Science.gov

Sample records for cone penetration tests

  1. Probabilistic liquefaction triggering based on the cone penetration test

    USGS Publications Warehouse

    Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Tokimatsu, K.

    2005-01-01

    Performance-based earthquake engineering requires a probabilistic treatment of potential failure modes in order to accurately quantify the overall stability of the system. This paper is a summary of the application portions of the probabilistic liquefaction triggering correlations proposed recently proposed by Moss and co-workers. To enable probabilistic treatment of liquefaction triggering, the variables comprising the seismic load and the liquefaction resistance were treated as inherently uncertain. Supporting data from an extensive Cone Penetration Test (CPT)-based liquefaction case history database were used to develop a probabilistic correlation. The methods used to measure the uncertainty of the load and resistance variables, how the interactions of these variables were treated using Bayesian updating, and how reliability analysis was applied to produce curves of equal probability of liquefaction are presented. The normalization for effective overburden stress, the magnitude correlated duration weighting factor, and the non-linear shear mass participation factor used are also discussed.

  2. Dynamic cone penetration tests in granular media: Determination of the tip's dynamic load-penetration curve

    NASA Astrophysics Data System (ADS)

    Escobar, E.; Benz, M.; Gourvès, R.; Breul, P.

    2013-06-01

    In this article a two-dimensional discrete numerical model, realized in PFC2D, is presented. This model is used in the dynamic penetration tests in a granular medium. Its objective being the validation of the measurement technique offered by Panda 3® (Benz et al. 2011) which is designed to calculate the tip's load-penetration curve for each impact in the soil where different parameters are used. To do so, we have compared the results obtained by calculation during the impacts to those measured directly in the model of a penetrometer through the installation of the gauges at the cone.

  3. Distinct element analyses of inclined cone penetration test in granular ground

    NASA Astrophysics Data System (ADS)

    Jiang, Mingjing; Dai, Yongsheng; Shen, Zhifu; Zhang, Ning

    2013-06-01

    This paper is to investigate the mechanism of inclined cone penetration test (CPT) using the numerical discrete element approach. A series of penetration tests with the penetrometer inclined at different angles (i.e., 30°, 45°, 60°, 75° and 90°) were numerically performed. The velocity fields, displacements of soils adjacent to the cone tip, rotation of the principal stresses and the averaged pure rotation rate (APR) are analyzed. Special focus is placed on the penetration mechanism and the effect of inclination angle on the tip resistance. The DEM results show that soils around the cone tip experience complex displacement paths as the penetration proceeds and exhibit characteristic velocity fields corresponding to three different failure mechanisms. The principal stresses near the cone tip undergo apparent rotation, accompanied by large APR which indicates evident particle rotation adjacent to the cone. The normalized tip resistance qN( = qc/σν0) decays with penetration depth in a decreasing rate. At the same penetration depth, qN decreases with the increasing of the inclination angle of penetrometer.

  4. Cone penetration and bevameter geotechnical tests in lunar regolith simulants: discrete element method analysis and experimentation

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A. V.; Johnson, J.; Duvoy, P.; Wilkinson, A.; Creager, C. M.

    2012-12-01

    For in situ resource utilization on the Moon, asteroids, Mars, or other space body it is necessary to be able to simulate the interaction of mobile platforms and excavation machines with the regolith for engineering design, planning, and operations. For accurate simulations, tools designed to measure regolith properties will need to be deployed and interpreted. Two such tools are the penetrometer, used to measure a soil strength index as a function of depth, and the bevameter, used to characterize regolith surface properties of strength, friction and sinkage. The penetrometer interrogates regolith properties from the surface to a depth limited only by the capabilities of the instrument to penetrate the regolith while a bevameter interrogates only the upper few centimeters needed to describe a mobility platform's traction and sinkage. Interpretation of penetrometer and bevameter data can be difficult, especially on low gravity objects. We use the discrete element method (DEM) model to simulate the large regolith deformations and failures associated with the tests to determine regolith properties. The DEM simulates granular material behavior using large aggregates of distinct particles. Realistic physics of particle-particle interaction introduces many granular specific phenomena such as interlocking and force chain formation that cannot be represented using continuum methods. In this work, experiments using a cone penetrometer test (CPT) and bevameter on lunar simulants JSC-1A and GRC-1 were performed at NASA Glenn Research Center. These tests were used to validate the physics in the COUPi DEM model. COUPi is a general physical DEM code being developed to model machine/regolith interactions as part of a NASA Lunar Science Institute sponsored project on excavation and mobility modeling. The experimental results were used in this work to build an accurate model to simulate the lunar regolith. The CPT consists of driving an instrumented cone with opening angle of 60

  5. Cone penetration tests and soil borings at the Mason Road site in Green Valley, Solano County, California

    USGS Publications Warehouse

    Bennett, Michael J.; Noce, Thomas E.; Lienkaemper, James J.

    2011-01-01

    In support of a study to investigate the history of the Green Valley Fault, 13 cone penetration test soundings and 3 auger borings were made at the Mason Road site in Green Valley, Solano County, California. Three borings were made at or near two of the cone penetration test soundings. The soils are mostly clayey with a few sandy layers or lenses. Fine-grained soils range from low plasticity sandy lean clay to very plastic fat clay. Lack of stratigraphic correlation in the subsurface prevented us from determining whether any channels had been offset at this site. Because the soils are generally very clayey and few sand layers or lenses are loose, the liquefaction potential at the site is very low.

  6. Cone Penetration Testing, a new approach to quantify coastal-deltaic land subsidence by peat consolidation

    NASA Astrophysics Data System (ADS)

    Koster, Kay; Erkens, Gilles; Zwanenburg, Cor

    2016-04-01

    It is undisputed that land subsidence threatens coastal-deltaic lowlands all over the world. Any loss of elevation (on top of sea level rise) increases flood risk in these lowlands, and differential subsidence may cause damage to infrastructure and constructions. Many of these settings embed substantial amounts of peat, which is, due to its mechanically weak organic composition, one of the main drivers of subsidence. Peat is very susceptible to volume reduction by loading and drainage induced consolidation, which dissipates pore water, resulting in a tighter packing of the organic components. Often, the current state of consolidation of peat embedded within coastal-deltaic subsidence hotspots (e.g. Venice lagoon, Mississippi delta, San Joaquin delta, Kalimantan peatlands), is somewhere between its initial (natural) and maximum compressed stage. Quantifying the current state regarding peat volume loss, is of utmost importance to predict potential (near) future subsidence when draining or loading an area. The processes of subsidence often afflict large areas (>103 km2), thus demanding large datasets to assess the current state of the subsurface. In contrast to data describing the vertical motions of the actual surface (geodesy, satellite imagery), subsurface information applicable for subsidence analysis are often lacking in subsiding deltas. This calls for new initiatives to bridge that gap. Here we introduce Cone Penetration Testing (CPT) to quantify the amount of volume loss peat layers embedded within the Holland coastal plain (the Netherlands) experienced. CPT measures soil mechanical strength, and hundreds of thousands of CPTs are conducted each year on all continents. We analyzed 28 coupled CPT-borehole observations, and found strong empirical relations between volume loss and increased peat mechanical strength. The peat lost between ~20 - 95% of its initial thickness by dissipation of excess pore water. An increase in 0.1 - 0.4 MPa of peat strength is

  7. The cone penetration test and 2D imaging resistivity as tools to simulate the distribution of hydrocarbons in soil

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, M.; García, J. A.; Taller, G.; Polgár, D.; Bustos, E.; Plank, Z.

    2016-02-01

    The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.

  8. Cone Penetration Test and Soil Boring at the Bayside Groundwater Project Site in San Lorenzo, Alameda County, California

    USGS Publications Warehouse

    Bennett, Michael J.; Sneed, Michelle; Noce, Thomas E.; Tinsley, John C.

    2009-01-01

    were drilled at the BGP for the purpose of monitoring pore-fluid pressure changes and aquifer-system deformation. One 308-m deep borehole contains six piezometers, the other two boreholes are 182 and 299 m deep and contain a dual-stage extensometer. To investigate the physical properties of the sediments, two phases of subsurface exploration were conducted. In the first phase, a USGS drilling crew obtained numerous core samples, 5.8 cm in diameter by 1.5 m long. The samples were extracted between July 28, 2006, and August 5, 2006; nine samples were tested for this study at the USGS soils laboratory in Menlo Park, California. Phase two began on June 22, 2006, when a seismic cone penetration test (SCPT) sounding was made to a depth of 32.3 m. Additional field work was completed May 8, 2007, with a hollow-stem auger boring that took continuous 9.8-cm-diameter samples from the depth interval of 6.1 to 10.7 m to supplement poor recovery from the first phase of sampling. These samples were also tested in the soils laboratory at the USGS.

  9. Validation of impact penetrometer data by cone penetration testing and shallow seismic data within the regional geology of the Southern North Sea

    NASA Astrophysics Data System (ADS)

    Stephan, Sebastian; Kaul, Norbert; Villinger, Heinrich

    2015-06-01

    This study presents the assessment of total cone resistance from in situ deceleration measurements using the Lance Insertion Retardation meter (LIRmeter) in the Southern North Sea. The penetrometer is equipped with a measurement lance that is up to 6 m in length. The aim was to validate LIRmeter data interpretation within the regional geological context by comparison with static velocity cone penetration testing (CPT) and sub-bottom profiles. In total, 13 datasets were taken, in addition to preexisting hydroacoustical and static velocity CPT datasets. The dynamically acquired data were processed and compared to the reference static velocity data. The validation encourages the use of acceleration-based dynamic penetration tests, since a high degree of agreement was demonstrated between independently acquired dynamic and static cone resistance data. Moreover, the results reveal evidence of two successive formations with different geotechnical properties, consistent with existing knowledge on the regional setting. Additionally, there is novel indication of an incised glacial valley with muddy low-permeability sediments extending much further than reported to date, which would necessitate updating of older maps. The main advantage of penetrometer-based deceleration measurements lies in the robustness of the method, and the reliability of the sensors. However, penetration depth is, for dimensioning reasons, limited to the order of a few meters. Additionally, data processing includes the dependency of knowledge about the soil type to correct the dynamic data. These limitations can be satisfactorily outweighed by combination with reference data from static velocity tests, as demonstrated by integrating these data into a soil classification scheme.

  10. Task summary for cone penetrating testing sounding and soil and groundwater sampling Salmon Site, Lamar County, Mississippi

    SciTech Connect

    Not Available

    1994-10-01

    The Salmon Site (SS), located in Mississippi, was the site of two nuclear and two gas explosion testes conducted deep underground in the Tatum Salt Dome between 1964 and 1970. As a consequence radionuclides generated during the testing were released into the salt dome. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. US DOE is conducting a series of investigations as a part of the Remedial Investigation and Feasibility Study (under CERCLA) This report summarizes the cone penetrometer testing (CPT) and sampling program conducted in fall 1993, providing a description of the activities and a discussion of the results. The objectives of the CPT program were to determine subsurface conditions and stratification; determine the depth to the potentiometric surface; obtain soil samples from predetermined depths; obtain groundwater samples at predetermined depths.

  11. Experimental study of penetration-cavity expansion soil bioturbation models using miniature cone penetrometers

    NASA Astrophysics Data System (ADS)

    Ruiz, Siul; Or, Dani; Schymanski, Stan

    2015-04-01

    A recently developed model of soil penetration mechanics and energetics by earthworms and plant roots is based on analogy with cone penetration and cavity expansion. Model predicted resistive forces for different geometries were tested using miniature cone penetrometers at sizes compatible with burrowing earthworms and growing roots. Experiments using cones of different radii (1.0 to 2.5 mm) and different semi-apex angles (15-300) were conducted using an apparatus enabling insertion at constant (prescribed) rates while obtaining highly resolved penetration resistance force measurements. Penetration experiments used soils at different water contents where soil mechanical parameters were determined independently using Oedometer tests under confined and unconfined conditions. Measurements were compared with predictions by analytical expressions for earthworm or root burrowing mechanics. Model predictions for the insertion force as a function of cone geometry and soil mechanical properties were in excellent agreement with cone penetration measurements. The study provides the necessary experimental confirmation to support energetic estimates of bioturbation costs in terms of soil organic carbon consumption. The study provides a better understanding of the fundamental duality nature between penetration forces and stresses and the dependency on cone angle. The measurements suggest that friction plays a relatively minor role as confirmed by experiments using recessed cones (no soil-shaft friction). Differences in application of the model to plant roots and earthworms will be discussed.

  12. INFLUENCE OF CONSOLIDATION CHARACTERISTICS ON CONE PENETRATION RESISTANCE AND LIQUEFACTION RESISTANCE IN SILTY SOILS

    NASA Astrophysics Data System (ADS)

    Ecemis, N.; Thevanayagam, S.

    2009-12-01

    A unique correlation between liquefaction resistance and penetration resistance is not possible to justify without considering the effects of hydraulic conductivity, k, compressibility, mv, and coefficient of consolidation, ch on cone penetration resistance (Thevanayagam and Martin 2002). Therefore, CPT liquefaction screening chart revised to take into account the consolidation characteristics on penetration resistance. Recently, it has been observed that k and ch magnitudes vary between sand and sand-silt mixtures even evaluated at the same liquefaction resistance. The combined effects of penetration rate, v, cone diameter, d, and ch also influences the cone penetration resistance. Silt content affects the liquefaction resistance as well. Several numerical simulations performed by Thevanayagam and Ecemis in 2008 to explore the transition from undrained to drained conditions by varying the non-dimensional parameter T(=vd/ch) with a range of coefficient of consolidation for a single soil type, Ottawa sand-silt mix. Numerical simulation suggested the drained and undrained limits for T are respectively around 0.01 and 10. Tests on circular foundations reported by Finnie and Randolph (1994) suggested the limits of 0.01 and 30. Tests with a cylindrical T-bar penetrometer suggested narrower limits of 0.1 and 10 (House et al. 2001). Finally, the correlation between T, normalized cone resistance and cyclic resistance to liquefaction is proposed and compared with the current liquefaction screening method by CPT (Fig.1). Fig.1: Proposed & Current Liquefaction Screening Method

  13. Evaluation of offshore penetration tests at El Palito refinery, Venezuela

    SciTech Connect

    Rodriguez, J.I.; Simone, A.; Tichatscheck, C.; Boggess, R.

    1995-12-01

    Data from an offshore study in the western part of Venezuela are presented in terms of the penetration test data and liquefaction evaluation. Two types of penetration test were performed (SPT and DCPT) and the results of each are compared. This was made possible by the comparison testing performed at two different locations where the separation between boreholes with different penetration tests was small enough to allow direct comparison of the results. To the authors` knowledge, this is the first time that dynamic cone measurements have been made in an offshore environment. Comments in relation to the evaluation of liquefaction resistance based on the results of the offshore penetration testing are made.

  14. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  15. Cone Penetrometer N Factor Determination Testing Results

    SciTech Connect

    Follett, Jordan R.

    2014-03-05

    This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

  16. Penetration Test Modelling in a Coarse Granular Medium

    NASA Astrophysics Data System (ADS)

    Breul, P.; Benz, M.; Gourvès, R.; Saussine, G.

    2009-06-01

    Penetration test is a simple and useful test to characterize soils and granular materials. Several studies have shown the link between cone penetration resistance and density for a given material if the relation connecting these two parameters has been established beforehand. A granular materials bank currently including more than 35 granular materials has been developed to this end. Unfortunately, to be able to generalize and cover the broadest possible material range, it would be necessary to multiply the tests and the number of materials. Moreover in coarse granular media, it is necessary to carry out a large number of tests in order to achieve a reliable relation between density and cone resistance.Consequently, being able to model this test in a realistic way will enable increasing the number of tests on a material and carry out more precise parametric studies to evaluate the influence of any parameter on the test response. This article presents the work carried out to model a penetration test within a coarse granular medium. The penetrometer used is a light penetrometer with a 2 cm2 cone. The first part will present the experimental protocol developed with the material bank in order to establish the relation between cone resistance and material density. The results obtained on a coarse material of a railway ballast type will be presented. The second part will present the test modelling using discrete elements and parameter identification to obtain the relation found in the experimental tests and connecting cone resistance to material density.

  17. Geological interpretation of cone penetrometer tests in Norton Sound, Alaska

    USGS Publications Warehouse

    Hampton, M.A.; Lee, H.J.; Beard, R.M.

    1982-01-01

    In situ cone-penetrometer tests at 11 stations in Norton Sound, Alaska, complement previous studies of geologic processes and provide geotechnical data for an analysis of sediment response to loading. Assessment of the penetrometer records shows that various geologic factors influence penetration resistance. On the Yukon prodelta, penetration resistance increases with the level of storm wave or ice loading. In central and eastern Norton Sound, thermogenic and biogenic gas, as well as variations in sediment texture and composition, effect a wide range of resistance to penetration. ?? 1982 A. M. Dowden, Inc.

  18. Network Penetration Testing and Research

    NASA Technical Reports Server (NTRS)

    Murphy, Brandon F.

    2013-01-01

    This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised

  19. Interpretation of the lime column penetration test

    NASA Astrophysics Data System (ADS)

    Liyanapathirana, D. S.; Kelly, R. B.

    2010-06-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  20. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, Phillip W.; Stampfer, Joseph F.; Bradley, Orvil D.

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  1. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.

    1999-02-02

    A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.

  2. In-place HEPA filter penetration test

    SciTech Connect

    Bergman, W.; Wilson, kK.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical.

  3. In-place HEPA filter penetration test

    SciTech Connect

    Bergman, W.; Wilson, K.; Elliott, J.

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  4. Cone penetrometer acceptance test report

    SciTech Connect

    Boechler, G.N.

    1996-09-19

    This Acceptance Test Report (ATR) documents the results of acceptance test procedure WHC-SD-WM-ATR-151. Included in this report is a summary of the tests, the results and issues, the signature and sign- off ATP pages, and a summarized table of the specification vs. ATP section that satisfied the specification.

  5. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols.

  6. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols. PMID:25846360

  7. Universal framework for unmanned system penetration testing

    NASA Astrophysics Data System (ADS)

    Kobezak, Philip; Abbot-McCune, Sam; Tront, Joseph; Marchany, Randy; Wicks, Alfred

    2013-05-01

    Multiple industries, from defense to medical, are increasing their use of unmanned systems. Today, many of these systems are rapidly designed, tested, and deployed without adequate security testing. To aid the quick turnaround, commercially available subsystems and embedded components are often used. These components may introduce security vulnerabilities particularly if the designers do not fully understand their functionality and limitations. There is a need for thorough testing of unmanned systems for security vulnerabilities, which includes all subsystems. Using a penetration testing framework would help find these vulnerabilities across different unmanned systems applications. The framework should encompass all of the commonly implemented subsystems including, but not limited to, wireless networks, CAN buses, passive and active sensors, positioning receivers, and data storage devices. Potential attacks and vulnerabilities can be identified by looking at the unique characteristics of these subsystems. The framework will clearly outline the attack vectors as they relate to each subsystem. If any vulnerabilities exist, a mitigation plan can be developed prior to the completion of the design phase. Additionally, if the vulnerabilities are known in advance of deployment, monitoring can be added to the design to alert operators of any attempted or successful attacks. This proposed framework will help evaluate security risks quickly and consistently to ensure new unmanned systems are ready for deployment. Verifying that a new unmanned system has passed a comprehensive security evaluation will ensure greater confidence in its operational effectiveness.

  8. Optimization of pyrolysis properties using TGA and cone calorimeter test

    NASA Astrophysics Data System (ADS)

    Park, Won-Hee; Yoon, Kyung-Beom

    2013-04-01

    The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kinetic parameters used for deciding pyrolysis rate. A repulsive particle swarm optimization algorithm is used to obtain the pyrolysis-related properties. In the previous study all properties obtained only using a cone calorimeter but in this paper both the cone calorimeter and thermo gravimetric analysis (TGA) are used for precisely optimizing the pyrolysis properties. In the TGA test a very small mass is heated up and conduction and heat capacity in the specimen is negligible so kinetic parameters can first be optimized. Other pyrolysis-related properties such as virgin/char specific heat and conductivity and char density are also optimized in the cone calorimeter test with the already decided parameters in the TGA test.

  9. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    SciTech Connect

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  10. Development and testing of a Europa Penetrator for Astrobiology

    NASA Astrophysics Data System (ADS)

    Vijendran, S.; Perkinson, M.-C.; Waugh, L.; Ratcliffe, A.; Kennedy, T.; Church, P.; Fielding, J.; Taylor, N.

    2014-04-01

    Two phases of Penetrator development activities have been funded by ESA. The first phase focussed on the mission and system definition of a penetrator and delivery system for a mission to Europa and the second phase provided an update of the penetrator design for a larger suite of instruments focused on astrobiology and the demonstration of key system technologies through a programme of small scale and full scale testing. The science focus for the Europa penetrator is Astrobiology while the key science goals can be achieved within the first day of operation but a longer lifetime is required for the transmission of the science data to the orbiter. The extreme temperature environment of the Europan surface drove the design to a solution of a Penetrator with two separate bays. The front bay will be a short lifetime bay which will sample the surface and complete all analysis and data transfer within 10 hours. The rear bay is a warm bay which will house EPSC Abstracts Vol. 9, EPSC2014-642, 2014 European Planetary Science Congress 2014 c Author(s) 2014 EPSC European Planetary Science Congress the penetrator support systems required to transmit all collected data to the orbiter. The scientific instruments housed by the penetrator includeds a optical microimager, a habitability package and a mass spectrometer. A drilling and sampling mechanism is used for accessing the icy material outside the Penetrator for analysis. Small scale trails have been undertaken at the University of Cambridge Cavendish Laboratory to validate the impact modelling techniques and the robustness of critical components. A range of trials have been carried out to assess survivability of key elements of the design, including the sampling mechanism, potting compounds, accelerometers, shell, batteries and Torlon suspension springs. Full scale trials have been carried out to test the overall structural integrity of the system and the penetration profile. This programme was carried out in June 2013 at the

  11. Penetration tests in next generation networks

    NASA Astrophysics Data System (ADS)

    Rezac, Filip; Voznak, Miroslav

    2012-06-01

    SIP proxy server is without any doubts centerpiece of any SIP IP telephony infrastructure. It also often provides other services than those related to VoIP traffic. These softswitches are, however, very often become victims of attacks and threats coming from public networks. The paper deals with a system that we developed as an analysis and testing tool to verify if the target SIP server is adequately secured and protected against any real threats. The system is designed as an open-source application, thus allowing independent access and is fully extensible to other test modules.

  12. Testing the reliability of ice-cream cone model

    NASA Astrophysics Data System (ADS)

    Pan, Zonghao; Shen, Chenglong; Wang, Chuanbing; Liu, Kai; Xue, Xianghui; Wang, Yuming; Wang, Shui

    2015-04-01

    Coronal Mass Ejections (CME)'s properties are important to not only the physical scene itself but space-weather prediction. Several models (such as cone model, GCS model, and so on) have been raised to get rid of the projection effects within the properties observed by spacecraft. According to SOHO/ LASCO observations, we obtain the 'real' 3D parameters of all the FFHCMEs (front-side full halo Coronal Mass Ejections) within the 24th solar cycle till July 2012, by the ice-cream cone model. Considering that the method to obtain 3D parameters from the CME observations by multi-satellite and multi-angle has higher accuracy, we use the GCS model to obtain the real propagation parameters of these CMEs in 3D space and compare the results with which by ice-cream cone model. Then we could discuss the reliability of the ice-cream cone model.

  13. Testing the reliability of ice-cream cone model

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Shen, C.; Wang, Y.; Liu, K.

    2013-12-01

    Coronal Mass Ejections (CME)'s properties are important to not only the physical scene itself but spaceweather prediction. Several models(such as cone model, GCS model, and so on) have been raised to get rid of the projection effects within the properties observated by spacecraft. According to SOHO/ LASCO observations, we obtain the 'real' 3D parameters of 33 FFHCMEs (front-side full halo Coronal Mass Ejections) within the 24th solar cycle by the ice-cream cone model. Considering that the method to obtain 3D parameters from the CME observations by multi-satellite and multi-angle has higher accuracy, we use the GCS model to obtain the real propagation parameters of these CMEs in 3D space and compare the results with which by ice-cream cone model. It was demonstrated that the correlation coefficient for the speeds by using these both methods is 0.97.

  14. Three-dimensional analysis of a developing sinkhole using GPR and dynamic cone penetrometer (DCP) testing

    NASA Astrophysics Data System (ADS)

    Brook, Martin; Gaines, Andrew; Nobes, David

    2016-04-01

    Ground penetrating radar (GPR) imaging is one of the most promising non-destructive and non-invasive methods that have offered new opportunities for mapping shallow subsurface disturbances in urbanized and industrialized zones. However, difficulties often arise in choosing the optimum antenna frequency to image subsurface features. While high frequency antennas may provide lots of detail, lower frequency antennas may provide information on larger-scale features that provide more site context. In this study, we performed GPR surveys to investigate a zone of subtle surface subsidence and pavement cracking on reclaimed land at a quayside. A 3-stage approach was used, and included: (1) a 250 MHz antenna survey to delineate the spatial extent of the area of interest; (2) a 500 MHz antenna survey to yield greater detail; and (3) direct verification of some of the key features using dynamic cone penetrometer (DCP) testing to "ground-truth" anomalies. This staged approach proved successful in imaging the sub-grade, and minor voids within approximately 2 m depth. Moreover, the quality of the data can be further improved by using GPR-Slice software in conjunction with DCP data to develop a 3D ground model. Through this approach, a combination of GPR survey and direct testing, we demonstrate the efficiency and quality of this method in mapping shallow subsidence features. An interpretation of the process-origin of the collapse feature is also proposed.

  15. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... penetration is observed. (5) When testing ceiling liner panels, record the peak temperature measured 4 inches... 49 Transportation 3 2011-10-01 2011-10-01 false Flame Penetration Resistance Test E Appendix E to.... 178, App. E Appendix E to Part 178—Flame Penetration Resistance Test (a) Criteria for Acceptance....

  16. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... penetration is observed. (5) When testing ceiling liner panels, record the peak temperature measured 4 inches... 49 Transportation 3 2013-10-01 2013-10-01 false Flame Penetration Resistance Test E Appendix E to.... 178, App. E Appendix E to Part 178—Flame Penetration Resistance Test (a) Criteria for Acceptance....

  17. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... penetration is observed. (5) When testing ceiling liner panels, record the peak temperature measured 4 inches... 49 Transportation 3 2012-10-01 2012-10-01 false Flame Penetration Resistance Test E Appendix E to.... 178, App. E Appendix E to Part 178—Flame Penetration Resistance Test (a) Criteria for Acceptance....

  18. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... penetration is observed. (5) When testing ceiling liner panels, record the peak temperature measured 4 inches... 49 Transportation 3 2014-10-01 2014-10-01 false Flame Penetration Resistance Test E Appendix E to.... 178, App. E Appendix E to Part 178—Flame Penetration Resistance Test (a) Criteria for Acceptance....

  19. Possibility of Using Nonmetallic Check Samples to Assess the Sensitivity of Penetrant Testing

    NASA Astrophysics Data System (ADS)

    Kalinichenko, N.; Lobanova, I.; Kalinichenko, A.; Loboda, E.; Jakubec, T.

    2016-06-01

    Versions of check sample manufacturing for penetrant inspection are considered. A statistical analysis of crack width measuring for nonmetallic samples is performed to determine the possibility of their application to assess the penetrant testing sensitivity.

  20. Low Velocity Earth-Penetration Test and Analysis

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jones, Yvonne; Knight, Norman F., Jr.; Kellas, Sotiris

    2001-01-01

    Modeling and simulation of structural impacts into soil continue to challenge analysts to develop accurate material models and detailed analytical simulations to predict the soil penetration event. This paper discusses finite element modeling of a series of penetrometer drop tests into soft clay. Parametric studies are performed with penetrometers of varying diameters, masses, and impact speeds to a maximum of 45 m/s. Parameters influencing the simulation such as the contact penalty factor and the material model representing the soil are also studied. An empirical relationship between key parameters is developed and is shown to correlate experimental and analytical results quite well. The results provide preliminary design guidelines for Earth impact that may be useful for future space exploration sample return missions.

  1. Testing techniques and comparisons between theory and test for vibration modes of ring stiffened truncated-cone shells.

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.

    1972-01-01

    Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.

  2. Low Force Penetration of Icy Regolith

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  3. Modified Truncated Cone Target Hyperthermal Atomic Oxygen Test Results

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Kamenetsky, R. R.; Finckenor, M. M.

    1999-01-01

    The modified truncated cone target is a docking target planned for use on the International Space Station. The current design consists of aluminum treated with a black dye anodize, then crosshairs are laser etched for a silvery color. Samples of the treated aluminum were exposed to laboratory simulation of atomic oxygen and ultraviolet radiation to determine if significant degradation might occur. Durability was evaluated based on the contrast ratio between the black and silvery white areas of the target. Degradation of optical properties appeared to level off after an initial period of exposure to atomic oxygen. The sample that was not alodined according to MIL-C-5541, type 1A, performed better than alodined samples.

  4. Piezo-resistivity electric cone penetration technology investigation of the M-basin at the Savannah River Site, Aiken, South Carolina. Progress report, May 1, 1992--October 31, 1992

    SciTech Connect

    Bowers, B.; Rossabi, J.; Shinn, J.D. II; Bratton, W.L.

    1997-05-01

    This report documents the results of a combined field and laboratory investigation program to: (1) delineate the geologic layering and (2) determine the location of a dense non-aqueous liquid-phase (DNAPL) contaminated plume beneath the M Area Hazardous Waste Management Facility at the Savannah River Plant. During April of 1991, DNAPLs were detected in monitoring well (MSB-3D), located adjacent to the capped M-Area Settling Basin. Solvents in the well consisted mainly of tetrachloroethylene and trichloroethylene, which are also the main solvents found in groundwater in the M Area. In permeable soils, DNAPLs move downward rapidly due to their high density and low viscosity as compared to water. Within the vadose zone, DNAPLs tend to be held by the less permeable clay and silts by capillary force. In the saturated zone, the downward movement is slowed by clays and silts and the DNAPL tends to pool on this layer, then spread laterally. The lateral movement continues until a permeable layer is encountered, which can be a sand lens, fracture or other high conductivity seam. The DNAPL then moves downward, until another low permeability layer is encountered. Applied Research Associates was contracted to conduct a program to: (1) field demonstrate the utility of Cone Penetration Technology to investigate DOE contaminant sites and, (2) conduct a laboratory and field program to evaluate the use of electric resistivity surveys to locate DNAPL contaminated soils. The field program was conducted in the M-Basin and laboratory tests were conducted on samples from the major stratigraphy units as identified in Eddy et. al. Cone Penetration Technology was selected to investigate the M-Basin as it: (1) is minimally invasive, (2) generates minimal waste, (3) is faster and less costly than drilling, (4) provides continuous, detailed in situ characterization data, (5) permits real-time data processing, and (6) can obtain soil, soil gas, and water samples without the need for a boring.

  5. Static penetration resistance of soils

    NASA Technical Reports Server (NTRS)

    Durgunoglu, H. T.; Mitchell, J. K.

    1973-01-01

    Model test results were used to define the failure mechanism associated with the static penetration resistance of cohesionless and low-cohesion soils. Knowledge of this mechanism has permitted the development of a new analytical method for calculating the ultimate penetration resistance which explicitly accounts for penetrometer base apex angle and roughness, soil friction angle, and the ratio of penetration depth to base width. Curves relating the bearing capacity factors to the soil friction angle are presented for failure in general shear. Strength parameters and penetrometer interaction properties of a fine sand were determined and used as the basis for prediction of the penetration resistance encountered by wedge, cone, and flat-ended penetrometers of different surface roughness using the proposed analytical method. Because of the close agreement between predicted values and values measured in laboratory tests, it appears possible to deduce in-situ soil strength parameters and their variation with depth from the results of static penetration tests.

  6. Oblique penetration modeling and correlation with field tests into a soil target

    SciTech Connect

    Longcope, D.B. Jr.

    1996-09-01

    An oblique penetration modeling procedure is evaluated by correlation with onboard acceleration data from a series of six penetration tests into Antelope Dry Lake soil at Tonopah Test Range, Nevada. The modeling represents both the loading which is coupled to the penetrator bending and the penetrator structure including connections between the major subsections. Model results show reasonable agreement with the data which validates the modeling procedure within a modest uncertainty related to accelerometer clipping and rattling of the telemetry package. The experimental and analytical results provide design guidance for the location and lateral restraint of components to reduce their shock environment.

  7. Correlations Between Shear Wave Velocity and In-Situ Penetration Test Results for Korean Soil Deposits

    NASA Astrophysics Data System (ADS)

    Sun, Chang-Guk; Cho, Chang-Soo; Son, Minkyung; Shin, Jin Soo

    2013-03-01

    Shear wave velocity ( V S) can be obtained using seismic tests, and is viewed as a fundamental geotechnical characteristic for seismic design and seismic performance evaluation in the field of earthquake engineering. To apply conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests (SPT) and piezocone penetration tests (CPTu) were undertaken together with a variety of borehole seismic tests for a range of sites in Korea. Statistical modeling of the in-situ testing data identified correlations between V S and geotechnical in-situ penetration data, such as blow counts ( N value) from SPT and CPTu data including tip resistance ( q t), sleeve friction ( f s), and pore pressure ratio ( B q). Despite the difference in strain levels between conventional geotechnical penetration tests and borehole seismic tests, it is shown that the suggested correlations in this study is applicable to the preliminary determination of V S for soil deposits.

  8. Evaluation of Tensile Strength of Partial Penetration Butt Welded Joints by Ultrasonic Testing

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroshi; Kaji, Atsushi

    Partial penetration butt welded joints are widely used because they require relatively less weld metal for fabrication. However, incomplete penetration acts as a crack-like flaw. When the size of flaw in a material is known, the tensile strength of the material can be evaluated using fracture mechanics. This paper deals with a practical method of estimating the size of flaw (the incomplete penetration of a partial penetration butt welded joint) by ultrasonic testing (UT). The refraction angle of the probe and the method of UT are discussed. In addition, tensile strengths of welded joints are evaluated using fracture mechanics, and are found to be in good agreement with experimental results.

  9. Electronic cone penetration testing at the Hanford Site, 200 West Area

    SciTech Connect

    Rohay, V.J.

    1993-06-04

    The 200 West Area Carbon Tetrachloride Expedited Response Action (ERA) is being conducted by the US Department of Energy (DOE) at the direction of the US Environmental Protection Agency (EPA) and the Washington Department of Ecology as a provision of both the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and the Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID). The ERA allows expedited response to be taken at waste sites where damage to the environment can be significantly reduced by early action to locate, identify the extent, and remediate imminent hazards. The ERA is focusing specifically on the removal of carbon tetrachloride vapor from the soil column and protection of the groundwater in the 200 West Area. The VOC-Arid ID program allows demonstration of new drilling technologies for environmental characterization monitoring and remediation. Soil vapor vacuum extraction has been proposed to remediate the site. This may require vapor extraction wells to be installed within the plume.

  10. Initial basalt target site selection evaluation for the Mars penetrator drop test

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Quaide, W. L.; Polkowski, G.

    1976-01-01

    Potential basalt target sites for an air drop penetrator test were described and the criteria involved in site selection were discussed. A summary of the background field geology and recommendations for optimum sites are also presented.

  11. A new penetration test method: protection efficiency of glove and clothing materials against diphenylmethane diisocyanate (MDI).

    PubMed

    Henriks-Eckerman, Maj-Len; Mäkelä, Erja

    2015-03-01

    Reported cases of allergic contact dermatitis caused by methylenediphenyl diisocyanate (MDI) have increased and thereby increased the need for adequate skin protection. Current standardized permeation and penetration test methods give information about efficacy of protective materials against individual components of the polyurethane systems. They do not give information of what kind of clothing materials workers should wear against splashes when handling mixed MDI-polyurethane formulations, which contain MDI, its oligomers, and polyols. The aim of this study was to develop and validate a sensitive penetration test method that can be used to select clothing that is protective enough against uncured splashes of MDI-polyurethane, still easy to use, and also, to find affordable glove materials that provide adequate protection during a short contact. The penetration of MDI through eight representative glove or clothing materials was studied with the developed test procedure. One MDI hardener and two polymeric MDI (PMDI)-polyol formulations representing different curing times were used as test substances. The materials tested included work clothing (woven) fabric, arm shields (nonwoven fabric), old T-shirt, winter gloves, and gloves of nitrile rubber, leather, vinyl (PVC), and natural rubber. A drop (50 µl) of test substance was added to the outer surface of the glove/clothing material, which had Tape Fixomull attached to the inner surface as a collection medium. After penetration times of 5 or 20min, the collecting material was removed and immediately immersed into acetonitrile containing 1-(2-methoxyphenyl)-piperazine for derivatization. The formed urea derivatives of 2,4'-MDI and 4,4'-MDI were analysed using liquid chromatography with mass spectrometric and UV detection. The precision of the test method was good for the material with high penetration (work clothing fabric) of MDI, as the relative standard deviation (RSD) was 14 and 20%. For the arm shield with a low

  12. A new penetration test method: protection efficiency of glove and clothing materials against diphenylmethane diisocyanate (MDI).

    PubMed

    Henriks-Eckerman, Maj-Len; Mäkelä, Erja

    2015-03-01

    Reported cases of allergic contact dermatitis caused by methylenediphenyl diisocyanate (MDI) have increased and thereby increased the need for adequate skin protection. Current standardized permeation and penetration test methods give information about efficacy of protective materials against individual components of the polyurethane systems. They do not give information of what kind of clothing materials workers should wear against splashes when handling mixed MDI-polyurethane formulations, which contain MDI, its oligomers, and polyols. The aim of this study was to develop and validate a sensitive penetration test method that can be used to select clothing that is protective enough against uncured splashes of MDI-polyurethane, still easy to use, and also, to find affordable glove materials that provide adequate protection during a short contact. The penetration of MDI through eight representative glove or clothing materials was studied with the developed test procedure. One MDI hardener and two polymeric MDI (PMDI)-polyol formulations representing different curing times were used as test substances. The materials tested included work clothing (woven) fabric, arm shields (nonwoven fabric), old T-shirt, winter gloves, and gloves of nitrile rubber, leather, vinyl (PVC), and natural rubber. A drop (50 µl) of test substance was added to the outer surface of the glove/clothing material, which had Tape Fixomull attached to the inner surface as a collection medium. After penetration times of 5 or 20min, the collecting material was removed and immediately immersed into acetonitrile containing 1-(2-methoxyphenyl)-piperazine for derivatization. The formed urea derivatives of 2,4'-MDI and 4,4'-MDI were analysed using liquid chromatography with mass spectrometric and UV detection. The precision of the test method was good for the material with high penetration (work clothing fabric) of MDI, as the relative standard deviation (RSD) was 14 and 20%. For the arm shield with a low

  13. Alaskan frozen soil impact tests of the B83-C/S and Strategic Earth Penetrator

    SciTech Connect

    Dockery, H.A.; Clarke, J.B.; Stull, S.P.; Cain, S.G.; Everett, R.N.; Flower, E.C.; Huntting, J.D.; Spencer, C.R.; Todaro, A.F.; Vidlak, A.J.

    1987-10-01

    To assess the penetrability of the B83 strategic bomb and a Strategic Earth Penetrator design into frozen soil and ice, Lawrence Livermore National Laboratory and Sandia National Laboratories, assisted by the US Air Force and US Army, conducted a series of tests in 1987. In April, Strategic Earth Penetrator units were dropped into multi-year sea ice and frozen tundra near Prudhoe Bay, Alaska. Calculated impact velocity ranged from 200 to 308 ft/s into ice and from 200 to 444 ft/s into frozen tundra. Tests in May include drops of a B83 design with specially designed ogive nose shape, a B83 with a cap over the production ''cookie cutter'' nose, and a Strategic Earth Penetrator. The May tests were conducted near Fairbanks, Alaska, at Eielson Air Force Base and at Donnelly Flats on the Fort Greely Military Reservation. The type of frozen soil encountered at Eielson was very homogeneous in composition; however. Two drops impacted areas with very thin frozen soil layers at depths of about 24 in. below the surface. Velocities of these drops prior to impact ranged from 256 to 308 ft/s, and peak axial deceleration ranged from 160 to 490 g. The units penetrated to depths of 7.5-12 ft. Three other events impacted in a target area where frozen soil averaging 35 in. thick extended essentially to the surface. We calculated velocities prior to impact at 200-256 ft/s; and penetration depths of 3.2-9.6 ft. The geologic material at Donnelly Flats was primarily a very hard, rocky glacial deposit with a variable degree of ice bonding. Here, the test units dropped from 10,000 ft above ground level and achieved an average calculated velocity of 802 ft/s. Depth of penetration ranged from 7.6 to 13.5 ft.

  14. Building a “smart nail” for penetration tests on Li-ion cells

    NASA Astrophysics Data System (ADS)

    Hatchard, T. D.; Trussler, S.; Dahn, J. R.

    2014-02-01

    Nail penetration is one safety test that Li-ion cells experience in order to simulate some aspects of an internal short circuit event. To our knowledge, nail penetration is usually performed with an ordinary steel nail. Normally, the only data gathered has been a simple pass/fail result depending on whether or not the cell emitted smoke or flame, along with a thermocouple on the surface of the cell. A "smart nail" has been developed to allow the collection of temperature versus time data at the point of nail penetration. This nail, in conjunction with a thermocouple on the cell surface and tabs on the ends to measure voltage, should provide some new insights into the behavior of cells during this type of abuse testing as well as aid in the developing of safer Li-ion cell chemistries.

  15. Subsonic wind-tunnel tests of a trailing-cone device for calibrating aircraft static pressure systems

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Ritchie, V. S.

    1973-01-01

    A trailing-cone device for calibrating aircraft static-pressure systems was tested in a transonic wind tunnel to investigate the pressure-sensing characteristics of the device including effects of several configuration changes. The tests were conducted at Mach numbers from 0.30 to 0.95 with Reynolds numbers from (0.9 x one million to 4.1 x one million per foot). The results of these tests indicated that the pressures sensed by the device changed slightly but consistently as the distance between the device pressure orifices and cone was varied from 4 to 10 cone diameters. Differences between such device-indicated pressures and free-stream static pressure were small, however, and corresponded to Mach number differences of less than 0.001 for device configurations with pressure orifices located 5 or 6 cone diameters ahead of the cone. Differences between device-indicated and free-stream static pressures were not greatly influenced by a protection skid at the downstream end of the pressure tube of the device nor by a 2-to-1 change in test Reynolds number.

  16. Performance Assessment of Hard Rock TBM and Rock Boreability Using Punch Penetration Test

    NASA Astrophysics Data System (ADS)

    Jeong, Ho-Young; Cho, Jung-Woo; Jeon, Seokwon; Rostami, Jamal

    2016-04-01

    Rock indentation tests are often called punch penetration tests and are known to be related to penetration rates of drilling equipment and hard rock tunnel boring machines (TBMs). Various indices determined from analysis of the force-penetration plot generated from indentation tests have been used to represent the drillability, boreability, and brittleness of rocks. However, no standard for the punch penetration test procedure or method for calculating the related indices has been suggested or adopted in the rock mechanics community. This paper introduces new indices based on the punch test to predict the performance of hard rock TBMs. A series of punch tests was performed on rock specimens representing six rock formations in Korea with different dimensions, i.e., the core specimens had different lengths and diameters. Of the indices obtained from the punch tests, the peak load index and mean load index showed good correlations with the cutting forces measured in full-scale linear cutting machine tests on the same rock types. The indices also showed good linear correlations with the ratio of uniaxial strength to Brazilian tensile strength, which indicates the brittleness of rock. The scale effect of using core specimens was investigated, and a preferred dimension for the punch test specimens is proposed. This paper also discusses the results of the punch test and full-scale rock cutting tests using LCM. The results of this study confirm that the proposed indices from the punch tests can be used to provide a reliable prediction of the cutting forces that act on a disc cutter. The estimated cutting forces can then be used for optimization of cutter-head design and performance prediction of hard rock TBMs.

  17. Ballistic penetration test results for Ductal and ultra-high performance concrete samples.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III

    2010-03-01

    This document provides detailed test results of ballistic impact experiments performed on several types of high performance concrete. These tests were performed at the Sandia National Laboratories Shock Thermodynamic Applied Research Facility using a 50 caliber powder gun to study penetration resistance of concrete samples. This document provides test results for ballistic impact experiments performed on two types of concrete samples, (1) Ductal{reg_sign} concrete is a fiber reinforced high performance concrete patented by Lafarge Group and (2) ultra-high performance concrete (UHPC) produced in-house by DoD. These tests were performed as part of a research demonstration project overseen by USACE and ERDC, at the Sandia National Laboratories Shock Thermodynamic Applied Research (STAR) facility. Ballistic penetration tests were performed on a single stage research powder gun of 50 caliber bore using a full metal jacket M33 ball projectile with a nominal velocity of 914 m/s (3000 ft/s). Testing was observed by Beverly DiPaolo from ERDC-GSL. In all, 31 tests were performed to achieve the test objectives which were: (1) recovery of concrete test specimens for post mortem analysis and characterization at outside labs, (2) measurement of projectile impact velocity and post-penetration residual velocity from electronic and radiographic techniques and, (3) high-speed photography of the projectile prior to impact, impact and exit of the rear surface of the concrete construct, and (4) summarize the results.

  18. NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.

  19. Tethered rocket as a vehicle for penetration and impact testing: Development report

    SciTech Connect

    Hansen, N.R.

    1990-06-01

    A new technique, called tethered rocket, has been developed for testing in the penetration and/or impact modes. The technique involves tethering a rocket-motor assembly to an earth-fixed pivot so that the resulting semicircular arc delivers a payload to a precise impact point. Discussions are presented which describe the analytical and experimental activities of the tethered rocket technique. A series of analytical models has been integral to the success of the tethered rocket development. The analytic results were verified by testing. The tests demonstrated the viability of the technique for penetration and/or impact testing. Also included is a discussion of potential applications of the method. 18 refs., 53 figs., 17 tabs.

  20. DOP test evaluation of the ballistic performance of armor ceramics against long rod penetration

    NASA Astrophysics Data System (ADS)

    Fenglei, Huang

    2005-07-01

    A series of DOP tests with lateral confinement has been carried out and a linear relation between the residual penetration in RHA and the alumina thickness been obtained. The rod configuration and the initial transient impact are thought to be responsible for the gradual decrease of differential efficiency factor (DEF) with the increase of ceramic thickness in literature DOP tests. A new revised DEF definition is proposed to more accurately characterize the thick tile ceramic ballistic performance on a more physically based analysis.

  1. A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model.

    PubMed

    Fantoni, Riccardo; Giacometti, Achille; Malijevský, Alexandr; Santos, Andrés

    2010-07-14

    The one-dimensional penetrable-square-well fluid is studied using both analytical tools and specialized Monte Carlo simulations. The model consists of a penetrable core characterized by a finite repulsive energy combined with a short-range attractive well. This is a many-body one-dimensional problem, lacking an exact analytical solution, for which the usual van Hove theorem on the absence of phase transition does not apply. We determine a high-penetrability approximation complementing a similar low-penetrability approximation presented in previous work. This is shown to be equivalent to the usual Debye-Hückel theory for simple charged fluids for which the virial and energy routes are identical. The internal thermodynamic consistency with the compressibility route and the validity of the approximation in describing the radial distribution function is assessed by a comparison against numerical simulations. The Fisher-Widom line separating the oscillatory and monotonic large-distance behaviors of the radial distribution function is computed within the high-penetrability approximation and compared with the opposite regime, thus providing a strong indication of the location of the line in all possible regimes. The high-penetrability approximation predicts the existence of a critical point and a spinodal line, but this occurs outside the applicability domain of the theory. We investigate the possibility of a fluid-fluid transition by the Gibbs ensemble Monte Carlo techniques, not finding any evidence of such a transition. Additional analytical arguments are given to support this claim. Finally, we find a clustering transition when Ruelle's stability criterion is not fulfilled. The consequences of these findings on the three-dimensional phase diagrams are also discussed.

  2. A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model.

    PubMed

    Fantoni, Riccardo; Giacometti, Achille; Malijevský, Alexandr; Santos, Andrés

    2010-07-14

    The one-dimensional penetrable-square-well fluid is studied using both analytical tools and specialized Monte Carlo simulations. The model consists of a penetrable core characterized by a finite repulsive energy combined with a short-range attractive well. This is a many-body one-dimensional problem, lacking an exact analytical solution, for which the usual van Hove theorem on the absence of phase transition does not apply. We determine a high-penetrability approximation complementing a similar low-penetrability approximation presented in previous work. This is shown to be equivalent to the usual Debye-Hückel theory for simple charged fluids for which the virial and energy routes are identical. The internal thermodynamic consistency with the compressibility route and the validity of the approximation in describing the radial distribution function is assessed by a comparison against numerical simulations. The Fisher-Widom line separating the oscillatory and monotonic large-distance behaviors of the radial distribution function is computed within the high-penetrability approximation and compared with the opposite regime, thus providing a strong indication of the location of the line in all possible regimes. The high-penetrability approximation predicts the existence of a critical point and a spinodal line, but this occurs outside the applicability domain of the theory. We investigate the possibility of a fluid-fluid transition by the Gibbs ensemble Monte Carlo techniques, not finding any evidence of such a transition. Additional analytical arguments are given to support this claim. Finally, we find a clustering transition when Ruelle's stability criterion is not fulfilled. The consequences of these findings on the three-dimensional phase diagrams are also discussed. PMID:20632742

  3. Protective clothing for pesticide operators: part I--selection of a reference test chemical for penetration testing.

    PubMed

    Shaw, Anugrah; Schiffelbein, Paul

    2016-01-01

    A systematic approach was taken to develop a database for protective clothing for pesticide operators; results are reported as a two-part series. Part I describes the research studies that led to identification of a pesticide formulation that could serve as a reference test chemical for further testing. Measurement of pesticide penetration was conducted using different types of pesticide formulations. Six fabrics were tested using 10 formulations at different concentrations. Three formulations were subsequently selected for further testing. Analysis of the data indicated that, when compared with other formulations, mean percent penetration of 5% Prowl 3.3 EC [emulsifiable concentrate diluted to 5% active ingredient (pendimethalin)] is either similar to or higher than most test chemicals. Those results led to choosing 5% Prowl 3.3 EC as a reference test liquid. Part II of the study, published as a separate paper, includes data on a wide range of textile materials.

  4. Wet voice as a sign of penetration/aspiration in Parkinson's disease: does testing material matter?

    PubMed

    Sampaio, Marília; Argolo, Natalie; Melo, Ailton; Nóbrega, Ana Caline

    2014-10-01

    Wet voice is a perceptual vocal quality that is commonly used as an indicator of penetration and/or aspiration in clinical swallowing assessments and bedside screening tests. Our aim was to describe the clinimetric characteristics of this clinical sign using various fluid materials and one solid food in the Parkinson's disease (PD) population. Consecutive PD individuals were submitted for simultaneous fiberoptic endoscopic evaluation of swallowing (FEES) and voice recording. Speech therapists rated the presence or absence of wetness and other voice abnormalities. Two binary endpoints of FEES were selected for comparison with an index test: low penetration (LP) and low penetration and/or aspiration (LP/ASP). The accuracy of wet voice changed according to the testing material in PD patients. Overall, the specificity of this indicator was better than its sensitivity, and the wafer cookie and yogurt drink yielded the best indices. Our data show that wet voice is clearly indicative of LP or LP/ASP in PD patients in case of positive test. However, in the case of a negative result, the wet voice test should be repeated or combined with other clinical tests to include or exclude the risk of LP or LP/ASP.

  5. ASP (AntiSubmarine Penetrator) base plate redesign and explosive bolt test

    SciTech Connect

    Cole, J.K.; Wolfe, W.P.

    1988-10-01

    This report presents the results of a post-flight investigation of the Rocket Antisubmarine Penetrator (RAP) tests of the AntiSubmarine Penetrator (ASP). It focuses on the cause for the premature deployment of the on-board recovery system and the failure of the base pressure transducers. As a result of the investigation, the base plate of the ASP vehicle was modified to increase its structural stiffness. Also, an instrumented test was conducted to assess the environment that is created when the three explosive bolts are activated to separate the vehicle from the interstage adapter and the rocket booster. The results of this test are presented and discussed. 5 refs., 15 figs.

  6. Bolivia-Brazil gas pipeline about to take off; seen as litmus test for Southern Cone gas grid

    SciTech Connect

    1995-08-07

    After more than 4 decades of studies, plans, and shelved projects, the proposed Bolivia-Brazil gas pipeline is finally about to get off the ground. The 3,700 km gas pipeline will require an investment of at least $2 billion and is viewed by many as a litmus test for the developing gas market and energy integration of South America`s Southern Cone countries. Overall, industry officials see eventual emergence of two large integrated gas grids serving South America: one for the northern countries and another for the Southern Cone. This will enable the six countries with gas surplus to their needs to export the surplus to neighboring, gas-short countries. The northern gas-long countries are Venezuela, Colombia, and Trinidad and Tobago; those in the Southern Cone are Argentina, Bolivia, and Peru. The paper discusses financial details, project details, pipeline construction, the Petrobras strategy, Argentine pipeline projects, and other pipeline proposals.

  7. First laboratory perforating tests in coal show lower-than-expected penetration

    SciTech Connect

    Snider, P.M.; Walton, I.C.; Skinner, T.K.; Atwood, D.C.; Grove, B.M.; Graham, C.

    2008-06-15

    Worldwide Coal Bed Methane (CBM) resources are huge, estimated at 3,000 to 9,000 Tcf. The production rate from CBM reservoirs is low, perhaps 50-100 mcf/day. Various completion methods are being evaluated and new technologies are being developed with the aim of increasing production rates. Considering this interest and activity level, little attention has been paid to the CBM completion fundamentals. Perforating is a critical part of this process, especially considering the PRB development migration from single-coal, open-hole completions into multi-zone, cased-hole completions. This paper describes the first known laboratory-testing program to investigate shaped charge penetration in coal targets. We describe mechanical properties of the coals tested, and penetration results for different shaped charges (of different designs), shot at various stress conditions. CT scan and cutaway imaging of the perforation tunnels are also discussed. Tests were conducted under dry and saturated conditions. The preliminary experiments reported here indicate that shaped charge penetration in coal is significantly less than expected, considering the target's density and strength. The authors provide insight into what may be the reasons for these unexpected results and recommend a path forward for shaped charge testing, designs, predictive tools, and how to optimize CBM completions.

  8. DOP Test Evaluation of the Ballistic Performance of Armor Ceramics against Long Rod Penetration

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Zhang, Liansheng

    2006-07-01

    A series of DOP tests with lateral confinement have been carried out and a linear relation between the residual penetration in RHA and the alumina thickness has been obtained. The rod configuration and the initial transient impact are the two factors that cause the gradual decrease of the differential efficiency factor (DEF) when the ceramic thickness is increased in literature. A new improved DEF definition is proposed to characterize the thick tile ceramic ballistic performance based on a more physical analysis.

  9. DOP Test Evaluation of the Ballistic Performance of Armor Ceramics against Long Rod Penetration

    SciTech Connect

    Huang Fenglei; Zhang Liansheng

    2006-07-28

    A series of DOP tests with lateral confinement have been carried out and a linear relation between the residual penetration in RHA and the alumina thickness has been obtained. The rod configuration and the initial transient impact are the two factors that cause the gradual decrease of the differential efficiency factor (DEF) when the ceramic thickness is increased in literature. A new improved DEF definition is proposed to characterize the thick tile ceramic ballistic performance based on a more physical analysis.

  10. Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer).

    PubMed

    Nakadai, Ryosuke; Kawakita, Atsushi

    2016-07-01

    The traditional explanation for the exceptional diversity of herbivorous insects emphasizes host shift as the major driver of speciation. However, phylogenetic studies have often demonstrated widespread host plant conservatism by insect herbivores, calling into question the prevalence of speciation by host shift to distantly related plants. A limitation of previous phylogenetic studies is that host plants were defined at the family or genus level; thus, it was unclear whether host shifts predominate at a finer taxonomic scale. The lack of a statistical approach to test the hypothesis of host-shift-driven speciation also hindered studies at the species level. Here, we analyze the radiation of leaf cone moths (Caloptilia) associated with maples (Acer) using a newly developed, phylogeny-based method that tests the role of host shift in speciation. This method has the advantage of not requiring complete taxon sampling from an entire radiation. Based on 254 host plant records for 14 Caloptilia species collected at 73 sites in Japan, we show that major dietary changes are more concentrated toward the root of the phylogeny, with host shift playing a minor role in recent speciation. We suggest that there may be other roles for host shift in promoting herbivorous insect diversification rather than facilitating speciation per se.

  11. Orientation effect on cone calorimeter test results to assess fire hazard of materials.

    PubMed

    Tsai, Kuang-Chung

    2009-12-30

    A cone calorimeter can provide material "reaction to fire" information for use in evaluating the fire hazard of materials. Two orientations can be selected, vertical or horizontal, depending on the geometry of materials in their final use. However, most fire models and material evaluation reports fail to consider the effects of the orientation and applied the horizontal case data. To assess the validity of using data with "horizontal" samples for further applications, a systematic experimental was performed using materials including PMMA, wooden products and polystyrene foams. Besides critical heat flux for ignition, other "reaction to fire" material properties were measured, including ignition time, ignition temperature, heat release rate history and mass loss rate when exposed to three heating irradiances, namely 15, 30 and 50 kW/m(2). For the horizontal orientation in comparison to the vertical orientation, the study data reveal relatively constant temperature distribution before ignition, lower critical heat flux for pilot ignition, shorter time to ignition, lower peak heat release rate, identical total heat release, longer burning time and almost identical combustion completeness for all the tested materials except polystyrene foams. Ignition temperature displaced no clear trend. Vertical orientation tests are consequently recommended for evaluating material fire performance. PMID:19665837

  12. Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer).

    PubMed

    Nakadai, Ryosuke; Kawakita, Atsushi

    2016-07-01

    The traditional explanation for the exceptional diversity of herbivorous insects emphasizes host shift as the major driver of speciation. However, phylogenetic studies have often demonstrated widespread host plant conservatism by insect herbivores, calling into question the prevalence of speciation by host shift to distantly related plants. A limitation of previous phylogenetic studies is that host plants were defined at the family or genus level; thus, it was unclear whether host shifts predominate at a finer taxonomic scale. The lack of a statistical approach to test the hypothesis of host-shift-driven speciation also hindered studies at the species level. Here, we analyze the radiation of leaf cone moths (Caloptilia) associated with maples (Acer) using a newly developed, phylogeny-based method that tests the role of host shift in speciation. This method has the advantage of not requiring complete taxon sampling from an entire radiation. Based on 254 host plant records for 14 Caloptilia species collected at 73 sites in Japan, we show that major dietary changes are more concentrated toward the root of the phylogeny, with host shift playing a minor role in recent speciation. We suggest that there may be other roles for host shift in promoting herbivorous insect diversification rather than facilitating speciation per se. PMID:27547326

  13. Testing Penetration of Epoxy Resin and Diamine Hardeners through Protective Glove and Clothing Materials.

    PubMed

    Henriks-Eckerman, Maj-Len; Mäkelä, Erja A; Suuronen, Katri

    2015-10-01

    Efficient, comfortable, yet affordable personal protective equipment (PPE) is needed to decrease the high incidence of allergic contact dermatitis arising from epoxy resin systems (ERSs) in industrial countries. The aim of this study was to find affordable, user-friendly glove and clothing materials that provide adequate skin protection against splashes and during the short contact with ERS that often occurs before full cure. We studied the penetration of epoxy resin and diamine hardeners through 12 glove or clothing materials using a newly developed test method. The tests were carried out with two ERS test mixtures that had a high content of epoxy resin and frequently used diamine hardeners of different molar masses. A drop (50 µl) of test mixture was placed on the outer surface of the glove/clothing material, which had a piece of Fixomull tape or Harmony protection sheet attached to the inner surface as the collection medium. The test times were 10 and 30 min. The collecting material was removed after the test was finished and immersed into acetone. The amounts of diglycidyl ether of bisphenol A (DGEBA), isophorone diamine (IPDA), and m-xylylenediamine (XDA) in the acetone solution were determined by gas chromatography with mass spectrometric detection. The limit for acceptable penetration of XDA, IPDA, and DGEBA through glove materials was set at 2 µg cm(-2). Penetration through the glove materials was 1.4 µg cm(-2) or less. The three tested chemical protective gloves showed no detectable penetration (<0.5 µg cm(-2)). Several affordable glove and clothing materials were found to provide adequate protection during short contact with ERS, in the form of, for example, disposable gloves or clothing materials suitable for aprons and as additional protective layers on the most exposed parts of clothing, such as the front of the legs and thighs and under the forearms. Every ERS combination in use should be tested separately to find the best skin protection material

  14. Assessment of the TASER XREP blunt impact and penetration injury potential using cadaveric testing.

    PubMed

    Lucas, Scott R; McGowan, Joseph C; Lam, Tack C; Yamaguchi, Gary T; Carver, Matthew; Hinz, Andrew

    2013-01-01

    TASER International's extended range electronic projectile (XREP) is intended to be fired from a shotgun, impact a threat, and apply remote neuromuscular incapacitation. This study investigated the corresponding potential of blunt impact injury and penetration. Forty-three XREP rounds were deployed onto two male human cadaver torsos at impact velocities between 70.6 and 95.9 m/sec (232 and 315 ft/sec). In 42 of the 43 shots fired, the XREP did not penetrate the abdominal wall, resulting in superficial wounds only. On one shot, the XREP's nose section separated prematurely in flight, resulting in penetration. No bony fractures were observed with any of the shots. The viscous criterion (VC), blunt criterion (BC), and energy density (E/A) were calculated (all nonpenetrating tests, average ± 1 standard deviation: VC: 1.14 ± 0.94 m/sec, BC: 0.77 ± 0.15, E/A: 22.6 ± 4.15 J/cm(2)) and, despite the lack of injuries, were generally found to be greater than published tolerance values.

  15. Geohydrology of rocks penetrated by test well USW H-6, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    Craig, R.W.; Reed, R.L.

    1991-12-01

    Test well USW H-6 is one of several wells drilled in the Yucca Mountain area near the southwestern part of the Nevada Test Site for investigations related to isolation of high-level nuclear waste. This well was drilled to a depth of 1,220 meters. Rocks penetrated are predominantly ash-flow tuffs of Tertiary age, with the principal exception of dacitic(?) lave penetrated at a depth from 877 to 1,126 meters. The composite static water level was about 526 meters below the land surface; the hydraulic head increased slightly with depth. Most permeability in the saturated zone is in two fractured intervals in Crater Flat Tuff. Based on well-test data using the transitional part of a dual-porosity solution, an interval of about 15 meters in the middle part of the Bullfrog Member of the Crater Flat Tuff has a calculated transmissivity of about 140 meters squared per day, and an interval of about 11 meters in the middle part of the Tram Member of the Crater Flat Tuff has a calculated transmissivity of about 75 meters squared per day. The upper part of the Bullfrog Member has a transmissivity of about 20 meters squared per day. The maximum likely transmissivity of any rocks penetrated by the test well is about 480 meters squared per day, based on a recharge-boundary model. The remainder of the open hole had no detectable production. Matrix hydraulic conductivity ranges from less than 5 {times} 10{sup {minus}5} to 1 {times} 10{sup {minus}3} meter per day. Ground water is a sodium bicarbonate type that is typical of water from tuffaceous rock of southern Nevada. The apparent age of the water is about 14,6000 years. 29 refs., 26 figs., 5 tabs.

  16. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-SP Mountain Area of the San Francisco Volcanic Field

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2015-01-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  17. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-Sp Mountain Area of the San Francisco Volcanic Field

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Eppler, D. B.; Needham, D. H.; Evans, C. A.; Skinner, J. A.; Feng, W.

    2015-12-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  18. Cap protects aircraft nose cone

    NASA Technical Reports Server (NTRS)

    Bryan, C. F., Jr.; Bryan, D. C.

    1981-01-01

    Inexpensive, easily fabricated cap protects aircraft nose cone from erosion. Made of molded polycarbonate, cap has been flight tested at both subsonic and supesonic speeds. Its strength and erosion characteristics are superior to those of fiberglass cones.

  19. Can the biogenicity of Europa's surfical sulfur be tested simultaneously with penetrators and ion traps?

    NASA Astrophysics Data System (ADS)

    Chela-Flores, J.; Bhattacherjee, A. B.; Dudeja, S.; Kumar, N.; Seckbach, J.

    2009-04-01

    with microbial mats—well understood in the context of the Antarctic dry valley lakes for the expulsion of a large quantity of sulfur—are used in tests on the icy surface of Europa, it is pertinent to evaluate the stopping-depth for the harsh radiation on the Europan surface. Recently, we have estimated the stopping-depth that should be probed by penetrators in proposed missions, such as LAPLACE, or in future projects. We find, in agreement with others (Greenberg, 2005), that beyond a few millimeters a penetrator would be testing biogeochemistry without any interference from radiation effects (Dudeja et al., 2009). Simultaneously with the penetrators there is an alternative suitable technology available. The isotopic S fractionation on the cloud surrounding Europa should reflect to a large extent the same biogenically-driven S fractionation that is taking place on the surface. We should recall that the origin of the cloud is due to particles that have been expelled by hypervelocity impacts of micrometeoroids on the surface. The instrumentation of ion-trap mass spectrometry has already been successfully completed for tests on a comet nucleus (the Ptolemy instrument and the Rosetta space mission). Ion traps have once again been in the planning stages for their eventual application in LAPLACE, or elsewhere (Todd et al., 2006; Taylor et al., 2007). Since the cloud around Europa is constantly being replenished by the above-mentioned micrometeorites, it would be reasonable to expect the cloud to mirror the large S-isotope deviations that may be caused locally by the assumed sulfate-reducing microorganisms. Consequently, dust detectors in orbit around this satellite should record similar large fluctuations of the Luria-Delbrück type that we have conjectured to take place on Europa's icy surface. This possibility has been explained in detail recently (Chela-Flores and Kumar, 2008). Consequently, we argue in favor that the instrumentation to be selected should include

  20. Analysis of pumping tests: Significance of well diameter, partial penetration, and noise

    USGS Publications Warehouse

    Heidari, M.; Ghiassi, K.; Mehnert, E.

    1999-01-01

    The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in

  1. Evaluation of a highway pavement using non destructive tests: Falling Weight Deflectometer and Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Marecos, Vania; Fontul, Simona; de Lurdes Antunes, Maria

    2015-04-01

    This paper presents the results of the application of Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR) to assess the bearing capacity of a rehabilitated flexible highway pavement that began to show the occurrence of cracks in the surface layer, about one year after the improvement works. A visual inspection of the surface of the pavement was performed to identify and characterize the cracks. Several core drills were done to analyse the cracks propagation in depth, these cores were also used for GPR data calibration. From the visual inspection it was concluded that the development of the cracks were top-down and that the cracks were located predominantly in the wheel paths. To determine the thickness of the bituminous and granular layers GPR tests were carried out using two horn antennas of 1,0 GHz and 1,8 GHz and a radar control unit SIR-20, both from GSSI. FWD load tests were performed on the wheel paths and structural models were established, based on the deflections measured, through back calculation. The deformation modulus of the layers was calculated and the bearing capacity of the pavement was determined. Summing up, within this study the GPR was used to continuously detect the layer thickness and the GPR survey data was calibrated with core drills. The results showed variations in the bituminous layer thickness in comparison to project data. From the load tests it was concluded that the deformation modulus of the bituminous layers were also vary variable. Limitations on the pavement bearing capacity were detected in the areas with the lower deformation modulus. This abstract is of interest for COST Action TU1208 Civil Engineering Applications of Ground Penetrating Radar.

  2. Hanford tank initiative cone penetrometer stand alone grouting module

    SciTech Connect

    CALLAWAY, W.S.

    1998-10-15

    The HTI subsurface characterization task will use the Hanford Cone Penetrometer platform (CPP) to deploy contaminant sensor and soil sampling probes into the vadose zone surrounding SST 241-AX-104. Closure of the resulting penetration holes may be stipulated by WAC requirements. A stand alone grouting capability deployable by the CPP has been developed. This qualification test plan defines testing of this capability to be performed at the Immobilized Low Activity Waste Disposal Complex.

  3. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    NASA Astrophysics Data System (ADS)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  4. Progressive cone dystrophy.

    PubMed Central

    Ripps, H; Noble, K G; Greenstein, V C; Siegel, I M; Carr, R E

    1987-01-01

    Psychophysical, reflectometric, and electrophysiological studies were performed on four members of a dominant pedigree with progressive cone dystrophy. The two youngest individuals were asymptomatic at the initial examination, and none of the subjects complained of problems associated with night vision. Absent or grossly reduced cone-mediated ERG responses revealed the widespread loss of cone function. Moderate elevations (1 log unit) in absolute threshold together with reductions in rhodopsin levels in the midperipheral retina provided evidence of a mild impairment of the rod system also, although not to the degree seen in a cone-rod dystrophy. The progressive nature of the disease was apparent from the case histories and the changes in visual performance that occurred on re-test after a 5-year interval. Likewise, the results of incremental threshold measurements at several retinal loci suggested that peripheral cones may be affected earlier and more severely than those in the central retina. PMID:3502298

  5. Can the biogenicity of Europa's surfical sulfur be tested simultaneously with penetrators and ion traps?

    NASA Astrophysics Data System (ADS)

    Chela-Flores, J.; Bhattacherjee, A. B.; Dudeja, S.; Kumar, N.; Seckbach, J.

    2009-04-01

    with microbial mats—well understood in the context of the Antarctic dry valley lakes for the expulsion of a large quantity of sulfur—are used in tests on the icy surface of Europa, it is pertinent to evaluate the stopping-depth for the harsh radiation on the Europan surface. Recently, we have estimated the stopping-depth that should be probed by penetrators in proposed missions, such as LAPLACE, or in future projects. We find, in agreement with others (Greenberg, 2005), that beyond a few millimeters a penetrator would be testing biogeochemistry without any interference from radiation effects (Dudeja et al., 2009). Simultaneously with the penetrators there is an alternative suitable technology available. The isotopic S fractionation on the cloud surrounding Europa should reflect to a large extent the same biogenically-driven S fractionation that is taking place on the surface. We should recall that the origin of the cloud is due to particles that have been expelled by hypervelocity impacts of micrometeoroids on the surface. The instrumentation of ion-trap mass spectrometry has already been successfully completed for tests on a comet nucleus (the Ptolemy instrument and the Rosetta space mission). Ion traps have once again been in the planning stages for their eventual application in LAPLACE, or elsewhere (Todd et al., 2006; Taylor et al., 2007). Since the cloud around Europa is constantly being replenished by the above-mentioned micrometeorites, it would be reasonable to expect the cloud to mirror the large S-isotope deviations that may be caused locally by the assumed sulfate-reducing microorganisms. Consequently, dust detectors in orbit around this satellite should record similar large fluctuations of the Luria-Delbrück type that we have conjectured to take place on Europa's icy surface. This possibility has been explained in detail recently (Chela-Flores and Kumar, 2008). Consequently, we argue in favor that the instrumentation to be selected should include

  6. Penetration drag in loosely packed granular materials

    NASA Astrophysics Data System (ADS)

    Bless, Stephan; Omidvar, Mehdi; Iskander, Magued; New York University Collaboration

    2015-03-01

    The drag coefficient for penetration of granular materials by conical-nosed penetrators was computed by assuming the particles are non-interacting and rebound elastically off of the advancing penetrator. The solution was C =4 [sin(theta)]**2, where theta is the half angle of the cone. Experiments were conducted in which the drag coefficient was measured over the range 30 to 80 m/s for four types of sand: Ottawa silica sand, crushed quartz glass, coral sand, and aragonite sand. The sands were tested at relative densities of 40 and 80%. The drag coefficients for the low density materials were in excellent agreement with this simple model. The high density material had a drag considerably larger than predicted, presumably because of particle-to-particle interactions.

  7. Phenomenological Investigation of Rapid Projectile Penetration in Granular Media

    NASA Astrophysics Data System (ADS)

    Omidvar, Mehdi

    There has been a recent flurry of research in rapid penetration into granular media, motivated by military and civilian applications including underground target penetration, design of fortifications, drilling for resource extraction, offshore foundations and anchors, probing of in situ mechanical properties, and study of high strain rate response of granular media, among others. The present study contributes to the state of the art in rapid penetration into granular media, by producing data at the macro and meso scales. In-house projectile accelerators are used to launch projectiles into laboratory scale physical models. The experimental program is divided into two sections. In the first section, penetration tests are performed at impact velocities in the range of 60-300 m/s. High-speed imaging and photonic Doppler velocimetry are used to record time history of penetration. In the second section, low velocity penetration tests are performed in refractive index matched transparent soils. Images are acquired form a mid plane within the sample. Digital image correlation is employed to describe granular kinematics. Macro scale test results point to the existence of at least two transition regimes in penetration resistance. The first, occurring at penetration velocities of approximately 60- 80 m/s, may be due the role of particle crushing, while the second is linked to frictional resistance dominating over inertial resistance at penetration velocities below approximately 15 m/s. It is also found that the role of nose shape is related to particle crushing. An attached false cone forms ahead of the projectile due to significant particle crushing, rendering nose shape effects less significant. Packing density and saturation are also found to affect penetration characteristics. Penetration tests in transparent soils reveal significant differences between quasi-static and dynamic penetration. Greater vertical displacements occur ahead of the projectile in dynamic

  8. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    USGS Publications Warehouse

    Cetin, K.O.; Seed, R.B.; Der Kiureghian, A.; Tokimatsu, K.; Harder, L.F.; Kayen, R.E.; Moss, R.E.S.

    2004-01-01

    This paper presents'new correlations for assessment of the likelihood of initiation (or triggering) of soil liquefaction. These new correlations eliminate several sources of bias intrinsic to previous, similar correlations, and provide greatly reduced overall uncertainty and variance. Key elements in the development of these new correlations are (1) accumulation of a significantly expanded database of field performance case histories; (2) use of improved knowledge and understanding of factors affecting interpretation of standard penetration test data; (3) incorporation of improved understanding of factors affecting site-specific earthquake ground motions (including directivity effects, site-specific response, etc.); (4) use of improved methods for assessment of in situ cyclic shear stress ratio; (5) screening of field data case histories on a quality/uncertainty basis; and (6) use of high-order probabilistic tools (Bayesian updating). The resulting relationships not only provide greatly reduced uncertainty, they also help to resolve a number of corollary issues that have long been difficult and controversial including: (1) magnitude-correlated duration weighting factors, (2) adjustments for fines content, and (3) corrections for overburden stress. ?? ASCE.

  9. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    SciTech Connect

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated.

  10. A bayesian approach for determining velocity and uncertainty estimates from seismic cone penetrometer testing or vertical seismic profiling data

    USGS Publications Warehouse

    Pidlisecky, A.; Haines, S.S.

    2011-01-01

    Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.

  11. Development of phased array ultrasonic testing in lieu of radiography for testing complete joint penetration (CJP) welds

    NASA Astrophysics Data System (ADS)

    Haldipur, P.; Boone, Shane D.

    2014-04-01

    The past decade has seen new, emerging innovation of Ultrasonic Testing (UT). Specifically, multiple manufacturers have produced Phased Array Ultrasonic Testing (PAUT) systems. The PAUT systems embed a matrix of multiple (some up to 128) single transducers into one probe used for scanning elastic materials. Simultaneously exciting multiple transducers offers distinct advantages; depending on the sequencing of transducer excitation, the ultrasonic beam could be steered within the material and multiple beams help develop extra dimensional data to assist with visualization of possible flaws including the discontinuity size, shape and location. Unfortunately, there has not been broad acceptance of PAUT in the bridge fabrication industry because it is currently not a recognized inspection technology in AWS D1.5. One situation in which the technology would excel would be inspection of Complete Joint Penetration (CJP) butt welds. Currently, AWS D1.5 required CJP welds subjected to tensile or reversal stresses only be inspected by Radiographic Testing (RT). However, discontinuities normally seen by RT can also be seen with PAUT. Until specification language is adopted into D1.5, there will continue to be hesitancy to use PAUT for the inspection of CJP butt welds. Developmental work must first be performed to develop the acceptance criteria and the specification language. The developmental work from the inspections carried out on butt-weld specimens and transition butt-weld specimens are presented in this paper. Specific scan plans were developed using the ES-Beam simulation software for each of the test specimens. In depth analysis of PAUT data obtained to determine exact location and sizing information of the defects was performed. The results also present the comparison of results from PAUT to those obtained using conventional UT and radiography.

  12. Molecular diagnostic tests for ascertainment of genotype at the rod cone dysplasia 1 (rcd1) locus in Irish setters.

    PubMed

    Ray, K; Baldwin, V J; Acland, G M; Aguirre, G D

    1995-03-01

    Rod-cone dysplasia type 1 (rcd1) is one of several canine photoreceptor degenerations, collectively termed progressive retinal atrophy (PRA), that afflict different breeds of dogs. The rcd1 phenotype is an early onset autosomal recessive disease caused by a nonsense amber mutation, at codon 807, in the canine gene for the beta-subunit of rod cyclic GMP phosphodiesterase (canine PDEB). The mutation involves a G to A transition at nucleotide position 2420, which presumably would cause premature termination of the canine PDEB protein by 49 amino acid residues. In both a small pedigree study of Irish setters from the United Kingdom and in larger canine pedigree studies in the United States, this gene defect has been found to be the only mutation causing rcd1. Here we report development of a diagnostic test which unequivocally distinguishes the three genotypes at the rcd1 locus: rcd1/rcd1 (homozygous mutant, affected); rcd1/+ (heterozygous, carrier); and +/+ (homozygous normal, wildtype).

  13. Autosomal dominant retinitis pigmentosa with apparent incomplete penetrance: a clinical, electrophysiological, psychophysical, and molecular genetic study.

    PubMed Central

    Moore, A T; Fitzke, F; Jay, M; Arden, G B; Inglehearn, C F; Keen, T J; Bhattacharya, S S; Bird, A C

    1993-01-01

    Twenty five symptomatic individuals and six asymptomatic obligate gene carriers from four families with autosomal dominant retinitis pigmentosa (adRP) showing apparent incomplete penetrance have been studied. Symptomatic individuals from three families showed early onset of night blindness, non-recordable rod electroretinograms, and marked elevation of both rod and cone thresholds in all subjects tested. In the fourth family, there was more variation in the age of onset of night blindness and some symptomatic individuals showed well preserved rod and cone function in some retinal areas. All asymptomatic individuals tested had evidence of mild abnormalities of rod and cone function, indicating that these families show marked variation in expressivity rather than true non-penetrance of the adRP gene. No mutations of the rhodopsin or RDS genes were found in these families and the precise genetic mutation(s) remain to be identified. PMID:8025041

  14. Geomechanics of penetration :laboratory analog experiments using a modified split hopkinson pressure bar/impact testing procedure.

    SciTech Connect

    Holcomb, David Joseph; Gettemy, Glen L.; Bronowski, David R.

    2005-11-01

    This research continues previous efforts to re-focus the question of penetrability away from the behavior of the penetrator itself and toward understanding the dynamic, possibly strain-rate dependent, behavior of the affected materials. A modified split Hopkinson pressure bar technique is prototyped to determine the value of reproducing the stress states, and mechanical responses, of geomaterials observed in actual penetrator tests within a laboratory setting. Conceptually, this technique simulates the passage of the penetrator surface past any fixed point in the penetrator trajectory by allowing for a controlled stress-time function to be transmitted into a sample, thereby mimicking the 1D radial projection inherent to analyses of the cavity expansion problem. Test results from a suite of weak (unconfined compressive strength, or UCS, of 22 MPa) concrete samples, with incident strain rates of 100-250 s{sup -1}, show that the complex mechanical response includes both plastic and anelastic wave propagation, and is critically dependent on incident particle velocity and saturation state. For instance, examination of the transmitted stress-time data, and post-test volumetric measurements of pulverized material, provide independent estimates of the plasticized zone length (1-2 cm) formed for incident particle velocity of {approx}16.7 m/s. The results also shed light on the elastic or energy propagation property changes that occur in the concrete. For example, the pre- and post-test zero-stress elastic wave propagation velocities show that the Young's modulus drops from {approx}19 GPa to <8 GPa for material within the first centimeter from the plastic transition front, while the Young's modulus of the dynamically confined, axially-stressed (in 6-18 MPa range) plasticized material drops to 0.5-0.6 GPa. The data also suggest that the critical particle velocity for formation of a plastic zone in the weak concrete is 13-15 m/s, with increased saturation tending to increase

  15. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-4, Liquid Penetrant Tests.

    ERIC Educational Resources Information Center

    Espy, John

    This fourth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes liquid penetrant examination which provides an effective method of detecting undesired, invisible surface discontinuities. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  16. The SORA Experiment: Testing the Subsurface Penetration Radar SHARAD on the Earth

    NASA Astrophysics Data System (ADS)

    Flamini, E.; Ori, G.; Seu, R.; Angrilli, F.

    2006-12-01

    Two subsurface penetrating radars are currently working on Mars: MARSIS and SHARAD. MARSIS displays deep penetration and low resolution and SHARAD exhibits low penetration and high resolution. SHARAD is able to depicts relatively detailed internal features and stratal patterns. In order to fully understand the SHARAD capability, the data interpretations, and possible future developments the Italian Space Agency is organising an experiment to fly a SHARAD model in a stratospheric ballon. The experiment will consists in a no-space qualified model of SHARAD installed on a stratospheric balloon flying over the Arctic from the Spitsbergen. The fly will circumnavigate the Arctic passing over Greenland, the Canadian Arctic Arcipelago, New Zelmya and probably Spitsbergen itself. The fly altitude will be 35000 m and the cruise will last about a week. The investigated aareas includes ice sheets, glaciers, permafrost areas, plutonic to sedimentary rocks. And sedimentary natural environments. Sea ice will be probably too thin to be detected by the instrument. Frequency will be chosen to mimic the SAHARD ones. The experiment is planned for June 2007 with backup on September 2007 or June 2008.

  17. Penetration of rod projectiles in semi-infinite targets : a validation test for Eulerian X-FEM in ALEGRA.

    SciTech Connect

    Park, Byoung Yoon; Leavy, Richard Brian; Niederhaus, John Henry J.

    2013-03-01

    The finite-element shock hydrodynamics code ALEGRA has recently been upgraded to include an X-FEM implementation in 2D for simulating impact, sliding, and release between materials in the Eulerian frame. For validation testing purposes, the problem of long-rod penetration in semi-infinite targets is considered in this report, at velocities of 500 to 3000 m/s. We describe testing simulations done using ALEGRA with and without the X-FEM capability, in order to verify its adequacy by showing X-FEM recovers the good results found with the standard ALEGRA formulation. The X-FEM results for depth of penetration differ from previously measured experimental data by less than 2%, and from the standard formulation results by less than 1%. They converge monotonically under mesh refinement at first order. Sensitivities to domain size and rear boundary condition are investigated and shown to be small. Aside from some simulation stability issues, X-FEM is found to produce good results for this classical impact and penetration problem.

  18. Fluorescent penetrant inspection

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1990-01-01

    The purpose of this experiment is to familiarize the student with fluorescent penetrant inspection and to relate it to classification of various defects. The penetrant method of nondestructive testing is a method for finding discontinuities open to the surface in solids and essentially nonporous bodies. The method employs a penetrating liquid which is applied over the surface and enters the discontinuity or crack. After the excess of penetrant has been cleaned from the surface, the penetrant which exudes or is drawn back out of the crack indicates the presence and location of a discontinuity. The experimental procedure is described.

  19. Operational evaluation of thunderstorm penetration test flights during project Storm Hazards '80

    NASA Technical Reports Server (NTRS)

    Keyser, G. L., Jr.; Deal, P. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    The National Aeronautics and Space Administration is conducting a research project called Storm Hazards '80 in order to study the prediction, detectability and avoidance of the hazards of severe storms for aircraft operations. The project, using a highly instrumented NASA F-106B airplane to penetrate thunderstorms, gathered and correlated data from both airborne and ground based instrumentation. The objectives of this project are to determine the effects of lightning on the design and operation of aircraft composite structures and digital electronic systems. The data will be used to determine the correlation of lightning hazards with other severe storm hazards, such as heavy precipitation, hail, turbulence and wind-shear, in order to develop an initial data base for use in design and avoidance. The NASA F-106B was equipped with a weather radar, stormscope, lightning measurement instrumentation and air sampling equipment. This paper will focus on the operational aspects of thunderstorm penetrations and the pilot techniques used to avoid the extremely hazardous portions of the storm such as the tornadoes and hail. It will deal with the effects of the storm elements on the aircraft hardware, avionics and the crew.

  20. Effect of ProTaper and Reciproc preparation and gutta-percha cone on cold lateral compaction

    PubMed Central

    Tanomaru-Filho, Mario; Trindade, Daniela Vilas Boas; de Almeida, Larissa Torres; Espir, Camila Galletti; Bonetti-Filho, Idomeo; Guerreiro-Tanomaru, Juliane Maria

    2016-01-01

    Context: The effectiveness of cold lateral compaction depends on the root canal preparation and used gutta-percha cone. Aims: The aim of this study is to evaluate finger spreader penetration into root canals prepared with ProTaper (PT) or Reciproc (Rec) systems and filled with gutta-percha cones with different tapers. Materials and Methods: Twenty-four simulated root canals in resin blocks with 30° curvature were prepared up to PT F2 or Rec R25. They were divided into four experimental groups according to the master gutta-percha cone and preparation (25.02 or F2/PT, and 25.02 or R25/Rec). Cold lateral compaction was performed using a stainless steel finger spreader size B. The set cone-finger spreader-resin block was placed in a universal test machine, and a load up to 1.5 kg was applied on the finger spreader. The final distance between the finger spreader and apical preparation after load application was obtained. For comparison among the groups, data were submitted to ANOVA and Tukey's tests, with a significance level of 5%. Results: Greater finger spreader penetration was observed for 0.02/Rec and 0.02/PT, followed by F2/PT and R25/Rec. Conclusion: The use of cones associated with PT and Rec preparations does not allow the finger spreader penetration up to the apical third. PMID:27656057

  1. Effect of ProTaper and Reciproc preparation and gutta-percha cone on cold lateral compaction

    PubMed Central

    Tanomaru-Filho, Mario; Trindade, Daniela Vilas Boas; de Almeida, Larissa Torres; Espir, Camila Galletti; Bonetti-Filho, Idomeo; Guerreiro-Tanomaru, Juliane Maria

    2016-01-01

    Context: The effectiveness of cold lateral compaction depends on the root canal preparation and used gutta-percha cone. Aims: The aim of this study is to evaluate finger spreader penetration into root canals prepared with ProTaper (PT) or Reciproc (Rec) systems and filled with gutta-percha cones with different tapers. Materials and Methods: Twenty-four simulated root canals in resin blocks with 30° curvature were prepared up to PT F2 or Rec R25. They were divided into four experimental groups according to the master gutta-percha cone and preparation (25.02 or F2/PT, and 25.02 or R25/Rec). Cold lateral compaction was performed using a stainless steel finger spreader size B. The set cone-finger spreader-resin block was placed in a universal test machine, and a load up to 1.5 kg was applied on the finger spreader. The final distance between the finger spreader and apical preparation after load application was obtained. For comparison among the groups, data were submitted to ANOVA and Tukey's tests, with a significance level of 5%. Results: Greater finger spreader penetration was observed for 0.02/Rec and 0.02/PT, followed by F2/PT and R25/Rec. Conclusion: The use of cones associated with PT and Rec preparations does not allow the finger spreader penetration up to the apical third.

  2. Spectral Analysis of Surface Waves and Standard Penetration Test for Sub-Soil Characterization: A Comparison Study.

    NASA Astrophysics Data System (ADS)

    Villagomez, Jessica

    2016-04-01

    Spectral Analysis of Surface Waves (SASW) is a method used for sub-soil characterization. SASW has the advantage of being non-intrusive and non-invasive. Commonly used in current geotechnical engineering for being faster and cheaper than other laboratory tests. Standard Penetration test (SPT), which is used to obtain stratigraphic profiles of the sub-soil, contrary to SASW test, is invasive, destructive and not less important, expensive. The SASW method uses dispersive characteristics of Rayleigh waves in stratified or half-space media to obtain their physical parameters and henceforward its characterization. From this, a soil profile is estimated. A comparison between a geophysical method, Spectral Analysis of Surface Waves (SASW), and the N-value obtained from a classic geotechnical test (SPT) to estimate and characterize the in-site sub-soil properties at Patillas Dam, Puerto Rico, will be given in this work.

  3. Wind Tunnel Test Results for Gas Flows Inside Axisymmetric Cavities on Cylindric Bodies with Nose Cones

    NASA Technical Reports Server (NTRS)

    Shvets, A. L.; Gilinsky, M.; Blankson, I. M.

    2004-01-01

    Experimental test results of air flow inside and at the cylindrical cavity located on axisymmetric body are presented. These tests were conducted in the wind tunnel A-7 of Institute of Mechanics at Moscow State University. Pressure distribution along the cavities and optical measurements were obtained. Dependence of these characteristics of length of a cavity in the range: L/D = 0.5 - 14 and free stream Mach in the range: M(sub infinity) = 0.6 - 3.0 was determined. Flow structure inside the cavity, cause of flow regime change, separation zones geometry and others were studied. In particular, the flow modes of with open and closed separation zones are determined.

  4. Summary of raman cone penetrometer probe waste tank radiation and chemical environment test

    SciTech Connect

    Reich, F.R.

    1996-09-27

    This report summarizes the results of testing Raman sapphire windows that were braze mounted into a mockup Raman probe head and stainless steel coupons in a simulated tank waste environment. The simulated environment was created by exposing sapphire window components, immersed in a tank simulant, in a gamma pit. This work was completed for the U.S. Department of Energy (DOE) Office of Environmental Management (EM-50) for Technical Task Proposal RL4-6-WT-21.

  5. Field drilling tests on improved geothermal unsealed roller-cone bits. Final report

    SciTech Connect

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-05-01

    The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  6. Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone

    SciTech Connect

    Chang, C.S. |; Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S.

    1994-08-01

    An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.

  7. Penetration Analysis of Aluminum Alloy Foam

    NASA Astrophysics Data System (ADS)

    Zhang, Nianmei; Yang, Guitong

    Aluminum alloy foam offers a unique combination of good characteristics, for example, low density, high strength and energy absorption. During penetration, the foam materials exhibit significant nonlinear deformation. The penetration of aluminum alloy foam struck transversely by cone-nosed projectiles has been theoretically investigated. The dynamic cavity-expansion model is used to study the penetration resistance of the projectiles, which can be taken as two parts. One is due to the elasto-plastic deformation of the aluminum alloy foam materials. The other is dynamic resistance force coming from the energy of the projectiles. The penetration resistance expression is derived and applied to analyze the penetration depth of cone-nosed projectiles into the aluminum alloy foam target. The effect of initial velocity, the geometry of the projectiles on the penetration depth is investigated.

  8. A Highly Sensitive Assay Using Synthetic Blood Containing Test Microbes for Evaluation of the Penetration Resistance of Protective Clothing Material under Applied Pressure.

    PubMed

    Shimasaki, Noriko; Hara, Masayuki; Kikuno, Ritsuko; Shinohara, Katsuaki

    2016-01-01

    To prevent nosocomial infections caused by even either Ebola virus or methicillin-resistant Staphylococcus aureus (MRSA), healthcare workers must wear the appropriate protective clothing which can inhibit contact transmission of these pathogens. Therefore, it is necessary to evaluate the performance of protective clothing for penetration resistance against infectious agents. In Japan, some standard methods were established to evaluate the penetration resistance of protective clothing fabric materials under applied pressure. However, these methods only roughly classified the penetration resistance of fabrics, and the detection sensitivity of the methods and the penetration amount with respect to the relationship between blood and the pathogen have not been studied in detail. Moreover, no standard method using bacteria for evaluation is known. Here, to evaluate penetration resistance of protective clothing materials under applied pressure, the detection sensitivity and the leak amount were investigated by using synthetic blood containing bacteriophage phi-X174 or S. aureus. And the volume of leaked synthetic blood and the amount of test microbe penetration were simultaneously quantified. Our results showed that the penetration detection sensitivity achieved using a test microbial culture was higher than that achieved using synthetic blood at invisible leak level pressures. This finding suggested that there is a potential risk of pathogen penetration even when visual leak of contaminated blood through the protective clothing was not observed. Moreover, at visible leak level pressures, it was found that the amount of test microbe penetration varied at least ten-fold among protective clothing materials classified into the same class of penetration resistance. Analysis of the penetration amount revealed a significant correlation between the volume of penetrated synthetic blood and the amount of test microbe penetration, indicating that the leaked volume of synthetic

  9. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Part 178 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR... Acceptance. (1) At least three specimens of the outer packaging materials must be tested; (2) Each test...

  10. Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics

    SciTech Connect

    Tward, D. J.; Siewerdsen, J. H.; Daly, M. J.; Richard, S.; Moseley, D. J.; Jaffray, D. A.; Paul, N. S.

    2007-11-15

    Soft-tissue detectability in cone-beam computed tomography (CBCT) was evaluated via two-alternative forced-choice (2AFC) tests. Investigations included the dependence of detectability on radiation dose, the influence of the asymmetric three-dimensional (3D) noise-power spectrum (NPS) in axial and sagittal or coronal planes, and the effect of prior knowledge on detectability. Custom-built phantoms ({approx}15 cm diameter cylinders) containing soft-tissue-simulating spheres of variable contrast and diameter were imaged on an experimental CBCT bench. The proportion of correct responses (P{sub corr}) in 2AFC tests was analyzed as a figure of merit, ideally equal to the area under the receiver operating characteristic curve. P{sub corr} was evaluated as a function of the sphere diameter (1.6-12.7 mm), contrast (20-165 HU), dose (1-7 mGy), plane of visualization (axial/sagittal), apodization filter (Hanning and Ram-Lak), and prior knowledge provided to the observer [ranging from stimulus known exactly (SKE) to stimulus unknown (SUK)]. Detectability limits were characterized in terms of the dose required to achieve a given level of P{sub corr} (e.g., 70%). For example, a 20 HU stimulus of diameter down to {approx}6 mm was detected with P{sub corr} 70% at dose {>=}2 mGy. Detectability tended to be greater in axial than in sagittal planes, an effect amplified by sharper apodization filters in a manner consistent with 3D NPS asymmetry. Prior knowledge had a marked influence on detectability - e.g., P{sub corr} for a {approx}6 mm(20 HU) sphere was {approx}55%-65% under SUK conditions, compared to {approx}70%-85% for SKE conditions. Human observer tests suggest practical implications for implementation of CBCT: (i) Detectability limits help to define minimum-dose imaging techniques for specific imaging tasks; (ii) detectability of a given structure can vary between axial and sagittal/coronal planes, owing to the spatial-frequency content of the 3D NPS in relation to the

  11. Influence of Penetration Rate and Indenter Diameter in Strength Measurement by Indentation Testing on Small Rock Specimens

    NASA Astrophysics Data System (ADS)

    Haftani, Mohammad; Bohloli, Bahman; Nouri, Alireza; Javan, Mohammad Reza Maleki; Moosavi, Mahdi; Moradi, Majid

    2015-03-01

    Indentation testing has been developed as an unconventional method to determine intact rock strength using small rock specimens within the size of drill cuttings. In previous investigations involving indentation testing, researchers have used different indenter stylus geometries, penetration rate (PR) and specimen sizes. These dissimilarities can restrict applications of this method for strength measurement and lead to non-comparable results. This paper investigates the influence of indenter diameter (ID) and PR on indentation indices for carbonate rocks to provide objective comparison and application of the existing correlations. As part of this research, several indentation tests were conducted using different IDs and PRs. The laboratory test results showed that indentation indices can be affected by ID while PR has only minor effect on the indentation indices. Thus, a normalizing function was presented to reduce the dependency of test results to ID. Verification of the findings with independent data confirms the suitability of the suggested normalizing function in determining the rock uniaxial compressive strength using testing data obtained from various IDs and PRs.

  12. Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M. J.; Ryan, J. C.; Tarbutton, J. A.

    2011-11-01

    A lab scale infiltration experiment was conducted to evaluate the use of transient multi-offset ground-penetrating radar (GPR) data for characterizing dynamic hydrologic events in the vadose zone. A unique GPR data acquisition setup allowed sets of 21 traces at different offsets to be recorded every 30 s during a 3 h infiltration experiment. The result is a rich GPR data cube that can be viewed as multi-offset gathers at discrete moments in time or as common offset images that track changes in the GPR arrivals over the course of the experiment. These data allows us to continuously resolve the depth to soil boundaries while simultaneously tracking changes in wave velocity, which are strongly associated with soil water content variations. During the experiment the average volumetric water content estimated in the tank ranged between 10-30% with discrepancies between the GPR results, moisture probe data, and 1-D numerical modeling on the order of 3-5% (vol vol-1), though the patterns of the estimated water content over time were consistent for both wetting and drying cycles. Relative errors in the estimated depth to a soil boundary located 60 cm from the surface of the tank were typically on the order of 2% over the course of the experiment. During the period when a wetting front migrated downward through the tank, however, errors in the estimated depth of this boundary were as high as 25%, primarily as a result of wave interference between arrivals associated with the wetting front and soil boundary. Given that our analysis assumed one-dimensional, vertical infiltration, this high error could also suggest that more exhaustive GPR data and comprehensive analysis methods are needed to accurately image non-uniform flow produced during periods of intense infiltration. Regardless, we were able to track the movement of the wetting front through the tank and found a reasonably good correlation with in-situ water content measurements. We conclude that transient multi

  13. Minnesota GPR Project 1998: testing ground penetrating radar technology on Minnesota roads and highways

    NASA Astrophysics Data System (ADS)

    Saarenketo, Timo; van Deusen, David; Maijala, Pekka

    2000-04-01

    During May 1998, Roadscanners Oy together with the Office of Minnesota Road Research performed a series of GPR tests in Minnesota, in order to determine the level of accuracy of the GPR technology in pavement and subgrade soil testing. The project involved a total of 195 km of GPR surveys carried out in different locations throughout Minnesota. The test sections represented a range of pavement materials, structures and soils found in the state. A number of GPR tests were performed to evaluate different types of pavement defect and ascertain their causes. The results of the Minnesota GPR Project 1998 clearly show the potential benefits that GPR techniques could offer the Minnesota Department of Transportation (DOT). The results of the Mn/ROAD tests show that GPR can be applied in measuring the layer thickness of various pavement structures. The surface reflection technique can be used to determine the signal velocity of both asphalt and concrete pavement structures. Mn/ROAD surveys also revealed evidence of some previously unknown defects in test cells, e.g. stripping, voids and moisture anomalies. A good example of the benefits the GPR technique can offer in detecting stripping is the T.H. 23, T.H. 71 Willmar case, where reference data, drill cores and FWD data matched almost perfectly with the GPR data. Another notable case presented in the paper is U.S. 52, Oronoco, where defects due to differential frost heave were located.

  14. Metallurgy, Visual Inspection, Hardness and Liquid Penetrant Testing, Aviation Quality Control 2: 9227.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course consists of the basic and simpler methods of inspecting and nondestructive testing of parts and materials to insure the quality and reliability of the finished product. The outline consists of six blocks totaling 135 hours: (1) defects in the metal ingot, (2) defects resulting from processing metals, (3) defects in metals in service,…

  15. Penetration equations

    SciTech Connect

    Young, C.W.

    1997-10-01

    In 1967, Sandia National Laboratories published empirical equations to predict penetration into natural earth materials and concrete. Since that time there have been several small changes to the basic equations, and several more additions to the overall technique for predicting penetration into soil, rock, concrete, ice, and frozen soil. The most recent update to the equations was published in 1988, and since that time there have been changes in the equations to better match the expanding data base, especially in concrete penetration. This is a standalone report documenting the latest version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. 11 refs., 6 tabs.

  16. Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model

    NASA Astrophysics Data System (ADS)

    Muduli, Pradyut; Das, Sarat

    2014-06-01

    This paper discusses the evaluation of liquefaction potential of soil based on standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). The liquefaction classification accuracy (94.19%) of the developed liquefaction index (LI) model is found to be better than that of available artificial neural network (ANN) model (88.37%) and at par with the available support vector machine (SVM) model (94.19%) on the basis of the testing data. Further, an empirical equation is presented using MGGP to approximate the unknown limit state function representing the cyclic resistance ratio (CRR) of soil based on developed LI model. Using an independent database of 227 cases, the overall rates of successful prediction of occurrence of liquefaction and non-liquefaction are found to be 87, 86, and 84% by the developed MGGP based model, available ANN and the statistical models, respectively, on the basis of calculated factor of safety (F s) against the liquefaction occurrence.

  17. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    NASA Astrophysics Data System (ADS)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  18. Cone-penetrometer exploration of sinkholes: Stratigraphy and soil properties

    SciTech Connect

    Bloomberg, D.; Upchurch, S.B.; Hayden, M.L. ); Williams, R.C. )

    1988-10-01

    Four sinkholes with varying surficial expressions were subjected to detailed stratigraphic and soil analysis by means of Standard Penetration Tests (SPT) and Electric Friction Cone Penetration Tests (CPT) in order to evaluate applications of CPT to sinkhole investigations. Although widely used, SPT data are of limited value and difficult to apply to sinkhole mapping. CPT is sensitive to minor lithologic variability and is superior to SPT as a cost-effective technique for determining geotechnical properties of sinkholes. The effectiveness of CPT data results from the force measurements made along the sleeve of the cone. The friction ratio (ratio of sleeve to tip resistance) is a good indicator of soil stratigraphy and properties. By smoothing the friction-ratio data, general stratigraphy and changes in soil properties are easily identified. Stratigraphy of the sinks has been complicated by intense weathering, karstification and marine transgressions. The resulting deposits include five stratigraphic units. 1 and 2 represent Plio-Pleistocene marine sediments with Unit 2 being the zone of soil clay accumulation. 3 and 4 are horizons residual from Miocene strata and indicate an episode of karstification prior to deposition of Units 1 and 2. CPT provides sufficient information for recognition of sinkhole stratigraphy and geotechnical properties. When coupled with laboratory soil analysis, CPT provides unique information about sinkhole geometry and dynamics. In contrast, SPT indicates general, inconclusive trends.

  19. Penetration strength of coarse granular materials from DEM simulations

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Saussine, Gilles; Breul, Pierre; Radjai, Farhang

    2013-06-01

    Field tests are widely used for soil characterization in geotechnical applications in spite of implementation difficulties. The light penetrometer test is a well-known testing tool for fine soils, but the physical interpretation of the output data in the case of coarse granular materials is far less evident. In fact, the data are considerably more sensitive to various parameters such as fabric structure, particles shape or the applied impact energy. In order to achieve a better understanding of the underlying phenomena, we performed a numerical study by means contact dynamics DEM simulations. We consider the penetration of a moving tip into a sample composed of irregular grain shapes and we analyze the influence of the driving velocity and applied energy on the penetration strength. We find that the latter grows with both the penetration rate and energy. Force fluctuations on the tip involve a jamming-unjamming process. The typology of contact network and inter-granular friction play a major role in the fluctuations and measured values of the cone penetration strength.

  20. Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two test sites

    NASA Astrophysics Data System (ADS)

    van Overmeeren, R. A.; Sariowan, S. V.; Gehrels, J. C.

    1997-10-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test sites in the Netherlands. At these same locations and on the same dates, soil water content was measured in access tubes using a capacitance probe. Comparison of GPR and capacitance probe observations revealed that: the inferred absolute values of soil water content agree well. This is remarkable because the soil water content is deduced entirely differently for the two methods. Seasonal fluctuations in soil water content established for different (general) depth zones of radar waves correlate well with the fluctuations observed in the access tubes. The various methods to determine the propagation velocities of radar waves are complementary; together they produce a realistic and reasonably complete image of the vertical distribution of the soil water content of the entire unsaturated zone. High-frequency (200 MHz) direct groundwaves and refracted waves constitute a particularly attractive complementary combination, which provides information on consecutive shallow zones in the underground, i.e. the zones of major soil water content fluctuations. Lateral variations established at one of the test sites where several access tubes have been placed in a transect also follow from the GPR measurements along that profile; this non-destructive determination of soil water content in practically continuous and detailed sections is one of the great assets of GPR, opening the way to mapping preferential soil water flow paths.

  1. Whiskers, cones and pyramids created in sputtering by ion bombardment

    NASA Technical Reports Server (NTRS)

    Wehner, G. K.

    1979-01-01

    A thorough study of the role which foreign atoms play in cone formation during sputtering of metals revealed many experimental facts. Two types of cone formation were distinquished, deposit cones and seed cones. Twenty-six combinations of metals for seed cone formation were tested. The sputtering yield variations with composition for combinations which form seed cones were measured. It was demonstrated that whisker growth becomes a common occurrence when low melting point material is sputter deposited on a hot nonsputtered high melting point electrode.

  2. Cone-based electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Pidlisecky, Adam

    Determining the 3-D spatial distribution of subsurface properties is a critical part of managing the clean-up of contaminated sites. Most standard hydrologic methods sample small regions immediately adjacent to wells or testing devices. This provides data which are not representative of the entire region of interest. Furthermore, at many contaminated sites invasive methods are not acceptable, due to the risks associated with contacting and spreading the contaminants. To address these issues, I have developed a minimally invasive technology that provides information about the 3-D distribution of electrical conductivity. This new technique, cone-based electrical resistivity tomography (C-bert), integrates the existing technologies of resistivity cone penetration testing (RCPT) with electrical resistivity tomography. Development of this tool included the creation of new software and modeling algorithms, the design of field equipment, field testing, and processing and interpretation of the resulting data. I present a 2.5-D forward modeling algorithm that incorporates an effective correction for the errors caused by boundary effects and source singularities. The algorithm includes an optimization technique for acquiring the Fourier coefficients required for the solution. A 3-D inversion algorithm is presented that has two major improvements over existing algorithms. First, it includes a 3-D version of the boundary correction/source singularity correction developed for the 2.5-D problem. Second, the algorithm can handle any type of acquisition geometry; this was a requirement for the development of C-bert. C-bert involves placing several permanent current electrodes in the subsurface and using electrodes mounted on a cone penetrometer and at the surface to measure the resultant potential field. In addition to these measurements, we obtain the standard suite of RCPT data, including high resolution resistivity logs. The RCPT data can be used to generate a realistic

  3. System design description cone penetrometer system

    SciTech Connect

    Seda, R.Y., Westinghouse Hanford

    1996-08-12

    The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

  4. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    Alan Black; Arnis Judzis

    2005-09-30

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.

  5. The cone dystrophies.

    PubMed

    Simunovic, M P; Moore, A T

    1998-01-01

    The cone dystrophies are a heterogeneous group of inherited disorders that result in dysfunction of the cone photoreceptors and sometimes their post-receptoral pathways. The major clinical features of cone dystrophy are photophobia, reduced visual acuity and abnormal colour vision. Ganzfeld electroretinography shows reduced or absent cone responses. On the basis of their natural history, the cone dystrophies may be broadly divided into two groups: stationary and progressive cone dystrophies. The stationary cone dystrophies have received more attention, and subsequently our knowledge of their molecular genetic, psychophysical and clinical characteristics is better developed. Various methods of classification have been proposed for the progressive cone dystrophies, but none is entirely satisfactory, largely because the underlying disease mechanisms are poorly understood. Multidisciplinary studies involving clinical assessment, molecular genetics, electrophysiology and psychophysics should lead to an improved understanding of the pathogenesis of these disorders.

  6. Cold knife cone biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003910.htm Cold knife cone biopsy To use the sharing features on this page, please enable JavaScript. A cold knife cone biopsy (conization) is surgery to remove ...

  7. Conception of a course for professional training and education in the field of computer and mobile forensics, part III: network forensics and penetration testing

    NASA Astrophysics Data System (ADS)

    Kröger, Knut; Creutzburg, Reiner

    2014-02-01

    IT security and computer forensics are important components in the information technology. From year to year, incidents and crimes increase that target IT systems or were done with their help. More and more companies and authorities have security problems in their own IT infrastructure. To respond to these incidents professionally, it is important to have well trained staff. The fact that many agencies and companies work with very sensitive data make it necessary to further train the own employees in the field of network forensics and penetration testing. Motivated by these facts, this paper - a continuation of a paper of January 2012 [1], which showed the conception of a course for professional training and education in the field of computer and mobile forensics - addresses the practical implementation important relationships of network forensic and penetration testing.

  8. [Fertilizing capacity of the ejaculate of nutria (Myocastor coypus) after the removal of the seminal vesicles as evaluated by the penetration test and natural mating].

    PubMed

    Jakubicka, I; Barta, M; Babusík, P

    1989-07-01

    The fertility of male coypu sperm following seminal vesicle extirpation was investigated using the penetration test into the egg of Syrian golden hamster (Mesocricetus auratus). Ejaculates were obtained from five males by means of electro-ejaculation under halothane narcosis. The results of the zona-free hamster eggs (ZFHE) penetration test showed that the ejaculates of all the surgically treated coypu males were fertile and that ZFHE value fluctuated from 54 to 76.6%. The results obtained in experiments with natural mating revealed that the extirpation of male coypu seminal vesicles did not affect their fertility. In total 47 foetuses were found post mortem in ten coypu females covered by surgically treated males, which on average represented 4.7 foetuses per female. PMID:2678717

  9. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  10. Supersonic Testing of 0.8 m Disk Gap Band Parachutes in the Wake of a 70 Deg Sphere Cone Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Wernet, Mark; Roeder, James; Kelsch, Richard; Witkowski, Al; Jones, Thomas

    2009-01-01

    Supersonic wind tunnel testing of Viking-type 0.8 m Disk-Gap-Band (DGB) parachutes was conducted in the NASA Glenn Research Center 10'x10' wind-tunnel. The tests were conducted in support of the Mars Science Laboratory Parachute Decelerator System development and qualification program. The aerodynamic coupling of the entry-vehicle wake to parachute flow-field is under investigation to determine the cause and functional dependence of a supersonic canopy breathing phenomenon referred to as area oscillations, characteristic of DGB's above Mach 1.5 operation. Four percent of full-scale parachutes (0.8 m) were constructed similar to the flight-article in material and construction techniques. The parachutes were attached to a 70-deg sphere-cone entry-vehicle to simulate the Mars flight configuration. The parachutes were tested in the wind-tunnel from Mach 2 to 2.5 in a Reynolds number range of 2x105 to 1x106, representative of a Mars deployment. Three different test configurations were investigated. In the first two configurations, the parachutes were constrained horizontally through the vent region to measure canopy breathing and wake interaction for fixed trim angles of 0 and 10 degrees from the free-stream. In the third configuration the parachute was unconstrained, permitted to trim and cone, similar to free-flight (but capsule motion is constrained), varying its alignment relative to the entry-vehicle wake. Non-intrusive test diagnostics were chosen to quantify parachute performance and provide insight into the flow field structure. An in-line loadcell provided measurement of unsteady and mean drag. Shadowgraph of the upstream parachute flow field was used to capture bow-shock motion and wake coupling. Particle image velocimetry provided first and second order flow field statistics over a planar region of the flow field, just upstream of the parachute. A photogrammetric technique was used to quantify fabric motion using multiple high speed video cameras to record

  11. Chainsaw penetrating neck injury.

    PubMed

    Brown, A F

    1995-06-01

    A case of chainsaw injury to the neck is described. Previous reports in the English language are exceedingly rare. A brief discussion of safety features on chain saws is followed by a review of selective vs. mandatory surgical exploration in penetrating neck trauma, including the role of ancillary diagnostic tests.

  12. Non-penetrance in a MODY 3 family with a mutation in the hepatic nuclear factor 1alpha gene: implications for predictive testing.

    PubMed

    Miedzybrodzka, Z; Hattersley, A T; Ellard, S; Pearson, D; de Silva, D; Harvey, R; Haites, N

    1999-09-01

    The most common cause of maturity-onset diabetes of the young (MODY) is a mutation in the hepatic nuclear factor 1alpha (HNF1alpha) gene (MODY3). We describe a family in which a missense mutation causing a Thr-Ile substitution at codon 620 has been found in all affected members. The mutation is not fully penetrant as two family members aged 87 and 46 have the mutation but do not have diabetes. The severity and age of diagnosis of diabetes varies widely within the family, and most presented over the age of 25. HNF1alpha mutation screening should be considered in any family with autosomal dominant inheritance of diabetes where one member has presented with diabetes before the age of 25. Predictive testing is now possible within the majority of MODY families, and is of clinical benefit, but the possibility of non-penetrance should be addressed during counselling and interpretation of results. PMID:10482964

  13. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  14. "Worst-case" aerosol testing parameters: III. Initial penetration of charged and neutralized lead fume and silica dust aerosols through clean, unloaded respirator filters.

    PubMed

    Moyer, E S; Stevens, G A

    1989-05-01

    The National Institute for Occupational Safety and Health (NIOSH) tests and certifies respirator filter media according to Title 30, Code of Federal Regulations, Part 11 (30 CFR 11). Subpart K of those regulations specifies that a silica dust test, silica mist test, and/or lead fume test will be used to test and certify dust and mist; and dust, fume, and mist particulate air-purifying respirator filter media. NIOSH studies have shown that an aerosol particle of a certain size can be identified as the most penetrating particle ("worst case") size. Commercial filter media of various types have been studied and the filter's performance against a worst-case sodium chloride (NaCl) and dioctyl phthalate (DOP) aerosol evaluated. This investigation was done to complement those previous studies by determining how one manufacturer's particulate filters performed against the existing certification aerosol challenges as compared with the worst-case size DOP and NaCl aerosols. Only initial penetration values were determined, and no loading effects were considered. Both neutralized (Boltzman charge distribution) and unneutralized aerosols were used in order to assess the contribution of charging. The results show the dramatic effect of particle size on filter efficiency, and they show that the present methods are not as sensitive as the worst-case aerosol method. PMID:2543198

  15. Worst-case aerosol testing parameters: III. Initial penetration of charged and neutralized lead fume and silica dust aerosols through clean, unloaded respirator filters

    SciTech Connect

    Moyer, E.S.; Stevens, G.A.

    1989-05-01

    The National Institute for Occupational Safety and Health (NIOSH) tests and certifies respirator filter media according to Title 30, Code of Federal Regulations, Part 11 (30 CFR 11). Subpart K of those regulations specifies that a silica dust test, silica mist test, and/or lead fume test will be used to test and certify dust and mist; and dust, fume, and mist particulate air-purifying respirator filter media. NIOSH studies have shown that an aerosol particle of a certain size can be identified as the most penetrating particle (''worst case'') size. Commercial filter media of various types have been studied and the filter's performance against a worst-case sodium chloride (NaCl) and dioctyl phthalate (DOP) aerosol evaluated. This investigation was done to complement those previous studies by determining how one manufacturer's particulate filters performed against the existing certification aerosol challenges as compared with the worst-case size DOP and NaCl aerosols. Only initial penetration values were determined, and no loading effects were considered. Both neutralized (Boltzman charge distribution) and unneutralized aerosols were used in order to assess the contribution of charging. The results show the dramatic effect of particle size on filter efficiency, and they show that the present methods are not as sensitive as the worst-case aerosol method.

  16. Gas-jet and tangent-slot film cooling tests of a 12.5 deg cone at Mach number of 6.7

    NASA Technical Reports Server (NTRS)

    Nowak, Robert J.

    1988-01-01

    Tests were conducted in the Langley 8-Foot High Temperature Tunnel to determine the aerothermal effects of gaseous nitrogen-coolant ejection on a 3-ft base-diameter, 12.5 degree half-angle cone. Free-stream Mach number, total temperature, and unit Reynolds number per foot were 6.7, 3300 deg R, and 1.4 million, respectively. Two coolant ejection noses were tested, an ogive frustum with a forward-facing 0.8-in radius gas-jet tip, and a 3-in radius hemisphere with a 0.243-in high rearward-facing tangent slot. Data include surface pressures and heating rates, shock shapes, and shock-layer profiles; results are compared with no-cooling data obtained with 1-in and 3-in radius solid noses. Surface pressures were reduced with gas-jet ejection but were affected little by tangent-slot ejection. For both gas-jet and tangent-slot ejection, high coolant flow rates reduced heating even far downstream from the region of ejection; however, low coolant rates caused transition to turbulence and increased heating. Shock-layer profiles of pitot pressure, Mach number, and total temperature were reduced for both gas-jet and tangent-slot ejection. Insight into the gas-jet heat-flux mechanisms was obtained by using shock-layer rake data and established, no-cooling, heat-transfer equations.

  17. Aerothermodynamic Testing of Protuberances and Penetrations on the NASA Crew Exploration Vehicle Heat Shield in the NASA Langley 20-Inch Mach 6 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2008-01-01

    An experimental wind tunnel program is being conducted in support of an Agency wide effort to develop a replacement for the Space Shuttle and to support the NASA s long-term objective of returning to the moon and then on to Mars. This paper documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle. Global heat transfer images and heat transfer distributions obtained using phosphor thermography were used to infer interference heating on the Crew Exploration Vehicle Cycle 1 heat shield from local protuberances and penetrations for both laminar and turbulent heating conditions. Test parametrics included free stream Reynolds numbers of 1.0x10(exp 6)/ft to 7.25x10(exp 6)/ft in Mach 6 air at a fixed angle-of-attack. Single arrays of discrete boundary layer trips were used to trip the boundary layer approaching the protuberances/penetrations to a turbulent state. Also, the effects of three compression pad diameters, two radial locations of compression pad/tension tie location, compression pad geometry, and rotational position of compression pad/tension tie were examined. The experimental data highlighted in this paper are to be used to validate CFD tools that will be used to generate the flight aerothermodynamic database. Heat transfer measurements will also assist in the determination of the most appropriate engineering methods that will be used to assess local flight environments associated with protuberances/penetrations of the CEV thermal protection system.

  18. Design and development testing of the bonded joint between a typical launch vehicle attachment ring and CFRP thrust cone

    NASA Astrophysics Data System (ADS)

    Sharkey, J. T.; Nayler, G. H. F.; Reynolds, J.

    1986-02-01

    The development of the principal structural joint of a Shuttle payload is described. The joint is subjected to large tension and compression loads due to the spacecraft being cantilevered perpendicular to the direction of flight of the launch vehicle. Finite element modeling was included in the investigation of joint designs. A bonded and bolted double lap shear configuration was chosen. Manufacturing and inspection methods were developed and testing of joint samples was undertaken including static, thermal and fatigue loading. The static test results were used to determine the design allowable strength of the joint.

  19. Cone-penetrometer exploration of Sinkholes: Stratigraphy and soil properties

    NASA Astrophysics Data System (ADS)

    Bloomberg, D.; Upchurch, S. B.; Hayden, M. L.; Williams, R. C.

    1988-10-01

    Four sinkholes with varying surficial expressions were subjected to detailed stratigraphic and soil analysis by means of Standard Penetration Tests (SPT) and Electric Friction Cone Penetration Tests (CPT) in order to evaluate applications of CPT to sinkhole investigations. Although widely used, SPT data are of limited value and difficult to apply to sinkhole mapping. CPT is sensitive to minor lithologic variability and is superior to SPT as a cost-effective technique for determining geotechnical properties of sinkholes. The effectiveness of CPT data results from the force measurements made along the sleeve of the cone. The friction ratio (ratio of sleeve to tip resistance) is a good indicator of soil stratigraphy and properties. By smoothing the friction-ratio data, general stratigraphy and changes in soil properties are easily identified. Stratigraphy of the sinks has been complicated by intense weathering, karstification and marine, transgressions. The resulting deposits include five stratigraphic units. I and II represent Plio-Pleistocene marine sediments with Unit II being the zone of soil clay accumulation. III and IV are horizons residual from Miocene strata and indicate an episode of karstification prior to deposition of Units I and II. Conduit fill is a mixture of materials with low cohesion. The fill materials indicate centripetal and downward movement of insoluble sediments derived from the surrounding strata. Loss of cohesion results in near-zero friction ratios. Very low friction ratios, coupled with materials with little cohesion, indicate potentially-liquefiable soils in the immediate vicinity of zones where piping failure may be imminent. SPT does not provide sufficient data to predict these zones of potential, failure. CPT provides sufficient information for recognition of sinkhole stratigraphy and geotechnical properties. When coupled with laboratory soil analysis, CPT provides unique information about sinkhole geometry and dynamics. In contrast

  20. Modal content of living human cone photoreceptors

    PubMed Central

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2015-01-01

    Decades of experimental and theoretical investigations have established that photoreceptors capture light based on the principles of optical waveguiding. Yet considerable uncertainty remains, even for the most basic prediction as to whether photoreceptors support more than a single waveguide mode. To test for modal behavior in human cone photoreceptors in the near infrared, we took advantage of adaptive-optics optical coherence tomography (AO-OCT, λc = 785 nm) to noninvasively image in three dimensions the reflectance profile of cones. Modal content of reflections generated at the cone inner segment and outer segment junction (IS/OS) and cone outer segment tip (COST) was examined over a range of cone diameters in 1,802 cones from 0.6° to 10° retinal eccentricity. Second moment analysis in conjunction with theoretical predictions indicate cone IS and OS have optical properties consistent of waveguides, which depend on segment diameter and refractive index. Cone IS was found to support a single mode near the fovea (≤3°) and multiple modes further away (>4°). In contrast, no evidence of multiple modes was found in the cone OSs. The IS/OS and COST reflections share a common optical aperture, are most circular near the fovea, show no orientation preference, and are temporally stable. We tested mode predictions of a conventional step-index fiber model and found that in order to fit our AO-OCT results required a lower estimate of the IS refractive index and introduction of an IS focusing/tapering effect. PMID:26417509

  1. Cone Health and Retinoids.

    PubMed

    Kono, Masahiro

    2015-01-01

    Cones are photoreceptor cells used for bright light and color vision. Retinoids are vitamin A derivatives, one of which is the 11-cis aldehyde form that serves as the chromophore for both cone and rod visual pigments. In the visual disease, Type 2 Leber congenital amaurosis (LCA2), 11-cis-retinal generation is inhibited or abolished. Work by others has shown that patients with LCA2 have symptoms consistent with degenerating cones. In mouse models for LCA2, early cone degeneration is readily apparent: cone opsins and other proteins associated with the outer segment are delocalized and cell numbers decline rapidly within the first month. Rods would appear normal morphologically and functionally, if not for the absence of chromophore. Supplementation of mouse models of LCA2 with cis-retinoids has been shown to slow loss of cone photoreceptor cells if mice were maintained in darkness. Thus, 11-cis-retinal appears not only to have a role in the light response reaction but also to promote proper trafficking of the cone opsins and maintain viable cones. PMID:26310171

  2. Cone sampling array models

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Poirson, Allen

    1987-01-01

    A model is described for positioning cones in the retina. Each cone has a circular disk of influence, and the disks are tightly packed outward from the center. This model has three parameters that can vary with eccentricity: the mean radius of the cone disk, the standard deviation of the cone disk radius, and the standard deviation of postpacking jitter. Estimates for these parameters out to 1.6 deg are found by using measurements reported by Hirsch and Hylton (1985) and Hirsch and Miller (1987) of the positions of the cone inner segments of an adult macaque. The estimation is based on fitting measures of variation in local intercone distances, and the fit to these measures is good.

  3. S-cone psychophysics.

    PubMed

    Smithson, Hannah E

    2014-03-01

    We review the features of the S-cone system that appeal to the psychophysicist and summarize the celebrated characteristics of S-cone mediated vision. Two factors are emphasized: First, the fine stimulus control that is required to isolate putative visual mechanisms and second, the relationship between physiological data and psychophysical approaches. We review convergent findings from physiology and psychophysics with respect to asymmetries in the retinal wiring of S-ON and S-OFF visual pathways, and the associated treatment of increments and decrements in the S-cone system. Beyond the retina, we consider the lack of S-cone projections to superior colliculus and the use of S-cone stimuli in experimental psychology, for example to address questions about the mechanisms of visually driven attention. Careful selection of stimulus parameters enables psychophysicists to produce entirely reversible, temporary, "lesions," and to assess behavior in the absence of specific neural subsystems. PMID:24759446

  4. An Earth Penetrating Modeling Assessment

    SciTech Connect

    Stokes, E; Yarrington, P; Glenn, L

    2005-06-21

    Documentation of a study to assess the capability of computer codes to predict lateral loads on earth penetrating projectiles under conditions of non-normal impact. Calculations simulated a set of small scale penetration tests into concrete targets with oblique faces at angles of 15 and 30 degrees to the line-of-flight. Predictive codes used by the various calculational teams cover a wide range of modeling approaches from approximate techniques, such as cavity expansion, to numerical methods, such as finite element codes. The modeling assessment was performed under the auspices of the Phenomenology Integrated Product Team (PIPT) for the Robust Nuclear Earth Penetrator Program (RNEP). Funding for the penetration experiments and modeling was provided by multiple earth penetrator programs.

  5. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  6. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  7. Pneumatic and Percussive Penetration Approaches for Heat Flow Probe Emplacement on Robotic Lunar Missions

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Nagihara, S.; Hedlund, M.; Paulsen, G.; Shasho, J.; Mumm, E.; Kumar, N.; Szwarc, T.; Chu, P.; Craft, J.; Taylor, P.; Milam, M.

    2013-11-01

    In this paper, the development of heat flow probes for measuring the geothermal gradient and conductivity of lunar regolith are presented. These two measurements are the required information for determining the heat flow of a planetary body. Considering the Moon as an example, heat flow properties are very important information for studying the radiogenic isotopes, the thermal evolution and differentiation history, and the mechanical properties of the interior. In order to obtain the best measurements, the sensors must be extended to a depth of at least 3 m, i.e. beyond the depth of significant thermal cycles. Two approaches to heat flow deployment and measurement are discussed in this paper: a percussive approach and a pneumatic approach. The percussive approach utilizes a high frequency hammer to drive a cone penetrometer into the lunar simulant. Ring-like thermal sensors (heaters and temperature sensors) on the penetrometer rod are deployed into the simulant every 30 cm as the penetrometer penetrates to the required 3 m depth. Once the target depth has been achieved, the deployment rod is removed from the simulant, eliminating any thermal path to the lander. The pneumatic approach relies on pressurized gas to excavate, using a cone-shaped nozzle to penetrate the simulant. The nozzle is attached to a coiled stem with thermal sensors embedded along the length of the stem. As the simulant is being lofted out of the hole by the escaping gas, the stem is progressively reeled out from a spool, thus moving the cone deeper into the hole. Thermal conductivity is measured using a needle probe attached to the end of the cone. Breadboard prototypes of these two heat flow probe systems have been constructed and successfully tested under lunar-like conditions to approximately 70 cm, which was the maximum possible depth allowed by the size of the test bin and the chamber.

  8. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.

  9. The color cone.

    PubMed

    Logvinenko, Alexander D

    2015-02-01

    While the notion of a color cone can be found in writings of Maxwell, Helmholtz, Grassmann, and other scientists of the nineteenth century, it has not been clearly defined as yet. In this paper, the color cone is understood as the set of points in the cone excitation space produced by all possible lights. The spectral curve representing all the monochromatic lights is shown not to entirely belong to the color cone boundary, since its ends turn into the color cone interior. The monochromatic lights represented by the fragment of the spectral curve lying on the color cone boundary make up what is called the effective visible spectrum. The color cone is shown to be a convex hull of the conical surface through the fragment of the spectral curve representing the effective visible spectrum. The effective visible spectrum ends are shown to be determined by the photopigment spectral absorbance being independent of the prereceptor filters (e.g., the spectral transmittance of the lense and macular pigment).

  10. SU-E-J-109: Testing the KV Imaging Center Congruence with Radiation Isocenter of Small MLC and SRS Cone Field On Two Machines

    SciTech Connect

    Fu,; Chen, Y; Yu, Y; Liu, H

    2014-06-01

    Purpose: Orthogonal kV image pairs are used for target localization when fiducial markers are implanted. CBCT is used to verify cone SRS setup. Therefore it is necessary to evaluate the isocenter congruence between radiation fields and kV imaging center. This study used a simple method to evaluate the isocenter congruence, and compared the results for MLC and cone fields on two different Linacs. Methods: Varian OBI block was attached on the couch. It has a central 1mm BB with markers on three surfaces to align with laser. KV and MV images were taken at four cardinal angles. A 3x3cm2 MLC field and a 20mm cone field were irradiated respectively. On each kV image, the distance from BB center to the kV graticule center were measured. On the MV image of MLC field, the center of radiation field was determined manually, while for cone field, the Varian AM maintenance software was used to analyze the distance between BB and radiation field. The subtraction of the two distances gives the discrepancy between kV and radiation centers. Each procedure was repeated on five days at Trilogy and TrueBeam respectively. Results: The maximum discrepancy was found in the longitudinal direction at 180° gantry angel. It was 1.5±0.1mm for Trilogy and 0.6±0.1mm for TrueBeam. For Trilogy, although radiation center wobbled only 0.7mm and image center wobbled 0.8mm, they wobbled to the opposite direction. KV Pair using gantry 180° should be avoided in this case. Cone vs. kV isocenter has less discrepancy than MLC for Trilogy. Conclusion: Radiation isocenter of MLC and cone field is different, so is between Trilogy and TrueBeam. The method is simple and reproducible to check kV and radiation isocenter congruence.

  11. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Loya, Phillip E.; Lou, Jun; Thomas, Edwin L.

    2014-11-01

    Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second.

  12. Growth cone collapse assay.

    PubMed

    Cook, Geoffrey M W; Jareonsettasin, Prem; Keynes, Roger J

    2014-01-01

    The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia.

  13. Arias intensity assessment of liquefaction test sites on the east side of San Francisco Bay affected by the Loma Prieta, California, earthquake of 17 October 1989

    USGS Publications Warehouse

    Kayen, R.E.

    1997-01-01

    Abstract. Uncompacted artificial-fill deposits on the east side of San Francisco Bay suffered severe levels of soil liquefaction during the Loma Prieta earthquake of 17 October 1989. Damaged areas included maritime-port facilities, office buildings, and shoreline transportation arteries, ranging from 65 to 85 km from the north end of the Loma Prieta rupture zone. Typical of all these sites, which represent occurrences of liquefaction-induced damage farthest from the rupture zone, are low cone penetration test and Standard Penetration Test resistances in zones of cohesionless silty and sandy hydraulic fill, and underlying soft cohesive Holocene and Pleistocene sediment that strongly amplified ground motions. Postearthquake investigations at five study sites using standard penetration tests and cone penetration tests provide a basis for evaluation of the Arias intensity-based methodology for assessment of liquefaction susceptibility. ?? 1997 Kluwer Academic Publishers.

  14. Use of Sandia's Central Receiver Test Facility as a high-intensity heat source for testing missile nose-cone (Radome) radar systems

    SciTech Connect

    Porter, D.R.

    1981-09-01

    A series of tests at Sandia's Central Receiver Test Facility in support of the US Navy's SM-2 Blk 2 Radome Improvement Program is described. The CRTF was the source of high-intensity solar radiation for testing onboard radar-tracking systems under heating conditions intended to simulate those that occur in supersonic flight. Also discussed are the hardware used and the software developed at the CRTF.

  15. Testing for viral penetration of non-latex surgical and examination gloves: a comparison of three methods.

    PubMed

    O'Connell, K P; El-Masri, M; Broyles, J B; Korniewicz, D M

    2004-04-01

    Currently, there are no international standards based on microbiological methodology for testing the ability of medical examination or surgical gloves to prevent the passage of viruses. Three protocols for the direct examination of the viral barrier properties of non-latex gloves were compared with 1080 gloves (270 gloves from each of two surgical brands and two medical examination brands). In two of the methods, gloves were filled with and suspended in a nutrient broth solution, and bacteriophage phiX174 was placed either inside or outside the glove, while the entire test vessel was agitated. Gloves tested using the third method were filled with a suspension of bacteriophage and allowed to rest in a vessel containing nutrient broth. Gloves were tested directly from the manufacturer's packaging, or after being punctured intentionally or subjected to a stress protocol. The passage of bacteriophage was detected with plaque assays. Significant differences in failure rates between glove brands were apparent only among gloves that had been subjected to the stress protocol. Overall, the two methods in which bacteriophage were placed inside the gloves provided more sensitivity than the method in which bacteriophage was spiked into broth outside the gloves. Thus the placement of bacteriophage inside test gloves (or the use of pressure across the glove barrier during testing), and the use of a standardised stress protocol, will improve significantly the ability of a glove test protocol to determine the relative quality of the barrier offered by medical examination and surgical gloves. Further research is needed to provide test methods that can incorporate reproducibly both the use of bacteriophage and simulated glove use in an industrial quality control setting.

  16. 2017 Eclipse Shadow Cones

    NASA Video Gallery

    A solar eclipse occurs when the Moon's shadow falls on the Earth. The shadow comprises two concentric cones called the umbra and the penumbra. Within the smaller, central umbra, the Sun is complete...

  17. Lunar cinder cones.

    PubMed

    McGetchin, T R; Head, J W

    1973-04-01

    Data on terrestrial eruptions of pyroclastic material and ballistic considerations suggest that in the lunar environment (vacuum and reduced gravity) low-rimmed pyroclastic rings are formed rather than the high-rimmed cinder cones so abundant on the earth. Dark blanketing deposits in the Taurus-Littrow region (Apollo 17 landing area) are interpreted as being at least partly composed of lunar counterparts of terrestrial cinder cones.

  18. Lunar cinder cones.

    NASA Technical Reports Server (NTRS)

    Mcgetchin, T. R.; Head, J. W.

    1973-01-01

    Data on terrestrial eruptions of pyroclastic material and ballistic considerations suggest that in the lunar environment (vacuum and reduced gravity) low-rimmed pyroclastic rings are formed rather than the high-rimmed cinder cones so abundant on the earth. Dark blanketing deposits in the Taurus-Littrow region (Apollo 17 landing area) are interpreted as being at least partly composed of lunar counterparts of terrestrial cinder cones.

  19. Soil properties and performance of landmine detection by metal detector and ground-penetrating radar — Soil characterisation and its verification by a field test

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Preetz, Holger; Igel, Jan

    2011-04-01

    Metal detectors have commonly been used for landmine detection, and ground-penetrating radar (GPR) is about to be deployed for this purpose. These devices are influenced by the magnetic and electric properties of soil, since both employ electromagnetic techniques. Various soil properties and their spatial distributions were measured and determined with geophysical methods in four soil types where a test of metal detectors and GPR systems took place. By analysing the soil properties, these four soils were classified based on the expected influence of each detection technique and predicted soil difficulty. This classification was compared to the detection performance of the detectors and a clear correlation between the predicted soil difficulty and performance was observed. The detection performance of the metal detector and target identification performance of the GPR systems degraded in soils that were expected to be problematic. Therefore, this study demonstrated that the metal detector and GPR performance for landmine detection can be assessed qualitatively by geophysical analyses.

  20. Rod-cone interactions and analysis of retinal disease.

    PubMed Central

    Arden, G B; Hogg, C R

    1985-01-01

    Cone flicker threshold rises as the rods dark adapt, though the cone threshold to continuous light remains constant. The rise is normally about 1 log unit, but in certain patients who complain of night blindness it may be as great as 2.5 log units. In these persons the kinetics of the rod-cone interaction are those of the recovery of rod sensitivity. The rods impose a low-pass filter on the cones. This effect is absent in congenital nyctalopia and X-linked retinoschisis. We suggest that cone flicker is maintained through a feedback system involving horizontal cells, and when the rod dark current returns in dark adaptation this feedback is altered. Rod cone interaction thus tests rod dark current, and cases of abnormal interaction in patients with retinitis pigmentosa occur, which indicate that the transduction mechanism and the membrane dark current may be differentially affected. Images PMID:3873959

  1. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  2. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  3. The cone dysfunction syndromes

    PubMed Central

    Aboshiha, Jonathan; Dubis, Adam M; Hardcastle, Alison J; Michaelides, Michel

    2016-01-01

    The cone dysfunction syndromes are a heterogeneous group of inherited, predominantly stationary retinal disorders characterised by reduced central vision and varying degrees of colour vision abnormalities, nystagmus and photophobia. This review details the following conditions: complete and incomplete achromatopsia, blue-cone monochromatism, oligocone trichromacy, bradyopsia and Bornholm eye disease. We describe the clinical, psychophysical, electrophysiological and imaging findings that are characteristic to each condition in order to aid their accurate diagnosis, as well as highlight some classically held notions about these diseases that have come to be challenged over the recent years. The latest data regarding the genetic aetiology and pathological changes observed in the cone dysfunction syndromes are discussed, and, where relevant, translational avenues of research, including completed and anticipated interventional clinical trials, for some of the diseases described herein will be presented. Finally, we briefly review the current management of these disorders. PMID:25770143

  4. Why rods and cones?

    PubMed

    Lamb, T D

    2016-02-01

    Under twenty-first-century metropolitan conditions, almost all of our vision is mediated by cones and the photopic system, yet cones make up barely 5% of our retinal photoreceptors. This paper looks at reasons why we additionally possess rods and a scotopic system, and asks why rods comprise 95% of our retinal photoreceptors. It considers the ability of rods to reliably signal the arrival of individual photons of light, as well as the ability of the retina to process these single-photon signals, and it discusses the advantages that accrue. Drawbacks in the arrangement, including the very slow dark adaptation of scotopic vision, are also considered. Finally, the timing of the evolution of cone and rod photoreceptors, the retina, and the camera-style eye is summarised.

  5. Comparison of cone beam artifacts reduction: two pass algorithm vs TV-based CS algorithm

    NASA Astrophysics Data System (ADS)

    Choi, Shinkook; Baek, Jongduk

    2015-03-01

    In a cone beam computed tomography (CBCT), the severity of the cone beam artifacts is increased as the cone angle increases. To reduce the cone beam artifacts, several modified FDK algorithms and compressed sensing based iterative algorithms have been proposed. In this paper, we used two pass algorithm and Gradient-Projection-Barzilai-Borwein (GPBB) algorithm to reduce the cone beam artifacts, and compared their performance using structural similarity (SSIM) index. In two pass algorithm, it is assumed that the cone beam artifacts are mainly caused by extreme-density(ED) objects, and therefore the algorithm reproduces the cone beam artifacts(i.e., error image) produced by ED objects, and then subtract it from the original image. GPBB algorithm is a compressed sensing based iterative algorithm which minimizes an energy function for calculating the gradient projection with the step size determined by the Barzilai- Borwein formulation, therefore it can estimate missing data caused by the cone beam artifacts. To evaluate the performance of two algorithms, we used testing objects consisting of 7 ellipsoids separated along the z direction and cone beam artifacts were generated using 30 degree cone angle. Even though the FDK algorithm produced severe cone beam artifacts with a large cone angle, two pass algorithm reduced the cone beam artifacts with small residual errors caused by inaccuracy of ED objects. In contrast, GPBB algorithm completely removed the cone beam artifacts and restored the original shape of the objects.

  6. Double-Plate Penetration Equations

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    2000-01-01

    This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.

  7. Psychophysical definition of S-cone stimuli in the macaque

    PubMed Central

    Hall, Nathan; Colby, Carol

    2013-01-01

    We used the perceptual reports of nonhuman primates to perform psychophysical calibrations of S-cone isolating stimuli. S-cone stimuli were calibrated separately at several spatial locations for each monkey. To do this we exploited the effect of transient tritanopia, which causes a selective decrease of sensitivity in the observer's S-cone channel. At the start of each transient tritanopia trial monkeys were visually adapted to a bright yellow background. This type of adaptation is known to induce transient tritanopia. Calibrated S-cone isolating stimuli were determined by finding a near S-cone stimulus whose detection threshold was maximally elevated during transient tritanopia. At the start of each control trial, monkeys were adapted to a bright white background. In these trials, monkeys' detection thresholds for near S-cone stimuli were unchanged. We found that S-cone isolating stimuli could be determined at most locations tested in each monkey. Calibrated S-cone stimuli were particular to both spatial location and animal. To understand the visual system as a whole in vivo requires physiological methods not possible in human subjects. The present results open the door to novel behavioral and physiological experiments by showing that S-cone isolating stimuli can be calibrated in monkeys. PMID:23412341

  8. Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1977-01-01

    A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

  9. Shatter cones formed in large-scale experimental explosion craters

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Davis, L. K.

    1977-01-01

    In 1968, a series of 0.5-ton and 100-ton TNT explosion experiments were conducted in granitic rock near Cedar City, Utah, as part of a basic research program on cratering and shock wave propagation. Of special interest was the formation of an important type of shock metamorphic feature, shatter cones. A description is presented of the first reported occurrence of shatter cones in high explosion trials. A background to shatter cone studies is presented and attention is given to the test program, geology and physical properties of the test medium, the observed cratering, and the formational pressures for shatter cones. The high explosion trials conducted demonstrate beyond any doubt, that shatter cones can be formed by shock wave processes during cratering and that average formational pressures in these crystalline rocks are in the 20-60 kb range.

  10. AX Tank farm closure settlement estimates and soil testing

    SciTech Connect

    BECKER, D.L.

    1999-03-25

    This study provides a conservative three-dimensional settlement study of the AX Tank Farm closure with fill materials and a surface barrier. The finite element settlement model constructed included the interaction of four tanks and the surface barrier with the site soil and bedrock. Also addressed are current soil testing techniques suitable for the site soil with recommendations applicable to the AX Tank Farm and the planned cone penetration testing.

  11. Final design report for cone penetrometer platform

    SciTech Connect

    Seda, R.Y., Westinghouse Hanford

    1996-08-13

    The final design report documents the completion of the design review meetings for acceptance of the cone penetrometer from the vendor. All design comments have been dispositioned and closed. Open items dealt with completion of the safety assessment,operational procedures, operational testing and readiness review.

  12. Aerodynamic characteristics of the standard dynamics model in coning motion at Mach 0.6

    NASA Technical Reports Server (NTRS)

    Jermey, C.; Schiff, L. B.

    1985-01-01

    A wind tunnel test was conducted on the Standard Dynamics Model (a simplified generic fighter aircraft shape) undergoing coning motion at Mach 0.6. Six component force and moment data are presented for a range of angle of attack, sideslip, and coning rates. At the relatively low non-dimensional coning rate employed (omega b/2V less than or equal to 0.04), the lateral aerodynamic characteristics generally show a linear variation with coning rate.

  13. Overview: Hard Rock Penetration

    SciTech Connect

    Dunn, J.C.

    1992-01-01

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  14. Overview: Hard Rock Penetration

    SciTech Connect

    Dunn, J.C.

    1992-08-01

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  15. Overview - Hard Rock Penetration

    SciTech Connect

    Dunn, James C.

    1992-03-24

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling Organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  16. FAA fluorescent penetrant activities

    SciTech Connect

    Moore, D.G.; Larson, B.F.

    1997-11-01

    The Federal Aviation Administration`s Airworthiness Assurance NDI Validation Center (AANC) and the Center for Aviation Systems Reliability (CASR) are currently working to develop a liquid penetrant inspection (LPI) system evaluation capability that will support the needs of the penetrant manufacturers, commercial airline industry and the FAA. The main focus of this facility is to support the evaluation of penetrant inspection materials, penetrant systems and to apply resources to support industry needs. This paper discusses efforts to create such a facility and an initial project to produce fatigue crack specimens for evaluation of Type 1 penetrant sensitivities.

  17. Design and testing of Ground Penetrating Radar equipment dedicated for civil engineering applications: ongoing activities in Working Group 1 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Manacorda, Guido; Persico, Raffaele

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 1 'Novel GPR instrumentation' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Working Group 1 (WG1) of the Action focuses on the development of innovative GPR equipment dedicated for civil engineering applications. It includes three Projects. Project 1.1 is focused on the 'Design, realisation and optimisation of innovative GPR equipment for the monitoring of critical transport infrastructures and buildings, and for the sensing of underground utilities and voids.' Project 1.2 is concerned with the 'Development and definition of advanced testing, calibration and stability procedures and protocols, for GPR equipment.' Project 1.3 deals with the 'Design, modelling and optimisation of GPR antennas.' During the first year of the Action, WG1 Members coordinated between themselves to address the state of the art and open problems in the scientific fields identified by the above-mentioned Projects [1, 2]. In carrying our this work, the WG1 strongly benefited from the participation of IDS Ingegneria dei Sistemi, one of the biggest GPR manufacturers, as well as from the contribution of external experts as David J. Daniels and Erica Utsi, sharing with the Action Members their wide experience on GPR technology and methodology (First General Meeting, July 2013). The synergy with WG2 and WG4 of the Action was useful for a deep understanding of the problems, merits and limits of available GPR equipment, as well as to discuss how to quantify the reliability of GPR results. An

  18. Microcomputed tomography and shock microdeformation studies on shatter cones

    NASA Astrophysics Data System (ADS)

    Zaag, Patrice Tristan; Reimold, Wolf Uwe; Hipsley, Christy Anna

    2016-08-01

    One of the aspects of impact cratering that are still not fully understood is the formation of shatter cones and related fracturing phenomena. Yet, shatter cones have been applied as an impact-diagnostic criterion for decades without the role of shock waves and target rock defects in their formation having been elucidated ever. We have tested the application of the nondestructive microcomputed tomography (μCT) method to visualize the interior of shatter cones in order to possibly resolve links between fracture patterns and shatter cone surface features (striations and intervening "valleys"). Shatter-coned samples from different impact sites and in different lithologies were investigated for their μCT suitability, with a shatter cone in sandstone from the Serra da Cangalha impact structure (Brazil) remaining as the most promising candidate because of the fracture resolution achieved. To validate the obtained CT data, the scanned specimen was cut into three orthogonal sets of thin sections. Scans with 13 μm resolution were obtained. μCT scans and microscopic analysis unraveled an orientation of subplanar fractures and related fluid inclusion trails, and planar fracture (PF) orientations in the interior of shatter cones. Planar deformation features (PDF) were observed predominantly near the shatter cone surface. Previously undescribed varieties of feather features (FF), in the form of lamellae emanating from curviplanar and curved fractures, as well as an "arrowhead"-like FF development with microlamellae originating from both sides of a PF, were observed. The timing of shatter cone formation was investigated by establishing temporal relations to the generation of various shock microscopic effects. Shatter cones are, thus, generated post- or syn-formation of PF, FF, subplanar fractures, and PDF. The earliest possible time for shatter cone formation is during the late stage of the compressional phase, that is, shock wave passage, of an impact event.

  19. Development of partial ontogenic resistance to powdery mildew in hop cones and its management implications.

    PubMed

    Twomey, Megan C; Wolfenbarger, Sierra N; Woods, Joanna L; Gent, David H

    2015-01-01

    Knowledge of processes leading to crop damage is central to devising rational approaches to disease management. Multiple experiments established that infection of hop cones by Podosphaera macularis was most severe if inoculation occurred within 15 to 21 days after bloom. This period of infection was associated with the most pronounced reductions in alpha acids, cone color, and accelerated maturation of cones. Susceptibility of cones to powdery mildew decreased progressively after the transition from bloom to cone development, although complete immunity to the disease failed to develop. Maturation of cone tissues was associated with multiple significant affects on the pathogen manifested as reduced germination of conidia, diminished frequency of penetration of bracts, lengthening of the latent period, and decreased sporulation. Cones challenged with P. macularis in juvenile developmental stages also led to greater frequency of colonization by a complex of saprophytic, secondary fungi. Since no developmental stage of cones was immune to powdery mildew, the incidence of powdery mildew continued to increase over time and exceeded 86% by late summer. In field experiments with a moderately susceptible cultivar, the incidence of cones with powdery mildew was statistically similar when fungicide applications were made season-long or targeted only to the juvenile stages of cone development. These studies establish that partial ontogenic resistance develops in hop cones and may influence multiple phases of the infection process and pathogen reproduction. The results further reinforce the concept that the efficacy of a fungicide program may depend largely on timing of a small number of sprays during a relatively brief period of cone development. However in practice, targeting fungicide and other management tactics to periods of enhanced juvenile susceptibility may be complicated by a high degree of asynchrony in cone development and other factors that are situation-dependent.

  20. Development of Partial Ontogenic Resistance to Powdery Mildew in Hop Cones and Its Management Implications

    PubMed Central

    Twomey, Megan C.; Wolfenbarger, Sierra N.; Woods, Joanna L.; Gent, David H.

    2015-01-01

    Knowledge of processes leading to crop damage is central to devising rational approaches to disease management. Multiple experiments established that infection of hop cones by Podosphaera macularis was most severe if inoculation occurred within 15 to 21 days after bloom. This period of infection was associated with the most pronounced reductions in alpha acids, cone color, and accelerated maturation of cones. Susceptibility of cones to powdery mildew decreased progressively after the transition from bloom to cone development, although complete immunity to the disease failed to develop. Maturation of cone tissues was associated with multiple significant affects on the pathogen manifested as reduced germination of conidia, diminished frequency of penetration of bracts, lengthening of the latent period, and decreased sporulation. Cones challenged with P. macularis in juvenile developmental stages also led to greater frequency of colonization by a complex of saprophytic, secondary fungi. Since no developmental stage of cones was immune to powdery mildew, the incidence of powdery mildew continued to increase over time and exceeded 86% by late summer. In field experiments with a moderately susceptible cultivar, the incidence of cones with powdery mildew was statistically similar when fungicide applications were made season-long or targeted only to the juvenile stages of cone development. These studies establish that partial ontogenic resistance develops in hop cones and may influence multiple phases of the infection process and pathogen reproduction. The results further reinforce the concept that the efficacy of a fungicide program may depend largely on timing of a small number of sprays during a relatively brief period of cone development. However in practice, targeting fungicide and other management tactics to periods of enhanced juvenile susceptibility may be complicated by a high degree of asynchrony in cone development and other factors that are situation

  1. Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency

    NASA Astrophysics Data System (ADS)

    Dacey, Dennis M.; Lee, Barry B.; Stafford, Donna K.; Pokorny, Joel; Smith, Vivianne C.

    1996-02-01

    The chromatic dimensions of human color vision have a neural basis in the retina. Ganglion cells, the output neurons of the retina, exhibit spectral opponency; they are excited by some wavelengths and inhibited by others. The hypothesis that the opponent circuitry emerges from selective connections between horizontal cell interneurons and cone photoreceptors sensitive to long, middle, and short wavelengths (L-, M-, and S-cones) was tested by physiologically and anatomically characterizing cone connections of horizontal cell mosaics in macaque monkeys. H1 horizontal cells received input only from L- and M-cones, whereas H2 horizontal cells received a strong input from S-cones and a weaker input from L- and M-cones. All cone inputs were the same sign, and both horizontal cell types lacked opponency. Despite cone type selectivity, the horizontal cell cannot be the locus of an opponent transformation in primates, including humans.

  2. The instability of the BTB-KELCH protein Gigaxonin causes Giant Axonal Neuropathy and constitutes a new penetrant and specific diagnostic test

    PubMed Central

    2014-01-01

    Background The BTB-KELCH protein Gigaxonin plays key roles in sustaining neuron survival and cytoskeleton architecture. Indeed, recessive mutations in the Gigaxonin-encoding gene cause Giant Axonal Neuropathy (GAN), a severe neurodegenerative disorder characterized by a wide disorganization of the Intermediate Filament network. Growing evidences suggest that GAN is a continuum with the peripheral neuropathy Charcot-Marie-Tooth diseases type 2 (CMT2). Sharing similar sensory-motor alterations and aggregation of Neurofilaments, few reports have revealed that GAN and some CMT2 forms can be misdiagnosed on clinical and histopathological examination. The goal of this study is to propose a new differential diagnostic test for GAN/CMT2. Moreover, we aim at identifying the mechanisms causing the loss-of-function of Gigaxonin, which has been proposed to bind CUL3 and substrates as part of an E3 ligase complex. Results We establish that determining Gigaxonin level constitutes a very valuable diagnostic test in discriminating new GAN cases from clinically related inherited neuropathies. Indeed, in a set of seven new families presenting a neuropathy resembling GAN/CMT2, only five exhibiting a reduced Gigaxonin abundance have been subsequently genetically linked to GAN. Generating the homology modeling of Gigaxonin, we suggest that disease mutations would lead to a range of defects in Gigaxonin stability, impairing its homodimerization, BTB or KELCH domain folding, or CUL3 and substrate binding. We further demonstrate that regardless of the mutations or the severity of the disease, Gigaxonin abundance is severely reduced in all GAN patients due to both mRNA and protein instability mechanisms. Conclusions In this study, we developed a new penetrant and specific test to diagnose GAN among a set of individuals exhibiting CMT2 of unknown etiology to suggest that the prevalence of GAN is probably under-evaluated among peripheral neuropathies. We propose to use this new test in

  3. Light cone matrix product

    SciTech Connect

    Hastings, Matthew B

    2009-01-01

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  4. Aerothermal tests of a 12.5 percent cone at Mach 6.7 for various Reynolds numbers, angles of attack and nose shapes. [conducted in Langley 8-foot high temperature tunnel

    NASA Technical Reports Server (NTRS)

    Nowak, R. J.; Albertson, C. W.; Hunt, L. R.

    1984-01-01

    The effects of free-stream unit Reynolds number, angle of attack, and nose shape on the aerothermal environment of a 3-ft basediameter, 12.5 deg half-angle cone were investigated in the Langley 8-foot high temperature tunnel at Mach 6.7. The average total temperature was 3300 R, the freestream unit Reynolds number ranged from 400,000 to 1,400,000 per foot, and the angle of attack ranged from 0 deg to 10 deg. Three nose configurations were tested on the cone: a 3-in-radius tip, a 1-in-radius tip on an ogive frustum, and a sharp tip on an ogive frustum. Surface-pressure and cold-wall heating-rate distributions were obtained for laminar, transitional temperature in the shock layer were obtained. The location of the start of transition moved forward both on windward and leeward sides with increasing free-stream Reynolds numbers, increasing angle of attack, and decreasing nose bluntness.

  5. Seismic Site Classification and Correlation between Standard Penetration Test N Value and Shear Wave Velocity for Lucknow City in Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Anbazhagan, P.; Kumar, Abhishek; Sitharam, T. G.

    2013-03-01

    Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT ( N 30) and SWV ( V {s/30}) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V {s/30} and site class D and E based on N 30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N 30 and V {s/30} raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets

  6. Shatter cones: Diagnostic impact signatures

    NASA Astrophysics Data System (ADS)

    McHone, J. F.; Dietz, R. S.

    Uniquely fractured target rocks known as shatter cones are associated with more than one half the world's 120 or so presently known impact structures. Shatter cones are a form of tensile rock failure in which a positive conical plug separates from a negative outer cup or mold and delicate ornaments radiating from an apex are preserved on surfaces of both portions. Although distinct, shatter cones are sometimes confused with other striated geologic features such as ventifacts, stylolites, cone-in-cone, slickensides, and artificial blast plumes. Complete cones or solitary cones are rare, occurrences are usually as swarms in thoroughly fractured rock. Shatter cones may form in a zone where an expanding shock wave propagating through a target decays to form an elastic wave. Near this transition zone, the expanding primary wave may strike a pebble or other inhomogeneity whose contrasting transmission properties produce a scattered secondary wave. Interference between primary and secondary scattered waves produce conical stress fields with axes perpendicular to the plane of an advancing shock front. This model supports mechanism capable of producing such shatter cone properties as orientation, apical clasts, lithic dependence, and shock pressure zonation. Although formational mechanics are still poorly understood, shatter cones have become the simplest geologic field criterion for recognizing astroblemes (ancient terrestrial impact structures).

  7. Shatter cones: Diagnostic impact signatures

    NASA Technical Reports Server (NTRS)

    Mchone, J. F.; Dietz, R. S.

    1988-01-01

    Uniquely fractured target rocks known as shatter cones are associated with more than one half the world's 120 or so presently known impact structures. Shatter cones are a form of tensile rock failure in which a positive conical plug separates from a negative outer cup or mold and delicate ornaments radiating from an apex are preserved on surfaces of both portions. Although distinct, shatter cones are sometimes confused with other striated geologic features such as ventifacts, stylolites, cone-in-cone, slickensides, and artificial blast plumes. Complete cones or solitary cones are rare, occurrences are usually as swarms in thoroughly fractured rock. Shatter cones may form in a zone where an expanding shock wave propagating through a target decays to form an elastic wave. Near this transition zone, the expanding primary wave may strike a pebble or other inhomogeneity whose contrasting transmission properties produce a scattered secondary wave. Interference between primary and secondary scattered waves produce conical stress fields with axes perpendicular to the plane of an advancing shock front. This model supports mechanism capable of producing such shatter cone properties as orientation, apical clasts, lithic dependence, and shock pressure zonation. Although formational mechanics are still poorly understood, shatter cones have become the simplest geologic field criterion for recognizing astroblemes (ancient terrestrial impact structures).

  8. Cone rod dystrophies.

    PubMed

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently

  9. Chemical penetration enhancers.

    PubMed

    Newton, Stephen J

    2013-01-01

    Chemical penetration enhancers are utilized in topical preparations as a method for enhancing permeation of drugs across the skin. In particular, they are utilized for transdermal delivery of medications in an attempt to produce a systemic response, to avoid first-pass metabolism, and to decrease the gastrointestinal transit time observed with oral medications. A review of the selection of chemical penetration enhancers, their mechanism of action, the most common chemical penetration enhancers in each class, and alternatives will be discussed in detail.

  10. Evaluation of nano- and submicron particle penetration through ten nonwoven fabrics using a wind-driven approach.

    PubMed

    Gao, Pengfei; Jaques, Peter A; Hsiao, Ta-Chih; Shepherd, Angie; Eimer, Benjamin C; Yang, Mengshi; Miller, Adam; Gupta, Bhupender; Shaffer, Ronald

    2011-01-01

    Existing face mask and respirator test methods draw particles through materials under vacuum to measure particle penetration. However, these filtration-based methods may not simulate conditions under which protective clothing operates in the workplace, where airborne particles are primarily driven by wind and other factors instead of being limited to a downstream vacuum. This study was focused on the design and characterization of a method simulating typical wind-driven conditions for evaluating the performance of materials used in the construction of protective clothing. Ten nonwoven fabrics were selected, and physical properties including fiber diameter, fabric thickness, air permeability, porosity, pore volume, and pore size were determined. Each fabric was sealed flat across the wide opening of a cone-shaped penetration cell that was then housed in a recirculation aerosol wind tunnel. The flow rate naturally driven by wind through the fabric was measured, and the sampling flow rate of the Scanning Mobility Particle Sizer used to measure the downstream particle size distribution and concentrations was then adjusted to minimize filtration effects. Particle penetration levels were measured under different face velocities by the wind-driven method and compared with a filtration-based method using the TSI 3160 automated filter tester. The experimental results show that particle penetration increased with increasing face velocity, and penetration also increased with increasing particle size up to about 300 to 500 nm. Penetrations measured by the wind-driven method were lower than those obtained with the filtration method for most of the fabrics selected, and the relative penetration performances of the fabrics were very different due to the vastly different pore structures. PMID:21154104

  11. Formation of shatter cones in MEMIN impact experiments

    NASA Astrophysics Data System (ADS)

    Wilk, J.; Kenkmann, T.

    2016-08-01

    Shatter cones are the only macroscopic feature considered as evidence for shock metamorphism. Their presence is diagnostic for the discovery and verification of impact structures. The occurrence of shatter cones is heterogeneous throughout the crater record and their geometry can diverge from the typical cone shape. The precise formation mechanism of shatter cones is still not resolved. In this study, we aim at better constraining the boundary conditions of shatter cone formation in impact experiments and test a novel approach to qualitatively and quantitatively describe shatter cone geometries by white light interferometry. We recovered several ejected fragments from MEMIN cratering experiments that show slightly curved, striated surfaces and conical geometries with apices of 36°-52°. These fragments fulfilling the morphological criteria of shatter cones were found in experiments with 20-80 cm sized target cubes of sandstone, quartzite and limestone, but not in highly porous tuff. Targets were impacted by aluminum, steel, and iron meteorite projectiles at velocities of 4.6-7.8 km s-1. The projectile sizes ranged from 2.5-12 mm in diameter and produced experimental peak pressures of up to 86 GPa. In experiments with lower impact velocities shatter cones could not be found. A thorough morphometric analysis of the experimentally generated shatter cones was made with 3D white light interferometry scans at micrometer accuracy. SEM analysis of the surfaces of recovered fragments showed vesicular melt films alternating with smoothly polished surfaces. We hypothesize that the vesicular melt films predominantly form at strain releasing steps and suggest that shatter cones are probably mixed mode fractures.

  12. Performance analysis of cone detection algorithms.

    PubMed

    Mariotti, Letizia; Devaney, Nicholas

    2015-04-01

    Many algorithms have been proposed to help clinicians evaluate cone density and spacing, as these may be related to the onset of retinal diseases. However, there has been no rigorous comparison of the performance of these algorithms. In addition, the performance of such algorithms is typically determined by comparison with human observers. Here we propose a technique to simulate realistic images of the cone mosaic. We use the simulated images to test the performance of three popular cone detection algorithms, and we introduce an algorithm which is used by astronomers to detect stars in astronomical images. We use Free Response Operating Characteristic (FROC) curves to evaluate and compare the performance of the four algorithms. This allows us to optimize the performance of each algorithm. We observe that performance is significantly enhanced by up-sampling the images. We investigate the effect of noise and image quality on cone mosaic parameters estimated using the different algorithms, finding that the estimated regularity is the most sensitive parameter. PMID:26366758

  13. Follicular penetration and targeting.

    PubMed

    Lademann, Jürgen; Otberg, Nina; Jacobi, Ute; Hoffman, Robert M; Blume-Peytavi, Ulrike

    2005-12-01

    In the past, intercellular penetration was assumed to be the most important penetration pathway of topically applied substances. First hints that follicular penetration needs to be taken into consideration were confirmed by recent investigations, presented during the workshop "Follicular Penetration and Targeting" at the 4th Intercontinental Meeting of Hair Research Societies", in Berlin 2004. Hair follicles represent an efficient reservoir for the penetration of topically applied substances with subsequent targeting of distinct cell populations, e.g., nestin-expressing follicular bulge cells. The volume of this reservoir can be determined by differential stripping technology. The follicular penetration processes are significantly influenced by the state of the follicular infundibulum; recent experimental investigations could demonstrate that it is essential to distinguish between open and closed hair follicles. Topically applied substances can only penetrate into open hair follicle. Knowledge of follicular penetration is of high clinical relevance for functional targeting of distinct follicular regions. Human hair follicles show a hair-cycle-dependent variation of the dense neuronal and vascular network. Moreover, during hair follicle cycling with initiation of anagen, newly formed vessels occur. Thus, the potential of nestin-expressing hair follicle stem cells to form neurons and blood vessels was investigated.

  14. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  15. Internal Reflection Sensor for the Cone Penetrometer

    SciTech Connect

    Job Bello

    1998-05-29

    The objectives of this project are to design, assemble, test, and demonstrate a prototype Internal Reflection Sensor (IRS) for the cone penetrometer. The sensor will ultimately be deployed during site characterization with the goal of providing real-time, in situ detection of NonAqueous Phase Liquids (NAPLs) in the subsurface. In the first phase of this program, we have designed and assembled an IRS module that interfaces directly to a standard cone penetrometer system. Laboratory tests demonstrated that the sensor responds in real-time to a wide variety of free phase NAPLs without interference from natural materials such as water and soil of various types or dissolved contaminants. In a preliminary field test, the sensor was able to locate NAPLs at thin, discrete depths in a soil test pit when deployed with a cone penetrometer. Ruggedness of the device was tested with a series of penetrometer pushes to the depth of refusal at a clean location. There was no visible damage to the sensor and its performance did not change in the course of these experiments. Based on the successes of the Phase I program, it is recommended that the project proceed to full-scale demonstration in Phase II.

  16. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    NASA Technical Reports Server (NTRS)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  17. Percutaneous penetration--methodological considerations.

    PubMed

    Holmgaard, Rikke; Benfeldt, Eva; Nielsen, Jesper B

    2014-07-01

    Studies on percutaneous penetration are needed to assess the hazards after unintended occupational skin exposures to industrial products as well as the efficacy after intended consumer exposure to topically applied medicinal or cosmetic products. During recent decades, a number of methods have been developed to replace methods involving experimental animals. The results obtained from these methods are decided not only by the chemical or product tested, but to a significant degree also by the experimental set-up and decisions made by the investigator during the planning phase. The present MiniReview discusses some of the existing and well-known experimental in vitro and in vivo methods for studies of percutaneous penetration together with some more recent and promising methods. After this, some considerations and recommendations about advantages and limitations of the different methods and their relevance for the prediction of percutaneous penetration are given. Which method to prefer will depend on the product to be tested and the question asked. Regulatory guidelines exist for studies on percutaneous penetration, but researchers as well as regulatory bodies need to pay specific attention to the vehicles and solvents used in donor and sampling fluids so that it reflects in-use conditions as closely as possible. Based on available experimental data, mathematical models have been developed to aid predictions of skin penetration. The authors question the general use of the present mathematical models in hazard assessment, as they seem to ignore outliers among chemicals as well as the heterogeneity of skin barrier properties and skin conditions within the exposed populations. PMID:24373389

  18. Dynamic Site Characterization and Correlation of Shear Wave Velocity with Standard Penetration Test ` N' Values for the City of Agartala, Tripura State, India

    NASA Astrophysics Data System (ADS)

    Sil, Arjun; Sitharam, T. G.

    2014-08-01

    Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes ( M w > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity ( V s) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets ( V s profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity ( V s30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V s30 and SPT-N classified the study area as seismic site class D and E categories, indicating that

  19. FAA Fluorescent Penetrant Laboratory Inspections

    SciTech Connect

    WINDES,CONNOR L.; MOORE,DAVID G.

    2000-08-02

    The Federal Aviation Administration Airworthiness Assurance NDI Validation Center currently assesses the capability of various non-destructive inspection (NDI) methods used for analyzing aircraft components. The focus of one such exercise is to evaluate the sensitivity of fluorescent liquid penetrant inspection. A baseline procedure using the water-washable fluorescent penetrant method defines a foundation for comparing the brightness of low cycle fatigue cracks in titanium test panels. The analysis of deviations in the baseline procedure will determine an acceptable range of operation for the steps in the inspection process. The data also gives insight into the depth of each crack and which step(s) of the inspection process most affect penetrant sensitivities. A set of six low cycle fatigue cracks produced in 6.35-mm thick Ti-6Al-4V specimens was used to conduct the experiments to produce sensitivity data. The results will document the consistency of the crack readings and compare previous experiments to find the best parameters for water-washable penetrant.

  20. The Holographic Entropy Cone

    SciTech Connect

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  1. The Holographic Entropy Cone

    DOE PAGES

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  2. Making An Impact: Shatter Cones

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Plautz, Michael R.; Crews, Jeffrey W.

    2004-01-01

    In 1990, a group of geologists discovered a large number of shatter cones in southwestern Montana. Shatter cones are a type of metamorphosed rock often found in impact structures (the remains of a crater after a meteor impact and years of Earth activity). Scientists have discovered only 168 impact craters around the world. If rocks could talk,…

  3. Optimization of brain penetrant 11β-hydroxysteroid dehydrogenase type I inhibitors and in vivo testing in diet-induced obese mice.

    PubMed

    Goldberg, Frederick W; Dossetter, Alexander G; Scott, James S; Robb, Graeme R; Boyd, Scott; Groombridge, Sam D; Kemmitt, Paul D; Sjögren, Tove; Gutierrez, Pablo Morentin; deSchoolmeester, Joanne; Swales, John G; Turnbull, Andrew V; Wild, Martin J

    2014-02-13

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) has been widely considered by the pharmaceutical industry as a target to treat metabolic syndrome in type II diabetics. We hypothesized that central nervous system (CNS) penetration might be required to see efficacy. Starting from a previously reported pyrimidine compound, we removed hydrogen-bond donors to yield 3, which had modest CNS penetration. More significant progress was achieved by changing the core to give 40, which combines good potency and CNS penetration. Compound 40 was dosed to diet-induced obese (DIO) mice and gave excellent target engagement in the liver and high free exposures of drug, both peripherally and in the CNS. However, no body weight reduction or effects on glucose or insulin were observed in this model. Similar data were obtained with a structurally diverse thiazole compound 51. This work casts doubt on the hypothesis that localized tissue modulation of 11β-HSD1 activity alleviates metabolic syndrome.

  4. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  5. Light-driven calcium signals in mouse cone photoreceptors.

    PubMed

    Wei, Tao; Schubert, Timm; Paquet-Durand, François; Tanimoto, Naoyuki; Chang, Le; Koeppen, Katja; Ott, Thomas; Griesbeck, Oliver; Seeliger, Mathias W; Euler, Thomas; Wissinger, Bernd

    2012-05-16

    Calcium mediates various neuronal functions. The complexity of neuronal Ca²⁺ signaling is well exemplified by retinal cone photoreceptors, which, with their distinct compartmentalization, offer unique possibilities for studying the diversity of Ca²⁺ functions in a single cell. Measuring subcellular Ca²⁺ signals in cones under physiological conditions is not only fundamental for understanding cone function, it also bears important insights into pathophysiological processes governing retinal neurodegeneration. However, due to the proximity of light-sensitive outer segments to other cellular compartments, optical measurements of light-evoked Ca²⁺ responses in cones are challenging. We addressed this problem by generating a transgenic mouse (HR2.1:TN-XL) in which both short- and middle-wavelength-sensitive cones selectively express the genetically encoded ratiometric Ca²⁺ biosensor TN-XL. We show that HR2.1:TN-XL allows recording of light-evoked Ca²⁺ responses using two-photon imaging in individual cone photoreceptor terminals and to probe phototransduction and its diverse regulatory mechanisms with pharmacology at subcellular resolution. To further test this system, we asked whether the classical, nitric oxide (NO)-soluble guanylyl-cyclase (sGC)-cGMP pathway could modulate Ca²⁺ in cone terminals. Surprisingly, NO reduced Ca²⁺ resting levels in mouse cones, without evidence for direct sGC involvement. In conclusion, HR2.1:TN-XL mice offer unprecedented opportunities to elucidate light-driven Ca²⁺ dynamics and their (dys)regulation in cone photoreceptors.

  6. Materials science. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration.

    PubMed

    Lee, Jae-Hwang; Loya, Phillip E; Lou, Jun; Thomas, Edwin L

    2014-11-28

    Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second.

  7. Shape measurement and vibration analysis of moving speaker cone

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Liu, Yuankun; Lehtonen, Petri

    2014-06-01

    Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.

  8. Conifer ovulate cones accumulate pollen principally by simple impaction

    PubMed Central

    Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.

    2007-01-01

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613

  9. Estimating individual cone fundamentals from their color-matching functions.

    PubMed

    Andersen, Casper F; Finlayson, Graham D; Connah, David

    2016-08-01

    Estimation of individual spectral cone fundamentals from color-matching functions is a classical and longstanding problem in color science. In this paper we propose a novel method to carry out this estimation based on a linear optimization technique, employing an assumption of a priori knowledge of the retinal absorptance functions. The result is an estimation of the combined lenticular and macular filtration for an individual, along with the nine coefficients in the linear combination that relates their color-matching functions to their estimated spectral-cone fundamentals. We test the method on the individual Stiles and Burch color-matching functions and derive cone-fundamental estimations for different viewing fields and matching experiment repetition. We obtain cone-fundamental estimations that are remarkably similar to those available in the literature. This suggests that the method yields results that are close to the true fundamentals.

  10. Surface penetrators for planetary exploration: Science rationale and development program

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.; Reynolds, R. T.; Blanchard, M. B.; Clanton, U. S.

    1981-01-01

    Work on penetrators for planetary exploration is summarized. In particular, potential missions, including those to Mars, Mercury, the Galilean satellites, comets, and asteroids are described. A baseline penetrator design for the Mars mission is included, as well as potential instruments and their status in development. Penetration tests in soft soil and basalt to study material eroded from the penetrator; changes in the structure, composition, and physical properties of the impacted soil; seismic coupling; and penetrator deflection caused by impacting rocks, are described. Results of subsystem studies and tests are given for design of entry decelerators, high-g components, thermal control, data acquisition, and umbilical cable deployment.

  11. Design and testing of Ground Penetrating Radar equipment dedicated for civil engineering applications: ongoing activities in Working Group 1 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Manacorda, Guido; Persico, Raffaele

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 1 'Novel GPR instrumentation' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Working Group 1 (WG1) of the Action focuses on the development of innovative GPR equipment dedicated for civil engineering applications. It includes three Projects. Project 1.1 is focused on the 'Design, realisation and optimisation of innovative GPR equipment for the monitoring of critical transport infrastructures and buildings, and for the sensing of underground utilities and voids.' Project 1.2 is concerned with the 'Development and definition of advanced testing, calibration and stability procedures and protocols, for GPR equipment.' Project 1.3 deals with the 'Design, modelling and optimisation of GPR antennas.' During the first year of the Action, WG1 Members coordinated between themselves to address the state of the art and open problems in the scientific fields identified by the above-mentioned Projects [1, 2]. In carrying our this work, the WG1 strongly benefited from the participation of IDS Ingegneria dei Sistemi, one of the biggest GPR manufacturers, as well as from the contribution of external experts as David J. Daniels and Erica Utsi, sharing with the Action Members their wide experience on GPR technology and methodology (First General Meeting, July 2013). The synergy with WG2 and WG4 of the Action was useful for a deep understanding of the problems, merits and limits of available GPR equipment, as well as to discuss how to quantify the reliability of GPR results. An

  12. Penetration of yawed projectiles

    SciTech Connect

    Reaugh, J.E.

    1990-10-08

    We used computer simulations and experiment to study the penetration of tungsten-alloy projectiles into a thick, armored steel target. These projectiles, with length-to-diameter ratios of 4, strike the target with severe yaws, up to 90{degree}(side-on-impact), such as might be induced in an originally longer projectile by a multiple-spaced plate array. In this study, we focus on the terminal ballistics of these projectiles and ignore how the yaw was induced. We found that the minimum penetration depth occurs at 90{degree}yaw. This case is well approximated by the two-dimensional plane-strain penetration of a side-on cylinder. The ratio of penetration depth to diameter, P:D, for this case is larger than that for a sphere because the plane-strain geometry lacks hoop stress, which is activated in axisymmetric geometry. A more surprising result of work is that the penetration at 60{degree} yaw is only slightly deeper than that of the side-on impact. 8 refs., 15 figs., 3 tabs.

  13. A review of an attempt to create shatter cones with magnetic flyer plate technology

    NASA Technical Reports Server (NTRS)

    Linnerud, H. J.

    1981-01-01

    The feasibility of creating shatter cones in a controlled laboratory environment is discussed. Magnetic flyer plate technology, which generates high amplitude shock waves in test materials is discribed. Considerable sample shear and break up was observed, however, no shatter cones are found in the tested samples.

  14. Experimental investigation of penetration performance of shaped charge into concrete targets

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ma, Tianbao; Ning, Jianguo

    2008-06-01

    In order to develop a tandem warhead that can effectively destroy concrete targets, this paper explores the penetration performance of shaped charges with different cone angles and liner materials into concrete targets by means of experiments. The penetration process and the destruction mechanism of concrete targets by shaped charges and kinetic energy projectiles are analyzed and compared. Experimental results suggest that both kinetic energetic projectile and shaped charge are capable of destroying concrete targets, but the magnitudes of damage are different. Compared with a kinetic energy projectile, a shaped charge has more significant effect of penetration into the target, and causes very large spalling area. Hence, a shaped charge is quite suitable for first-stage charge of tandem warhead. It is also found that, with the increase of shaped charge liner cone angle, the depth of penetration decreases gradually while the hole diameter becomes larger. Penetration depth with copper liner is larger than of aluminum liner but hole diameter is relatively smaller, and the shaped charge with steel liner is between the above two cases. The shaped charge with a cone angle of 100° can form a jet projectile charge (JPC). With JPC, a hole with optimum depth and diameter on concrete targets can be formed, which guarantees that the second-stage warhead smoothly penetrates into the hole and explodes at the optimum depth to achieve the desired level of destruction in concrete targets.

  15. Tests of ground-penetrating radar and induced polarization for mapping fluvial mine tailings on the floor of the Couer d'Alene River, Idaho

    USGS Publications Warehouse

    Campbell, David L.; Wynn, Jefferey C.; Box, Stephen E.; Bookstrom, Arthur A.; Horton, Robert J.

    1997-01-01

    In order to investigate sequences of toxic mine tailings that have settled in the bed of the Coeur d'Alene River, Idaho, (see figure 1) we improvised ways to make geophysical measurements on the river floor. To make ground penetrating radar (GPR) profiles, we mounted borehole antennas on a skid that was towed along the river bottom. To make induced polarization (IP) profiles, we devised a bottom streamer from a garden hose, lead strips, PVC standoffs, and insulated wire. Each approach worked and provided uniquely different information about the buried toxic sediments. GPR showed shallow stratigraphy, but did not directly detect the presence of contaminating metals. IP showed a zone of high chargeability that is probably due to pockets of relatively higher metal content. Neither method was able to define the base of the fluvial tailings section, at least in part because the IP streamer was deliberately designed to sample only the top three meters of sediments to maximize horizontal resolution.

  16. Numerical Modeling of Shatter Cones Development in Impact Craters

    NASA Technical Reports Server (NTRS)

    Baratoux, D.; Melosh, H. J.

    2003-01-01

    Shatter cones are the characteristic forms of rock fractures in impact structures. They have been used for decades as unequivocal fingerprints of meteoritic impacts on Earth. The abundant data about shapes, apical angles, sizes and distributions of shatter cones for many terrestrial impact structures should provide insights for the determination of impact conditions and characteristics of shock waves produced by high-velocity projectiles in geologic media. However, previously proposed models for the formation of shatter cones do not agree with observations. For example, the widely accepted Johnson-Talbot mechanism requires that the longitudinal stress drops to zero between the arrival of the elastic precursor and the main plastic wave. Unfortunately, observations do not support such a drop. A model has been also proposed to explain the striated features on the surface of shatter cones but can not invoked for their conical shape. The mechanism by which shatter cones form thus remains enigmatic to date. In this paper we present a new model for the formation of shatter cones. Our model has been tested by means of numerical simulations using the hydrocodes SALE 2D enhanced with the Grady-Kipp-Melosh fragmentation model.

  17. Hadronic wavefunctions in light-cone quantization

    SciTech Connect

    Hyer, T.

    1994-05-01

    The analysis of light-cone wavefunctions seems the most promising theoretical approach to a detailed understanding of the structure of relativistic bound states, particularly hadrons. However, there are numerous complications in this approach. Most importantly, the light-cone approach sacrifices manifest rotational invariance in exchange for the elimination of negative-energy states. The requirement of rotational invariance of the full theory places important constraints on proposed light-cone wavefunctions, whether they are modelled or extracted from some numerical procedure. A formulation of the consequences of the hidden rotational symmetry has been sought for some time; it is presented in Chapter 2. In lattice gauge theory or heavy-quark effective theory, much of the focus is on the extraction of numerical values of operators which are related to the hadronic wavefunction. These operators are to some extent interdependent, with relations induced by fundamental constraints on the underlying wavefunction. The consequences of the requirement of unitarity are explored in Chapter 3, and are found to have startling phenomenological relevance. To test model light-cone wavefunctions, experimental predictions must be made. The reliability of perturbative QCD as a tool for making such predictions has been questioned. In Chapter 4, the author presents a computation of the rates for nucleon-antinucleon annihilation, improving the reliability of the perturbative computation by taking into account the Sudakov suppression of exclusive processes at large transverse impact parameter. In Chapter 5, he develops the analysis of semiexclusive production. This work focuses on processes in which a single isolated meson is produced perturbatively and recoils against a wide hadronizing system. At energies above about 10 GeV, semiexclusive processes are shown to be the most sensitive experimental probes of hadronic structure.

  18. Transition from fractal cracking to fragmentation due to projectile penetration

    NASA Astrophysics Data System (ADS)

    Kun, F.; Halász, Z.

    2014-12-01

    We present a theoretical study of the fracture of two-dimensional disc-shaped samples due to the penetration of a projectile focusing on the dynamics of fracturing and on the geometrical structure of the generated crack pattern. The penetration of a cone is simulated into a plate of circular shape using a discrete element model of heterogeneous brittle materials varying the speed of penetration in a broad range. As the cone penetrates a destroyed zone is created from which cracks run to the external boundary of the plate. Computer simulations revealed that in the low speed limit of loading two cracks are generated with nearly straight shape. Increasing the penetration speed the crack pattern remains regular, however, both the number of cracks and their fractal dimension increases. High speed penetration gives rise to a crack network such that the sample gets fragmented into a large number of pieces. We give a quantitative analysis of the evolution of the system from simple cracking through fractal cracks to fragmentation with a connected crack network. Simulations showed that in the low speed limit of loading the growing cracks proceed in discrete jumps separated by periods when the crack tips are pinned. The statistics of the size of jumps and of the waitng times shows scale free behaviour, i.e. power law distributions are obtained with universal exponents. Dependence on the loading speed was pointed out only for the cutoffs of the distributions. In the high speed limit of loading the sample falls apart forming a large number of fragments. The size of fragments proved to be power law distributed where dependence on the loading speed is observed only for the cutoffs. The value of the exponent has good agreement with experiments.

  19. Effect of Liquid Penetrant Sensitivity on Probability of Detection

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    2008-01-01

    The objective of the task is to investigate the effect of liquid penetrant sensitivity level on probability of crack detection (POD). NASA-STD-5009 currently requires the use of only sensitivity level 4 liquid penetrants. This requirement is based on the fact that the data generated in the NTIAC Nondestructive Evaluation (NDE) Capabilities Data Book was produced using only sensitivity level 4 penetrants. Many NDE contractors supporting NASA Centers routinely use sensitivity level 3 penetrants. Because of the new NASA-STD-5009 requirement, these contractors will have to either shift to sensitivity level 4 penetrants or perform formal POD demonstration tests to qualify their existing process.

  20. Penetration resistant barrier

    DOEpatents

    Hoover, William R.; Mead, Keith E.; Street, Henry K.

    1977-01-01

    The disclosure relates to a barrier for resisting penetration by such as hand tools and oxy-acetylene cutting torches. The barrier comprises a layer of firebrick, which is preferably epoxy impregnated sandwiched between inner and outer layers of steel. Between the firebrick and steel are layers of resilient rubber-like filler.

  1. Jet penetration in glass

    SciTech Connect

    Moran, B.; Glenn, L.A.; Kusubov, A.

    1991-05-01

    We describe a phenomenological model which accounts for the mechanical response of glass to intense impulsive loading. An important aspect of this response is the dilatancy accompanying fracture. We have also conducted a number of experiments with 38.1-mm diameter precision shaped charges to establish the performance against various targets and to allow evaluation of our model. At 3 charge diameters standoff, the data indicate that both virgin and damaged glass offer better (Bernoulli-scaled) resistance to penetration than either of 4340 steel, or 6061-T6 aluminum alloy. Time-resolved measurements indicate two distinct phases of jet penetration in glass: An initial hydrodynamic phase, and a second phase characterized by a slower penetration velocity. Our calculations show that at early time, a crater is formed around the jet and only the tip of the undisturbed jet interacts with the glass. At late time the glass has collapsed on the jet and degraded penetration continues via a disturbed and fragmented jet.

  2. Tumor-Penetrating Peptides

    PubMed Central

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  3. Radixin Is Involved in Lamellipodial Stability during Nerve Growth Cone Motility

    PubMed Central

    Castelo, Leslie; Jay, Daniel G.

    1999-01-01

    Immunocytochemistry and in vitro studies have suggested that the ERM (ezrin-radixin-moesin) protein, radixin, may have a role in nerve growth cone motility. We tested the in situ role of radixin in chick dorsal root ganglion growth cones by observing the effects of its localized and acute inactivation. Microscale chromophore-assisted laser inactivation (micro-CALI) of radixin in growth cones causes a 30% reduction of lamellipodial area within the irradiated region whereas all control treatments did not affect lamellipodia. Micro-CALI of radixin targeted to the middle of the leading edge often split growth cones to form two smaller growth cones during continued forward movement (>80%). These findings suggest a critical role for radixin in growth cone lamellipodia that is similar to ezrin function in pseudopodia of transformed fibroblasts. They are consistent with radixin linking actin filaments to each other or to the membrane during motility. PMID:10233159

  4. Using the inertia of spacecraft during landing to penetrate regoliths of the Solar System

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Green, S. F.; Ball, A. J.; Zarnecki, J. C.; Harri, A.-M.

    2015-09-01

    The high inertia, i.e. high mass and low speed, of a landing spacecraft has the potential to drive a penetrometer into the subsurface without the need for a dedicated deployment mechanism, e.g., during Huygens landing on Titan. Such a method could complement focused subsurface exploration missions, particularly in the low gravity environments of comets and asteroids, as it is conducive to conducting surveys and to the deployment of sensor networks. We make full-scale laboratory simulations of a landing spacecraft with a penetrometer attached to its base plate. The tip design is based on that used in terrestrial Cone Penetration Testing (CPT) with a large enough shaft diameter to house instruments for analysing pristine subsurface material. Penetrometer measurements are made in a variety of regolith analogue materials and target compaction states. For comparison a copy of the ACC-E penetrometer from the Huygens mission to Titan is used. A test rig at the Open University is used and is operated over a range of speeds from 0.9 to 3 m s-1 and under two gravitational accelerations. The penetrometer was found to be sensitive to the target's compaction state with a high degree of repeatability. The penetrometer measurements also produced unique pressure profile shapes for each material. Measurements in limestone powder produced an exponential increase in pressure with depth possibly due to increasing compaction with depth. Measurements in sand produced an almost linear increase in pressure with depth. Iron powder produced significantly higher pressures than sand presumably due to the rough surface of the grains increasing the grain-grain friction. Impacts into foamglas produced with both ACC-E and the large penetrometer produced an initial increase in pressure followed by a leveling off as expected in a consolidated material. Measurements in sand suggest that the pressure on the tip is not significantly dependent on speed over the range tested, which suggests bearing

  5. In-Situ Air Permeability Measurements Using the Cone Permeameter at the 200 East Area of the Hanford Site

    SciTech Connect

    TROYER, G.L.

    1999-03-31

    This report documents the field demonstration of the Cone Permeameter{trademark} (CPer) conducted at the Immobilization Low-Activity Waste (ILAW) site in the 200 East area of the Department of Energy's (DOE) Hanford facility. The demonstration was conducted using the Hanford Site Cone Penetration Platform (CPP) shown in Figure 1.1. The purpose of the technology demonstration was to (1) gather baseline data and evaluate the CPer's ability to measure air permeability in arid sands, silts and gravels; and (2) to determine the system's ability to replicate permeability profiles with multiple pushes in close proximity. The demonstration was jointly conducted by Applied Research Associates, Inc. (ARA) and Science and Engineering Associates (SEA). This report satisfies the requirements of ARA's contract No.2075 to Lockheed Martin Hanford Company. The report is organized into six major sections. This first section presents an introduction and outline to the report. Section 2 contains a discussion of the technologies used for the demonstration. Section 3 contains a brief description of the site where the demonstration was conducted. Section 4 describes the testing methodology and chronology. Section 5 presents the results obtained during the field test program. Comparisons between these results and existing site data are developed and discussed in Section 5. A conclusion and recommendation section is presented in Section 6 of the report.

  6. Ground-penetrating radar images of a dye tracer test within the unsaturated zone at the Susquehanna-Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Pitman, Lacey M.

    Dye tracer and time-lapse ground-penetrating radar (GPR) were used to image preferential flow paths in the shallow, unsaturated zone on hillslopes in two adjacent watersheds within the Susquehanna-Shale Hills Critical Zone Observatory (CZO). At each site we injected about 50 L of water mixed with brilliant blue dye (4 g/L) into a trench cut perpendicular to the slope (˜1.0 m long by ˜0.20 m wide by ˜0.20 m deep) to create a line of infiltration. GPR (800 MHz antennae with constant offset) was used to monitor the movement of the dye tracer downslope on a 1.0 m x 2.0 m grid with a 0.05 m line spacing. The site was then excavated and the stained pathways photographed to document the dye movement. We saw a considerable difference in the pattern of shallow preferential flow between the two sites despite similar soil characteristics and slope position. Both sites showed dye penetrating down to saprolite (˜0.40 m); however, lateral flow migration between the two sites was different. At the Missed Grouse field site, the lateral migration was ˜0.55 m as an evenly dispersed plume, but at distance of 0.70 m a finger of dye was observed. At the Shale Hills field site, the total lateral flow was ˜0.40 m, dye was barely visible until the excavation reached ˜0.10 m, and there was more evidence of distinct fingering in the vertical direction. Based on laboratory and field experiments as well as processing of the radargrams, the following conclusions were drawn: 1) time-lapse GPR successfully delineated the extent of lateral flow, but the GPR resolution was insufficient to detect small fingers of dye; 2) there was not a distinct GPR reflection at the regolith-saprock boundary, but this interface could be estimated from the extent of signal attenuation; 3) the preliminary soil moisture conditions may explain differences in the extent of infiltration at the two sites; 4) rapid infiltration into the underlying saprock limited the extent of shallow lateral flow at both sites and

  7. Characterization of nuclear reactor containment penetrations. Preliminary report

    SciTech Connect

    Bump, T.R.; Seidensticker, R.W.; Shackelford, M.A.; Gambhir, V.K.; McLennan, G.L.

    1984-06-01

    This report summarizes the survey work conducted by Argonne National Laboratory on the design and details of major penetrations in 22 nuclear power plants. The survey includes all containment types and materials in current use. It also includes details of all types of penetrations (except for electrical penetration assemblies and valves) and the seals and gaskets used in them. The report provides a test matrix for testing major penetrations and for testing seals and gaskets in order to evaluate their leakage potential under severe accident conditions.

  8. Hydrovolcanic (Tuff?) Rings and Cones on Mars: Evidence for Phreatomagmatic Explosive Eruptions?

    NASA Astrophysics Data System (ADS)

    Broz, P.; Hauber, E.

    2012-09-01

    We present observations of two fields of small pitted and mostly breached cones; one located along the dichotomy boundary in the Amenthes region (southern Utopia); the second located in an unnamed impact crater in the Xanthe Terra region. The aim of our study is to test the hypothesis of a (hydro)volcanic origin of these cones, which would be an alternative to the mud volcano scenario put forward by [1] for cones in Amenthes region. To aid our analysis, we also examine morphological and morphometrical data of possible terrestrial analogues (tuff rings and cones, mud volcanoes in Azerbaijan).

  9. Subsurface investigation with ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground penetrating radar (GPR) data was collected on a small test plot at the OTF/OSU Turfgrass Research & Education Facility in Columbus, Ohio. This test plot was built to USGA standards for a golf course green, with a constructed sand layer just beneath the surface overlying a gravel layer, that i...

  10. Initial testing of advanced ground-penetrating radar technology for the inspection of bridge decks: the HERMES and PERES Bridge Inspectors

    NASA Astrophysics Data System (ADS)

    Davidson, Nigel C.; Chase, Steven B.

    1999-02-01

    Since early 1995 the Federal Highway Administration (FHWA) has been sponsoring the development of ground-penetrating radar technology to produce a tool for the non-destructive evaluation of bridge decks. Under contract with the FHWA, Lawrence Livermore National Laboratory designed and built a system capable of recording data over a 2 meter width during normal traffic flow. The derived system is called `The HERMES Bridge Inspector' (High-speed Electromagnetic Roadway Measurement and Evaluation System) and includes a 64 channel antenna array within a 30 ft trailer. For detailed investigation of portions of a bridge deck, a robotic cart mounted radar has been developed. This cart system is named `The PERES Bridge Inspector' (Precision Electromagnetic Roadway Evaluation System). PERES records data over the chosen area by rastering a single transceiver over the road. Images of the deck interior are reconstructed from the original synthetic aperture data using diffraction tomography. The work presented herein describes the findings of initial experiments conducted to determine the inspection capabilities of these systems. Internal defects such as delaminations, voids and disbonds; and construction details including deck thickness, asphalt overlay thickness and reinforcement layout were the features targeted. The final goal is for these systems, and other non-destructive technologies, to provide information on the condition of the nation's bridges for input to bridge management systems.

  11. Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems.

    PubMed

    Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A

    2016-08-01

    This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes.

  12. Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems.

    PubMed

    Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A

    2016-08-01

    This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes. PMID:27580041

  13. Penetrating eye injuries.

    PubMed Central

    Patel, B C

    1989-01-01

    A review of all penetrating eye injuries treated at the Manchester Royal Eye Hospital over four years (1 January 1982-31 December 1985) was undertaken. A total of 202 penetrating eye injuries were seen of which 68 (34%) were in children under the age of 15 years. Airgun, dart, and knife injuries accounted for 28 (41%) of the injuries. Thirty seven patients (54%) achieved a good visual result (6/12 or better) and eight (12%) had enucleations. The period of inpatient treatment ranged from two to 18 days. From the analysis of the activities at the time of the injury, many of the injuries can be considered to be preventable. PMID:2705791

  14. Ground-penetrating rada

    NASA Astrophysics Data System (ADS)

    Thuma, W. R.

    The theory and applications of digital Ground-Penetrating Radar were discussed at a 5-day seminar held at the China University of Geosciences in Wuhan, People's Republic of China, in April. Cohosted by the Department of Applied Geophysics and Canada-China Geoscience, more than 60 senior geophysicists, engineers, technical specialists, university professors and researchers attended.Focus of the meeting was the expanded uses of the new deep-penetrating fully digital PulseEKKO, which is gaining wide acceptance around the world. Attendees showed intense interest in this new and unique technology. Applications covered were groundwater and mineral exploration; engineering, construction and toxic waste site surveying; tunnel and underground mine probing for potential geological hazards, blind ore zones, karst cavities and solution pathways; and locating buried objects such as petroleum storage tanks, unexploded bombs and archeological remains.

  15. Aerosol penetration behavior of respirator valves.

    PubMed

    Brosseau, L M

    1998-03-01

    Exhalation and inhalation valves from half-facepiece negative pressure respirators were evaluated for leakage during an 8-hour cyclic breathing test period using two work rates (415 and 622 kg-m/min) and two particle sizes (0.3 and 0.8 micron). Three different models (manufacturers) of exhalation valves were tested, with two lots for each model. Exhalation valve leakage ranged from 0.0 to 0.03%; no failure of exhalation valves occurred. No differences in lot or manufacturer were found. Differences in particle size did not lead to differences in penetration at the lower work rate; at the higher work rate 0.3-micron particles were less penetrating than 0.8-micron particles (0.03 versus 0.06%). When tested for air leakage at a pressure of 2.54 cm H2O, following the National Institute for Occupational Safety and Health certification method, exhalation valves exhibited no leakage either before or after the experiments. Inhalation valves averaged 20% leakage for all experiments; 0.3-micron particles were again less penetrating (13%) than 0.8-micron particles (27%). No inhalation valve failure occurred. No differences in lot (within manufacturer) were found; there were, however, significant differences in particle penetration among the three manufacturers' inhalation valves. Airflow leakage through the inhalation valves did not change during the experimental period, but differed among the three manufacturers. Measurements using airflow leakage and particle penetration produced the same ranking for the three manufacturers' inhalation valves.

  16. Antibody tumor penetration

    PubMed Central

    Thurber, Greg M.; Schmidt, Michael M.; Wittrup, K. Dane

    2009-01-01

    Antibodies have proven to be effective agents in cancer imaging and therapy. One of the major challenges still facing the field is the heterogeneous distribution of these agents in tumors when administered systemically. Large regions of untargeted cells can therefore escape therapy and potentially select for more resistant cells. We present here a summary of theoretical and experimental approaches to analyze and improve antibody penetration in tumor tissue. PMID:18541331

  17. Penetrating extremity trauma.

    PubMed

    Ivatury, Rao R; Anand, Rahul; Ordonez, Carlos

    2015-06-01

    Penetrating extremity trauma (PET) usually becomes less important when present along with multiple truncal injuries. The middle eastern wars documented the terrible mortality and morbidity resulting from PET. Even in civilian trauma, PET can lead to significant morbidity and mortality. There are now well-established principles in the evaluation and management of vascular, bony, soft tissue, and neurologic lesions that will lead to a reduction of the poor outcomes. This review will summarize some of these recent concepts.

  18. Penetration of Enceladus Ice Tiger Stripes

    NASA Astrophysics Data System (ADS)

    Jones, Jack A.; Castillo, J. C.

    2006-09-01

    INTRODUCTION: Measurements from Cassini have determined that warm "tiger stripe” regions on Enceladus are made of water ice that is at a temperature of up to 157 +/-32K (Spencer et al, Science, 311, 1401, 2006). If the tiger stripe region is assumed to be pure polycrystalline water ice, and if liquid water exists below the ice lithosphere, then thermal analyses show that the thickness of the ice is less than 40-m. Two possible means to penetrate the ice are described below. HARPOON PENETRATOR: Sandia National Laboratories has published reports, which give ground penetration depth as a function of various projectile parameters. Applying the Sandia equations (Young, SAND97-2426, 1997) to an Enceladus penetrator, one example shows that a sharp, steel penetrator, that is 10 cm diameter and 2-m length (132 kg) could penetrate through 40-m of ice with an impact velocity of about 150 m/sec and maximum deceleration of 350 g's. This allows ruggedized science instruments to be carried on the harpoon and tethered to an antenna dropped off at the surface level, as was done in many of the Sandia tests. Larger diameters or shorter rods require higher velocities and higher g's. SUBLIMATION PENETRATOR: Calculations have also been performed on soft-landed, heated probes. Using power tethered from the surface craft, the penetrator would sublimate down to the liquid layer. Assuming a 3-cm diameter probe with a 50-w heated tip, the probe would descend at the rate of about 1-m per day with descent rates approximately proportional to power/area. An insulated cylindrical area above the heated tip could contain ports for science instruments that could be located on the surface craft with data transmitted by optical fiber. This research was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  19. Shatter cones: (Mis)understood?

    PubMed Central

    Osinski, Gordon R.; Ferrière, Ludovic

    2016-01-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and “double” cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship Dsc = 0.4 Da, where Dsc is the maximum spatial extent of in situ shatter cones, and Da is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact. PMID:27532050

  20. Shatter cones: (Mis)understood?

    PubMed

    Osinski, Gordon R; Ferrière, Ludovic

    2016-08-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and "double" cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship D sc = 0.4 D a, where D sc is the maximum spatial extent of in situ shatter cones, and D a is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact.

  1. Shatter cones: (Mis)understood?

    PubMed

    Osinski, Gordon R; Ferrière, Ludovic

    2016-08-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and "double" cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship D sc = 0.4 D a, where D sc is the maximum spatial extent of in situ shatter cones, and D a is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact. PMID:27532050

  2. RP cone-rod degeneration.

    PubMed Central

    Heckenlively, J R

    1987-01-01

    A group of patients with progressive retinal degeneration and visual field loss, who meet the basic definition of RP were investigated to better define the relationship of the findings on the ERG with clinical characteristics such as visual field size, presence or absence of scotomata or pseudo-altitudinal defects on visual field, amount of night blindness; and presence or absence of macular or optic nerve changes. These studies suggest that cone-rod degeneration patients of the RP type go through the following stages; early, the ERG has a definite cone-rod pattern where the rod ERG is larger than the cone ERG while both are abnormal. As the disease advances, there is more of a reduction in the scotopic ERG such that both the rod and cone ERGs become nearly equal. As the disease further progresses the ERG becomes non-recordable on single-flash technique, but there is good residual rod function and the final rod threshold remains good until the visual field is reduced, typically less than 10 degrees with the IV-4 isopter. Finally with advanced disease the patient becomes night blind and generally becomes very difficult to distinguished from patients who have advanced rod-cone degeneration. While it may seem logical to find that visual field size correlates with various ERG parameters; this has not been as consistent a finding in patients with rod-cone degeneration in the author's experience. The analysis shows several new pieces of information about visual field changes in cone-rod degeneration; enlarged blind spots are seen earlier in cases which have recordable cone-rod patterns (group I), and pseudo-altitudinal changes are more likely to occur in autosomal recessive patients. Patients with macular lesions and central scotomata had larger amplitudes than patients with normal appearing maculae and no central scotomata. Patients with temporal optic atrophy had an earlier onset of symptoms and significant correlation with both photopic a- and b-waves and bright flash

  3. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  4. Real Gas/Blunt Cone. Phase 2

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.; Eitelberg, Georg

    1998-01-01

    In this chapter recent activity in real-gas database definition and code validation will be summarized. In the Phase I report of the Working Group (WG) 181, aerothermodynamic problems were classified, for purpose of discussion, into seven types: aerodynamic parameters, viscous/shock interaction, boundary-layer transition, forebody-heating/heat-transfer, radiation and ablation, lee and base-region flow, and low-density flow. Several of these problem types were the subject of various chapters of the Phase 1 report describing real-gas effects and ground test facility issues. In this chapter some background and objectives outlined in the real-Gas effects Chapter V of the Phase 1 report will be reviewed. The results of the blunt cone test campaign developed under the auspices of the WG18 activity to study real-gas phenomena will be summarized, including the experimental and computational programs, issues and questions, and recommendations. Further, recent progress in other real-gas areas beyond the blunt cone test campaign will be discussed. Finally, a summary in which the present status of our understanding of real-gas issues will be presented.

  5. PHIL Inverter Test Report: Analysis of High-Penetration Levels of PV into the Distribution Grid in California, March 12 - March 16, 2012

    SciTech Connect

    Kromer, M.

    2013-06-01

    This report describes power hardware-in-the-loop simulation testing of a 500 kW Satcon photovoltaic inverter, conducted at the Center for Advanced Power Systems at Florida State University from March 12th through March 16th, 2012. Testing was led by a team from the National Renewable Energy Laboratory. The report reviews the results of data captured during the course of testing. The tests were used to demonstrate operation of and gather data from the inverter in a simulated operational environment. Testing demonstrated the ability of the inverter to operate in either a Power Factor Control Mode or a Reactive Power Command Mode, and to respond to real power limits.

  6. Penetration depth at green wavelengths in turbid waters

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Witte, W. G.; Usry, J. W.; Gurganus, E. A.

    1978-01-01

    A laboratory and field measurement program was conducted to determine apparent remote sensing penetration depths at a wavelength of 520 nm. Tests were made for various types of sediments under controlled conditions in a laboratory. Field tests were conducted in several different water bodies over a wide range of solar elevation angles. Laboratory results indicate that apparent penetration depth is significantly influenced by mineral content and/or size of suspended sediments. Field measurements show wide variation in apparent penetration depth, even when suspended solids concentration is nearly constant. Apparent penetration depth does not appear to be a strong function of solar elevation angle so long as the water mixture remains constant.

  7. Overview-hard rock penetration

    SciTech Connect

    Dunn, J.C. )

    1993-01-01

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, borehole instrumentation, acoustic telemetry, slimhole drilling, geothermal heat pumps. A new project to improve synthetic diamond drill bits for hard rock drilling was initiated during the year. Accomplishments during the year include completion of important acoustic telemetry tests in the Long Valley Well. These tests produced the first set of reliable, repeatable data in a drill hole. The results indicate the promise of acoustic transmission through drill pipe for great distances without repeaters. The rolling float meter for measuring drilling fluid outflow was duplicated and sent to six different companies for evaluation in the field. A new slimhole spectral gamma tool for operation at temperatures up to 300 C was fabricated and evaluated in the laboratory. Slimhole drilling for exploration and reservoir characterization was begun with several projects jointly completed with industry.

  8. Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars

    NASA Astrophysics Data System (ADS)

    Brož, P.; Hauber, E.

    2013-08-01

    is a common natural phenomenon on Earth and should be common on Mars, too, since its surface shows widespread evidence for volcanism and near-surface water. We investigate fields of pitted cones in the Nephentes/Amenthes region at the southern margin of the ancient impact basin, Utopia, which were previously interpreted as mud volcanoes. The cone fields contain pitted and breached cones with associated outgoing flow-like landforms. Based on stratigraphic relations, we determined a Hesperian or younger model age. We test the hypothesis of a (hydro)volcanic origin. Based on a detailed morphological and morphometrical analysis and an analysis of the regional context, an igneous volcanic origin of these cones as hydrovolcanic edifices produced by phreatomagmatic eruptions is plausible. Several lines of evidence suggest the existence of subsurface water ice. The pitted cones display well-developed wide central craters with floor elevations below the preeruptive surface. Their morphometry and the overall appearance are analogous to terrestrial tuff cones and tuff rings. Mounds that are also observed in the same region resemble terrestrial lava domes. The hydrovolcanic interaction between ascending magma and subsurface water and/or water ice may explain the formation of the pitted cones, although other scenarios such as mud volcanism cannot be ruled out. Together with the mounds, the cones might represent effusive and explosive edifices of a monogenetic volcanic field composed of lava domes, tuff rings, tuff cones, and possibly maars.

  9. IMPLOSION OF INDIRECTLY DRIVEN REENTRANT CONE SHELL TARGET

    SciTech Connect

    STEPHENS,RB

    2003-08-01

    OAK-B135 The authors have examined the implosion of an indirectly driven reentrant-cone shell target to clarify the issues attendant on compressing fuel for a fast ignition target. The target design is roughly hydrodynamic equivalent to a NIF cryo-ignition target, but scaled down to be driven by Omega. A sequence of backlit x-radiographs recorded each implosion. The collapse was also modeled with LASNEX, generating simulated radiographs. They compare experimental and simulated diameter, density and symmetry as functions of time near stagnation. The simulations were generally in good agreement with the experiments with respect to the shell, but did not show the opacity due to ablation of gold off the cone; non-thermal gold M-line radiation from the hohlraum wall penetrates the shell and drives this ablation causing some Au to mix into the low density center of the core and into the region between the core and cone. This might be a problem in a cryo-ignition target.

  10. Gene Therapy Rescues Cone Structure and Function in the 3-Month-Old rd12 Mouse: A Model for Midcourse RPE65 Leber Congenital Amaurosis

    PubMed Central

    Li, Xia; Li, Wensheng; Dai, Xufeng; Kong, Fansheng; Zheng, Qinxiang; Zhou, Xiangtian; Lü, Fan; Chang, Bo; Rohrer, Bärbel; Hauswirth, William. W.; Qu, Jia; Pang, Ji-jing

    2011-01-01

    Purpose. RPE65 function is necessary in the retinal pigment epithelium (RPE) to generate chromophore for all opsins. Its absence results in vision loss and rapid cone degeneration. Recent Leber congenital amaurosis type 2 (LCA with RPE65 mutations) phase I clinical trials demonstrated restoration of vision on RPE65 gene transfer into RPE cells overlying cones. In the rd12 mouse, a naturally occurring model of RPE65-LCA early cone degeneration was observed; however, some peripheral M-cones remained. A prior study showed that AAV-mediated RPE65 expression can prevent early cone degeneration. The present study was conducted to test whether the remaining cones in older rd12 mice can be rescued. Methods. Subretinal treatment with the scAAV5-smCBA-hRPE65 vector was initiated at postnatal day (P)14 and P90. After 2 months, electroretinograms were recorded, and cone morphology was analyzed by using cone-specific peanut agglutinin and cone opsin–specific antibodies. Results. Cone degeneration started centrally and spread ventrally, with cells losing cone-opsin staining before that for the PNA-lectin–positive cone sheath. Gene therapy starting at P14 resulted in almost wild-type M- and S-cone function and morphology. Delaying gene-replacement rescued the remaining M-cones, and most important, more M-cone opsin–positive cells were identified than were present at the onset of gene therapy, suggesting that opsin expression could be reinitiated in cells with cone sheaths. Conclusions. The results support and extend those of the previous study that gene therapy can stop early cone degeneration, and, more important, they provide proof that delayed treatment can restore the function and morphology of the remaining cones. These results have important implications for the ongoing LCA2 clinical trials. PMID:21169527

  11. Noise masking of S-cone increments and decrements

    PubMed Central

    Wang, Quanhong; Richters, David P.; Eskew, Rhea T.

    2014-01-01

    S-cone increment and decrement detection thresholds were measured in the presence of bipolar, dynamic noise masks. Noise chromaticities were the L-, M-, and S-cone directions, as well as L−M, L+M, and achromatic (L+M+S) directions. Noise contrast power was varied to measure threshold Energy versus Noise (EvN) functions. S+ and S− thresholds were similarly, and weakly, raised by achromatic noise. However, S+ thresholds were much more elevated by S, L+M, L–M, L- and M-cone noises than were S− thresholds, even though the noises consisted of two symmetric chromatic polarities of equal contrast power. A linear cone combination model accounts for the overall pattern of masking of a single test polarity well. L and M cones have opposite signs in their effects upon raising S+ and S− thresholds. The results strongly indicate that the psychophysical mechanisms responsible for S+ and S− detection, presumably based on S-ON and S-OFF pathways, are distinct, unipolar mechanisms, and that they have different spatiotemporal sampling characteristics, or contrast gains, or both. PMID:25391300

  12. Molecular mechanism of spontaneous pigment activation in retinal cones.

    PubMed Central

    Sampath, Alapakkam P; Baylor, Denis A

    2002-01-01

    Spontaneous current and voltage fluctuations (dark noise) in the photoreceptor cells of the retina limit the ability of the visual system to detect dim light. We recorded the dark current noise of individual salamander L cones. Previous work showed that the dark noise in these cells arises from thermal activation of the visual pigment. From the temperature dependence of the rate of occurrence of elementary noise events, we found an Arrhenius activation energy E(a) of 25 +/- 7 kcal/mol (mean +/- SD). This E(a) is similar to that reported for the thermal isomerization of 11-cis retinal in solution, suggesting that the cone pigment noise results from isomerization of the retinal chromophore. E(a) for the cone noise is similar to that previously reported for the "photon-like" noise of rods, but the preexponential factor is five orders of magnitude higher. To test the hypothesis that thermal isomerization can only occur in molecules whose Schiff base linkage is unprotonated, we changed the pH of the solution bathing the cone outer segment. This had little effect on the rate of occurrence of elementary noise events. The rate was also unchanged when the cone was exposed to Ringer solution made up from heavy water, whose solvent isotope effect should reduce the probability, that the Schiff base nitrogen is naked. PMID:12080111

  13. Contamination of gutta-percha and Resilon cones taken directly from the manufacturer.

    PubMed

    Seabra Pereira, Osvaldo L; Siqueira, José F

    2010-06-01

    Any substance and material placed in the root canal either temporarily or definitively must be free of microbial contamination. The purpose of the present study was to evaluate the percentage of contamination of Resilon cones, a polycaprolactone-based material, and seven different brands of gutta-percha cones available in the specialized market. Cones were removed from their original manufacturer boxes and immediately transferred to tubes containing thioglycolate broth. Tests were carried out in triplicate. In addition, for quantitative analysis of possible contaminants, cones were taken from their packages, transferred to tubes containing saline solution, agitated, and aliquots of this solution were seeded onto Mueller-Hinton agar plates. No sample showed contamination in any of the tests performed. Despite the absence of detectable contamination before the first use, a rationale for routinely disinfecting cones before placing them into root canals is given.

  14. The deep penetrating nevus.

    PubMed

    Strazzula, Lauren; Senna, Maryanne Makredes; Yasuda, Mariko; Belazarian, Leah

    2014-12-01

    The deep penetrating nevus (DPN), also known as the plexiform spindle cell nevus, is a pigmented lesion that commonly arises on the head and neck in the first few decades of life. Histopathologically, the DPN is wedge-shaped and contains melanocytes that exhibit deep infiltration into the dermis. Given these features, DPN may clinically and histopathologically mimic malignant melanoma, sparking confusion about the appropriate evaluation and management of these lesions. The goal of this review is to summarize the clinical and histopathological features of DPN and to discuss diagnostic and treatment strategies for dermatologists.

  15. X-ray cone beam CT system calibration

    NASA Astrophysics Data System (ADS)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  16. Evolution of a Hybrid Roller Cone/PDC core bit

    SciTech Connect

    Pettitt, R.; Laney, R.; George, D.; Clemens, G.

    1980-01-01

    The development of the hot dry rock (HDR) geothermal resource, as presently being accomplished by the Los Alamos Scientific Laboratory (LASL), requires that sufficient quantities of good quality core be obtained at a reasonable cost. The use of roller cone core bits, with tungsten carbide inserts, was initiated by the Deep Sea Drilling Program. These bits were modified for continental drilling in deep, hot, granitic rock for the LASL HDR Geothermal Site at Fenton Hill, New Mexico in 1974. After the advent of monocrystalline diamond Stratapax pads, a prototype hybrid roller cone/Stratapax core bit was fabricated by Smith Tool, and tested at Fenton Hill in 1978. During the drilling for a deeper HDR reservoir system in 1979 and 1980, six of the latest generation of these bits, now called Hybrid Roller Cone/Polycrystalline Diamond Cutter (PDC) core bits, were successfully used in granitic rock at depths below 11,000 ft.

  17. CONE - An STS-based cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Bell, R. S.; Vento, D. M.; Hanna, G. J.

    1992-01-01

    An overview of the CONE program is presented which includes a definition of the technology addressed by CONE and a baseline experiment set, a description of the experimental and support subsystems, interface requirements between the STS and the experiment carrier (Hitchhiker M), and the reusability and expansion capacity for additional experiment flights. CONE evaluates three primary technologies: the active thermodynamic vent system, the passive thermodynamic vent system, and liquid acquisition device performance. The cryogenic fluid management technology database that the system offers will allow for efficient subcritical cryogenic system designs for operation in a low-gravity environment. This system maximizes the balance between existing component technology and the need for the development of a cryogenic-fluid-management (CFM) test bed to investigate and demonstrate methods of storage and handling arenas.

  18. 63. Historic detail drawing of inlet duct cone on exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Historic detail drawing of inlet duct cone on exhaust scrubber at building 202, June 18, 1955. NASA GRC drawing no. CD-101266. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  19. Simulations of the Formation and Hydrodynamic Penetration of Micro-Shaped Charge Jets

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Najjar, Fady M.; Szuck, Matthew; Glumac, Nick

    2011-11-01

    An explosively formed shape charge jet can be generated by the action of a detonation in explosive charge that surrounds a hollow cone of metal, embedded in the explosive, that collapses the cone on the central axis in order to form a forward-going jet of metal. We discuss the results of a series of multi-material simulations for very small charges and cones, for which the thickness of the metal (copper) cone is less than 1/100th of an inch. We look at the ability of these micro-shaped charge jets ability to penetrate aluminum target blocks and compare against experiment. We examine the effects of shape defects in the cone liner and how they affect the penetration depth. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. DSS, MS and NG were supported by AFRL/RW AF FA8651-10-1-0004. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491793.

  20. A Quantitative Analysis of Worldwide VCR Penetration.

    ERIC Educational Resources Information Center

    Lin, Carolyn

    By examining relationships between a host of national policy, domestic economic, media system, and media infrastructure factors, a study assesses possible predictors for videotape cassette recorder (VCR) penetration across 63 countries. Overall statistical results generated through hypothesis testing indicated that these factors were relatively…

  1. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  2. Penetration Enhancer-Containing Vesicles: Does the Penetration Enhancer Structure Affect Topical Drug Delivery?

    PubMed

    Caddeo, Carla; Manconi, Maria; Sinico, Chiara; Valenti, Donatella; Celia, Christian; Monduzzi, Maura; Fadda, Anna Maria

    2015-01-01

    The aim of this study was to elucidate the influence of the edge activator structure on the properties of novel deformable liposomes, Penetration Enhancer-containing Vesicles (PEVs), capable of delivering drugs to the skin. The PEVs were prepared by testing five different amphiphilic penetration enhancers as edge activators in the bilayer composition, together with soy phosphatidylcholine and oleic acid. The penetration enhancers contained the same lipophilic tail (one or more C8-C10 carbon chains) and different hydrophilic heads. Conventional phospholipid liposomes were prepared and used as a control. Lidocaine was chosen as a model drug. Liquid and gelified PEVs were obtained, depending on the penetration enhancer used. The vesicular systems were characterized by measuring size distribution, zeta potential, incorporation efficiency, and monitoring these parameters over 90 days. Accelerated ageing tests were also performed to check the stability of the dispersions. The effects of the different nature of the edge activator on the features of the obtained PEVs were assessed by TEM, SAXS and WAXS, rheological and deformability studies. Higher interactions of the most lipophilic penetration enhancers with the lipid bilayers and a consequent higher stability and elasticity of the obtained PEVs were observed. In vitro experiments through pig skin confirmed the superior potential as carriers for lidocaine of the PEVs prepared with the most lipophilic penetration enhancers, even in comparison with commercial EMLA cream.

  3. Phenomena after meteoroid penetration of a bumper plate

    NASA Technical Reports Server (NTRS)

    Todd, F. C.

    1972-01-01

    The results are presented of a study to obtain a computer program for the penetration of a thin plate of aluminum by a sphere of rock. The study was divided into two projects. One project covers the initial impact, the crushing of the sphere of rock, the break up of the aluminum sheet, and the conversion of the sufficiently shock-compressed regions of rock and aluminum into a plasma. The other project considers the ejection of a cone of plasma with entrained particles from the impact zone, its expansion as it traverses a region of free space, and its impact on a stack of paper sheets. The ablation of fragments in penetrating the stack of paper sheets is also considered.

  4. Journey of water in pine cones

    PubMed Central

    Song, Kahye; Yeom, Eunseop; Seo, Seung-Jun; Kim, Kiwoong; Kim, Hyejeong; Lim, Jae-Hong; Joon Lee, Sang

    2015-01-01

    Pine cones fold their scales when it rains to prevent seeds from short-distance dispersal. Given that the scales of pine cones consist of nothing but dead cells, this folding motion is evidently related to structural changes. In this study, the structural characteristics of pine cones are studied on micro-/macro-scale using various imaging instruments. Raindrops fall along the outer scales to the three layers (bract scales, fibers and innermost lignified structure) of inner pine cones. However, not all the layers but only the bract scales get wet and then, most raindrops move to the inner scales. These systems reduce the amount of water used and minimize the time spent on structural changes. The result shows that the pine cones have structural advantages that could influence the efficient motion of pine cones. This study provides new insights to understand the motion of pine cones and would be used to design a novel water transport system. PMID:25944117

  5. Journey of water in pine cones

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Seo, Seung-Jun; Kim, Kiwoong; Kim, Hyejeong; Lim, Jae-Hong; Joon Lee, Sang

    2015-05-01

    Pine cones fold their scales when it rains to prevent seeds from short-distance dispersal. Given that the scales of pine cones consist of nothing but dead cells, this folding motion is evidently related to structural changes. In this study, the structural characteristics of pine cones are studied on micro-/macro-scale using various imaging instruments. Raindrops fall along the outer scales to the three layers (bract scales, fibers and innermost lignified structure) of inner pine cones. However, not all the layers but only the bract scales get wet and then, most raindrops move to the inner scales. These systems reduce the amount of water used and minimize the time spent on structural changes. The result shows that the pine cones have structural advantages that could influence the efficient motion of pine cones. This study provides new insights to understand the motion of pine cones and would be used to design a novel water transport system.

  6. Calcium regulates vesicle replenishment at the cone ribbon synapse.

    PubMed

    Babai, Norbert; Bartoletti, Theodore M; Thoreson, Wallace B

    2010-11-24

    Cones release glutamate-filled vesicles continuously in darkness, and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording postsynaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady state between vesicle release and replenishment using trains of test pulses. Increasing Ca(2+) currents (I(Ca)) by changing the test step from -30 to -10 mV increased replenishment. Lengthening -30 mV test pulses to match the Ca(2+) influx during 25 ms test pulses to -10 mV produced similar replenishment rates. Reducing Ca(2+) driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of I(Ca) by nifedipine accelerated replenishment. Increasing [Ca(2+)](i) by flash photolysis of caged Ca(2+) also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca(2+) buffer of 0.5 mm EGTA rather than 5 mm EGTA, and diminished by 1 mm BAPTA. This suggests that although release and replenishment exhibited similar Ca(2+) dependencies, release sites are <200 nm from Ca(2+) channels but replenishment sites are >200 nm away. Membrane potential thus regulates replenishment by controlling Ca(2+) influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse. PMID:21106825

  7. Penetrating abdominal trauma.

    PubMed

    Henneman, P L

    1989-08-01

    The management of patients with penetrating abdominal trauma is outlined in Figure 1. Patients with hemodynamic instability, evisceration, significant gastrointestinal bleeding, peritoneal signs, gunshot wounds with peritoneal violation, and type 2 and 3 shotgun wounds should undergo emergency laparotomy. The initial ED management of these patients includes airway management, monitoring of cardiac rhythm and vital signs, history, physical examination, and placement of intravenous lines. Blood should be obtained for initial hematocrit, type and cross-matching, electrolytes, and an alcohol level or drug screen as needed. Initial resuscitation should utilize crystalloid fluid replacement. If more than 2 liters of crystalloid are needed to stabilize an adult (less in a child), blood should be given. Group O Rh-negative packed red blood cells should be immediately available for a patient in impending arrest or massive hemorrhage. Type-specific blood should be available within 15 minutes. A patient with penetrating thoracic and high abdominal trauma should receive a portable chest x-ray, and a hemo- or pneumothorax should be treated with tube thoracostomy. An unstable patient with clinical signs consistent with a pneumothorax, however, should receive a tube thoracostomy prior to obtaining roentgenographic confirmation. If time permits, a nasogastric tube and Foley catheter should be placed, and the urine evaluated for blood (these procedures can be performed in the operating room). If kidney involvement is suspected because of hematuria or penetrating trauma in the area of a kidney or ureter in a patient requiring surgery, a single-shot IVP should be performed either in the ED or the operating room. An ECG is important in patients with possible cardiac involvement and in patients over the age of 40 going to the operating room. Tetanus status should be updated, and appropriate antibiotics covering bowel flora should be given. Operative management should rarely be delayed

  8. Contribution of human short-wave cones to luminance and motion detection.

    PubMed Central

    Lee, J; Stromeyer, C F

    1989-01-01

    1. Human short-wave S cone signals are important for colour vision and here we examine whether the S cone signals also contribute to motion and luminance. 2. Detection was measured with moving patterns that selectively stimulated S cones-violet sine-wave gratings of 1 cycle deg-1 on an intense yellowish field. For rates up to 12 Hz, detection was governed by non-directional mechanisms, possibly of a chromatic nature, as shown by three findings: moving gratings had to be suprathreshold for their direction to be identified; the threshold ratio of counterphase flickering versus moving gratings was low; and direction-selective adaptation was essentially absent. 3. Evidence for less sensitive, directional mechanisms includes the following: at high velocity, the direction of movement of the violet gratings can be identified just slightly above the detection threshold; directional adaptation was strong with a suprathreshold test pattern; velocity was seen veridically for clearly suprathreshold patterns; and a counterphase flickering test, added in spatial-temporal quadrature phase to a similar suprathreshold mask, had identical detection and direction-identification thresholds. 4. Interactions of long-wave L cone and S cone signals in direction-selective mechanisms were measured with an orange counterphase grating and a violet counterphase test, both flickering at the same rate and presented in spatial quadrature phase on the yellowish adapting field. Direction identification thresholds, measured as a function of the temporal phase of two gratings, demonstrated both that the S cone signal lags considerably behind the L cone signal (an effect that strongly varies with S cone light adaptation), and more strikingly, the S cone signal summates with a negative sign and thus is effectively inverted in direction-selective mechanisms. 5. Quantitatively similar temporal phase functions were obtained with uniform violet and orange flicker when a luminance discrimination criterion

  9. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    SciTech Connect

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  10. Mars penetrator umbilical. [to study geophysical properties of Mars

    NASA Technical Reports Server (NTRS)

    Barns, C. E.

    1979-01-01

    The device proposed to gather subsurface data on the planet Mars is a ballistic probe which penetrates the soil after a free fall through the Martian atmosphere. Highlights of the design, development, and testing of several features of the Mars Surface Penetration Probe are outlined.

  11. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  12. 40 CFR 1065.365 - Nonmethane cutter penetration fractions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Nonmethane cutter penetration...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Hydrocarbon Measurements § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a...

  13. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  14. 40 CFR 1065.365 - Nonmethane cutter penetration fractions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Nonmethane cutter penetration...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Hydrocarbon Measurements § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a...

  15. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  16. 40 CFR 1065.365 - Nonmethane cutter penetration fractions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Nonmethane cutter penetration...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Hydrocarbon Measurements § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a...

  17. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  18. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  19. S-cone discrimination in the presence of two adapting fields: data and model.

    PubMed

    Cao, Dingcai

    2014-04-01

    This study investigated S-cone discrimination using a test annulus surrounded by an inner and outer adapting field with systematic manipulation of the adapting l=L/(L+M) or s=S/(L+M) chromaticities. The results showed that different adapting l chromaticities altered S-cone discrimination for a high adapting s chromaticity due to parvocellular input to the koniocellular pathway. In addition, S-cone discrimination was determined by the combined spectral signals arising from both adapting fields. The "white" adapting field or an adapting field with a different l chromaticity from the other fields was more likely to have a stronger influence on discrimination thresholds. These results indicated that the two cardinal axes are not independent in S-cone discrimination, and the two adapting fields jointly contribute to S-cone discrimination through a cortical summation mechanism.

  20. Physical properties of thin-film field emission cathodes with molybdenum cones

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Brodie, I.; Humphrey, L.; Westerberg, E. R.

    1976-01-01

    Field emission cathodes fabricated using thin-film techniques and electron beam microlithography are described, together with effects obtained by varying the fabrication parameters. The emission originates from the tip of molybdenum cones that are about 1.5 micron tall with a tip radius around 500 A. Such cathodes have been produced in closely packed arrays containing 100 and 5000 cones as well as singly. Maximum currents in the range 50-150 microamp per cone can be drawn. Life tests with the 100-cone arrays drawing 2 mA total emission (or 3 A per sq cm) have proceeded in excess of 7000 hr with about a 10% drop in emission current. Studies are presented of the emission characteristics and current fluctuation phenomena. It is tentatively concluded that the emission arises from only one or a few atomic sites on the cone tips.

  1. Diagnosis of Normal and Abnormal Color Vision with Cone-Specific VEPs

    PubMed Central

    Rabin, Jeff C.; Kryder, Andrew C.; Lam, Dan

    2016-01-01

    Purpose Normal color vision depends on normal long wavelength (L), middle wavelength (M), and short wavelength sensitive (S) cones. Hereditary “red-green” color vision deficiency (CVD) is due to a shift in peak sensitivity or lack of L or M cones. Hereditary S cone CVD is rare but can be acquired as an early sign of disease. Current tests detect CVD but few diagnose type or severity, critical for linking performance to real-world demands. The anomaloscope and newer subjective tests quantify CVD but are not applicable to infants or cognitively impaired patients. Our purpose was to develop an objective test of CVD with sensitivity and specificity comparable to current tests. Methods A calibrated visual-evoked potential (VEP) display and Food and Drug Administration-approved system was used to record L, M, and S cone-specific pattern-onset VEPs from 18 color vision normals (CVNs) and 13 hereditary CVDs. VEP amplitudes and latencies were compared between groups to establish VEP sensitivity and specificity. Results Cone VEPs show 100% sensitivity for diagnosis of CVD and 94% specificity for confirming CVN. L cone (protan) CVDs showed a significant increase in L cone latency (53.1 msec, P < 0.003) and decreased amplitude (10.8 uV, P < 0.0000005) but normal M and S cone VEPs (P > 0.31). M cone (deutan) CVDs showed a significant increase in M cone latency (31.0 msec, P < 0.000004) and decreased amplitude (8.4 uV, P < 0.006) but normal L and S cone VEPs (P > 0.29). Conclusions Cone-specific VEPs offer a rapid, objective test to diagnose hereditary CVD and show potential for detecting acquired CVD in various diseases. Translational Relevance This paper describes the efficacy of cone-specific color VEPs for quantification of normal and abnormal color vision. The rapid, objective nature of this approach makes it suitable for detecting color sensitivity loss in infants and the cognitively impaired. PMID:27226932

  2. Inside the cone of protection

    SciTech Connect

    Stahmann, J.R.

    1983-01-01

    Although lightning cones of protection and cones of attraction have been used for over 100 years, much confusion still remains as to their effectiveness, particularly as applied to personnel protection. At Kennedy Space Center, a 1:1 cone of protection with a straight side is standard for structure or equipment protection. However, at the launch pad, where a 400-foot lightning lightning rod on top of an insulating mast is used for pad lightning protection, the idea developed that personnel within a 400-foot radius of this mast would be safe from lightning and those outside it would not. Since it is obvious that a person 395 feet (120.4 m.) from the mast is only slightly safer than one at 405 feet (123.5 m.), an investigation was initiated to calculate the probabilities of a person being struck by lightning as he moves closer to the mast inside the cone of protection. Since the risk does not go to zero outside the structure, the risk level can then be estimated. To arrive at the expected strike frequency, it was necessary to measure the strike frequencies at KSC. Krider and others have found a mean area density of cloud-to-ground lightning at KSC of about 4.6 + or - 3.1 flashes per sq km per month in the summer. An overall frequency is estimated as about 20 flashes per sq km per year. With these data, the risk of exposure at various distances from the lightning mast can be calculated. Assuming continuous exposure during thunderstorms, this risk varies from about one strike per person in 1,400 years near the tower to one stroke per person in 300 years at about 400 foot (122 m.).

  3. Cardiac cone-beam CT

    SciTech Connect

    Manzke, Robert . E-mail: robert.manzke@philips.com

    2005-10-15

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net.

  4. Prescriptionless light-cone integrals

    NASA Astrophysics Data System (ADS)

    Suzuki, A. T.; Schmidt, A. G. M.

    2000-01-01

    Perturbative quantum gauge field theory as seen within the perspective of physical gauge choices such as the light-cone gauge entails the emergence of troublesome poles of the type (k\\cdot n)^{-α} in the Feynman integrals. These come from the boson field propagator, where α = 1,2,\\cdots and n^{μ} is the external arbitrary four-vector that defines the gauge proper. This becomes an additional hurdle in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes. However, a more recent development at this fronteer which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes to us attached to this new technique, in that not only it renders the light-cone prescriptionless but, by the very nature of it, it can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type (k\\cdot n)^{-α}[(k-p)\\cdot n]^{-β} (β = 1,2,\\cdots ). In this work we demonstrate how all this can be done.

  5. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  6. The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions.

    PubMed

    Lind, Olle; Chavez, Johanna; Kelber, Almut

    2014-03-01

    Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m². We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m², as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m², spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision. PMID:24366429

  7. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus

    NASA Astrophysics Data System (ADS)

    Reid, R. Clay; Shapley, Robert M.

    1992-04-01

    HUMAN colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing1. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific2,3 (Fig. la). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. le). Recent work has tended to support the mixed-surround hypothesis4-8. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.

  8. Projectile penetration into representative targets

    NASA Astrophysics Data System (ADS)

    Stone, George W.

    1994-10-01

    The differential equation representing the penetration of a 'hard' projectile into semi-infinite, homogeneous target materials is solved for several generic combinations of the target material/projectile characteristics. A 'hard' projectile is defined as one that does not change size or shape and does not lose mass during the penetration process. The target materials evaluated range from the structurally 'soft' materials (liquids) to structurally 'hard' materials (armor plate) with viscous and fluid dynamic drag considered. The solutions to the differential equation(s) are expanded in series form to demonstrate the underlying parameters governing projectile penetration and the way they interact to limit penetration in a given target material. It is shown that the fundamental parameter governing projectile penetration into structurally 'firm' materials is the initial kinetic energy of the projectile divided by the frontal area of the projectile and the inherent structural characteristic of the target. Experimental data on the penetration of steel spheres into ballistic gelatin and for armor piercing bullets into armor plate materials are used to verify the characteristics of the solutions to the equation of motion for the projectile and to demonstrate how penetration can vary with projectile size and target characteristics. The penetration equation for a single 'hard' target material is used to develop a solution for the penetration of multilayered 'hard' target materials.

  9. Organization of the human trichromatic cone mosaic.

    PubMed

    Hofer, Heidi; Carroll, Joseph; Neitz, Jay; Neitz, Maureen; Williams, David R

    2005-10-19

    Using high-resolution adaptive-optics imaging combined with retinal densitometry, we characterized the arrangement of short- (S), middle- (M), and long- (L) wavelength-sensitive cones in eight human foveal mosaics. As suggested by previous studies, we found males with normal color vision that varied in the ratio of L to M cones (from 1.1:1 to 16.5:1). We also found a protan carrier with an even more extreme L:M ratio (0.37:1). All subjects had nearly identical S-cone densities, indicating independence of the developmental mechanism that governs the relative numerosity of L/M and S cones. L:M cone ratio estimates were correlated highly with those obtained in the same eyes using the flicker photometric electroretinogram (ERG), although the comparison indicates that the signal from each M cone makes a larger contribution to the ERG than each L cone. Although all subjects had highly disordered arrangements of L and M cones, three subjects showed evidence for departures from a strictly random rule for assigning the L and M cone photopigments. In two retinas, these departures corresponded to local clumping of cones of like type. In a third retina, the L:M cone ratio differed significantly at two retinal locations on opposite sides of the fovea. These results suggest that the assignment of L and M pigment, although highly irregular, is not a completely random process. Surprisingly, in the protan carrier, in which X-chromosome inactivation would favor L- or M-cone clumping, there was no evidence of clumping, perhaps as a result of cone migration during foveal development. PMID:16237171

  10. Fundamental conical defects: The d-cone, its e-cone, and its p-cone

    NASA Astrophysics Data System (ADS)

    Seffen, Keith A.

    2016-07-01

    We consider well-known surface disclinations by cutting, joining, and folding pieces of paper card. The resulting shapes have a discrete, folded vertex whose geometry is described easily by Gauss's mapping, in particular, we can relate the degree of angular excess, or deficit, to the size of fold line rotations by the area enclosed by the vector diagram of these rotations. This is well known for the case of a so-called "d-cone" of zero angular deficit, and we formulate the same for a general disclination. This method allows us to observe kinematic properties in a meaningful way without needing to consider equilibrium. Importantly, the simple vector nature of our analysis shows that some disclinations are primitive; and that other types, such as d-cones, are amalgamations of them.

  11. Fundamental conical defects: The d-cone, its e-cone, and its p-cone.

    PubMed

    Seffen, Keith A

    2016-07-01

    We consider well-known surface disclinations by cutting, joining, and folding pieces of paper card. The resulting shapes have a discrete, folded vertex whose geometry is described easily by Gauss's mapping, in particular, we can relate the degree of angular excess, or deficit, to the size of fold line rotations by the area enclosed by the vector diagram of these rotations. This is well known for the case of a so-called "d-cone" of zero angular deficit, and we formulate the same for a general disclination. This method allows us to observe kinematic properties in a meaningful way without needing to consider equilibrium. Importantly, the simple vector nature of our analysis shows that some disclinations are primitive; and that other types, such as d-cones, are amalgamations of them. PMID:27575208

  12. Temperature matching of multilayer insulation to penetrations

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Plachta, D. W.; Rhys, N. O.; Kelly, A. O.

    2014-01-01

    To accurately predict the heat load into a cryogenic tank or cold mass which includes multilayer insulation (MLI), heat loads other than just through the pristine MLI must be accounted for. One such type of heat load is the integration of the MLI system around penetrations. While a number of different methods that have been developed, the ideal solution would be one in which there are zero thermal losses due to the integration. Theoretically, the be st method to achieving zero integration losses is to match the individual MLI temperature layers with the corresponding penetration location having the same temperature; this method is known as temperature matching. Recently, NASA has employed temperature matching integration of multilayer insulation systems onto several different cryogenic tanks with different structural elements and attachments. T esting included the Methane Lunar Surface Thermal Control testing at Glenn Research Center, the CRYOTE Ground Test Article testing at Marshall Space Flight Center, and the Penetration Calorimetery work done at Kennedy Space Center. Each test was instrumented to determine the effects of temperature matching within MLI and each system was designed in a different manner. The testing showed that temperature matching can indeed produce nearly zero thermal losses. However, our findings show that there are many practical limitations to this approach. Temperature matching integration schemes were found to be very sensitive to thermal environmental changes and even tank liquid level changes. The approach is therefore considered useful only for a select few cases and not useful for most engineering applications.

  13. Isolating prompt photons with narrow cones

    NASA Astrophysics Data System (ADS)

    Catani, S.; Fontannaz, M.; Guillet, J. Ph.; Pilon, E.

    2013-09-01

    We discuss the isolation of prompt photons in hadronic collisions by means of narrow isolation cones and the QCD computation of the corresponding cross sections. We reconsider the occurence of large perturbative terms with logarithmic dependence on the cone size and their impact on the fragmentation scale dependence. We cure the apparent perturbative violation of unitarity for small cone sizes, which had been noticed earlier in next-to-leading-order (NLO) calculations, by resumming the leading logarithmic dependence on the cone size. We discuss possible implications regarding the implementation of some hollow cone variants of the cone criterion, which simulate the experimental difficulty to impose isolation inside the region filled by the electromagnetic shower that develops in the calorimeter.

  14. Cone Penetrometer Off-Surface Sensor

    SciTech Connect

    Smail, T.R.; French, p.J.; Huffman, R.K.; Hebert, P.S.

    1999-10-20

    Cone penetrometer technology accounts for approximately 50 percent of the subsurface drilling done at the Savannah River Site. This technology provides a means of collecting data for use in the characterization of the subsurface. The cone penetrometer consists of a steel cone attached to a pipe column that is hydraulically inserted into the ground. To allow researchers to accurately measure subsurface properties, without the inherent problems of cone penetrometer equipment, the Savannah River Technology Center has developed the Cone Penetrometer Off-Surface Sensor (CPOSS). The CPOSS design consists of a knife-blade mechanism mounted along the surface of a module capable of attaching to existing cone penetrometer equipment and being deployed at depths of up to 200 feet. CPOSS development is the subject of this report.

  15. Effects of Rock High Pressure Strength on Penetration

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2011-06-01

    Perforating of oil/gas well creates communication tunnel between reservoir and wellbore. Shaped charges are widely used as perforators in oilfield industry. The liners of the charges are mostly made of powder metal to prevent solid slug clogging the entrance hole of well casing or locking the hole in perforating gun. High speed jet from the shaped charge pierces through perforating gun, well fluid, well casing, and then penetrates into reservoir formation. Prediction of jet penetration in reservoir rock is critical in modeling of well production. An analytical penetration model developed for solid rod by Tate and Alekseevskii is applied. However, strength of formation rock at high pressure needs to be measured. Lateral stress gauge measurements in plate impact tests are conducted. Piezoelectric pressure gauges are imbedded in samples to measure the longitudinal and transverse stress. The two stresses provide Hugoniot and material compressive strength. Indiana limestone, a typical rock in perforation testing, is selected as target sample material in the plate impact tests. Since target strength effect on penetration is more significant in late stage of penetration when the strength of material becomes significant compared to the impact pressure, all the impact tests are focused on lower impact pressure up to 9 GPa. The measurements show that the strength increases with impact pressure. The results are applied in the penetration calculations. The final penetration matches testing data very well.

  16. Top Sounder Ice Penetration

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  17. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  18. Penetration seals for TFTR shielding

    SciTech Connect

    Hondorp, H.L.

    1980-12-01

    The penetrations of the shielding provided for TFTR are required to be sealed to avoid radiation streaming. This report provides a discussion of the properties required for these penetration seals. Several alternate designs are discussed and evaluated and designs recommended for specific applications.

  19. Cone opsins, colour blindness and cone dystrophy: Genotype-phenotype correlations.

    PubMed

    Gardner, J C; Michaelides, M; Hardcastle, A J

    2016-05-25

    X-linked cone photoreceptor disorders caused by mutations in the OPN1LW (L) and OPN1MW (M) cone opsin genes on chromosome Xq28 include a range of conditions from mild stable red-green colour vision deficiencies to severe cone dystrophies causing progressive loss of vision and blindness. Advances in molecular genotyping and functional analyses of causative variants, combined with deep retinal phenotyping, are unravelling genetic mechanisms underlying the variability of cone opsin disorders.

  20. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    SciTech Connect

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  1. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    NASA Astrophysics Data System (ADS)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  2. S-cones in thin shells under indentation

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Ajdari, Amin; Lazarus, Arnaud; Vaziri, Ashkan; Reis, Pedro

    2012-02-01

    We perform a hybrid experimental and numerical investigation of the localization of deformation in indented thin spherical elastic shells. Past the initial linear response, an inverted cap develops as a Pogorelov circular ridge. For further indentation, this ridge looses axis-symmetry and sharp points of localized curvature form. We refer to these localized objects as s-cones (for shell-cones), in contrast with their developable cousins in plates (d-cones). We quantify the effect of systematically varying the indenter's radius of curvature (from point to plate load) on the formation and evolution of s-cones. In our precision desktop-scale experiments we use rapid prototyped elastomeric shells and rigid indenters of various shape. The mechanical response is measured through load-displacement compression tests and the deformation process is further characterized through digital imaging. In parallel, the experimental results are contrasted against nonlinear Finite Element simulations. Merging these two complementary approaches allows us to gain further physical insight towards rationalizing this geometrically nonlinear process.

  3. Ionic emission from Taylor cones

    NASA Astrophysics Data System (ADS)

    Castro Reina, Sergio

    Electrified Taylor cones have been seen as an efficient way to generate thrust for space propulsion. Especially the pure ionic regime (PIR) combines a very high specific impulse (thrust per unit mass) and efficiency, which is very important to reduce fuel transportation costs. The PIR has been primarily based on electrosprays of liquid metals [Swatik and Hendricks 1968, Swatik 1969]. However, emissions dominated by or containing exclusively ions have also been observed from nonmetallic purely ionic substances, initially sulfuric acid [Perel et al. 1969], and more recently room temperature molten salts referred to as ionic liquids (ILs) [Romero-Sanz et al. 2003]. The recent use of the liquid metal ion source (LMIS) with ILs, becoming this "new" source to be known as ionic liquid ion source (ILIS) [Lozano and Martinez-Sanchez 2005], has shown important differences on the emission from Taylor cones with the traditional hollow capillary. This new source seems to be more flexible than the capillary [Paulo, Sergio, carlos], although its low emission level (low thrust) is an important drawback from the space propulsion point of view. Throughout the thesis I have studied some aspects of the ionic emission from ionic liquid Taylor cones and the influence of the properties of the liquids and the characteristic of source on the emission. I have unraveled the reason why ILIS emits such low currents (˜200 nA) and found a way to solve this problem increasing the current up to capillary levels (˜1000 nA) [Castro and Fernandez de la Mora 2009]. I have also tried to reduce ion evaporation while reducing the emitted droplet size in order to increase the thrust generated while keeping the efficiency relatively high and I have measured the energy of evaporation of several cations composing ionic liquids, mandatory step to understand ionic evaporation.

  4. Penetration Testing Curriculum Development in Practice

    ERIC Educational Resources Information Center

    Li, Chengcheng

    2015-01-01

    As both the frequency and the severity of network breaches have increased in recent years, it is essential that cybersecurity is incorporated into the core of business operations. Evidence from the U.S. Bureau of Labor Statistics (Bureau of Labor Statistics, 2012) indicates that there is, and will continue to be, a severe shortage of cybersecurity…

  5. Development of a Rover Deployed Ground Penetrating Radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schutz, A. E.; Campbell, B. A.

    2000-01-01

    Development of a rover deployable Ground Penetrating Radar (GPR) involves: the nearly finished design and testing of a transducer array with high frequency (bistatic) and low frequency (monostatic) components; and design and development of a complete impulse GPR system.

  6. Nested-cone transformer antenna

    DOEpatents

    Ekdahl, C.A.

    1991-05-28

    A plurality of conical transmission lines are concentrically nested to form an output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated. 6 figures.

  7. Nested-cone transformer antenna

    DOEpatents

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  8. Simulation of penetration into porous geologic media

    SciTech Connect

    Vorobiev, O Y; Liu, B T; Lomov, I N; Antoun, T

    2005-05-31

    We present a computational study on the penetration of steel projectiles into porous geologic materials. The purpose of the study is to extend the range of applicability of a recently developed constitutive model to simulations involving projectile penetration into geologic media. The constitutive model is non-linear, thermodynamically consistent, and properly invariant under superposed rigid body motions. The equations are valid for large deformations and they are hyperelastic in the sense that the stress tensor is related to a derivative of the Helmholtz free energy. The model uses the mathematical structure of plasticity theory to capture the basic features of the mechanical response of geological materials including the effects of bulking, yielding, damage, porous compaction and loading rate on the material response. The new constitutive model has been successfully used to simulate static laboratory tests under a wide range of triaxial loading conditions, and dynamic spherical wave propagation tests in both dry and saturated geologic media.

  9. Effect of orifice diameter on characteristics of hollow cone swirl spray emanating from simplex nozzles

    NASA Astrophysics Data System (ADS)

    Hussein, A.; Hafiz, M.; Helmi, R.; Wisnoe, W.; Jasmi, M.

    2012-06-01

    The paper reports on experimental work to investigate the swirl spray characteristics that emanates from simplex atomizers. Main objective of the research is to investigate the effect of orifice diameter on the spray cone angle, spray breakup length and discharge coefficient at different injection pressure. Discharge coefficient is almost uninfluenced by the operating Reynolds number. This test also reveals that both breakup length and spray cone angle increases as orifice diameter is increased. Higher injection pressure leads to shorter breakup length and wider spray cone angle.

  10. Cooperative Transmembrane Penetration of Nanoparticles

    PubMed Central

    Zhang, Haizhen; Ji, Qiuju; Huang, Changjin; Zhang, Sulin; Yuan, Bing; Yang, Kai; Ma, Yu-qiang

    2015-01-01

    Physical penetration of lipid bilayer membranes presents an alternative pathway for cellular delivery of nanoparticles (NPs) besides endocytosis. NPs delivered through this pathway could reach the cytoplasm, thereby opening the possibility of organelle-specific targeting. Herein we perform dissipative particle dynamics simulations to elucidate the transmembrane penetration mechanisms of multiple NPs. Our simulations demonstrate that NPs’ translocation proceeds in a cooperative manner, where the interplay of the quantity and surface chemistry of the NPs regulates the translocation efficiency. For NPs with hydrophilic surfaces, the increase of particle quantity facilitates penetration, while for NPs with partly or totally hydrophobic surfaces, the opposite highly possibly holds. Moreover, a set of interesting cooperative ways, such as aggregation, aggregation-dispersion, and aggregation-dispersion-reaggregation of the NPs, are observed during the penetration process. We find that the penetration behaviors of multiple NPs are mostly dominated by the changes of the NP-membrane force components in the membrane plane direction, in addition to that in the penetration direction, suggesting a different interaction mechanism between the multiple NPs and the membrane compared with the one-NP case. These results provide a fundamental understanding in the underlying mechanisms of cooperative penetration of NPs, and shed light on the NP-based drug and gene delivery. PMID:26013284

  11. Transdermal penetration of UV filters.

    PubMed

    Klinubol, P; Asawanonda, P; Wanichwecharungruang, S P

    2008-01-01

    A penetration study of 2-ethylhexyl-4-methoxycinnamate (EHMC), 4-methyl benzylidenecamphor (MBC), butyl methoxydibenzoylmethane (BMBM), 2-ethylhexyl-2,4,5-trimethoxycinnamate (EHTMC) and di(2-ethylhexyl)-2,4,5-trimethoxybenzalmalonate (TMB) through baby mouse skin (Mus musculus Linn.) was carried out using a vertical Franz diffusion cell. At 4.4 mg/cm(2) coverage of UV filter on the skin, 2.98 +/- 0.38, 1.15 +/- 0.14 and 0.80 +/- 0.28% of the applied EHMC, MBC and BMBM were detected in the receptor fluid at 24 h after application. Penetrations of UV filter in an ethanolic solution and lotion forms were comparable. EHTMC and TMB showed insignificant penetration across the baby mouse skins. Baby mouse skins kept at 4, -20 and -80 degrees C gave similar EHMC penetration results. Penetrations of EHMC, BMBM, EHTMC and TMB across human epidermis were carried out upon 5 volunteers using the suction blister technique. The results also confirmed the significant penetrations of EHMC and BMBM and the insignificant penetrations of EHTMC and TMB.

  12. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed.

  13. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. PMID:24184862

  14. Elevated Temperature Fracture Toughness and Fatigue Testing of Steels for Geothermal Applications

    SciTech Connect

    Cutler, R.A.; Goodman, E.C.; Hendrickson, R.R.

    1981-10-01

    Conventional drill bit steels exhibit increased wear and decreased toughness when run at elevated temperatures in geothermal wells. Bits are therefore run at lower speeds and lighter loads, resulting in lower penetration rates for geothermal drilling than for conventional rock drilling. Carpenter EX-00053, Timken CBS 600, Timken CBS 1000M and Vasco X-2M steels with improved hot hardness (improved wear resistance), were tested in conjunction with the steels used for cones (AISI 4829, 3915 and EX55) in conventional roller cones and lugs (AISI 8620, 9315 and EX55) in conventional roller cone rock bits. Short-rod fracture toughness measurements were made on each of these steels between room temperature and 400{degree}C. Fatigue crack resistance was determined at 300{degree}C for high-temperature steels and at room temperature for conventional steels. Scanning electron microscopy analyses of the fractured short-rod specimens were correlated with observed crack behavior from the test records. Materials testing results are discussed and steel selections made for improved geothermal bits. Carpenter EX-00053 and Timken CBS 1000M steels meet all design requirements for use in stabilizers, lugs and cones at temperatures to 400{degree}C. It is recommended that EX-00053 and CBS 1000M be manufactured for geothermal drilling at the Geysers site. [DJE 2005

  15. Identification of appropriate cone length to avoid positive cone margin in high grade cervical intraepithelial neoplasia

    PubMed Central

    Tsuda, Naotake; Nishio, Shin; Ushijima, Kimio

    2016-01-01

    Objective To identify key factors for predicting positive cone margin and appropriate cone length. Methods We retrospectively reviewed the margin status of patients who received conization with high grade cervical intraepithelial neoplasia, along with other factors such as patient age, parity, preoperative cytology, size of disease, type of transformation zone, and cone length from patient records. Cut-off value of cone length was analyzed in women younger than 40 years old because we design conization with minimum length especially for women who wish for future pregnancy. Cut-off value of cone length was defined as length corresponds to estimated probability of positive cone margin equal to 0.1 by logistic regression analysis with variables selected by stepwise methods. Results Among 300 patients, 75 patients had positive cone margin. Multivariable analysis revealed that squamous cell carcinoma at preoperative cytology (p=0.001), 2 or more quadrant disease (p=0.011), and shorter cone length (p<0.001) were risk factors for positive cone margin. Stepwise methods identified cone length and size of lesion as important variables. With this condition, cut-off value of cone length was estimated as 15 mm in single quadrant disease and 20 mm in 2 or more quadrant disease, respectively. Conclusion We identified the independent risk factors of positive cone margin and identified the cut-off value of cone length to avoid positive cone margin in women younger than 40 years old. Conization should be performed not only according to colposcopic findings including type of transformation zone but size of disease and cone length. PMID:27401478

  16. The structure and emplacement of cinder cone fields

    NASA Technical Reports Server (NTRS)

    Settle, M.

    1979-01-01

    The paper examines the structure and emplacement of cinder cone fields. Terrestrial cinder cone fields occur in volcanic provinces upon the flanks of major volcanoes or within relatively flat-lying volcanic fields. Measurements of cone shape and distribution were made in three volcano cone fields and three platform cone fields, and it was found that modal average values of cone basal diameter are on the order of 300 to 400 m within volcano cone fields and 900 to 1000 m within platform cone fields. The average morphometric parameters for the six fields indicate that cone diameter is positively correlated with cone separation distance, and that the size and spacing of cinder cones formed on the flanks of volcanoes is less than the size and spacing of cones constructed in volcanic fields.

  17. Evaporation and skin penetration characteristics of mosquito repellent formulations

    SciTech Connect

    Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.

    1989-03-01

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss.

  18. Panoramic cone beam computed tomography

    SciTech Connect

    Chang Jenghwa; Zhou Lili; Wang Song; Clifford Chao, K. S.

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{sub cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and

  19. USDC-based rapid penetrator of packed soil

    NASA Astrophysics Data System (ADS)

    Bao, X.; Bar-Cohen, Y.; Chang, Z.; Sherrit, S.; Badescu, M.; Du, S.; Song, T.; Peterson, T.

    2006-03-01

    Environment protection requires more testing and analysis tools. To detect buried chemical containers or other objects embedded in soil and avoid possible damage to them, a penetrator was developed for packed soil that requires low penetration force (the force needed to push rod probe into the soil). The design was based on the novel mechanism used by the ultrasonic/sonic driller/corer (USDC) that was developed jointly by scientists at the NDEAA lab at JPL and engineers at Cybersonics, Inc. [Bar-Cohen et al 2001, Bao et al 2003]. In the penetrator, a small free-flying mass is energized by a piezoelectric transducer and impacts a rod probe on its shoulder at frequencies of several hundred Hetz. The impacts help the probe to penetrate the packed soil with low pushing force. A large reduction of the penetration force was achieved. Preliminary tests show that the effects of the penetrator on plastic containers and other objectors are minimal. The details of the design of the prototype penetrator and the results of performance tests are presented.

  20. Functional significance of the taper of vertebrate cone photoreceptors

    PubMed Central

    Hárosi, Ferenc I.

    2012-01-01

    Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between

  1. Cone penetrometer demonstration standard startup review checklist

    SciTech Connect

    KRIEG, S.A.

    1998-11-09

    Startup readiness for the Cone Penetrometer Demonstration in AX Tank Farm will be verified through the application of a Standard Startup Review Checklist. This is a listing of those items essential to demonstrating readiness to start the Cone Penetrometer Demonstration in AX Tank Farm.

  2. Recoverin depletion accelerates cone photoresponse recovery

    PubMed Central

    Zang, Jingjing; Keim, Jennifer; Kastenhuber, Edda; Gesemann, Matthias; Neuhauss, Stephan C. F.

    2015-01-01

    The neuronal Ca2+-binding protein Recoverin has been shown to regulate phototransduction termination in mammalian rods. Here we identify four recoverin genes in the zebrafish genome, rcv1a, rcv1b, rcv2a and rcv2b, and investigate their role in modulating the cone phototransduction cascade. While Recoverin-1b is only found in the adult retina, the other Recoverins are expressed throughout development in all four cone types, except Recoverin-1a, which is expressed only in rods and UV cones. Applying a double flash electroretinogram (ERG) paradigm, downregulation of Recoverin-2a or 2b accelerates cone photoresponse recovery, albeit at different light intensities. Exclusive recording from UV cones via spectral ERG reveals that knockdown of Recoverin-1a alone has no effect, but Recoverin-1a/2a double-knockdowns showed an even shorter recovery time than Recoverin-2a-deficient larvae. We also showed that UV cone photoresponse kinetics depend on Recoverin-2a function via cone-specific kinase Grk7a. This is the first in vivo study demonstrating that cone opsin deactivation kinetics determine overall photoresponse shut off kinetics. PMID:26246494

  3. Human cone pigment expressed in transgenic mice yields altered vision.

    PubMed

    Jacobs, G H; Fenwick, J C; Calderone, J B; Deeb, S S

    1999-04-15

    Genetically driven alterations in the complement of retinal photopigments are fundamental steps in the evolution of vision. We sought to determine how a newly added photopigment might impact vision by studying a transgenic mouse that expresses a human cone photopigment. Electroretinogram (ERG) measurements indicate that the added pigment works well, significantly changing spectral sensitivity without deleteriously affecting the operation of the native cone pigments. Visual capacities of the transgenic mice were established in behavioral tests. The new pigment was found to provide a significant expansion of the spectral range over which mice can perceive light, thus underlining the immediate utility of acquiring a new photopigment. The transgenic mouse also has the receptor basis for a novel color vision capacity, but tests show that potential was not realized. This failure likely reflects limitations in the organizational arrangement of the mouse retina.

  4. Mechanochemical regulation of growth cone motility

    PubMed Central

    Kerstein, Patrick C.; Nichol IV, Robert H.; Gomez, Timothy M.

    2015-01-01

    Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions. Interestingly, recent work suggests that both the mechanical properties of the environment and mechanical forces generated within growth cones influence axon guidance. In this review we discuss novel molecular mechanisms involved in growth cone force production and detection, and speculate how these processes may be necessary for the development of proper neuronal morphogenesis. PMID:26217175

  5. Unique characteristics of cones in Central Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Noguchi, Rina; Kurita, Kei

    2015-06-01

    Martian magmatism within recent several hundreds of millions years is still controversial. Central Elysium Planitia (CEP) is suspected as a site of the latest magmatism on Mars, but hot debates have been caused as for the origin of this flat plain. Cones in CEP are expected to be a key to resolve this controversy. In previous works, there are 2 models proposed for the origin of CEP cones: volcanic rootless cone (e.g. Jaeger et al., 2007) and periglacial pingo (e.g. Burr et al., 2002; Page et al., 2009). In this study, we described detail morphology, distribution and size of CEP cones by using high-resolution images and topographic data. CEP cones are classified into 3 morphological types: Single Cone (SC), Double Cone (DC), and Lotus Fruit Cone (LC). DC has an inner cone in the summit crater of the outer cone, and LC has several inner cones in the summit crater of the outer cone. Several cones have moat structure around the edifice with peripheral rise. DCs and LCs are located in very flat areas of Athabasca Valles in the vicinity of Cerberus Fossae, while SCs distribute in the entire region of CEP. We compared CEP cones with terrestrial rootless cones and pingos in aerial photos. In Lake Myvatn, Iceland, there exist rootless cones which resemble DCs and LCs in CEP. Based on the similarities with terrestrial analogies, we concluded that the most feasible origin of CEP cones is rootless cones.

  6. Primate Short-Wavelength Cones Share Molecular Markers with Rods

    PubMed Central

    Craft, Cheryl M.; Huang, Jing; Possin, Daniel E.; Hendrickson, Anita

    2015-01-01

    Macaca, Callithrix jacchus marmoset monkey, Pan troglodytes chim- panzee and human retinas were examined to define if short wavelength (S) cones share molecular markers with L&M cone or rod photoreceptors. S cones showed consistent differences in their immunohistochemical staining and expression levels compared to L&M cones for “rod” Arrestin1 (S-Antigen), “cone” Arrestin4, cone alpha transducin, and Calbindin. Our data verify a similar pattern of expression in these primate retinas and provide clues to the structural divergence of rods and S cones versus L&M cones, suggesting S cone retinal function is “intermediate” between them. PMID:24664680

  7. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  8. Inspecting the reactor vessel penetrations

    SciTech Connect

    Bodson, F.; Fleming, K.W.

    1995-08-01

    The susceptibility of Alloy 600 to Primary Water Stress Corrosion Cracking (PWSCC) continues to plague nuclear power plants. Recently, the problem of PWSCC cracking has manifested itself in Control Rod Drive Mechanism (CRDM) head penetrations in nuclear plants in Europe. Framatome has been extensively involved in the performance of both inspections and repairs of CRDM head penetrations at Electricite de France (EdF) plants. B and W Nuclear Technologies (BWNT), building on Framatome technology, has developed a fully integrated service package and robotic manipulator to inspect and repair CRDM head penetrations for US utilities. Reactor vessel bottom penetration are also made of Alloy 600 and to tackle this potential PWSCC problem at EdF plants, Framatome has been performing specific inspections in order to detect the appearance of the phenomenon. This paper describes the overall range of inspection techniques and toolings developed to address these issues.

  9. Investigations into Monochloramine Biofilm Penetration

    EPA Science Inventory

    Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct b...

  10. Development of an advanced 3D cone beam tomographic system

    NASA Astrophysics Data System (ADS)

    Sire, Pascal; Rizo, Philippe; Martin, M.; Grangeat, Pierre; Morisseau, P.

    Due to its high spatial resolution, the 3D X-ray cone-beam tomograph (CT) maximizes understanding of test object microstructure. In order for the present X-ray CT NDT system to control ceramics and ceramic-matrix composites, its spatial resolution must exceed 50 microns. Attention is given to two experimental data reconstructions that have been conducted to illustrate system capabilities.

  11. Penetrating nontorso trauma: the extremities

    PubMed Central

    Ball, Chad G.

    2015-01-01

    Summary Similar to penetrating torso trauma, nontorso injuries have undergone a fascinating oscillation between invasive and noninvasive approaches. This article discusses an organized approach to the evaluation and initial treatment of penetrating extremity injuries based on regional anatomy and clinical examination. The approach is reliable, efficient and minimizes both delays in diagnosis and missed injuries. Outpatient follow-up is particularly important for patients with extremity injuries who are discharged home from the emergency department. PMID:26022152

  12. Shatter cone and microscopic shock-alteration evidence for a post-Paleoproterozoic terrestrial impact structure near Santa Fe, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Fackelman, Siobhan P.; Morrow, Jared R.; Koeberl, Christian; McElvain, Thornton H.

    2008-06-01

    Field mapping, morphologic description, and petrographic analysis of recently discovered shatter cones within Paleoproterozoic crystalline rocks exposed over an area > 5 km 2, located ˜ 8 km northeast of Santa Fe, New Mexico, USA, give robust evidence of a previously unrecognized terrestrial impact structure. Herein, we provisionally name this the "Santa Fe impact structure". The shatter cones are composed of nested sub-conical, curviplanar, and flat joint surfaces bearing abundant curved and bifurcating striations that strongly resemble the multiply striated joint surfaces (MSJS) documented from shatter cones at Vredefort dome. The cones occur as a penetrative feature in intrusive igneous and supracrustal metamorphic rocks, are unusually large (up to 2 m long and 0.5 m wide at the base), display upward-pointing apices, and have subvertical, northeastward-plunging axes that crosscut regional host-rock fabrics. Key characteristics of superficially similar, but non-shock-generated conical and striated features are inconsistent with the properties of the Santa Fe cones. In thin section, sub-millimeter-scale, dark, semi-opaque to isotropic veneers on cone surfaces and veinlets within cone interiors closely resemble previously described shock-induced melt features. Microscopic grain alteration, restricted generally to within 1 mm of the cone surfaces, includes random fractures, fluid micro-inclusions, sericite replacement in feldspar, rare kink bands in mica, optical mosaicism, and decorated planar fractures (PFs) and planar deformation features (PDFs) in quartz. The PFs and PDFs are dominated by a basal (0001) crystallographic orientation, which indicate a peak shock pressure of ˜ 5-10 GPa that is consistent with shatter cone formation. Regional structural and exhumation models, together with anomalous breccia units that overlie and crosscut the shatter cone-bearing rocks, may provide additional age constraints for the impact event. The observed shatter cone outcrop

  13. Penetration through the Skin Barrier.

    PubMed

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals.

  14. Penetration through the Skin Barrier.

    PubMed

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals. PMID:26844902

  15. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake.

    PubMed

    Schott, Ryan K; Müller, Johannes; Yang, Clement G Y; Bhattacharyya, Nihar; Chan, Natalie; Xu, Mengshu; Morrow, James M; Ghenu, Ana-Hermina; Loew, Ellis R; Tropepe, Vincent; Chang, Belinda S W

    2016-01-12

    Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the "transmutation" theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single "cones." Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality. PMID:26715746

  16. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake

    PubMed Central

    Schott, Ryan K.; Müller, Johannes; Yang, Clement G. Y.; Bhattacharyya, Nihar; Chan, Natalie; Xu, Mengshu; Morrow, James M.; Ghenu, Ana-Hermina; Loew, Ellis R.; Tropepe, Vincent; Chang, Belinda S. W.

    2016-01-01

    Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the “transmutation” theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single “cones.” Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality. PMID:26715746

  17. Gravity duals of boundary cones

    NASA Astrophysics Data System (ADS)

    Camps, Joan

    2016-09-01

    The replica trick defines Rényi entropies as partition functions on conically singular geometries. We discuss their gravity duals: regular bulk solutions to the Einstein equations inducing conically singular metrics at the boundary. When the conical singularity is supported on a flat or spherical surface, these solutions are rewritings of the hyperbolic black hole. For more general shapes, these solutions are new. We construct them perturbatively in a double expansion in the distance and strength of the conical singularity, and extract the vacuum polarisation due to the cone. Recent results about the structure of logarithmic divergences of Rényi entropies are reproduced — in particular, f b ≠ f c . We discuss in detail the dynamical resolution of the singularity in the bulk. This resolution is in agreement with a previous proposal, and indicates a non-minimal settling to the `splitting problem': an apparent ambiguity in the holographic entropy formula of certain theories with higher derivatives.

  18. Elastic cone for Chinese calligraphy

    NASA Astrophysics Data System (ADS)

    Cai, Fenglei; Li, Haisheng

    2014-01-01

    The brush plays an important role in creating Chinese calligraphy. We regard a single bristle of a writing brush as an elastic rod and the brush tuft absorbing ink as an elastic cone, which naturally deforms according to the force exerted on it when painting on a paper, and the brush footprint is formed by the intersection region between the deformed tuft and the paper plane. To efficiently generate brush strokes, this paper introduces interpolation and texture mapping approach between two adjacent footprints, and automatically applies bristle-splitting texture to the stroke after long-time painting. Experimental results demonstrate that our method is effective and reliable. Users can create realistic calligraphy in real time.

  19. Toroidal modeling of penetration of the resonant magnetic perturbation field

    SciTech Connect

    Liu Yueqiang; Kirk, A.

    2013-04-15

    A toroidal, quasi-linear model is proposed to study the penetration dynamics of the resonant magnetic perturbation (RMP) field into the plasma. The model couples the linear, fluid plasma response to a toroidal momentum balance equation, which includes torques induced by both fluid electromagnetic force and by (kinetic) neoclassical toroidal viscous (NTV) force. The numerical results for a test toroidal equilibrium quantify the effects of various physical parameters on the field penetration and on the plasma rotation braking. The neoclassical toroidal viscous torque plays a dominant role in certain region of the plasma, for the RMP penetration problem considered in this work.

  20. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers.

    PubMed

    Yoon, Taeshik; Mun, Jeong Hun; Cho, Byung Jin; Kim, Taek-Soo

    2014-01-01

    We report penetration and lateral diffusion behavior of environmental molecules on synthesized polycrystalline graphene. Penetration occurs through graphene grain boundaries resulting in local oxidation. However, when the penetrated molecules diffuse laterally, the oxidation region will expand. Therefore, we measured the lateral diffusion rate along the graphene-copper interface for the first time by the environment-assisted crack growth test. It is clearly shown that the lateral diffusion is suppressed due to the high van der Waals interaction. Finally, we employed bilayer graphene for a perfect diffusion barrier facilitated by decreased defect density and increased lateral diffusion path.

  1. Thyroid Hormone Signaling and Cone Photoreceptor Viability.

    PubMed

    Ma, Hongwei; Ding, Xi-Qin

    2016-01-01

    Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and apoptosis. In the retina, TH signaling plays a central role in cone opsin expression. TH signaling inhibits S opsin expression, stimulates M opsin expression, and promotes dorsal-ventral opsin patterning. TH signaling has also been associated with cone photoreceptor viability. Treatment with thyroid hormone triiodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the T3 treatment effect, suppressing TH signaling preserves cones in mouse models of retinal degeneration. The regulation of cone survival by TH signaling appears to be independent of its regulatory role in cone opsin expression. The mechanism by which TH signaling regulates cone viability remains to be identified. The current understanding of TH signaling regulation in photoreceptor viability suggests that suppressing TH signaling locally in the retina may represent a novel strategy for retinal degeneration management. PMID:26427466

  2. Space station integrated wall design and penetration damage control

    NASA Technical Reports Server (NTRS)

    Coronado, A. R.; Gibbins, M. N.; Wright, M. A.; Stern, P. H.

    1987-01-01

    A methodology was developed to allow a designer to optimize the pressure wall, insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft configuration and threat environment. The threat environment consists of meteoroids and orbital debris, as specified for an arbitrary orbit and expected lifetime. An overall probability of no penetration is calculated, as well as contours of equal threat that take into account spacecraft geometry and orientation. Techniques, tools, and procedures for repairing an impacted and penetrated pressure wall were developed and tested. These techniques are applied from the spacecraft interior and account for the possibility of performing the repair in a vacuum. Hypervelocity impact testing was conducted to: (1) develop and refine appropriate penetration functions, and (2) determine the internal effects of a penetration on personnel and equipment.

  3. Penetration analysis of projectile with inclined concrete target

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  4. Rates of volcanic CO2 degassing from airborne determinations of SO2 Emission rates and plume CO2SO2: test study at Pu′u ′O′o Cone, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Gerlach, Terrence M.; McGee, Kenneth A.; Sutton, A. Jefferson; Elias, Tamar

    1998-01-01

    We present an airborne method that eliminates or minimizes several disadvantages of the customary plume cross-section sampling method for determining volcanic CO2 emission rates. A LI-COR CO2analyzer system (LICOR), a Fourier transform infrared spectrometer system (FTIR), and a correlation spectrometer (COSPEC) were used to constrain the plume CO2/SO2 and the SO2 emission rate. The method yielded a CO2 emission rate of 300 td−1 (metric tons per day) for Pu′u ′O′o cone, Kilauea volcano, on 19 September 1995. The CO2/SO2 of 0.20 determined from airborne LICOR and FTIR plume measurements agreed with the CO2/SO2 of 204 ground-based samples collected from vents over a 14-year period since the Pu′u ′O′o eruption began in January 1983.

  5. The Cone-specific Visual Cycle

    PubMed Central

    Wang, Jin-Shan; Kefalov, Vladimir J

    2010-01-01

    Cone photoreceptors mediate our daytime vision and function under bright and rapidly-changing light conditions. As their visual pigment is destroyed in the process of photoactivation, the continuous function of cones imposes the need for rapid recycling of their chromophore and regeneration of their pigment. The canonical retinoid visual cycle through the retinal pigment epithelium cells recycles chromophore and supplies it to both rods and cones. However, shortcomings of this pathway, including its slow rate and competition with rods for chromophore, have led to the suggestion that cones might use a separate mechanism for recycling of chromophore. In the past four decades biochemical studies have identified enzymatic activities consistent with recycling chromophore in the retinas of cone-dominant animals, such as chicken and ground squirrel. These studies have led to the hypothesis of a cone-specific retina visual cycle. The physiological relevance of these studies was controversial for a long time and evidence for the function of this visual cycle emerged only in very recent studies and will be the focus of this review. The retina visual cycle supplies chromophore and promotes pigment regeneration only in cones but not in rods. This pathway is independent of the pigment epithelium and instead involves the Müller cells in the retina, where chromophore is recycled and supplied selectively to cones. The rapid supply of chromophore through the retina visual cycle is critical for extending the dynamic range of cones to bright light and for their rapid dark adaptation following exposure to light. The importance of the retina visual cycle is emphasized also by its preservation through evolution as its function has now been demonstrated in species ranging from salamander to zebrafish, mouse, primate, and human. PMID:21111842

  6. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    PubMed

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus J

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities.

  7. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    PubMed

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus J

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  8. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  9. Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)

    NASA Technical Reports Server (NTRS)

    Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.

    1991-01-01

    An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.

  10. Static strain and vibration characteristics of a metal semimonocoque helicopter tail cone of moderate size

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.; Hefner, Rachel E.; Castagna, Andre

    1991-01-01

    The results are presented of an analytic and experimental research program involving a Sikorsky S-55 helicopter tail cone directed ultimately to the improved structural analysis of airframe substructures typical of moderate sized helicopters of metal semimonocoque construction. Experimental static strain and dynamic shake-testing measurements are presented. Correlation studies of each of these tests with a PC-based finite element analysis (COSMOS/M) are described. The tests included static loadings at the end of the tail cone supported in the cantilever configuration as well as vibrational shake-testing in both the cantilever and free-free configurations.

  11. Method for measuring the cone angle and the shape of the axicon simultaneously using computer-generated holograms.

    PubMed

    Chen, Qiang; Zhang, Yonghong; Qiu, Chuankai; Wan, Yongjian; Hou, Xi

    2015-10-01

    An axicon is an optical element with rotational symmetry and cone shape, which is nowadays widely used in many fields of engineering, like laser beam shaping, imaging systems, optical testing, laser machining, etc. In this paper, we propose a new method to measure the cone angle and the shape of the axicon simultaneously by using a computer-generated hologram. This test is performed in a null-test configuration. PMID:26479598

  12. Penetration Experiments under Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Krause, C.; Gehlen, M.; Jaquemet, A.; Heller, S.; Sperl, M.; Willnecker, R.

    2013-09-01

    Penetration experiments will find several applications in exploration missions in the near future. Penetrators are common tools for the investigation of physical surface properties. The techniques and theories are widely applied under 1g condition on Earth and the results are used by engineers and scientists. The main contribution to the bearing resistance of a soil is combined of shaft and base resistance [1]. The theories show, that the resistance scales with gravity. Penetration experiments during a parabolic flight campaign have been performed for evaluating this gravity scaling of the bearing resistance in different materials during a parabolic flight campaign in December 2012. The main part of the experiment is composed of a steel rod penetrating into a sample cell. Depth and penetration force are recorded during this process. A sieving mechanism provided the ability of sample preparation during flight. Different compaction regimes of the sample material could be created with a ruttler mounted underneath the sample cell. The parabolic flight campaign consisted of 4 flight days. On each day 13 parabolas with Martian gravity, 12 parabolas with lunar gravity and 6 microgravity parabolas could be performed. Three different sample materials have been examined within the 4 flight days: glass spheres, glass corn and Mojawe sand. The glass spheres and glass corn samples were made of the same material, but with different shape. The Mojawe sand is a natural soil from the Mojawe desert in California (US). The experimental description and the first results will be presented.

  13. Investigation of flow pattern downstream of spiral grooved runner cone in pump-turbine

    NASA Astrophysics Data System (ADS)

    Sano, T.; Maekawa, M.; Okamoto, N.; Yano, H.; Miyagawa, K.

    2012-11-01

    High amplitude of pressure fluctuation is observed in a draft tube of a hydraulic turbine and a pump-turbine, for the case of partial load operation. Several methods had been reported to mitigate the amplitude so far, such as, air or water injection to the draft tube, fins on the draft tube surface, or runner replacement with optimized velocity profile at runner exit. However, several problems for each method can be considered, such as, negative influence on efficiency, high cost, technical difficulties for installation, and so on. To solve these problems and satisfy the demand for mitigating the amplitude of pressure fluctuation simultaneously, a new runner cone with spiral grooves on the surface was developed. It was developed with unsteady draft tube calculation based on Design of Experiment (DOE) method, and the effect was confirmed by model tests. Finally, developed runner cone was installed to the prototype pump turbine, and predicted performance was confirmed by on-site tests. However, the reason why the grooved runner cone can mitigate the amplitude of pressure fluctuation in draft tube was not clarified. Therefore, numerical investigation focusing around runner cone was carried out. As a result, it was clarified that the velocity profile at runner outlet was modified by the grooved runner cone, such as, reverse flow downstream of runner cone and tangential velocity was reduced. It means the shear stress between main stream and dead water core region was weakened, therefore, it can be estimated that the amplitude of draft pressure fluctuation was reduced.

  14. Electrical coupling between cones in turtle retina.

    PubMed Central

    Detwiler, P B; Hodgkin, A L

    1979-01-01

    1. The electrical coupling between cones of known spectral sensitivity in the peripheral part of the turtle's retina was studied by passing current through a micro-electrode inserted into one cone and recording with a second micro-electrode inserted into a neighbouring cone. 2. Spatial sensitivity profiles were determined by recording flash responses to a long narrow strip of light which was moved across the impaled cones in orthogonal directions. These measurements gave both the length constant lambda of electrical spread in the cone network and the separation of the two cones. 3. The cone separation determined from the spatial profiles agreed closely with that measured directly by injecting a fluorescent dye into two cones. 4. The length constant lambda varied from 18 to 39 micron with a mean of 25 micron for red-sensitive cones and 26 micron for green-sensitive cones. 5. The majority of cone pairs studied were electrically coupled provided they had the same spectral sensitivity and were separated by less than 60 micron: thirty-two out of thirty-six red-red pairs, two out of two green-green pairs, none out of eight red-green pairs: no blue cones were observed. 6. The strength of electrical coupling was expressed as a mutual resistance defined as the voltage in one cell divided by the current flowing into the other. Mutual resistances decreased from a maximum value of about 30 M omega at separations close to zero to 0.2 M omega, the lower limit of detectable coupling at separations of about 60 micron. Mutual resistances were always positive and were independent of which cell was directly polarized. The coupling seemed to be ohmic and any rectification or non-linearity probably arose in the cone membranes rather than in the coupling resistances. 7. The results were analysed in terms of the Lamb & Simon (1977) theories of square and hexagonal lattices, which approximate to the continuous sheet model except in the case of the cone to which current is applied. 8. The

  15. An evaluation of the utility of four in situ test methods for transmission line foundation design

    SciTech Connect

    Mullen, W.G. Jr.

    1991-01-01

    This research examines four existing in-situ soil strength testing methods; standard penetration test (SPT), the cone penetrometer (CPT), the flat plate dilatometer (DMT), and the pressuremeter (PMT). Soils data were collected at eight separate sites using each of the devices. The test sites were chosen to mirror soil conditions encountered within the service territory of Virginia Power, the project sponsor. A total of 19 standard soil borings, 30 cone penetrometer soundings, 26 dilatometer soundings, and 33 pressuremeter tests were undertaken in residual, alluvial and marine clay soil conditions. The testing program was conducted with five areas of concern: (1) comparison of the penetration/stiffness data from the four tests, (2) comparison of values of undrained shear strength and angle of internal friction developed from each of the test methods, (3) determination if pressuremeter data can be correlated to and thereby developed from one of the more rapid tests, (4) comparison of indirect soil type identifications from the standard borings, (5) development of information on the relative effort required for each test. Comparison of the penetration resistance stiffness data produced useful correlations among the CPT and DMT, with the SPT data yielding more erratic results. Shear strength data was most consistent for the marine clay sites, while the CPT and DMT returned useful friction angle data in the alluvial sands. PMT data correlated well to both the CPT and DMT test results. Correlation of PMT results to the SPT was more erratic. Indirect soil identification from the CPT and DMT was fully adequate for transmission line foundation design purposes, and finally, useful comparative data on the relative testing time required for the four in-situ tests was developed.

  16. Distribution and specificity of S-cone ("blue cone") signals in subcortical visual pathways.

    PubMed

    Martin, Paul R; Lee, Barry B

    2014-03-01

    We review here the distribution of S-cone signals and properties of S-cone recipient receptive fields in subcortical pathways. Nearly everything we know about S-cone signals in the subcortical visual system comes from the study of visual systems in cats and primates (monkeys); in this review, we concentrate on results from macaque and marmoset monkeys. We discuss segregation of S-cone recipient (blue-on and blue-off) receptive fields in the dorsal lateral geniculate nucleus and describe their receptive field properties. We treat in some detail the question of detecting weak S-cone signals as an introduction for newcomers to the field. Finally, we briefly consider the question on how S-cone signals are distributed among nongeniculate targets. PMID:24555883

  17. Distribution and specificity of S-cone ("blue cone") signals in subcortical visual pathways.

    PubMed

    Martin, Paul R; Lee, Barry B

    2014-03-01

    We review here the distribution of S-cone signals and properties of S-cone recipient receptive fields in subcortical pathways. Nearly everything we know about S-cone signals in the subcortical visual system comes from the study of visual systems in cats and primates (monkeys); in this review, we concentrate on results from macaque and marmoset monkeys. We discuss segregation of S-cone recipient (blue-on and blue-off) receptive fields in the dorsal lateral geniculate nucleus and describe their receptive field properties. We treat in some detail the question of detecting weak S-cone signals as an introduction for newcomers to the field. Finally, we briefly consider the question on how S-cone signals are distributed among nongeniculate targets.

  18. Ballistic penetration response of intermetallic matrix composites

    SciTech Connect

    Kumar, K.S.; DiPietro, M.S. )

    1995-03-01

    Titanium aluminides and their composites exhibit about the same density as alumina, are tougher and can be produced by conventional casting and powder metallurgy techniques; further, they can be ground and machined more easily than alumina and lend themselves to better microstructural manipulation via heat treatments. Graded composite tiles with a high refractory reinforcement content on the outside and a lower amount on the inside may provide the desired abrasion resistance and toughness to effectively stop an incoming projectile. Likewise, alternating layers of hard and soft materials (e.g. Ti foils and TiAl) suitably graded in their spacings can serve as an effective armor tile. Testing of these materials gave the following conclusions: (1) Titanium aluminide composites are comparable to alumina in ballistic penetration resistance (for BS-41 and M-61 AP threats, and from the work of Chin and Woolsey, to long-rod penetrators) with perhaps improved resistance to shattering. (2) Incorporation of a residual compressive stress in the titanium aluminide composite tile significantly improved its penetration resistance. This concept could be utilized to decrease the required minimum tile thickness and hence, overall system weight.

  19. Failure mechanisms of ventricular tissue due to deep penetration.

    PubMed

    Gasser, T Christian; Gudmundson, Peter; Dohr, Gottfried

    2009-03-26

    Lead perforation is a rare but serious complication of pacemaker implantations, and in the present study the associated tissue failure was investigated by means of in-vitro penetration of porcine and bovine ventricular tissue. Rectangular patches from the right ventricular free wall and the interventricular septum were separated, bi-axially stretched and immersed in physiological salt solution at 37( composite function)C before load displacement curves of in total 891 penetrations were recorded. To this end flat-bottomed cylindrical punches of different diameters were used, and following mechanical testing the penetration sites were histological analyzed using light and electron microscopes. Penetration pressure, i.e. penetration force divided by punch cross-sectional area decreased slightly from 2.27(SD 0.66) to 1.76(SD0.46)N/mm(2) for punches of 1.32 to 2.30 mm in diameter, respectively. Deep penetration formed cleavages aligned with the local fiber orientation of the tissue, and hence, a mode-I crack developed, where the crack faces were wedged open by the advancing punch. The performed study derived novel failure data from ventricular tissue due to deep penetration and uncovered associated failure mechanisms. This provides information to derive mechanical failure models, which are essential to enrich our current understanding of failure of soft biological tissues and to guide medical device development.

  20. Investigation on penetration model of shaped charge jet in water

    NASA Astrophysics Data System (ADS)

    Shi, Jinwei; Luo, Xingbai; Li, Jinming; Jiang, Jianwei

    2016-01-01

    To analyze the process of jet penetration in water medium quantitatively, the properties of jet penetration spaced target with water interlayer were studied through test and numerical simulation. Two theoretical models of jet penetration in water were proposed. The theoretical model 1 was established considering the impact of the shock wave, combined with the shock equation Rankine-Hugoniot and the virtual origin calculation method. The theoretical model 2 was obtained by fitting theoretical analysis and numerical simulation results. The effectiveness and universality of the two theoretical models were compared through the numerical simulation results. Both the models can reflect the relationship between the penetration velocity and the penetration distance in water well, and both the deviation and stability of theoretical model 1 are better than 2, the lower penetration velocity, and the larger deviation of the theoretical model 2. Therefore, the theoretical model 1 can reflect the properties of jet penetration in water effectively, and provide the reference of model simulation and theoretical research.

  1. Mars surface penetrator: System description

    NASA Technical Reports Server (NTRS)

    Manning, L. A. (Editor)

    1977-01-01

    A point design of a penetrator system for a Mars mission is described. A strawman payload which is to conduct measurements of geophysical and meteorological parameters is included in the design. The subsystems used in the point design are delineated in terms of power, mass, volume, data, and functional modes. The prospects for survival of the rigors of emplacement are described. Data handling and communications plans are presented to allow consideration of the requirements placed by the penetrator on the orbiter and ground operations. The point design is technically feasible and the payload selection scientifically desirable.

  2. Nonlinear Resonance Cones and Converging Plasma Blobs

    NASA Astrophysics Data System (ADS)

    Agmon, Nathan; Pribyl, Patrick; Gekelman, Walter; Wise, Joe; Katz, Cami; Ha, Chis; Baker, Bob

    2013-10-01

    Electric field resonance cones have been shown to create density disturbances in cold, magnetized plasmas. Two circular antennas in the LAPTAG experimental plasma device were used to create converging, nonlinear resonance cones. The nonlinear electrostatic field is produced by large amplitude RF (ERF/nkTe >> 1). A movable probe, powered by a computerized motor and consisting of three mutually orthogonal electric dipoles, is used to measure the electric field of the cones which become distorted at large amplitudes. A 2D movable Langmuir probe was used to determine localized density perturbations after turn-off of the RF power. A density blob moving at 3-5 times the ion sound speed has been observed to propagate away (for at least 20 cm) from the focus of the cone. Two ring antennas produced colliding blobs. The physics of the collision will be described. Work performed at the Basic Plasma Science Facility supported by DOE and NSF.

  3. Some inversion formulas for the cone transform

    NASA Astrophysics Data System (ADS)

    Terzioglu, Fatma

    2015-11-01

    Several novel imaging applications have lead recently to a variety of Radon type transforms, where integration is made over a family of conical surfaces. We call them cone transforms (in 2D they are also called V-line or broken ray transforms). Most prominently, they are present in the so called Compton camera imaging that arises in medical diagnostics, astronomy, and lately in homeland security applications. Several specific incarnations of the cone transform have been considered separately. In this paper, we address the most general (and overdetermined) cone transform, obtain integral relations between cone and Radon transforms in {{{R}}}n, and a variety of inversion formulas. In many applications (e.g., in homeland security), the signal to noise ratio is very low. So, if overdetermined data is collected (as in the case of Compton imaging), attempts to reduce the dimensionality might lead to essential elimination of the signal. Thus, our main concentration is on obtaining formulas involving overdetermined data.

  4. Homologies among Coniferophyte cones: further observations

    NASA Astrophysics Data System (ADS)

    Grauvogel-Stamm, Léa; Galtier, Jean

    1998-04-01

    A reinvestigation of the Triassic conifer pollen cone of Darneya shows evidence that clusters of pollen sacs are attached (adnate), at regular intervals, to the upper side of the stalk and that the distribution of stomata is restricted to the apical part of the abaxial side of the peltate scale. These features and others, such as the commissure visible on the stalk and the scale, suggest a dual nature of the male scale complex of Darneya which therefore is interpreted as an abaxial bract fused with an adaxial fertile shoot bearing several clusters of pollen sacs. This conifer pollen cone is thus considered as a compound strobilus (inflorescence) homologous with the female cone of the conifers and therefore with the cones, both male and female, of the cordaites.

  5. Verification of RSRM Nozzle Thermal Models With ETM-3 Aft Exit Cone In-depth Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Maw, Joel F.; Lui, Robbie C.; Totman, Peter D.

    2004-01-01

    One of the goals of the Engineering Test Motor (ETM-3) static test was to verify analytical models through the use of instrumentation that provide real-time transient temperature response of ablating phenolic liners. Accurate measurement of in-depth temperature is critical for validating the analytical models and assessing design safety margins for nozzle insulation materials. Recent developments of in-depth thermocouple plugs have been made to more accurately measure temperature response of nozzle Liners. Thermocouple plugs were installed at two axial stations (four plugs circumferentially at each station) near the end of the ETM-3 nozzle aft exit cone to gather temperature histories during and after motor operation. The thermocouple plugs were placed at depths that bounded the reusable solid rocket motor nominal measured char depth in order to portray the carbon phenolic temperature response during the charring process. The data were used to verify the analytical models during motor operation and to better define char penetration during heat soak after motor burn out.

  6. The cytoskeletons of isolated, neuronal growth cones.

    PubMed

    Gordon-Weeks, P R

    1987-06-01

    We have examined by electron microscopy the cytoskeletons of growth cones isolated from neonatal rat forebrain by the method of Gordon-Weeks and Lockerbie [Gordon-Weeks and Lockerbie (1984) Neuroscience 13, 119-136]. When fixed in suspension with conventional fixatives, isolated growth cones contain a central region filled with a branching system of smooth endoplasmic reticulum and a cortical region immediately beneath the plasma membrane that is relatively free of organelles and is composed of an amorphous granular cytoplasm. The filopodia of isolated growth cones are also devoid of organelles and contain a cytoplasm that is similar in appearance to that in the cortical region. No microtubules or neurofilaments have been found in these growth cones. When isolated growth cones were prepared for electron microscopy by a method which preserves actin filaments [Boyles, Anderson and Hutcherson (1985) J. Histochem. Cytochem. 33, 1116-1128], microfilaments were found throughout the cortical cytoplasm. In the filopodia, the microfilaments were bundled together and oriented longitudinally. Filopodial microfilament bundles often extended into the body of the growth cone and could traverse it completely. Inclusion of Triton X-100 (1% v/v) in the fixative solubilized the membranes and soluble cytoplasmic proteins of growth cones, allowing an unobscured view of the microfilament cytoskeleton including the core bundle of microfilaments in filopodia. Suspended within the cytoskeleton were the coats of coated vesicles. These were particularly numerous at the broad bases of filopodia. Microfilaments bound heavy meromyosin and were cytochalasin B (2.0 X 10(-7) M) sensitive. Individual microfilaments branched and within filopodia they were extensively cross-linked by thin (7 nm) filaments. Microtubules and neurofilaments were not seen in these cytoskeletons despite the fact that the fixative contained a Ca2+ chelator. When growth cones were preincubated in taxol (14 microM) their

  7. DEFORMATION OF SCORIA CONE BY CONDUIT PRESSURIZATION

    SciTech Connect

    E.S. Gaffney; B. Damjanac; D. Krier; G. Valentine

    2005-08-26

    A simplified mechanical model is used to simulate the deformation of a scoria cone due to pressurization of magma in a feeder conduit. The scoria cone is modeled as consisting of a cone of stabilized scoria with an axial region of loose scoria (height h{sub 1}), all overlying a vertically oriented cylindrical conduit intruded into rhyolite tuff country rock. For our analyses, the conduit is filled with basalt magma, usually with the upper length (h{sub 2}) solidified. The style of deformation of the cone depends on both h{sub 1} and h{sub 2}. If magma is prevented from hydrofracturing out of the conduit (as, for example, might be the case if the magma is surrounded by a solidified, but plastically deformable layer acting as a gasket backed up by the brittle country rock) pressures in the magma can build to 10s of MPa. When h{sub 1} is 100 m, not unusual for a small isolated basaltic cinder cone, the magma pressure needed to destabilize the cone when molten magma extends all the way to the original ground surface (h{sub 2} = 0) is only about one-third of the pressure when the upper part of the conduit is solidified (h{sub 2} = 25m). In the former case, almost the entire upper third of the cone is at failure in tension when the configuration becomes unstable. In the latter case, small portions of the surface of the cone are failing in tension when instability occurs, but a large volume in the central core of the cone is failing in shear or compressions. These results may provide insight into the status of volcanic plumbing, either past or present, beneath scoria cones. Field observations at the Lathrop Wells volcano in southern Nevada identify structures at the outer edge just below the crater rim that appear to be inward-dipping listric normal faults. This may indicate that, near the end of its active stage, the cone was close to failing in this fashion. A companion paper suggests that such a failure could have been quite energetic had it occurred.

  8. Substrate Deformation Predicts Neuronal Growth Cone Advance

    PubMed Central

    Athamneh, Ahmad I.M.; Cartagena-Rivera, Alexander X.; Raman, Arvind; Suter, Daniel M.

    2015-01-01

    Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 100–102 nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant. PMID:26445437

  9. Microspectrophotometric evidence for cone monochromacy in sharks

    NASA Astrophysics Data System (ADS)

    Hart, Nathan Scott; Theiss, Susan Michelle; Harahush, Blake Kristin; Collin, Shaun Patrick

    2011-03-01

    Sharks are apex predators, and their evolutionary success is in part due to an impressive array of sensory systems, including vision. The eyes of sharks are well developed and function over a wide range of light levels. However, whilst close relatives of the sharks—the rays and chimaeras—are known to have the potential for colour vision, an evolutionary trait thought to provide distinct survival advantages, evidence for colour vision in sharks remains equivocal. Using single-receptor microspectrophotometry, we measured the absorbance spectra of visual pigments located in the retinal photoreceptors of 17 species of shark. We show that, while the spectral tuning of the rod (wavelength of maximum absorbance, λmax 484-518 nm) and cone (λmax 532-561 nm) visual pigments varies between species, each shark has only a single long-wavelength-sensitive cone type. This suggests that sharks may be cone monochromats and, therefore, potentially colour blind. Whilst cone monochromacy on land is rare, it may be a common strategy in the marine environment: many aquatic mammals (whales, dolphins and seals) also possess only a single, green-sensitive cone type. It appears that both sharks and marine mammals may have arrived at the same visual design by convergent evolution. The spectral tuning of the rod and cone pigments of sharks is also discussed in relation to their visual ecology.

  10. Design of a trichromatic cone array.

    PubMed

    Garrigan, Patrick; Ratliff, Charles P; Klein, Jennifer M; Sterling, Peter; Brainard, David H; Balasubramanian, Vijay

    2010-02-01

    Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human retina: S cones are rare (<10%) while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative. PMID:20168996

  11. Cone Tracing for Furry Object Rendering.

    PubMed

    Qin, Hao; Chai, Menglei; Hou, Qiming; Ren, Zhong; Zhou, Kun

    2014-08-01

    We present a cone-based ray tracing algorithm for high-quality rendering of furry objects with reflection, refraction and defocus effects. By aggregating many sampling rays in a pixel as a single cone, we significantly reduce the high supersampling rate required by the thin geometry of fur fibers. To reduce the cost of intersecting fur fibers with cones, we construct a bounding volume hierarchy for the fiber geometry to find the fibers potentially intersecting with cones, and use a set of connected ribbons to approximate the projections of these fibers on the image plane. The computational cost of compositing and filtering transparent samples within each cone is effectively reduced by approximating away in-cone variations of shading, opacity and occlusion. The result is a highly efficient ray tracing algorithm for furry objects which is able to render images of quality comparable to those generated by alternative methods, while significantly reducing the rendering time. We demonstrate the rendering quality and performance of our algorithm using several examples and a user study. PMID:26357369

  12. Crowding in the S-cone pathway.

    PubMed

    Coates, Daniel R; Chung, Susana T L

    2016-05-01

    The spatial extent of interference from nearby object or contours (the critical spacing of "crowding") has been thoroughly characterized across the visual field, typically using high contrast achromatic stimuli. However, attempts to link this measure with known properties of physiological pathways have been inconclusive. The S-cone pathway, with its ease of psychophysical isolation and known anatomical characteristics, offers a unique tool to gain additional insights into crowding. In this study, we measured the spatial extent of crowding in the S-cone pathway at several retinal locations using a chromatic adaptation paradigm. S-cone crowding was evident and extensive, but its spatial extent changed less markedly as a function of retinal eccentricity than the extent found using traditional achromatic stimuli. However, the spatial extent agreed with that of low contrast achromatic stimuli matched for isolated resolvability. This suggests that common cortical mechanisms mediate the crowding effect in the S-cone and achromatic pathway, but contrast is an important factor. The low contrast of S-cone stimuli makes S-cone vision more acuity-limited than crowding-limited.

  13. Microspectrophotometric evidence for cone monochromacy in sharks.

    PubMed

    Hart, Nathan Scott; Theiss, Susan Michelle; Harahush, Blake Kristin; Collin, Shaun Patrick

    2011-03-01

    Sharks are apex predators, and their evolutionary success is in part due to an impressive array of sensory systems, including vision. The eyes of sharks are well developed and function over a wide range of light levels. However, whilst close relatives of the sharks-the rays and chimaeras-are known to have the potential for colour vision, an evolutionary trait thought to provide distinct survival advantages, evidence for colour vision in sharks remains equivocal. Using single-receptor microspectrophotometry, we measured the absorbance spectra of visual pigments located in the retinal photoreceptors of 17 species of shark. We show that, while the spectral tuning of the rod (wavelength of maximum absorbance, λ(max) 484-518 nm) and cone (λ(max) 532-561 nm) visual pigments varies between species, each shark has only a single long-wavelength-sensitive cone type. This suggests that sharks may be cone monochromats and, therefore, potentially colour blind. Whilst cone monochromacy on land is rare, it may be a common strategy in the marine environment: many aquatic mammals (whales, dolphins and seals) also possess only a single, green-sensitive cone type. It appears that both sharks and marine mammals may have arrived at the same visual design by convergent evolution. The spectral tuning of the rod and cone pigments of sharks is also discussed in relation to their visual ecology. PMID:21212930

  14. Microspectrophotometric evidence for cone monochromacy in sharks.

    PubMed

    Hart, Nathan Scott; Theiss, Susan Michelle; Harahush, Blake Kristin; Collin, Shaun Patrick

    2011-03-01

    Sharks are apex predators, and their evolutionary success is in part due to an impressive array of sensory systems, including vision. The eyes of sharks are well developed and function over a wide range of light levels. However, whilst close relatives of the sharks-the rays and chimaeras-are known to have the potential for colour vision, an evolutionary trait thought to provide distinct survival advantages, evidence for colour vision in sharks remains equivocal. Using single-receptor microspectrophotometry, we measured the absorbance spectra of visual pigments located in the retinal photoreceptors of 17 species of shark. We show that, while the spectral tuning of the rod (wavelength of maximum absorbance, λ(max) 484-518 nm) and cone (λ(max) 532-561 nm) visual pigments varies between species, each shark has only a single long-wavelength-sensitive cone type. This suggests that sharks may be cone monochromats and, therefore, potentially colour blind. Whilst cone monochromacy on land is rare, it may be a common strategy in the marine environment: many aquatic mammals (whales, dolphins and seals) also possess only a single, green-sensitive cone type. It appears that both sharks and marine mammals may have arrived at the same visual design by convergent evolution. The spectral tuning of the rod and cone pigments of sharks is also discussed in relation to their visual ecology.

  15. Photonic Landau levels on cones

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  16. Photonic Landau levels on cones

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    Creating photonic materials with nontrivial topological characteristics has seen burgeoning interest in recent years; however, a major route to topology, a magnetic field for continuum photons, has remained elusive. We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We will discuss the conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  17. Assessment of Different Sampling Methods for Measuring and Representing Macular Cone Density Using Flood-Illuminated Adaptive Optics

    PubMed Central

    Feng, Shu; Gale, Michael J.; Fay, Jonathan D.; Faridi, Ambar; Titus, Hope E.; Garg, Anupam K.; Michaels, Keith V.; Erker, Laura R.; Peters, Dawn; Smith, Travis B.; Pennesi, Mark E.

    2015-01-01

    Purpose To describe a standardized flood-illuminated adaptive optics (AO) imaging protocol suitable for the clinical setting and to assess sampling methods for measuring cone density. Methods Cone density was calculated following three measurement protocols: 50 × 50-μm sampling window values every 0.5° along the horizontal and vertical meridians (fixed-interval method), the mean density of expanding 0.5°-wide arcuate areas in the nasal, temporal, superior, and inferior quadrants (arcuate mean method), and the peak cone density of a 50 × 50-μm sampling window within expanding arcuate areas near the meridian (peak density method). Repeated imaging was performed in nine subjects to determine intersession repeatability of cone density. Results Cone density montages could be created for 67 of the 74 subjects. Image quality was determined to be adequate for automated cone counting for 35 (52%) of the 67 subjects. We found that cone density varied with different sampling methods and regions tested. In the nasal and temporal quadrants, peak density most closely resembled histological data, whereas the arcuate mean and fixed-interval methods tended to underestimate the density compared with histological data. However, in the inferior and superior quadrants, arcuate mean and fixed-interval methods most closely matched histological data, whereas the peak density method overestimated cone density compared with histological data. Intersession repeatability testing showed that repeatability was greatest when sampling by arcuate mean and lowest when sampling by fixed interval. Conclusions We show that different methods of sampling can significantly affect cone density measurements. Therefore, care must be taken when interpreting cone density results, even in a normal population. PMID:26325414

  18. Membrane recycling in the cone cell endings of the turtle retina

    PubMed Central

    1978-01-01

    The ultrastructural effects of dark, light, and low temperature were investigated in the cone cell endings of the red-eared turtle (Pseudemys scripta elegans). Thin sections revealed that in dark- adapted retinas maintained at 22 degrees C, the neural processes which contact the cone cells at the invaginating synapses penetrated deeply into the photoreceptor endings. When dark-adapted retinas were illuminated for 1 h at 22 degrees C, the invaginating processes were apparently extruded from the synaptic endings. On the other hand, 1-h exposure to a temperature of 4 degrees C in the dark caused the invaginating processes to become much more strikingly inserted than at room temperature. A morphometric analysis showed that the ratio between the synaptic surface density of the endings and their total surface density decreased in the light and increased in the dark and cold. Freeze-fracturing documented fusion of synaptic vesicles with the presynaptic membrane in all conditions tested. These observations suggest that the changes in configuration of the pedicles in the light, dark, and cold reflect a different balance between addition and retrieval of synaptic vesicle membrane from the plasmalemma; in the dark, the rate of vesicle fusion is increased, whereas in the cold, membrane retrieval is blocked. When the eyecups were warmed up and illuminated for 30-45 min after cold exposure, a striking number of vacuoles and cisterns appeared in the cytoplasm and coated vesicles were commonly seen budding from the plasmalemma. 60-90 min after returning to room temperature, the endings had reverted to their normal configuration, and the vast majority of vacuoles, cisterns, and coated vesicles had disappeared. When horseradish peroxidase was included in the incubation medium, very few synaptic vesicles were labeled at the end of the period of cold exposure. 30-45 min after returning to 22 degrees C, vacuoles and cisterns contained peroxidase, whereas most synaptic vesicles were

  19. A comparison of observed and analytically derived remote sensing penetration depths for turbid water

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Guraus, E. A.

    1981-01-01

    The depth to which sunlight will penetrate in turbid waters was investigated. The tests were conducted in water with a single scattering albedo range, and over a range of solar elevation angles. Two different techniques were used to determine the depth of light penetration. It showed little change in the depth of sunlight penetration with changing solar elevation angle. A comparison of the penetration depths indicates that the best agreement between the two methods was achieved when the quasisingle scattering relationship was not corrected for solar angle. It is concluded that sunlight penetration is dependent on inherent water properties only.

  20. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  1. Opsin switch reveals function of the ultraviolet cone in fish foraging.

    PubMed

    Novales Flamarique, Iñigo

    2013-02-01

    Although several studies have shown that ultraviolet (UV) wavelengths are important in naturally occurring, visually guided behaviours of vertebrates, the function of the UV cone in such behaviours is unknown. Here, I used thyroid hormone to transform the UV cones of young rainbow trout into blue cones, a phenomenon that occurs naturally as the animal grows, to test whether the resulting loss of UV sensitivity affected the animal's foraging performance on Daphnia magna, a prey zooplankton. The distances and angles at which prey were located (variables that are known indicators of foraging performance) were significantly reduced for UV knock-out fish compared with controls. Optical measurements and photon-catch calculations revealed that the contrast of Daphnia was greater when perceived by the visual system of control versus that of thyroid-hormone-treated fish, demonstrating that the UV cone enhanced the foraging performance of young rainbow trout. Because most juvenile fishes have UV cones and feed on zooplankton, this finding has wide implications for understanding the visual ecology of fishes. The enhanced target contrast provided by UV cones could be used by other vertebrates in various behaviours, including foraging, mate selection and communication.

  2. Opsin switch reveals function of the ultraviolet cone in fish foraging

    PubMed Central

    Novales Flamarique, Iñigo

    2013-01-01

    Although several studies have shown that ultraviolet (UV) wavelengths are important in naturally occurring, visually guided behaviours of vertebrates, the function of the UV cone in such behaviours is unknown. Here, I used thyroid hormone to transform the UV cones of young rainbow trout into blue cones, a phenomenon that occurs naturally as the animal grows, to test whether the resulting loss of UV sensitivity affected the animal's foraging performance on Daphnia magna, a prey zooplankton. The distances and angles at which prey were located (variables that are known indicators of foraging performance) were significantly reduced for UV knock-out fish compared with controls. Optical measurements and photon-catch calculations revealed that the contrast of Daphnia was greater when perceived by the visual system of control versus that of thyroid-hormone-treated fish, demonstrating that the UV cone enhanced the foraging performance of young rainbow trout. Because most juvenile fishes have UV cones and feed on zooplankton, this finding has wide implications for understanding the visual ecology of fishes. The enhanced target contrast provided by UV cones could be used by other vertebrates in various behaviours, including foraging, mate selection and communication. PMID:23222448

  3. Bacterial penetration after obturation with four different root canal sealers.

    PubMed

    Yücel, Ali Cağin; Güler, Eda; Güler, Ahmet Umut; Ertaş, Ertan

    2006-09-01

    The aim of this study was to compare bacterial penetration after obturation with lateral compaction technique using four different root canal sealers. This study was performed on 100 teeth including negative control (n = 10), positive control (n = 10), and experimental groups (n = 80). 80 teeth were randomly divided into five groups of 20 teeth each and obturated with AH 26 (A), AH Plus (AP), Sealapex (S), Ketac-Endo (K) root canal sealers. Evaluation was carried out for 60 days. After 30 days of comparing the bacterial penetration values, total penetration was observed in 85% of the Group AP, and group K, 80% of the group S, and 75% of the group A. According to the results of chi(2) test, there was no statistically significant difference observed between any groups (p > 0.05). After 60 days of comparing the bacterial penetration values, total penetration was observed in 100% of the group AP, group K, and group S and 95% of the group A. It may be concluded that under the conditions of this study, there was no difference in the bacterial penetration of the four root canal sealers tested at 30 and 60 days.

  4. Fluorescence Adaptive Optics Scanning Laser Ophthalmoscopy Demonstrates Reduced Cones and Hypoautofluorescent Spots in Fundus Albipunctatus

    PubMed Central

    Song, Hongxin; Latchney, Lisa; Williams, David; Chung, Mina

    2014-01-01

    Importance Fundus albipunctatus (FA) is a form of congenital stationary night blindness characterized by yellow-white spots, which were classically described as subretinal. Although night blindness and delayed dark adaptation are hallmarks of this condition, recent studies have described a macular phenotype, particularly among older patients. Using a fluorescence adaptive optics scanning laser ophthalmoscope (FAOSLO), this study provides in vivo morphological data at the cellular level in FA. Objective To study the cone photoreceptors and the albipunctate spots in FA at single cell resolution. Design, Setting and Participant A 34-year-old woman with FA underwent a complete ophthalmic examination, including conventional imaging tests, at the University of Rochester. FAOSLO was used to obtain infrared reflectance images of the cone mosaic at the central fovea and along the superior and temporal meridians to 10 degrees eccentricity. Cone density was measured at the foveal center and cone spacing was calculated in sampling windows eccentrically. In the area of the albipunctate spots, autofluorescence FAOSLO images (excitation 561 nm, emission 624 Δ 40nm) were simultaneously obtained. Results Cone density was reduced to 70% of the lower limit of normal range at the foveal center, and cone spacing was increased eccentrically to 10 degrees. Individual cone central core reflectances appeared dim, suggesting loss of photoreceptor outer segments. The albipunctate spots were hypoautofluorescent. No photoreceptors or RPE cells were identified at the locations of the albipunctate spots. Conclusions and Relevance Although the predominant clinical symptom of night blindness and the ERG results suggest a primary rod dysfunction, FAOSLO demonstrates cone density is also reduced. This finding may represent an early sign of progression to macular phenotype in FA. The hypoautofluorescence suggests that the albipunctate spots do not represent lipofuscin. PMID:24922193

  5. Magnetically-Guided Penetrant Applicator

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Small wheeled vehicle moved inside nonmagnetic enclosure. Miniature magnetically guided truck uses foam-rubber sponge pads to apply penetrant fluid for inspection of welds in hidden surfaces of nonmagnetic tubes. Risk of explosion less than if electric motor used to drive vehicle. Inexpensive to make and made in range of sizes.

  6. Simulation of laser penetration efficiency

    NASA Astrophysics Data System (ADS)

    Semak, V. V.; Miller, T. F.

    2013-09-01

    The results of numerical simulation of laser beam interaction with a hypothetical metallic material with properties similar to a steel alloy are reported. The numerical simulation was performed using a physical model that includes detailed consideration of surface evaporation, evaporative cooling of the surface and evaporation recoil induced melt ejection. The laser beam ‘penetration’ is considered in terms of melting through the sample or drilling through the sample due to both evaporation and recoil ejection of material. As a demonstration of the predictive capabilities of the model, the average velocity of penetration through a material with steel-like properties is numerically predicted for various laser interaction parameters such as, laser beam radius, laser pulse duration (including CW regime), laser pulse energy and pulse repetition. In particular, the average penetration velocities through a sample due to melting are compared for pulsed and CW lasers of the same power. For the sake of another demonstration of penetration simulation, the temporal dynamics of the position of melt front relative to the sample surface irradiated by a laser beam was computed for different laser pulse repetition rates and constant average laser power. An illustration of the penetration efficiency (W parameter) defined as the amount of energy per unit volume delivered into a target in order to achieve either melting of drilling through a target wall is shown in a wide range of laser pulse parameters covering regimes corresponding to domination of melting through and drilling through.

  7. Effect of DOP heterodispersion on HEPA-filter-penetration measurements

    SciTech Connect

    Bergman, W.; Biermann, A.

    1984-08-09

    The accuracy of the standard US test method for certifying High-Efficiency Particulate Air (HEPA) filters has been in question since the finding by Hinds, et al. that the dioctyl phthalate (DOP) aerosol used in the test is not monodisperse as had been assumed and that particle-size analyzers, or owls, could not distinguish between different particle-size distributions with the same owl reading. We have studied theoretically and experimentally the filter efficiency for different DOP size distributions with the same owl reading. Our studies show that the effect of varying DOP size distributions on the measured HEPA-filter penetration depends on the light-scattering-photometer response and on the HEPA-filter penetration curve, both measured as a function of particle size. HEPA-filter penetration for a heterodisperse DOP aerosol may be increased, decreased, or remain the same when compared to the filter penetration for monodisperse aerosols. Using experimental HEPA-filter penetration and photometer response curves, we show that heterodisperse DOP aerosols (D/sub cmd/ 0.19 and sigma g = 1.4) yield 24% lower penetrations than that for monodisperse DOP aerosols (D/sub cmd/ = 0.3 and sigma g = 1.0). This surprisingly small effect of the DOP heterodispersion on HEPA-filter penetration is due to the response function of the owl that is similar to the response of the photometer. Changes in the particle-size distribution are therefore seen in a similar fashion by both the photometer and the owl. We also show that replacing the owl with modern particle-size spectrometers may lead to large errors in filter penetration because the particle-size spectrometers do not provide measurements that correspond to the photometer measurements. 15 references, 16 figures.

  8. Field and laboratory tests on risk of slope failure due to weathering of rock materials

    NASA Astrophysics Data System (ADS)

    Qureshi, M. U.; Towhata, I.; Yamada, S.; Aziz, M.

    2009-04-01

    Authors set out the challenge to explore the mechanism of rock weathering and its effects to the geotechnical hazards. Any natural or human induced disturbances to the natural slopes speed up their weathering process. So, exploration of both disturbed and undisturbed slopes is necessary for robust understanding. Various regions in Asia were explored to experience variety of environmental and climatic conditions. Field exploration on the thickness and in-situ mechanical property was carried out by performing seismic refraction surveys, dynamic cone penetration tests and Schmidt hammer tests at various sites in Japan and Pakistan. In laboratory change in mechanical property of soft rocks due to weathering has been observed and slake durability tests were conducted on various rocks. Field exploration indicated that the thickness of weathered layer is 1 meter or its roundabouts and having S-wave velocity of 200-300 m/s. Laboratory testing differentiated the slaking potential and mechanical property degradation of various rocks. Moreover sensible correlations had been observed in thickness calculated by seismic refraction or dynamic cone penetration in field. Slake durability index showed good correlation with Schmidt hammer hardness and mechanical property. A general agreement was also observed when strength and S-wave velocities from laboratory tests were compared with the field exploration. Authors believed that the study provides the useful information on the long term prediction and assessment of landslide risk.

  9. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  10. Light responses of primate and other mammalian cones

    PubMed Central

    Cao, Li-Hui; Luo, Dong-Gen; Yau, King-Wai

    2014-01-01

    Retinal cones are photoreceptors for daylight vision. For lower vertebrates, cones are known to give monophasic, hyperpolarizing responses to light flashes. For primate cones, however, they have been reported to give strongly biphasic flash responses, with an initial hyperpolarization followed by a depolarization beyond the dark level, now a textbook dogma. We have reexamined this primate-cone observation and, surprisingly, found predominantly monophasic cone responses. Correspondingly, we found that primate cones began to adapt to steady light at much lower intensities than previously reported, explainable by a larger steady response to background light for a monophasic than for a biphasic response. Similarly, we have found a monophasic cone response for several other mammalian species. Thus, a monophasic flash response may in fact be the norm for primate and other mammalian cones as for lower-vertebrate cones. This revised information is important for ultimately understanding human retinal signal processing and correlating with psychophysical data. PMID:24550304

  11. Origin and Impact of Phototransduction Noise in Primate Cone Photoreceptors

    PubMed Central

    Angueyra, Juan Manuel; Rieke, Fred

    2013-01-01

    Noise in the responses of cone photoreceptors sets a fundamental limit to visual sensitivity, yet the origin of noise in mammalian cones and its relation to behavioral sensitivity are poorly understood. Our work here on primate cones improves understanding of these issues in three ways. First, we find that cone noise is not dominated by spontaneous photopigment activation or by quantal fluctuations in photon absorption but instead by other sources, namely channel noise and fluctuations in cGMP. Second, we find that adaptation in cones, unlike that in rods, affects signals and noise differently. This difference helps explain why thresholds for rod- and cone-mediated signals have different dependencies on background light level. Third, past estimates of noise in mammalian cones are too high to explain behavioral sensitivity. Our measurements indicate a lower level of cone noise, and thus help reconcile physiological and behavioral estimates of cone noise and sensitivity. PMID:24097042

  12. Light responses of primate and other mammalian cones.

    PubMed

    Cao, Li-Hui; Luo, Dong-Gen; Yau, King-Wai

    2014-02-18

    Retinal cones are photoreceptors for daylight vision. For lower vertebrates, cones are known to give monophasic, hyperpolarizing responses to light flashes. For primate cones, however, they have been reported to give strongly biphasic flash responses, with an initial hyperpolarization followed by a depolarization beyond the dark level, now a textbook dogma. We have reexamined this primate-cone observation and, surprisingly, found predominantly monophasic cone responses. Correspondingly, we found that primate cones began to adapt to steady light at much lower intensities than previously reported, explainable by a larger steady response to background light for a monophasic than for a biphasic response. Similarly, we have found a monophasic cone response for several other mammalian species. Thus, a monophasic flash response may in fact be the norm for primate and other mammalian cones as for lower-vertebrate cones. This revised information is important for ultimately understanding human retinal signal processing and correlating with psychophysical data. PMID:24550304

  13. Polymorphism of the long-wavelength cone in normal human colour vision

    NASA Astrophysics Data System (ADS)

    Neitz, Jay; Jacobs, Gerald H.

    1986-10-01

    Colour vision is based on the presence of multiple classes of cone each of which contains a different type of photopigment1. Colour matching tests have long revealed that the normal human has three cone types. Results from these tests have also been used to provide estimates of cone spectral sensitivities2. There are significant variations in colour matches made by individuals whose colour vision is classified as normal3-6. Some of this is due to individual differences in preretinal absorption and photopigment density, but some is also believed to arise because there is variation in the spectral positioning of the cone pigments among those who have normal colour vision. We have used a sensitive colour matching test to examine the magnitude and nature of this individual variation and here report evidence for the existence of two different long-wavelength cone mechanisms in normal humans. The different patterns of colour matches made by male and female subjects indicate these two mechanisms are inherited as an X-chromosome linked trait.

  14. Comparative evaluation of tensile strength of Gutta-percha cones with a herbal disinfectant

    PubMed Central

    Mahali, Raghunandhan Raju; Dola, Binoy; Tanikonda, Rambabu; Peddireddi, Suresh

    2015-01-01

    Aim: To evaluate and compare the tensile strength values and influence of taper on the tensile strength of Gutta-percha (GP) cones after disinfection with sodium hypochlorite (SH) and Aloe vera gel (AV). Materials and Methods: Sixty GP cones of size 110, 2% taper, 60 GP cones F3 ProTaper, and 60 GP of size 30, 6% taper were obtained from sealed packs as three different groups. Experimental groups were disinfected with 5.25% SH and 90% AV gel except the control group. Tensile strengths of GP were measured using the universal testing machine. Results: The mean tensile strength values for Group IA, IIA and IIIA are 11.8 MPa, 8.69 MPa, and 9.24 MPa, respectively. Results were subjected to statistical analysis one-way analysis of variance test and Tukey post-hoc test. 5.25% SH solutions decreased the tensile strength of GP cones whereas with 90% AV gel it was not significantly altered. Conclusion: Ninety percent Aloe vera gel as a disinfectant does not alter the tensile strength of GP cones PMID:26752842

  15. Akon - A Penetrator for Europa

    NASA Astrophysics Data System (ADS)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  16. Reliability of assessing dye penetration along root canal fillings using methylene blue.

    PubMed

    Souza, Erick Miranda; Pappen, Fernanda Geraldes; Shemesh, Hagay; Bonanato-Estrela, Cristiane; Bonetti-Filho, Idomeo

    2009-12-01

    Methylene blue (MB) remains the most frequently used tracer for dye penetration tests of endodontic fillings, despite its chemical reactions with different materials. This study checked whether dye penetration displayed by MB is comparable to Rhodamine B (RB). One hundred and seventy-two root canals were filled with gutta-percha and six sealers. Samples were covered with nail varnish except for the apical area, and immersed in MB or RB solutions under negative pressure. After 24 h, roots were bisected, photographed and the maximal dye penetration recorded. Dye penetrations displayed by MB and RB were compared (Newman-Keuls test). MB and RB displayed comparable results for groups filled with AH Plus, EndoREZ and Polifil (P > 0.05). For Endofill, Sealer 26 and Sealapex, a significant lower dye penetration was observed when MB was used (P < 0.05). Laboratory tests using MB for measuring dye penetration through filled root canals can result in misleading conclusions.

  17. Theseus Nose and Pod Cones Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crew members are seen here unloading the nose and pod cones of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  18. Factors affecting penetrating captive bolt gun performance.

    PubMed

    Gibson, Troy J; Mason, Charles W; Spence, Jade Y; Barker, Heather; Gregory, Neville G

    2015-01-01

    Captive bolt stunning is used for rendering livestock insensible at slaughter. The mechanical factors relating to performance of 6 penetrating captive bolt gun (CBG) models were examined. The Matador Super Sécurit 3000 and the .25 Cash Euro Stunner had the highest kinetic energy values (443 J and 412 J, respectively) of the CBGs tested. Ninety percent (27/30) of CBGs held at a government gun repository (United Kingdom) were found to have performed at a normal standard for the model, while 53% (10/19) of commercial contractor CBGs tested were found to underperform for the gun model. When the .22 Cash Special was fired 500 times at 4 shots per min, the gun reached a peak temperature of 88.8°C after 2.05 hr. Repeat firing during extended periods significantly reduced the performance of the CBG. When deciding on the appropriate CBG/cartridge combination, the kinetic energy delivered to the head of the nonhuman animal, bolt penetration depth, and species/animal type must be considered. It is recommended that CBGs are routinely checked for wear to the bolt and barrel if they are repeatedly fired in a session.

  19. An on-vehicle roadbed strength testing equipment

    NASA Astrophysics Data System (ADS)

    Niu, Zhigang; Ma, Yonghui; Lv, Ming

    2008-12-01

    A kind of detection method based on principle of cone penetration test is put forward in order to rapidly get synthetical factors and section distribution curves of strength of the roadbed layer which is being measured. An on-vehicle roadbed strength testing equipment with this method is developed successfully. A computer controls the detection process and completes the data processing automatically. By the high speed of detection, online detection can be reached easily, therefore the entire course of construction of roadbed of highway and railway can be supervised to make sure quality of construction. It is proved by industrial experiment that the testing results reflect the reality of detected roadbed and potential quality problem under the surface of roadbed can be found quickly by the section distribution curve of strength of the roadbed layer. The testing equipment has passed through the technical appraisement organized by Railway Ministry.

  20. Cytomegalovirus keratitis after penetrating keratoplasty.

    PubMed

    Wehrly, S R; Manning, F J; Proia, A D; Burchette, J L; Foulks, G N

    1995-11-01

    We report the development of cytomegalovirus (CMV) keratitis in the penetrating keratoplasty of a 59-year-old human immunodeficiency virus-negative woman after uncomplicated corneal transplantation. Immunosuppression with topical cyclosporine A 2% in corn oil and topical prednisolone acetate 1% suspension was used postoperatively. The 15-month postoperative course was complicated by multiple episodes of endothelial rejection, medically controlled elevated intraocular pressure, polymicrobial bacterial (coagulase-negative staphlococcus and alpha-hemolytic streptococcus) keratitis, and endothelial plaque formation with associated hypopyon and epithelial defect. The graft failed and penetrating keratoplasty was repeated. Cytomegalovirus infection of superficial keratocytes in a region of scarring was identified in histological sections stained with hematoxylin and eosin and confirmed using mouse monoclonal anti-cytomegalovirus antibodies. Excision of the diseased corneal button with no additional treatment appears to have been curative. Low-grade keratitis was the only manifestation of the CMV infection, and it has not recurred 6 months postoperatively.

  1. Weld penetration and defect control

    SciTech Connect

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  2. [Penetrating injuries to the pelvis].

    PubMed

    Doll, D; Lenz, S; Exadaktylos, A K; Stettbacher, A; Degiannis, E; Düsel, W; Siewert, J R

    2006-09-01

    As criminality and weapon use increase, general and military surgeons are increasingly confronted with penetrating pelvic injuries both at home and on peacekeeping missions. Penetrating injuries to the iliac vascular axis are associated with considerable mortality, and thus the majority of these emergency patients arrive in a state of deep hypovolemic shock. Concomitant bowel injuries are present in one of five cases, resulting in contamination of the damaged area. Surgical options are simple lateral repair, ligation of the veins, temporary shunt insertion, and prosthetic graft interposition in the injured artery. In extremis ligation of the common or external iliac artery may be the only option to save the patient's life. Surgeons must be aware that damage control surgery and related methods may be needed early on to enable patient survival. PMID:16906417

  3. Regulated plasmalemmal expansion in nerve growth cones.

    PubMed

    Lockerbie, R O; Miller, V E; Pfenninger, K H

    1991-03-01

    To study the mechanisms underlying plasmalemmal expansion in the nerve growth cone, a cell-free assay was developed to quantify membrane addition, using ligand binding and sealed growth cone particles isolated by subcellular fractionation from fetal rat brain. Exposed versus total binding sites of 125I-wheat germ agglutinin were measured in the absence or presence of saponin, respectively, after incubation with various agents. Ca2(+)-ionophore A23187 in the presence of Ca2+ increases the number of binding sites (Bmax) but does not change their affinity (KD), indicating that new receptors appear on the plasma membrane. Similarly, membrane depolarization by high K+ or veratridine significantly induces, in a Ca2(+)-dependent manner, the externalization of lectin binding sites from an internal pool. Morphometric analysis of isolated growth cones indicates that A23187 and high K+ treatment cause a significant reduction in a specific cytoplasmic membrane compartment, thus confirming the lectin labeling results and identifying the plasmalemmal precursor. The isolated growth cones take up gamma-amino-butyric acid and serotonin, but show no evidence for Ca2(+)-dependent transmitter release so that transmitter exocytosis is dissociated from plasmalemmal expansion. The data demonstrate that plasmalemmal expansion in the growth cone is a regulated process and identify an internal pool of precursor membrane.

  4. Regulated plasmalemmal expansion in nerve growth cones

    PubMed Central

    1991-01-01

    To study the mechanisms underlying plasmalemmal expansion in the nerve growth cone, a cell-free assay was developed to quantify membrane addition, using ligand binding and sealed growth cone particles isolated by subcellular fractionation from fetal rat brain. Exposed versus total binding sites of 125I-wheat germ agglutinin were measured in the absence or presence of saponin, respectively, after incubation with various agents. Ca2(+)-ionophore A23187 in the presence of Ca2+ increases the number of binding sites (Bmax) but does not change their affinity (KD), indicating that new receptors appear on the plasma membrane. Similarly, membrane depolarization by high K+ or veratridine significantly induces, in a Ca2(+)-dependent manner, the externalization of lectin binding sites from an internal pool. Morphometric analysis of isolated growth cones indicates that A23187 and high K+ treatment cause a significant reduction in a specific cytoplasmic membrane compartment, thus confirming the lectin labeling results and identifying the plasmalemmal precursor. The isolated growth cones take up gamma-amino-butyric acid and serotonin, but show no evidence for Ca2(+)-dependent transmitter release so that transmitter exocytosis is dissociated from plasmalemmal expansion. The data demonstrate that plasmalemmal expansion in the growth cone is a regulated process and identify an internal pool of precursor membrane. PMID:1999470

  5. Jeeps Penetrating a Hostile Desert

    ERIC Educational Resources Information Center

    Bailey, Herb

    2009-01-01

    Several jeeps are poised at base camp on the edge of a desert aiming to escort one of them as far as possible into the desert, while the others return to camp. They all have full tanks of gas and share their fuel to maximize penetration. In a friendly desert it is best to leave caches of fuel along the way to help returning jeeps. We solve the…

  6. Feasibility of a Modified cone-Beam cT rotation Trajectory to improve liver Periphery Visualization during Transarterial chemoembolization

    PubMed Central

    Schernthaner, Rüdiger E.; Chapiro, Julius; Sahu, Sonia; Withagen, Paul; Duran, Rafael; Sohn, Jae Ho; Radaelli, Alessandro; van der Bom, Imramsjah Martin; Geschwind, Jean-François H.; Lin, MingDe

    2015-01-01

    Purpose To compare liver coverage and tumor detectability by using preprocedural magnetic resonance (MR) images as a reference, as well as radiation exposure of cone-beam computed tomography (CT) with different rotational trajectories. Materials and Methods Fifteen patients (nine men and six women; mean age ± standard deviation, 65 years ± 5) with primary or secondary liver cancer were retrospectively included in this institutional review board–approved study. A modified conebeam CT protocol was used in which the C-arm rotates from +55° to –185° (open arc cone-beam CT) instead of –120° to +120° (closed arc cone-beam CT). Each patient underwent two sessions of transarterial chemoembolization between February 2013 and March 2014 with closed arc and open arc cone-beam CT (during the first and second transarterial chemoembolization sessions, respectively, as part of the institutional transarterial chemoembolization protocol). For each cone-beam CT examination, liver volume and tumor detectability were assessed by using MR images as the reference. Radiation exposure was compared by means of a phantom study. For statistical analysis, paired t tests and a Wilcoxon signed rank test were performed. Results Mean liver volume imaged was 1695 cm3 ± 542 and 1857 cm3 ± 571 at closed arc and open arc cone-beam CT, respectively. The coverage of open arc cone-beam CT was significantly higher compared with closed arc cone-beam CT (97% vs 86% of the MR imaging liver volume, P = .002). In eight patients (53%), tumors were partially or completely outside the closed arc cone-beam CT field of view. All tumors were within the open arc cone-beam CT field of view. The open arc cone-beam CT radiation exposure by means of weighted CT index was slightly lower compared with that of closed arc cone-beam CT (–5.1%). Conclusion Open arc cone-beam CT allowed for a significantly improved intraprocedural depiction of peripheral hepatic tumors while achieving a slight radiation

  7. Municipal solid waste shear strength parameters defined through laboratorial and in situ tests.

    PubMed

    Gomes, Cristina; Lopes, M Lurdes; Oliveira, Paulo J Venda

    2013-11-01

    This paper presents the parameters of municipal solid waste shear strength determined in the laboratory (triaxial tests) and by in situ tests: standard penetration tests (SPT) and cone penetration tests (CPT). The results analyzed here are part of a study carried out on the Santo Tirso landfill (north of Portugal) between 2001 and 2007. The influence of the strain levels, waste composition, and waste age on the shear strength parameters is presented, as well as an attempt to establish some correlations between the SPT and CPT tests and to estimate municipal solid waste (MSW) friction angles from the SPT tests. The results indicate that the aging of the waste, which is characterized by a decrease in fibrous and organic materials and an increase in inert materials and fine fraction, leads to an increase in frictional resistance and to a decrease in cohesion. The results of the SPT and CPT tests indicate higher penetration resistance in older and deeper waste. Estimating the frictional resistance from the SPT test seems to obey an empirical relationship expressed by a power function, which depends on the strain level.

  8. EFFECT OF NOSE SHAPE ON LONG ROD PENETRATION INTO DRY SAND

    SciTech Connect

    Collins, Adam; Addiss, John; Proud, William

    2009-12-28

    Flat, hemispherical and ogive-2 nosed mild steel projectiles (10 mm diameter, 100 mm length) were fired at 200 m s{sup -1} into the end face of cylindrically confined dry sand (100 mm diameter, 150 mm length). Projectiles were tracked through the sand using flash radiography and high speed photography. By seeding a horizontal plane of randomly dispersed lead shot (<1.5 mm diameter) across the centre of the cylinder, the displacement field induced by the impact was mapped using Digital Speckle Radiography (DSR). By imaging at successive time intervals, a temporal history of the penetration was generated. DSR reveals a cone of displacement emanating from the impact point in all cases, leaving areas unmoved during the early stages of penetration. The magnitude and extent of the displacement cone is observed to be greatest in the flat nosed case. Initial rapid deceleration is seen in all nose cases, relaxing to an approximately steady velocity as the projectile reaches the end of the target. Ogive nosed projectiles suffer the least initial deceleration, and perforate the target with greatest speed. This combined behaviour is attributed to the blunt projectiles transferring more energy into movement of sand in the early stages of penetration, and hence experiencing more effective drag. Following this, the projectile moves through a moving body of sand at approximately constant velocity.

  9. Effect of Nose Shape on Long Rod Penetration Into Dry Sand

    NASA Astrophysics Data System (ADS)

    Collins, Adam; Addiss, John; Proud, William

    2009-12-01

    Flat, hemispherical and ogive-2 nosed mild steel projectiles (10 mm diameter, 100 mm length) were fired at 200 m s-1 into the end face of cylindrically confined dry sand (100 mm diameter, 150 mm length). Projectiles were tracked through the sand using flash radiography and high speed photography. By seeding a horizontal plane of randomly dispersed lead shot (<1.5 mm diameter) across the centre of the cylinder, the displacement field induced by the impact was mapped using Digital Speckle Radiography (DSR). By imaging at successive time intervals, a temporal history of the penetration was generated. DSR reveals a cone of displacement emanating from the impact point in all cases, leaving areas unmoved during the early stages of penetration. The magnitude and extent of the displacement cone is observed to be greatest in the flat nosed case. Initial rapid deceleration is seen in all nose cases, relaxing to an approximately steady velocity as the projectile reaches the end of the target. Ogive nosed projectiles suffer the least initial deceleration, and perforate the target with greatest speed. This combined behaviour is attributed to the blunt projectiles transferring more energy into movement of sand in the early stages of penetration, and hence experiencing more effective drag. Following this, the projectile moves through a moving body of sand at approximately constant velocity.

  10. Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations

    NASA Astrophysics Data System (ADS)

    Ruiz, Siul; Schymanski, Stan; Or, Dani

    2016-04-01

    We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.

  11. Azimuthal spin asymmetries in light-cone constituent quark models

    SciTech Connect

    Boffi, S.; Pasquini, B.; Efremov, A. V.; Schweitzer, P.

    2009-05-01

    We present results for all leading-twist azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to T-even transverse-momentum dependent parton distribution functions on the basis of a light-cone constituent quark model. Attention is paid to discuss the range of applicability of the model, especially with regard to the scale dependence of the observables and the transverse-momentum dependence of the distributions. We find good agreement with available experimental data and present predictions to be further tested by future CLAS, COMPASS, and HERMES data.

  12. GABA release from mouse axonal growth cones

    PubMed Central

    Gao, Xiao-Bing; van den Pol, Anthony N

    2000-01-01

    Using developing hypothalamic neurons from transgenic mice that express high levels of green fluorescent protein in growing axons, and an outside-out patch from mature neuronal membranes that contain neurotransmitter receptors as a sensitive detector, we found that GABA is released by a vesicular mechanism from the growth cones of developing axons prior to synapse formation. A low level of GABA release occurs spontaneously from the growth cone, and this is substantially increased by evoked action potentials. Neurotransmitters such as acetylcholine can enhance protein kinase C (PKC) activity even prior to synapse formation; PKC activation caused a substantial increase in spontaneous GABA release from the growth cone, probably acting at the axon terminal. These data indicate that GABA is secreted from axons during a stage of neuronal development when GABA is excitatory, and that neuromodulators could alter GABA release from the growing axon, potentially enabling other developing neurons of different transmitter phenotype to modulate the early actions of GABA. PMID:10718743

  13. Hurricane track forecast cones from fluctuations

    NASA Astrophysics Data System (ADS)

    Meuel, T.; Prado, G.; Seychelles, F.; Bessafi, M.; Kellay, H.

    2012-06-01

    Trajectories of tropical cyclones may show large deviations from predicted tracks leading to uncertainty as to their landfall location for example. Prediction schemes usually render this uncertainty by showing track forecast cones representing the most probable region for the location of a cyclone during a period of time. By using the statistical properties of these deviations, we propose a simple method to predict possible corridors for the future trajectory of a cyclone. Examples of this scheme are implemented for hurricane Ike and hurricane Jimena. The corridors include the future trajectory up to at least 50 h before landfall. The cones proposed here shed new light on known track forecast cones as they link them directly to the statistics of these deviations.

  14. Hurricane track forecast cones from fluctuations.

    PubMed

    Meuel, T; Prado, G; Seychelles, F; Bessafi, M; Kellay, H

    2012-01-01

    Trajectories of tropical cyclones may show large deviations from predicted tracks leading to uncertainty as to their landfall location for example. Prediction schemes usually render this uncertainty by showing track forecast cones representing the most probable region for the location of a cyclone during a period of time. By using the statistical properties of these deviations, we propose a simple method to predict possible corridors for the future trajectory of a cyclone. Examples of this scheme are implemented for hurricane Ike and hurricane Jimena. The corridors include the future trajectory up to at least 50 h before landfall. The cones proposed here shed new light on known track forecast cones as they link them directly to the statistics of these deviations.

  15. Hurricane track forecast cones from fluctuations

    PubMed Central

    Meuel, T.; Prado, G.; Seychelles, F.; Bessafi, M.; Kellay, H.

    2012-01-01

    Trajectories of tropical cyclones may show large deviations from predicted tracks leading to uncertainty as to their landfall location for example. Prediction schemes usually render this uncertainty by showing track forecast cones representing the most probable region for the location of a cyclone during a period of time. By using the statistical properties of these deviations, we propose a simple method to predict possible corridors for the future trajectory of a cyclone. Examples of this scheme are implemented for hurricane Ike and hurricane Jimena. The corridors include the future trajectory up to at least 50 h before landfall. The cones proposed here shed new light on known track forecast cones as they link them directly to the statistics of these deviations. PMID:22701776

  16. Pure bending of a solid cone

    NASA Astrophysics Data System (ADS)

    Renton, J. D.

    1997-05-01

    The problems of torsion, axial loading and shear of a solid cone were solved around the turn of the century by Michell and Föppl. Surprisingly, no solution to the problem of the elastic response of a cone to the only other possible resultant applied to its apex seems to have been published until now. The method used here is based on certain theoretical considerations related to the author's work on generalizing the engineering theory of beams. This means that the result is derived rather than being the result of a trial-and-error process. A comparison is made with the usual engineering theory as modified for variable bending stiffness. The two analyses give the same results at the limit as the cone angle tends to zero.

  17. Penetration of hard substrates by a fungus employing enormous turgor pressures.

    PubMed Central

    Howard, R J; Ferrari, M A; Roach, D H; Money, N P

    1991-01-01

    Many fungal pathogens penetrate plant leaves from a specialized cell called an appressorium. The rice blast pathogen Magnaporthe grisea can also penetrate synthetic surfaces such as poly(vinyl chloride). Previous experiments have suggested that penetration requires an elevated appressorial turgor pressure. In the present report we have used nonbiodegradable Mylar membranes, exhibiting a range of surface hardness, to test the proposition that penetration is driven by turgor. Reducing appressorial turgor by osmotic stress inhibited penetration of these membranes. The size of the turgor deficit required to inhibit penetration was a function of the surface hardness. Penetration of the hardest membranes was inhibited by small decreases in appressorial turgor, while penetration of the softer membranes was sensitive only to large decreases in turgor. Similarly, penetration of the host surface was inhibited in a manner comparable to penetration of the hardest Mylar membranes. Indirect measurements of turgor, obtained through osmotically induced collapse of appressoria, indicated that the infection apparatus can generate turgor pressures in excess of 8.0 MPa (80 bars). We conclude that penetration of synthetic membranes, and host epidermal cells, is accomplished by application of the physical force derived from appressorial turgor. Images PMID:1837147

  18. Penetration of hard substrates by a fungus employing enormous turgor pressures.

    PubMed

    Howard, R J; Ferrari, M A; Roach, D H; Money, N P

    1991-12-15

    Many fungal pathogens penetrate plant leaves from a specialized cell called an appressorium. The rice blast pathogen Magnaporthe grisea can also penetrate synthetic surfaces such as poly(vinyl chloride). Previous experiments have suggested that penetration requires an elevated appressorial turgor pressure. In the present report we have used nonbiodegradable Mylar membranes, exhibiting a range of surface hardness, to test the proposition that penetration is driven by turgor. Reducing appressorial turgor by osmotic stress inhibited penetration of these membranes. The size of the turgor deficit required to inhibit penetration was a function of the surface hardness. Penetration of the hardest membranes was inhibited by small decreases in appressorial turgor, while penetration of the softer membranes was sensitive only to large decreases in turgor. Similarly, penetration of the host surface was inhibited in a manner comparable to penetration of the hardest Mylar membranes. Indirect measurements of turgor, obtained through osmotically induced collapse of appressoria, indicated that the infection apparatus can generate turgor pressures in excess of 8.0 MPa (80 bars). We conclude that penetration of synthetic membranes, and host epidermal cells, is accomplished by application of the physical force derived from appressorial turgor.

  19. Hydrogeologic structure underlying a recharge pond delineated with shear-wave seismic reflection and cone penetrometer data

    USGS Publications Warehouse

    Haines, S.S.; Pidlisecky, A.; Knight, R.

    2009-01-01

    With the goal of improving the understanding of the subsurface structure beneath the Harkins Slough recharge pond in Pajaro Valley, California, USA, we have undertaken a multimodal approach to develop a robust velocity model to yield an accurate seismic reflection section. Our shear-wave reflection section helps us identify and map an important and previously unknown flow barrier at depth; it also helps us map other relevant structure within the surficial aquifer. Development of an accurate velocity model is essential for depth conversion and interpretation of the reflection section. We incorporate information provided by shear-wave seismic methods along with cone penetrometer testing and seismic cone penetrometer testing measurements. One velocity model is based on reflected and refracted arrivals and provides reliable velocity estimates for the full depth range of interest when anchored on interface depths determined from cone data and borehole drillers' logs. A second velocity model is based on seismic cone penetrometer testing data that provide higher-resolution ID velocity columns with error estimates within the depth range of the cone penetrometer testing. Comparison of the reflection/refraction model with the seismic cone penetrometer testing model also suggests that the mass of the cone truck can influence velocity with the equivalent effect of approximately one metre of extra overburden stress. Together, these velocity models and the depth-converted reflection section result in a better constrained hydrologic model of the subsurface and illustrate the pivotal role that cone data can provide in the reflection processing workflow. ?? 2009 European Association of Geoscientists & Engineers.

  20. The 9-methyl group of retinal is essential for rapid Meta II decay and phototransduction quenching in red cones.

    PubMed

    Estevez, Maureen E; Kolesnikov, Alexander V; Ala-Laurila, Petri; Crouch, Rosalie K; Govardovskii, Victor I; Cornwall, M Carter

    2009-08-01

    Cone photoreceptors of the vertebrate retina terminate their response to light much faster than rod photoreceptors. However, the molecular mechanisms underlying this rapid response termination in cones are poorly understood. The experiments presented here tested two related hypotheses: first, that the rapid decay rate of metarhodopsin (Meta) II in red-sensitive cones depends on interactions between the 9-methyl group of retinal and the opsin part of the pigment molecule, and second, that rapid Meta II decay is critical for rapid recovery from saturation of red-sensitive cones after exposure to bright light. Microspectrophotometric measurements of pigment photolysis, microfluorometric measurements of retinol production, and single-cell electrophysiological recordings of flash responses of salamander cones were performed to test these hypotheses. In all cases, cones were bleached and their visual pigment was regenerated with either 11-cis retinal or with 11-cis 9-demethyl retinal, an analogue of retinal lacking the 9-methyl group. Meta II decay was four to five times slower and subsequent retinol production was three to four times slower in red-sensitive cones lacking the 9-methyl group of retinal. This was accompanied by a significant slowing of the recovery from saturation in cones lacking the 9-methyl group after exposure to bright (>0.1% visual pigment photoactivated) but not dim light. A mathematical model of the turn-off process of phototransduction revealed that the slower recovery of photoresponse can be explained by slower Meta decay of 9-demethyl visual pigment. These results demonstrate that the 9-methyl group of retinal is required for steric chromophore-opsin interactions that favor both the rapid decay of Meta II and the rapid response recovery after exposure to bright light in red-sensitive cones.

  1. Lightcone: Light-cone generating script

    NASA Astrophysics Data System (ADS)

    Bernyk, Max

    2014-03-01

    Lightcone works with simulated galaxy data stored in a relational database to rearrange the data in a shape of a light-cone; simulated galaxy data is expected to be in a box volume. The light-cone constructing script works with output from the SAGE semi-analytic model, but will work with any other model that has galaxy positions (and other properties) saved per snapshots of the simulation volume distributed in time. The database configuration file is set up for PostgreSQL RDBMS, but can be modified for use with any other SQL database.

  2. Understanding Cone Photoreceptor Cell Death in Achromatopsia.

    PubMed

    Carvalho, Livia S; Vandenberghe, Luk H

    2016-01-01

    Colour vision is only achieved in the presence of healthy and functional cone photoreceptors found in the retina. It is an essential component of human vision and usually the first complaint patients undergoing vision degeneration have is the loss of daylight colour vision. Therefore, an understanding of the biology and basic mechanisms behind cone death under the degenerative state of retinal dystrophies and how the activation of the apoptotic pathway is triggered will provide valuable knowledge. It will also have broader applications for a spectrum of visual disorders and will be critical for future advances in translational research. PMID:26427416

  3. Towards cone-beam CT thermometry

    NASA Astrophysics Data System (ADS)

    Li, Ming; Abi-Jaoudeh, Nadine; Kapoor, Ankur; Kadoury, Samuel; Xu, Sheng; Noordhoek, Niels; Radaelli, Alessandro; Carelsen, Bart; Wood, Bradford J.

    2013-03-01

    Temperature monitoring and therefore the final treatment zone achieved during a cone-beam CT (CBCT) guided ablation can prevent overtreatment and undertreatment. A novel method is proposed to detect changes in consecutive CBCT images obtained from projection reconstructions during an ablation procedure. The possibility is explored of using this method to generate thermometry maps from CBCT images, which can be used as an input function for ablation treatment planning. This novel method uses a baseline and an intermittent CBCT scan, which are routinely acquired to confirm the needle position and monitor progress of the ablation. Accurate registration is required and assumed in vitro and ex vivo. A Wronskian change detector algorithm is applied on the compensated images to obtain a difference image between the intermittent and baseline scans. Finally, a thermal map created by applying a calibration determined experimentally is used to obtain the corresponding temperature at each pixel or voxel. We applied Wronskian change detector to detect the difference of two CBCT images, which have low signal to noise ratio, and calibrate Wronskian change model to temperature data using a gel phantom. We tested the temperature mapping with water and gel phantoms as well as pig shoulder. The experimental results show this method can detect temperature change within 5°C for a voxel size of 1mm3 (within clinical relevancy), and by consequence delineate the ablation zone. The preliminary experimental results show that CBCT thermometry is possible and promising, but may require pre-processing, such as registration for motion compensation between the baseline and intermittent scans. Further, quantitative evaluations have to be conducted for validation prior to clinical assessment and translation. CBCT is a widely available technology that could make thermometry clinically practical as an enabling component of iterative ablation treatment planning.

  4. In vitro human skin penetration model for organophosphorus compounds with different physicochemical properties.

    PubMed

    Thors, L; Koch, B; Koch, M; Hägglund, L; Bucht, A

    2016-04-01

    A flow-through diffusion cell was validated for in vitro human epidermal penetration studies of organophosphorus compounds (OPCs) applied by infinite dosing. By testing OPCs with similar molecular weight but different physicochemical properties, it was shown that hydrophilic and lipophilic properties are major determinants for the penetration rate. Lipophilic OPCs displayed maximum cumulative penetration in the 20-75% agent concentration range whereas the hydrophilic OPCs displayed maximum cumulative penetration at 10 or 20% agent concentration. Low penetration was observed for all agents at 1% agent concentration or when applied as neat agents. The impact of the receptor solution composition was evaluated by comparing the penetration using receptor solutions of different ratios of ethanol and water. For diluted OPCs, a high concentration of ethanol in the receptor solution significantly increased the penetration compared to lower concentrations. When OPCs were applied as neat agents, the composition of the receptor solution only affected the penetration for one of four tested compounds. In conclusion, the flow-through diffusion cell was useful for examining the penetration of OPCs through the epidermal membrane. It was also demonstrated that the penetration rates of OPCs are strongly influenced by dilution in water and the receptor fluid composition.

  5. Attenuation of S-cone function at high altitude assessed by electroretinography.

    PubMed

    Schatz, Andreas; Dominik Fischer, M; Schommer, Kai; Zrenner, Eberhart; Bartz-Schmidt, Karl-Ulrich; Gekeler, Florian; Willmann, Gabriel

    2014-04-01

    As impaired S-cone function has been reported psychophysically this study assessed S-cone function during high altitude exposure using electroretinography (ERG) and investigated a possible association with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. Standard ERG equipment was used (Diagnosys LLC, Cambridge, UK) with special protocol settings to extract S-cone function. Twelve subjects were analyzed in the current study and examinations were performed in Tübingen, Germany (341m) as baseline and thereafter at the Capanna Margherita, Italy (4559m) at high altitude. Results were compared using a paired t-test. Correlations between ERG measurements and oxygen saturation (SpO2), heart rate (HR) and scores of acute mountain sickness (AMS-C and LL) were calculated using Pearson's correlation coefficients. Amplitudes of S-cone b-waves decreased significantly at high altitude (p=0.02). No significant changes were observed for implicit times of b-waves (p=0.63), a-waves (p=0.75) or for a-wave amplitudes (p=0.78). The incidence of AMS was 50% at high altitude according to AMS-C and LL scores (AMS-C⩾0.7 and LL⩾5). Heart rate increased to 84±10min(-1) and SpO2 decreased to 71.9±5.7% at high altitude. No significant correlation was found between S-cone ERG parameters and SpO2, HR, AMS-C and LL. For the first time our study defines a significant impairment of S-cone function at high altitude time using objective state of the art examination methods. No correlation between the functional impairment of S-cones and levels of AMS was detected. PMID:24576750

  6. Ret-PCP2 colocalizes with PKC in a subset of primate ON cone bipolar cells

    PubMed Central

    Sulaiman, Pyroja; Fina, Marie; Feddersen, Rod; Vardi, Noga

    2010-01-01

    Purkinje cell protein 2 (PCP2), a member of the family of guanine dissociation inhibitors and a strong interactor with the G-protein subunit Gαo, localizes to retinal ON bipolar cells. The retina-specific splice variant of PCP2, Ret-PCP2, accelerates the light response of rod bipolar cells by modulating the mGluR6 transduction cascade. All ON cone bipolar cells express mGluR6 and Gα o, but only a subset expresses Ret-PCP2. Here we test the hypothesis that Ret-PCP2 contributes to shaping the various temporal bandwidths of ON cone bipolar cells in monkey retina. We found that the retinal splice variants in monkey and mouse are similar and longer than the cerebellar variants. Ret-PCP2 is strongly expressed by diffuse cone bipolar type 4 cells (DB4; marked with anti-PKCα), and weakly expressed by midget bipolar dendrites (labeled by antibodies against Gα o, Gγ13, or mGluR6). Ret-PCP2 is absent from diffuse cone bipolar type 6 (DB6; marked with anti-CD15) and blue cone bipolar cells (marked with anti-CCK precursor). Thus, cone bipolar cells that terminate in stratum 3 of the inner plexiform layer (DB4) express more Ret-PCP2 than those that terminate in stratum 3+4 (midget bipolar cells), and these in turn express more than those that terminate in stratum 5 (DB6 and blue cone bipolar cells). This expression pattern approximates the arborization of ganglion cells (GC) with different temporal band-widths: parasol GCs stratifying near stratum 3 are faster than midget GCs stratifying in strata 3+4, and these are probably faster than the sluggish GCs that arborize in stratum 5. PMID:20127818

  7. Alcohol intoxication impairs mesopic rod and cone temporal processing in social drinkers

    PubMed Central

    Zhuang, Xiaohua; Kang, Para; King, Andrea; Cao, Dingcai

    2015-01-01

    Background Alcohol-related driving accidents and fatalities occur most frequently at nighttime and at dawn, i.e. a mesopic lighting condition in which visual processing depends on both rod and cone photoreceptors. The temporal functions of the rod and cone pathways are critical for driving in this lighting condition. However, how alcohol influences the temporal functions in the rod and cone pathways at mesopic light levels is inconclusive. To address this, the present study investigated whether an acute intoxicating dose of alcohol impairs rod- and/or cone-mediated critical fusion frequency (CFF, the lowest frequency of which an intermittent or flickering light stimulus is perceived as steady). Methods In Experiment I, we measured the CFFs for three types of visual stimuli (rod stimulus alone, cone stimulus alone, and the mixture of both stimuli types), under three illuminant light levels (dim illuminance: 2Td; low illuminance: 20Td; and medium illuminance 80Td) in moderate-heavy social drinkers before and after they consumed an intoxicating dose of alcohol (0.8g/kg) compared with a placebo beverage. In Experiment II, we examined if the illuminance level (dark versus light) of the visual area surrounding the test stimuli alters alcohol’s effect on the temporal processing of rods and cones. Results The results showed that compared with placebo, alcohol significantly reduced CFFs of all stimulus types at all illuminance levels. Furthermore, alcohol intoxication produced a larger impairment on rod-pathway-mediated CFFs under light versus dark surround. Conclusions These results indicate that alcohol intake slows down rod and cone-pathway-mediated temporal processing. Further research may elucidate if this effect may play a role in alcohol-related injury and accidents, which often occur under low light conditions. PMID:26247196

  8. Development of topographic asymmetry: Insights from dated cinder cones in the western United States

    NASA Astrophysics Data System (ADS)

    McGuire, Luke A.; Pelletier, Jon D.; Roering, Joshua J.

    2014-08-01

    Topographic asymmetry, that is, differences in the morphology of landscapes as a function of slope aspect, can be used to infer ecohydrogeomorphic feedback relationships. In this study, we document the dependence of topographic gradients and drainage densities on slope aspect and time/age in four Quaternary cinder cone fields in Arizona, Oregon, and California. Cinder cones are particularly useful as natural experiments in geomorphic evolution because they begin their evolution at a known time in the past (many have been radiometrically dated) and because they often have simple, well-constrained initial morphologies. North-facing portions of cinder cones have steeper topographic gradients and higher mean vegetation cover (i.e., Normalized Difference Vegetation Index, or NDVI, values) under current climatic conditions compared with corresponding south-facing portions of cones within each volcanic field. Drainage density is also higher on north-facing portions of cones in three of the four volcanic fields. These differences in topography were not present initially but developed progressively over time, indicating that the asymmetry is a result of post-eruption geomorphic processes. To test alternative hypotheses for the slope-aspect control of topography, we developed a numerical model for cinder cone evolution and a methodology for estimating local paleovegetation cover as a function of elevation, slope aspect, and time within the Quaternary. The numerical model results demonstrate that rates of colluvial transport were higher on south-facing hillslopes in at least three of the four cinder cones fields. Our paleovegetation analysis suggests that in the two Arizona volcanic fields we studied, higher rates of colluvial transport on south-facing hillslopes were the result of greater time-averaged vegetation cover and hence higher rates of sediment transport by floral bioturbation. Our results illustrate the profound impact that relatively small variations in solar

  9. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications.

    PubMed

    Popa, A C; Stan, G E; Besleaga, C; Ion, L; Maraloiu, V A; Tulyaganov, D U; Ferreira, J M F

    2016-02-01

    This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders.

  10. Basaltic Cone Suggests Constructional Origin of Some Guyots.

    PubMed

    Christensen, M N; Gilbert, C M

    1964-01-17

    A basaltic cinder cone was built beneath the waters of Mono Lake in Pleistocene time. This cone is now exposed. Its internal structure, external form, and petrography suggest that it was constructed with a flat top.

  11. Basaltic Cone Suggests Constructional Origin of Some Guyots.

    PubMed

    Christensen, M N; Gilbert, C M

    1964-01-17

    A basaltic cinder cone was built beneath the waters of Mono Lake in Pleistocene time. This cone is now exposed. Its internal structure, external form, and petrography suggest that it was constructed with a flat top. PMID:17753148

  12. Management of penetrating brain injury

    PubMed Central

    Kazim, Syed Faraz; Shamim, Muhammad Shahzad; Tahir, Muhammad Zubair; Enam, Syed Ather; Waheed, Shahan

    2011-01-01

    Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients. PMID:21887033

  13. Demography of penetrating cardiac trauma.

    PubMed Central

    Naughton, M J; Brissie, R M; Bessey, P Q; McEachern, M M; Donald, J M; Laws, H L

    1989-01-01

    All cases of penetrating cardiac trauma in 1985 and 1986 in Jefferson County, Alabama, where patients dying of penetrating trauma received autopsies, were retrospectively reviewed. All hospitals in the county plus the single coroner's office provided the records of the 72 patients comprising this study. Incidents occurred most often in the home or residence (70%) by a known assailant (83%) due to domestic/social disputes (73%). Frequency was greatest in the evening hours (73% between 6:00 PM and 3:00 AM), on weekends in spring and summer. Victims tended to be male (86%), black (72%), married (46%), blue collar workers (62%). There were 41 (57%) gunshot wounds, 3 (4%) shotgun wounds, and 28 (39%) stab wounds with an associated mortality rate of 97%, 100%, and 68%, respectively. Prehospital mortality rate (dead at the scene) was 54.2% (39/72), and death on arrival was 26.4% (19/72), for a combined pretreatment mortality rate of 80.6%. All patients who arrived with no vital signs died. Mortality appeared to be related to mechanism of injury, age, race, sex, vital signs on arrival, number and specific cardiac chambers injured, associated major vascular injury, hematocrit, and mode of transportation. Mortality was not related to caliber of weapon, ethanol level, transport time, time from arrival to operation, or transfusion requirements. There were only ten survivors (1 gunshot wound and 9 stab wounds), all of whom had ventricular injuries and no associated major vascular injuries. The ten survivors represented a 71.4% (10/14) salvage rate for those victims arriving with vital signs. Complications occurred in three patients. Hospitalization averaged 7.3 days in the survivors. Penetrating cardiac trauma remains a serious, socially linked disease with a high rate of mortality. Rapid transport, aggressive resuscitation and cardiorrhaphy remain the best treatment. PMID:2730180

  14. FAA Fluorescent Penetrant Activities - An Update

    SciTech Connect

    Moore, D.G.

    1998-10-20

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently characterizing low cycle fatigue specimens that will support the needs of penetrant manufacturers, commercial airline industry and the Federal Aviation Administration. The main focus of this characterization is to maintain and enhance the evaluation of penetrant inspection materials and apply resources to support the aircraft community needs. This paper discusses efforts to-date to document the Wright Laboratory penetrant evaluation process and characterize penetrant brightness readings in the initial set of sample calibration panels using Type 1 penetrant.

  15. Measurements of growth cone adhesion to culture surfaces by micromanipulation

    PubMed Central

    1994-01-01

    Neurons were grown on plastic surfaces that were untreated, or treated with polylysine, laminin, or L1 and their growth cones were detached from their culture surface by applying known forces with calibrated glass needles. This detachment force was taken as a measure of the force of adhesion of the growth cone. We find that on all surfaces, lamellipodial growth cones require significantly greater detachment force than filopodial growth cones, but this differences is, in general, due to the greater area of lamellipodial growth cones compared to filopodial growth cones. That is, the stress (force/unit area) required for detachment was similar for growth cones of lamellipodial and filopodial morphology on all surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces, which had a significantly lower stress of detachment than on other surfaces. Surprisingly, the forces required for detachment (760-3,340 mudynes) were three to 15 times greater than the typical resting axonal tension, the force exerted by advancing growth cones, or the forces of retraction previously measured by essentially the same method. Nor did we observe significant differences in detachment force among growth cones of similar morphology on different culture surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces. These data argue against the differential adhesion mechanism for growth cone guidance preferences in culture. Our micromanipulations revealed that the most mechanically resistant regions of growth cone attachment were confined to quite small regions typically located at the ends of filopodia and lamellipodia. Detached growth cones remained connected to the substratum at these regions by highly elastic retraction fibers. The closeness of contact of growth cones to the substratum as revealed by interference reflection microscopy (IRM) did not correlate with our mechanical measurements of adhesion, suggesting that IRM cannot be used as a

  16. Steel penetration in sand molds. Final technical report, September 1994--September 1997

    SciTech Connect

    Hayes, K.D.; Owens, M.; Barlow, J.; Stefanescu, D.M.; Lane, A.M.; Piwonka, T.S.

    1997-12-01

    The research program was successful in identifying the major factoirs that influence penetration. This was done first through a case study of penetration samples. The study revealed that both chemical and mechanical penetration were present in carbon and high manganese steels. It also found that only mechanical penetration is found in stainless steel samples. It should be noted that when mechanical penetration does occur, there is a greater risk of chemical reactions with the mold. Therefore, it is common to confuse mechanical penetration with chemical. Sessile drop experiments were run to discover the effect of steel chemistry on the contact angle for different substrates. These experiments revealed the best substrates for each type of metal. Bauxite, magnesite, and mullite were discovered to be the best materials for resisting mechanical penetration. It was also shown that high manganese steels cannot be poured into silica molds and that stainless steel should not be poured in chromite molds. The sessile drop data was used to develop a mechanical penetration model which correctly predicted penetration in sixteen of twenty castings poured at the University of Alabama. Mold/metal atmosphere tests were run to understand the effects of the atmosphere on chemical penetration. It was found that the chemistry affecting penetration has its greatest effect as the casting is just poured. Chemical penetration for low carbon steels cannot be completely eliminated by adding carbon (seacoal) to green sand molds although a marked decrease is obtained in its severity. Extremely high carbon concentrations might be able to totally eliminate the penetration but are not used because of their possible diffusion into the steel causing carburization. A chemical penetration model was produced and its results agree well with the experimental results.

  17. Cavity dynamics and particle alignment in the wake of a supersonic projectile penetrating a dusty plasma

    SciTech Connect

    Arp, O.; Caliebe, D.; Piel, A.

    2011-06-15

    The penetration of a projectile into a strongly coupled dusty plasma was studied in a radio-frequency discharge under microgravity conditions. A supersonic projectile produces an elongated dust-free cavity in its wake. The dynamics of the cavity is analyzed and compared with Langevin dynamics simulations. Besides a three-dimensional Mach cone structure, the simulation shows that the cavity dynamics can be subdivided into three phases: An opening phase with fixed time scale, a closing phase, whose duration is affected by the projectile speed and, finally, a phase of particle realignment in the target cloud, which persists for a long time after the closure of the cavity.

  18. Cavity dynamics and particle alignment in the wake of a supersonic projectile penetrating a dusty plasma

    NASA Astrophysics Data System (ADS)

    Arp, O.; Caliebe, D.; Piel, A.

    2011-06-01

    The penetration of a projectile into a strongly coupled dusty plasma was studied in a radio-frequency discharge under microgravity conditions. A supersonic projectile produces an elongated dust-free cavity in its wake. The dynamics of the cavity is analyzed and compared with Langevin dynamics simulations. Besides a three-dimensional Mach cone structure, the simulation shows that the cavity dynamics can be subdivided into three phases: An opening phase with fixed time scale, a closing phase, whose duration is affected by the projectile speed and, finally, a phase of particle realignment in the target cloud, which persists for a long time after the closure of the cavity.

  19. Results of Aquifer Tests Performed Near R-Area, Savannah River Site

    SciTech Connect

    Hiergesell, R.A.

    2001-01-31

    The aquifer testing described in this report was conducted in response to USEPA comments (WSRC, 1998) on the Rev. 0 R-Reactor Seepage Basins RFI/RI Report (WSRC, 1998a), Appendix G, Groundwater Contaminant Transport Modeling for the R-Reactor Seepage Basins (RRSB)/108-4R Overflow Basin Operable Unit. The R-area regional flow model described in Appendix G of the RFI/RI is based on small-scale and/or indirect measures of hydraulic conductivity, including laboratory tests, slug tests, cone penetration testing (CPT) and lithologic core descriptions. The USEPA proposed and SRS- agreed that large-scale conductivity estimates from multiple well pumping tests would be beneficial for validating the model conductivity field. Overall, the aquifer test results validate the 1998 R-area regional groundwater flow model.

  20. Enabling kinetic micro-penetrator technology for Solar System research

    NASA Astrophysics Data System (ADS)

    Gowen, R. A.

    2008-09-01

    Whilst the concept of high speed impacting penetrator probes is not new, recent highly successful ground test results have considerably improved the perception that these can be a viable and useful addition to the current toolbox of planetary probes. Previous developments only led to a single deployment (Deep Space-2 to Mars on the ill fated NASA Mars Polar Lander mission in 1999) where neither the soft lander nor penetrator was ever heard from, which is not a logical basis for dismissing penetrator technology. Other space penetrator programmes have included the Russian Mars'96 ~80m/s penetrators for which the whole mission was lost before the spacecraft left Earth orbit, and the Japanese Lunar-A program which was cancelled after a lengthy development program which however saw multiple successful ground trials. The Japanese penetrators were designed for ~300m/s impact. The current UK penetrator developments are actively working towards full space qualification for a Lunar penetrators (MoonLITE mission), which would also provide a significant technical demonstration towards the development of smaller, shorter lived penetrators for exploring other solar system objects. We are advocating delivered micro-penetrators in the mass range ~4-10Kg, (preceded by ~13Kg Lunar penetrator MoonLITE development program), impacting at around 100-500m/s and carrying a scientific payload of around 2Kg. Additional mass is required to deliver the probes from `orbit' to surface which is dependent upon the particular planetary body in question. The mass per descent module therefore involves and additional element which, for a descent through an atmosphere could be quite modest, while for a flyby deployment, can be substantial. For Europa we estimate a descent module mass of ~13 Kg, while for Enceladus the value is ~40Kg for Enceladus since a deceleration of ~3.8 kms-1 is needed from a Titan orbit. The delivery system could consist of a rocket deceleration motor and attitude control system

  1. The extract from hop cones (Humulus lupulus) as a modulator of oxidative stress in blood platelets.

    PubMed

    Olas, Beata; Kolodziejczyk, Joanna; Wachowicz, Barbara; Jędrejek, Dariusz; Stochmal, Anna; Oleszek, Wiesław

    2011-01-01

    The plant Humulus lupulus is known as the raw material of the brewing industry. Hop cones, rich in polyphenolic compounds and acyl phloroglucides, are widely used to preserve beer and to give it a characteristic aroma and flavor. Hop cones have long been used for medicinal purposes. In particular, hop preparations were mainly recommended for the treatment of sleeping disorders. The antioxidative action of hop cones, however, is poorly understood. The aim of our present study was to investigate in vitro changes in human blood platelets induced by peroxynitrite (ONOO(-), the compound of particular importance for vascular thrombosis and inflammatory process) in the presence of hop cone extract (Humulus lupulus). The antioxidative action of the extract was also compared with the properties of a well-characterized antioxidative commercial monomeric polyphenol, resveratrol (3,4',5-trihydroxystilbene) in a model system in vitro. Various biomarkers of oxidative/nitrative stress, such as carbonyl groups, 3-nitrotyrosine and thiobarbituric acid reactive substances (TBARS) were estimated. The 3-nitrotyrosine formation and carbonyl group generation was assessed by the use of a competition ELISA test and ELISA test, respectively. Tested plant extract (12.5-50 µg/ml), like resveratrol, significantly inhibited protein carbonylation and nitration in the blood platelets treated with ONOO(-) (0.1 mM). The extract from hop cones, like resveratrol, also caused a distinct reduction of platelet lipid peroxidation induced by ONOO(-). The present results indicate that the hope cone extract has in vitro protective effects against ONOO(-), such as induced oxidative/nitrative damage to the human platelet proteins and lipids. However, in comparative studies the extract was not found to be a more effective antioxidant than the solution of pure resveratrol.

  2. The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Németh, Karoly; Risso, Corina; Nullo, Francisco; Kereszturi, Gabor

    2011-06-01

    Payún Matru Volcanic Field is a Quaternary monogenetic volcanic field that hosts scoria cones with perfect to breached morphologies. Los Morados complex is a group of at least four closely spaced scoria cones (Los Morados main cone and the older Cones A, B, and C). Los Morados main cone was formed by a long lived eruption of months to years. After an initial Hawaiian-style stage, the eruption changed to a normal Strombolian, conebuilding style, forming a cone over 150 metres high on a northward dipping (˜4°) surface. An initial cone gradually grew until a lava flow breached the cone's base and rafted an estimated 10% of the total volume. A sudden sector collapse initiated a dramatic decompression in the upper part of the feeding conduit and triggered violent a Strombolian style eruptive stage. Subsequently, the eruption became more stable, and changed to a regular Strombolian style that partially rebuilt the cone. A likely increase in magma flux coupled with the gradual growth of a new cone caused another lava flow outbreak at the structurally weakened earlier breach site. For a second time, the unstable flank of the cone was rafted, triggering a second violent Strombolian eruptive stage which was followed by a Hawaiian style lava fountain stage. The lava fountaining was accompanied by a steady outpour of voluminous lava emission accompanied by constant rafting of the cone flank, preventing the healing of the cone. Santa Maria is another scoria cone built on a nearly flat pre-eruption surface. Despite this it went through similar stages as Los Morados main cone, but probably not in as dramatic a manner as Los Morados. In contrast to these examples of large breached cones, volumetrically smaller cones, associated to less extensive lava flows, were able to heal raft/collapse events, due to the smaller magma output and flux rates. Our evidence shows that scoria cone growth is a complex process, and is a consequence of the magma internal parameters (e.g. volatile

  3. Vision. Realignment of cones after cataract removal.

    PubMed

    Smallman, H S; MacLeod, D I; Doyle, P

    2001-08-01

    Through unique observations of an adult case of bilateral congenital cataract removal, we have found evidence that retinal photoreceptors will swiftly realign towards the brightest regions in the pupils of the eye. Cones may be phototropic, actively orientating themselves towards light like sunflowers in a field.

  4. Comparison of human cervical mucus and artificial sperm penetration media.

    PubMed

    Tang, S; Garrett, C; Baker, H W

    1999-11-01

    The cervical mucus penetration tests aid research and determine the clinical importance of positive sperm antibody tests. Limited availability and variability of human cervical mucus have instigated the search for mucus substitutes for these tests. This study compares sperm migration in cervical mucus with that in artificial media including hyaluronate solution, egg white and albumin Tyrode solution. Results were quantified by measuring the migration distance (the maximum distance of capillary migration from a semen reservoir by spermatozoa after 1 h) and the sperm concentration at half the migration distance. The mean of both measures for cervical mucus and hyaluronate solution were equivalent [4.4 +/- 1.1 (SD) versus 4.3 +/- 1.0 cm and 118 +/- 51 versus 111 +/- 44x10(3)/ml], and higher than in egg white and albumin Tyrode solution. Antisperm antibodies impaired sperm penetration in cervical mucus and hyaluronate solution in a similar manner (r = 0.92). These results suggest that hyaluronate solution sufficiently resembles human cervical mucus in terms of penetrability that it may be used as a substitute for mucus in capillary tube tests of sperm function. The higher penetrability of cervical mucus and hyaluronate solution is probably related to a channelling effect due to their polymeric structure. PMID:10548628

  5. AAV-Mediated Cone Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia

    PubMed Central

    Dai, Xufeng; Lei, Bo; Everhart, Drew; Umino, Yumiko; Li, Jie; Zhang, Keqing; Mao, Song; Boye, Sanford L.; Liu, Li; Chiodo, Vince A.; Liu, Xuan; Shi, Wei; Tao, Ye; Chang, Bo; Hauswirth, William W.

    2012-01-01

    Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia. PMID:22509403

  6. Reionization on large scales. IV. Predictions for the 21 cm signal incorporating the light cone effect

    SciTech Connect

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H.; Cen, R.; Loeb, A.

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the 'light cone' effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h {sup –1}). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  7. AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia.

    PubMed

    Pang, Ji-jing; Deng, Wen-Tao; Dai, Xufeng; Lei, Bo; Everhart, Drew; Umino, Yumiko; Li, Jie; Zhang, Keqing; Mao, Song; Boye, Sanford L; Liu, Li; Chiodo, Vince A; Liu, Xuan; Shi, Wei; Tao, Ye; Chang, Bo; Hauswirth, William W

    2012-01-01

    Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia. PMID:22509403

  8. Fiscal year 1976 progress report on a feasibility study evaluating the use of surface penetrators for planetary exploration

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Oberbeck, V. R.; Bunch, T. E.; Reynolds, R. T.; Canning, T. N.; Jackson, R. W.

    1976-01-01

    The feasibility of employing penetrators for exploring Mars was examined. Eight areas of interest for key scientific experiments were identified. These include: seismic activity, imaging, geochemistry, water measurement, heatflow, meteorology, magnetometry, and biochemistry. In seven of the eight potential experiment categories this year's progress included: conceptual design, instrument fabrication, instrument performance evaluation, and shock loading of important components. Most of the components survived deceleration testing with negligible performance changes. Components intended to be placed inside the penetrator forebody were tested up to 3,500 g and components intended to be placed on the afterbody were tested up to 21,000 g. A field test program was conducted using tentative Mars penetrator mission constraints. Drop tests were performed at two selected terrestrial analog sites to determine the range of penetration depths for anticipated common Martian materials. Minimum penetration occurred in basalt at Amboy, California. Three full-scale penetrators penetrated 0.4 to 0.9 m into the basalt after passing through 0.3 to 0.5 m of alluvial overburden. Maximum penetration occurred in unconsolidated sediments at McCook, Nebraska. Two full-scale penetrators penetrated 2.5 to 8.5 m of sediment. Impact occurred in two kinds of sediment: loess and layered clay. Deceleration g loads of nominally 2,000 for the forebody and 20,000 for the afterbody did not present serious design problems for potential experiments. Penetrators have successfully impacted into terrestrial analogs of the probable extremes of potential Martian sites.

  9. Auto calibration of a cone-beam-CT

    SciTech Connect

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich

    2012-10-15

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to

  10. Penetration of asbestos fibers in respirator filters

    SciTech Connect

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi

    1994-11-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 {mu}m and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here.

  11. Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health

    PubMed Central

    Deming, Janise D.; Pak, Joseph S.; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Eom, Yun Sung; Shin, Jung-a; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae

    2015-01-01

    Purpose Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. Methods A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4−/−) compared with age-matched control, wild-type mice. Results When 2-month-old Arr4−/− mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4−/− mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4−/− mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Conclusions Our study demonstrates that Arr4−/− mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy. PMID:26284544

  12. Field studies of beach cones as coastal erosion control/reversal devices for areas with significant oil and gas activities. Annual report, February 24, 1993--February 23, 1994

    SciTech Connect

    Law, V.J.

    1994-07-07

    The primary objective of this project was to evaluate the utility of a device called the ``beach cone`` in combating coastal erosion. Seven initial sites were selected for testing beach cones in a variety of geometric configurations, and six sites were actually used. Six hundred beach cones were installed at the six sites in late July and early August, 1992. An additional 109 cones were installed at an eighth site in December of 1992. Findings indicate that beach cones accreted significant amounts of materials along the beach of a barrier island. At the eighth installation the amount of accreted material was measured by surveys to be 2200 cubic meters (2900 cubic yards) in February of 1993, when the cones were found to have been completely covered by the material. The average increase in elevation was about 7 inches (0. 18 in) with a maximum buildup of 3 ft. (I in). At other test sites, accretion rates have been less dramatic but importantly, no significant additional erosion has occurred, which is a positive result. The cost of sediment accretion using beach cones was found to be about $13.72 per cubic yard of sand or approximately $500,000 per mile of beach, which would be much lower if the cones were mass produced. The survival of the cones through the fringes of Hurricane Andrew indicates that they can be anchored sufficiently to survive significant storms. The measurements of the cones settling rates indicate that this effect is negligible, does not hinder their effectiveness. We do not yet have sufficient data to state the categorical success of the beach cones, but results to date are encouraging.

  13. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  14. The Southern Cone: A critical element in North American geology

    SciTech Connect

    Dalziel, I.W.D. . Inst. for Geophysics)

    1993-02-01

    The Pacific and Atlantic-Gulf of Mexico continental margins converge towards southern Mexico, delimiting the Southern Cone of North American. The margins are controlled by late Precambrian to early Paleozoic rift systems. The Neoproterozoic rifts along the Pacific margin truncate the 1.3--1.0 Ga Grenville-Llano front and still older structural boundaries within the craton, such as the Snowbird line. The Atlantic margin originated by separation from another continent within the Grenville orogen near the time of the Precambrian-Cambrian boundary. The Gulf of Mexico margin was initiated with rifting at that time, but appears to truncate the Ordovician Taconian orogen in Georgia. The continental margins of the Southern Cone may prove critical in understanding the origin of North America as a discrete continent. A possible continuation of the Grenville-Llano front has now been identified along the Pacific margin of the East Antarctic craton; the opposite side of the Grenville orogen may be present in South America and East Antarctic; a southern continuation of the Taconic Appalachians may have been identified in southern South American and Antarctica (L. Dalla Salda et al., Geology, 1992 a;b: I. Dalziel, Geology, 1991, and GSA Today, 1992; P. Hoffman, Science, 1991; E. Moores, Geology, 1991). Thus the geology of the Southern Cone of North America provides opportunities for critical testing of these globally important hypotheses, notably through geochronometry, isotope geochemistry, stratigraphy, and paleobiogeography. Conversely, East Antarctica, southern Africa, and the proto-Andean margin of South America may offer exciting opportunities to further understanding of pre-Pangea geology across southern North America.

  15. Detection and sizing of defects in control rod drive mechanism penetrations using eddy current and ultrasonics

    SciTech Connect

    Light, G.M.; Fisher, J.L.; Tennis, R.F.; Stolte, J.S.; Hendrix, G.J.

    1996-08-01

    Over the last two years, concern has been generated about the capabilities of performing nondestructive evaluation (NDE) of the closure-head penetrations in nuclear-reactor pressure vessels. These penetrations are primarily for instrumentation and control rod drive mechanisms (CRDMs) and are usually thick-walled Inconel tubes, which are shrink-fitted into the steel closure head. The penetrations are then welded between the outside surface of the penetration and the inside surface of the closure head. Stress corrosion cracks initiating at the inner surface of the penetration have been reported at several plants. Through-wall cracks in the CRDM penetration or CRDM weld could lead to loss of coolant in the reactor vessel. The CRDM penetration presents a complex inspection geometry for conventional NDE techniques. A thermal sleeve, through which pass the mechanical linkages for operating the control rods, is inserted into the penetration in such a way that only a small annulus (nominally 3 mm) exists between the thermal sleeve and inside surface of the penetration. Ultrasonic (UT) and eddy current testing (ET) techniques that could be used to provide defect detection and sizing capability were investigated. This paper describes the ET and UT techniques, the probes developed, and the results obtained using these probes and techniques on CRDM penetration mock-ups.

  16. Validated models for predicting skin penetration from different vehicles.

    PubMed

    Ghafourian, Taravat; Samaras, Eleftherios G; Brooks, James D; Riviere, Jim E

    2010-12-23

    The permeability of a penetrant though skin is controlled by the properties of the penetrants and the mixture components, which in turn relates to the molecular structures. Despite the well-investigated models for compound permeation through skin, the effect of vehicles and mixture components has not received much attention. The aim of this Quantitative Structure Activity Relationship (QSAR) study was to develop a statistically validated model for the prediction of skin permeability coefficients of compounds dissolved in different vehicles. Furthermore, the model can help with the elucidation of the mechanisms involved in the permeation process. With this goal in mind, the skin permeability of four different penetrants each blended in 24 different solvent mixtures were determined from diffusion cell studies using porcine skin. The resulting 96 kp values were combined with a previous dataset of 288 kp data for QSAR analysis. Stepwise regression analysis was used for the selection of the most significant molecular descriptors and development of several regression models. The selected QSAR employed two penetrant descriptors of Wiener topological index and total lipole moment, boiling point of the solvent and the difference between the melting point of the penetrant and the melting point of the solvent. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.454 for the logkp value of the test set.

  17. PENETRATION OF COAL SLAGS INTO HIGH-CHROMIA REFRACTORIES

    SciTech Connect

    Longanbach, Sara C.; Matyas, Josef; Sundaram, S. K.

    2009-10-05

    Slagging coal gasifiers are used for the production of electricity and synthetic gases, as well as chemicals. High temperatures in the reaction chamber, typically between 1250ºC and 1600ºC, high pressure, generally greater than 400 psi, and corrosive slag place severe demands on the refractory materials. Slag produced during the combustion of coal flows over the refractory surface and penetrates the porous material. Slag penetration is typically followed by spalling of a brick that significantly decreases the service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of slags into high-chromia refractories as a function of time and temperature for various refractory-slag combinations.

  18. Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides.

    PubMed

    Cascales, Laura; Henriques, Sónia T; Kerr, Markus C; Huang, Yen-Hua; Sweet, Matthew J; Daly, Norelle L; Craik, David J

    2011-10-21

    Cell-penetrating peptides can translocate across the plasma membrane of living cells and thus are potentially useful agents in drug delivery applications. Disulfide-rich cyclic peptides also have promise in drug design because of their exceptional stability, but to date only one cyclic peptide has been reported to penetrate cells, the Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). MCoTI-II belongs to the cyclotide family of plant-derived cyclic peptides that are characterized by a cyclic cystine knot motif. Previous studies in fixed cells showed that MCoTI-II could penetrate cells but kalata B1, a prototypic cyclotide from a separate subfamily of cyclotides, was bound to the plasma membrane and did not translocate into cells. Here, we show by live cell imaging that both MCoTI-II and kalata B1 can enter cells. Kalata B1 has the same cyclic cystine knot structural motif as MCoTI-II but differs significantly in sequence, and the mechanism by which these two peptides enter cells also differs. MCoTI-II appears to enter via macropinocytosis, presumably mediated by interaction of positively charged residues with phosphoinositides in the cell membrane, whereas kalata B1 interacts directly with the membrane by targeting phosphatidylethanolamine phospholipids, probably leading to membrane bending and vesicle formation. We also show that another plant-derived cyclic peptide, SFTI-1, can penetrate cells. SFTI-1 includes just 14 amino acids and, with the exception of its cyclic backbone, is structurally very different from the cyclotides, which are twice the size. Intriguingly, SFTI-1 does not interact with any of the phospholipids tested, and its mechanism of penetration appears to be distinct from MCoTI-II and kalata B1. The ability of diverse disulfide-rich cyclic peptides to penetrate cells enhances their potential in drug design, and we propose a new classification for them, i.e. cyclic cell-penetrating peptides. PMID:21873420

  19. Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides.

    PubMed

    Cascales, Laura; Henriques, Sónia T; Kerr, Markus C; Huang, Yen-Hua; Sweet, Matthew J; Daly, Norelle L; Craik, David J

    2011-10-21

    Cell-penetrating peptides can translocate across the plasma membrane of living cells and thus are potentially useful agents in drug delivery applications. Disulfide-rich cyclic peptides also have promise in drug design because of their exceptional stability, but to date only one cyclic peptide has been reported to penetrate cells, the Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). MCoTI-II belongs to the cyclotide family of plant-derived cyclic peptides that are characterized by a cyclic cystine knot motif. Previous studies in fixed cells showed that MCoTI-II could penetrate cells but kalata B1, a prototypic cyclotide from a separate subfamily of cyclotides, was bound to the plasma membrane and did not translocate into cells. Here, we show by live cell imaging that both MCoTI-II and kalata B1 can enter cells. Kalata B1 has the same cyclic cystine knot structural motif as MCoTI-II but differs significantly in sequence, and the mechanism by which these two peptides enter cells also differs. MCoTI-II appears to enter via macropinocytosis, presumably mediated by interaction of positively charged residues with phosphoinositides in the cell membrane, whereas kalata B1 interacts directly with the membrane by targeting phosphatidylethanolamine phospholipids, probably leading to membrane bending and vesicle formation. We also show that another plant-derived cyclic peptide, SFTI-1, can penetrate cells. SFTI-1 includes just 14 amino acids and, with the exception of its cyclic backbone, is structurally very different from the cyclotides, which are twice the size. Intriguingly, SFTI-1 does not interact with any of the phospholipids tested, and its mechanism of penetration appears to be distinct from MCoTI-II and kalata B1. The ability of diverse disulfide-rich cyclic peptides to penetrate cells enhances their potential in drug design, and we propose a new classification for them, i.e. cyclic cell-penetrating peptides.

  20. Simulated and empiric wind pollination patterns of conifer ovulate cones

    PubMed Central

    Niklas, Karl J.

    1982-01-01

    Wind tunnel analyses of conifer ovulate cones indicate that the total geometry of the cone enhances the probability of pollen entrapment. Aerodynamic characteristics of cone scale-bract complexes are such that suspended pollen is directed toward the micropyles of attached ovules. Within the taxa examined, there appears to be a preferential entrapment by ovulate cones of pollen of the same species. The data are interpreted as evidence for an aerodynamic reciprocity between wind-suspended pollen and the structure of ovulate cones which increases the frequency of pollination and the potential for fertilization. Images PMID:16593147

  1. Experiments and Simulations of Penetration into Granite by an Aluminum Shaped Charge

    SciTech Connect

    Murphy, M J; Randers-Pehrson, G; Kuklo, R M; Rambur, T A; Switzer, L L; Summes, M A

    2003-07-27

    This paper describes experimental results and numerical simulations of jet penetration into granite from an aluminum lined shaped charge. Several penetration versus standoff experiments were conducted into an in-situ granite formation located in the Climax Ridge region of the Nevada Test Site. Simulations of the jet penetration were modeled with a two dimensional arbitrary lagrange eulerian hydrocode. The effects of variations in the granite flow stress, porosity, and EOS have been evaluated. The work described in this paper is a continuation of our studies on jet penetration and modeling into high strength concrete.

  2. Analysis of Fragmentation and Resulting Shrapnel Penetration of Naturally Fragmenting Cylindrical Bombs

    SciTech Connect

    Gardner, S.E.

    2000-08-01

    Fragmentation of exploding cylinders and penetration mechanics of surrounding vessel walls were examined and a qualitative understanding was achieved. This understanding provided a basis for making simplifying approximations and assumptions that aided in creating a shrapnel penetration model. Several mathematical models were discussed, and results from 6 cylinder tests were analyzed in order to select a model that best represented the data. It was determined that the overall best mathematical model to predict shrapnel penetration uses the modified Gurney equation to calculate fragment velocity, the Mott equation to calculate largest fragment weight, and the Christman/Gehring equation to calculate penetration depth.

  3. Experiments and simulations of penetration into granite by an aluminum shaped charge

    NASA Astrophysics Data System (ADS)

    Murphy, M. J.; Randers-Pehrson, G.; Kuklo, R. M.; Rambur, T. A.; Switzer, L. L.; Summers, M. A.

    2003-09-01

    This paper describes experimental results and numerical simulations of jet penetration into granite from an aluminum lined shaped charge. Several penetration versus standoff experiments were conducted into an in-situ granite formation located in the Climax Ridge region of the Nevada Test Site. Simulations of the jet penetration were modeled with a two dimensional arbitrary lagrange eulerian hydrocode. The effects of variations in the granite flow stress, porosity, and EOS have been evaluated. The work described in this paper is a continuation of our studies on jet penetration and modeling into high strength concrete[1].

  4. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    SciTech Connect

    Steeples, D.W.; Plumb, R.

    1998-06-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  5. An electrochemical modeling of lithium-ion battery nail penetration

    NASA Astrophysics Data System (ADS)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Chen, Kuo-Ching

    2014-04-01

    Nail penetration into a battery pack, resulting in a state of short-circuit and thus burning, is likely to occur in electric car collisions. To demonstrate the behavior of a specific battery when subject to such incidents, a standard nail penetration test is usually performed; however, conducting such an experiment is money consuming. The purpose of this study is to propose a numerical electrochemical model that can simulate the test accurately. This simulation makes two accurate predictions. First, we are able to model short-circuited lithium-ion batteries (LIBs) via electrochemical governing equations so that the mass and charge transfer effect could be considered. Second, the temperature variation of the cell during and after nail penetration is accurately predicted with the help of simulating the temperature distribution of thermal runaway cells by thermal abuse equations. According to this nail penetration model, both the onset of battery thermal runaway and the cell temperature profile of the test are obtained, both of which are well fitted with our experimental results.

  6. Characterizing the Human Cone Photoreceptor Mosaic via Dynamic Photopigment Densitometry

    PubMed Central

    Sabesan, Ramkumar; Hofer, Heidi; Roorda, Austin

    2015-01-01

    Densitometry is a powerful tool for the biophysical assessment of the retina. Until recently, this was restricted to bulk spatial scales in living humans. The application of adaptive optics (AO) to the conventional fundus camera and scanning laser ophthalmoscope (SLO) has begun to translate these studies to cellular scales. Here, we employ an AOSLO to perform dynamic photopigment densitometry in order to characterize the optical properties and spectral types of the human cone photoreceptor mosaic. Cone-resolved estimates of optical density and photosensitivity agree well with bulk estimates, although show smaller variability than previously reported. Photopigment kinetics of individual cones derived from their selective bleaching allowed efficient mapping of cone sub-types in human retina. Estimated uncertainty in identifying a cone as long vs middle wavelength was less than 5%, and the total time taken per subject ranged from 3–9 hours. Short wavelength cones were delineated in every subject with high fidelity. The lack of a third cone-type was confirmed in a protanopic subject. In one color normal subject, cone assignments showed 91% correspondence against a previously reported cone-typing method from more than a decade ago. Combined with cone-targeted stimulation, this brings us closer in studying the visual percept arising from a specific cone type and its implication for color vision circuitry. PMID:26660894

  7. Prospects for retinal cone-targeted gene therapy.

    PubMed

    Alexander, John J; Hauswirth, William W

    2008-06-01

    Gene therapy strategies that target therapeutic genes to retinal cones are a worthy goal both because cone photoreceptor diseases are severely vision limiting and because many retinal diseases that do not affect cones directly eventually lead to cone loss, the reason for eventual blindness. Human achromatopsia is a genetic disease of cones that renders them nonfunctional but otherwise intact. Thus, animal models of achromatopsia were used in conjunction with adeno-associated virus (AAV) vectors whose serotype efficiently transduces cones and with a promoter that limits transgene expression to cones. In the Gnat2(cpfl3) mouse model of one genetic form of human achromatopsia, we were able to demonstrate recovery of normal cone function and visual acuity after a single subretinal treatment of vector that supplied wild-type Gnat2 protein to cones. This validates the overall strategy of targeting cones using recombinant viral vectors and justifies a more complete examination of animal models of cone disease as a prelude to considering a clinical gene therapy trial. PMID:18596991

  8. Cable Braid Electromagnetic Penetration Model.

    SciTech Connect

    Warne, Larry K.; Langston, William L.; Basilio, Lorena I.; Johnson, W. A.

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  9. A lightweight ground penetrating radar

    SciTech Connect

    Koppenjan, S.K.; Allen, C.M.; Gardner, D.; Wong, H.R.

    1998-12-31

    The detection of buried objects, particularly unexploded ordnance (UXO), has gained significant interest in the US in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing humanitarian concern. The application of radar to this problem has received renewed attention. Bechtel Nevada, Special Technologies Laboratory (STL) has developed several frequency modulated, continuous wave (FM-CW) ground penetrating radar (GPR) units for the US Department of Energy since 1984. To meet these new technical requirements for high resolution data and UXO detection, STL is moving forward with advances to GPR technology, signal processing, and imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery operated unit that does not require surface contact and can be operated by a novice user.

  10. [Non-penetrating glaucoma surgery].

    PubMed

    Klink, T; Matlach, J; Grehn, F

    2012-08-01

    Patients at high risk of developing complications (e.g. high myopia, aphakia, advanced visual field defects) benefit from non-penetrating glaucoma surgery (NPGS). Neovascular glaucoma, traumatic glaucoma or patients with a narrow angle (a scleral spur must at least be visible) are not suitable for NPGS. The aim of deep sclerectomy (DS) is mainly external subconjunctival drainage. Modified with mitomycin C and intrascleral implants, intraocular pressure (IOP) and success of DS are comparable to trabeculectomy. Viscocanalostomy and the further development to canaloplasty aim for blebless IOP control. Viscocanalostomy has an extremely low complication profile but only a slight reduction in IOP. Canaloplasty creates much more favourable results. Combined with phacoemulsification canaloplasty appears to lower IOP comparable to phacotrabeculectomy and demonstrates a more sustainable success compared to canaloplasty alone.

  11. Micro focusing of fast electrons with opened cone targets

    SciTech Connect

    Liu Feng; Liu Xiaoxuan; Ding Wenjun; Du Fei; Li Yutong; Ma Jinglong; Liu Xiaolong; Chen Liming; Lu Xin; Dong Quanli; Wang Weimin; Wang Zhaohua; Wei Zhiyi; Liu Bicheng; Sheng Zhengming; Zhang Jie

    2012-01-15

    Using opened reentrant cone silicon targets, we have demonstrated the effect of micro focusing of fast electrons generated in intense laser-plasma interactions. When an intense femtosecond laser pulse is focused tightly onto one of the side walls of the cone, fast electron beam emitted along the side wall is observed. When a line focus spot, which is long enough to irradiate both of the side walls of the cone simultaneously, is used, two electron beams emitted along each side wall, respectively, are observed. The two beams should cross each other near the open tip of the cone, resulting in micro focusing. We use a two-dimensional Particle-In-Cell code to simulate the electron emission both in opened and closed cone targets. The simulation results of the opened cone targets are in agreement with the experimental observation while the results of the closed cone targets do not show the micro focusing effect.

  12. Bodily action penetrates affective perception

    PubMed Central

    Rigutti, Sara; Gerbino, Walter

    2016-01-01

    Fantoni & Gerbino (2014) showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP), they found consistent congruency effects in participants who performed a facial emotion identification task after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015) would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception. Here, we present evidence that performing a facial emotion detection (not identification) task after MAMIP exhibits systematic mood-congruent sensitivity changes, rather than response bias changes attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold for happiness was lower after fifty comfortable than uncomfortable reaches; while the detection threshold for anger was lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness after positive comfortable actions, anger after negative uncomfortable actions), in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top-down effect on

  13. Rod-cone based color vision in seals under photopic conditions.

    PubMed

    Oppermann, Daniela; Schramme, Jürgen; Neumeyer, Christa

    2016-08-01

    Marine mammals have lost the ability to express S-cone opsin, and possess only one type of M/L-cone in addition to numerous rods. As they are cone monochromats they should be color blind. However, early behavioral experiments with fur seals and sea lions indicated discrimination ability between many shades of grey and blue or green. On the other hand, most recent training experiments with harbor seals under "mesopic" conditions demonstrated rod based color blindness (Scholtyssek et al., 2015). In our experiments we trained two harbor seals (Phoca vitulina) and two South African fur seals (Arctocephalus pusillus) with surface colors under photopic conditions. The seals had to detect a triangle on grey background shown on one of three test fields while the other two test fields were homogeneously grey. In a first series of experiments we determined brightness detection. We found a luminance contrast of >3% sufficient for correctly choosing the triangle. In the tests for color vision the triangle was blue, green or yellow in grey surround. The results show that the animals could see the colored triangle despite minimal or zero brightness contrast. Thus, seals have color vision based on the contribution of cones and rods even in bright daylight.

  14. Rod-cone based color vision in seals under photopic conditions.

    PubMed

    Oppermann, Daniela; Schramme, Jürgen; Neumeyer, Christa

    2016-08-01

    Marine mammals have lost the ability to express S-cone opsin, and possess only one type of M/L-cone in addition to numerous rods. As they are cone monochromats they should be color blind. However, early behavioral experiments with fur seals and sea lions indicated discrimination ability between many shades of grey and blue or green. On the other hand, most recent training experiments with harbor seals under "mesopic" conditions demonstrated rod based color blindness (Scholtyssek et al., 2015). In our experiments we trained two harbor seals (Phoca vitulina) and two South African fur seals (Arctocephalus pusillus) with surface colors under photopic conditions. The seals had to detect a triangle on grey background shown on one of three test fields while the other two test fields were homogeneously grey. In a first series of experiments we determined brightness detection. We found a luminance contrast of >3% sufficient for correctly choosing the triangle. In the tests for color vision the triangle was blue, green or yellow in grey surround. The results show that the animals could see the colored triangle despite minimal or zero brightness contrast. Thus, seals have color vision based on the contribution of cones and rods even in bright daylight. PMID:27245870

  15. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  16. WE-G-18A-03: Cone Artifacts Correction in Iterative Cone Beam CT Reconstruction

    SciTech Connect

    Yan, H; Folkerts, M; Jiang, S; Jia, X; Wang, X; Bai, T; Lu, W

    2014-06-15

    Purpose: For iterative reconstruction (IR) in cone-beam CT (CBCT) imaging, data truncation along the superior-inferior (SI) direction causes severe cone artifacts in the reconstructed CBCT volume images. Not only does it reduce the effective SI coverage of the reconstructed volume, it also hinders the IR algorithm convergence. This is particular a problem for regularization based IR, where smoothing type regularization operations tend to propagate the artifacts to a large area. It is our purpose to develop a practical cone artifacts correction solution. Methods: We found it is the missing data residing in the truncated cone area that leads to inconsistency between the calculated forward projections and measured projections. We overcome this problem by using FDK type reconstruction to estimate the missing data and design weighting factors to compensate the inconsistency caused by the missing data. We validate the proposed methods in our multi-GPU low-dose CBCT reconstruction system on multiple patients' datasets. Results: Compared to the FDK reconstruction with full datasets, while IR is able to reconstruct CBCT images using a subset of projection data, the severe cone artifacts degrade overall image quality. For head-neck case under a full-fan mode, 13 out of 80 slices are contaminated. It is even more severe in pelvis case under half-fan mode, where 36 out of 80 slices are affected, leading to inferior soft-tissue delineation. By applying the proposed method, the cone artifacts are effectively corrected, with a mean intensity difference decreased from ∼497 HU to ∼39HU for those contaminated slices. Conclusion: A practical and effective solution for cone artifacts correction is proposed and validated in CBCT IR algorithm. This study is supported in part by NIH (1R01CA154747-01)

  17. X-linked cone dystrophy caused by mutation of the red and green cone opsins.

    PubMed

    Gardner, Jessica C; Webb, Tom R; Kanuga, Naheed; Robson, Anthony G; Holder, Graham E; Stockman, Andrew; Ripamonti, Caterina; Ebenezer, Neil D; Ogun, Olufunmilola; Devery, Sophie; Wright, Genevieve A; Maher, Eamonn R; Cheetham, Michael E; Moore, Anthony T; Michaelides, Michel; Hardcastle, Alison J

    2010-07-01

    X-linked cone and cone-rod dystrophies (XLCOD and XLCORD) are a heterogeneous group of progressive disorders that solely or primarily affect cone photoreceptors. Mutations in exon ORF15 of the RPGR gene are the most common underlying cause. In a previous study, we excluded RPGR exon ORF15 in some families with XLCOD. Here, we report genetic mapping of XLCOD to Xq26.1-qter. A significant LOD score was detected with marker DXS8045 (Z(max) = 2.41 [theta = 0.0]). The disease locus encompasses the cone opsin gene array on Xq28. Analysis of the array revealed a missense mutation (c. 529T>C [p. W177R]) in exon 3 of both the long-wavelength-sensitive (LW, red) and medium-wavelength-sensitive (MW, green) cone opsin genes that segregated with disease. Both exon 3 sequences were identical and were derived from the MW gene as a result of gene conversion. The amino acid W177 is highly conserved in visual and nonvisual opsins across species. We show that W177R in MW opsin and the equivalent W161R mutation in rod opsin result in protein misfolding and retention in the endoplasmic reticulum. We also demonstrate that W177R misfolding, unlike the P23H mutation in rod opsin that causes retinitis pigmentosa, is not rescued by treatment with the pharmacological chaperone 9-cis-retinal. Mutations in the LW/MW cone opsin gene array can, therefore, lead to a spectrum of disease, ranging from color blindness to progressive cone dystrophy (XLCOD5). PMID:20579627

  18. Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line

    PubMed Central

    Smiley, Sheila; Nickerson, Philip E.; Comanita, Lacrimioara; Daftarian, Narsis; El-Sehemy, Ahmed; Tsai, En Leh Samuel; Matan-Lithwick, Stuart; Yan, Keqin; Thurig, Sherry; Touahri, Yacine; Dixit, Rajiv; Aavani, Tooka; De Repentingy, Yves; Baker, Adam; Tsilfidis, Catherine; Biernaskie, Jeff; Sauvé, Yves; Schuurmans, Carol; Kothary, Rashmi; Mears, Alan J.; Wallace, Valerie A.

    2016-01-01

    We report successful retinal cone enrichment and transplantation using a novel cone-GFP reporter mouse line. Using the putative cone photoreceptor-enriched transcript Coiled-Coil Domain Containing 136 (Ccdc136) GFP-trapped allele, we monitored developmental reporter expression, facilitated the enrichment of cones, and evaluated transplanted GFP-labeled cones in wildtype and retinal degeneration mutant retinas. GFP reporter and endogenous Ccdc136 transcripts exhibit overlapping temporal and spatial expression patterns, both initiated in cone precursors of the embryonic retina and persisting to the adult stage in S and S/M opsin+ cones as well as rod bipolar cells. The trapped allele does not affect cone function or survival in the adult mutant retina. When comparing the integration of GFP+ embryonic cones and postnatal Nrl−/− ‘cods’ into retinas of adult wildtype and blind mice, both cell types integrated and exhibited a degree of morphological maturation that was dependent on donor age. These results demonstrate the amenability of the adult retina to cone transplantation using a novel transgenic resource that can advance therapeutic cone transplantation in models of age-related macular degeneration. PMID:26965927

  19. The S-cone contribution to luminance depends on the M- and L-cone adaptation levels: silent surrounds?

    PubMed

    Ripamonti, Caterina; Woo, Wen Ling; Crowther, Elizabeth; Stockman, Andrew

    2009-01-01

    Under dim background conditions, the S-cones make little or no contribution to luminance (A. Eisner & D. I. MacLeod, 1980; W. Verdon & A. J. Adams, 1987), yet under conditions of intense long-wavelength adaptation, a small but robust contribution to luminance--as defined by heterochromatic flicker photometry (A. Stockman, D. I. MacLeod, & D. D. DePriest, 1987, 1991) or motion (J. Lee & C. F. Stromeyer, 1989)--can be found. Here, by using selective adaptation and/or tritanopic metamers to isolate the S-cone response, we investigate the dependence of the S-cone luminance input on changes in background wavelength and radiance. Interestingly, the S-cone luminance input disappears completely when no adapting background is present, even though the same S-cone stimulus makes a clear contribution to luminance when a background is present. The dependence of the S-cone luminance input on the wavelength and radiance of the adapting background is surprising. We find that the S-cone signal can be measured on fields of 491 nm and longer wavelengths that exceed a criterion background radiance. These criterion radiances roughly follow an L + M spectral sensitivity, which suggests that the S-cone luminance input is silent unless the L- and M-cones are excited above a certain level. We hypothesize that the L + M cone signals produced by the steady adapting backgrounds somehow "gate" the S-cone luminance signals, perhaps by being modulated by them.

  20. Local Protein Synthesis in Axonal Growth Cones

    PubMed Central

    Šatkauskas, Saulius

    2007-01-01

    While initially thought to be essentially a developmental characteristic observed in artificial in vitro models, local protein synthesis in growth cones has been described in the adult, and more interestingly, during nerve regeneration. This emerging field is under intense investigation, revealing new functions of localized protein synthesis that include axon guidance, growth cone adaptation and sensitivity modulation at intermediate targets or axon regeneration. Here, we will review these functions and provide a short survey of the current knowledge on mechanisms of mRNA transport and regulation of localized protein synthesis. In addition, we will consider what lessons can be learned from localized protein synthesis in dendrites and what developments can be expected next in the field. This latter question relates to the crucial point of which technical strategy to adopt for an ideal and pertinent analysis of the phenomenon. PMID:19262143

  1. k-cones and kirigami metamaterials

    NASA Astrophysics Data System (ADS)

    Seffen, Keith A.

    2016-09-01

    We are inspired by the tensile buckling of a thin sheet with a slit to create a foldable planar metamaterial. The buckled shape comprises two pairs of identical e-cones connected to the slit, which we refer to as a k-cone. We approximate this shape as discrete vertices that can be folded out of plane as the slit is pulled apart. We determine their kinematics and we calculate generic shape properties using a simple elastic model of the folded shape. We then show how the folded sheet may be tessellated as a unit cell within a larger sheet, which may be constructed a priori by cutting and folding the latter in a regular way, in order to form a planar kirigami structure with a single degree of freedom.

  2. Transport of Helium Pickup Ions within the Focusing Cone: Reconciling STEREO Observations with IBEX

    NASA Astrophysics Data System (ADS)

    Quinn, P. R.; Schwadron, N. A.; Möbius, E.

    2016-06-01

    Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by 1\\buildrel{\\circ}\\over{.} 8+/- 2\\buildrel{\\circ}\\over{.} 4. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of {λ }\\parallel =0.19+0.29(-0.19) au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ˜8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and \\lt 0.01 % , respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.

  3. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  4. Evaluation of cone function by a handheld non-mydriatic flicker electroretinogram device

    PubMed Central

    Nakamura, Natsuko; Fujinami, Kaoru; Mizuno, Yoshinobu; Noda, Toru; Tsunoda, Kazushige

    2016-01-01

    Purpose Full-field electroretinograms (ERGs) are used to evaluate retinal function in patients with various types of hereditary and acquired retinal diseases. However, ERG recordings require relatively invasive procedures, including pupillary dilation and the use of contact lens electrodes. Thus, it would be helpful to have a simpler and noninvasive screening method. The purpose of this study was to determine whether a new, handheld, portable ERG device, RETeval™, can be used to screen patients for cone dysfunction. Patients and methods Thirty-five eyes of 35 patients who had reduced cone responses ascertained by a conventional ERG system using contact lens electrodes were studied. The causative diseases included achromatopsia, cone dystrophy, cone-rod dystrophy, retinitis pigmentosa, choroidal dystrophy, autoimmune retinopathy, and Stargardt disease. The flicker ERGs were recorded with the RETeval™ under undilated conditions with skin electrodes (stimulus strength, 3.0 cd·s/m2; frequency, 28.3 Hz), and the responses were compared to that of 50 healthy eyes. The amplitudes and implicit times of the fundamental component of the flicker ERGs were analyzed in three age groups: Group A, ≤20 years; Group B, 21–40 years; and Group C, ≥41 years. Results In all of the age groups, the amplitudes of the ERGs were significantly smaller and the implicit times significantly longer in patients with cone dysfunction than in the control eyes. All but one of the patients had flicker amplitudes lower than the mean −2.0 standard deviation of control eyes. Conclusion The RETeval™ has a potential of being used to screen for cone dysfunction. The entire examination takes <5 minutes and does not require pupil dilatation or a contact lens electrode. Although the flicker responses do not provide information on the scotopic functions, the RETeval™ device can be used to determine which patients require additional full-field ERG testing with dilated pupils under both scotopic

  5. Slag Penetration into Refractory Lining of Slagging Coal Gasifier

    SciTech Connect

    Matyas, Josef; Sundaram, S. K.; Rodriguez, Carmen P.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

    2008-10-25

    The impurities in coal are converted into molten slag typically containing SiO2, FeO, CaO, and Al2O3 when coal feedstock is burned in slagging gasifiers. The slag flows down the gasifier sidewalls, dissolves, and penetrates and reacts with the refractory lining that protects the stainless steel shell of the gasifier from elevated temperatures (1300–1600°C). Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements because of low resistance to spalling. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that the spalling is affected by the depth of slag penetration that is in turn affected by the wettability and interconnected porosity of the refractory as well as the slag viscosity. Laboratory tests were conducted to measure the viscosity of slags (Wyoming Powder River Basin [PRB], Pocahontas #3, and Pittsburgh #8), their contact angle on refractories (chromia-alumina [Aurex 75SR] and high-chromia [Serv 95 and Aurex 95P]), and the apparent porosity of selected refractories. In addition, the depth of slag penetration as a function of time and temperature was determined for various refractory-slag combinations. The results of laboratory tests were used to develop a refractory material that has high resistance to penetration by molten slag and thus has a potential to have a substantially longer service life than the materials currently being used.

  6. Instantons on Calabi-Yau cones

    NASA Astrophysics Data System (ADS)

    Sperling, Marcus

    2015-12-01

    The Hermitian Yang-Mills equations on certain vector bundles over Calabi-Yau cones can be reduced to a set of matrix equations; in fact, these are Nahm-type equations. The latter can be analysed further by generalising arguments of Donaldson and Kronheimer used in the study of the original Nahm equations. Starting from certain equivariant connections, we show that the full set of instanton equations reduce, with a unique gauge transformation, to the holomorphicity condition alone.

  7. Method for measuring the spatial variability of aerosol penetration through respirator filters.

    PubMed

    Huang, C; Willeke, K; Qian, Y; Grinshpun, S; Ulevicius, V

    1998-07-01

    Fibrous filter media are widely used in respirators to remove airborne particulate matter from the inhaled airflow of workers. The N95 half-mask particulate respirator appears to be the most frequently used respirator under the new NIOSH regulation, 42 CFR 84. Considerable spatial variability in light penetration through the fibrous filter medium of an N95 respirator can be seen by visual observation when it is held to the light. This variability is due to the way in which the fibers are manufactured and laid down to form the filter medium. Similar spatial variability is expected in the aerosol penetration through the filters. Therefore, a test method has been developed for measuring the spatial variability in aerosol penetration. The main components of this method are an aerosol generator, a filter test stand with a movable sampling inlet, an aerosol size spectrometer, and an aerosol photometer. Measurements with the filter media of N95 respirators, tested at average filtration velocities corresponding to light, moderate, and heavy work loads, have shown spatial variations in aerosol penetration in excess of 100% relative to the average aerosol penetration for the entire respirator. N95 respirators are required to be at least 95% efficient (i.e., less than 5% penetrating) at the most penetrating particle size, when tested at 85 L/min. Tests with the new method have shown that the aerosol penetration of the most penetrating particles of about 0.1 micron diameter may locally be higher than 5%, while the average aerosol penetration of 0.1 micron particles is less than 5%. PMID:9697293

  8. Effect of Nose Shape on Long Rod Penetration into Dry Sand

    NASA Astrophysics Data System (ADS)

    Collins, Adam; Addiss, John; Proud, William

    2009-06-01

    Flat and Ogive-3 nosed mild steel projectiles (10 mm diameter, 100 mm length) were fired at 200 m s-1 into the end face of cylindrically confined dry sand (100 mm diameter, 150 mm length). Projectiles were tracked through the sand using flash radiography and high speed photography. By seeding a horizontal plane of randomly dispersed lead shot (< 1.5 mm diameter) across the centre of the cylinder, the induced displacement field was mapped using Digital Speckle Radiography (DSR). By imaging at successive time intervals, a temporal history of the penetration is generated. DSR reveals a cone of displacement emanating from the impact point in all cases, leaving areas unmoved during the early stages of penetration. The magnitude and extent of the displacement cone is observed to be greater in the flat nosed case. Initial rapid deceleration is seen in both nose cases, relaxing to an approximately steady velocity as the projectile reaches the end of the target. Ogive nosed projectiles suffer less deceleration, and perforate the target with greater speed than the flat nosed projectile. This combined behaviour is attributed to the flat nosed projectile transferring more energy to movement of sand, and hence experiencing more effective drag.

  9. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by the soil

  10. Long polymers near wedges and cones

    NASA Astrophysics Data System (ADS)

    Hammer, Yosi; Kantor, Yacov

    2015-12-01

    We perform a Monte Carlo study of N -step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d =2 ), or the tip of an impenetrable cone in d =3 , of sizes ranging up to N =106 steps. We find that the critical exponent γα, which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α , is in good agreement with the theory for d =2 . We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γα, as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions.

  11. Long polymers near wedges and cones.

    PubMed

    Hammer, Yosi; Kantor, Yacov

    2015-12-01

    We perform a Monte Carlo study of N-step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d=2), or the tip of an impenetrable cone in d=3, of sizes ranging up to N=10(6) steps. We find that the critical exponent γ(α), which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α, is in good agreement with the theory for d=2. We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γ(α), as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions. PMID:26764719

  12. Numerical Simulation of Taylor Cone-Jet

    NASA Astrophysics Data System (ADS)

    Toledo, Ronne

    The Taylor cone-jet is a particular type of electrohydrodynamic phenomenon where electrostatic stresses and surface tension effects shape the interface of the jet in a peculiar conical shape. A thin jet is issued from the cone apex that further breaks up into a fine aerosol. Due to its monodispersive properties, this fine aerosol has found a number of applications, ranging from mass spectrometry, colloidal space propulsion, combustion, nano-fabrication, coating/painting, and many others. In this study, a general non-dimensional analysis is performed to derive the governing equations and boundary conditions. In accordance with the observations of Gamero-Castano (2010), noting that droplet electric potential is insensitive to the flow rate conditions, a particular set of characteristic parameters is proposed, based on the terminal jet diameter. In order to solve the non-dimensional set of governing equations and boundary conditions, a numerical method combining the Boundary Element Method and the Finite Volume Method is developed. Results of electric current have shown good agreement with numerical and experimental data available in the literature. The main feature of the algorithm developed is related to the decoupling of the electrostatic from the hydrodynamic problem, allowing us to accurately prescribe the far field electric potential boundary conditions away from the hydrodynamic computational domain used to solve the hydrodynamics of the transition region near the cone apex.

  13. Cusp formation in drops inside Taylor cones

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2005-11-01

    Here, we report the formation of cusp in insulating drops inside compound Taylor cones. The action of the electrical shear stress acting on the outer interface, which is transmitted by viscous forces inside the Taylor cone, tends to deform the drop of insulating liquid placed inside. For appropriate values of the capillary number, the insulating drop develops a steady cusp angle which depends on both the capillary number and the conducting to insulating viscosity ratio. A self-similar analysis has been developed to qualitatively describe the flow inside these compounds Taylor cones. Any perturbation of the cusp gives rise to an intermittent emission of tiny droplets; this effect may recall the tip-streaming observed by G.I. Taylor in his four-roll mill device. This emission can be stabilized by an appropriate control of the injected flow rate of the insulating liquid. When the capillary number increases, the cusped interface turns into a spout which flows coated by the conducting liquid forming the electrified coaxial jet which has been successfully employed for the production of nanocapsules, coaxial nanofibers and nanotubes (Science 295, n. 5560, 1695, 2002; JACS 126, 5376, 2004).

  14. Reconfiguration of broad leaves into cones

    NASA Astrophysics Data System (ADS)

    Miller, Laura

    2013-11-01

    Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.

  15. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  16. Single crystal tungsten kinetic energy penetrators

    SciTech Connect

    Cline, C.F.; Gogolewski, R.P.

    1992-05-01

    We have explored the terminal ballistic performance of single crystal tungsten as a kinetic energy penetrator. Scientific speculation as to the anticipated penetration performance and nature of the interaction between such a kinetic energy penetrator and semi-infinite and spaced metallic targets has led us to perform laboratory scale experiments and metallographic examinations of post-impact penetrator materials. The single tungsten crystals were ground into kinetic energy penetrators with the [l angle]111[r angle] and [l angle]100[r angle] crystal direction being coincident with the axis of symmetry of the penetrators. The crystals were electro-polished to their final diameter. We, compared the terminal performance at current ordnance speeds of [l angle]111[r angle] single crystal tungsten to 90W-10 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against a spaced steel (triple) target at sixty-five degrees obliquity. We also compared the terminal performance of [l angle]100[r angle] and [l angle]111[r angle] single crystal tungsten with 90W-10 and 98W02 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against monolithic 4340 alloy steel (HRC = 36) at normal impact. We radiographed the penetrators during the interactions with the targets, we recovered portions of the penetrators after the ballistic experiments, and we conducted metallographic examinations of penetrator remnants. From the radiographic records and the metallographic examinations, we drew conclusions pertaining to insights into the terminal interactions of the penetrators with the targets and suggestions as to improved compositions of the cemented tungsten penetrators.

  17. CRALBP supports the mammalian retinal visual cycle and cone vision

    PubMed Central

    Xue, Yunlu; Shen, Susan Q.; Jui, Jonathan; Rupp, Alan C.; Byrne, Leah C.; Hattar, Samer; Flannery, John G.; Corbo, Joseph C.; Kefalov, Vladimir J.

    2015-01-01

    Mutations in the cellular retinaldehyde–binding protein (CRALBP, encoded by RLBP1) can lead to severe cone photoreceptor–mediated vision loss in patients. It is not known how CRALBP supports cone function or how altered CRALBP leads to cone dysfunction. Here, we determined that deletion of Rlbp1 in mice impairs the retinal visual cycle. Mice lacking CRALBP exhibited M-opsin mislocalization, M-cone loss, and impaired cone-driven visual behavior and light responses. Additionally, M-cone dark adaptation was largely suppressed in CRALBP-deficient animals. While rearing CRALBP-deficient mice in the dark prevented the deterioration of cone function, it did not rescue cone dark adaptation. Adeno-associated virus–mediated restoration of CRALBP expression specifically in Müller cells, but not retinal pigment epithelial (RPE) cells, rescued the retinal visual cycle and M-cone sensitivity in knockout mice. Our results identify Müller cell CRALBP as a key component of the retinal visual cycle and demonstrate that this pathway is important for maintaining normal cone–driven vision and accelerating cone dark adaptation. PMID:25607845

  18. Growth cone behavior and production of traction force

    PubMed Central

    1990-01-01

    The growth cone must push its substrate rearward via some traction force in order to propel itself forward. To determine which growth cone behaviors produce traction force, we observed chick sensory growth cones under conditions in which force production was accommodated by movement of obstacles in the environment, namely, neurites of other sensory neurons or glass fibers. The movements of these obstacles occurred via three, different, stereotyped growth cone behaviors: (a) filopodial contractions, (b) smooth rearward movement on the dorsal surface of the growth cone, and (c) interactions with ruffling lamellipodia. More than 70% of the obstacle movements were caused by filopodial contractions in which the obstacle attached at the extreme distal end of a filopodium and moved only as the filopodium changed its extension. Filopodial contractions were characterized by frequent changes of obstacle velocity and direction. Contraction of a single filopodium is estimated to exert 50-90 microdyn of force, which can account for the pull exerted by chick sensory growth cones. Importantly, all five cases of growth cones growing over the top of obstacle neurites (i.e., geometry that mimics the usual growth cone/substrate interaction), were of the filopodial contraction type. Some 25% of obstacle movements occurred by a smooth backward movement along the top surface of growth cones. Both the appearance and rate of movements were similar to that reported for retrograde flow of cortical actin near the dorsal growth cone surface. Although these retrograde flow movements also exerted enough force to account for growth cone pulling, we did not observe such movements on ventral growth cone surfaces. Occasionally obstacles were moved by interaction with ruffling lamellipodia. However, we obtained no evidence for attachment of the obstacles to ruffling lamellipodia or for directed obstacle movements by this mechanism. These data suggest that chick sensory growth cones move forward by

  19. Biochemical pharmacology of isolated neuronal growth cones: implications for synaptogenesis.

    PubMed

    Lockerbie, R O

    1990-01-01

    The neuronal growth cone is critical to the establishment of neuronal polarity through its motile, pathfinding and target recognition properties exhibited during synaptogenesis. Subcellular fractionation procedures yielding milligram quantities of isolated growth cones has allowed for biochemical and pharmacological investigation of intrinsic growth cone components that are likely to be involved in regulation of growth cone function in neuronal development. These 'mapping' studies of growth cone components are prerequisites to elucidating the mechanisms by which extracellular factors influence the motility, adhesion and directed growth of the growth cone. For example, neurotransmitters and polypeptide growth factors which have been shown in other systems to modulate growth cone behavior are presumed to act through receptors on the growth cone, inducing second-messenger molecule formation and consequent modification and regulation of proteins effecting the response(s) of the growth cone (i.e. proteins involved in motility, adhesion and membrane turnover). In a relatively short period of time, work with the isolated growth cone preparation has identified, in independent studies, many of the elements involved in this proposed scheme of events, including transmitter receptors, second-messenger cascades, and second-messenger post-translational modifications. An obvious future goal will be to analyze in more detail the intracellular events, and the relationships between them, in the growth cone and how they transmit extracellular signals into responses such as motility and adhesivity which underly the growth cone's synaptogenic properties. It is to be expected that much of this information will come forth from experimentation with the isolated growth cone preparation.

  20. Technical Note: Suppression of artifacts arising from simultaneous cone-beam imaging and RF transponder tracking in prostate radiotherapy

    SciTech Connect

    Poludniowski, Gavin; Webb, Steve; Evans, Philip M.

    2012-03-15

    Purpose: Artifacts in treatment-room cone-beam reconstructions have been observed at the authors' center when cone-beam acquisition is simultaneous with radio frequency (RF) transponder tracking using the Calypso 4D system (Calypso Medical, Seattle, WA). These artifacts manifest as CT-number modulations and increased CT-noise. The authors present a method for the suppression of the artifacts. Methods: The authors propose a three-stage postprocessing technique that can be applied to image volumes previously reconstructed by a cone-beam system. The stages are (1) segmentation of voxels into air, soft-tissue, and bone; (2) application of a 2D spatial-filter in the axial plane to the soft-tissue voxels; and (3) normalization to remove streaking along the axial-direction. The algorithm was tested on patient data acquired with Synergy XVI cone-beam CT systems (Elekta, Crawley, United Kingdom). Results: The computational demands of the suggested correction are small, taking less than 15 s per cone-beam reconstruction on a desktop PC. For a moderate loss of spatial-resolution, the artifacts are strongly suppressed and low-contrast visibility is improved. Conclusions: The correction technique proposed is fast and effective in removing the artifacts caused by simultaneous cone-beam imaging and RF-transponder tracking.