/splitter test bench machine and allowed dry under field conditions in Alabama. Tests were conducted in winter and...
Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland
David J. Augustine; Paul Brewer; Dana M. Blumenthal; Justin D. Derner; Joseph C. von Fischer
2014-01-01
In arid and semiarid ecosystems, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through direct effects on plant meristem mortality. We examined effects of annual and triennial prescribed fires conducted in early spring on soil moisture, temperature, and N, plant growth, and plant N content...
Diamante, Lemuel M; Li, Siwei; Xu, Qianqian; Busch, Janette
2013-09-12
A study was conducted to determine the effects of different levels of apple juice concentrate (AJC), blackcurrant concentrate (BCC) and pectin on the moisture content, water activity, color, texture and ascorbic acid content of apple-blackcurrant fruit leather using the response surface methodology. The results showed the moisture content increased with increasing pectin level and with greater increases at higher AJC and BCC levels while the water activity increased with increasing pectin level and with increasing AJC level, at low pectin levels, but with decreasing AJC, at high pectin levels. The chroma decreased with increasing pectin level and with lower values at the middle AJC level. The puncturing force decreased with increasing AJC level but with a lower value at the middle pectin level. Lastly, the ascorbic acid content increased with increasing BCC level regardless of AJC and pectin levels. There is a need to reduce the drying temperature or time of apple-blackcurrant fruit leather just enough to bring the water activity closer to 0.60, thereby increasing the moisture content resulting in higher product yield.
Diamante, Lemuel M.; Li, Siwei; Xu, Qianqian; Busch, Janette
2013-01-01
A study was conducted to determine the effects of different levels of apple juice concentrate (AJC), blackcurrant concentrate (BCC) and pectin on the moisture content, water activity, color, texture and ascorbic acid content of apple-blackcurrant fruit leather using the response surface methodology. The results showed the moisture content increased with increasing pectin level and with greater increases at higher AJC and BCC levels while the water activity increased with increasing pectin level and with increasing AJC level, at low pectin levels, but with decreasing AJC, at high pectin levels. The chroma decreased with increasing pectin level and with lower values at the middle AJC level. The puncturing force decreased with increasing AJC level but with a lower value at the middle pectin level. Lastly, the ascorbic acid content increased with increasing BCC level regardless of AJC and pectin levels. There is a need to reduce the drying temperature or time of apple-blackcurrant fruit leather just enough to bring the water activity closer to 0.60, thereby increasing the moisture content resulting in higher product yield. PMID:28239127
Ceustermans, A; De Clercq, D; Aertsen, A; Michiels, C; Geeraerd, A; Van Impe, J; Coosemans, J; Ryckeboer, J
2007-07-01
Determination of the minimum requirements (time-temperature relationship and moisture content) that are needed for a sufficient eradication of an indicator organism. To determine the hygienic safety of composting processes, the indicator organism Salmonella enterica ssp. enterica serotype Senftenberg strain W 775 (further abbreviated as W 775) was artificially inoculated on a meat carrier and monitored subsequently. Different types of composting processes, e.g. composting in enclosed facilities, in open-air and in-vessel composting, were investigated. The waste feedstocks used in this work were either biowastes (i.e. vegetable, fruit and garden wastes; also called source-separated household wastes) or pure garden wastes. Beside these large-scale trials, we also conducted some lab experiments in order to determine the impact of temperature, moisture content and the presence of an indigenous microflora on the eradication of W 775. We found the temperature to be the most important parameter to eradicate W 775 from compost. When the temperature of the compost heap is 60 degrees C and the moisture content varies between 60-65%, W 775 (10(8) CFU g(-1)) will be inactivated within 10 h of composting. The moisture content is, beside temperature, a second parameter that influences the survival of W 775. When the water content of the composting materials or meat carriers is reduced, a higher survival rate of W 775 was observed (survival rate increases 0.5 log(10) unit when there is a reduction of 5% in moisture content). In addition, other parameters (such as microbial antagonism, toxic compounds, etc.) have an influence on the survival of W 775 as well. Our study demonstrates that all types of composting processes tested in this work were sufficient to eradicate W 775 providing that they are well managed in terms of temperature and moisture content. To give a better view on the parameters of importance for the eradication of W 775 during composting.
Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover
NASA Astrophysics Data System (ADS)
Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.
2017-12-01
The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.
Wang, Yan-Ping; Han, Ming-Yu; Zhang, Lin-Sen; Dang, Yong-Jian; Qu, Jun-Tao
2012-03-01
To have an overall understanding on the soil moisture characteristics in the apple orchards of Luochuan County can not only provide theoretical basis for selecting apple orchard sites, choosing the best root-stock combination, and improving the soil water management, but also has reference importance in increasing the productive efficiency of our apple orchards. In this study, a fixed-point continuous monitoring was conducted on the overall soil moisture environment and the variation characteristics of soil moisture in the County apple orchards differed in age class, stand type, and tree type (standard or dwarfed). For the apple orchards in the County, the rhizosphere (0-200 cm) soils of most apple trees were water-deficient, and the deficit in 0-60 cm soil layer was less than that in 60-200 cm layer. During growth season, the water storage in 0-60 cm soil layer had the same variation trend as the rainfall pattern. The relative soil moisture content in most orchards was less than 60% , and seasonal drought was quite severe. The coefficient of variation of soil moisture content decreased with soil depth. With the increasing age of the orchards, soil water storage decreased. At the same planting density, the orchards with dwarfed trees had more water storage in 0-5 m soil layer than the orchards with standard trees. However, when the orchards were planted with dwarfed trees at a higher density, the soil water storage in the orchards with dwarfed trees was lesser than that in the standard orchards. The mature orchards on highland had the highest soil moisture content, followed by the mature orchards on flat land, and on terraced land. Tree density had great effects on the soil moisture content. When the tree density was the same, planting dwarfed trees could decrease the water consumption, and increase the soil moisture content significantly. To decrease the planting density through the removal of trees would be an effective way to maintain the soil water balance of apple orchards, and achieve the sustainable development of the orchards.
COMPARING MOISTURE METER READINGS WITH MEASURED EQUILIBRIUM MOISTURE CONTENT OF GYPSUM BOARD
Moisture meters routinely used in the field to determine the moisture content in gypsum wallboard are primarily designed and manufactured to measure the moisture content of wood. Often they are used to decide whether to replace wallboard by determining if moisture is qualitativel...
Resilient modulus for New Hampshire subgrade soils for use in mechanistic AASHTO design
DOT National Transportation Integrated Search
1999-09-01
Resilient modulus tests were conducted on five subgrade soils commonly found in the state of New Hampshire. Tests were conducted on samples prepared at optimum density and moisture content. To determine the effective resilient modulus of the various ...
Method for the measurement of forest duff moisture content
Peter R. Robichaud; Roger D. Hungerford; David S. Gasvoda
2000-01-01
An apparatus and method for the moisture content measurement of compressible materials using pressure to firmly hold surface probes against the material to be measured. The apparatus uses moisture measurement circuitry employed in frequency domain impedance or time domain reflectometry devices to obtain moisture content readings from materials. These moisture content...
Apparatus and method for the measurement of forest duff moisture content
Peter R. Robichaud; Roger D. Hungerford; David S. Gasvoda
1999-01-01
An apparatus and method for the moisture content measurement of compressible materials using pressure to firmly hold surface probes against the marerial to be measured. The apparatus uses moisture measurement circuitry employed in frequency domain impedance or time domain reflectometry devices to obtain moisture content readings from materials. These moisture content...
Real-time soil sensing based on fiber optics and spectroscopy
NASA Astrophysics Data System (ADS)
Li, Minzan
2005-08-01
Using NIR spectroscopic techniques, correlation analysis and regression analysis for soil parameter estimation was conducted with raw soil samples collected in a cornfield and a forage field. Soil parameters analyzed were soil moisture, soil organic matter, nitrate nitrogen, soil electrical conductivity and pH. Results showed that all soil parameters could be evaluated by NIR spectral reflectance. For soil moisture, a linear regression model was available at low moisture contents below 30 % db, while an exponential model can be used in a wide range of moisture content up to 100 % db. Nitrate nitrogen estimation required a multi-spectral exponential model and electrical conductivity could be evaluated by a single spectral regression. According to the result above mentioned, a real time soil sensor system based on fiber optics and spectroscopy was developed. The sensor system was composed of a soil subsoiler with four optical fiber probes, a spectrometer, and a control unit. Two optical fiber probes were used for illumination and the other two optical fiber probes for collecting soil reflectance from visible to NIR wavebands at depths around 30 cm. The spectrometer was used to obtain the spectra of reflected lights. The control unit consisted of a data logging device, a personal computer, and a pulse generator. The experiment showed that clear photo-spectral reflectance was obtained from the underground soil. The soil reflectance was equal to that obtained by the desktop spectrophotometer in laboratory tests. Using the spectral reflectance, the soil parameters, such as soil moisture, pH, EC and SOM, were evaluated.
NASA Astrophysics Data System (ADS)
Gusman, M.; Nazki, A.; Putra, R. R.
2018-04-01
One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.
Spatial Analysis of Stover Moisture Content During Harvest Season in the U.S.
Oyedeji, Oluwafemi A.; Sokhansanj, Shahab; Webb, Erin
2017-01-01
The moisture content of a maturing crop varies as the harvest season progresses. For crop residues such as corn stover, moisture content at the time of harvest can be as high as 75% (wet mass basis) to less than 20% depending on the geographic location (climate conditions) and stage of harvest. Biomass moisture content is critical for baling and extended storage. It is therefore essential to have an estimate of the quantities of corn stover available as wet or dry for various parts of the U.S. To this end, we analyzed hourly weather data (temperature, humidity, and rainfall) from themore » Typical Meteorological Year v.3 (TMY3) dataset developed by the National Renewable Energy Laboratory. A recently published set of equations for calculating the moisture content of stover as a function of hourly temperature, humidity, and rainfall were used. The annual start and end of corn grain harvest along with annual grain production (in bushels) for each state were extracted from USDA National Agricultural Statistics Service reports. Using these datasets and moisture sorption equations, the percentage of corn stover tonnage with moisture content less than 20%, between 20% and 40%, or greater than 40% was estimated from the length of time that the biomass was in these moisture content ranges. These calculations were carried out for several locations within each of the states for which TMY data were available. It was concluded that about 37.2% of corn stover is dry (<20% moisture content), whereas 36.5% is wet (>40% moisture content) nationwide. The remaining 27.0% of corn stover is between 20% and 40% moisture content. Keywords: Corn stover, Equilibrium moisture content, Field drying, Moisture content, Stover harvest, Typical Meteorological Year data.« less
Spatial Analysis of Stover Moisture Content During Harvest Season in the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyedeji, Oluwafemi A.; Sokhansanj, Shahab; Webb, Erin
The moisture content of a maturing crop varies as the harvest season progresses. For crop residues such as corn stover, moisture content at the time of harvest can be as high as 75% (wet mass basis) to less than 20% depending on the geographic location (climate conditions) and stage of harvest. Biomass moisture content is critical for baling and extended storage. It is therefore essential to have an estimate of the quantities of corn stover available as wet or dry for various parts of the U.S. To this end, we analyzed hourly weather data (temperature, humidity, and rainfall) from themore » Typical Meteorological Year v.3 (TMY3) dataset developed by the National Renewable Energy Laboratory. A recently published set of equations for calculating the moisture content of stover as a function of hourly temperature, humidity, and rainfall were used. The annual start and end of corn grain harvest along with annual grain production (in bushels) for each state were extracted from USDA National Agricultural Statistics Service reports. Using these datasets and moisture sorption equations, the percentage of corn stover tonnage with moisture content less than 20%, between 20% and 40%, or greater than 40% was estimated from the length of time that the biomass was in these moisture content ranges. These calculations were carried out for several locations within each of the states for which TMY data were available. It was concluded that about 37.2% of corn stover is dry (<20% moisture content), whereas 36.5% is wet (>40% moisture content) nationwide. The remaining 27.0% of corn stover is between 20% and 40% moisture content. Keywords: Corn stover, Equilibrium moisture content, Field drying, Moisture content, Stover harvest, Typical Meteorological Year data.« less
Soil strength response of select soil disturbance classes on a wet pine flat in South Carolina
Emily A. Carter; W. Michael Aust; James A. Burger
2007-01-01
Harvest operations conducted under conditions of high soil moisture on a et pine flat in South Carolina resulted in a high degree of soil surface disturbance. Less soil surface disturbance occurred when soil moisture content was lower. Soil strength varied by soil disturbance class in wet harvested locations and highly disturbed areas were associated with low soil...
Moisture content measurement in paddy
NASA Astrophysics Data System (ADS)
Klomklao, P.; Kuntinugunetanon, S.; Wongkokua, W.
2017-09-01
Moisture content is an important quantity for agriculture product, especially in paddy. In principle, the moisture content can be measured by a gravimetric method which is a direct method. However, the gravimetric method is time-consuming. There are indirect methods such as resistance and capacitance methods. In this work, we developed an indirect method based on a 555 integrated circuit timer. The moisture content sensor was capacitive parallel plates using the dielectric constant property of the moisture. The instrument generated the output frequency that depended on the capacitance of the sensor. We fitted a linear relation between periods and moisture contents. The measurement results have a standard uncertainty of 1.23 % of the moisture content in the range of 14 % to 20 %.
Critical moisture content for microbial growth in dried food-processing residues.
Rezaei, Farzaneh; Vandergheynst, Jean S
2010-09-01
Food-processing residues are good feedstocks for biofuel and biochemical production because they have high energy content and are abundant. Year-round biofuel and biochemical production requires proper storage to prevent microbial decomposition and thermal runaway. In this study, microbial activity of tomato pomace (TP), grape pomace (GP), fermented grape pomace (FGP) and sugar beet pulp (SBP) was monitored at nine different moisture contents. Maximum and cumulative respirations for each feedstock with respect to moisture content followed a sigmoidal relationship. The critical moisture content below which no microbial activity was detected for SBP, TP, FGP and GP was 24-31, 16-21, 23-33 and 43-46% (dry basis) respectively. A logarithmic relationship was observed (R(2) = 0.94) between critical moisture content and initial water-soluble carbohydrate (WSC) content of the processing residues. The critical moisture content below which no microbial activity was detected and the relationship between critical moisture content and initial WSC content were determined in this study for four food-processing residues. Both parameters permit evaluation of the potential for deterioration of food-processing residues during storage based on moisture content and WSC content. Copyright 2010 Society of Chemical Industry.
Luo, Wei; Chen, Tong-bin; Gao, Ding; Zheng, Yu-qi; Zheng, Guo-di
2004-03-01
The experiment of co-composting of sewage sludge and pig manure was studied. The moisture contents were 50.82%-60.87% at the stage of temperature rising and 38.7%-52.17% at the stage of thermophilic fermentation, and the stratification of moisture content were not obvious for both stages because the door, the internal wall and the depth of the composting bay had little effect on the stratification. At the stage of cooling, the moisture content was 24.54%-49.39%, and the stratification of moisture content was remarkable as the door, the internal wall and the depth of the composting bay had great influence on it. At the stage of maturity, the moisture content was 19.18%-49.34%, and the stratification of moisture weakened, for which the door and the internal wall were mainly responsible. At the different composting stage, the degree of difference of moisture content on the profiles of the pile was of the order: maturity stage > cooling stage > thermophilic stage = temperature rising stage, and the moisture content in the pile was as follows: the lower > the middle > the upper. The relation between moisture content and composting time meeted with two-order kinetics equation.
Peat soils stabilization using Effective Microorganisms (EM)
NASA Astrophysics Data System (ADS)
Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.
2018-04-01
Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.
Water content estimated from point scale to plot scale
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Binley, A. M.; Demir, G.; Abgarmi, B.
2017-12-01
Soil moisture controls the portioning of rainfall into infiltration and runoff. Here we investigate measurements of soil moisture using a range of techniques spanning different spatial scales. In order to understand soil water content in a test basin, 512 km2 in area, in the south of Turkey, a Cosmic Ray CRS200B soil moisture probe was installed at elevation of 1459 m and an ML3 ThetaProbe (CS 616) soil moisture sensor was established at 5cm depth used to get continuous soil moisture. Neutron count measurements were corrected for the changes in atmospheric pressure, atmospheric water vapour and intensity of incoming neutron flux. The calibration of the volumetric soil moisture was performed, from the laboratory analysis, the bulk density varies between 1.719 (g/cm3) -1.390 (g/cm3), and the dominant soil texture is silty clay loam and silt loamThe water content reflectometer was calibrated for soil-specific conditions and soil moisture estimates were also corrected with respect to soil temperature. In order to characterize the subsurface, soil electrical resistivity tomography was used. Wenner and Schlumberger array geometries were used with electrode spacing varied from 1m- 5 m along 40 m and 200 m profiles. From the inversions of ERT data it is apparent that within 50 m distance from the CRS200B, the soil is moderately resistive to a depth of 2m and more conductive at greater depths. At greater distances from the CRS200B, the ERT results indicate more resistive soils. In addition to the ERT surveys, ground penetrating radar surveys using a common mid-point configuration was used with 200MHz antennas. The volumetric soil moisture obtained from GPR appears to overestimate those based on TDR observations. The values obtained from CS616 (at a point scale) and CRS200B (at a mesoscale) are compared with the values obtained at a plot scale. For the field study dates (20-22.06.2017) the volumetric moisture content obtained from CS616 were 25.14%, 25.22% and 25.96% respectively. The values obtained from CRS200B were 23.23%, 22.81% and 23.26% for the same dates. Whereas the values obtained from GPR were between 32%-44%. Soil moisture observed by CRS200B is promising to monitor the water content in the soil at the mesoscale and ERT surveys help to understand the spatial variability of the soil water content within the footprint of CRS200B.
Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitt, Daniel Glenn; Birdsell, Kay Hanson; Jennings, Terry L.
Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automatedmore » dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also indicate that other areas of the vadose zone are affected by waste disposal activities that have been ongoing at Area G since 1957, a period of nearly 60 years. In some areas, water content profiles indicate increases in water content to depths of tens of meters, especially in areas covered by asphalt and structures.« less
NASA Astrophysics Data System (ADS)
Giese, Alexandra; Boone, Aaron; Morin, Samuel; Lejeune, Yves; Wagnon, Patrick; Dumont, Marie; Hawley, Robert
2016-04-01
Glaciers whose ablation zones are covered in supraglacial debris comprise a significant portion of glaciers in High Mountain Asia and two-thirds in the South Central Himalaya. Such glaciers evade traditional proxies for mass balance because they are difficult to delineate remotely and because they lose volume via thinning rather than via retreat. Additionally, their surface energy balance is significantly more complicated than their clean counterparts' due to a conductive heat flux from the debris-air interface to the ice-debris boundary, where melt occurs. This flux is a function of the debris' thickness; thermal, radiative, and physical properties; and moisture content. To date, few surface energy balance models have accounted for debris moisture content and phase changes despite the fact that they are well-known to affect fluxes of mass, latent heat, and conduction. In this study, we introduce a new model, ISBA-DEB, which is capable of solving not only the heat equation but also moisture transport and retention in the debris. The model is based upon Meteo-France's Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil and vegetation model, significantly adapted for debris and coupled with the snowpack model Crocus within the SURFEX platform. We drive the model with continuous ERA-Interim reanalysis data, adapted to the local topography (i.e. considering local elevation and shadowing) and downscaled and de-biased using 5 years of in-situ meteorological data at Changri Nup glacier [(27.859N, 86.847E)] in the Khumbu Himal. The 1-D model output is then evaluated through comparison with measured temperature in and ablation under a 10-cm thick debris layer on Changri Nup. We have found that introducing a non-equilibrium model for water flow, rather than using the mixed-form Richard's equation alone, promotes greater consistency with moisture observations. This explicit incorporation of moisture processes improves simulation of the snow-debris-ice column's temperature gradient - and, thus, energy fluxes - through time.
Determination of the moisture content of instant noodles: interlaboratory study.
Hakoda, Akiko; Kasama, Hirotaka; Sakaida, Kenichi; Suzuki, Tadanao; Yasui, Akemi
2006-01-01
Determination of the moisture content of instant noodles, currently under discussion by the Codex Alimentarius Commission (CAC) requires 2 methods: one for fried noodles and the other for nonfried noodles. The method to determine the moisture content of fried noodles by drying at 105 degrees C for 2 h used in the Japanese Agricultural Standard (JAS) system of Japan can be applied to this purpose. In the present study, the JAS method for fried noodles was modified to be suitable for nonfried noodles by extending the drying time to 4 h. An interlaboratory study was conducted to evaluate interlaboratory performance statistics for these 2 methods. Ten participating laboratories each analyzed 5 test materials of fried and nonfried noodles as blind duplicates. After removal of outliers statistically, the repeatability (RSDr) and the reproducibility (RSD(R)) of these methods were 1.6-2.6 and 3.9-4.8% for fried noodles, and 0.3-1.5 and 1.3-2.9% for nonfried noodles, respectively.
Thermal Conductivity of Functional Citrus Tree Wood 1
Turrell, F. M.; Austin, S. W.; McNee, Dan; Park, W. J.
1967-01-01
Thermal conductivity coefficients have been determined for longitudinal and transverse flow in 4 varieties of fresh Citrus wood using steady state-methods. Equations were developed from which thermal conductivity could be rapidly estimated from moisture content or electrical conductivity. The heat balance of large and small tree trunks on a freezing night has been calculated on the basis of the coefficients. PMID:16656610
High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals
NASA Astrophysics Data System (ADS)
Laloy, Eric; Huisman, Johan Alexander; Jacques, Diederik
2014-11-01
This study presents an novel Bayesian inversion scheme for high-dimensional undetermined TDR waveform inversion. The methodology quantifies uncertainty in the moisture content distribution, using a Gaussian Markov random field (GMRF) prior as regularization operator. A spatial resolution of 1 cm along a 70-cm long TDR probe is considered for the inferred moisture content. Numerical testing shows that the proposed inversion approach works very well in case of a perfect model and Gaussian measurement errors. Real-world application results are generally satisfying. For a series of TDR measurements made during imbibition and evaporation from a laboratory soil column, the average root-mean-square error (RMSE) between maximum a posteriori (MAP) moisture distribution and reference TDR measurements is 0.04 cm3 cm-3. This RMSE value reduces to less than 0.02 cm3 cm-3 for a field application in a podzol soil. The observed model-data discrepancies are primarily due to model inadequacy, such as our simplified modeling of the bulk soil electrical conductivity profile. Among the important issues that should be addressed in future work are the explicit inference of the soil electrical conductivity profile along with the other sampled variables, the modeling of the temperature-dependence of the coaxial cable properties and the definition of an appropriate statistical model of the residual errors.
Remote sensing of hydrologic variables in boreal areas, phase 1
NASA Technical Reports Server (NTRS)
Peck, Eugene L.; Carroll, Thomas R.
1994-01-01
The major effort by HYD-6 members has been to develop a network of flight lines to provide the maximum amount of information on the temporal and spatial variation in soil moisture for the Boreal Ecosystem Atmosphere Study (BOREAS) study areas. Field visits to the southern study area (SSA) were conducted during May 1993 to obtain first hand information on the flight lines that had been previously selected for BOREAS snow studies. In September 1993 airborne gamma radiation surveys were conducted over the SSA, the northern study area (NSA), and for five flight lines along the transect between the two study areas. In situ measurements of soil moisture and water content of the moss/humus layer were obtained for calibration of selected gamma radiation flights lines in the SSA and for two of the transit lines. The flight lines for which soil moisture will be measured during the three IFC's during the summer of 1994 is a subset of the total flight lines that have been flown for the snow surveys. During the WFC in February 1994, airborne gamma radiation surveys were flown over all of the flight lines. Members of HYD-4 collected in-situ measurements (soil moisture, water content of the moss/humus layer, and water equivalent of the snow cover).
A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields
NASA Technical Reports Server (NTRS)
Wang, J. R.; Schmugge, T. J.; Mcmurtrey, J. E., III; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (Principal Investigator)
1981-01-01
A USDA Beltsville Agricultural Research Center site was used for an experiment in which soil moisture remote sensing over bare, grass, and alfalfa fields was conducted over a three-month period using 0.6 GHz, 1.4 GHz, and 10.6 GHz Dicke-type microwave radiometers mounted on mobile towers. Ground truth soil moisture content and ambient air and sil temperatures were obtained concurrently with the radiometric measurements. Biomass of the vegetation cover was sampled about once a week. Soil density for each of the three fields was measured several times during the course of the experiment. Results of the radiometric masurements confirm the frequency dependence of moisture sensing sensitivity reduction reported earlier. Observations over the bare, wet field show that the measured brightness temperature is lowest at 5.0 GHz and highest of 0.6 GHz frequency, a result contrary to expectation based on the estimated dielectric permittivity of soil water mixtures and current radiative transfer model in that frequency range.
NASA Astrophysics Data System (ADS)
A, Y.; Wang, G.
2017-12-01
Water shortage is the main limiting factor for semi-arid grassland development. However, the grassland are gradually degraded represented by species conversion, biomass decrease and ecosystem structure simplification under the influence of human activity. Soil water characteristics such as moisture, infiltration and conductivity are critical variables affecting the interactions between soil parameters and vegetation. In this study, Cover, Height, Shannon-Wiener diversity index, Pielou evenness index and Richness index are served as indexes of vegetation productivity and community structure. And saturated hydraulic conductivity (Ks) and soil moisture content are served as indexes of soil water characters. The interaction between vegetation and soil water is investigated through other soil parameters, such as soil organic matter content at different vertical depths and in different degradation area (e.g., initial, transition and degraded plots). The results show that Ks significantly controlled by soil texture other than soil organic matter content. So the influence of vegetation on Ks through increasing soil organic content (SOM) might be slight. However, soil moisture content (SMC) appeared significantly positive relationship with SOM and silt content and negative relationship with sand content at all depth, significantly. This indicated that capacity of soil water storage was influenced both by soil texture and organic matter. In addition, the highest correlation coefficient of SMC was with SOM at the sub-surficial soil layer (20 40 cm). At the depth of 20 40 cm, the soil water content was relatively steady which slightly influenced by precipitation and evaporation. But it significantly influenced by soil organic matter content which related to vegetation. The correlation coefficient between SOM and SMC at topsoil layer (0 20 cm) was lowest (R2=0.36, p<0.01), which indicated the influence of vegetation on soil water content not only by soil organic matter content but also the other influential factors, such as the root water uptake, precipitation and evaporation.
7 CFR 51.2548 - Average moisture content determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Average moisture content determination. 51.2548... moisture content determination. (a) Determining average moisture content of the lot is not a requirement of... connection with grade analysis or as a separate determination. (b) Nuts shall be obtained from a randomly...
7 CFR 51.2561 - Average moisture content.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Average moisture content. 51.2561 Section 51.2561... STANDARDS) United States Standards for Grades of Shelled Pistachio Nuts § 51.2561 Average moisture content. (a) Determining average moisture content of the lot is not a requirement of the grades, except when...
NASA Astrophysics Data System (ADS)
Kan, C. W.; Yuen, C. W. M.
2008-01-01
Low temperature plasma treatment has been conducted in textile industry and has some success in the dyeing and finishing processes. In this paper, an attempt was made to apply low temperature plasma treatment to improve the anti-static property of polyester fabric. The polyester fabrics were treated under different conditions using low temperature plasma. An Orthogonal Array Testing Strategy was employed to determine the optimum treatment condition. After low temperature plasma treatment, the polyester fabrics were evaluated with different characterisation methods. Under the observation of scanning electron microscope, the surface structure of low temperature plasma-treated polyester fabric was seriously altered. This provided more capacity for polyester to capture moisture and hence increase the dissipation of static charges. The relationship between moisture content and half-life decay time for static charges was studied and the results showed that the increment of moisture content would result in shortening the time for the dissipation of static charges. Moreover, there was a great improvement in the anti-static property of the low temperature plasma-treated polyester fabric after comparing with that of the polyester fabric treated with commercial anti-static finishing agent.
NASA Astrophysics Data System (ADS)
Li, Wendong; Liu, Wanfu; Ni, Zhaopeng; Wang, Lu; Gao, Bo
2018-03-01
Cotton is an inflammable substance that can be ignited by a weak ignition source. Since, cotton fiber is typically removed from cottonseed, compressed into bales and stored in the warehouse for extended periods of time, the moisture content is a very important characteristic of cotton. In this study, the effect of moisture content on cotton smoldering combustion was studied experimentally by characterizing cotton samples with different moisture contents. The results showed that the higher moisture content of cotton delayed the smoldering combustion process of cotton and prolonged the duration of high temperature of cotton smoldering. And we could find that when the moisture content is higher than 10%, the characteristics of smoldering change obviously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
Destructive and non-destructive examinations have been performed on the components of shipping package 9975-02019 as part of a comprehensive SRS surveillance program for plutonium material stored in the K-Area Complex (KAC). During the field surveillance inspection of this package in KAC, two non-conforming conditions were noted: the axial gap of 1.577 inch exceeded the 1 inch maximum criterion, and two areas of dried glue residue were noted on the upper fiberboard subassembly. This package was subsequently transferred to SRNL for more detailed inspection and destructive examination. In addition to the conditions noted in KAC, the following conditions were noted: -more » Numerous small spots of corrosion were observed along the bottom edge of the drum. - In addition to the smeared glue residue on the upper fiberboard subassembly, there was also a small dark stain. - Mold was present on the side and bottom of the lower fiberboard subassembly. Dark stains from elevated moisture content were also present in these areas. - A dark spot with possible light corrosion was observed on the primary containment vessel flange, and corresponding rub marks were observed on the secondary containment vessel ID. - The fiberboard thermal conductivity in the radial orientation was above the specified range. When the test was repeated with slightly lower moisture content, the result was acceptable. The moisture content for both tests was within a range typical of other packages in storage. The observed conditions must be fully evaluated by KAC to ensure the safety function of the package is being maintained. Several factors can contribute to the concentration of moisture in the fiberboard, including higher than average initial moisture content, higher internal temperature (due to internal heat load and placement within the array of packages), and the creation of additional moisture as the fiberboard begins to degrade.« less
NASA Astrophysics Data System (ADS)
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-06-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my
2014-06-19
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea ofmore » this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.« less
An instrument for rapid, accurate, determination of fuel moisture content
Stephen S. Sackett
1980-01-01
Moisture contents of dead and living fuels are key variables in fire behavior. Accurate, real-time fuel moisture data are required for prescribed burning and wildfire behavior predictions. The convection oven method has become the standard for direct fuel moisture content determination. Efforts to quantify fuel moisture through indirect methods have not been...
Donovan, P D; Corvari, V; Burton, M D; Rajagopalan, N
2007-01-01
The purpose of this study was to evaluate the effect of processing and storage on the moisture content of two commercially available, 13-mm lyophilization stoppers designated as low moisture (LM) and high moisture (HM) uptake stoppers. The stopper moisture studies included the effect of steam sterilization time, drying time and temperature, equilibrium moisture content, lyophilization and moisture transfer from stopper to a model-lactose lyophilized cake. Results indicated that both stoppers absorbed significant amounts of moisture during sterilization and that the HM stopper absorbed significantly more water than the LM stopper. LM and HM stoppers required approximately 2 and 8 h drying at 105 degrees C, respectively, to achieve final moisture content of not more than 0.5 mg/stopper. Following drying, stopper moisture levels equilibrated rapidly to ambient storage conditions. The apparent equilibrium moisture level was approximately 7 times higher in the HM versus LM stopper. Freeze-drying had minimal effect on the moisture content of dried stoppers. Finally, moisture transfer from the stopper to the lyophilized product is dependent on the initial stopper water content and storage temperature. To better quantify the ramifications of stopper moisture, projections of moisture uptake over the shelf life of a drug product were calculated based on the product-contact surface area of stoppers. Attention to stopper storage conditions prior to use, in addition to processing steps, are necessary to minimize stability issues especially in low-fill, mass lyophilized products.
Permeability and compression characteristics of municipal solid waste samples
NASA Astrophysics Data System (ADS)
Durmusoglu, Ertan; Sanchez, Itza M.; Corapcioglu, M. Yavuz
2006-08-01
Four series of laboratory tests were conducted to evaluate the permeability and compression characteristics of municipal solid waste (MSW) samples. While the two series of tests were conducted using a conventional small-scale consolidometer, the two others were conducted in a large-scale consolidometer specially constructed for this study. In each consolidometer, the MSW samples were tested at two different moisture contents, i.e., original moisture content and field capacity. A scale effect between the two consolidometers with different sizes was investigated. The tests were carried out on samples reconsolidated to pressures of 123, 246, and 369 kPa. Time settlement data gathered from each load increment were employed to plot strain versus log-time graphs. The data acquired from the compression tests were used to back calculate primary and secondary compression indices. The consolidometers were later adapted for permeability experiments. The values of indices and the coefficient of compressibility for the MSW samples tested were within a relatively narrow range despite the size of the consolidometer and the different moisture contents of the specimens tested. The values of the coefficient of permeability were within a band of two orders of magnitude (10-6-10-4 m/s). The data presented in this paper agreed very well with the data reported by previous researchers. It was concluded that the scale effect in the compression behavior was significant. However, there was usually no linear relationship between the results obtained in the tests.
Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi
2016-03-01
The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.
Bulk Moisture and Salinity Sensor
NASA Technical Reports Server (NTRS)
Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John
2013-01-01
Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.
Thermophysical properties of hydrophobised lime plaster - Experimental analysis of moisture effect
NASA Astrophysics Data System (ADS)
Pavlíková, Milena; Pernicová, Radka; Pavlík, Zbyšek
2016-07-01
Lime plasters are the most popular finishing materials in renewal of historical buildings and culture monuments. Because of their limited durability, new materials and design solutions are investigated in order to improve plasters performance in harmful environmental conditions. For the practical use, the plasters mechanical resistivity and the compatibility with substrate are the most decisive material parameters. However, also plasters hygric and thermal parameters affecting the overall hygrothermal function of the renovated structures are of the particular importance. On this account, the effect of moisture content on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime and cement-lime plasters are tested as well. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity in the broad range of moisture content are experimentally accessed using a transient impulse method. The obtained data reveals the significant increase of the both studied thermal parameters with increasing moisture content and gives information on plasters behaviour in a highly humid environment and/or in the case of their possible direct contact with liquid water. The accessed material parameters will be stored in a material database, where can find use as an input data for computational modelling of coupled heat and moisture transport in this type of porous building materials.
Estimating moisture content of tree-length roundwood
Alexander Clark; Richard F. Daniels
2000-01-01
The green weight of southern pine tree-length roundwood delivered to the pulp mill is generally known. However, for optimum mill efficiency it is desirable to know dry weight. The moisture content of tree-length pine logs is quite variable. The moisture content of pine tree-length logs increases significantly with increasing stem height. Moisture content also varies...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
Soil moisture by extraction and gas chromatography
NASA Technical Reports Server (NTRS)
Merek, E. L.; Carle, G. C.
1973-01-01
To determine moisture content of soils rapidly and conveniently extract moisture with methanol and determine water content of methanol extract by gas chromatography. Moisture content of sample is calculated from weight of water and methanol in aliquot and weight of methanol added to sample.
Shibata, Marília; Medeiros Coelho, Cileide Maria
2016-06-01
Araucaria angustifolia is a conifer native to Brazil and is an endangered species. Since this species seeds have a short period of viability, its vulnerability is higher. Thus the aim of this study was to evaluate the physiological quality of A. angustifolia seeds during the development and post-storage periods. For this, cones of A. angustifolia were collected from a natural population in Curitibanos, Santa Catarina, Brazil, in March, April, May and June 2012. The collected seeds were classified into developmental stages of cotyledonary, I, II and III according to the month of collection; a total of 10 cones were collected for each stage. Seeds were stored in a refrigerator for 60 and 120 days, and were submitted to a chamber germination test (25 °C-photoperiod 12 h). Additionally, seeds were tested for moisture content (105 °C for 24 hours), tetrazolium (0.1 % for 1 hour) and vigor (electric conductivity [75 mL distilled water at 25 °C], germination speed index, and shoot and root length). Our results showed that during seed development, moisture content decreased from the cotyledonary stage (66.54 %) to stage III (49.69 %), and vigor increased in the last stage. During storage, moisture content at cotyledonary stage and stage I was stable. On the other hand, stored seeds exhibited a decrease in moisture content after 120 days at stages II and III. Physiological quality at the cotyledonary stage resulted in an increased germination rate of 86 % and 93 % after 60 and 120 days of storage, respectively; unlike stages II and III exhibited a decrease in seed viability and vigor after storage. Electrical conductivity was higher for fresh seeds at the cotyledonary stage, than for those stored for 60 and 120 days. However, in other stages, released leachate content after 120 days of storage, increased with the advance of the collection period. Germination speed index and shoot and root lengths after storage were highest for seeds at the cotyledonary stage and stage I; unlike stages II and III which had short root and shoot lengths during storage. Thus, the maintenance of seed moisture content during storage was variable and dependent on the period of collection. Furthermore, the physiological quality differed among earlier and later stages. Early collection favored seed physiological quality, and may be a strategy for better conservation of A. angustifolia seeds.
[Effect of moisture content on anaerobic methanization of municipal solid waste].
Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore
2009-03-15
Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.
Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine
Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie
2015-01-01
To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions of coal seams. PMID:26161959
A protocol for conducting rainfall simulation to study soil runoff.
Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B
2014-04-03
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.
A Protocol for Conducting Rainfall Simulation to Study Soil Runoff
Kibet, Leonard C.; Saporito, Louis S.; Allen, Arthur L.; May, Eric B.; Kleinman, Peter J. A.; Hashem, Fawzy M.; Bryant, Ray B.
2014-01-01
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff. PMID:24748061
LTPP Computed Parameter: Moisture Content
DOT National Transportation Integrated Search
2008-01-01
A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...
Zhu, Zhuozhuo; Guo, Wenchuan
2017-08-24
To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.
Determination of the moisture content in the fluoride oxide fluxes of electroslag remelting
NASA Astrophysics Data System (ADS)
Vdovin, K. N.; Feoktistov, N. A.; Pivovarova, K. G.; Deryabin, D. A.
2016-12-01
ANF-32 flux has been studied with regard to the moisture content both after storage and upon operation. A simple and reliable procedure for the determination of the moisture content in ESR fluxes is proposed, and recommendations are given on monitoring the moisture content in calcined fluxes. The main sources of crystallization water of hydration are hydrogen sources.
Effect of moisture content on strength of CCA-treated lumber
Jerrold E. Winandy
1995-01-01
Recent studies on the effects of chromated copper arsenate (CCA) treatment on lumber design properties have primarily evaluated the effects of such treatment at or near 12% moisture content and at failure times of 1 to 10 min. The influence of various moisture contents and faster loading rates is unknown. This report discusses the influence of moisture content and its...
USDA-ARS?s Scientific Manuscript database
Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...
The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.
Owojori, Olugbenga J; Siciliano, Steven D
2015-03-01
Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture. © 2014 SETAC.
Buildup Index as an Expression of Moisture Content in Duff
Von J. Johnson
1968-01-01
The relation between Buildup index and moisture content of grouped litter and duff samples from beneath four medium-site forest stands closely approximated the relation between Buildup index and moisture equivalent of 5-day timelag fuels having an equilibrium moisture content of 15 percent
The moisture content of ponderosa pine and whiteleaf manzanita foliage in the Central Sierra Nevada
Charles W. Philpot
1963-01-01
In the first year of studies of moisture in living fuels, pine and manzanita had dissimilar moisture trends, the moisture content of brush varied with elevation during the growing season, and soil moisture was correlated with brush foliage moisture.
Jongsutjarittam, Ornpicha; Charoenrein, Sanguansri
2014-12-19
The properties of waxy rice flour (WRF) and non-waxy rice flour (RF) were modified using an extrusion process with different feeding material moisture contents. WRF was more affected by the thermomechanical stress from extrusion; consequently, it had a lower glass transition temperature but higher water solubility index (WSI) indicating higher molecular degradation than extruded RF. The lower moisture content of the feeding flour caused more severe flour damage (coarser surface of the extruded flour) and lowered relative crystallinity compared to higher moisture content processing. Moreover, low moisture content processing led to complete gelatinization, whereas, partial gelatinization occurred in the higher moisture content extrusion. Consequently, the extruded flours had a lower peak viscosity and gelatinization enthalpy but a higher water absorption index and WSI than native flour. In conclusion, the rice flour type and the moisture content of the extrusion feeding flour affected the physicochemical properties of the extruded flour. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Herminiati, A.; Rahman, T.; Turmala, E.; Fitriany, C. G.
2017-12-01
The purpose of this study was to determine the correlation of different concentrations of modified cassava flour that was processed for banana fritter flour. The research method consists of two stages: (1) to determine the different types of flour: cassava flour, modified cassava flour-A (using the method of the lactid acid bacteria), and modified cassava flour-B (using the method of the autoclaving cooling cycle), then conducted on organoleptic test and physicochemical analysis; (2) to determine the correlation of concentration of modified cassava flour for banana fritter flour, by design was used simple linear regression. The factors were used different concentrations of modified cassava flour-B (y1) 40%, (y2) 50%, and (y3) 60%. The response in the study includes physical analysis (whiteness of flour, water holding capacity-WHC, oil holding capacity-OHC), chemical analysis (moisture content, ash content, crude fiber content, starch content), and organoleptic (color, aroma, taste, texture). The results showed that the type of flour selected from the organoleptic test was modified cassava flour-B. Analysis results of modified cassava flour-B component containing whiteness of flour 60.42%; WHC 41.17%; OHC 21.15%; moisture content 4.4%; ash content 1.75%; crude fiber content 1.86%; starch content 67.31%. The different concentrations of modified cassava flour-B with the results of the analysis provides correlation to the whiteness of flour, WHC, OHC, moisture content, ash content, crude fiber content, and starch content. The different concentrations of modified cassava flour-B does not affect the color, aroma, taste, and texture.
NASA Technical Reports Server (NTRS)
Paris, J. F.; Arya, L. M.; Davidson, S. A.; Hildreth, W. W.; Richter, J. C.; Rosenkranz, W. A.
1982-01-01
The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications.
NASA Astrophysics Data System (ADS)
Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.
2009-05-01
It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.
Fiber moisture content measurements of lint and seed cotton by a small microwave instrument
USDA-ARS?s Scientific Manuscript database
The timely and accurate measurement of cotton fiber moisture content is important, as deviations in moisture fiber content can impact the fiber quality and processing of cotton fiber. The Mesdan Aqualab is a small, modular, microwave-based fiber moisture measurement instrument for samples with mode...
Jeong, Seul-Gi; Kang, Dong-Hyun
2014-04-17
The influence of moisture content during radio-frequency (RF) heating on heating rate, dielectric properties, and inactivation of foodborne pathogens was investigated. The effect of RF heating on the quality of powdered red and black pepper spices with different moisture ranges was also investigated. Red pepper (12.6%, 15.2%, 19.1%, and 23.3% dry basis, db) and black pepper (10.1%, 17.2%, 23.7%, and 30.5% db) inoculated with Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were treated in a RF heating system with 27.12 MHz. The heating rate of the sample was dependent on moisture content up to 19.1% (db) of red pepper and 17.2% (db) of black pepper, but there was a significant decrease in the heating rate when the moisture content was increased beyond these levels. The dielectric properties of both samples increased with a rise in moisture content. As the moisture content increased, treatment time required to reduce E. coli O157:H7 and S. Typhimurium by more than 7 log CFU/g (below the detection limit, 1 log CFU/g) decreased and then increased again without affecting product quality when the moisture content exceeded a level corresponding to the peak heating rate. RF treatment significantly (P<0.05) reduced moisture content of both spices. These results suggest that RF heating can be effectively used to not only control pathogens but also reduce moisture levels in spices and that the effect of inactivation is dependent on moisture content. Copyright © 2014 Elsevier B.V. All rights reserved.
Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R
2005-10-01
This study evaluates the effect of variation in the ambient moisture on the compaction behavior of microcrystalline cellulose (MCC) powder. The study was conducted by comparing the physico-mechanical properties of, and the near infrared (NIR) spectra collected on, compacts prepared by roller compaction with those collected on simulated ribbons, that is, compacts prepared under uni-axial compression. Relative density, moisture content, tensile strength (TS), and Young modulus were used as key sample attributes for comparison. Samples prepared at constant roller compactor settings and feed mass showed constant density and a decrease in TS with increasing moisture content. Compacts prepared under uni-axial compression at constant pressure and compact mass showed the opposite effect, that is, density increased while TS remained almost constant with increasing moisture content. This suggests difference in the influence of moisture on the material under roller compaction, in which the roll gap (i.e., thickness and therefore density) remains almost constant, vs. under uni-axial compression, in which the thickness is free to change in response to the applied pressure. Key sample attributes were also related to the NIR spectra using multivariate data analysis by the partial least squares projection to latent structures (PLS). Good agreement was observed between the measured and the NIR-PLS predicted values for all key attributes for both, the roller compacted samples as well as the simulated ribbons. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng
2018-04-01
Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.
Long-lasting solid-polymer electrolytic hygrometer
NASA Technical Reports Server (NTRS)
Lawson, D. D.
1978-01-01
Device consists of hollow tube node of oxidation-resistant sulfonated fluorocarbon polymer. Tube absorbs moisture from air passing across inner and outer surfaces, causing change in polymer conductance. Change is related to change in water content in gas sample.
Percolation and transport in a sandy soil under a natural hydraulic gradient
Green, Christopher T.; Stonestrom, David A.; Bekins, Barbara A.; Akstin, Katherine C.; Schulz, Marjorie S.
2005-01-01
Unsaturated flow and transport under a natural hydraulic gradient in a Mediterranean climate were investigated with a field tracer experiment combined with laboratory analyses and numerical modeling. Bromide was applied to the surface of a sandy soil during the dry season. During the subsequent rainy season, repeated sediment sampling tracked the movement of bromide through the profile. Analysis of data on moisture content, matric pressure, unsaturated hydraulic conductivity, bulk density, and soil texture and structure provides insights into parameterization and use of the advective‐dispersive modeling approach. Capturing the gross features of tracer and moisture movement with model simulations required an order‐of‐magnitude increase in laboratory‐measured hydraulic conductivity. Wetting curve characteristics better represented field results, calling into question the routine estimation of hydraulic characteristics based only on drying conditions. Measured increases in profile moisture exceeded cumulative precipitation in early winter, indicating that gains from dew drip can exceed losses from evapotranspiration during periods of heavy (“Tule”) fog. A single‐continuum advective‐dispersive modeling approach could not reproduce a peak of bromide that was retained near the soil surface for over 3 years. Modeling of this feature required slow exchange of solute at a transfer rate of 0.5–1 × 10−4 d−1 with an immobile volume approaching the residual moisture content.
Study of moisture absorption by an organoplastic
NASA Astrophysics Data System (ADS)
Aniskevich, A. N.; Yanson, Yu. O.
1991-07-01
A complex experimental study of the state of sorbed moisture in a unidirectionally reinforced organoplastic was conducted. The methods of TG, DSC, DTA, and NMR showed that moisture absorption in OP is reversible up to 8%, the sorbed moisture does not crystallize in the temperature range from -70 to 0 °C, it is finely dispersely distributed and is in the strongly and weakly bound state, and there is almost no free moisture. The results of the sorption experiments conducted on OP and its structural components: microplastic and EDT-10 binder, in a wide range of temperature-humidity conditions and the data from physical studies showed that moisture absorption in the materials basically takes place by diffusion and is satisfactorily described by a phenomenological model based on the Fick equation. A method of accelerated determination of the sorption characteristics of anisotropic composite materials was developed, using the introduced concept of the fictitious diffusion coefficient and the extrapolation method of determining the limiting moisture content. The features of migration of moisture on the interface in a multiphase system were investigated, and the possibility of successive calculation estimation of the sorption characteristics of an organoplastic at different structural levels was demonstrated: components—unidirectionally reinforced composite—model laminated article. The tested phenomenological model of the sorption process and the experimentally obtained values of the characteristics of the material were the basis for a method of calculation determination of the resource of moisture-proofing properties of a model multilayer article of CM in nonstationary external conditions.
The influence of moisture content variation on fungal pigment formation in spalted wood
2012-01-01
Eight fungal species known to produce wood pigmentation were tested for reaction to various moisture contents in two hardwood species. Fungal pigmentation by Trametes versicolor and Xylaria polymorpha was stimulated at low water concentrations in both Acer saccharum (sugar maple) and Fagus grandifolia (American beech), while Inonotus hispidus and Polyporus squamosus were stimulated above 22-28% and 34-38% moisture content in beech and in sugar maple respectively. Fomes fomentarius and Polyporus brumalis produced maximum pigmentation in beech at 26 - 41% and in sugar maple at 59 - 96% moisture content. The pink staining Scytalidium cuboideum pigmented both wood species at above 35% moisture content. This research indicates that controlling the moisture content values of wood substrates can stimulate the intensity of pigmentation of specific fungi when spalting wood for decorative and commercial purpose. PMID:23245292
Moisture sorption isotherms and thermodynamic properties of bovine leather
NASA Astrophysics Data System (ADS)
Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil
2018-04-01
This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 < R2 < 0.999). The sorption isotherms exhibit hysteresis effect. Additionally, sorption isotherms data were used to determine the thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.
Study of heat-moisture treatment of potato starch granules by chemical surface gelatinization.
Bartz, Josiane; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra
2017-08-01
Native potato starch was subjected to heat-moisture treatment (HMT) at 12%, 15%, 18%, 21%, and 24% of moisture content at 110 °C for 1 h, and the effects on morphology, structure, and thermal and physicochemical properties were investigated. To reveal the internal structure, 30% and 50% of the granular surface were removed by chemical surface gelatinization in concentrated LiCl solution. At moisture contents of 12% and 15%, HTM reduced the gelatinization temperatures and relative crystallinity of the starches, while at moisture contents of 21% and 24 % both increased. The alterations on morphology, X-ray pattern, physicochemical properties, and increase of amylose content were more intense with the increase of moisture content of HMT. The removal of granular layers showed that the changes promoted by HMT occur throughout the whole granule and were pronounced at the core or peripheral region, depending of the moisture content applied during HMT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Thermal conductive properties of wood, green or dry, from -40° to +100° C: a literature review
H. Peter Steinhagen
1977-01-01
This literature review was conducted in connection with a study on heat transfer in frozen logs. A combination of data by two researchers on specific heat and thermal conductivity and diffusivity in the radial direction of wood, at various temperatures and moisture contents, is discussed and compared with data from other sources. Limited information found for the...
Long term pavement performance computed parameter : moisture content
DOT National Transportation Integrated Search
2008-01-01
A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...
Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.
Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M
2016-12-01
The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Bitterlich, Michael; Franken, Philipp; Graefe, Jan
2018-01-01
Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.
van der Hoeven-Hangoor, E; Rademaker, C J; Paton, N D; Verstegen, M W A; Hendriks, W H
2014-07-01
Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter were evaluated as additional quality measures. The dietary treatments consisted of nonstarch polysaccharide content (NSP; corn vs. wheat), particle size of insoluble fiber (coarse vs. finely ground oat hulls), viscosity of a nonfermentable fiber (low- and high-viscosity carboxymethyl cellulose), inclusion of a clay mineral (sepiolite), and inclusion of a laxative electrolyte (MgSO4). The 8 treatments were randomly assigned to cages within blocks, resulting in 12 replicates per treatment with 6 birds per replicate. Limited effects of the dietary treatments were noted on excreta and litter water activity, and indications were observed that this measurement is limited in high-moisture samples. Increasing dietary NSP content by feeding a corn-based diet (low NSP) compared with a wheat-based diet (high NSP) increased water intake, excreta moisture and free water, and litter moisture content. Adding insoluble fibers to the wheat-based diet reduced excreta and litter moisture content, as well as litter water activity. Fine grinding of the oat hulls diminished the effect on litter moisture and water activity. However, excreta moisture and free water content were similar when fed finely or coarsely ground oat hulls. The effects of changing viscosity and adding a clay mineral or laxative deviated from results observed in previous studies. Findings of the current experiment indicate a potential for excreta free water measurement as an additional parameter to assess excreta quality besides total moisture. The exact implication of this parameter warrants further investigation. © 2014 Poultry Science Association Inc.
Determining soil volumetric moisture content using time domain reflectometry
DOT National Transportation Integrated Search
1998-02-01
Time domain reflectometry (TDR) is a technique used to measure indirectly the in situ volumetric moisture content of soil. Current research provides a variety of prediction equations that estimate the volumetric moisture content using the dielectric ...
Ultrasound Algorithm Derivation for Soil Moisture Content Estimation
NASA Technical Reports Server (NTRS)
Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.
1997-01-01
Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.
Theoretical thermal conductivity equation for uniform density wood cells
John F. Hunt; Hongmei Gu; Patricia Lebow
2008-01-01
The anisotropy of wood creates a complex problem requiring that analyses be based on fundamental material properties and characteristics of the wood structure to solve heat transfer problems. A two-dimensional finite element model that evaluates the effective thermal conductivity of a wood cell over the full range of moisture contents and porosities was previously...
Ileleji, Klein E; Garcia, Arnoldo A; Kingsly, Ambrose R P; Clementson, Clairmont L
2010-01-01
This study quantified the variability among 14 standard moisture loss-on-drying (gravimetric) methods for determination of the moisture content of corn distillers dried grains with solubles (DDGS). The methods were compared with the Karl Fischer (KF) titration method to determine their percent variation from the KF method. Additionally, the thermo-balance method using a halogen moisture analyzer that is routinely used in fuel ethanol plants was included in the methods investigated. Moisture contents by the loss-on-drying methods were significantly different for DDGS samples from three fuel ethanol plants. The percent deviation of the moisture loss-on-drying methods decreased with decrease in drying temperature and, to a lesser extent, drying time. This was attributed to an overestimation of moisture content in DDGS due to the release of volatiles at high temperatures. Our findings indicate that the various methods that have been used for moisture determination by moisture loss-on-drying will not give identical results and therefore, caution should be exercised when selecting a moisture loss-on-drying method for DDGS.
NASA Astrophysics Data System (ADS)
Iswanto, A. H.; Sucipto, T.; Adlina, E.; Prabuningrum, D. S.
2018-02-01
The purpose of this research was to explore the suitability of Passion Fruit Hulls (PFH) as a raw material particleboard with variants of urea formaldehyde adhesive content (UF). In this research, PFH particles filtered by sieve in size of 10 mesh to throw dust particles. Furthermore, the particles dried until reaches of 5% moisture content. Levels of UF adhesive was using comprise of 10%, 12% and 14%. Hot pressing conducted at 120°C temperature for 10 minutes at a pressure of 30 kg/cm2. The results showed that in moisture content for 10% adhesive level, almost all the parameters such as thickness swelling, modulus of elasticity (MOE) and modulus of rupture (MOR) that produced did not fulfiled the standard. The 14% adhesive level produced of the best of PFH particleboard.
Walton, David A; Randall, Bruce W; Le Lagadec, Marie D; Wallace, Helen M
2013-09-01
Kernel brown centres in macadamia are a defect causing internal discolouration of kernels. This study investigates the effect on the incidence of brown centres in raw kernel after maintaining high moisture content in macadamia nuts-in-shell stored at temperatures of 30°C, 35°C, 40°C and 45°C. Brown centres of raw kernel increased with nuts-in-shell storage time and temperature when high moisture content was maintained by sealing in polyethylene bags. Almost all kernels developed the defect when kept at high moisture content for 5 days at 45°C, and 44% developed brown centres after only 2 days of storage at high moisture content at 45°C. This contrasted with only 0.76% when stored for 2 days at 45°C but allowed to dry in open-mesh bags. At storage temperatures below 45°C, there were fewer brown centres, but there were still significant differences between those stored at high moisture content and those allowed to dry (P < 0.05). Maintenance of high moisture content during macadamia nuts-in-shell storage increases the incidence of brown centres in raw kernels and the defect increases with time and temperature. On-farm nuts-in-shell drying and storage practices should rapidly remove moisture to reduce losses. Ideally, nuts-in-shell should not be stored at high moisture content on-farm at temperatures over 30°C. © 2013 Society of Chemical Industry.
Wang, Yi-Hao; Wang, Yan-Hui; Li, Zhen-Hua; Yu, Peng-Tao; Xiong, Wei; Hao, Jia; Duan, Jian
2012-10-01
From March 2009 to November 2011, an investigation was conducted on the spatiotemporal variation of soil moisture and its effects on the needle-fall in Masson pine (Pinus massoniana) forests in acid rain region of Chongqing, Southeast China, with the corresponding soil moisture thresholds determined. No matter the annual precipitation was abundant, normal or less than average, the seasonal variation of soil moisture in the forests could be obviously divided into four periods, i.e., sufficient (before May), descending (from June to July), drought (from August to September), and recovering (from October to November). With increasing soil depth, the soil moisture content increased after an initial decrease, but the difference of the soil moisture content among different soil layers decreased with decreasing annual precipitation. The amount of monthly needle-fall in the forests in growth season was significantly correlated with the water storage in root zone (0-60 cm soil layer), especially in the main root zone (20-50 cm soil layer). Soil field capacity (or capillary porosity) and 82% of field capacity (or 80% of capillary porosity) were the main soil moisture thresholds affecting the litter-fall. It was suggested that in acid rain region, Masson pine forest was easily to suffer from water deficit stress, especially in dry-summer period. The water deficit stress, together with already existed acid rain stress, would further threaten the health of the Masson forest.
Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J
2016-08-01
This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geophysical imaging of root-zone, trunk, and moisture heterogeneity.
Attia Al Hagrey, Said
2007-01-01
The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.
Cheng, Jack Y K; Chiu, Sam L H; Lo, Irene M C
2017-09-01
In order to foster sustainable management of food waste, innovations in food waste valorization technologies are crucial. Black soldier fly (BSF) bioconversion is an emerging technology that can turn food waste into high-protein fish feed through the use of BSF larvae. The conventional method of BSF bioconversion is to feed BSF larvae with food waste directly without any moisture adjustment. However, it was reported that difficulty has been experienced in the separation of the residue (larval excreta and undigested material) from the insect biomass due to excessive moisture. In addition to the residue separation problem, the moisture content of the food waste may also affect the growth and survival aspects of BSF larvae. This study aims to determine the most suitable moisture content of food waste that can improve residue separation as well as evaluate the effects of the moisture content of food waste on larval growth and survival. In this study, pre-consumer and post-consumer food waste with different moisture content (70%, 75% and 80%) was fed to BSF larvae in a temperature-controlled rotary drum reactor. The results show that the residue can be effectively separated from the insect biomass by sieving using a 2.36mm sieve, for both types of food waste at 70% and 75% moisture content. However, sieving of the residue was not feasible for food waste at 80% moisture content. On the other hand, reduced moisture content of food waste was found to slow down larval growth. Hence, there is a trade-off between the sieving efficiency of the residue and the larval growth rate. Furthermore, the larval survival rate was not affected by the moisture content of food waste. A high larval survival rate of at least 95% was achieved using a temperature-controlled rotary drum reactor for all treatment groups. The study provides valuable insights for the waste management industry on understanding the effects of moisture content when employing BSF bioconversion for food waste recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl
2014-05-01
Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial pattern of moisture, although the absolute values were far from the real values obtained by gravimetric method due to the effect of the high OM. The lower zone in one of the pens showed greater values of ECa and soil moisture, in agreement with a major water retention and a lower Ks. The water retention was higher in the other corral with higher variability in Ks. A general decrease of soil moisture was found near 0.2 m soil depth. Leaching experiments detected greater volumes with higher electrical conductivity in low lying areas of the pen. Although differences were not observed as clearly as before, the low and intermediate low areas of the pen showed a faster rate of leaching. In summary geophysical surveys allowed identifying risk areas of high ECa and moisture which in fact had higher volumes of leachate with elevated electrical conductivities. This may be a good approach to control and reduce soil and groundwater contamination and to model in future works the process in order to establish management decisions.
Estimating the fuel moisture content of indicator sticks from selected weather variables
Theodore G. Storey
1965-01-01
Equations were developed to predict the fuel moisture content of indicator sticks from the controlling weather variables. Moisture content of ⅛-inch thick basswood slats used in the South and East could be determined with about equal precision by equation in the critical low moisture range or by weighing at fire danger stations. The most useful equation...
Improvements in decay resistance based on moisture exclusion
Roger M. Rowell; Rebecca E. Ibach
2000-01-01
Moisture content has an effect on the biological decay of wood. The literature states that serious decay occurs when the moisture content of wood is above the fiber saturation point (FSP), which is the measurement of the moisture content of wood when the cell walls are saturated and the cell cavities free from water (average 30%). We can chemically modify wood...
A comparison of two methods for estimating conifer live foliar moisture content
W. Matt Jolly; Ann M. Hadlow
2012-01-01
Foliar moisture content is an important factor regulating how wildland fires ignite in and spread through live fuels but moisture content determination methods are rarely standardised between studies. One such difference lies between the uses of rapid moisture analysers or drying ovens. Both of these methods are commonly used in live fuel research but they have never...
Water content and the conversion of phytochrome regulation of lettuce dormancy
NASA Technical Reports Server (NTRS)
Vertucci, C. W.; Vertucci, F. A.; Leopold, A. C.
1987-01-01
In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.
Kim, Ki Jae; Kwon, Hyuk Kwon; Park, Min-Sik; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun
2014-05-28
We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.
Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto
2012-04-01
The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.
Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto
2012-01-01
The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587
Cancilla, P A; Barrette, P; Rosenblum, F
2002-12-01
The manual gravimetric drying moisture determination methods currently employed by most mineral processing plants fail to provide timely and accurate information required for automatic control. The costs associated with transporting and handling concentrates still represent a major portion of the overall treatment price. When considering the cash flow of a mining operation that is governed by both the smelter contract, with moisture penalties and the quantity and quality of the concentrates shipped, an efficient method of on-line moisture content would be a welcome tool. A novel on-line determination system for ore concentrate moisture content would replace the tedious manual procedure. Since the introduction of microelectronic-based control systems, operators have strived to reduce the treatment costs to the minimum. Therefore, a representative and timely determination of on-line moisture content becomes vital for control set points and timely feedback. Reliable sensors have long been on the 'wish list' of mineral processors since the problem has always been that you can only control what you can measure. Today, the task of moisture determination is still done by the classical technique of loss in weight utilizing uncontrolled procedures. These same methods were introduced in the earliest base metal concentrators. Generally, it is acceptable to have ore concentrate moisture content vary within a range of 7-9%, but controlling the moisture content below 8% is a difficult task with a manually controlled system. Many times, delays in manually achieving reliable feedback of the moisture content results in the moisture varying from 5-12% before corrective actions can be made. This paper first reviews the traditional and widely available methods for determining moisture content in granular materials by applying physical principles and properties to measure moisture content. All methods are in some form affected when employed on mineral ore concentrates. This paper introduces and describes a novel on-line moisture sensor employed for mineral processing de-watering applications, which not only automates the tedious tasks but also results in reliable moisture feedback that can be used in the optimization of the de-watering process equipment such as pressure or vacuum filters and fuel-fired driers. Finally, two measurement applications will be presented which indicate the usefulness and summarizes the measurement requirements for the proposed method of employing drag force and mechanical properties of the material itself to determine the moisture content. Copyright 2002 Elsevier Science Ltd.
T.G. Soares Neto; J.A. Carvalho J.A.; C.A.G. Veras; E.C. Alvarado; R. Gielow; E.N. Lincoln; T.J. Christian; R.J. Yokelson; J.C. Santos
2009-01-01
Biomass consumption and C02, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48 percent and the estimated average moisture content...
A Probe for Measuring Moisture Content in Dead Roundwood
Richard W. Blank; John S. Frost; James E. Eenigenburg
1983-01-01
This paper reports field test results of a wood moisture probe''s accuracy in measuring fuel moisture content of dead roundwood. Probe measurements, corrected for temperature, correlated well with observed fuel moistures of 1-inch dead jack pine branchwood.
Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong
2015-04-15
Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohamad, M.; Sabbri, A. R. M.; Mat Jafri, M. Z.; Omar, A. F.
2014-11-01
Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R2) above 70 % for all the subjects. However, the value of R2 between NIRQuest and Moisture Checker was observed to be lower with the R2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field.
Moisture content measurements of moss (Sphagnum spp.) using commercial sensors
Yoshikawa, K.; Overduin, P.P.; Harden, J.W.
2004-01-01
Sphagnum (spp.) is widely distributed in permafrost regions around the arctic and subarctic. The moisture content of the moss layer affects the thermal insulative capacity and preservation of permafrost. It also controls the growth and collapse history of palsas and other peat mounds, and is relevant, in general terms, to permafrost thaw (thermokarst). In this study, we test and calibrate seven different soil moisture sensors for measuring the moisture content of Sphagnum moss under laboratory conditions. The soil volume to which each probe is sensitive is one of the important parameters influencing moisture measurement, particularly in a heterogeneous medium such as moss. Each sensor has a unique response to changing moisture content levels, solution salinity, moss bulk density and to the orientation (structure) of the Sphagnum relative to the sensor. All of the probes examined here require unique polynomial calibration equations to obtain moisture content from probe output. We provide polynomial equations for dead and live Sphagnum moss (R2 > 0.99. Copyright ?? 2004 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Prat-Guitart, Nuria; Belcher, Claire M.; Hadden, Rory M.; Rein, Guillermo; Yearsley, Jon M.
2015-04-01
In shallow layers of peat, the transition between moss species causes a step-change of the horizontal distribution of peat moisture content. Post-fire studies in peatlands have reported shallow layers being consumed in irregular distributions. The unburned areas were found to be patches of wet Sphagnum moss. Our laboratory scale study analyses the effect of a horizontal step-change in moisture content on the spread of smouldering. We designed a laboratory-scale experiment (20×18×5 cm) within an insulated box filled with milled peat. Peat was ignited on one side of the box from which the smouldering fire horizontally self-propagates through a region of dry peat (MC1) and then through a wetter region of peat (MC2). An infrared camera, a webcam and thermocouples monitor the position of the smouldering fire spreading horizontally. The experiment was repeated with peats at different moisture content combinations to analyse the smouldering behaviour on a range of moisture content step-change conditions. The data analysis estimates the burned area and examines smouldering fire behaviour across a wide range of moisture content combinations reproducing realistic scenarios. We found that the area burned depends on peat moisture content before the step-change (MC1) as well as the increase in moisture of the step-change itself (difference between MC1 and MC2). Our study assists in researching the influence of peat moisture content on the spread of smouldering in peatland fire and contributes to a better understanding of the post-fire peatland landscape, helping to reconstruct smouldering fire events.
Inventory of File gdas1.t06z.sfluxgrbf00.grib2
analysis Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 008 0-0.1 m below ground TMP analysis Temperature [K] 009 0.1-0.4 m Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture
Applicability of common stomatal conductance models in maize under varying soil moisture conditions.
Wang, Qiuling; He, Qijin; Zhou, Guangsheng
2018-07-01
In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Complex conductivity response to silver nanoparticles in partially saturated sand columns
NASA Astrophysics Data System (ADS)
Abdel Aal, Gamal; Atekwana, Estella A.; Werkema, D. Dale
2017-02-01
The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0-30%), nanoparticle concentrations (0-10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90-210 and 1500-2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex conductivity parameters based on the strong power law relationships.
Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.
Al-Nimry, Suhair S; Alkhamis, Khouloud A
2018-04-01
Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range < 63 μm (surface area 55.4 m 2 /g). The rate of degradation at moisture content < 3% was 0.4547 h -1 , almost two times higher than that (0.2594 h -1 ) at moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.
Tumuluru, J. S.; Tabil, L. G.; Song, Y.; ...
2014-10-01
The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) andmore » higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.« less
Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie
2018-08-01
Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.
Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.
2008-01-01
Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.
Subgrade moisture & temperature variations under road pavements in Virginia.
DOT National Transportation Integrated Search
1974-01-01
In this investigation the changes in the subgrade moisture content under five road pavements ranging in age from new to about ten years old were determined and evaluated. The moisture content was determined by means of a nuclear moisture depth probe....
Complex conductivity response to silver nanoparticles in ...
The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co
James Reardon; Roger Hungerford; Kevin Ryan
2007-01-01
The smouldering combustion of peat and muck soil plays an important role in the creation and maintenance of wetland communities. This experimental study was conducted to improve our understanding of how moisture and mineral content constrain smouldering in organic soil. Laboratory burning was conducted with root mat and muck soil samples from pocosin and pond pine...
NASA Astrophysics Data System (ADS)
Mizera, Cestmir; Herak, David; Hrabe, Petr; Kabutey, Abraham
2017-07-01
The mechanical behaviour of natural fibres as composite materials can be affected by changes in temperature and moisture content. The aim of this paper was to describe the effect of temperature and moisture content on tensile strength of false banana fibre (Ensete ventricosum) and to determine its water absorption. Samples of fibres were prepared and tested until rupture point with strain rate of 0.05 min-1 at temperature change between -20 and 220°C as well as moisture content between 10 and 90% wb. The water absorption and release of Ensete fibres at 60 and 90% relative humidity was also determined. Results showed that Ensete fibres exhibited stability of tensile strength in the temperature range from 0 to 100°C but the increase of temperature decreased statistically significantly the tensile strength. The effect of moisture content on tensile strength was not statistically significant. The equilibrium moisture content at 60% relative humidity and 25°C was determined.
NASA Astrophysics Data System (ADS)
Cruz, Febus Reidj G.; Padilla, Dionis A.; Hortinela, Carlos C.; Bucog, Krissel C.; Sarto, Mildred C.; Sia, Nirlu Sebastian A.; Chung, Wen-Yaw
2017-02-01
This study is about the determination of moisture content of milled rice using image processing technique and perceptron neural network algorithm. The algorithm involves several inputs that produces an output which is the moisture content of the milled rice. Several types of milled rice are used in this study, namely: Jasmine, Kokuyu, 5-Star, Ifugao, Malagkit, and NFA rice. The captured images are processed using MATLAB R2013a software. There is a USB dongle connected to the router which provided internet connection for online web access. The GizDuino IOT-644 is used for handling the temperature and humidity sensor, and for sending and receiving of data from computer to the cloud storage. The result is compared to the actual moisture content range using a moisture tester for milled rice. Based on results, this study provided accurate data in determining the moisture content of the milled rice.
Shakofsky, S.M.
1995-01-01
In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semi-arid southeast region of Idaho. The soil samples were collected, using a hydraulically- driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is. by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.
The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture
NASA Astrophysics Data System (ADS)
Nelson, S.; Schmutz, P. P.
2017-12-01
Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.
USDA-ARS?s Scientific Manuscript database
The Karl Fischer Titration (KFT) reference method is specific for water in lint cotton and was designed for samples conditioned to moisture equilibrium, thus limiting its biases. There is a standard method for moisture content – weight loss – by oven drying (OD), just not for equilibrium moisture c...
NASA Astrophysics Data System (ADS)
Shashikumar, C.; Pradhan, R. C.; Mishra, S.
2018-06-01
Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.
NASA Astrophysics Data System (ADS)
Shashikumar, C.; Pradhan, R. C.; Mishra, S.
2018-02-01
Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.
Cao, Zhiming; Rossi, Lorenzo; Stowers, Cheyenne; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao
2018-01-01
The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO 2 NPs) on soybean at different moisture content levels. One CeO 2 NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO 2 NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO 2 NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θ fc ). Similar positive impact of CeO 2 NPs was not observed at 55% θ fc , suggesting that the physiological impact of CeO 2 NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO 2 NPs, indicating that CeO 2 NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO 2 NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content. Graphical abstract Soil moisture content affects plant cerium oxide nanoparticle interactions.
Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber
USDA-ARS?s Scientific Manuscript database
The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...
Foliar Moisture Contents of North American Conifers
Christopher R. Keyes
2006-01-01
Foliar moisture content (FMC) is a primary factor in the canopy ignition process as surface fire transitions to crown fire. In combination with measured stand data and assumed environmental conditions, reasonable estimates of foliar moisture content are necessary to determine and justify silvicultural targets for canopy fuels management strategies. FMC values reported...
An empirical model for the complex dielectric permittivity of soils as a function of water content
NASA Technical Reports Server (NTRS)
Wang, J. R.; Chmugge, T. J.
1978-01-01
The recent measurements on the dielectric properties of soils shows that the variation of dielectric constant with moisture content depends on soil types. The observed dielectric constant increases only slowly with moisture content up to a transition point. Beyond the transition it increases rapidly with moisture content. The moisture value of transition region was found to be higher for high clay content soils than for sandy soils. Many mixing formulas were compared with, and were found incompatible with, the measured dielectric variations of soil-water mixtures. A simple empirical model was proposed to describe the dielectric behavior of ths soil-water mixtures. The relationship between transition moisture and wilting point provides a means of estimating soil dielectric properties on the basis of texture information.
Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed
2013-01-03
This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.
Measuring Water in Bioreactor Landfills
NASA Astrophysics Data System (ADS)
Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.
2004-12-01
Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water was 29%, while the moisture content, the mass of water divided by total wet mass of solid waste, was 28%. Near the sloped sides of the landfill, PTT results indicated that only 7.1% of the pore space was filled with water, while the moisture content was estimated to be 6.9%. These measurements are in close agreement with gravimetric measurements made on solid waste samples collected after each PTT: moisture content of 27% in the center of the landfill and only 6% near the edge of the landfill. We discuss these measurements in detail, the limitations of the PTT method for landfills, and operational guidelines for achieving unbiased measurements of moisture content in landfills using the PTT method.
Yi, Li-Pan; Yu, Zhen-Wen; Zhang, Yong-Li; Wang, Dong; Shi, Yu; Zhao, Jun-Ye
2013-05-01
In 2010-2011, a field experiment with high-yielding winter wheat cultivar Jimai 22 was conducted to study the effects of supplemental irrigation based on the measurement of moisture content in different soil layers on the water consumption characteristics and grain yield of winter wheat. Four soil layers (0-20 cm, W1; 0-40 cm, W2; 0-60 cm, W3; and 0-140 cm, W4) were designed to make the supplemental irrigation at wintering stage (target soil relative moisture content = 75%), jointing stage (target soil relative moisture content = 70%), and anthesis stage (target soil relative moisture content = 70%), taking no irrigation (W0) during the whole growth season as the control. At the wintering, jointing, and anthesis stages, the required irrigation amount followed the order of W3 > W2 > W1. Treatment W4 required smaller irrigation amount at wintering and jointing stages, but significantly higher one at anthesis stage than the other treatments. The proportion of the irrigation amount relative to the total water consumption over the entire growth season followed the sequence of W4, W3 > W2 > W1. By contrast, the proportion of soil water consumption relative to the total water consumption followed the trend of W1 > W2 > W3 > W4. With the increase of the test soil depths, the soil water utilization ratio decreased. The water consumption in 80-140 cm and 160-200 cm soil layers was significantly higher in W2 than in W3 and W4. The required total irrigation amount was in the order of W3 > W4 > W2 > W1, the grain yield was in the order of W2, W3, W4 > W1 > W0, and the water use efficiency followed the order of W2, W4 > W0, W1 > W3. To consider the irrigation amount, grain yield, and water use efficiency comprehensively, treatment W2 under our experimental condition could be the optimal treatment, i. e., the required amount of supplemental irrigation based on the measurement of the moisture content in 0-40 cm soil layer should be feasible for the local winter wheat production.
Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations
NASA Technical Reports Server (NTRS)
Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.
2009-01-01
Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.
NASA Astrophysics Data System (ADS)
Grozdanov, D. N.; Aliyev, F. A.; Hramco, C.; Kopach, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Gundorin, N. A.; Ruskov, I. N.
2018-03-01
A series of experiments has been conducted at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in order to study the possibility of determining the moisture content of coke using a standard neutron source. The proposed method is based on a measurement of the spectrum of prompt γ rays emitted when samples are irradiated by fast and/or thermal neutrons. The moisture content is determined from the area of the peaks of characteristic γ rays produced in the radiative capture of thermal neutrons by the proton ( E γ = 2.223 MeV) and inelastic scattering of fast neutrons by 16O (Eγ = 6.109 MeV). The 239Pu-Be neutron source (< E n > 4.5 MeV) with an intensity of 5 × 106 n/s was used to irradiate the samples under study. A scintillation detector based on a BGO crystal was used to register the characteristic γ radiation from the inelastic fast neutron scattering and slow (thermal) neutron capture. This paper presents the results of humidity measurement in the range of 2-50% [1, 2].
Su, Yun; Li, Jun; Song, Guowen
2018-06-01
The moisture from skin sweat and atmospheric water affects the thermal protective performance provided by multilayer protective clothing. Four levels of moisture content were selected to evaluate the impact of moisture on thermal protection under dry (thermal radiation) and wet (thermal radiation and low-pressure steam) heat exposure. Also, the role of moisture and its relationship with exposure time were analyzed based on skin heat flux and Henriques integral value. The addition of moisture to a fabric system was found to result in differences in second-degree and third-degree skin burn times. When moisture is added to a fabric system, it both acts as a thermal conductor to present a negative effect and provides a positive effect owing to thermal storage of water and evaporative heat loss. The positive or negative effects of moisture are mainly dependent on the thermal exposure time, the moisture content and the presence of hot steam.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties.
Pelletier, Mathew G; Wanjura, John D; Holt, Greg A
2016-11-02
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties
Pelletier, Mathew G.; Wanjura, John D.; Holt, Greg A.
2016-01-01
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor. PMID:27827857
NASA Astrophysics Data System (ADS)
Calderhead, A. I.; Simard, M.; Lavalle, M.
2010-12-01
Temporal changes of repeat-pass SAR backscatter over bare ground or forests results mostly from changes in the target's dielectric properties or moisture content; especially when the timescale is on the order of a few days or weeks. It is important to properly correct for moisture content when using SAR based estimates of tree height or biomass. The objective of this work is to quantify the error in biomass estimates associated with variations in moisture content in temperate and boreal forested areas. In addition, the accuracy of three polarimetric soil moisture surface inversion models (Dubois et al., 1995, Oh et al., 1992; Oh, 2004) are tested on UAVSAR and PALSAR data of bare soils in temperate and boreal forested areas. In addition to PALSAR data from 2007 to 2009, a JPL/UAVSAR campaign over parts of New England and Quebec was completed in August, 2009; L-band SAR images were acquired on August 5th, August 7th, and August 14th. In-situ soil moisture probes at three locations gathered hourly soil moisture content data. LVIS LIDAR is used for quantifying and classifying biomass ranges. Slope corrected backscatter values resampled to 1 hectare at HH, HV, and VV polarizations, and ratios thereof, are compared with soil moisture, precipitation, biomass, and incidence angle. It is seen that the backscatter for high biomass areas varies significantly due to moisture variations. An increase in 1% soil moisture content at the Laurentides field site leads to a change in HV backscatter of 1dB. Regions with high biomass do not vary uniformly with varying moisture content: this can be explained by saturation of the L-band at higher biomass levels. The three inversion algorithms produce varying results with the ‘Dubois et al’ inversion producing the best correlation at the Bartlett Forest site while the ‘Oh 2004’ inversion produces better results at the Laurentides site. Although the accuracy is often poor, the temporal variation of the moisture content for all three inversion algorithms is generally captured.
T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos
2009-01-01
Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...
Prediction of moisture variation during composting process: A comparison of mathematical models.
Wang, Yongjiang; Ai, Ping; Cao, Hongliang; Liu, Zhigang
2015-10-01
This study was carried out to develop and compare three models for simulating the moisture content during composting. Model 1 described changes in water content using mass balance, while Model 2 introduced a liquid-gas transferred water term. Model 3 predicted changes in moisture content without complex degradation kinetics. Average deviations for Model 1-3 were 8.909, 7.422 and 5.374 kg m(-3) while standard deviations were 10.299, 8.374 and 6.095, respectively. The results showed that Model 1 is complex and involves more state variables, but can be used to reveal the effect of humidity on moisture content. Model 2 tested the hypothesis of liquid-gas transfer and was shown to be capable of predicting moisture content during composting. Model 3 could predict water content well without considering degradation kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dielectric properties for prediction of moisture content in Vidalia onions
USDA-ARS?s Scientific Manuscript database
Microwave Sensing provides a means for nondestructively determining the amount of moisture in materials by sensing the dielectric properties of the material. In this study, dielectric properties of Vidalia onions were analyzed for moisture dependence at 13.36 GHz and 23°C for moisture content betwee...
Microwave moisture measurement of cotton fiber moisture content in the laboratory
USDA-ARS?s Scientific Manuscript database
The moisture content of cotton fiber is an important fiber property, but it is often measured by a laborious, time-consuming laboratory oven drying method. A program was implemented to establish the capabilities of a laboratory microwave moisture measurement instrument to perform rapid, precise and...
Kumar, K Vishnuswamy Preetham; Dharmaraj, Usha; Sakhare, Suresh D; Inamdar, Aashitosh A
2016-05-01
Evaluation of functional properties of milled fractions of grain amaranth may be useful to decide the end uses of the grain. Hence, pasting profiles of amaranth fractions obtained by milling the grains at different moisture contents were studied in relation with their starch profile and also with their swelling power and solubility indices. It was observed that, for flour fraction, the viscosity parameters were lowest at 14-16 % moisture content. Swelling power and solubility indices of the samples varied as a function of grain moisture content. The middling fraction also showed similar pasting pattern with the variation of grain moisture content. The seed coat fractions showed higher gelatinization temperature compared to that of fine flour and middling fractions. However, starch content of the fine seed coat fraction was comparable with that of the flour and middling fractions. The coarse seed coat fraction showed lower viscosity parameters than the other samples. Viscosity parameters correlated well among themselves while, they did not show significant correlation with the starch content. However, the viscosity parameters showed negative correlation with the soluble amylose content. The study revealed that, the fractions obtained by milling the grains at different moisture content show differential pasting profiles and functional properties.
NASA Astrophysics Data System (ADS)
Ingemi, Christopher M.; Owusu Twumasi, Jones; Yu, Tzuyang
2018-03-01
Detection and quantification of moisture content inside wood (timber) is key to ensuring safety and reliability of timber structures. Moisture inside wood attracts insects and fosters the development of fungi to attack the timber, causing significant damages and reducing the load bearing capacity during their design life. The use of non-destructive evaluation (NDE) techniques (e.g., microwave/radar, ultrasonic, stress wave, and X-ray) for condition assessment of timber structures is a good choice. NDE techniques provide information about the level of deterioration and material properties of timber structures without obstructing their functionality. In this study, microwave/radar NDE technique was selected for the characterization of wood at different moisture contents. A 12 in-by-3.5 in-by-1.5 in. white spruce specimen (picea glauca) was imaged at different moisture contents using a 10 GHz synthetic aperture radar (SAR) sensor inside an anechoic chamber. The presence of moisture was found to increase the SAR image amplitude as expected. Additionally, integrated SAR amplitude was found beneficial in modeling the moisture content inside the wood specimen.
Sasaki, Hitoshi; Kikuchi, Jun; Maeda, Terutoshi; Kuboniwa, Hitoshi
2010-01-01
The purpose of this study was to evaluate the effect of moisture permeability of different elastomer formulation stoppers, which had different moisture absorption abilities, on the increase of moisture content inside lyophilized vials during long-term storage under humid conditions. Two different elastomer formulation stoppers (high-moisture and low-moisture uptake stoppers) were compared. The increased amount of moisture content inside lyophilized vials fitted with high-moisture stoppers was higher than those fitted with low-moisture stoppers during the early stage of storage. However, this trend was reversed during the later stage of storage. Our data show that the moisture increase inside the lyophilized vials at the early stage was caused by moisture transfer from the stoppers, whereas the later moisture increase was caused by external moisture permeation through the stoppers. Results indicate that the difference in the moisture uptake profile inside the lyophilized vials at each period of storage was caused by the moisture absorption ability and moisture permeation ability of the two elastomer formulation stoppers. In terms of long-term storage stability under humid conditions, our data indicate that external moisture permeating through the stopper into the lyophilized vial during the late stage was the more important factor. In addition, the increase in moisture content at the early stage was controlled by stopper drying time. Furthermore, stopper drying time did not have an effect on moisture permeation at the late stage. Moisture permeation during the storage period appears to be dependent on the different elastomer formulations of the stoppers. The moisture permeation of different elastomer stoppers was an important factor in terms of the increased moisture content inside the lyophilized vials during the late stage of long-term storage under humid conditions. For lyophilized products stored at room temperature, the moisture permeation ability of the stopper is one of the most important factors for long-term storage stability.
Studies on optimum harvest time for hybrid rice seed.
Fu, Hong; Cao, Dong-Dong; Hu, Wei-Min; Guan, Ya-Jing; Fu, Yu-Ying; Fang, Yong-Feng; Hu, Jin
2017-03-01
Timely harvest is critical for hybrid rice to achieve maximum seed viability, vigor and yield. However, how to predict the optimum harvest time has been rarely reported so far. The seed vigor of Zhuliangyou 06 (ZLY06) increased and reached the highest level at 20 days after pollination (DAP), when seed moisture content had a lower value, which was maintained until final seed maturation. For Chunyou 84 (CY84), seed vigor, fresh and dry weight had relatively high values at 25 DAP, when seed moisture content reached the lowest value and changed slightly from 25 to 55 DAP. In both hybrid rice varieties, seed glume chlorophyll content declined rapidly from 10 to 30 DAP and remained at a very low level after 35 DAP. Starch content exhibited an increasing trend during seed maturation, while both soluble sugar content and amylase activity decreased significantly at the early stages of seed development. Moreover, correlation analyses showed that seed dry weight, starch content and superoxide dismutase activity were significantly positively correlated with seed vigor. In contrast, chlorophyll content, moisture content, soluble sugar, soluble protein, abscisic acid, gibberellin content, electrical conductivity, catalase and ascorbate peroxidase activities were significantly negatively correlated with seed vigor. Physiological and biochemical parameters were obviously more closely related with seed vigor than with seed germinability during seed development. Seed vigor could be better used as a comprehensive factor to predict the optimum seed harvest time. It is suggested that for ZLY06 seeds could be harvested as early as 20 DAP, whereas for CY84 the earliest optimum harvest time was 25 DAP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Kauppinen, Ari; Toiviainen, Maunu; Korhonen, Ossi; Aaltonen, Jaakko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko
2013-02-19
During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.
40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... If you operate a veneer redryer, you must record the inlet moisture content of the veneer processed... average inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...
40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operate a veneer redryer, you must record the inlet moisture content of the veneer processed in the... inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2013 CFR
2013-07-01
... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...
40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operate a veneer redryer, you must record the inlet moisture content of the veneer processed in the... inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...
40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... If you operate a veneer redryer, you must record the inlet moisture content of the veneer processed... average inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2014 CFR
2014-07-01
... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...
40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... If you operate a veneer redryer, you must record the inlet moisture content of the veneer processed... average inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...
Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils.
Luster-Teasley, S; Ubaka-Blackmoore, N; Masten, S J
2009-08-15
In this study, pyrene spiked soil (300 ppm) was ozonated at pH levels of 2, 6, and 8 and three moisture contents. It was found that soil pH and moisture content impacted the effectiveness of PAH oxidation in unsaturated soils. In air-dried soils, as pH increased, removal increased, such that pyrene removal efficiencies at pH 6 and pH 8 reached 95-97% at a dose of 2.22 mg O(3)/mg pyrene. Ozonation at 16.2+/-0.45 mg O(3)/ppm pyrene in soil resulted in 81-98% removal of pyrene at all pH levels tested. Saturated soils were tested at dry, 5% or 10% moisture conditions. The removal of pyrene was slower in moisturized soils, with the efficiency decreasing as the moisture content increased. Increasing the pH of the soil having a moisture content of 5% resulted in improved pyrene removals. On the contrary, in the soil having a moisture content of 10%, as the pH increased, pyrene removal decreased. Contaminated PAH soils were stored for 6 months to compare the efficiency of PAH removal in freshly contaminated soil and aged soils. PAH adsorption to soil was found to increase with longer exposure times; thus requiring much higher doses of ozone to effectively oxidize pyrene.
Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.
Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy
2015-07-30
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.
Virginia's use of remote sensing in the preliminary aerial survey--highway planning stage.
DOT National Transportation Integrated Search
1972-01-01
The purpose of the study was to determine whether infrared technology could be used in Virginia to delineate areas with soils having a high moisture content. The study was conducted in cooperation with the FHWA, and personnel of the University of Mic...
USDA-ARS?s Scientific Manuscript database
A review of the use of electrical properties of agricultural products for sensing moisture content and other qualities shows that their use for rapid measurements of the moisture content in grain and seed has been the most successful application. Discovery of useful correlations between the moistur...
Measuring moisture content in living chaparral: a field user's manual
Clive M. Countryman; William A. Dean
1979-01-01
This manual standardizes procedures for determining the moisture content of living chaparral for use in a proposed statewide system of monitoring living fuel moisture. The manual includes a comprehensive examination of fuel moisture variations in California chaparral, and describes techniques for sampling these variations. Equipment needed to sample and determine...
Aydinoğlu, Tuğba; Sargin, Sayit
2013-02-01
The aim of the present study was to investigate whether olive leaves were feasible as a substrate for laccase production by the white-rot fungus Trametes versicolor FPRL 28A INI under solid-state fermentation conditions. Different experiments were conducted to select the variables that allow obtaining high levels of laccase activity. In particular, the effects of the initial moisture content, substrate particle size, supplementation with inorganic and organic nitrogen sources were evaluated. Highest laccase activity (276.62 ± 25.67 U/g dry substrate) was achieved with 80 % initial moisture content and 1.4-1.6 mm particle size of the substrate supplemented with yeast extract (1 % (w/w) nitrogen). Such a high activity was obtained without any addition of inducers.
The effect of water harvesting techniques on runoff, sedimentation, and soil properties.
Al-Seekh, Saleh H; Mohammad, Ayed G
2009-07-01
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.
The Effect of Water Harvesting Techniques on Runoff, Sedimentation, and Soil Properties
NASA Astrophysics Data System (ADS)
Al-Seekh, Saleh H.; Mohammad, Ayed G.
2009-07-01
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.
2013-01-01
This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502
NASA Astrophysics Data System (ADS)
Ju, Tingting; Li, Xiaolan; Zhang, Hongsheng; Cai, Xuhui; Song, Yu
2018-06-01
Using the observational data of dust concentrations and meteorological parameters from 2011 to 2015, the effects of soil moisture and air humidity on dust emission were studied at long (monthly) and short (several days or hours) time scales over the Horqin Sandy Land area, Inner Mongolia of China. The results show that the monthly mean dust concentrations and dust fluxes within the near-surface layer had no obvious relationship with the monthly mean soil moisture content but had a slightly negative correlation with monthly mean air relative humidity from 2011 to 2015. The daily mean soil moisture exhibited a significantly negative correlation with the daily mean dust concentrations and dust fluxes, as soil moisture changed obviously. However, such negative correlation between soil moisture and dust emission disappeared on dust blowing days. Additionally, the effect of soil moisture on an important parameter for dust emission, the threshold friction velocity (u∗t), was investigated during several saltation-bombardment and/or aggregation-disintegration dust emission (SADE) events. Under dry soil conditions, the values of u∗t were not influenced by soil moisture content; however, when the soil moisture content was high, the values of u∗t increased with increasing soil moisture content.
Forughi, A F; Green, S I; Stoeber, B
2016-02-01
Accurate measurement of the moisture content of paper is essential in papermaking and is also important in some paper-based microfluidic devices. Traditional measurement techniques provide very limited spatiotemporal resolution and working range. This article presents a novel method for moisture content measurement whose operating principle is the strong correlation between the optical transparency of paper and its moisture content. Spectrographic and microscopic measurement techniques were employed to characterize the relation of moisture content and relative transparency of four types of paper: hardwood chemi-thermomechanical pulp paper, Northern bleached softwood kraft paper, unbleached softwood kraft paper, and General Electric(®) Whatman™ grade 1 chromatography paper. It was found that for all paper types, the paper transparency increased monotonically with the moisture content (as the ratio of the mass-of-water to the mass-of-dry-paper increased from 0% to 120%). This significant increase in relative transparency occurred due to the refractive index matching role of water in wet paper. It is further shown that mechanical loading of the paper has little impact on the relative transparency, for loadings that would be typical on a paper machine. The results of two transient water absorption experiments are presented that show the utility and accuracy of the technique.
NASA Technical Reports Server (NTRS)
Stokes, E. H.
1991-01-01
This study focuses on the relationship between relative humidity and the equilibrated moisture content of several variants of two distinctly different carbon phenolic composites. One of the materials gives a typical exponential relationship between RH and equilibrated moisture content while the second gives an inverse sigmoidal relationship with the largest increase in moisture between 45-60 percent relative humidity. The possible relationship between the shape of the curves and the nature of the material constituents is discussed.
Summer Moisture Content of Some Northern Lower Michigan Understory Plants
Robert M. Loomis; Richard W. Blank
1981-01-01
Summer moisture contents and factors for converting fresh plant weights to ovendry weights were determined for selected herbs, ferns, and small shrubs commonly found on upland sites in northern Lower Michigan. Sampling was done weekly from mid-June through early September 1978, following the period of major plant growth. Average summer moisture contents range from...
Brick Paving Systems in Expeditionary Environments: Field Testing
2012-07-01
specific gravity of 2.7, optimum moisture content of 2.6 percent, and a maximum dry density of 114.2 pcf. Figure 5 shows the Proctor curve developed by...4 Figure 3. Dry density versus moisture content for CH material...6 Figure 5. Dry density versus moisture content for blended GM base course. ..................................... 7 Figure 6
40 CFR Table 8 to Subpart Dddd of... - Continuous Compliance With the Work Practice Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with... inlet furnish moisture content at less than or equal to 30 percent (by weight, dry basis) AND... records of the inlet temperature of furnish moisture content and inlet dryer temperature. (2) Hardwood...
40 CFR Table 8 to Subpart Dddd of... - Continuous Compliance With the Work Practice Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with... inlet furnish moisture content at less than or equal to 30 percent (by weight, dry basis) AND... records of the inlet temperature of furnish moisture content and inlet dryer temperature. (2) Hardwood...
40 CFR Table 8 to Subpart Dddd of... - Continuous Compliance With the Work Practice Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with... inlet furnish moisture content at less than or equal to 30 percent (by weight, dry basis) AND... records of the inlet temperature of furnish moisture content and inlet dryer temperature. (2) Hardwood...
Chemical modification : a non-toxic approach to wood preservation
Roger M. Rowell
2006-01-01
Wood can be chemically modified to reduce the moisture content of the cell wall and increases decay resistance. As the level of bonded chemical increases, the cell wall equilibrium moisture content decreases and the resistance to attack by white-and brown-rot fungi increases. There is a direct relationship between the decrease in cell wall moisture Content and...
Effect of moisture on the fatigue behavior of graphite/epoxy composite laminates
NASA Technical Reports Server (NTRS)
Ramani, S. V.; Nelson, H. G.
1979-01-01
The form of the moisture distribution in the specimen (gradient and flat profile) was considered to establish the influence of accelerated moisture conditioning on fatigue behavior. For the gradient specimens having an average moisture content of 1.4 percent, fatigue life was reduced by a factor of 8 at all stress levels investigated. Corresponding reduction in fatigue life for the flat moisture profile specimens at the same average moisture content was comparatively smaller, being about a factor of 5 from the value in dry specimens. X-ray radiographic analysis of damage accumulation in compression-compression fatigue revealed interlaminar cracking to be the dominant mode of failure responsible for the observed enhanced cyclic degradation of moisture-conditioned specimens. This finding was corroborated by the observed systematic reduction in interlaminar shear strength as a function of moisture content, which, in turn, increased the propensity for delamination under cyclic compressive loads. Residual strength measurements on cycled specimens indicated significant strength reductions at long lives, particularly in moisture conditioned specimens.
Roller compaction of moist pharmaceutical powders.
Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K
2010-05-31
The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Maruki-Uchida, Hiroko; Morita, Minoru; Yonei, Yoshikazu; Sai, Masahiko
2018-01-01
Piceatannol has been reported to have a wide variety of effects on the skin, including promoting collagen production, inhibiting melanin synthesis, inducing the antioxidant glutathione, and eliminating reactive oxygen species. In this study, a randomized, placebo-controlled, double-blind trial was conducted to clinically evaluate the effects of piceatannol-rich passion fruit seed extract on the skin of healthy Japanese women (age, 35-54 y). Thirty-two women with dry skin received either passion fruit seed extract (5 mg piceatannol) or a placebo (dextrin) for 8 wk. Skin hydration and other parameters on the face were assessed at 0, 4, and 8 wk by using specialized equipment. Furthermore, questionnaire interviews were conducted regarding the physical condition of subjects at 0, 4, and 8 wk. The results showed that consumption of passion fruit seed extract led to significant increases in the moisture content of human skin after 4 and 8 wk compared with that before the trial. The amount of transepidermal water loss decreased over time, although the differences were not significant. Moreover, a stratified analysis of subjects with moisture values of ≤200 μS revealed increased moisture content in the passion fruit seed extract group as compared with the placebo group. Furthermore, the results of questionnaires showed significant reductions in "perspiration" and "fatigue" in the passion fruit seed extract group as compared with the placebo group. These results indicate that oral intake of passion fruit seed extract that is rich in piceatannol could improve the moisture of dry skin and reduce fatigue.
Monitoring moisture storage in trees using time domain reflectometry
Constantz, J.; Murphy, F.
1990-01-01
Laboratory and field tests were performed to examine the feasibility of using time domain reflectometry (TDR) to monitor changes in the moisture storage of the woody parts of trees. To serve as wave guides for the TDR signal, pairs of stainless steel rods (13 cm long, 0.32 cm in diameter, and 2.5 cm separation) were driven into parallel pilot holes drilled into the woody parts of trees, and a cable testing oscilloscope was used to determine the apparent dielectric constant. A laboratory calibration test was performed on two sapwood samples, so that the relation between the volumetric water content and the apparent dielectric constant of the sapwood could be determined over a range of water contents. The resulting calibration curve for these sapwood samples was significantly different than the general calibration curve used for soils, showing a smaller change in the apparent dielectric constant for a given change in the volumetric water content than is typical for soils. The calibration curve was used to estimate the average volumetric water content to a depth of 13 cm in living trees. One field experiment was conducted on an English walnut tree (Juglans regia) with a diameter of 40 cm, growing in a flood-irrigated orchard on a Hanford sandy loam near Modesto, California (U.S.A.). Rods were driven into the tree at about 50 cm above the soil surface and monitored hourly for the month of August, 1988. The moisture content determined by TDR showed a gradual decrease from 0.44 to 0.42 cm3 cm-3 over a two week period prior to flood irrigation, followed by a rapid rise to 0.47 cm3 cm-3 over a four day period after irrigation, then again a gradual decline approaching the next irrigation. A second field experiment was made on ten evergreen and deciduous trees with diameters ranging from 30 to 120 cm, growing in the foothills of the Coast Range of central California. Rods were driven into each tree at 50 to 100 cm above the soil surface and monitored on a biweekly to monthly basis for over a year. Most trees showed an early spring maximum in moisture content determined by TDR associated with leaf growth, and a late summer minimum in moisture content associated with the end of the dry season. Moisture contents ranged from 0.20 to 0.70 cm3 cm-3, with an annual percentage change in moisture of 15% to 70% depending on species and environmental conditions. A final field test was performed in northern New Mexico (U.S.A.) to examine the effect of trunk freezing on TDR measurements. This test confirmed that freezing conditions were recorded as a total loss of liquid water by the TDR method. These results suggest that further TDR calibration for wood, plus some understanding of the relation between tree moisture and physiological stress could be useful to several disciplines, ranging from irrigation scheduling to watershed management to forest ecology. ?? 1990.
Monitoring moisture storage in trees using time domain reflectometry
NASA Astrophysics Data System (ADS)
Constantz, Jim; Murphy, Fred
1990-11-01
Laboratory and field tests were performed to examine the feasibility of using time domain reflectometry (TDR) to monitor changes in the moisture storage of the woody parts of trees. To serve as wave guides for the TDR signal, pairs of stainless steel rods (13 cm long, 0.32 cm in diameter, and 2.5 cm separation) were driven into parallel pilot holes drilled into the woody parts of trees, and a cable testing oscilloscope was used to determine the apparent dielectric constant. A laboratory calibration test was performed on two sapwood samples, so that the relation between the volumetric water content and the apparent dielectric constant of the sapwood could be determined over a range of water contents. The resulting calibration curve for these sapwood samples was significantly different than the general calibration curve used for soils, showing a smaller change in the apparent dielectric constant for a given change in the volumetric water content than is typical for soils. The calibration curve was used to estimate the average volumetric water content to a depth of 13 cm in living trees. One field experiment was conducted on an English walnut tree ( Juglans regia) with a diameter of 40 cm, growing in a flood-irrigated orchard on a Hanford sandy loam near Modesto, California (U.S.A.). Rods were driven into the tree at about 50 cm above the soil surface and monitored hourly for the month of August, 1988. The moisture content determined by TDR showed a gradual decrease from 0.44 to 0.42 cm 3 cm -3 over a two week period prior to flood irrigation, followed by a rapid rise to 0.47 cm 3 cm -3 over a four day period after irrigation, then again a gradual decline approaching the next irrigation. A second field experiment was made on ten evergreen and deciduous trees with diameters ranging from 30 to 120 cm, growing in the foothills of the Coast Range of central California. Rods were driven into each tree at 50 to 100 cm above the soil surface and monitored on a biweekly to monthly basis for over a year. Most trees showed an early spring maximum in moisture content determined by TDR associated with leaf growth, and a late summer minimum in moisture content associated with the end of the dry season. Moisture contents ranged from 0.20 to 0.70 cm 3 cm -3, with an annual percentage change in moisture of 15% to 70% depending on species and environmental conditions. A final field test was performed in northern New Mexico (U.S.A.) to examine the effect of trunk freezing on TDR measurements. This test confirmed that freezing conditions were recorded as a total loss of liquid water by the TDR method. These results suggest that further TDR calibration for wood, plus some understanding of the relation between tree moisture and physiological stress could be useful to several disciplines, ranging from irrigation scheduling to watershed management to forest ecology.
A protocol for conducting rainfall simulation to study soil runoff
USDA-ARS?s Scientific Manuscript database
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial ur...
Moisture determination in composite materials using positron lifetime techniques
NASA Technical Reports Server (NTRS)
Singh, J. J.; Holt, W. R.; Mock, W., Jr.
1980-01-01
A technique was developed which has the potential of providing information on the moisture content as well as its depth in the specimen. This technique was based on the dependence of positron lifetime on the moisture content of the composite specimen. The positron lifetime technique of moisture determination and the results of the initial studies are described.
Risk management for moisture related effects in dry manufacturing processes: a statistical approach.
Quiroz, Jorge; Strong, John; Zhang, Lanju
2016-03-01
A risk- and science-based approach to control the quality in pharmaceutical manufacturing includes a full understanding of how product attributes and process parameters relate to product performance through a proactive approach in formulation and process development. For dry manufacturing, where moisture content is not directly manipulated within the process, the variability in moisture of the incoming raw materials can impact both the processability and drug product quality attributes. A statistical approach is developed using individual raw material historical lots as a basis for the calculation of tolerance intervals for drug product moisture content so that risks associated with excursions in moisture content can be mitigated. The proposed method is based on a model-independent approach that uses available data to estimate parameters of interest that describe the population of blend moisture content values and which do not require knowledge of the individual blend moisture content values. Another advantage of the proposed tolerance intervals is that, it does not require the use of tabulated values for tolerance factors. This facilitates the implementation on any spreadsheet program like Microsoft Excel. A computational example is used to demonstrate the proposed method.
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-01-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-05-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.
Moisture and Thermal Conductivity of Lightweight Block Walls
NASA Astrophysics Data System (ADS)
Joosep, R.
2015-11-01
This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.
Effects of extrusion variables on the properties of waxy hulless barley extrudates.
Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W
2004-02-01
The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.
Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-03-01
Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Bitterlich, Michael; Sandmann, Martin; Graefe, Jan
2018-01-01
Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae , and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8-4.2) and dry (pF 2.5-4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant transpiration when soil moisture declined. The water potential at the root surface and the resistance to water flow in the rhizosphere were restored in mycorrhizal pots although the bulk substrate dried more. Finally, substrates colonized by AMF can be more desiccated before substrate water flux quantitatively limits transpiration. This is most pronounced under high transpiration demands and complies with a difference of over 1,000 hPa in substrate water potential.
Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke
2009-06-01
A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.
National fire-danger rating system fine-fuel moisture content tablesan Alaskan adaptation.
Richard J. Barney
1969-01-01
Fine-fuel moisture content tables, using dry bulb and dewpoint temperatures as entry data, have been developed for use with the National Fire-Danger Rating System in Alaska. Comparisons have been made which illustrate differences resulting from danger-rating calculations based on these new fine-fuel moisture content tables for the cured, transition, and green...
Investigation of Historic Equilibrium Moisture Content Data from the Forest Products Laboratory
Samuel V. Glass; Samuel L. Zelinka; Jay A. Johnson
2014-01-01
The Forest Products Laboratory (FPL) has provided equilibrium moisture content (EMC) values of wood for given temperature and relative humidity (RH) conditions in various forms over the course of its history, primarily for practical purposes related to drying lumber and controlling moisture content. The FPL EMC data have been widely cited and reprinted, not only in...
Samuel L. Zelinka; Samuel V. Glass; Dominique Derome
2014-01-01
This paper characterizes the corrosion rate of embedded fasteners as a function of wood moisture content using gravimetric and electrochemical measurements. The results indicated that the corrosion rate increased with moisture content before reaching a plateau. The phases present in the corrosion products, as analyzed using X-ray diffraction, are generally consistent...
James W. Evans; Jane K. Evans; David W. Green
1990-01-01
This paper presents computer programs for adjusting the mechanical properties of 2-in. dimension lumber for changes in moisture content. Mechanical properties adjusted are modulus of rupture, ultimate tensile stress parallel to the grain, ultimate compressive stress parallel to the gain, and flexural modulus of elasticity. The models are valid for moisture contents...
Code of Federal Regulations, 2010 CFR
2010-07-01
... moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with an inlet dryer... dryer” AND you have a record of the inlet moisture content and inlet dryer temperature (as required in... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with an inlet dryer... dryer” AND you have a record of the inlet moisture content and inlet dryer temperature (as required in... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...
Influence of moisture content of combusted wood on the thermal efficiency of a boiler
NASA Astrophysics Data System (ADS)
Dzurenda, Ladislav; Banski, Adrián
2017-03-01
In the paper the influence of moisture content of wood on the heat losses and thermal efficiency of a boiler is analysed. The moisture content of wood has a negative effect, especially on flue gas loss. The mathematical dependence of the thermal efficiency of a boiler is presented for the following boundary conditions: the moisture content of wood 10-60%, range of temperatures of emitted flue gases from the boiler into the atmosphere 120-200 C, the emissions meeting the emission standards: carbon monoxide 250 mgm-3, fly ash 50 mgm-3 and the heat power range 30-100%.
Moisture transfer from stopper to product and resulting stability implications.
Pikal, M J; Shah, S
1992-01-01
Since the stability of a freeze-dried product is often sensitive to the level of moisture, control of residual moisture by attention to the secondary drying phase of the freeze-drying process is of considerable importance. However, several reports in the literature as well as our own experience suggest that low residual moisture immediately after manufacture does not ensure low moisture throughout the shelf life of the product. Equilibration of the product with moisture in the stopper can lead to significant increases in product water content. This research is a study of the kinetic and equilibrium aspects of moisture transfer from stopper to product at 5 degrees C, 25 degrees C, and 40 degrees C for two amorphous materials: vancomycin (highly hygroscopic) and lactose (moderately hygroscopic). Stoppers are 13 mm butyl rubber (#1816, West Co.) slotted freeze-drying stoppers which were studied: (a) "U"-with no treatment; (b) "SV1"-steam-sterilized followed by 1 hr vacuum drying; and (c) "SV8"-steam sterilized followed by 8 hrs vacuum drying. No evidence was found for moisture transmission through the stopper. Rather, the product moisture content increases with time and reaches an apparent equilibrium value characteristic of the product, amount of product, and stopper treatment method ("SV1" much greater than "U" greater than "SV1"). As a first approximation, the rate of approach to "equilibrium" depends only on temperature (t1/2 approximately 10 months at 5 degrees C to approximately 4 days at 40 degrees C) with the "equilibrium" water content being independent of temperature. The "equilibrium" moisture content increases as the dose decreases and is larger for vancomycin than for lactose. The "equilibrium" moisture contents range from 5.0% (25 mg vancomycin, "SV1" stoppers) to 0.68% (100 mg lactose, "SV8" stoppers).
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen
2016-04-01
Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.
Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation
Verstraeten, Willem W.; Veroustraete, Frank; Feyen, Jan
2008-01-01
The proper assessment of evapotranspiration and soil moisture content are fundamental in food security research, land management, pollution detection, nutrient flows, (wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc. This paper takes an extensive, though not exhaustive sample of international scientific literature to discuss different approaches to estimate land surface and ecosystem related evapotranspiration and soil moisture content. This review presents: (i)a summary of the generally accepted cohesion theory of plant water uptake and transport including a shortlist of meteorological and plant factors influencing plant transpiration;(ii)a summary on evapotranspiration assessment at different scales of observation (sap-flow, porometer, lysimeter, field and catchment water balance, Bowen ratio, scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii)a summary on data assimilation schemes conceived to estimate evapotranspiration using optical and thermal remote sensing; and(iv)for soil moisture content, a summary on soil moisture retrieval techniques at different spatial and temporal scales is presented. Concluding remarks on the best available approaches to assess evapotranspiration and soil moisture content with and emphasis on remote sensing data assimilation, are provided. PMID:27879697
Liao, C M; Liang, H M
2000-05-01
Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC-odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ-I model and a MJ-II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ-I model, manure moisture movement was negligible, whereas in the MJ-II model, time-dependent indoor air concentrations was a function of constant manure moisture contents and steady-state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC-odors of p-cresol, toluene, and p-xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ-I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.
USDA-ARS?s Scientific Manuscript database
Microwave Sensing provides a means for nondestructively determining the amount of moisture in materials by sensing the dielectric properties of the material. In this study, dielectric properties of Vidalia onions were analyzed for moisture dependence at 13.36 GHz and 23°C for moisture content betwee...
Robert M. Loomis; William A. Main
1980-01-01
Relations between certain slash and forest floor moisture contents and the applicable estimated time lag fuel moistures of the National Fire Danger Rating System were investigated for 1-year-old jack pine fuel types in northeastern Minnesota and central Lower Michigan. Only approximate estimates of actual fuel moisture are possible fore the relations determined, thus...
Inventory of File gfs.t06z.sfluxgrbf00.grib2
Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture analysis Temperature [K] 071 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non
NASA Astrophysics Data System (ADS)
Tihay-Felicelli, V.; Santoni, P. A.; Gerandi, G.; Barboni, T.
2017-06-01
The aim of this study was to investigate emission characteristics in relation to differences in fuel moisture content (FMC) and initial dry mass. For this purpose, branches and twigs with leaves of Cistus monspeliensis were burned in a Large Scale Heat Release apparatus coupled to a Fourier Transform Infrared Spectrometer. A smoke analysis was conducted and the results highlighted the presence of CO2, H2O, CO, CH4, NO, NO2, NH3, SO2, and non-methane organic compounds (NMOC). CO2, NO, and NO2 species are mainly released during flaming combustion, whereas CO, CH4, NH3, and NMOC are emitted during both flaming and smoldering combustion. The emission of these compounds during flaming combustion is due to a rich fuel to air mixture, leading to incomplete combustion. The fuel moisture content and initial dry mass influence the flame residence time, the duration of smoldering combustion, the combustion efficiency, and the emission factors. By increasing the initial dry mass, the emission factors of NO, NO2, and CO2 decrease, whereas those of CO and CH4 increase. The increase of FMC induces an increase of the emission factors of CO, CH4, NH3, NMOC, and aerosols, and a decrease of those of CO2, NO, and NO2. Increasing fuel moisture content reduces fuel consumption, duration of smoldering, and peak heat release rate, but simultaneously increases the duration of propagation within the packed bed, and the flame residence time. Increasing the initial dry mass, causes all the previous combustion parameters to increase. These findings have implications for modeling biomass burning emissions and impacts.
Jiang, Tao; Schuchardt, Frank; Li, Guoxue; Guo, Rui; Zhao, Yuanqiu
2011-01-01
Gaseous emission (N2O, CH4 and NH3) from composting can be an important source of anthropogenic greenhouse gas and air pollution. A laboratory scale orthogonal experiment was conducted to estimate the effects of C/N ratio, aeration rate and initial moisture content on gaseous emission during the composting of pig faeces from Chinese Ganqinfen system. The results showed that about 23.9% to 45.6% of total organic carbon (TOC) was lost in the form of CO2 and 0.8% to 7.5% of TOC emitted as CH4. Most of the nitrogen was lost in the form of NH3, which account for 9.6% to 32.4% of initial nitrogen. N2O was also an important way of nitrogen losses and 1.5% to 7.3% of initial total nitrogen was lost as it. Statistic analysis showed that the aeration rate is the most important factor which could affect the NH3 (p = 0.0189), CH4 (p = 0.0113) and N2O (p = 0.0493) emissions significantly. Higher aeration rates reduce the CH4 emission but increase the NH3 and N2O losses. C/N ratio could affect the NH3 (p = 0.0442) and CH4 (p = 0.0246) emissions significantly, but not the N2O. Lower C/N ratio caused higher NH3 and CH4 emissions. The initial moisture content can not influence the gaseous emission significantly. Most treatments were matured after 37 days, except a trial with high moisture content and a low C/N ratio.
Drying kinetic of industrial cassava flour: Experimental data in view.
Odetunmibi, Oluwole A; Adejumo, Oluyemisi A; Oguntunde, Pelumi E; Okagbue, Hilary I; Adejumo, Adebowale O; Suleiman, Esivue A
2017-12-01
In this data article, laboratory experimental investigation results on drying kinetic properties: the drying temperature ( T ), drying air velocity ( V ) and dewatering time (Te), each of the factors has five levels, and the experiment was replicated three times and the output: drying rate and drying time obtained, were observed. The experiment was conducted at National Centre for Agricultural Mechanization (NCAM) for a period of eight months, in 2014. Analysis of variance was carried out using randomized complete block design with factorial experiment on each of the outputs: drying rate and drying times of the industrial cassava flour. A clear picture on each of these outputs was provided separately using tables and figures. It was observed that all the main factors as well as two and three ways interactions are significant at 5% level for both drying time and rate. This also implies that the rate of drying grated unfermented cassava mash, to produce industrial cassava flour, depend on the dewatering time (the initial moisture content), temperature of drying, velocity of drying air as well as the combinations of these factors altogether. It was also discovered that all the levels of each of these factors are significantly difference from one another. In summary, the time of drying is a function of the dewatering time which was responsible for the initial moisture content. The higher the initial moisture content the longer the time of drying, and the lower the initial moisture content, the lower the time of drying. Also, the higher the temperature of drying the shorter the time of drying and vice versa. Also, the air velocity effect on the drying process was significant. As velocity increases, rate of drying also increases and vice versa. Finally, it can be deduced that the drying kinetics are influenced by these processing factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellman, Dawn M.; Parker, Kent E.; Powers, Laura
2008-07-31
Assessing long-term performance of Category 3 cement wasteforms and accurate prediction for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). A set of sediment-concrete half-cell diffusion experiments was conducted under unsaturated conditions (4% and 7% by weight moisture content) using carbonated and non-carbonated concrete-soil half-cells. Results indicate the behavior of rhenium and iodine release was comparable within a given half-cell test. Diffusivity in soil is a function of moisture content; a 3% increase in moisture content affords a one to two order of magnitude increase in diffusivity. Release of iodine and rheniummore » was 1 to 3 orders of magnitude less from non-carbonated, relative to carbonated, concrete monoliths. Inclusion of iron in non-carbonate monoliths resulted in the lowest concrete diffusivity values for both iodine and rhenium. This suggests that in the presence of iron, iodine and rhenium are converted to reduced species, which are less soluble and better retained within the concrete monolith. The release of iodine and rhenium was greatest from iron-bearing, carbonated concrete monoliths, suggesting carbonation negates the effect of iron on the retention of iodine and rhenium within concrete monoliths. This is likely due to enhanced formation of microcracks in the presence of iron, which provide preferential paths for contaminant migration. Although the release of iodine and rhenium were greatest from carbonated concrete monoliths containing iron, the migration of iodine and rhenium within a given half-cell is dependent on the moisture content, soil diffusivity, and diffusing species.« less
Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.
Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S
2005-03-01
Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.
Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China
NASA Astrophysics Data System (ADS)
Yang, Lei; Wei, Wei; Chen, Liding; Mo, Baoru
2012-12-01
SummarySoil moisture is an effective water source for plant growth in the semi-arid Loess Plateau of China. Characterizing the response of deep soil moisture to land use and afforestation is important for the sustainability of vegetation restoration in this region. In this paper, the dynamics of soil moisture were quantified to evaluate the effect of land use on soil moisture at a depth of 2 m. Specifically, the gravimetric soil moisture content was measured in the soil layer between 0 and 8 m for five land use types in the Longtan catchment of the western Loess Plateau. The land use types included traditional farmland, native grassland, and lands converted from traditional farmland (pasture grassland, shrubland and forestland). Results indicate that the deep soil moisture content decreased more than 35% after land use conversion, and a soil moisture deficit appeared in all types of land with introduced vegetation. The introduced vegetation decreased the soil moisture content to levels lower than the reference value representing no human impact in the entire 0-8 m soil profile. No significant differences appeared between different land use types and introduced vegetation covers, especially in deeper soil layers, regardless of which plant species were introduced. High planting density was found to be the main reason for the severe deficit of soil moisture. Landscape management activities such as tillage activities, micro-topography reconstruction, and fallowed farmland affected soil moisture in both shallow and deep soil layers. Tillage and micro-topography reconstruction can be used as effective countermeasures to reduce the soil moisture deficit due to their ability to increase soil moisture content. For sustainable vegetation restoration in a vulnerable semi-arid region, the plant density should be optimized with local soil moisture conditions and appropriate landscape management practices.
NASA Astrophysics Data System (ADS)
Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.
2017-05-01
The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.
NASA Astrophysics Data System (ADS)
Felfelani, F.; Pokhrel, Y. N.
2017-12-01
In this study, we use in-situ observations and satellite data of soil moisture and groundwater to improve irrigation and groundwater parameterizations in the version 4.5 of the Community Land Model (CLM). The irrigation application trigger, which is based on the soil moisture deficit mechanism, is enhanced by integrating soil moisture observations and the data from the Soil Moisture Active Passive (SMAP) mission which is available since 2015. Further, we incorporate different irrigation application mechanisms based on schemes used in various other land surface models (LSMs) and carry out a sensitivity analysis using point simulations at two different irrigated sites in Mead, Nebraska where data from the AmeriFlux observational network are available. We then conduct regional simulations over the entire High Plains region and evaluate model results with the available irrigation water use data at the county-scale. Finally, we present results of groundwater simulations by implementing a simple pumping scheme based on our previous studies. Results from the implementation of current irrigation parameterization used in various LSMs show relatively large difference in vertical soil moisture content profile (e.g., 0.2 mm3/mm3) at point scale which is mostly decreased when averaged over relatively large regions (e.g., 0.04 mm3/mm3 in the High Plains region). It is found that original irrigation module in CLM 4.5 tends to overestimate the soil moisture content compared to both point observations and SMAP, and the results from the improved scheme linked with the groundwater pumping scheme show better agreement with the observations.
Computed parameters : moisture content for unbound materials at seasonal monitoring program sites
DOT National Transportation Integrated Search
2000-01-01
Moisture content plays a significant role in the performance of pavements. Variation in the amount of moisture in the subgrade can change the volume of swelling soil, which may result in detrimental deformation of the pavement structure. An increase ...
Design of Moisture Content Detection System
NASA Astrophysics Data System (ADS)
Wang, W. C.; Wang, L.
In this paper, a method for measuring the moisture content of grain was presented based on single chip microcomputer and capacitive sensor. The working principle of measuring moisture content is introduced and a concentric cylinder type of capacitive sensor is designed, the signal processing circuits of system are described in details. System is tested in practice and discussions are made on the various factors affecting the capacitive measuring of grain moisture based on the practical experiments, experiment results showed that the system has high measuring accuracy and good controlling capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; Lope Tabil; Anthony Opoku
2011-04-01
The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (Mw) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability andmore » bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37–40.33% and 91.27–92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R2 value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and Mw and the interaction term T × Mw were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50–80 °C and a low Mw of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8–528.9 kg m-3, 60.3–92.7% and 45.52–68.77 kg h-1, respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition.« less
Fiber optic moisture sensor with moisture-absorbing reflective target
Kirkham, Randy R.
1987-01-01
A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.
Evaluation of Crops Moisture Provision by Space Remote Sensing Data
NASA Astrophysics Data System (ADS)
Ilienko, Tetiana
2016-08-01
The article is focused on theoretical and experimental rationale for the use of space data to determine the moisture provision of agricultural landscapes and agricultural plants. The improvement of space remote sensing methods to evaluate plant moisture availability is the aim of this research.It was proved the possibility of replacement of satellite imagery of high spatial resolution on medium spatial resolution which are freely available to determine crop moisture content at the local level. The mathematical models to determine the moisture content of winter wheat plants by spectral indices were developed based on the results of experimental field research and satellite (Landsat, MODIS/Terra, RapidEye, SICH-2) data. The maps of the moisture content in winter wheat plants in test sites by obtained models were constructed using modern GIS technology.
Ward, R L; Yeager, J G; Ashley, C S
1981-01-01
Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765
Composting of empty fruit bunches in the tower composter - effect of air intake holes
NASA Astrophysics Data System (ADS)
Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.
2018-02-01
The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.
Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana
Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton
2007-01-01
Wilcox Group (Paleocene–Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate–ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene–Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite–subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower (< 600 m) coal samples consistently are undersaturated with respect to CH4 adsorption isotherms; deeper (> 600 m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4adsorption capacity.
Pu, Yuan-Yuan; Sun, Da-Wen
2015-12-01
Mango slices were dried by microwave-vacuum drying using a domestic microwave oven equipped with a vacuum desiccator inside. Two lab-scale hyperspectral imaging (HSI) systems were employed for moisture prediction. The Page and the Two-term thin-layer drying models were suitable to describe the current drying process with a fitting goodness of R(2)=0.978. Partial least square (PLS) was applied to correlate the mean spectrum of each slice and reference moisture content. With three waveband selection strategies, optimal wavebands corresponding to moisture prediction were identified. The best model RC-PLS-2 (Rp(2)=0.972 and RMSEP=4.611%) was implemented into the moisture visualization procedure. Moisture distribution map clearly showed that the moisture content in the central part of the mango slices was lower than that of other parts. The present study demonstrated that hyperspectral imaging was a useful tool for non-destructively and rapidly measuring and visualizing the moisture content during drying process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis and optimal design of moisture sensor for rice grain moisture measurement
NASA Astrophysics Data System (ADS)
Jain, Sweety; Mishra, Pankaj Kumar; Thakare, Vandana Vikas
2018-04-01
The analysis and design of a microstrip sensor for accurate determination of moisture content (MC) in rice grains based on oven drying technique, this technique is easy, fast and less time-consuming to other techniques. The sensor is designed with low insertion loss, reflection coefficient and maximum gain is -35dB and 5.88dB at 2.68GHz as well as discussed all the parameters such as axial ratio, maximum gain, smith chart etc, which is helpful for analysis the moisture measurement. The variation in percentage of moisture measurement with magnitude and phase of transmission coefficient is investigated at selected frequencies. The microstrip moisture sensor consists of one layer: substrate FR4, thickness 1.638 is simulated by computer simulated technology microwave studio (CST MWS). It is concluded that the proposed sensor is suitable for development as a complete sensor and to estimate the optimum moisture content of rice grains with accurately, sensitivity, compact, versatile and suitable for determining the moisture content of other crops and agriculture products.
Tumuluru, Jaya Shankar
2016-04-16
In the present study a Box–Behnken experimental design was used to understand the effect of the moisture content of lodgepole pine grind (33–39%, w.b.), die speed (40–60 Hz) and preheating temperature (30–90 °C) on the pellet quality and specific energy consumption. The partially dried pellets produced had high-moisture content in the range of 19–28% (w.b.), and were further dried to <9% (w.b.) in a mechanical oven set at 70 °C for 3 h. Dried pellets were further evaluated for pellet moisture content, unit, bulk, tapped density, and durability. Response surface models developed for the product properties have adequately described themore » process based on coefficient of determination values. Surface plots developed indicated higher unit, bulk, and tapped density (1050, 520, 560 kg/m 3) are achievable at 33–35% (w.b.) moisture content of the lodgepole pine grind, die speed of 60 Hz and preheating temperature of 30–60 °C. Higher moisture content of 39% (w.b) reduced unit, bulk, and tapped density to <912, 396, and 452 kg/m 3. Higher durability values of >95% were obtained at 33–35% (w.b.) at lower preheating temperatures of 30–50 °C and higher die speed of >50 Hz. At 33% (w.b.) moisture content of the lodgepole pine grind, preheating temperature of 90 °C, and die speed of 60 Hz, the observed specific energy consumption was <116 kW h/ton. As a result, scanning electron microscope studies indicated that lignin crosslinking is the primary reason for binding of the lodgepole pine grind at high-moisture content.« less
Evaluating industrial drying of cellulosic feedstock for bioenergy: A systems approach
Sokhansanj, Shahab; Webb, Erin
2016-01-21
Here, a large portion of herbaceous and woody biomass must be dried following harvest. Natural field drying is possible if the weather cooperates. Mechanical drying is a certain way of reducing the moisture content of biomass. This paper presents an engineering analysis applied to drying of 10 Mg h –1 (exit mass flow) of biomass with an initial moisture content ranging from 25% to 70% (wet mass basis) down to 10% exit moisture content. The requirement for hog fuel to supply heat to the dryer increases from 0.5 dry Mg to 3.8 dry Mg h –1 with the increased initialmore » moisture of biomass. The capital cost for the entire drying system including equipment for biomass size reduction, pollution control, dryer, and biomass combustor sums up to more than 4.7 million dollars. The operating cost (electricity, labor, repair, and maintenance) minus fuel cost for the dryer alone amount to 4.05 Mg –1 of dried biomass. For 50% moisture content biomass, the cost of fuel to heat the drying air is 7.41 dollars/ dry ton of biomass for a total 11.46 dollars per dry ton at 10% moisture content. The fuel cost ranges from a low of 2.21 dollars to a high of 18.54 dollars for a biomass at an initial moisture content of 25% to 75%, respectively. This wide range in fuel cost indicates the extreme sensitivity of the drying cost to initial moisture content of biomass and to ambient air humidity and temperature and highlights the significance of field drying for a cost effective drying operation.« less
Monitoring moisture content, temperature, and humidity in whole-tree pine chip piles
John Klepac; Dana Mitchell; Jason Thompson
2015-01-01
Two whole-tree chip piles were monitored for moisture content, temperature, and relative humidity from October 8th, 2010 to March 16th, 2011 at a location in south Alabama. Initial moisture content samples were collected immediately after chips were delivered to the study location on October 8th for Pile 1 and October 22nd for Pile 2. During pile construction, Lascar...
Code of Federal Regulations, 2013 CFR
2013-07-01
... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...
40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?
Code of Federal Regulations, 2013 CFR
2013-07-01
... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...
40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?
Code of Federal Regulations, 2014 CFR
2014-07-01
... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...
40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?
Code of Federal Regulations, 2012 CFR
2012-07-01
... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...
Code of Federal Regulations, 2014 CFR
2014-07-01
... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...
Russell, Meghan
2012-01-01
Vitamin D3 has been called the “sunshine” vitamin since the formation of vitamin D is mediated by exposure to sunlight. Vitamin D3 is linked to many health benefits, however serum levels of vitamin D3 have been decreasing over the last few decades and the lower levels of vitamin D3 may have consequences on normal physiology. We investigated the association between serum 25-hydroxyvitamin D (25(OH)D) levels and stratum corneum conductance as well as the effect of topical application of cholecalciferol (vitamin D3) on dry skin. Eighty three subjects were recruited and blood serum levels and skin conductance measurements were taken after a one week washout. A correlation was observed between vitamin D levels and skin moisture content, individuals with lower levels of vitamin D had lower average skin moisture. Subsequently, a 3-week split leg, randomized, vehicle controlled clinical study was conducted on a subset of 61 of the above individuals who were identified with non-sufficient vitamin D serum levels. Topical supplementation with cholecalciferol significantly increased measurements of skin moisturization and resulted in improvements in subjective clinical grading of dry skin. Taken together our finding suggest a relationship between serum vitamin D3 (25(OH)D) levels and hydration of the stratum corneum and further demonstrate the skin moisture benefit from topical application of vitamin D3. PMID:23112909
Russell, Meghan
2012-09-01
Vitamin D(3) has been called the "sunshine" vitamin since the formation of vitamin D is mediated by exposure to sunlight. Vitamin D(3) is linked to many health benefits, however serum levels of vitamin D(3) have been decreasing over the last few decades and the lower levels of vitamin D(3) may have consequences on normal physiology. We investigated the association between serum 25-hydroxyvitamin D (25(OH)D) levels and stratum corneum conductance as well as the effect of topical application of cholecalciferol (vitamin D(3)) on dry skin. Eighty three subjects were recruited and blood serum levels and skin conductance measurements were taken after a one week washout. A correlation was observed between vitamin D levels and skin moisture content, individuals with lower levels of vitamin D had lower average skin moisture. Subsequently, a 3-week split leg, randomized, vehicle controlled clinical study was conducted on a subset of 61 of the above individuals who were identified with non-sufficient vitamin D serum levels. Topical supplementation with cholecalciferol significantly increased measurements of skin moisturization and resulted in improvements in subjective clinical grading of dry skin. Taken together our finding suggest a relationship between serum vitamin D(3) (25(OH)D) levels and hydration of the stratum corneum and further demonstrate the skin moisture benefit from topical application of vitamin D(3).
The effect of air temperature on the sappan wood extract drying
NASA Astrophysics Data System (ADS)
Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.
2015-12-01
The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.
Effects of corn stalk orientation and water content on passive microwave sensing of soil moisture
NASA Technical Reports Server (NTRS)
Oneill, P. E.; Blanchard, B. J.; Wang, J. R.; Gould, W. I.; Jackson, T. J.
1984-01-01
A field experiment was conducted utilizing artificial arrangements of plant components during the summer of 1982 to examine the effects of corn canopy structure and plant water content on microwave emission. Truck-mounted microwave radiometers at C (5 GHz) and L (1.4 GHz) band sensed vertically and horizontally polarized radiation concurrent with ground observations of soil moisture and vegetation parameters. Results indicate that the orientation of cut stalks and the distribution of their dielectric properties through the canopy layer can influence the microwave emission measured from a vegetation/soil scene. The magnitude of this effect varies with polarization and frequency and with the amount of water in the plant, disappearing at low levels of vegetation water content. Although many of the canopy structures and orientations studied in this experiment are somewhat artificial, they serve to improve understanding of microwave energy interactions within a vegetation canopy and to aid in the development of appropriate physically based vegetation models.
Sensors for measurement of moisture diffusion in power cables with oil-impregnated paper
NASA Astrophysics Data System (ADS)
Thomas, Z. M.; Zahn, M.; Yang, W.
2007-07-01
Some old power cables use oil-impregnated paper as the insulation material, which is enclosed by a layer of lead sheath. As cracks can form on the sheath of aged cables, the oil-impregnated paper can be exposed to the environmental conditions, and ambient moisture can diffuse into the paper through the cracks, causing a reduced breakdown voltage. To understand this diffusion phenomenon, multi-wavelength dielectrometry sensors have been used to measure permittivity and conductivity, aiming to obtain information on the moisture content. Different electrode-grouping strategies have been suggested to obtain more detailed information. Effectively, an electrode-grouping approach forms a type of electrical capacitance tomography sensor. This paper presents different sensor designs together with a capacitance measuring circuit. Some analytical results are also presented.
Arimoto, H; Yanai, M; Egawa, M
2016-11-01
Near-infrared (NIR) light with high water absorption enables us to visualize the water content distribution appeared in the superficial skin layer. The light penetration depth with the wavelength of 1920 nm is almost 100 μm from the skin surface. Thus, the water distribution in the stratum corneum can be effectively imaged by detecting the wavelength band around 1920 nm. The aim of this article was to measure the time-lapse behavior of the tiny droplet of the moisturizer spreading on the skin surface by imaging in 1920 nm wavelength band for investigating the correlation with the traditional index of the skin condition such as the water content and transepidermal water loss (TEWL). Experiment is performed with three moisturizer products and seven volunteer subjects. The NIR image is acquired by an originally designed imaging scope equipped with the white light of the strong brightness [super continuum (SC) light], the bandpass filter with the center wavelength of 1920 nm, and the NIR image sensor. A tiny droplet of the moisturizer is put on the surface of the skin and the time-lapse images are saved. Each acquired image is analyzed from a view point of the droplet area and elapsed time for absorption into the skin. The water content and TEWL of all subjects are measured by the conventional electrical method for investigating the relationship with the measured droplet dynamics parameters. Elapsed time for moisturizer droplet to be absorbed into the skin, the droplet area just before absorption for three moisturizer products, skin water contents, and TEWL for seven subjects were measured and correlation coefficients for each parameters were calculated. It was found that the skin with higher water contents or lower TEWL absorbed the moisturizer faster and spreads moisturizer wider. Also absorption and spreading speed depend on moisturizer property (moisturizing or fresh) which is originated from the moisturizer constituents. The correlation values between the moisturizer dynamics on the skin surface and the traditional index of the skin property were clarified. It was found that the skin with the high water content or low TEWL absorbs the moisturizer droplet fast. The spreading area depends not only on the skin property but on the constituents of the moisturizers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Collar, Concha
2017-10-01
The impact of heat-moisture treatment processing conditions (15%, 25%, and 35% moisture content; 1, 3, and 5 h heating time at 120 ℃) on the viscosity pasting and gelling profiles of different grain flours matrices (barley, buckwheat, sorghum, high β-glucan barley, and wheat) was investigated by applying successive cooking and cooling cycles to rapid visco analyser canisters with highly hydrated samples (3.5:25, w:w). At a milder heat-moisture treatment conditions (15% moisture content, 1 h heating time), except for sorghum, heat-moisture treatment flours reached much higher viscosity values during earlier pasting and subsequent gelling than the corresponding native counterparts. Besides heat-moisture treatment wheat flour, the described behaviour found also for non-wheat-treated flours has not been previously reported in the literature. An increased hydrophobicity of prolamins and glutelins in low moisture-short heating time heat-moisture treatment of non-wheat flours with high protein content (12.92%-19.95%) could explain the enhanced viscosity profile observed.
USDA-ARS?s Scientific Manuscript database
A custom made Near Infrared Reflectance (NIR) spectroscope was used to determine the moisture content of in-shell peanuts of Virginia type peanuts. Peanuts were conditioned to different moisture levels between 6 and 26 % (wet basis) and samples from different moisture levels were separated into two...
Photoacoustic spectroscopy and thermal relaxation method to evaluate corn moisture content
NASA Astrophysics Data System (ADS)
Pedrochi, F.; Medina, A. N.; Bento, A. C.; Baesso, M. L.; Luz, M. L. S.; Dalpasquale, V. A.
2005-06-01
In this study, samples of popcorn with different degrees of moisture were analyzed. The optical absorption bands at the mid infrared were measured using photoacoustic spectroscopy and were correlated to the sample moisture. The results were in agreement with moisture data determined by the well known reference method, the Karl Fischer. In addition, the thermal relaxation method was used to determine the sample specific heat as a function of the moisture content. The results were also in agreement with the two mentioned methods.
NASA Astrophysics Data System (ADS)
Fang, Jing
2014-05-01
Besides the absorption by roots from the soil substrate, it has long been known that plants exhibit alternative water-absorption strategies, particularly in drought-prone environments. For many tropical epiphytic orchids, air moisture can be absorbed directly by aerial roots. Some conifers are also found to utilize air moisture by foliar absorption during the summer fog season. However, few studies have been carried out on the atmospheric water vapor absorption by shallow-rooted desert plants. We conducted experiments in desert-oasis ecotone and investigated the effects of dew absorbed by three kinds of shallow-rooted seedlings on net photosynthesis rate, as well as on other water relations variables. Three kinds of typical shallow-rooted desert species (Bassia dasyphylla, Salsola collina and Corispermum declinatum) have been chosen and potted. Each species were subjected to contrasting watering regimes (normal and deficient) and different air moisture conditions (having dew and having no dew) for 10 weeks. Net photosynthesis rate was measured on six occasions during the study. Other water relations variables (midday shoot water potential, relative water content, stomatal conductance) were also measured. Under the dew conditions, average net photosynthesis rate, shoot water potential, leaf relative water content and stomatal conductance increased, with greater responses observed for plants subjected to a deficient watering regime than for well-watered plants. These results indicated dew occurred in arid region could be utilized through foliar absorption by some shallow-rooted plants, and for the shallow-rooted plants, the presence of dew could significantly relieve the deficit of water in water-stressed regime.
Characterization of recycled rubber media for hydrogen sulphide (H2S) control.
Wang, Ning; Park, Jaeyoung; Evans, Eric A; Ellis, Timothy G
2014-01-01
Hydrogen sulphide (H2S) adsorption capacities on recycled rubber media, tyre-derived rubber particle (TDRP), and other rubber material (ORM) have been evaluated. As part of the research, densities, moisture contents, and surface properties of TDRP and ORM have been determined. The research team findings show that TDRP and ORM are more particulate in nature and not highly porous-like activated carbon. The characteristics of surface area, pore size, and moisture content support chemisorption on the macrosurface rather than physical adsorption in micropores. For example, moisture content is essential for H2S adsorption on ORM, and an increase in moisture content results in an increase in adsorption capacity.
Soil Temperature and Moisture Profile (STAMP) System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy; Lipiec, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan
2014-05-01
Due to the large variation of soil moisture in space and in time, obtaining soil water balance with an aid of data acquired from the surface is still a challenge. Microwave remote sensing is widely used to determine the water content in soil. It is based on the fact that the dielectric constant of the soil is strongly dependent on its water content. This method provides the data in both local and global scales. Very important issue that is still not solved, is the soil depth at which radiometer "sees" the incoming radiation and how this "depth of view" depends on water content and physical properties of soil. The microwave emission comes from its entire profile, but much of this energy is absorbed by the upper layers of soil. As a result, the contribution of each layer to radiation visible for radiometer decreases with depth. The thickness of the surface layer, which significantly contributes to the energy measured by the radiometer is defined as the "penetration depth". In order to improve the physical base of the methodology of soil moisture measurements using microwave remote sensing and to determine the effective emission depth seen by the radiometer, a new algorithm was developed. This algorithm determines the reflectance coefficient from Fresnel equations, and, what is new, the complex dielectric constant of the soil, calculated from the Usowicz's statistical-physical model (S-PM) of dielectric permittivity and conductivity of soil. The model is expressed in terms of electrical resistance and capacity. The unit volume of soil in the model consists of solid, water and air, and is treated as a system made up of spheres, filling volume by overlapping layers. It was assumed that connections between layers and spheres in the layer are represented by serial and parallel connections of "resistors" and "capacitors". The emissivity of the soil surface is calculated from the ratio between the brightness temperature measured by the ELBARA radiometer (GAMMA Remote Sensing AG) and the physical temperature of the soil surface measured by infrared sensor. As the input data for S-PM: volumes of soil components, mineralogical composition, organic matter content, specific surface area and bulk density of the soil were used. Water contents in the model are iteratively changed, until emissivities calculated from the S-PM reach the best agreement with emissivities measured by the radiometer. Final water content will correspond to the soil moisture measured by the radiometer. Then, the examined soil profile will be virtually divided into thin slices where moisture, temperature and thermal properties will be measured and simultaneously modelled via S-PM. In the next step, the slices will be "added" starting from top (soil surface), until the effective soil moisture will be equal to the soil moisture measured by ELBARA. The thickness of obtained stack will be equal to desired "penetration depth". Moreover, it will be verified further by measuring the moisture content using thermal inertia. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.
Field drying rate differences amoung cool-season grasses harvested for hay
USDA-ARS?s Scientific Manuscript database
Making high-quality, cool-season grass hay is a challenge, due to the field drying time needed to reach the appropriate moisture content and the high probability of rain in the spring when hay is typically produced. This study was conducted to determine if cool-season grasses with different yield po...
H.J. Renninger; B.L. Gartner; F.C. Meinzer
2006-01-01
We assessed differences in growth-ring width, specific conductivity (Ks), tracheid dimensions, moisture content, and wood density in suppressed Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees and trees released from suppression. Growth-ring width was 370 percent...
40 CFR 52.126 - Control strategy and regulations: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... be determined by using method 2 and traversing according to method 1. Gas analysis shall be performed using the integrated sample technique of method 3, and moisture content shall be determined by the condenser technique of method 4. (iii) All tests shall be conducted while the source is operating at the...
An examination of fire spread thresholds in discontinuous fuel beds
Mark A. Finney; Jack D. Cohen; Isaac C. Grenfell; Kara M. Yedinak
2010-01-01
Many fuel beds, especially live vegetation canopies (conifer forests, shrub fields, bunch-grasses) contain gaps between vegetation clumps. Fires burning in these fuel types often display thresholds for spread that are observed to depend on environmental factors like wind, slope, and fuel moisture content. To investigate threshold spread behaviours, we conducted a set...
Geologic Controls on Geophysics for Tunnel Detection
NASA Astrophysics Data System (ADS)
Kelley, J. R.; Wakeley, L. D.; McKenna, J. R.; Ketcham, S. A.; Weiss, C. A.; Curtis, J. O.
2006-05-01
Properties of soils are critical to using near-surface geophysical techniques to search for clandestine tunnels. We have constructed a database of soils sampled at sites on the northern (N) and southern (S) US borders and at sites in Iraq in conjunction with tunnel searches. Geologic materials at these sites consist of glacial gravels (N), volcanic tuff (S), and alluvial sands interbedded with marine clays (Iraq). The depth of interest for detecting clandestine tunneling is < 30m, and as shallow as 2m at some locations. Mineral composition, grain size, moisture content, conductivity, permittivity, and magnetic susceptibility are critical for assessing the effectiveness of near-surface geophysical techniques. Values for these properties are consistent with soil stratigraphy and with vertical and lateral geologic variability. In some environments, in situ moisture content and the arrangement of conductive and resistive materials in the upper few meters limit significantly the depth of investigation using traditional near-surface techniques (electromagnetic induction, ground-penetrating radar). Geologic factors plus the small physical size of the targets limit the usefulness of commercial off-the-shelf techniques, and warrant an investment in new approaches.
Miller, Daniel N; Berry, Elaine D
2005-01-01
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.
Huart, F; Malumba, P; Odjo, S; Al-Izzi, W; Béra, F; Beckers, Y
2018-06-11
1. This study assessed the impact of drying temperature (54, 90, and 130°C) and maize grain moisture content at harvest (36% and 29%) on in vitro digestibility, the growth performance and ileal digestibility of broiler chickens. 2. In contrast to the results from the in vitro digestibility, apparent ileal digestibility of starch and energy decreased when the drying temperature was raised from 54 to 130°C, and this effect was more pronounced in maize grain harvested at high initial moisture content (36%). Ileal protein digestibility of maize grain decreased significantly when dried at the intermediate temperature (90°C) and with a high harvest moisture content (36%). Drying temperature and initial moisture content did not significantly affect AMEn. 3. When maize was dried at 130°C, the particle sizes of flour recovered after standard milling procedures decreased significantly, which would influence animal growth performance and in vivo digestibility through animal feed selection.
Performance of a Microwave Bale Moisture Content Meter
USDA-ARS?s Scientific Manuscript database
Measuring the moisture content of cotton bales has been a topic of intense interest in the last few years. A non-contact microwave-based bale moisture meter, Vomax 851-B (Vomax Instrumentation through Samuel Jackson, Lubbock, TX) has been commercially available but independent verification of these...
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.
2017-12-01
Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Saatchi, S.
1996-01-01
To understand and predict the functioning of forest biomes, their interaction with the atmosphere, and their growth rates, the knowledge of moisture content of their canopy and the floor soil is essential. The synthetic aperture radar on airborne and spaceborne platforms has proven to be a flexible tool for measuring electromagnetic back- scattering properties of vegetation related to their moisture content.
Matt Jolly; Sara McAllister; Mark Finney; Ann Hadlow
2010-01-01
Living plants are often the primary fuels burning in wildland fire but little is known about the factors that govern their ignition behavior. Moisture content has long been hypothesized to determine the characteristics of fires spreading in live fuels but moisture content alone fails to explain observed differences in the ignition of various species at different times...
B.L. Yashwanth; B. Shotorban; S. Mahalingam; C.W. Lautenberger; David Weise
2016-01-01
The effects of thermal radiation and moisture content on the pyrolysis and gas phase ignition of a solid fuel element containing high moisture content were investigated using the coupled Gpyro3D/FDS models. The solid fuel has dimensions of a typical Arctostaphylos glandulosa leaf which is modeled as thin cellulose subjected to radiative heating on...
Jody D. Gray; Shawn T. Grushecky; James P. Armstrong
2008-01-01
Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...
Evaluation and modeling of aerodynamic properties of mung bean seeds
NASA Astrophysics Data System (ADS)
Shahbazi, Feizollah
2015-01-01
Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post harvest operations. The objective of this study was the evaluation of the aerodynamic properties of mung bean seeds as a function of moisture content and two grades referred to above and below a cut point of 4.8 mm in length. The results showed that as the moisture content increased from 7.8 to 25% (w.b.), the terminal velocity of seeds increased following a polynomial relationship, from 7.28 to 8.79 and 6.02 to 7.12 m s-1, for grades A and B, respectively. Seeds at grade A had terminal velocities with a mean value of 8.05 m s-1, while at grade B had a mean value of 6.46 m s-1. The Reynolds number of both grades increased linearly with the increase of seeds moisture content, while the drag coefficient decreased with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the obtained values of aerodynamic properties. The analysis of variance showed that moisture content had a significant effect, at 1% probability level, on all the aerodynamics properties of mung beans.
Dropping macadamia nuts-in-shell reduces kernel roasting quality.
Walton, David A; Wallace, Helen M
2010-10-01
Macadamia nuts ('nuts-in-shell') are subjected to many impacts from dropping during postharvest handling, resulting in damage to the raw kernel. The effect of dropping on roasted kernel quality is unknown. Macadamia nuts-in-shell were dropped in various combinations of moisture content, number of drops and receiving surface in three experiments. After dropping, samples from each treatment and undropped controls were dry oven-roasted for 20 min at 130 °C, and kernels were assessed for colour, mottled colour and surface damage. Dropping nuts-in-shell onto a bed of nuts-in-shell at 3% moisture content or 20% moisture content increased the percentage of dark roasted kernels. Kernels from nuts dropped first at 20%, then 10% moisture content, onto a metal plate had increased mottled colour. Dropping nuts-in-shell at 3% moisture content onto nuts-in-shell significantly increased surface damage. Similarly, surface damage increased for kernels dropped onto a metal plate at 20%, then at 10% moisture content. Postharvest dropping of macadamia nuts-in-shell causes concealed cellular damage to kernels, the effects not evident until roasting. This damage provides the reagents needed for non-enzymatic browning reactions. Improvements in handling, such as reducing the number of drops and improving handling equipment, will reduce cellular damage and after-roast darkening. Copyright © 2010 Society of Chemical Industry.
Non-destructive Moisture Content Measurement of Bioabsorbable Polymers Used in Medical Implants
NASA Astrophysics Data System (ADS)
Carroll, P. A.; Bell, S. A.; Maxwell, A. S.; Tomlins, P. E.
2012-09-01
Measurements have been made that link moisture content to the degradation of a bioabsorbable polymeric material, poly ( dl-lactide- co-glycolide) (PLGA). Bioabsorbable polymers used in medical implants degrade and are absorbed into the body. In the course of degradation, these polymers absorb water. Progressive non-destructive laboratory measurements of moisture content can be used as a means of tracking changes in these materials over the course of their degradation. Measurements of moisture content were made using a non-destructive microwave resonance instrument. The measurement approach, more usually applied to granular materials, was adapted to measure small, individual solid samples that do not fill the conventional sample volume of the resonator. Using the microwave resonance technique, gains in moisture content were measurable in increasingly degraded samples. The results were confirmed using alternative (destructive) measurements of sample moisture content. The microwave resonance technique offers a non-destructive measurement that can be used to study the degradation characteristics of PLGA. Better understanding of the degradation process can enable the polymer break-down rate to be tailored to match the healing rate of tissue. Non-destructive measurement allows effective study using single rather than multiple samples. This is a strong advantage when novel materials under study may be either expensive or in strictly limited availability.
Using Sentinel-1 and Landsat 8 satellite images to estimate surface soil moisture content.
NASA Astrophysics Data System (ADS)
Mexis, Philippos-Dimitrios; Alexakis, Dimitrios D.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.
2016-04-01
Nowadays, the potential for more accurate assessment of Soil Moisture (SM) content exploiting Earth Observation (EO) technology, by exploring the use of synergistic approaches among a variety of EO instruments has emerged. This study is the first to investigate the potential of Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Landsat 8) images in combination with ground measurements to estimate volumetric SM content in support of water management and agricultural practices. SAR and optical data are downloaded and corrected in terms of atmospheric, geometric and radiometric corrections. SAR images are also corrected in terms of roughness and vegetation with the synergistic use of Oh and Topp models using a dataset consisting of backscattering coefficients and corresponding direct measurements of ground parameters (moisture, roughness). Following, various vegetation indices (NDVI, SAVI, MSAVI, EVI, etc.) are estimated to record diachronically the vegetation regime within the study area and as auxiliary data in the final modeling. Furthermore, thermal images from optical data are corrected and incorporated to the overall approach. The basic principle of Thermal InfraRed (TIR) method is that Land Surface Temperature (LST) is sensitive to surface SM content due to its impact on surface heating process (heat capacity and thermal conductivity) under bare soil or sparse vegetation cover conditions. Ground truth data are collected from a Time-domain reflectometer (TRD) gauge network established in western Crete, Greece, during 2015. Sophisticated algorithms based on Artificial Neural Networks (ANNs) and Multiple Linear Regression (MLR) approaches are used to explore the statistical relationship between backscattering measurements and SM content. Results highlight the potential of SAR and optical satellite images to contribute to effective SM content detection in support of water resources management and precision agriculture. Keywords: Sentinel-1, Landsat 8, Soil moisture content, Artificial Neural Network, Multiple Linear Regression The study was fully supported by the CASCADE project. The CASCADE Project is financed by the European Commission FP7 program, ENV.2011.2.1.4-2 - 'Behaviour of ecosystems, thresholds and tipping points', EU Grant agreement: 283068.
Temporal and spatial variabilities in the surface moisture content of a fine-grained beach
NASA Astrophysics Data System (ADS)
Namikas, S. L.; Edwards, B. L.; Bitton, M. C. A.; Booth, J. L.; Zhu, Y.
2010-01-01
This study examined spatial and temporal variations in the surface moisture content of a fine-grained beach at Padre Island, Texas, USA. Surface moisture measurements were collected on a 27 × 24 m grid that extended from the dune toe to the upper foreshore. The grid was surveyed at 2 to 4 h intervals for two tidal cycles, generating 17 maps of the spatial distribution of surface moisture. Simultaneous measurements of air temperature and humidity, wind speed and direction, tidal elevation, and water table elevation were used to interpret observed changes in surface moisture. It was found that the spatial distribution of surface moisture was broadly characterized by a cross-shore gradient of high to low content moving landward from the swash zone. The distribution of surface moisture was conceptualized in terms of three zones: saturated (> 25%), intermediate or transitional (5-25%), and dry (< 5%). The position of the saturated zone corresponded to the uppermost swash zone and therefore shifted in accordance with tidal elevation. Moisture contents in the intermediate and dry zones were primarily related to variation in water table depth (which was in turn controlled by tidal elevation) and to a lesser extent by evaporation. Signals associated with atmospheric processes such as evaporation were muted by the minimal degree of variation in atmospheric parameters experienced during most of the study period, but were apparent for the last few hours. The observed spatial and temporal variations in moisture content correspond reasonably well with observations of key controlling processes, but more work is needed to fully characterize this process suite.
Regulation of Microbial Herbicide Transformation by Coupled Moisture and Oxygen Dynamics in Soil
NASA Astrophysics Data System (ADS)
Marschmann, G.; Pagel, H.; Uksa, M.; Streck, T.; Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
The key processes of herbicide fate in agricultural soils are well-characterized. However, most of these studies are from batch experiments that were conducted under optimal aerobic conditions. In order to delineate the processes controlling herbicide (i.e., phenoxy herbicide 2-methyl-4-chlorophenoxyacetic acid, MCPA) turnover in soil under variable moisture conditions, we conducted a state-of-the-art soil column experiment, with a highly instrumented automated soil column system, under constant and oscillating water table regimes. In this system, the position of the water table was imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The soil samples were collected from a fertilized, arable and carbon-limited agricultural field site in Germany. The efflux of CO2 was determined from headspace gas measurements as an integrated signal of microbial respiration activity. Moisture and oxygen profiles along the soil column were monitored continuously using high-resolution moisture content probes and luminescence-based Multi Fiber Optode (MuFO) microsensors, respectively. Pore water and solid-phase samples were collected periodically at 8 depths and analyzed for MCPA, dissolved inorganic and organic carbon concentrations as well as the abundance of specific MCPA-degrading bacteria. The results indicated a clear effect of the water table fluctuations on CO2 fluxes, with lower fluxes during imbibition periods and enhanced CO2 fluxes after drainage. In this presentation, we focus on the results of temporal changes in the vertical distribution of herbicide, specific herbicide degraders, organic carbon concentration, moisture content and oxygen. We expect that the high spatial and temporal resolution of measurements from this experiment will allow robust calibration of a reactive transport model for the soil columns, with subsequent identification and quantification of rate limiting processes of MCPA turnover. This will ultimately improve our overall understanding of herbicide fate processes as a function of soil water regime.
Factors influencing moisture analysis in the 3013 destructive examination surveillance program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scogin, J. H.
Thermogravimetric analysis of a solid sample with mass spectrometry (TGA-MS) of the evolved gas is used in the destructive examination (DE) portion of the Integrated Surveillance Program to quantify the moisture content of the material stored in a 3013 container. As with any measurement determined from a small sample, the collection, storage, transportation, and handling of the sample can affect its ability to represent the properties of the bulk material. During the course of the DE program, questions have periodically arisen concerning the ability of the moisture sample to reflect reliably the actual moisture content of the entire material storedmore » in the 3013 container. Most concerns are related to the ability to collect a representative sample and to preserve the moisture content of the sample between collection and analysis. Recent delays in analysis caused by maintenance issues with the TGA-MS instrument presented a unique opportunity to document and quantify the effects various factors have on the TGA-MS moisture measurement. This report will use recent data to document the effects that current sample collection and handling practices have on the TGA-MS moisture measurement. Some suggestions will be made which could improve the current sample collection and handling practices for the TGA-MS moisture measurement so that the analytical results more accurately reflect the moisture content of the material stored in the 3013 container.« less
NASA Astrophysics Data System (ADS)
Dong, Jingnuo; Ochsner, Tyson E.
2018-03-01
Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.
Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure
Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy
2015-01-01
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented. PMID:28793477
Modeling moisture content of fine dead wildland fuels: Input to the BEHAVE fire prediction system
Richard C. Rothermel; Ralph A. Wilson; Glen A. Morris; Stephen S. Sackett
1986-01-01
Describes a model for predicting moisture content of fine fuels for use with the BEHAVE fire behavior and fuel modeling system. The model is intended to meet the need for more accurate predictions of fine fuel moisture, particularly in northern conifer stands and on days following rain. The model is based on the Canadian Fine Fuel Moisture Code (FFMC), modified to...
Dilatometric measurement of the partial molar volume of water sorbed to durum wheat flour.
Hasegawa, Ayako; Ogawa, Takenobu; Adachi, Shuji
2013-01-01
Moisture sorption isotherms were measured at 25 °C for untreated, dry-heated and pre-gelatinized durum wheat flour samples. The isotherms could be expressed by the Guggenheim-Anderson-de Boer equation. The amount of water sorbed to the untreated flour was highest for low water activity, with water sorbed to the pre-gelatinized and dry-heated flour samples following. The dry-heated and pregelatinized flour samples exhibited the same dependence of the moisture content on the partial molar volume of water at 25 °C as the untreated flour. The partial molar volume of water was ca. 9 cm(3)/mol at a moisture content of 0.03 kg-H2O/kg-d.m. The volume increased with increasing moisture content, and reached a constant value of ca. 17.5 cm(3)/mol at a moisture content of 0.2 kg-H2O/kg-d.m. or higher.
He, Song
2017-01-01
This paper presents a model for heat and moisture transfer through firefighters' protective clothing (FPC) during radiation exposure. The model, which accounts for air gaps in the FPC as well as heat transfer through human skin, investigates the effect of different initial moisture contents on the thermal insulation performance of FPC. Temperature, water vapor density, and the volume fraction of liquid water profiles were monitored during the simulation, and the heat quantity absorbed by water evaporation was calculated. Then the maximum durations of heat before the wearer acquires first- and second-degree burns were calculated based on the bioheat transfer equation and the Henriques equation. The results show that both the moisture weight in each layer and the total moisture weight increase linearly within a given environmental humidity level. The initial moisture content in FPC samples significantly influenced the maximum water vapor density. The first- and second-degree burn injury time increase 16 sec and 18 sec when the RH increases from 0% to 90%. The total quantity of heat accounted for by water evaporation was about 10% when the relative humidity (RH) is 80%. Finally, a linear relationship was identified between initial moisture content and the human skin burn injury time before suffering first- and second-degree burn injuries. PMID:28466066
Huang, Dongmei; He, Song
2017-01-01
This paper presents a model for heat and moisture transfer through firefighters' protective clothing (FPC) during radiation exposure. The model, which accounts for air gaps in the FPC as well as heat transfer through human skin, investigates the effect of different initial moisture contents on the thermal insulation performance of FPC. Temperature, water vapor density, and the volume fraction of liquid water profiles were monitored during the simulation, and the heat quantity absorbed by water evaporation was calculated. Then the maximum durations of heat before the wearer acquires first- and second-degree burns were calculated based on the bioheat transfer equation and the Henriques equation. The results show that both the moisture weight in each layer and the total moisture weight increase linearly within a given environmental humidity level. The initial moisture content in FPC samples significantly influenced the maximum water vapor density. The first- and second-degree burn injury time increase 16 sec and 18 sec when the RH increases from 0% to 90%. The total quantity of heat accounted for by water evaporation was about 10% when the relative humidity (RH) is 80%. Finally, a linear relationship was identified between initial moisture content and the human skin burn injury time before suffering first- and second-degree burn injuries.
Effect of moisture content on the heating profile in composted broiler litter
USDA-ARS?s Scientific Manuscript database
Moisture content can affect the magnitude of heat generation during composting. Temperature was recorded every 2 min for 7 d at 10-cm increments throughout the vertical profile of broiler litter treated with five quantities of water addition. Water additions were applied to achieve litter moisture...
Effects of Starting Moisture on Characteristics of Oil Roasted Peanut
USDA-ARS?s Scientific Manuscript database
Previous research has shown that the moisture content of peanuts before dry roasting affects the quality of the finished product. This study demonstrates the effects of the starting moisture content of the raw product on peanuts that were oil roasted. Scanning Electron Microscope images taken befo...
Modeling the use of microwave energy in sensing of moisture content in vidalia onions
USDA-ARS?s Scientific Manuscript database
Microwave moisture sensing provides a means to nondestructively determine the amount of water in materials. This is accomplished through the correlation of dielectric constant and loss factor with moisture content in the material. In this study, linear relationships between a density-independent fun...
USDA-ARS?s Scientific Manuscript database
Effect of moisture content variation on the accuracy of single kernel deoxynivalenol (DON) prediction by near-infrared (NIR) spectroscopy was investigated. Sample moisture content (MC) considerably affected accuracy of the current NIR DON calibration by underestimating or over estimating DON at high...
Kim, JiSu; Kim, Mi-Ja; Lee, JaeHwan
2018-09-30
Effects of different moisture contents and oxidised compounds on the critical micelle concentration (CMC) of lecithin were determined in bulk oils and in medium-chain triacylglycerols (MCT). CMC of lecithin in MCT was significantly higher than that in other vegetable oils including olive, soybean, corn, and rapeseed oils (p < 0.05). Presence of moisture significantly affected the CMC of lecithin in MCT (p < 0.05). CMC of lecithin was high when the moisture content was below 900 ppm, whereas at a moisture content of 1000 ppm, CMC of lecithin decreased significantly (p < 0.05), and then started to increase. Addition of total polar materials (TPM), which are oxidation products, at 3 and 5% concentrations, decreased CMC of lecithin significantly (p < 0.05) in MCT, compared to when 0, 1, and 1.5% of TPM was added to MCT. As the degree of oxidation increased in corn oil, CMC of lecithin gradually decreased. Additionally, under different moisture contents, corn oils showed a similar pattern of CMC of lecithin in MCT, whereas oxidised corn oil had a little lower CMC of lecithin than unoxidised corn oil. The results clearly showed that the concentration of lecithin for the formation of micelles is greatly influenced by the presence of oxidation products and the moisture content in bulk oils. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John
2016-12-23
An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.
Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong
2016-06-10
This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade's soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade's temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors.
Prototype Engineered Barrier System Field Test (PEBSFT); Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A.L.; Buscheck, T.; Carlson, R.
1991-08-01
This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity andmore » attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.« less
A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China
NASA Astrophysics Data System (ADS)
Cong, Z.
2015-12-01
In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting and other information about the irrigation. This system can be expanded in other irrigation districts. In future, it is even possible to upgrade the system for the mobile user.
Kirkham, R.R.
1984-08-03
A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.
Material characterization of rigid foam insulation at low temperature
NASA Astrophysics Data System (ADS)
Barrios, Matthew
There is a continuing need for improved rigid foam insulation, particularly for cryogenic storage aboard aerospace vehicles. The present work is a material characterization of spray-on foam insulation used on the Space Shuttle External Tank. The characterization includes imaging and measurements of thermal conductivity, ultimate tensile strength, and moisture absorption. Thermal conductivity measurements are the main focus of the present work, as it is the most relevant property to insulation performance. A novel apparatus was developed to measure the thermal conductivity of rigid foam at temperatures ranging from 20 K to 300 K with a DeltaT of 10 K between the sides of the foam sample. The effective thermal conductivity of three samples of NCFI 24-124 foam insulation was measured over the full temperature range. Additionally, the effects of different residual gases and moisture absorption on the thermal conductivity of the foam were studied. The data were compared to data from the literature and to mathematical models developed to predict the thermal conductivity. The data show that gas condensation can play a significant role in the thermal conductivity of the foam at low temperature. Moisture absorption can occur in the foam in application when cryogenic fuel is filled into a tank which sits in a warm, humid environment. An apparatus was developed to subject foam samples to these conditions. The moisture content in the samples was then measured. The samples were then imaged using the 900 MHz NMR magnet at the National High Magnetic Field Laboratory to determine the location of the water within the foam. Samples conditioned for 9 hours exhibited a 50% weight increase, and samples conditioned for 69 hours exhibited a 284% weight increase. The NMR images showed that the moisture collects first near the warm side of the foam, and permeates through the foam over time. However, the moisture appears to not collect near the knit lines (areas between sprayed layers of foam, containing cells about 10 times smaller than those that make up the bulk of the foam). The 100 kN mechanical testing system at the NHMFL was used to measure the ultimate tensile strength of the foam. The number of samples available limited the amount of measurements, but the data show that the orientation of the foam (parallel or perpendicular to the knit lines) has a greater effect on the tensile strength than does the moisture absorption or exposure to cryogenic temperature.
Huang, Gang; Zhao, Xue-yong; Huang, Ying-xin; Su, Yan-gui
2009-03-01
Based on the investigation data of vegetation and soil moisture regime of Caragana microphylla shrubs widely distributed in Horqin sandy land, the spatiotemporal variations of soil moisture regime and soil water storage of artificial sand-fixing C. microphylla shrubs at different topographical sites in the sandy land were studied, and the evapotranspiration was measured by water balance method. The results showed that the soil moisture content of the shrubs was the highest in the lowland of dunes, followed by in the middle, and in the crest of the dunes, and increased with increasing depth. No water stress occurred during the growth season of the shrubs. Soil moisture content of the shrubs was highly related to precipitation event, and the relationship of soil moisture content with precipitation was higher in deep soil layer (50-180 cm) than in shallow soil layer (0-50 cm). The variation coefficient of soil moisture content was also higher in deep layer than in shallow layer. Soil water storage was increasing in the whole growth season of the shrubs, which meant that the accumulation of soil water occurred in this area. The evapotranspiriation of the shrubs occupied above 64% of the precipitation.
9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Provided, That the total fat content shall not exceed 35 percent of the finished product. The moisture content of deviled ham shall not exceed that of the fresh unprocessed meat. (b) The moisture content of...
9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: Provided, That the total fat content shall not exceed 35 percent of the finished product. The moisture content of deviled ham shall not exceed that of the fresh unprocessed meat. (b) The moisture content of...
Raclavská, Helena; Corsaro, Agnieszka; Hlavsová, Adéla; Juchelková, Dagmar; Zajonc, Ondřej
2015-03-01
The investigation of the effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste is essential. This is important owing to: (i) the increasing amount of metals in the solid product of pyrolysis beyond the normalised level; (ii) the effect of moisture on the overall cost of pyrolysis process; and (iii) the utilisation of pyrolysis products. Seven metals were selected for evaluation: arsenic, cadmium, chromium, mercury, nickel, lead, and vanadium. Pyrolysis experiments were conducted in a steel retort at 650 °C. The municipal solid waste samples with moisture contents of 0, 30, and 65 wt% were investigated. The relative enrichment index and release of heavy metals were evaluated individually for liquid and solid fractions. A consistent trend was observed for the majority of metals investigated. Reductions of relative enrichment index and release, i.e. an increase of volatility, were observed for arsenic, chromium, cadmium, nickel, and vanadium, with an increase of municipal solid waste moisture. Whereas divergent results were obtained for lead and mercury. The effect of moisture on the relative enrichment index and release was greater at 65 wt% moisture than at 30 wt% for lead, and more remarkable at 30 wt% than at 65 wt% for mercury. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.
2018-05-01
Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Rui, E-mail: Sunsr@hit.edu.cn; Ismail, Tamer M., E-mail: temoil@aucegypt.edu; Ren, Xiaohan
Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on themore » combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar
The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less
Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.
Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola
2014-10-01
Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.
NASA Astrophysics Data System (ADS)
Tåg, C.-M.; Toiviainen, M.; Juuti, M.; Gane, P. A. C.
2010-10-01
Dynamic analysis of the water transfer onto coated paper, and its permeation and absorption into the porous structure were studied online in a full-scale heatset web offset printing environment. The moisture content of the paper was investigated at five different positions during the printing process. Changes in the moisture content of the paper were studied as a function of the web temperature, printing speed and silicone application in the folding unit positioned after the hot air drying oven. Additionally, the influence of fountain solution composition on the pick-up by the paper was investigated. The water content of the fountain solution transferred to the paper from the printing units was observed as changes in near-infrared absorbance. A calibration data set enabled the subsequent quantification of the dynamic moisture content of the paper at the studied locations. An increase in the printing speed reduced the water transfer to the paper and an increase in web temperature resulted in a reduction in the moisture content. An increase in the dosage level of the water-silicone mixture was observed as a re-moistening effect of the paper. Differences in the drying strategy resulted in different moisture profiles depending on the type of fountain solution used. As a conclusion, the near-infrared signal provides an effective way to characterize the moisture dynamics online at different press units.
Smith, J.A.; Chiou, C.T.; Kammer, J.A.; Kile, D.E.
1990-01-01
This report presents data on the sorption of trichloroethene (TCE) vapor to vadose-zone soil above a contaminated water-table aquifer at Picatinny Arsenal in Morris County, NJ. To assess the impact of moisture on TCE sorption, batch experiments on the sorption of TCE vapor by the field soil were carried out as a function of relative humidity. The TCE sorption decreases as soil moisture content increases from zero to saturation soil moisture content (the soil moisture content in equilibrium with 100% relative humidity). The moisture content of soil samples collected from the vadose zone was found to be greater than the saturation soil-moisture content, suggesting that adsorption of TCE by the mineral fraction of the vadose-zone soil should be minimal relative to the partition uptake by soil organic matter. Analyses of soil and soil-gas samples collected from the field indicate that the ratio of the concentration of TCE on the vadose-zone soil to its concentration in the soil gas is 1-3 orders of magnitude greater than the ratio predicted by using an assumption of equilibrium conditions. This apparent disequilibrium presumably results from the slow desorption of TCE from the organic matter of the vadose-zone soil relative to the dissipation of TCE vapor from the soil gas.
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operate a dry rotary dryer, you must demonstrate that your dryer processes furnish with an inlet moisture.... You must record the inlet furnish moisture content (dry basis) and inlet dryer operating temperature... highest recorded 24-hour average inlet furnish moisture content and the highest recorded 24-hour average...
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operate a dry rotary dryer, you must demonstrate that your dryer processes furnish with an inlet moisture.... You must record the inlet furnish moisture content (dry basis) and inlet dryer operating temperature... highest recorded 24-hour average inlet furnish moisture content and the highest recorded 24-hour average...
Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel
NASA Astrophysics Data System (ADS)
Hendi, R.; Saifi, H.; Belmokre, K.; Ouadah, M.; Smili, B.; Talhi, B.
2018-03-01
The effect of moisture content variation (20–100 wt.%) on the electrochemical behavior of API X70 pipeline steel buried in the soil of Skikda (East of Algeria) was studied using electrochemical techniques, scanning electron microscopy (SEM), X ray diffraction analysis (XRD) and weight loss measurement. The electrochemical measurements showed that the corrosion current Icorr is directly proportional to the moisture content up to 50 wt.%, beyond this content, this value becomes almost constant. The result were confirmed by electrochemical impedance spectroscopy; the capacitance of the double layer formed on the surface is the highest at 50 wt.%. A single time constant was detected by plotting the Bode diagrams. The steel surface degradation has been appreciated using the scanning electron microscopy observations. A few pitting corrosion at 20 wt.% moisture, followed by more degradation at 50 wt.% have been revealed. However, when the moisture amount exceeded 50 wt.%, the surface became entirely covered by a corrosion product. XRD analysis revealed the dominance of FeOOH and Fe3O4 phases on steel surface for a moisture content of 50 wt.%.
Olsen, Colin; Arantes, Valdeir; Saddler, Jack
2015-01-01
The influence of chip size and moisture content on the combined sugar recovery after steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis of the cellulosic component were investigated using response surface methodology. Chip size had little influence on sugar recovery after both steam pretreatment and enzymatic hydrolysis. In contrast, the moisture of the chips greatly influenced the relative severity of steam pretreatment and, as a result, the combined sugar recovery from the hemicellulosic and cellulosic fractions. Irrespective of chip size and the pretreatment temperature, time, and SO2 loading that were used, the relative severity of pretreatment was highest at a moisture of 30-40w/w%. However, the predictive model indicated that an elevated moisture content of roughly 50w/w% (about the moisture content of a standard softwood mill chip) would result in the highest, combined sugar recovery (80%) over the widest range of steam pretreatment conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radar response to vegetation. [soil moisture mapping via microwave backscattering
NASA Technical Reports Server (NTRS)
Ulaby, F. T.
1975-01-01
Active microwave measurements of vegetation backscatter were conducted to determine the utility of radar in mapping soil moisture through vegetation and mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of 0 to 70 degrees in 10-degree steps, and for all four linear polarization combinations. Based on a total of 125 data sets covering a wide range of soil moisture, content, system design criteria are proposed for each of the aforementioned objectives. Quantitative soil moisture determination was best achieved at the lower frequency end of the 4-8 GHz band using HH polarized waves in the 5- to 15-degree incidence angle range. A combination of low and high frequency measurements are suggested for classifying crop types. For crop discrimination, a dual-frequency dual-polarization (VV and cross) system operating at incidence angles above 40 degrees is suggested.
Tadapaneni, Ravi Kiran; Yang, Ren; Carter, Brady; Tang, Juming
2017-12-01
In recent years, research studies have shown that the thermal resistance of foodborne pathogens in the low moisture foods is greatly influenced by the water activity (a w ) at temperatures relevant to thermal treatments for pathogen control. Yet, there has been a lack of an effective method for accurate measurement of a w at those temperatures. Thus, the main aim of this study was to evaluate a new method for measuring a w of food samples at elevated temperatures. An improved thermal cell with a relative humidity and temperature sensor was used to measure the a w of the three different food samples, namely, organic wheat flour, almond flour, and non-fat milk powder, over the temperature range between 20 and 80°C. For a constant moisture content, the a w data was used to estimate the net isosteric heat of sorption (q st ). The q st values were then used in the Clausius Clapeyron equation (CCE) equation to estimate the moisture sorption isotherm for all test food samples at different temperatures. For all the tested samples of any fixed moisture content, a w value generally increased with the temperature. The energy for sorption decreased with increasing moisture content. With the experimentally determined q st value, CCE describes well about the changes in a w of the food samples between 20 and 80°C. This study presents a method to obtain a w of a food sample for a specific moisture content at different temperatures which could be extended to obtain q st values for different moisture contents and hence, the moisture sorption isotherm of a food sample at different temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar
In the present study a Box–Behnken experimental design was used to understand the effect of the moisture content of lodgepole pine grind (33–39%, w.b.), die speed (40–60 Hz) and preheating temperature (30–90 °C) on the pellet quality and specific energy consumption. The partially dried pellets produced had high-moisture content in the range of 19–28% (w.b.), and were further dried to <9% (w.b.) in a mechanical oven set at 70 °C for 3 h. Dried pellets were further evaluated for pellet moisture content, unit, bulk, tapped density, and durability. Response surface models developed for the product properties have adequately described themore » process based on coefficient of determination values. Surface plots developed indicated higher unit, bulk, and tapped density (1050, 520, 560 kg/m 3) are achievable at 33–35% (w.b.) moisture content of the lodgepole pine grind, die speed of 60 Hz and preheating temperature of 30–60 °C. Higher moisture content of 39% (w.b) reduced unit, bulk, and tapped density to <912, 396, and 452 kg/m 3. Higher durability values of >95% were obtained at 33–35% (w.b.) at lower preheating temperatures of 30–50 °C and higher die speed of >50 Hz. At 33% (w.b.) moisture content of the lodgepole pine grind, preheating temperature of 90 °C, and die speed of 60 Hz, the observed specific energy consumption was <116 kW h/ton. As a result, scanning electron microscope studies indicated that lignin crosslinking is the primary reason for binding of the lodgepole pine grind at high-moisture content.« less
NASA Astrophysics Data System (ADS)
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2017-01-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
40 CFR Table 1 to Subpart Bbbbb of... - Requirements for Performance Tests
Code of Federal Regulations, 2014 CFR
2014-07-01
... HAP used as the calibration gas must be the single organic HAP representing the largest percent of... determining compliance with a ppmv concentration limit. c. Conduct gas molecular weight analysis i. Method 3... York, NY 10016-5990) as an alternative to EPA Method 3B. d. Measure moisture content of the stack gas...
Effects of Temperature and Moisture Content on the Storability of Hardwoods Seeds
Kristina F. Connor; Franklin T. Bonner
1999-01-01
Experimental results have been inconclusive about low temperature storage of recalcitrant seeds from temperate zone trees. Experiments were conducted on four species of oak - chinkapin (Quercus muehlenbergii Engelm.), water (Quercus nigra L.), Shumard (Quercus shumardii Buckl.), and northern red (Quercus rubra L.). Storage temperatures were -1.5 DC and 3 DC, and...
Tumuluru, Jaya Shankar
2015-06-15
The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less
Effects of storage environment on the moisture content and microbial growth of food waste.
Chen, Ying-Chu; Hsu, Yi-Cheng; Wang, Chung-Ting
2018-05-15
Food waste (FW) has become a critical issue in sustainable development as the world's population has increased. Direct incineration of FW remains the primary treatment option. The moisture content of FW may affect the energy efficiency of incineration. In Taiwan, FW, which includes raw (r-FW) and post-consumer (p-FW) waste, is often stored in freezers before pretreatment. This study evaluated the effects of storage environment on the moisture content and microbial growth of FW. Storage at 263 K was associated with the largest reduction in moisture content in both r-FW and p-FW. At 263 K, the moisture content of r-FW and p-FW was lowest at 96 and 72 h, respectively. The E.coli and total bacteria counts were steady over 120 h when stored at 263 K. Storage at 253 K required the greatest electricity consumption, followed by 263 K and 258 K. Based on the reduction of moisture content and increase in energy efficiency, it is suggested that FW is placed in temporary storage at 263 K before (pre)treatment. The results of this study will help waste-to-energy plants, incinerators, and waste management enterprises to implement proper (pre)treatment of FW for sustainable waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.
Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region
Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M.
2012-01-01
The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%–386% higher and agricultural ecosystems exhibited lower CO2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions. PMID:23082234
Soil respiration in different agricultural and natural ecosystems in an arid region.
Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M
2012-01-01
The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.
USDA-ARS?s Scientific Manuscript database
Estimation of vegetation water content (VWC) by shortwave infrared remote sensing improves soil moisture retrievals. The largest unknown for predicting VWC is stem water content; for woodlands, stem water content is expected to be proportional to stem height. Airborne imagery were acquired and photo...
USDA-ARS?s Scientific Manuscript database
Estimation of vegetation water content (VWC) by shortwave infrared remote sensing improves soil moisture retrievals. The largest unknown for predicting VWC is stem water content, which is assumed to be allometrically related to canopy water content. From forest science, stem volume is linearly relat...
The effects of moisture on molecular sieve oxygen concentrators.
Ikels, K G; Theis, C F
1985-01-01
Molecular sieve oxygen generating systems are receiving extensive laboratory and flight evaluation. Assessment of the molecular system has generally been conducted in the laboratory using clean dry air. In aircraft, however, the molecular sieve generator is supplied with engine bleed air which may not always be totally free of contaminants and water. Recent studies using bed washout technics have shown that the molecular sieve units, with 50% of the beds deactivated with water, still function normally with respect to product gas flow and O2 concentration. By utilizing the technics described in this paper, the moisture content or state of hydration of the molecular sieve can readily be determined.
Sebio, L; Chang, Y K
2000-04-01
Raw yam (Dioscorea rotundata) flour was cooked and extruded in a Brabender single-screw laboratory scale extruder. Response surface methodology using an incomplete factorial design was applied with various combinations of barrel temperature [100, 125, 150 degrees C], feed moisture content [18, 22, 26%] and screw speed [100, 150, 200 rpm]. Initial viscosity at 30 degrees C, water solubility index, expansion and hardness were determined. The highest values of initial viscosity were at the highest barrel temperatures and the highest moisture contents. At high feed moisture content and high barrel temperatures the yam extrudate flour showed the greatest values of water solubility index. The physical properties of the extruded product showed that at high temperature the lower the moisture content the greater the expansion index. Hardness was influenced directly by moisture content and inversely by extrusion temperature. The extrusion of yam flour led to the production of snacks and pre-gelatinized flours of diverse properties. Also extruded yam flour can be successfully used in the preparation of 'futu' (pre-cooked compact dough), a yam-based food, popular in Western Africa.
Numerical analysis on centrifugal compressor with membrane type dryer
NASA Astrophysics Data System (ADS)
Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.
2017-09-01
Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.
Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation.
Verstraeten, Willem W; Veroustraete, Frank; Feyen, Jan
2008-01-09
The proper assessment of evapotranspiration and soil moisture content arefundamental in food security research, land management, pollution detection, nutrient flows,(wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc.This paper takes an extensive, though not exhaustive sample of international scientificliterature to discuss different approaches to estimate land surface and ecosystem relatedevapotranspiration and soil moisture content. This review presents:(i) a summary of the generally accepted cohesion theory of plant water uptake andtransport including a shortlist of meteorological and plant factors influencing planttranspiration;(ii) a summary on evapotranspiration assessment at different scales of observation (sapflow,porometer, lysimeter, field and catchment water balance, Bowen ratio,scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii) a summary on data assimilation schemes conceived to estimate evapotranspirationusing optical and thermal remote sensing; and(iv) for soil moisture content, a summary on soil moisture retrieval techniques atdifferent spatial and temporal scales is presented.Concluding remarks on the best available approaches to assess evapotranspiration and soilmoisture content with and emphasis on remote sensing data assimilation, are provided.
Glass transitions and physical aging of cassava starch - corn oil blends.
Pérez, Adriana; Sandoval, Aleida J; Cova, Aura; Müller, Alejandro J
2014-05-25
Glass transition temperatures and physical aging of amorphous cassava starch and their blends with corn oil were assessed by differential scanning calorimetry (DSC). Two enthalpic relaxation endotherms, well separated in temperature values, were exhibited by neat amorphous cassava starch with 10.6% moisture content, evidencing two amorphous regions within the starch with different degrees of mobility. The phase segregation of these two amorphous regions was favored by added corn oil at low moisture contents during storage. The presence of amylose-lipid complexes in this matrix, may also affect the molecular dynamics of these two amorphous regions at low moisture contents. Increasing moisture content, leads to a homogeneous amorphous phase, with an aging process characterized by a single enthalpic relaxation peak. In all cases, after deleting the thermal history of the samples only one glass transition temperature was detected (during DSC second heating runs) indicating that a single homogeneous amorphous phase was attained after erasing the effects of physical aging. Trends of the enthalpic relaxation parameters were also different at the two moisture contents considered in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.
Chen, Jun; Wang, Hao; Yao, Yangping
2016-07-01
In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukada, K., E-mail: tsukada@cc.okayama-u.ac.jp; Kusaka, T.; Saari, M. M.
2014-05-07
We developed a magnetic measurement method to measure the moisture content and hydration condition of mortar as a magnetic mixture material. Mortar is a mixture of Portland cement, sand, and water, and these materials exhibit different magnetic properties. The magnetization–magnetic field curves of these components and of mortars with different moisture contents were measured, using a specially developed high-temperature-superconductor superconducting quantum interference device. Using the differences in magnetic characteristics, the moisture content of mortar was measured at the ferromagnetic saturation region over 250 mT. A correlation between magnetic susceptibility and moisture content was successfully established. After Portland cement and water aremore » mixed, hydration begins. At the early stage of the hydration/gel, magnetization strength increased over time. To investigate the magnetization change, we measured the distribution between bound and free water in the mortar in the early stage by magnetic resonance imaging (MRI). The MRI results suggest that the amount of free water in mortar correlates with the change in magnetic susceptibility.« less
46 CFR 148.450 - Cargoes subject to liquefaction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... migration and subsequent liquefaction if shipped with moisture content in excess of the transportable moisture limit. (2) Moisture migration is the movement of moisture by settling and consolidation of a...
An evaluation of fluid bed drying of aqueous granulations.
Hlinak, A J; Saleki-Gerhardt, A
2000-01-01
The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Pengmin; McDonald, Timothy; Fulton, John
An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less
Pan, Pengmin; McDonald, Timothy; Fulton, John; ...
2016-12-23
An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less
Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John
2016-01-01
An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536
Shakerardekani, Ahmad; Karim, Roselina
2013-04-01
Pistachio nut (Pistacia vera L.) is one of the popular tree nuts in the world. Proper selection of packaging materials is necessary to prevent absorption of moisture and aflatoxin formation which will influence the overall product quality and safety. This research is undertaken to study the effect of different type of flexible packaging films on the moisture and aflatoxin contents of whole pistachio nuts during storage at ambient temperature (22-28 °C) and relative humidity of 85-100%. Five types of plastic films tested were low density polyethylene (LDPE) which serves as the control, food-grade polyvinyl chloride (PVC), nylon (LDPE/PA), polyamide/polypropylene (PA/PP) and polyethylene terephthalate (PET). The moisture content and aflatoxin content of pistachio nuts were measured using oven drying method and HPLC, respectively. Sample were analysed at 0, 2, 4, 6, 8 and 10 months during the storage period. Results showed that there was an increase in moisture content with the increase in storage time of pistachio nuts. The increase in moisture content was associated with the aflatoxin level of pistachio nuts during storage time. All the packaging materials except LDPE delayed the moisture absorption and aflatoxin formation of the product. The most suitable packaging materials for maintaining the quality and safety of pistachio nuts is PET films followed by nylon, PA/PP and PVC. The shelf-life of pistachio can be extended from 2 months (Control) to 5 months when PET is used as the packaging material.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Rich, M. J.; Lowry, D. W.
1983-01-01
This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Rich, M. J.; Lowry, D. W.
1982-01-01
This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents.
Use of Ultrasonic Technology for Soil Moisture Measurement
NASA Technical Reports Server (NTRS)
Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.
1997-01-01
In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.
NASA Astrophysics Data System (ADS)
Yahaya, NZ; Ramli, MR; Razak, NNANA; Abbas, Z.
2018-04-01
The Finite Element Method, FEM has been successfully used to model a simple rectangular microstrip sensor to determine the moisture content of Hevea rubber latex. The FEM simulation of sensor and samples was implemented by using COMSOL Multiphysics software. The simulation includes the calculation of magnitude and phase of reflection coefficient and was compared to analytical method. The results show a good agreement in finding the magnitude and phase of reflection coefficient when compared with analytical results. Field distributions of both the unloaded sensor as well as the sensor loaded with different percentages of moisture content were visualized using FEM in conjunction with COMSOL software. The higher the amount of moisture content in the sample the more the electric loops were observed.
NASA Technical Reports Server (NTRS)
Arya, L. M.; Phinney, D. E. (Principal Investigator)
1980-01-01
Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.
NASA Astrophysics Data System (ADS)
Shafian, S.; Maas, S. J.
2015-12-01
Variations in soil moisture strongly affect surface energy balances, regional runoff, land erosion and vegetation productivity (i.e., potential crop yield). Hence, the estimation of soil moisture is very valuable in the social, economic, humanitarian (food security) and environmental segments of society. Extensive efforts to exploit the potential of remotely sensed observations to help quantify this complex variable are ongoing. This study aims at developing a new index, the Thermal Ground cover Moisture Index (TGMI), for estimating soil moisture content. This index is based on empirical parameterization of the relationship between raw image digital count (DC) data in the thermal infrared spectral band and ground cover (determined from raw image digital count data in the red and near-infrared spectral bands).The index uses satellite-derived information only, and the potential for its operational application is therefore great. This study was conducted in 18 commercial agricultural fields near Lubbock, TX (USA). Soil moisture was measured in these fields over two years and statistically compared to corresponding values of TGMI determined from Landsat image data. Results indicate statistically significant correlations between TGMI and field measurements of soil moisture (R2 = 0.73, RMSE = 0.05, MBE = 0.17 and AAE = 0.049), suggesting that soil moisture can be estimated using this index. It was further demonstrated that maps of TGMI developed from Landsat imagery could be constructed to show the relative spatial distribution of soil moisture across a region.
Shi, H T; Cao, Z J; Wang, Y J; Li, S L; Yang, H J; Bi, Y L; Doane, P H
2016-08-01
The objective of this study was to determine the optimum conditions for calcium oxide (CaO) treatment of anaerobically stored corn stover by in situ and in vitro methods. Four ruminally cannulated, non-lactating, non-pregnant Holstein cows were used to determine the in situ effective degradabilities of dry matter (ISDMD), organic matter (ISOMD), neutral detergent fibre (ISNDFD), in vitro organic matter disappearance (IVOMD) and gas production in 72 h (GP72h ) of corn stover. A completely randomized design involving a 3 × 3 factorial arrangement was adopted. Ground corn stover was treated with different levels of CaO (3%, 5% and 7% of dry stover) at varying moisture contents (40%, 50% and 60%) and stored under anaerobic conditions for 15 days before analysis. Compared with untreated corn stover, the CaO-treated stover had increased ash and calcium (Ca) contents but decreased aNDF and OM contents. The moisture content, CaO level and their interaction affected (p < 0.01) the content of aNDF, ash and OM, and the ratio of aNDF/OM. The greatest ISDMD, ISOMD and ISNDFD were observed when stover was treated with 7% CaO and 60% moisture, while no differences (p > 0.01) in these in situ degradability parameters were observed between the stover treated with 5% CaO at 60% moisture content and those treated with 7% CaO at 60% moisture content. Corn stover treated with 5% CaO at 50% moisture had the maximum IVOMD and GP72 h among the treatments, and there was no difference (p > 0.01) between 50% and 60% moisture. Results from this study suggested that 5% CaO applied at 60% moisture could be an effective and economical treatment combination. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Determining the Uncertainty of X-Ray Absorption Measurements
Wojcik, Gary S.
2004-01-01
X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627
Evaluation of standard methods for collecting and processing fuel moisture samples
Sally M. Haase; José Sánchez; David R. Weise
2016-01-01
A variety of techniques for collecting and processing samples to determine moisture content of wildland fuels in support of fire management activities were evaluated. The effects of using a chainsaw or handsaw to collect samples of largediameter wood, containers for storing and transporting collected samples, and quick-response ovens for estimating moisture content...
USDA-ARS?s Scientific Manuscript database
Moisture content of wood chips is an important factor to be known in their utilization as biomass material. Several moisture measuring instruments are available in the market, but for most of these instruments, some sort of sample preparation is needed that involves sizing, grinding and weighing. T...
2008-03-01
behavior of moisture content-dry density Proctor curves......................................... 16 Figure 8. Moisture- density data scatter for an... density . Built-in higher order regression equations allow the user to visua- lize complete curves for Proctor density , as-built California Bearing Ratio...requirements involving soil are optimum moisture content (OMC) and maximum dry density (MDD) as determined from a laboratory compaction or Proctor test
Moisture distributions in western hemlock lumber from trees harvested near Sitka, Alaska.
David L. Nicholls; Allen M. Brackley; Travis. Allen
2003-01-01
Western hemlock (Tsuga heterophylla) can be characterized by localized regions of high-moisture-content wood, often referred to as wet pockets, and uneven drying conditions may occur when lumber of higher and lower moisture content is mixed together in a dry kiln. The primary objective of this preliminary study was to characterize the frequency and...
Predicting duff and woody fuel consumed by prescribed fire in the Northern Rocky Mountains
James K. Brown; Michael A. Marsden; Kevin C. Ryan; Elizabeth D. Reinhardt
1985-01-01
Relationships for predicting duff reduction, mineral soil exposure, and consumption of downed woody fuel were determined to assist in planning prescribed fires. Independent variables included lower and entire duff moisture contents, loadings of downed woody fuels, duff depth, National Fire-Danger Rating System 1,000-hour moisture content, and Canadian Duff Moisture...
Calculating moisture content for 1000-hour timelag fuels in western Washington and western Oregon.
Roger D. Ottmar; David V. Sandberg
1985-01-01
A predictive model is presented to calculate moisture content of 1000-hour timelag fuels in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) logging slash in western Washington and western Oregon. The model is a modification of the 1000-hour fuel moisture model of the...
The Role of Evapotranspiration on Soil Moisture Depletion in a Small Alaskan Subarctic Farm
NASA Astrophysics Data System (ADS)
Ruairuen, W.; Fochesatto, G. J.; Sparrow, E. B.; Schnabel, W.; Zhang, M.
2013-12-01
At high latitudes the period for agriculture production is very short (110 frost-free days) and strongly depends on the availability of soil water content for vegetables to grow. In this context the evapotranspiration (ET) cycle is key variable underpinning mass and energy balance modulating therefore moisture gradients and soil dryness. Evapotranspiration (ET) from field-grown crops water stress is virtually unknown in the subarctic region. Understanding ET cycles in high latitude agricultural ecosystem is essential in terms of water management and sustainability and projection of agricultural activity. To investigate the ET cycle in farming soils a field experiment was conducted in the summer of 2012 and 2013 at the University of Alaska Fairbanks Agricultural and Forestry Experiment Station combining micrometeorological and hydrological measurements. In this case experimental plots of lettuce (Lactuca sativa) plants were grown. The experiment evaluated several components of the ET cycle such as actual evapotranspiration, reference evaporation, pan evaporation as well as soil water content and temperature profiles to link them to the vegetable growing functions. We investigated the relationship of soil moisture content and crop water use across the growing season as a function of the ET cycle. Soil water depletion was compared to daily estimates of water loss by ET during dry and wet periods. We also investigated the dependence of ET on the atmospheric boundary layer flow patterns set by the synoptic large scale weather patterns.
NASA Astrophysics Data System (ADS)
Massman, W. J.
2012-10-01
Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the coupled heat and moisture transport in soil during these extreme heating events. Furthermore, improved understanding and modeling of heat and mass transport during extreme conditions should provide insights into the associated transport mechanisms under more normal conditions. The present study describes a numerical model developed to simulate soil heat and moisture transport during fires where the surface heating often ranges between 10,000 and 100,000 W m-2 for several minutes to several hours. Basically, the model extends methods commonly used to model coupled heat flow and moisture evaporation at ambient conditions into regions of extreme dryness and heat. But it also incorporates some infrequently used formulations for temperature dependencies of the soil specific heat, thermal conductivity, and the water retention curve, as well as advective effects due to the large changes in volume that occur when liquid water is rapidly volatilized. Model performance is tested against laboratory measurements of soil temperature and moisture changes at several depths during controlled heating events. Qualitatively, the model agrees with the laboratory observations, namely, it simulates an increase in soil moisture ahead of the drying front (due to the condensation of evaporated soil water at the front) and a hiatus in the soil temperature rise during the strongly evaporative stage of the soil drying. Nevertheless, it is shown that the model is incapable of producing a physically realistic solution because it does not (and, in fact, cannot) represent the relationship between soil water potential and soil moisture at extremely low soil moisture contents (i.e., residual or bound water: θ < 0.01 m3 m-3, for example). Diagnosing the model's performance yields important insights into how to make progress on modeling soil evaporation and heating under conditions of high temperatures and very low soil moisture content.
21 CFR 133.167 - Pasteurized blended cheese.
Code of Federal Regulations, 2012 CFR
2012-04-01
... or more cheeses containing cream cheese or neufchatel cheese, the moisture content is not more than the arithmetical average of the maximum moisture contents prescribed by the definitions and standards...
NASA Technical Reports Server (NTRS)
Podol'skii, I. G.; Norokh, A. A.; Bingham, G. E.; Brigham, G. E. (Principal Investigator); Campbell, W. F. (Principal Investigator)
2002-01-01
Point thermopulse probes were used to monitor moisture level in the root substrates during cultivation of higher plants in a space greenhouse. Investigated were performance data of the thermopulse moisture probe in integration with the space greenhouse. It was shown that within the substrate moisture range from 20 up to 100% of the full saturation the technique error does not exceed 1.5%. The thermopulse technique bears much promise for metrologic monitoring of the root substrate moisture content in space greenhouses no matter water and air supply technology.
Bitterlich, Michael; Sandmann, Martin; Graefe, Jan
2018-01-01
Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae, and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8–4.2) and dry (pF 2.5–4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant transpiration when soil moisture declined. The water potential at the root surface and the resistance to water flow in the rhizosphere were restored in mycorrhizal pots although the bulk substrate dried more. Finally, substrates colonized by AMF can be more desiccated before substrate water flux quantitatively limits transpiration. This is most pronounced under high transpiration demands and complies with a difference of over 1,000 hPa in substrate water potential. PMID:29503655
1986-05-01
the presence of NOL 130 6 Determination of moisture content of dextrinated lead azide 14 containing known amounts of water, by the Karl Fisher method...maLhiod, extraction mode 8 Determinatiov) of moisture content of special purpose and 16 dextrinated lead atide, containing known amounts of water by the...water in special purpose and dextrinated lead azides were determined by the method described in the experimen- tal section of this report, data shown
The significance of visitors' pressure for soil status in an urban park in Tel-Aviv
NASA Astrophysics Data System (ADS)
Zhevelev, Helena; Sarah, Pariente; Oz, Atar
2010-05-01
A park is one of the most important elements of sustainable development and optimization of the urban environment. The equilibrium within the complex of natural and anthropogenic factors defines the status of a park's ecosystem. The seasonal dynamics and spatial variations of soil properties in areas under differing levels of visitors' pressure were studied in a park in Tel-Aviv. Soil was sampled twice a year, in wet (March) and dry (July) seasons, from three types of areas, subjected to differing levels of visitors' pressure: high, low and none (control). In each type of area samples were taken from two depths (0-2 cm and 5-10 cm), at 14-39 points. In total, 268 soil samples were taken. Before the soil sampling, penetration depth was determined at each point. In addition, the numbers of barbecue fires in each of the three areas were counted. Gravimetric soil moisture, organic matter, pH, electrical conductivity, and soluble ions were measured in 1:1 water extraction. Penetration depth and electrical conductivity, and organic matter, sodium, potassium and chlorite contents differed under differing levels of visitors' pressure, whereas soil moisture, pH and calcium content exhibited only minor differences. Soil moisture, electrical conductivity, and magnesium and chlorite contents exhibited strong seasonal changes, whereas the organic matter, potassium and pH levels were unaffected by seasonal dynamics. Calcium, organic matter, magnesium and chlorite contents, and electrical conductivity were significantly affected by the depth of soil sampling, whereas pH was not so affected. The seasonal changes in soil properties in the area subjected to high visitors' pressure were higher than in the one under low visitors' pressure. In most cases, visitors' pressure led to increases in variance and coefficient of variation. Different soil properties were differently affected by visitors' pressure, seasonal dynamics and soil depth. The surface of the soil was more sensitive to both seasonal dynamics and visitors' pressure, than the deeper layer. Visitors' pressure increased seasonal changes in the studied soil properties, and also increased the spatial heterogeneity of the soil. The differences in organic matter, electrical conductivity and soluble ions among the areas under differing visitors' pressure are attributed to anthropogenic additions, which accompanied the recreational activities in the urban parks: remnants of barbecue fires and meals, and excreta of urban animals. Addition of urban dust, enriched in CaCO3, minimized the effect of visitors' pressure on soil calcium content. All the above anthropogenic additions enhance the differentiation in soil layers. The notable effect of visitors' pressure on variations in soil properties highlighted its high significance for urban parks.
Capacitance Based Moisture Sensing for Microgravity Plant Modules: Sensor Design and Considerations
NASA Technical Reports Server (NTRS)
Schaber, Chad L.; Nurge, Mark; Monje, Oscar
2011-01-01
Life support systems for growing plants in microgravity should strive for providing optimal growing conditions and increased automation. Accurately tracking soil moisture content can forward both of these aims, so an attempt was made to instrument a microgravity growth module currently in development, the VEGGIE rooting pillow, in order to monitor moisture levels. Two electrode systems for a capacitance-based moisture sensor were tested. Trials with both types of electrodes showed a linear correlation between observed capacitance and water content over certain ranges of moisture within the pillows. Overall, both types of the electrodes and the capacitance-based moisture sensor are promising candidates for tracking water levels for microgravity plant growth systems.
Feasibility study of a V-shaped pipe for passive aeration composting.
Ogunwande, Gbolabo A
2011-03-01
A V-shaped (Vs) pipe was improvised for composting of chicken litter in passive aeration piles. Three piles, equipped with horizontal (Ho), vertical (Ve) and Vs pipes were set up. The three treatments were replicated thrice. The effects of the aeration pipe on the physico-chemical properties of chicken litter and air distribution within the composting piles were investigated during composting. The properties monitored were temperature, pH, electrical conductivity, moisture content, total carbon, total nitrogen, total phosphorus and carbon-to-nitrogen ratio. Moisture level in the piles was replenished fortnightly to 60% during composting. The results of the study showed that all the piles attained the optimum temperature range (40-65°C) for effective composting and satisfied the requirements for sanitation. The non-significant (p > 0.05) temperature difference within the piles with Ve and Vs pipes indicated that these pipes were effective for uniform air distribution within the pile. The aeration pipe had significant (p ≤ 0.05) effect on pile temperature, pre-replenishment moisture content, pH and total phosphorus. In conclusion, the study showed that the Vs pipe is feasible and effective for passive aeration composting.
Qiu, Jinya Jack; Westerdahl, Becky B; Pryor, Alan
2009-09-01
Ozone gas (O₃) is a reactive oxidizing agent with biocidal properties. Because of the current phasing out of methyl bromide, investigations on the use of ozone gas as a soil-fumigant were conducted. Ozone gas was produced at a concentration of 1% in air by a conventional electrical discharge O₃ generator. Two O₃ dosages and three gas flow rates were tested on a sandy loam soil collected from a tomato field that had a resident population of root knot nematodes, Meloidogyne javanica. At dosages equivalent to 50 and 250 kg of O₃/ha, M. javanica were reduced by 24% and 68%, and free-living nematodes by 19% and 52%, respectively. The reduction for both M. javanica and free-living nematodes was dosage dependent and flow rate independent. The rates of O₃ mass transfer (OMT) through three soils of different texture were greater at low and high moisture levels than at intermediate ones. At any one soil moisture level, the OMT rate varied with soil texture and soil organic matter content. Results suggest that soil texture, moisture, and organic matter content should be considered in determining O₃ dosage needed for effective nematode control.
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Crosson, William L.; Jackson, Thomas J.; Manu, Andrew; Tsegaye, Teferi D.; Soman, V.; Arnold, James E. (Technical Monitor)
2001-01-01
Accurate estimates of spatially heterogeneous algorithm variables and parameters are required in determining the spatial distribution of soil moisture using radiometer data from aircraft and satellites. A ground-based experiment in passive microwave remote sensing of soil moisture was conducted in Huntsville, Alabama from July 1-14, 1996 to study retrieval algorithms and their sensitivity to variable and parameter specification. With high temporal frequency observations at S and L band, we were able to observe large scale moisture changes following irrigation and rainfall events, as well as diurnal behavior of surface moisture among three plots, one bare, one covered with short grass and another covered with alfalfa. The L band emitting depth was determined to be on the order of 0-3 or 0-5 cm below 0.30 cubic centimeter/cubic centimeter with an indication of a shallower emitting depth at higher moisture values. Surface moisture behavior was less apparent on the vegetated plots than it was on the bare plot because there was less moisture gradient and because of difficulty in determining vegetation water content and estimating the vegetation b parameter. Discrepancies between remotely sensed and gravimetric, soil moisture estimates on the vegetated plots point to an incomplete understanding of the requirements needed to correct for the effects of vegetation attenuation. Quantifying the uncertainty in moisture estimates is vital if applications are to utilize remotely-sensed soil moisture data. Computations based only on the real part of the complex dielectric constant and/or an alternative dielectric mixing model contribute a relatively insignificant amount of uncertainty to estimates of soil moisture. Rather, the retrieval algorithm is much more sensitive to soil properties, surface roughness and biomass.
NASA Astrophysics Data System (ADS)
Abdullah, Alida; Jamaludin, Shamsul Baharin; Anwar, Mohamed Iylia; Noor, Mazlee Mohd; Hussin, Kamarudin
This project was conducted to produce a cement panel with the addition of treated and untreated coconut fiber in cement panel. Coconut fiber was added to replace coarse aggregate (sand) in this cement panel. In this project, the ratios used to design the mixture were 1:1:0, 1:0.97:0.03, 1:0.94:0.06, 1:0.91:0.09 (cement: sand: coconut fiber). The water cement ratio was constant at 0.55. The sizes of sample tested were, 160 mm x 40 mm x 40 mm for compression test, and 100 mm x 100 mm x 40 mm for density, moisture content and water absorption tests. After curing samples for 28 days, it was found that the addition of coconut fiber, further increase in compressive strength of cement panel with untreated coconut fiber. Moisture content of cement panel with treated coconut fiber increased with increasing content of coconut fiber whereas water absorption of cement panel with untreated coconut fiber increased with increasing content of coconut fiber. The density of cement panel decreased with the addition of untreated and treated coconut fiber.
Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks.
Bisharat, G I; Lazou, A E; Panagiotou, N M; Krokida, M K; Maroulis, Z B
2015-07-01
Phenolic content, antioxidant activity and sensory characteristics of vegetable-enriched extrudates were investigated as a result of extrusion conditions, including extrusion temperature (140-180 °C), screw rotation speed (150-250 rpm) and feed moisture content (14-19 % w.b.). Broccoli flour and olive paste was used in mixtures with corn flour at a ratio of 4 to 10 % (broccoli/corn) and 4 to 8 % (olive paste/corn). A simple power model was developed for the prediction of phenolic content and antioxidant activity of extrudates by extrusion conditions and feed composition. Phenolic content and antioxidant activity of broccoli enriched extrudates increased with extrusion temperature and broccoli addition and decreased with feed moisture content. The antioxidant activity of olive paste extrudates increased with material ratio and decreased with feed moisture content and screw rotation. Sensory porosity, homogenous structure, crispness, cohesiveness and melting decreased with feed moisture content, while the latter increased the mealy flavor and hardness of extrudates. Acceptable snacks containing broccoli flour or olive paste can be produced by selecting the appropriate process conditions.
Composition and trace element content of coal in Taiwan
Tsai, L.-Y.; Chen, C.-F.; Finkelman, R.B.
2005-01-01
To investigate the trace element contents of local coal, four coal samples were collected from operating mines in NW Taiwan. Detailed petrographic and chemical characterization analyses were then conducted. Analytical results indicate that (1) the samples were high volatile bituminous coal in rank with ash content ranging from 4.2 to 14.4% and with moisture content ranging from 2.7 to 4.6%; (2) the macerals were mostly composed of vitrinite with vitrinite reflectance less than 0.8%; (3) the sample of Wukeng mine has the highest Fe2O3 (29.5%), TI (54.8 ppm), Zn (140 ppm), and As (697 ppm) contents in ash and Hg (2.3 ppm) in the coal. If used properly, these coals should not present health hazards.
NASA Astrophysics Data System (ADS)
Steele-Dunne, Susan; Polo Bermejo, Jaime; Judge, Jasmeet; Bongiovanni, Tara; Chakrabarti, Subit; Liu, Pang-Wei; Bragdon, James; Hornbuckle, Brian
2017-04-01
Vegetation cover confounds soil moisture retrieval from both active and passive microwave remote sensing observations. Vegetation attenuates the signal from the soil as well as contributing to emission and scattering. The goal of this study was to characterize the vertical distribution of moisture within an agricultural canopy, to examine how this varies during the growing season and to determine the influence these changes have on emission and backscatter from the surface. To this end, an extensive campaign of destructive sampling was conducted in a rain-fed corn field at Buckeye, Iowa within the SMAPVEX16-IA study domain. The experiment duration extended from the beginning of IOP1 to the end of IOP2, i.e. from May 18 to August 16 2016. Destructive vegetation sampling was performed on most days upon which SMAP had both an ascending and a descending pass. On these days, destructive samples were collected at 6pm and 6pm unless the weather conditions were prohibitive. In addition to measuring the bulk vegetation water content for comparison to the SMAP retrieved VWC, the samples were split into leaves and stems. To study the vertical profiles, leaf moisture content was measured as a function of collar height and the stem was cut into 10cm sections. The influence of plant development on the bulk and profile VWC was clearly discernible in the observations. Diurnal variations in bulk VWC were relatively small due to moisture availability in the root zone. SMAP brightness temperatures, and tower-based observations from the University of Florida radiometer and radar systems were analyzed to investigate the impact of VWC variations on emission and backscatter. Dynamic variations in SMAP retrieved soil moisture were notably larger than those observed in-situ, particularly during the early growing season. This may be attributed to the difference between observed VWC and that used in the SMAP retrieval during the early growing season. Backscatter (and RVI) increased, as expected, in response to accumulating biomass, though retaining some sensitivity to soil moisture variations. Polarization-dependent diurnal differences of up to 2dB were observed in the backscatter from the fully grown corn canopy.
Thomé, Antônio; Cecchin, Iziquiel; Reginatto, Cleomar; Colla, Luciane M; Reddy, Krishna R
2017-04-01
This study investigates the retention of biodiesel in residual clayey soil during biostimulation by nutrients (nitrogen, phosphorus, and potassium) under conditions of rainfall infiltration. Several column tests were conducted in a laboratory under different void ratios (1.14, 1.24, and 1.34), varying moisture contents (15, 25, and 35%), and in both the presence and absence of biostimulation. The volume of biodiesel (which was equivalent to the volume of voids in the soil) was placed atop the soil and allowed to percolate for a period of 15 days. The soil was subjected to different rainfall infiltration conditions (0.30 or 60 mm). The greatest reductions in residual contaminants occurred after 60 mm of rain simulation, at values of up to 74% less than in samples with the same conditions but no precipitation. However, the residual contamination decay rate was greater with 0-30 mm (0.29 g/mm) of precipitation than with 30-60 mm (0.075 g/mm). Statistical assessment revealed that increased moisture and the presence of nutrients were the factors with the most powerful effect on contaminant retention in the soil. The residual contaminant level was 21 g/kg at a moisture content of 15% and no precipitation, decreasing to 12 g/kg at 35% moisture and no precipitation. Accordingly, it is possible to conclude that biostimulation and rainfall infiltration conditions can decrease the retention of contaminants in soil and allow a greater leaching or spreading of the contamination. All of these phenomena are worthy of careful examination for the in situ bioremediation of organic contamination. • The higher moisture in the soil, due to a high initial moisture content and/or infiltration of rainfall, can reduce contaminant retention, • The use of biostimulation through the addition of nutrients to accelerate the biodegradation of toxic organic contaminants may induce inadvertent undesirable interactions between the soil and the contaminant. • When adopting biostimulation for bioremediation, the effects of rainfall should be addressed; ideally, it should be prevented from entering the affected site, in order to avoid increased contaminant leaching and potential spreading.
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
2016-01-01
A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875
Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N
2016-06-15
A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.
USDA-ARS?s Scientific Manuscript database
The effect of moisture content on solid-state anaerobic digestion of dairy manure from a Korean sawdust-bedded pack barn was determined using laboratory-scale digesters operated at three moisture levels (70, 76, and 83% on a wet basis) at 37 C for 85 days. Results showed that digesters containing m...
Drying and control of moisture content and dimensional changes
William T. Simpson
1999-01-01
In the living tree, wood contains large quantities of water. As green wood dries, most of the water is removed. The moisture remaining in the wood tends to come to equilibrium with the relative humidity of the surrounding air. Correct drying, handling, and storage of wood will minimize moisture content changes that might occur after drying when the wood is in service...
40 CFR Table 8 to Subpart Dddd of... - Continuous Compliance With the Work Practice Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with an inlet dryer temperature of less than or equal to 600 °F Maintaining the 24-hour block average inlet furnish moisture... temperature of furnish moisture content and inlet dryer temperature. (2) Hardwood veneer dryer Process less...
40 CFR Table 8 to Subpart Dddd of... - Continuous Compliance With the Work Practice Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with an inlet dryer temperature of less than or equal to 600 °F Maintaining the 24-hour block average inlet furnish moisture... temperature of furnish moisture content and inlet dryer temperature. (2) Hardwood veneer dryer Process less...
Controlling moisture content of wood samples using a modified soil-pan decay method
Jerrold E. Winandy; Simon F. Curling; Patricia K. Lebow
2005-01-01
In wood, the threshold level below which decay cannot occur varies with species or type of wood product and other factors such as temperature, humidity, and propensity of exposure or service-use to allow rain-induced wetting and subsequent drying. The ability to control wood moisture content (MC) during laboratory decay testing could allow research on the moisture...
J.D. Helvey; J.N. Kochenderfer; J.N. Kochenderfer
1990-01-01
Reports results of soil density and soil moisture measurements on two roads in the central Appalachians over a 30-month period. Density increased slightly during the measurement period at most locations. Almost all of the density changes occurred during the first few months after construction. Moisture content decreased during the first few months after construction,...
The technique of duff hygrometer calibration
T. Kachin; H. T. Gisborne
1937-01-01
The moisture content of the top layer of coniferous needles and twigs covering the forest floor is one of the factors of forest fire danger which must he determined accurately if fire danger in such timber types is to he measured. As this moisture content cannot he estimated accurately and as a difference of a few per cent of moisture, especially in the lower range,...
Measurement of Moisture in Wood for Application in the Restoration of Old Buildings.
Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto
2016-05-14
There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate.
Measurement of Moisture in Wood for Application in the Restoration of Old Buildings
Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto
2016-01-01
There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate. PMID:27187410
Summer moisture contents of understory vegetation in northeastern Minnesota.
Robert M. Loomis; Peter J. Roussopoulos; Richard W. Blank
1979-01-01
Summer moisture contents and factors for converting fresh plant weights to ovendry biomass estimates are presented for some herbs, mosses, and small shrubs found in the upland forest stand of northeastern Minnesota.
Choi, Kwangseok; Taghavivand, Milad; Zhang, Lifeng
2017-03-15
Pharmaceutical powders are mainly organic materials and are likely to be charged due to repeated inter-particle and particle-wall contacts during industrial processes. This study experimentally investigated the effect of moisture content (ranging from approximately 1.8 to 30wt.%) on tribocharging behaviour of pharmaceutical granules, as well as their apparent volume resistivity. The tribocharging behaviour of pharmaceutical granules was investigated using a rotating device and apparent volume resistivity was measured in a conventional volume resistivity test cell. Additional measurements were performed on individual ingredients, each having the same moisture content as that of the granules, in order to investigate the effect of each single ingredient on the apparent volume resistivity of granules. In this work, the individual ingredients used for granules were: α-Lactose Monohydrate (α-LMH), Microcrystalline Cellulose (MCC), Hydroxypropyl Methylcellulose (HPMC), and Croscarmellose Sodium (CCS). The results showed that the specific charge of granules began to increase at the moisture contents below 5wt.%, which can be referred as critical moisture content of granules. The apparent volume resistivity showed the same behaviour, indicating that the specific charge could be due to an increase in apparent volume resistivity of granules at reduced moisture content. Finally, it was shown that the apparent volume resistivity measured for granules was mainly affected by that of the α-LMH, the major component of granules accounting for 40wt.%. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Wenlin Yvonne; Heng, Kim Soon; Sun, Xiaolong; Wang, Jing-Yuan
2015-09-01
This study investigated the influence of moisture content and temperature on the degree of carbonation of municipal solid waste (MSW) incineration bottom ash (IBA) from two different incineration plants in Singapore. The initial rate of carbonation was affected by the nominal moisture content used. Carbonation temperature seemed to play a part in changing the actual moisture content of IBA during carbonation, which in turn affected the degree of carbonation. Results showed that 2h of carbonation was sufficient for the samples to reach a relatively high degree of carbonation that was close to the degree of carbonation observed after 1week of carbonation. Both Cu and Cr leaching also showed significant reduction after only 2h of carbonation. Therefore, the optimum moisture content and temperature were selected based on 2h of carbonation. The optimum moisture content was 15% for both incineration plants while the optimum temperature was different for the two incineration plants, at 35°C and 50°C. The effect on Cu and Cr leaching from IBA after accelerated carbonation was evaluated as a function of carbonation time. Correlation coefficient, Pearson's R, was used to determine the dominant leaching mechanism. The reduction in Cu leaching was found to be contributed by both formation of carbonate mineral and reduction of DOC leaching. On the other hand, Cr leaching seemed to be dominantly controlled by pH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Derde, Liesbeth J; Gomand, Sara V; Courtin, Christophe M; Delcour, Jan A
2014-07-09
Electrical resistance oven (ERO) baking processes bread dough with little temperature gradient in the baking dough. Heating of the dough by means of an ERO is based on the principles of Joule's first law and Ohm's law. This study compared the changes in moisture distribution and physical changes in starch of breads conventionally baked or using an ERO. The moisture contents in fresh ERO breads are generally lower than those in conventional breads. During storage of conventionally baked breads, water migrates from the crumb to the crust and moisture contents decrease throughout the bread crumb. Evidently, less moisture redistribution occurs in ERO breads. Also, the protons of ERO bread constituents were less mobile than their counterparts in conventional bread. Starch retrogradation occurs to similar extents in conventional and ERO bread. As a result, the changes in proton mobility cannot be attributed to differences in levels of retrograded starch and seem to be primarily determined by the overall lower moisture content.
Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn
NASA Astrophysics Data System (ADS)
Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.
2011-12-01
Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils at the site were Lakeland fine sand, with 89% sand content by volume. The crop was heavily irrigated via a linear move irrigation system. Every 15-minute ground-based passive and active microwave observations at L-band were conducted at an incidence angle of 40°. In addition, concurrent observations were conducted of soil moisture, temperature, heat flux at various depths in the root zone, along with concurrent micrometeorological conditions. Weekly vegetation sampling included measurements of LAI, green and dry biomass of stems, leaves, and ears, crop height and width, vertical distribution of moisture in the canopy, leaf size and orientation, other phonological observations. Such observations at high temporal density allow detailed sensitivity analyses as the vegetation grows.
Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas
2014-04-01
Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Zhao; Wang, Hongye; Jiang, Xiuping
2015-02-01
The effectiveness of a two-step heat treatment for eliminating desiccation-adapted Salmonella spp. in aged chicken litter was evaluated. The aged chicken litter with 20, 30, 40, and 50% moisture contents was inoculated with a mixture of four Salmonella serotypes for a 24-h adaptation. Afterwards, the inoculated chicken litter was added into the chicken litter with the adjusted moisture content for a 1-h moist-heat treatment at 65 °C and 100% relative humidity inside a water bath, followed by a dry-heat treatment in a convection oven at 85 °C for 1 h to the desired moisture level (<10-12%). After moist-heat treatment, the populations of Salmonella in aged chicken litter at 20 and 30% moisture contents declined from ≈6.70 log colony-forming units (CFU)/g to 3.31 and 3.00 log CFU/g, respectively. After subsequent 1-h dry-heat treatment, the populations further decreased to 2.97 and 2.57 log CFU/g, respectively. Salmonella cells in chicken litter with 40% and 50% moisture contents were only detectable by enrichment after 40 and 20 min of moist-heat treatment, respectively. Moisture contents in all samples were reduced to <10% after a 1-h dry-heat process. Our results demonstrated that the two-step heat treatment was effective in reducing >5.5 logs of desiccation-adapted Salmonella in aged chicken litter with moisture content at or above 40%. Clearly, the findings from this study may provide the chicken litter processing industry with an effective heat treatment method for producing Salmonella-free chicken litter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.
The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO 2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils.more » The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO 2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO 2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.« less
46 CFR 148.450 - Cargoes subject to liquefaction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in this section— (1) Cargo subject to liquefaction means a material that is subject to moisture migration and subsequent liquefaction if shipped with moisture content in excess of the transportable moisture limit. (2) Moisture migration is the movement of moisture by settling and consolidation of a...
46 CFR 148.450 - Cargoes subject to liquefaction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in this section— (1) Cargo subject to liquefaction means a material that is subject to moisture migration and subsequent liquefaction if shipped with moisture content in excess of the transportable moisture limit. (2) Moisture migration is the movement of moisture by settling and consolidation of a...
46 CFR 148.450 - Cargoes subject to liquefaction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in this section— (1) Cargo subject to liquefaction means a material that is subject to moisture migration and subsequent liquefaction if shipped with moisture content in excess of the transportable moisture limit. (2) Moisture migration is the movement of moisture by settling and consolidation of a...
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Metzen, D.; Baatz, R.; Hendricks Franssen, H.; Huisman, J. A.; Montzka, C.; Vereecken, H.
2011-12-01
Measurements of low-energy secondary neutron intensity above the soil surface by cosmic-ray soil moisture probes (CRP) can be used to estimate soil moisture content. CRPs utilise the fact that high-energy neutrons initiated by cosmic rays are moderated (slowed to lower energies) most effectively by collisions with hydrogen atoms contained in water molecules in the soil. The conversion of neutron intensity to soil moisture content can potentially be complicated because neutrons are also moderated by aboveground water storage (e.g. vegetation water content, canopy storage of interception). Recently, it was demonstrated experimentally that soil moisture content derived from CRP measurements agrees well with average moisture content from gravimetric soil samples taken within the footprint of the cosmic ray probe, which is proposed to be up to several hundred meters in size [1]. However, the exact extension and shape of the CRP integration footprint is still an open question and it is also unclear how CRP measurements are affected by the soil moisture distribution within the footprint both in horizontal and vertical directions. In this paper, we will take advantage of an extensive wireless soil moisture sensor network covering most of the estimated footprint of the CRP. The network consists of 150 nodes and 900 soil moisture sensors which were installed in the small forested Wüstebach catchment (~27 ha) in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories) [2]. This unique soil moisture data set provides a consistent picture of the hydrological status of the catchment in a high spatial and temporal resolution and thus the opportunity to evaluate the CRP measurements in a rigorous way. We will present first results of the comparison with a specific focus on the sensitivity of the CRP measurements to soil moisture variation in both the horizontal and vertical direction. Furthermore, the influence of forest biomass and shallow groundwater table fluctuations on the attenuation of cosmic-ray neutrons will be considered.
Moisture and shelf life in sugar confections.
Ergun, R; Lietha, R; Hartel, R W
2010-02-01
From hardening of marshmallow to graining of hard candies, moisture plays a critical role in determining the quality and shelf life of sugar-based confections. Water is important during the manufacturing of confections, is an important factor in governing texture, and is often the limiting parameter during storage that controls shelf life. Thus, an understanding of water relations in confections is critical to controlling quality. Water content, which is controlled during candy manufacturing through an understanding of boiling point elevation, is one of the most important parameters that governs the texture of candies. For example, the texture of caramel progresses from soft and runny to hard and brittle as the moisture content decreases. However, knowledge of water content by itself is insufficient to controlling stability and shelf life. Understanding water activity, or the ratio of vapor pressures, is necessary to control shelf life. A difference in water activity, either between candy and air or between two domains within the candy, is the driving force for moisture migration in confections. When the difference in water activity is large, moisture migration is rapid, although the rate of moisture migration depends on the nature of resistances to water diffusion. Barrier packaging films protect the candy from air whereas edible films inhibit moisture migration between different moisture domains within a confection. More recently, the concept of glass transition, or the polymer science approach, has supplemented water activity as a critical parameter related to candy stability. Confections with low moisture content, such as hard candy, cotton candy, and some caramels and toffees, may contain sugars in the amorphous or glassy state. As long as these products remain below their glass transition temperature, they remain stable for very long times. However, certain glassy sugars tend to be hygroscopic, rapidly picking up moisture from the air, which causes significant changes that lead to the end of shelf life. These products need to be protected from moisture uptake during storage. This review summarizes the concepts of water content, water activity, and glass transition and documents their importance to quality and shelf life of confections.
Li, Guang Hao; Liu, Ping Ping; Zhao, Bin; Dong, Shu Ting; Liu, Peng; Zhang, Ji Wang; Tian, Cui Xia; He, Zai Ju
2017-02-01
In an soil column experiment with Zhengdan 958 (a summer maize cultivar planted widely in China), treatments of three water levels,severe water stress W 1 which the soil moisture kept (35±5)% of the field capacity, mild water stress W 2 which was (55±5)%,normal water W 3 which was (75±5)%, and four levels of controlled release urea fertilizer (N 0 , N 1 was 150 kg N·hm -2 ,N 2 was 225 kg N·hm -2 and N 3 was 300 kg N·hm -2 ) were included to study the interactive effects of water and controlled release urea on yield and leaf senescence characteristics of summer maize. The results showed that the coupling of water and controlled release urea had significant effects on increasing yield, delaying the senescence and keeping the high efficiency of the functional leaves. Under the same nitrogen condition, yield, LAI, chlorophyll content and the activities of SOD, POD, CAT and soluble protein content in summer maize ear leaf were significantly increased with more water supplying, and the content of MDA decreased significantly. Under the condition of the same moisture, these indicators were also significantly increased with the increasing nitrogen application and MDA content was reduced significantly. However, these indicators (except MDA) of W 3 N 3 , W 3 N 2 and W 2 N 3 treatments were maintained at a higher level and the MDA content was lo-wer compared with other treatments despite the fact that there were no significant difference among these three treatments, which indicated that the interactive effects of water and controlled release urea had an important role in maintaining the function of ear leaf, delaying the leaf senescence, and was beneficial to the photosynthates production and obtaining higher yield of summer maize. Integrating the yield, LAI, chlorophyll content, various protective enzymes activity, MDA and soluble protein content, controlled release urea application rate of 225 kg N·hm -2 was the best treatment as the soil moisture content was (75±5)% of field capacity. Continuous increase in the nitrogen application could not enhance the activities of protective enzymes, oppositely, it could cause the decline of protective enzymes activities and the increase of MDA content rapidly and speed up plants translation to senescence, which was not conductive to the efficient use of nitrogen. We suggested that coupling controlled release urea application rate of 300 kg N·hm -2 with soil moisture content of (55±5)% of field capacity was optimum.
Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong
2016-01-01
This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade’s soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade’s temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors. PMID:27294935
Practical Considerations of Moisture in Baled Biomass Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Smith; Ian J. Bonner; Kevin L. Kenney
2013-01-01
Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover andmore » energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.« less
Nimmo, J.R.; Rubin, J.; Hammermeister, D.P.
1987-01-01
A method has been developed to establish steady state flow of water in an unsaturated soil sample spinning in a centrifuge. Theoretical analysis predicts moisture conditions in the sample that depend strongly on soil type and certain operating parameters. For Oakley sand, measurements of flux, water content, and matric potential during and after centrifugation verify that steady state flow can be achieved. Experiments have confirmed the theoretical prediction of a nearly uniform moisture distribution for this medium and have demonstrated that the flow can be effectively one-dimensional. The method was used for steady state measurements of hydraulic conductivity K for relatively dry soil, giving values as low as 7.6 × 10−11 m/s with data obtained in a few hours. Darcy's law was tested by measuring K for different centrifugal driving forces but with the same water content. For the sand at a bulk density of 1.82 Mg/m3 and 27% saturation, results were consistent with Darcy's law for K equal to 5.22 × 10−10 m/s and forces ranging from 216 to 1650 times normal gravity.
Drying performance of fermented cassava (fercaf) using a convective multiple flash dryer
NASA Astrophysics Data System (ADS)
Handojo, Lienda A.; Zefanya, Samuel; Christanto, Yohanes
2017-05-01
Fermented cassava (fercaf) is a tropical versatile carbohydrate source flour which is produced by modifying the characteristics of cassava. Drying process is one of the processes that could influence the quality of fercaf. In general, for food application, convective and vacuum drying were used, however recently another advanced method using combination of both convective and vacuum, i.e. convective multiple flash drying (CMFD), was proposed. This method is conducted by repeating cycles of convective and vacuum drying in intermittent manner. Cassava chips with thickness of 0.1-0.2 cm were fermented for 24 hours at room condition. Then, the drying process was conducted by using 3 techniques, i.e. convective, vacuum, and combined method (CMFD), with operation temperatures between 50 and 70°C for 10 hours or until fermented cassava reached a moisture content of less than 20%. The study shows that CMFD was the fastest drying method with only 5-6 hours period compared to 8-10 hours using vacuum and more than 10 hours using convective method. CMFD also produces harder fercaf chips than those of vacuum and convective methods. Moreover, this research also proves that the operating pressure and temperature influence the moisture content.
NASA Technical Reports Server (NTRS)
Tsegaye, T.; Coleman, T.; Tadesse, W.; Rajbhandari, N.; Senwo, Z.; Crosson, W.; Surrency, J.
1998-01-01
Understanding the spatial and temporal distribution of soil moisture near the soil surface is important to relate ground truth data to remotely sensed data using an electronically scanned thinned array radiometer (ESTAR). The research was conducted at the A-ARM EF site in the Little Washita Watershed in Chickasha Oklahoma. Soil moisture was measured on a 100 x 100-m grid on a quarter section (0.8 km by 0.8 km) size field where the DOE A-ARM SWATS is located. This site has several drainage channels and small ponds. The site is under four different land use practices, namely active pastureland, non-grazed pastureland covered with thick grass, forest area covered with trees, and a single residential area. Soil moisture was measured with a Time Domain Reflectometry (TDR) Delta-T 6-cm theta-probe and gravimetric soil moisture (GSM) technique for the top 6 cm of the soil depth. A fourth order polynomial equation was fitted to each probe calibration curve. The correlation between TDR and GSM measurement technique ranges from 0.81 to 0.91. Comparison of the spatial and temporal distribution of soil moisture measured by the TDR and GSM techniques showed very strong similarities. Such TDR probes can be used successfully to replace the GSM techniques to measure soil moisture content rapidly and accurately with site specific calibration.
Peter R. Robichaud; D. S. Gasvoda; Roger D. Hungerford; J. Bilskie; Louise E. Ashmun; J. Reardon
2004-01-01
Duff water content is an important consideration for fire managers when determining favourable timing for prescribed fire ignition. The duff consumption during burning depends largely on the duff water content at the time of ignition. A portable duff moisture meter was developed for real-time water content measurements of nonhomogenous material such as forest duff....
NASA Astrophysics Data System (ADS)
Stern, C.; Pavao-Zuckerman, M.
2014-12-01
Rain basins have been an increasingly popular Green Infrastructure (GI) solution to the redistribution of water flow caused by urbanization. This study was conducted to examine how different approaches to basin design, specifically mulching (gravel vs. compost and gravel), influence the water availability of rain basins and the effects this has on the soil microbial activity of the basins. Soil microbes are a driving force of biogeochemical process and may impact the carbon and nitrogen dynamics of rain basin GI. In this study we sampled 12 different residential-scale rain basins, differing in design established at Biosphere 2, Arizona in 2013. Soil samples and measurements were collected before and after the onset of the monsoon season in 2014 to determine how the design of basins mediates the transition from dry to wet conditions. Soil abiotic factors were measured, such as moisture content, soil organic matter (SOM) content, texture and pH, and were related to the microbial biomass size within the basins. Field and lab potential N-mineralization and soil respiration were measured to determine how basin design influences microbial activity and N dynamics. We found that pre-monsoon basins with compost had higher moisture contents and that there was a positive correlation between the moisture content and the soil microbial biomass size of the basins. Pre-monsoon data also suggests that N-mineralization rates for basins with compost were higher than those with only gravel. These design influences on basin-scale biogeochemical dynamics and nitrogen retention may have important implications for urban biogeochemistry at neighborhood and watershed scales.
Effects of moisture content on wind erosion thresholds of biochar
NASA Astrophysics Data System (ADS)
Silva, F. C.; Borrego, C.; Keizer, J. J.; Amorim, J. H.; Verheijen, F. G. A.
2015-12-01
Biochar, i.e. pyrolysed biomass, as a soil conditioner is gaining increasing attention in research and industry, with guidelines and certifications being developed for biochar production, storage and handling, as well as for application to soils. Adding water to biochar aims to reduce its susceptibility to become air-borne during and after the application to soils, thereby preventing, amongst others, human health issues from inhalation. The Bagnold model has previously been modified to explain the threshold friction velocity of coal particles at different moisture contents, by adding an adhesive effect. However, it is unknown if this model also works for biochar particles. We measured the threshold friction velocities of a range of biochar particles (woody feedstock) under a range of moisture contents by using a wind tunnel, and tested the performance of the modified Bagnold model. Results showed that the threshold friction velocity can be significantly increased by keeping the gravimetric moisture content at or above 15% to promote adhesive effects between the small particles. For the specific biochar of this study, the modified Bagnold model accurately estimated threshold friction velocities of biochar particles up to moisture contents of 10%.
Zhang, Siran; Kim, Nayeon; Yokoyama, Wallace; Kim, Yookyung
2018-03-15
Yuba is the skin formed at the surface during the heating of soymilk. The 3rd, 7th, and 11th films were evaluated for properties at different RH. At 39% RH, the 11th film had the lowest moisture, while the 3rd film had the highest moisture. However, at 75% RH, reverse moisture results were obtained. The tensile strengths of the 3rd and 11th films were highest at 15% moisture, whereas the tensile strength of the 7th film was highest at 25% moisture. Elongation of the 3rd (127%) and 11th (85%) films were highest at 25% moisture. The light transmittance of the films was low and opaque at 5% moisture. The films were transparent at 23%-28% moisture, but became opaque as the moisture increased. The films at 39% RH (ΔH, 113-203J/g) had higher thermal stability than those at 87% RH (ΔH, 315-493J/g). Moisture content markedly changed the yuba film properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Properties of different aged jicama (Pachyrhizus Erozus) plants
NASA Astrophysics Data System (ADS)
Nursandi, F.; Machmudi, M.; Santoso, U.; Indratmi, D.
2017-07-01
Jicama crop potential is very large, the tuber is used as a fresh fruit, ice mix fruit, salad, and can be made into flour, starch and inulin. The nutritional content of yam tubers depends on the age of the harvest, while farmers harvest jicama tubers at the age varying between 4-6 months. The research objective is to analyze the content of proximate fresh tubers and three kinds of flour (flour, starch and starch dregs) by harvesting different age plants. The study was conducted in Malang at a height of 560 m above sea level. Planting was done using plastic mulch with a spacing of 80 cm × 20 cm. Research using complete Randomized block Design with one factor harvesting consisting of 16, 18, 20 and 22 weeks after planting. Jicama tubers were harvested and analyzed the proximate for moisture, ash, fat, protein and carbohydrates in the fresh tubers, flour, starch and jicama flour dregs. The results showed that the late harvest resulted in moisture content, ash content, fiber and fat increase while the protein and carbohydrate decreased. The content of carbohydrates in the flour, starch and starch dregs was almost the same at different harvest time. The protein content of the flour is from 4.22 to 5.87%; while protein content of starch and protein content flour dregs is from 1.05 to 1.90% and 3.95 to 4.84%. Flour fiber content increased with increasing age of plants, while the fiber content of starch decreased but the dregs flour fiber content is almost the same
Boreal Forest Permafrost Sensitivity Ecotypes to changes in Snow Depth and Soil Moisture
NASA Astrophysics Data System (ADS)
Dabbs, A.; Romanovsky, V. E.; Kholodov, A. L.
2017-12-01
Changes in the global climate, pronounced especially in polar regions due to their accelerated warming, are expected by many global climate models to have large impacts on the moisture budget throughout the world. Permafrost extent and the soil temperature regime are both strongly dependent on soil moisture and snow depth because of their immense effects on the thermal properties of the soil column and surface energy balance respectively. To assess how the ground thermal regime at various ecotypes may react to a change in the moisture budget, we performed a sensitivity analysis using the Geophysical Institute Permafrost Laboratory model, which simulates subsurface temperature dynamics by solving a one-dimensional nonlinear heat equation with phase change. We used snow depth and air temperature data from the Fairbanks International Airport meteorological station as forcing for this sensitivity analysis. We looked at five different ecotypes within the boreal forest region of Alaska: mixed, deciduous and black forests, willow shrubs and tundra. As a result of this analysis, we found that ecotypes with higher soil moisture contents, such as willow shrubs, are most sensitive to changes in snow depth due to the larger amount of latent heat trapped underneath the snow during the freeze up of active layer. In addition, soil within these ecotypes has higher thermal conductivity due to high saturation degree allowing for deeper seasonal freezing. Also, we found that permafrost temperatures were most sensitive to changes in soil moisture in ecotypes that were not completely saturated such as boreal forest. These ecotypes lacked complete saturation because of thick organic layers that have very high porosities or partially drained mineral soils. Contrarily, tundra had very little response to changes in soil moisture due to its thin organic layer and almost completely saturated soil column. This difference arises due to the disparity between the frozen and unfrozen thermal conductivities of the soil. In highly saturated soils, the frozen thermal conductivity of the soil can be more than double that of the unfrozen thermal conductivity while in dryer soils that ratio reduces down to less than 1.5. This difference allows the seasonal freezing to penetrate quicker and deeper causing even more latent heat to be released and trapped.
Brahma, Sandrayee; Weier, Steven A; Rose, Devin J
2017-07-01
Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl
2015-04-01
The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of
Changes in protein and starch digestibility in sorghum flour during heat-moisture treatments.
Vu, Thanh-Hien; Bean, Scott; Hsieh, Chao-Feng; Shi, Yong-Cheng
2017-11-01
Heat-moisture treatment (HMT) has been used to modify properties of sorghum starches. However, information is limited on the effects of HMT on the digestibility of starch and the concurrent changes in protein in sorghum flour. The objectives of this research were to identify heat-moisture conditions to increase the resistant starch (RS) content of sorghum flour and investigate changes in sorghum proteins and starch structure. Sorghum flours with different moisture contents (0, 125, 200, and 300 g kg -1 w.b.) were heated at three temperatures (100, 120 and 140 °C) and times (1, 2 and 4 h). HMT of sorghum flour increased its RS level. The flour treated at 200 g kg -1 moisture and 100 °C for 4 h had a high RS content (221 g kg -1 vs. 56 g kg -1 for the untreated flour). Starch was not gelatinized when sorghum flours heated at moisture content of 200 g kg -1 or below. Sorghum protein digestibility and solubility decreased during HMT. The increase in RS of sorghum flour upon HMT was attributed to enhanced amylose-lipid complexes and heat induced structural changes in its protein fraction. HMT can be used to increase RS content in sorghum flour without gelatinizing its starch, thereby providing sorghum flour with unique food applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Moisture-strength-constructability guidelines for subgrade foundation soils found in Indiana.
DOT National Transportation Integrated Search
2016-09-01
Soil moisture is an important indicator of constructability in the field. Construction activities become difficult when the soil moisture content is excessive, especially in fine-grained soils. Change orders caused by excessive soil moisture during c...
Moisture parameters and fungal communities associated with gypsum drywall in buildings.
Dedesko, Sandra; Siegel, Jeffrey A
2015-12-08
Uncontrolled excess moisture in buildings is a common problem that can lead to changes in fungal communities. In buildings, moisture parameters can be classified by location and include assessments of moisture in the air, at a surface, or within a material. These parameters are not equivalent in dynamic indoor environments, which makes moisture-induced fungal growth in buildings a complex occurrence. In order to determine the circumstances that lead to such growth, it is essential to have a thorough understanding of in situ moisture measurement, the influence of building factors on moisture parameters, and the levels of these moisture parameters that lead to indoor fungal growth. Currently, there are disagreements in the literature on this topic. A literature review was conducted specifically on moisture-induced fungal growth on gypsum drywall. This review revealed that there is no consistent measurement approach used to characterize moisture in laboratory and field studies, with relative humidity measurements being most common. Additionally, many studies identify a critical moisture value, below which fungal growth will not occur. The values defined by relative humidity encompassed the largest range, while those defined by moisture content exhibited the highest variation. Critical values defined by equilibrium relative humidity were most consistent, and this is likely due to equilibrium relative humidity being the most relevant moisture parameter to microbial growth, since it is a reasonable measure of moisture available at surfaces, where fungi often proliferate. Several sources concur that surface moisture, particularly liquid water, is the prominent factor influencing microbial changes and that moisture in the air and within a material are of lesser importance. However, even if surface moisture is assessed, a single critical moisture level to prevent fungal growth cannot be defined, due to a number of factors, including variations in fungal genera and/or species, temperature, and nutrient availability. Despite these complexities, meaningful measurements can still be made to inform fungal growth by making localised, long-term, and continuous measurements of surface moisture. Such an approach will capture variations in a material's surface moisture, which could provide insight on a number of conditions that could lead to fungal proliferation.
Porous media matric potential and water content measurements during parabolic flight
NASA Technical Reports Server (NTRS)
Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani
2005-01-01
Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.
Impact of rainfall on the moisture content of large woody fuels
Helen H. Mohr; Thomas A. Waldrop
2013-01-01
This unreplicated case study evaluates the impact of rainfall on large woody fuels over time. We know that one rainfall event may decrease the Keetch-Byram Drought Index, but this study shows no real increase in fuel moisture in 1,000- hour fuels after just one rainfall. Several rain events over time are required for the moisture content of large woody fuels to...
Determining seed moisture in Quercus
F. T. Bonner
1974-01-01
The air-oven method with drying times 7 to 8 hours shorter than those now prescribed in the ISTA rules proved adequate for determining moisture contents in acorns of several North American oaks. Schedules of 8 hours at 105°C for Quercus muehlenbergii and 9 hours at 105°C for Q.shumardii and Q.nigra gave moisture contents within three percentage points of those obtained...
Cryopreservation of lipid-rich seeds: effect of moisture content and cooling rate on germination.
González-Benito, E M; Pérez-García, F
2001-01-01
The effect of fast and slow cooling on germination of seeds from two Brassicaceae species (Eruca vesicaria (L.) Cav., Brassica napus L. var. oleifera (Moench) DC cv. Bingo) and cypselas from three Compositae species (Onopordum nervosum Boiss., Onopordum acanthium L., Helianthus annuus L. cv. Viky) at different moisture contents was studied. Seed lipid content (dry weight basis) ranged from 15% (O. nervosum) to 41% (H. annuus). For each species, seeds with four moisture contents were cryopreserved either by direct immersion in liquid nitrogen or by previous cooling at 10 degrees C/min from room temperature to -50 degrees C. In three species (E. vesicaria, B. napus, and H. annuus) germination of air-dried (6.2-8.9% moisture content) seeds cooled by direct immersion in liquid nitrogen was not significantly different from germination of control seeds (air-dried, non-cooled). In the two Onorpordum species the best response among cooling treatments was observed when air-dried seeds were slowly cooled.
Palacios-Cabrera, Hector A; Menezes, Hilary C; Iamanaka, Beatriz T; Canepa, Frederico; Teixeira, Aldir A; Carvalhaes, Nelson; Santi, Domenico; Leme, Plinio T Z; Yotsuyanagi, Katumi; Taniwaki, Marta H
2007-01-01
Changes in temperature, relative humidity, and moisture content of green coffee beans were monitored during transportation of coffee from Brazil to Italy. Six containers (three conventional and three prototype) were stowed in three different places (hold, first floor, and deck) on the ship. Each prototype was located next to a conventional container. The moisture content of the coffee in the container located on the first floor was less affected by environmental variations (0.7%) than that in the hold and on the deck. Coffee located in the hold showed the highest variation in moisture content (3%); in addition, the container showed visible condensation. Coffee transported on the deck showed an intermediary variation in moisture (2%), and there was no visible condensation. The variation in coffee moisture content of the prototype containers was similar to that of the conventional ones, especially in the top layers of coffee bags (2 to 3%), while the increase in water activity was 0.70. This suggests that diffusion of moisture occurs very slowly inside the cargo and that there are thus sufficient time and conditions for fungal growth. The regions of the container near the wall and ceiling are susceptible to condensation since they are close to the headspace with its high relative humidity. Ochratoxin A production occurred in coffee located at the top of the container on the deck and in the wet bags from the hold (those found to be wet on opening the containers at the final destination).
Electrical methods of determining soil moisture content
NASA Technical Reports Server (NTRS)
Silva, L. F.; Schultz, F. V.; Zalusky, J. T.
1975-01-01
The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.
Preliminary assestment of lint cotton water content in gin-drying temperature studies
USDA-ARS?s Scientific Manuscript database
Prior studies to measure total water (free and bound) in lint cotton by Karl Fischer Titration showed the method is more accurate and precise than moisture content by standard oven drying. The objective of the current study was to compare the moisture and total water contents from five cultivars de...
DOT National Transportation Integrated Search
2004-07-01
The objectives of this study were to evaluate the effects of soil density, moisture content, fiber content, and confining pressure on the shear strength of the clayey-fiber matrix, and of soil moisture content and confining pressure on the interface ...
Petrović, Jovana; Rakić, Dušan; Fišteš, Aleksandar; Pajin, Biljana; Lončarević, Ivana; Tomović, Vladimir; Zarić, Danica
2017-10-01
The introduction of agro-food industry by-products rich in bioactive compounds represents major challenge in food industry sector. The influence of wheat germ particle size (<150 µm, 150-1000 µm, and 800-2000 µm), wheat germ content (5, 10, and 15%), and dough moisture content (20, 22, and 24%) on chemical, textural, and sensory characteristics of cookies was investigated using the Box-Behnken experimental design. The substitution of wheat flour with wheat germ increased the protein, fat, mineral, and fiber content of the cookies. The particle size of wheat germ affected the textural properties of cookies. As the particle size of wheat germ increased, the hardness of cookies decreased. The color of the cookie was most influenced by the interaction of dough moisture content and wheat germ particle size. Wheat germ level up to 15% had no significant effect on the sensory characteristics of cookies. A suitable combination of defatted wheat germ level, its particle size, and dough moisture content can improve the nutritional value of cookies, without causing a negative effect on the cookies' sensory characteristics.
Instrumentation for sensing moisture content of material using a transient thermal pulse
NASA Technical Reports Server (NTRS)
Yang, L. C. (Inventor)
1981-01-01
Instrumentation is developed for sensing moisture content of material using a transient thermal pulse and is comprised of a sensing probe having a sensing element in the form of a ribbon excited by a constant current pulse to increase the temperature, and therefore the resistance, of the ribbon linearly. Moisture in web material limits the increase of temperature during the pulse in proportion to the moisture content. This increase in temperature produces a proportional increase in resistivity which is measured with a Wheatsone bridge as a change in voltage displayed by a measurement display unit. The probe is glued in a shallow groove of a lucite bar and connected to copper pins embedded in the bar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeller, E.; Dobmann, G.; Kuhn, W.
Initial results are presented on the application of NMR techniques to prepregs in order to characterize the crosslink state under exposure to room and elevated (50 C) temperature. The experiments were conducted with a MSL-400 Bruker NMR spectrometer and microimaging system which works at 400 MHz. Aside from the sensitive measurement of the cross-link density there is also the potential to separate the influence of moisture content as a further parameter contributing to the aging process. It is shown that these experimental results correlate with results of destructive tests and document the potential of NMR as a NDT tool. Anmore » NMR-image of the moisture distribution in a glassfiber reinforced expoxy resin sample is shown. 17 refs.« less
Grain quality inspection system
NASA Technical Reports Server (NTRS)
Flood, C. A., Jr.; Singletow, D. P.; James, S. N.
1979-01-01
A review of grain quality indicators and measurement methods was conducted in order to assess the feasibility of using remote sensing technology to develop a continuous monitoring system for use during grain transfer operations. Most detection methods were found to be too slow or too expensive to be incorporated into the normal inspection procedure of a grain elevator on a continuous basis. Two indicators, moisture content and broken corn and foreign material, show potential for automation and are of an economic value. A microprocessor based system which utilizes commercially available electronic moisture meter was developed and tested. A method for automating BCFM measurement is described. A complete system description is presented along with performance test results.
Soil moisture sensors for continuous monitoring
Amer, Saud A.; Keefer, T. O.; Weltz, M.A.; Goodrich, David C.; Bach, Leslie
1995-01-01
Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (>45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors. (KEY TERMS: soil moisture; soil water; infiltration; instrumentation; soil moisture sensors.)
Effects of relaxation of gluten network on rehydration kinetics of pasta.
Ogawa, Takenobu; Hasegawa, Ayako; Adachi, Shuji
2014-01-01
The aim of this study was to investigate the effects of the relaxation of the gluten network on pasta rehydration kinetics. The moisture content of pasta, under conditions where the effects of the diffusion of water on the moisture content were negligible, was estimated by extrapolating the average moisture content of pasta of various diameters to 0 mm. The moisture content of imaginary, infinitely thin pasta did not reach equilibrium even after 1 h of rehydration. The rehydration of pasta made of only gluten was also measured. The rate constants estimated by the Long and Richman equation for both the pasta indicated that the rehydration kinetics of infinitely thin pasta were similar to those of gluten pasta. These results suggest that the swelling of starch by fast gelatinization was restricted by the honeycomb structural network of gluten and the relaxation of the gluten network controlled pasta rehydration kinetics.
Impact of moisture content in AAC on its heat insulation properties
NASA Astrophysics Data System (ADS)
Rubene, S.; Vilnitis, M.
2017-10-01
One of the most popular trends in construction industry is sustainable construction. Therefore, application of construction materials with high insulation characteristics has significantly increased during the past decade. Requirements for application of construction materials with high insulation parameters are required not only by means of energy saving and idea of sustainable construction but also by legislative requirements. Autoclaved aerated concrete (AAC) is a load bearing construction material, which has high heat insulation parameters. However, if the AAC masonry construction has high moisture content the heat insulation properties of the material decrease significantly. This fact lead to the necessity for the on-site control of moisture content in AAC in order to avoid inconsistency between the designed and actual thermal resistivity values of external delimiting constructions. Research of the impact of moisture content in AAC on its heat insulation properties has been presented in this paper.
A model of the CO2 exchanges between biosphere and atmosphere in the tundra
NASA Technical Reports Server (NTRS)
Labgaa, Rachid R.; Gautier, Catherine
1992-01-01
A physical model of the soil thermal regime in a permafrost terrain has been developed and validated with soil temperature measurements at Barrow, Alaska. The model calculates daily soil temperatures as a function of depth and average moisture contents of the organic and mineral layers using a set of five climatic variables, i.e., air temperature, precipitation, cloudiness, wind speed, and relative humidity. The model is not only designed to study the impact of climate change on the soil temperature and moisture regime, but also to provide the input to a decomposition and net primary production model. In this context, it is well known that CO2 exchanges between the terrestrial biosphere and the atmosphere are driven by soil temperature through decomposition of soil organic matter and root respiration. However, in tundra ecosystems, net CO2 exchange is extremely sensitive to soil moisture content; therefore it is necessary to predict variations in soil moisture in order to assess the impact of climate change on carbon fluxes. To this end, the present model includes the representation of the soil moisture response to changes in climatic conditions. The results presented in the foregoing demonstrate that large errors in soil temperature and permafrost depth estimates arise from neglecting the dependence of the soil thermal regime on soil moisture contents. Permafrost terrain is an example of a situation where soil moisture and temperature are particularly interrelated: drainage conditions improve when the depth of the permafrost increases; a decrease in soil moisture content leads to a decrease in the latent heat required for the phase transition so that the heat penetrates faster and deeper, and the maximum depth of thaw increases; and as excepted, soil thermal coefficients increase with moisture.
Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun
2016-06-01
Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.
USDA-ARS?s Scientific Manuscript database
NIR spectroscopy was used to measure the moisture concentration of wood pellets. Pellets were conditioned to various moisture levels between 0.63and 14.16percent (wet basis) and the moisture concentration was verified using a standard oven method. Samples from the various moisture levels were separa...
Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R
2005-10-01
Effect of variation in the ambient moisture levels on the compaction behavior of a 10% acetaminophen (APAP) powder blend in microcrystalline cellulose (MCC) powder was studied by comparing the physical and mechanical properties of ribbons prepared by roller compaction with those of simulated ribbons, i.e., tablets prepared under uni-axial compression. Relative density, moisture content, tensile strength, and Young's modulus were used as key compact properties for comparison. Moisture was found to facilitate the particle rearrangement of both, the APAP and the MCC particles, as well as the deformation of the MCC particles. The tensile strength of the simulated ribbons also showed an increase with increasing moisture content. An interesting observation was that the tensile strength of the roller compacted samples first increased and then decreased with increasing moisture content. Variation in the ambient moisture during roller compaction was also found to influence the characteristics of tablets produced from the granules obtained post-milling the ribbons. A method to study this influence is also reported. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association
Optimum moisture levels for biodegradation of mortality composting envelope materials.
Ahn, H K; Richard, T L; Glanville, T D
2008-01-01
Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.
Near-infrared reflectance models for the rapid prediction of quality of brewing raw materials.
Marte, Luisa; Belloni, Paolo; Genorini, Emiliano; Sileoni, Valeria; Perretti, Giuseppe; Montanari, Luigi; Marconi, Ombretta
2009-01-28
Calibration models for quickly and reliably predicting moisture content and total nitrogen, both "as is" and "dry matter" on malt, as well as moisture content and total lipids, both "as is" and "dry matter", on maize by means of near-infrared (NIR) spectroscopy were developed. The FT-NIR spectra recorded on the finely ground cereals were correlated to the analytical data by means of the multivariate PLS algorithm. In particular, these models were developed on the raw materials, which are used by the main Italian brewing industries. Validation was carried out both by means of cross-validation and test set validation. Regression coefficients (R(2)) were higher than 97 for both malt and maize moisture content and higher than 85 and 88 for malt total nitrogen and maize total lipids, respectively. The RMSE values (both RMSECV and RMSEP) were lower than 0.1% m/m for both malt and maize moisture contents, whereas they ranged from 0.024 to 0.042% m/m for malt total nitrogen and from 0.042 to 0.055% m/m for maize total lipids. Repeatability was tested by taking into account more than one sample for each calibration and compared, when possible, to those of the standard methods. Repeatability (r(95)) ranged from 0.060 to 0.158% m/m and from 0.020 to 0.055% m/m for malt moisture and total nitrogen contents, respectively, and from 0.094 to 0.160% m/m and from 0.076 to 0.208% m/m for maize moisture and total lipids contents, respectively.
Chen, Z; Jiang, X
2017-06-01
The thermal resistance of desiccation-adapted Salmonella Senftenberg 775/W was compared with those of indigenous enterococci and total aerobic bacteria in poultry litter. Aged broiler litter and composted turkey litter with 20, 30, 40 and 50% moisture contents were inoculated with desiccation-adapted Salm. Senftenberg 775/W, and then heat-treated at 75 and 85°C. Compared to total aerobic bacteria, there were better correlations between mean log reductions of desiccation-adapted Salm. Senftenberg 775/W and indigenous enterococci in broiler litter samples with 20, 30, 40 and 50% moisture contents at 75°C (R 2 > 0·91), and 20, 30 and 40% moisture contents at 85°C (R 2 > 0·87). The mean log reductions of Salm. Senftenberg 775/W were better correlated with those of indigenous enterococci in turkey litter samples with 20, 30, 40 and 50% moisture contents at 75°C (R 2 > 0·88), and 20 and 30% moisture contents at 85°C (R 2 = 0·83) than those of total aerobic bacteria, which had a better correlation in turkey litter sample with 40% (R 2 = 0·98) moisture content at 85°C. Indigenous enterococci may be used to validate the thermal processing of poultry litter, as it predicts the survival behaviour of Salmonella under some treatment conditions. This study provides some scientific data for poultry litter processors when validating the effectiveness of thermal processing. © 2017 The Society for Applied Microbiology.
Cook, Isobel A; Ward, Kevin R
2011-01-01
Regulatory authorities require proof that lyophilization (freeze drying) cycles have been developed logically and demonstrate uniformity. One measure of uniformity can be consistency of residual water content throughout a batch. In primary drying, heat transfer is effected by gaseous convection and conduction as well as the degree of shelf contact and evenness of heat applied; therefore residual water can be affected by container location, degree of container/tray/shelf contact, radiative heating, packing density, product formulation, and the cycle conditions themselves. In this study we have used frequency modulation spectroscopy (FMS) to create a map of headspace moisture (HSM) for 100% of vials within a number of freeze-dried batches. Karl Fischer (KF)/HSM correlations were investigated in parallel with the moisture mapping studies. A clear, linear relationship was observed between HSM and KF values for vials containing freeze-dried sucrose, implying a relatively straightforward interaction between water and the lyophilized cake for this material. Mannitol demonstrated a more complex correlation, with the interaction of different crystalline forms giving important information on the uniformity of the material produced. It was observed that annealing had a significant impact on the importance of heat transfer by conduction for vials in direct and non-direct contact with the shelf. Moisture mapping of all vials within the freeze dryer enabled further information to be obtained on the relationship of the formulation, process conditions, and equipment geometry on the intra-batch variability in HSM level. The ability of FMS to allow 100% inspection could mean that this method could play an important part in process validation and quality assurance. Lyophilization, also known as freeze drying, is a relatively old technique that has been used in its most basic form for thousands of years (e.g., preservation of fish and meat products). In its more advanced form it is used to preserve many medical products; for example, many vaccines are not stable in solution and therefore need to be dried to allow long-term storage. In order to produce a freeze-dried vaccine, a complex understanding of the processes and critical temperatures is required. Once these have been understood, the material is dried to give relatively low moisture content (e.g., 2% w/w.) This low moisture content is critical for the long-term stability of the product, allowing doctors/chemists to store these goods on site for use when required. This research paper provides further information on a technique called frequency modulation spectroscopy (FMS) that has been used to map the moisture variation across samples within a freeze dryer, enabling us to increase our understanding of the role various processing conditions play on the relationship between the product and water. It has demonstrated its potential application for 100% batch monitoring and the validation of a system or assessment of changes made. This method could assist in improving quality assurance and ultimately the final product that reaches the consumer.
NASA Astrophysics Data System (ADS)
Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio
2015-04-01
The comprehension of the hydrological processes involving plant root dynamics is crucial for implementing water saving measures in agriculture. This is particular urgent in areas, like those Mediterranean, characterized by scarce water availability. The study of root water dynamics should not be separated from a more general analysis of the mass and energy fluxes transferred in the soil-plant-atmosphere continuum. In our study, in order to carry this inclusive approach, minimal invasive 3D time-lapse electrical resistivity tomography (ERT) for soil moisture estimation was combined with plant transpiration fluxes directly measured with Sap Flow (SF) techniques and Eddy Covariance methods, and volumetric soil moisture measurements by TDR probes. The main objective of this inclusive approach was to accurately define root-zone water dynamics and individuate the root-area effectively active for water and nutrient uptake process. The monitoring was carried out in Eastern Sicily (south Italy) in summers 2013 and 2014, within an experimental orange orchard farm. During the first year of experiment (October 2013), ERT measurements were carried out around the pertinent volume of one fully irrigated tree, characterized by a vegetation ground cover of 70%; in the second year (June 2014), ERT monitoring was conducted considering a cutting plant, thus to evaluate soil water dynamics without the significant plant transpiration contribution. In order to explore the hydrological dynamics of the root zone volume surrounded by the monitored tree, the resistivity data acquired during the ERT monitoring were converted into soil moisture content distribution by a laboratory calibration based on the soil electrical properties as a function of moisture content and pore water electrical conductivity. By using ERT data in conjunction with the agro-meteorological information (i.e. irrigation rates, rainfall, evapotranspiration by Eddy Covariance, transpiration by Sap Flow and soil moisture content by TRD) of the test area, a spatially distributed one-dimensional (1D) model that solves the Richards' equation was applied; in the model the van Genuchten parameters were obtained by laboratory analysis of soil water retention and soil permeability at saturation. Results of the 1D model were successfully compared with both ERT-based soil moisture dynamics and TDR measurements of soil moisture. The modelling allows to defining the soil volume interested by root water uptake process and its extent. In particular, this volume results significantly smaller (i.e. surface area of 1.75 m2, with 0.4 m cm thickness) than expected, considering the design of the drip irrigation scheme adopted in the farm. The obtained results confirm that ERT is a technique that (i) can provide a lot of information on small scale and vegetation related processes; (ii) the integration with physical modelling is essential to capture the meaning of space-time signal changes; (iii) in the case of the orange orchard, this approach shows that about half of the irrigated water is wasted.
NASA Astrophysics Data System (ADS)
Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.
2017-12-01
Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local reality into account and to balance the economic and ecological benefits so that the ratio of artificial vegetation and natural restoration can be optimized to realize sustainability of vegetation restoration